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Abstract

A major research challenge is to develop ther-
apeutics that assist with healing damaged
tissues and organs because the human body
has limited ability to restore the majority of
these tissues and organs to their original state.
Tissue engineering (TE) and regenerative
medicine (RM) promises to offer efficient ther-
apeutic biological strategies that use mesen-
chymal stem cells (MSCs). MSCs possess the
capability for self-renewal, multilineage differ-
entiation, and immunomodulatory properties
that make them attractive for clinical
applications. They have been extensively
investigated in numerous preclinical and clini-
cal settings in an attempt to overcome their
challenges and promote tissue regeneration
and repair. This review explores the exciting
opportunities afforded by MSCs, their desir-
able properties as cellular therapeutics in RM,
and implicates their potential use in clinical
practice. Here, we attempt to identify
challenges and issues that determine the clini-
cal efficacy of MSCs as treatment for skeletal
and non-skeletal tissues.
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Abbreviations

AKI Acute kidney injury
ALS Amyotrophic lateral sclerosis
ABGs Autologous bone grafts
ACI Autologous chondrocyte implantation
BM Bone marrow
BMMC Bone marrow mononuclear cells
BMT Bone marrow transplantation
CPCs Cardiac progenitor cells
CCR C-C chemokine receptor type
CKD Chronic kidney disease
CXCR C-X-C chemokine receptor type
DCM Dilated cardiomyopathy
DMD Duchenne muscular dystrophy
ESCs Embryonic stem cells
EPCs Endothelial progenitor cells
ECM Extracellular matrix
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FTSW Full-thickness skin wounds
GVHD Graft versus host disease
GFP Green fluorescence protein
HF Heart failure
HCELL Hematopoietic cell E-/L-selectin

ligand
HGF Hepatocyte growth factor
hAD-
MSCs

human adipose derived-MSCs

HA Hydroxyapatite
iPSCs induced pluripotent stem cells
IGF-1 Insulin-like growth factor 1
ISCT International Society for Cellular

Therapy
IA Intra-arterial
IC Intracoronary
IV Intravenous
MHC Major histocompatibility complex
MSCs Mesenchymal stem cells
MMPs Metalloproteinases
MSC-CM MSCs-conditioned medium
MS Multiple sclerosis
MI Myocardial infarction
NIH National Institute of Health
NYHA New York Heart Association
NO Nitric oxide
OA Osteoarthritis
OI Osteogenesis imperfecta
PDGF Platelet-derived growth factor
PSCs Pluripotent stem cells
PCL Poly-ε-caprolactone
ciPTEC Proximal tubule epithelial cells
RM Regenerative medicine
SCs Satellite cells
SECs Sinusoidal endothelial cells
SDF-1 Stromal derived factor-1
TA Tibialis anterior
TE Tissue engineering
TGF-β Transforming growth factor-beta
UC Umbilical cord
VCAM-1 Vascular cell adhesion molecule 1
VEGF Vascular endothelial growth factor

1 Introduction

Damaged or lost organs, diseased and injured
tissues, and tumor resections present urgent
circumstances that necessitate the use of thera-
peutic approaches. The clinical strategies for
treatment of tissues and organs to restore them
to fully functional structures are basically classi-
fied into three main categories – drug therapy;
surgery (autograft and allograft); and novel thera-
peutic approaches such as gene therapy, cell ther-
apy, and tissue engineering (TE). The
complicated healing process in most diseases,
requires the simultaneous use of two or more
approaches to achieve desired outcomes. Drug
therapy, a traditional approach for all disease
types, is normally used as a co-treatment with
other strategies. For example, administration of
immunosuppressive drugs following organ/tissue
engraftment (e. g., kidneys, lungs, skin, or liver
transplant) is necessary throughout the patient’s
life (van Gelder et al. 2014). In some cases, drug
therapy merely results in a promising outcome.
Pharmacologics that target mitochondrial-
associated protein kinase C and its substrates,
such as aldehyde dehydrogenase 2, reduce ische-
mic damage and induce cardioprotection (Chen
et al. 2008). Advances in nanotechnology, bioin-
formatics, and biology have increased novel drug
designs and delivery systems for effective drug
therapy; however, additional attempts are needed
to address diseases and chronic conditions such as
spinal cord and brain injuries.

Surgery is a second approach that attempts to
revive and repair damaged tissues. Surgeons fre-
quently perform tissue reconstruction in cases of
tumor resection, trauma injuries, and allotrans-
plantations. For example, autologous bone grafts
(ABGs) are the current gold-standard for repair
and reconstruction of critical-sized bone defects
(Roberts and Rosenbaum 2012). Annually, more
than 2 million bone grafts are used in orthopedic
procedures worldwide in both adolescents and
adults (Blank et al. 2017). Although surgical
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approaches are being adapted for skeletal tissues
(bone and cartilage), the benefits must be care-
fully weighed against the risks that include life-
long immunosuppressive therapy. In addition,
despite the increased success rates of surgical
repair and reconstruction of injured tissue along
with technological advances and improved mod-
ern surgical tools, repair of some injured
non-skeletal tissues (brain, kidneys, and liver)
remain challenging.

Limitations with traditional therapeutic
approaches have urged scientists to develop
novel, effortless, efficient strategies for tissue
regeneration. Recently, a new branch of medi-
cine, regenerative medicine (RM), has emerged
with the intent to restore normal function of dam-
aged tissues and organs by stimulation of endog-
enous repair processes. RM may use progenitor
cells, stem cells, or therapeutic agents such as
genes and trophic factors. Among these, exten-
sive attention has focused on stem cells. Stem
cells have greatly improved the disciplines of
TE, gene therapy, developmental biology, cell
therapy, and nanotechnology. The presence of
regenerative cells was first hypothesized in the
late nineteenth century by Cohnheim (1867). Cur-
rently, we know that most adult tissues possess
progenitor and stem cells that are employed to
repair minor tissue lesions. Stem cells deliver
multiple agents in contrast to the single agent
delivery of pharmaceutical drugs. They have the
ability to respond to local micro-environmental
clues or signals by secretion of bioactive factors.
Stem cells can be engaged by gene therapy and
material science to revolutionize the regenerative
potential of each approach (Taghiyar et al. 2017).
Insertion of a relevant gene sequence into a target
cell and seeding the cells onto an appropriate
natural or artificial material may result in the
desired biological effect. The regenerative
potency of stem cells, particularly mesenchymal
stem cells (MSCs), is taken into consideration in
this review. We discuss the numerous basic,
translational and clinical studies in skeletal and
non-skeletal tissues in an attempt to address cur-
rent advancements and challenges of MSCs used
for clinical applications.

2 Stem Cells and Regenerative
Medicine (RM)

Cellular therapy has shown great progress in both
preclinical research and the clinical setting. The
initial cell transplantation attempts involved intra-
venous (IV) transfusion of whole blood
(Giangrande 2000). Cell therapy, particularly
stem cell therapy, was predominantly confined
to bone marrow (BM) transplantation for hemato-
logical diseases as well as epidermis transplanta-
tion for massive burns (Atiyeh and Costagliola
2007). Today, various stem cell sources of adult
and pluripotent stem cells (PSCs) such as embry-
onic stem cells (ESCs) and induced PSCs (iPSCs)
have been introduced for tissue repair. Adult stem
cells can only differentiate into a limited number
of cell types, whereas ESCs and artificially
generated iPSCs develop into all three germ
layers and are referred to as PSCs (Hosseini and
Baghaban Eslaminejad 2017). ESCs derived from
the inner-cell mass of the blastocyst provide
potent cell sources for clinical applications
(Thomson et al. 1998). Pluripotency and the abil-
ity for self-renewal make ESCs appropriate for
treatment of diseases whereas adult stem cells or
progenitor cells have not been clearly identified or
are difficult to expand in culture. However, ethi-
cal issues exist with harvesting the cells from
embryos. In addition, the possibility exists for
immunogenicity and tumorigenicity, both of
which have delayed clinical translation of ESC
research. iPSCs preserve the pluripotency and
self-renewal ability of ESCs, yet overcome the
ethical concerns associated with ESCs. They can
be maintained in culture where they self-renew
indefinitely and produce an infinite number of
progeny (Takahashi and Yamanaka 2006). Autol-
ogous cells can be served even from patients with
specific mutations to create iPSCs (Wiley et al.
2015). Kawamata's group evaluated the safety
and regenerative capacity of iPSCs in preclinical
setting and performed the first clinical trial for
treatment of age-related macular degeneration
(Kanemura et al. 2014; Souied et al. 2017). Nev-
ertheless, the tumorigenicity risk remains
unsolved.
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MSCs, a promising cell source, can be
harvested from various sources such as BM, adi-
pose tissue, umbilical cord (UC), and dental
tissues (Baghaban Eslaminejad et al. 2011;
Eslaminejad et al. 2010). MSCs have been stud-
ied in clinical trials and there is accumulating
evidence regarding their robust potential to treat
numerous diseases (Tables 1 and 2). By June
15, 2015, there were 493 MSC-based clinical
trials for a wide range of therapeutic applications.
Despite clinical success in MSC cell therapy, the
long-term safety of MSC-based therapies is
poorly established (phase III clinical trials) and
continues to pose a major limitation to translating
MSCs into clinical practice. Of note, the majority
of cell therapy clinical trials have used non-ESCs
(postnatal stem cells that included cord blood and
MSCs) that were isolated from patients or donor
tissues. Most were phase I and phase II, or a
mixture of phase I/II studies to explore the safety
and efficacy of stem cells in human being. Only a
small number were phase III or phase II/III trials.

3 Properties of Mesenchymal
Stem Cell (MSC) Related
to Their Therapeutic Effects
in Regenerative Medicine (RM)

The biological properties of MSCs were unknown
when initially isolated from BM by Friedenstein
et al. in 1970 (Friedenstein et al. 1970). Numer-
ous attempts have been made to isolate MSCs
from various sources to determine their molecular
and cellular properties. Understanding the
biological characteristics of MSCs would provide
clear insight for their prospective clinical
applications. In 2006, the International Society
for Cellular Therapy (ISCT) defined MSCs on
the basis of the following criteria: adherence to
plastic substrate under standard tissue culture
conditions; ability to express cell surface markers
CD73, CD90, and CD105; do not express CD45,
CD34, CD14, or CD11b, CD79 alpha or CD19
and HLA-DR surface molecules; and have the
capability to differentiate into osteoblast, adipo-
cyte, and chondroblast lineages under external
stimuli (Dominici et al. 2006).

Currently, four paramount features of MSCs
make them promising for RM, including their
self-renewal and multi-lineage differentiation
potential. In addition, intravenously injected
MSCs have the capability to migrate and home
to the sites of injury in response to inflammatory
factors. They exert anti-inflammatory effects
through secretion of multiple bioactive
molecules, which in turn stimulates the recovery
of injured cells. Finally, MSCs lack immunoge-
nicity and exhibit immunomodulatory properties
(Fig. 1). Here, we provide a brief description of
each property.

3.1 Differentiation Potential

The multi-lineage differentiation capability of
MSCs has been extensively studied in vitro and
in vivo (Nadri et al. 2013a, b). MSCs have the
potential to give rise to myogenic, adipogenic,
osteogenic, and chondrogenic mesodermal
lineages (Galli et al. 2014). It has also reported
that MSCs can commit to ectodermal and endo-
dermal cell fates. Our group succeeded in differ-
entiation of MSCs to photoreceptor cells on
nanofibrous scaffolds (Nadri et al. 2013a, b).
Kopen et al., for the first time, have demonstrated
the ability of MSCs to commit to astrocytes and
neuron-like cells after they were injected into the
central nervous systems of newborn mice (Kopen
et al. 1999). In a clinical study, human MSCs
(hMSCs) were transplanted into the spinal cord
of amyotrophic lateral sclerosis (ALS) patients.
This study showed that transplantation of hMSCs
were safe and well-tolerated by ALS patients
(Mazzini et al. 2003). Recently, several research
groups used MSCs in combination with
nanomaterials as a promising therapeutic strategy
for skin TE both in vitro and in the clinical
setting. Wu et al. injected green fluorescence pro-
tein (GFP+) allogeneic BM-derived MSCs
(BM-MSCs) around a wound in normal and dia-
betic mice. They observed significantly enhanced
wound healing in both experimental groups com-
pared to control mice (Wu et al. 2007). Another
study used biomimetic nanofiber scaffolds
(NFSs) seeded with BM-MSCs to treat acute

118 S. Hosseini et al.



Table 1 Clinical trials related to mesenchymal stem cell (MSC)-based therapy of skeletal tissues

No. Disease

Type
of
cells Type of injection Result References

1 Limb
ischemia

AD-
MSCs

Multiple
intramuscular

At 6 months, a significant improvement was
observed in pain rating scales and claudication
walking distance. Numerous vascular collateral
networks was formed across affected arteries as
evidenced by digital subtraction angiography
6 months post MSC implantation.

Lee et al.
(2012)

2 Femoral head
osteonecrosis

AD-
MSCs

Local The results showed the long-term reduction in
hip pain and improvement in MRI scan.

Pak (2012)

3 Long bone
non-union

BM-
MSCs

Local The results confirmed the safety of MSC
implantation combined with platelet lysate
during 12 months and bony union had occurred
in four patients.

Labibzadeh
et al. (2016)

4 Femoral head
osteonecrosis

BM-
MSCs

Implantation Increased Harris hip score along with the
reduced volume of the necrotic lesion was
observed in group treated by BMMSC.

Zhao et al.
(2012)

5 Femoral head
osteonecrosis

BM-
MSCs

Perfusion via
medial circumflex
femoral artery

92.31% of hips showed a satisfactory clinical
outcome. Only 6 hips (7.69%) progressed to
clinical failure.

Mao et al.
(2013)

6 OA AD-
MSCs

Intra-articular An improved knee function and reduced knee
pain was observed in cell treated groups
particularly high-dose group.

Jo et al.
(2017)

7 OA AD-
MSCs

Intra-articular During 2 years follow-up, none of the patients
underwent total knee arthroplasty. But 87.5 % of
elderly patients (14/16) improved or maintained
cartilage status at least 2 years postoperatively

Koh et al.
(2015)

8 OA BM-
MSCs

Intra-articular Therapeutic benefits such as increased walking
distance and decreased visual analog scale
(VAS) with no evidence of tumor or neoplastic
changes in the patients observed during the
30-month follow-up.

Emadedin
et al. (2015)

9 OA AD-
MSCs

Intra-articular All clinical outcome parameters that include
pain, function, and mobility were improved,
particularly in low-dose AD-MSCs. Four
patients experienced transient knee joint pain and
swelling after local injection

Pers et al.
(2016)

10 OA BM-
MSCs

Intra-articular No local or systemic adverse events detected
after 1 year. MRI confirmed an increase in
cartilage thickness. Pain, knee function, and
walking distance were getting improved up to
6 months post-injection.

Emadedin
et al. (2012)

11 OA AD-
MSCs

Intra-articular AD-MSCs treated group showed significant
improvement in four clinical scores.
Radiography showed neither improvement, no
further joint degeneration.

Spasovski
et al. (2018)

12 Osteoarthritic
knees

BM-
MSCs

Intra-articular MRI revealed better Magnetic Resonance
Observation of Cartilage Repair Tissue
(MOCART) scores in the patients received
BM-MSCs.

Wong et al.
(2013)

13 Osteogenesis
imperfecta
(OI)

BM-
MSCs

Transplantation Total body bone mineral content of all cell-
recipient patients increased. And frequencies of
bone fracture. Reduced.

Horwitz
et al. (1999)

Regenerative Medicine Applications of Mesenchymal Stem Cells 119



Table 2 Clinical trials related to mesenchymal stem cell (MSC) based therapy of non-skeletal tissues

No. Disease

Type
of
cells Type of injection Result References

1 Grade II to IV graft-
versus-host disease

(GVHD)

BM-
MSCs

Intravenous 86 adverse events and serious adverse
events most of which (72.1%) were of
infectious nature are reported. Overall
survival at 1 and 2 years from the first
MSC administration was 50.0% and
38.6%, with a median survival time of
1.1 years.

Introna
et al. (2014)

2 Chronic GVHD
(cGVHD)

BM-
MSCs

Infusion Patients experienced no adverse effects
post MSC infusion. The 2-year survival
rate was 77.7%. Clinical improvement
was accompanied by the increasing ratio
of CD5+CD19+/CD5-CD19+ B cells and
CD8+CD28-/CD8+CD28+ T cells.

Weng et al.
(2010)

3 Myocardiopathy UC-
MSCs

Left ventricular Patients treated with UC-MSCs showed
improvements in left ventricular function,
functional status, and quality of life.

Bartolucci
et al. (2017)

4 Autosomal dominant
polycystic kidney
disease (ADPKD)

BM-
MSCs

Cubital vein No adverse and serious adverse events
observed in cell- treated patients and the
mean serum creatinine level increased
after a 12-month follow-up.

Makhlough
et al. (2017)

5 Acute-on-chronic liver
failure (ACLF)

UC-
MSC

Intravenously
through the

cubital vein of
the arm

The UC-MSC treatment resulted in
increased survival rates in ACLF patients;
and reduced the end-stage liver disease
scores. Liver function was improved as
indicated by increased serum albumin,
cholinesterase, and prothrombin activity;
and increased platelet counts. Serum total
bilirubin and alanine aminotransferase
levels were significantly decreased in the
UC-MSC group.

Shi et al.
(2012)

6 Decompensated
hepatitis B cirrhosis

hUC-
MSCs

Intravenous
infusion

The results indicated significant
reductions in the serum levels of
inflammatory cytokines (IL-6 and TNFα)
while the level of immunosuppressive
cytokines (IL-10 and TGFβ) increased.
Moreover, percentages of T4 cells and
Treg cells were increased and T8 cells and
B significantly reduced.

Fang et al.
(2016)

7 Spinal cord injury
(SCI)

AD-
MSCs

Intrathecal There was no sign of tumorous conditions
or calcification as evidenced by MRI.
Motor recovery was observed in 5 patients
at 8 months follow-up. Voluntary anal
contraction improvement was seen in
2 patients. ASIA sensory score recovery
was seen in 10, although degeneration was
seen in one. In somatosensory evoked
potential test, one patient showed median
nerve improvement.

Hur et al.
(2016)

8 Spinal cord injury
(SCI)

BM-
MSCs

Direct injection
into lesion sites

It confirmed the safety of allogenic
hMSCs in patients with SCI, however, it
might not be efficacious; especially in
patients with chronic SCI.

Bhanot
et al. (2011)

(continued)
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full-thickness skin wounds (FTSW) in a rat
model. This construct resulted in epithelialization
and normal skin formation with hair follicles and
sebaceous glands, as well as collagen deposition
over 10 days (Ma et al. 2011). Regarding the
differentiation potential of MSCs to endodermal
lineages, it has been shown that hBM-MSCs and
human adipose derived-MSCs (hAD-MSCs) have
the ability to transdifferentiate into lung epithelial
cells (Mendez et al. 2014). Likewise, MSCs that
were systemically injected into C57BL/6 mice
after a radiation-induced injury immediately

gave rise to functional (epithelial and endothelial)
lung cells (Yan et al. 2007). Various in vivo and
in vitro experiments reported similar findings
(Wang et al. 2018). Transplantation of
BM-MSCs into chimeric mice that expressed
GFP with ischemically injured renal tubules
resulted in differentiation toward renal tubular
epidermal cells (Duffield et al. 2005). Although
there has been an increase in the therapeutic use
of MSCs, direct differentiation and paracrine
effects of MSCs used to treat diseases are
completely unknown.

Table 2 (continued)

No. Disease

Type
of
cells Type of injection Result References

9 Spinal cord injury
(SCI)

BM-
MSCs

Direct injection
into lesion sites

Total of 75% patients improved with
grade A SCI, three with grade B injury and
eight patients (100%) with grade C injury,
1 month post transplantation.

Jiang et al.
(2013)

10 Secondary progressive
multiple sclerosis

(SPMS)

BM-
MSCs

Intravenous
infusion

No serious adverse events were detected.
An increase in optic nerve area was
observed after treatment in visual acuity.
They found no substantial effects on color
vision, visual fields, macular volume,
retinal nerve fiber layer thickness, or optic
nerve magnetization transfer ratio.
Bacterial infection was observed in 20%
of patients.

Connick
et al. (2012)

11 Multiple sclerosis
(MS) and amyotrophic
lateral sclerosis (ALS)

BM-
MSCs

Intrathecal and
intravenous

MRI of the brain and whole spine did not
reveal any significant unexpected
pathology and confirmed the existence of
MSCs in the occipital horns of the
ventricles. Immunological analysis
showed a 72% increase in the proportion
of CD4+ CD25+ regulatory T cells and a
reduction in expression of CD40+, CD83+,
CD86+, and HLA-DR on myeloid
dendritic cells.

Karussis
et al. (2010)

12 Severe emphysema BM-
MSCs

Intravenous There was no evidence of induction of
fibrotic responses in the lung by MSCs.
Expression of the endothelial cell marker
CD31 in the alveolar septa of
emphysematous lung tissue increased
after lung volume reduction surgery
(LVRS) and MSC infusions.

Stolk et al.
(2016)

13 Idiopathic pulmonary
fibrosis (IPF)

BM-
MSCs

Infusion The results confirmed the safety of a
single infusion of hMSCs in patients with
mild-moderate IPF.

Glassberg
et al. (2017)

14 Acute respiratory
distress syndrome

(ARDS)

BM-
MSCs

Infusion The safety of a single dose of allogeneic
BM-MSCs in patients with moderate-to-
severe ARDS was observed.

Wilson
et al. (2015)
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3.2 Migration and Homing Capacity

MSCs are therapeutically capable of homing to
inflammation sites via systemic infusion routes,
such as IV infusions, intra-arterial (IA) injections,
and intracoronary (IC) local administration. They
exert their functional effects locally in the resident
tissue. Regardless of the tissue, MSCs migrate to
the injury sites under a variety of pathologic
conditions. Ortiz et al. have shown that MSCs
attenuated inflammation in lung tissues of
bleomycin-challenged mice following homing to
the lung in response to an injury (Ortiz et al.
2003). Similarly, transplanted MSCs migrated
towards injured muscle tissues in mdx mice (Liu
et al. 2007). Agematsu et al. conducted a study to
address the origin of MSCs following allogeneic
BM transplantation (BMT). They demonstrated
that stromal fibroblasts cells in long-term cultures
originated from the recipients as evidenced by in
situ hybridization using a Y-chromosome specific
cDNA probe (PHY10) (Agematsu and Nakahori
1991). However, the number of MSCs in

injection site differed in various systemic
infusions. Various in vitro and in vivo studies
have reported that MSC selectively migrate to
the injured site by mediation of numerous
cytokines such as receptor tyrosine kinase-
dependent growth factors [e.g., platelet-derived
growth factor (PDGF) and insulin-like growth
factor 1 (IGF-1)] and chemokines (e.g., CCR2,
CCR3, CCR4 or CCL5) (Ponte et al. 2007).
These homing signals are secreted by injured
cells and/or respondent immune cells. Baek
et al. have reported that C-C chemokine receptor
type 1 (CCR1), CCR7, C-X-C chemokine recep-
tor type 4 (CXCR4), CXCR5, CXCR6, EGF
receptor, fibroblast growth factor receptor
1, transforming growth factor-beta (TGF-β)
receptor 2, TNF receptor superfamily member
1A, PDGF receptor A, and PDGF receptor B
regulate the migration capacity of hAD-MSCs
(Baek et al. 2011). Besides these homing signals,
other molecules are implicated in different steps
of the homing process. For example, CXCR4-
stromal derived factor-1 (SDF-1) is of crucial

Fig. 1 The paramount features of MSCs related to their
therapeutic effects in regenerative medicine
(RM) including their multi-lineage differentiation

potential, homing and migration capacity, secretion of
trophic factors and immunomodulatory effects
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importance for BM homing (Wynn et al. 2004).
Hematopoietic cell E-/L-selectin ligand
(HCELL), a specialized glycoform of CD44, is
involved in cell migration (Sackstein 2011).
G-protein coupled receptors, integrins as adherent
molecules such as integrin β1 and integrin α4,
which interact with vascular cell adhesion mole-
cule 1 (VCAM-1) are functionally involved in
MSC homing. Since efficient cell delivery is the
major challenge in RM, the presence of these
factors would be a promising strategy to facilitate
therapeutic delivery of MSCs and target the
injured tissue. Yun et al. showed that prostaglan-
din E2 (PGE2) stimulation facilitated MSCs
migration to the injured tissue (Yun et al. 2011) .

3.3 Secreting Multiple Bioactive
Molecules

Therapeutic applications of MSCs are associated
with direct differentiation of MSCs at the injury
site and largely related to an indirect capacity in
suppressing immune and inflammatory reactions,
activation of normal tissue repair processes, fibro-
sis and apoptosis inhibition, and enhancement of
angiogenesis. MSCs exert these roles by secretion
of trophic factors – a variety of paracrine and
autocrine factors as well as extracellular vesicles
such as exosomes and microvesicles. Various
studies have demonstrated that cytokines secreted
by MSCs contributed to functional improvement
of an infarcted heart (Timmers et al. 2011), spinal
cord injury (Cantinieaux et al. 2013), and ische-
mic limb regeneration (Bhang et al. 2014)
models. Ulivi et al. reported that MSCs turned
the pro-inflammatory phenotype of macrophages
into a phenotype with the ability to inhibit pro-
duction of inflammatory cytokines (Ulivi et al.
2014). Moghadasali et al. showed the MSCs-
conditioned medium (MSC-CM) recovered cell
viability and migration of human proximal tubule
epithelial cells (ciPTEC) after drug-induced neph-
rotoxicity (Moghadasali et al. 2013). Systemic
infusion of MSCs-CM reduced the expression
levels of pro-inflammatory cytokines, which
resulted in enhanced survival of hepatocytes and
sinusoidal endothelial cells (SECs) in reduced-

size liver transplantation (RSLT) in a rat model.
(Du et al. 2013). A comprehensive expression
profile of BM-MSCs that used an antibody array
revealed 120 cytokines and chemokines with
6 highly secreted cytokines (IL-6, IL-8, TIMP-2,
MCP-1, VEGF, and OPG) (Park et al. 2009).
However, the functional roles of these cytokines
have yet to be determined.

3.4 Immunomodulatory Functions
of Mesenchymal Stem Cells
(MSCs)

The immunosuppressive feature of MSCs was
first reported in the early 2000s (Bartholomew
et al. 2002). Since then, MSCs have attracted
great attention for therapeutic applications.
Liechty et al. designed a xenogeneic system to
address the fate of MSCs after cell injection/trans-
plantation. They transplanted hBM-MSCs into
fetal sheep in the early phase of pregnancy and
observed that hBM-MSCs gave rise to multiple
tissues (cartilage, heart, adipose tissue, muscle,
BM, and thymic stroma). MSCs existed in a
xenogeneic environment due to unique immuno-
logic characteristics along with preservation of
their multipotential capacity post-transplantation
(Liechty et al. 2000). Various studies have shown
that MSCs have the ability to affect almost all
cells of both the innate and adaptive immune
systems and induce an anti-inflammatory pheno-
type. MSCs modulate the immune response by
soluble factors (e.g., IL-6, M-CSF, IL-10, TGF-β,
HGF, and PGE2) and cell-cell contact (Xu et al.
2007). Adhesion molecules that include VCAM-
1, ICAM-1, and LFA-3 are involved in T-cell
interaction and play an important role in
MSC-mediated immunosuppression (Xu et al.
2007). Nicola et al. have shown that co-culture
of BM-MSCs and T cells led to a significant,
dose-dependent reduction of T-cell proliferation
(Di Nicola et al. 2002). Apparently, MSCs sup-
press subpopulations of T-cells such as CD8+
(Chen et al. 2002). It has been demonstrated
MSCs have naturally low immunogenic
properties due to low expression level of major
histocompatibility complex (MHC) class I
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antigens and lack of MHC class II and
co-stimulatory molecules such as CD80, CD86,
and CD40 (Krampera et al. 2003). Recent studies
revealed that MSCs-CM exhibited a similar
immunomodulatory effect as MSCs. Hashemi
et al. compared AD-MSCs-CM derived from
BALB/c, C57BL/6, and DBA mouse strains.
The immunological assays showed some varia-
tion among the strains in the cytokines, nitric
oxide (NO), and indoleamine 2,3-dioxygenase
production as well as immunomodulatory effects
on splenocyte functions. There was suppression
of splenocyte proliferation in the presence of
ADMSC-CM in the three inbred mouse strains,
though, BALB/c CM caused a stronger immuno-
suppressive effect (Hashemi et al. 2013). Deter-
mining MSCs suppressive immune response
mediatory role would improve prospective clini-
cal applications of MSCs.

4 Mesenchymal Stem Cells
(MSCs) in Skeletal Tissues

Advances in MSC therapy for bone, cartilage,
tendons, and muscles will be reviewed in this
section. Table 1 lists the clinical studies that
employed MSCs as treatment of skeletal diseases.

4.1 Bones

Bones have self-healing capability for small,
non-intensive and uncomplicated injuries. Bone
healing is a complicated process that consists of
overlapping phases – inflammation, repair, and
remodeling. Numerous intracellular signaling
pathways play a role in bone healing. Newly
formed bone is indistinguishable from the
surrounding native bone in both its micro struc-
ture and macro structure. However, this ability for
self-healing is unable to repair large-sized bone
defects, which lead to formation of malunions,
delayed unions, nonunions, osteomyelitis, necro-
sis, and tumors. Therefore, an efficient therapeu-
tic approach is of crucial importance for treatment
of bone lesions. ABG are the current gold-
standard procedure. Annually, more than

2 million ABG are performed as orthopedic
procedures worldwide (Blank et al. 2017).
Allografts and xenografts are considered to be
alternative strategies for bone treatment. Despite
the satisfactory results of the aforementioned
methods, a number of shortcomings and
complications limit their availability and applica-
tion. Administration of MSCs alone or in combi-
nation with biomaterials has emerged as a
promising strategy for bone repair and is currently
under intensive investigation.

The capability of MSCs to undergo osteogenic
differentiation was identified in 1976
(Friedenstein et al. 1976). This finding
encouraged scientists to exploit this new technol-
ogy in the preclinical and clinical settings. The
successful outcome of intravascular injection of
complete BM and/or BM-MSCs has been
reported for regeneration of maxillofacial defects,
osteonecrosis, and distraction osteogenesis
(Zamiri et al. 2013). According to the official
database, the most reported translational use of
cell therapy is related to non-union bone defects
(Ballini et al. 2017). Healey et al., in 1990, have
reported desirable outcomes in 8 patients with
delayed union who were treated by percutaneous
engraft of autologous BM (Healey et al. 1990).
Percutaneous BM grafting in patients with tibial
non-union resulted in union treatment in 15 of
20 patients at 4 months after treatment (Goel
et al. 2005). Another group injected concentrated
autologous BM in patients with tibia nonunion
and observed good clinical outcomes (Hernigou
et al. 2005).

Direct injection of MSCs is an ineffective
delivery method in large bone defects where a
significant amount of the bony tissue is lost.
Acceleration of the bone healing process of criti-
cal size defects fails due to lack of angiogenesis,
which would enhance repair capacity. Recently, it
has been suggested that the controlled delivery of
MSCs and growth factors within biomaterial
substrates (hydrogel, scaffold) promotes healing
and accelerates functional new bone formation
(Khojasteh et al. 2013). Khojasteh et al. delivered
MSCs and endothelial progenitor cells (EPCs) in
β-tricalcium phosphate scaffolds that contained
vascular endothelial growth factor (VEGF)-
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loaded microspheres and implanted them in bilat-
eral mandibular bone defects in dogs. Their
results showed the most bone formation in the
VEGF/MSC scaffold compared with the other
groups. The amount of new bone regeneration
was highest in the MSCs/EPC/VEGF group
(Khojasteh et al. 2017). In clinical settings,
Quarto successfully treated a 4 cm tibial critical
size defect with autologous BM-MSCs in combi-
nation with hydroxyapatite (HA). The injury
healed within 6 months (Quarto et al. 2001).
Subsequently, Bajada et al. used BM-MSCs com-
bined with calcium sulfate carriers to treat a
non-union tibial fracture and the fracture healed
2 months after surgery (Bajada et al. 2007).

Osteonecrosis (avascular necrosis) is a bone
and cartilage distraction caused by disease or
severe trauma, such as a fracture or dislocation
that affects the blood flow to a bone. The National
Institute of Health (NIH) considered surgical core
decompression technique as the only treatment
option for early stage osteonecrosis (Helbig
et al. 2012). However, concurrent cell therapy
and core decompression approaches have suc-
cessfully prevented progression of osteonecrosis.
In a pilot clinical study, patients with ostenecrotic
hips simultaneously underwent treatment with
implantation of an autologous BM concentrate
and core decompression that resulted in pain
reduction and joint symptoms 24 months after
the procedure. Only one out of 10 patients in
this group progressed to the final stage. In con-
trast, 62% of the control hips that only received
core decompression had evidence of end-stage
avascular necrosis (Gangji et al. 2004). Similarly,
Sen et al. observed better clinical outcome and
hip survival following MSCs transplantation and
core decompression (Sen et al. 2012). Numerous
studies have incorporated BM aspirated-MSCs or
expanded-MSCs into tissue-engineered scaffolds
for treatment of non-traumatic osteonecrosis
(Centeno et al. 2011). Long-term follow-up of
autologous BM-engrafted patients revealed slow
(rare) deterioration to the fracture stage over
60 months (Gangji et al. 2011). Use of the same
therapeutic approach confirmed decreased pain in
all the patients postoperatively, and delayed the
progression of the disease to collapse during

17–20 years of follow-up (Hernigou et al. 2003).
A recent study reported autologous BM grafting
for advanced osteonecrosis of the humeral head
and observed disparate outcomes among patients.
This finding was most probably related to
differences in the amount of BM and varied num-
ber of transplanted MSCs (Makihara et al. 2017).

A number of scientists assessed allograft
MSCs after reports of their safety and immuno-
suppressive properties. Horwitz et al., for the first
time, reported the feasibility of simultaneous allo-
geneic BM and MSC transplantations in children
with severe osteogenesis imperfecta
(OI) (Horwitz et al. 1999). In 2005, Le Blanc
et al. conducted a novel clinical trial that used in
utero transplantation of allogeneic MSCs into a
female fetus with severe OI. After birth, the infant
showed no immunoreactivity against the donor
and only three fractures occurred during the first
2 years. Both normal psychomotor development
and correct growth tendencies were observed in
long-term follow-up (Le Blanc et al. 2005). In
another study, allogeneic AD-MSCs healed cra-
nial critical-sized defects in a canine model with-
out inducing an immune response by the host (Liu
et al. 2013). Similarly, implantation of allogeneic
BM-MSCs with hydroxyapatite-tricalcium phos-
phate (HA-TCP) scaffolds has resulted in bone
regeneration of femoral diaphysis defects with no
adverse immune response (Arinzeh et al. 2003).
However, there is still insufficient data to argue
that allogeneic MSCs are safe for clinical
applications.

Despite the numerous reports of successful
bone healing with BM-MSCs, determining the
proper cell sources is a challenge for cell therapy
of bone disorders. Numerous in vitro and preclin-
ical studies have been conducted to examine the
potential of MSCs derived from various sources
such as periosteum, muscle, adipose, and UC on
osteogenesis and bone regeneration (Hosseini and
Baghaban Eslaminejad 2017). Linero et al.
showed that AD-MSCs induced bone regenera-
tion in critical size jaw defects in rabbits. They
observed similar results between AD-MSCs and
BM-MSCs in terms of amount and quality of
neo-formed bone, bone thickness, collagen fiber
structure, maturation, and mineral matrix
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calcification. For the first time, they have
demonstrated that ADSCs have a paracrine effect
in bone regeneration and can be a therapeutic
alternative for MSCs therapy (Linero and
Chaparro 2014). Tawonsawatruk et al. evaluated
the ability of human ADSCs (hADSCs) to pre-
vent fracture nonunion in rat models. Cells were
injected percutaneously at the fracture site. At
8 weeks, 80% of the animals in the hAD-MSCs
treatment group showed evidence of bone healing
with substantial improvement in bone mineraliza-
tion and maturity of bone tissues at the fracture
gap compared to only 14% of those in the control
group (Tawonsawatruk et al. 2016). Stockmann
et al compared the ability of various cell
populations for bone regeneration in a pig
calvaria defect and observed no significant
differences among implanted collagen scaffold
seeded with AD-MSCs, PMSCs, and BM-MSCs
(Stockmann et al. 2012). In a recent work, Cell
tracing or mapping strategies showed that neural-
crest stem cells were recruited to the jaw and skull
bone defects during the healing process (Lombard
et al. 2016). These findings showed the value of
NCSCs and/or stem cells from the head and neck
area such as dental pulp-derived MSCs as new,
relevant cell sources for therapeutic applications.
Giuliani et al. seeded human dental pulp-derived
MSCs onto collagen I scaffolds to treat human
mandible defects. A fully compact bone that had
higher matrix density was observed compared to
the control, human alveolar spongy bone. The
regenerated bone, being entirely compact,
completely differed from normal alveolar bone.
Long-term follow up showed regeneration of the
mandible (Giuliani et al. 2013).

A literature search and database have shown that
most clinical trials of bone regeneration
administered BM-MSCs; a few have used MSCs
from other sources. Of note, these trials are mostly
phase I or II. These studies show that MSCs are a
prosperous treatment, even in long-term follow-up.
However, the mechanisms underlying stem cell
therapy are still largely unknown and should be
addressed.

4.2 Cartilage

Cartilage is as an avascular, aneural tissue present
in the joints, intervertebral disks, and nose,
among other locations. There are three different
types of cartilage – hyaline cartilage, elastic carti-
lage, and fibrocartilage. Each has its own chemi-
cal and mechanical properties. Articular cartilage
is a hyaline cartilage mainly composed of water,
extracellular matrix (ECM) components, and
chondrocytes (2% of total volume). Chondrocytes
are responsible for the synthesis of ECM as well
as repair of cartilage defects. Collagen type II is
the major constituent of the ECM, which provides
high strength and low friction in joints
(Camarero-Espinosa et al. 2016). Owing to the
absence of a vascular network and low cellularity,
cartilage displays a limited intrinsic regeneration
capacity when injured. The absence of pain in the
damaged aneural cartilage leads to continued
loading of the joint, which eventually results in
an osteochondral defect and osteoarthritis
(Camarero-Espinosa et al. 2016).

Osteoarthritis, a debilitating disease, is the most
common chronic joint disorder, which frequently
occurs in elderly individuals and athletes as a result
of overuse or stress on the joints (Ruiz et al. 2016).
Various surgical and non-surgical methods have
been employed to treat osteoarthritis, though these
approaches are unable to regenerate articular carti-
lage. These techniques mostly relieve pain and
reduce inflammation in the damaged joint (Jo et al.
2014). Total joint replacement is the only definitive
therapeutic option for patients with severe arthritis,
though this method is invasive and may result in
infection and thrombosis (Ruban et al. 2000).

Cellular therapies and TE have been devel-
oped to overcome these limitations and promote
cartilage regeneration. Given the essential role of
chondrocytes in ECM synthesis, autologous
chondrocyte implantation (ACI) has been consid-
ered to repair cartilage lesions. However, chon-
drocyte dedifferentiation and two-stage surgical
procedure may result in further cartilage damage
and degeneration (Knutsen et al. 2007). RM thus
offered MSCs as a powerful approach for carti-
lage repair.
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As mentioned above, MSCs can be simply
isolated from various tissues and expanded to
provide off-the-shelf products for therapeutic
applications. Given the fact that epigenetic mem-
ory has a significant impact on chondrogenic
potential of MSCs, the source of MSCs plays an
important role in treatment efficacy. According to
recent researches, synovium-derived MSCs and
BM-MSCs have exhibited the highest
chondrogenic differentiation potential compared
to other sources (Li et al. 2011). In contrast,
AD-MSCs have a very low chondrogenic capac-
ity (Barry and Murphy 2013). Thus, 68% of clin-
ical trials have used BM-MSCs in cartilage TE
and RM (Goldberg et al. 2017).

Numerous studies have proven the crucial role
of the TGF-β superfamily to achieve efficient
chondrogenic differentiation in vitro (Kim et al.
2014). Nevertheless, multiple factors control the
process of chondrogenesis in vivo such as growth
factors, mechanical loads, and cell interactions
(Sekiya et al. 2002). Providing MSCs with these
factors under in vitro conditions would more
likely result in fully functional chondrocytes.
However, important issues such as hypertrophy
and ossification following differentiation are con-
troversial in terms of in vitro chondrogenesis.

MSC transplantation for cartilage repair by
direct injection or within different scaffolds at
the site of injury have been widely reported and
showed promising results (Giannini et al. 2010).
In most animal models, MSCs were transplanted
into joints and followed up to 6 months after the
surgery or injection. Most likely, MSCs’ immu-
nomodulatory effects at the damaged site led to
improvements rather than their differentiation
into chondrocytes. Local MSCs and resident
articular chondrocytes have the capability to
migrate into the defect site and synthesize a repar-
ative matrix (Davatchi et al. 2016).

Various scaffolds have been developed to pro-
mote chondrogenic potential of MSCs after trans-
plantation. Use of collagen gel in some clinical
trials improved cartilage regeneration; two sepa-
rate studies – one reported benefit after 6 months
and the other after 5 years after transplantation in

osteoarthritis (OA) patients (Davatchi et al. 2016;
Wakitani et al. 2004). Other studies reported
promising results after 12 months when they
used hydroxyapatite ceramic and platelet fibrin
glue scaffolds for transplantation of MSCs
(Adachi et al. 2005)

The first clinical trial that used an intra-
articular injection of autologous BM-MSCs in a
patient with OA was reported in 2008. At the
6-month follow-up, the patient reported pain
relief, improvement in walking distance and
other physical activities (Centeno et al. 2008).
After this study, other trials that had 1–2 year
follow-up periods reported that the improvements
were only limited to the first 6 months after cell
treatment. In the second 6 months, patients
noticed an increase in symptoms (Davatchi et al.
2011). After these contradictory results, a 5-year
follow-up of MSCs therapy for OA was reported
in 2016 (Davatchi et al. 2016). It was noted that
while symptoms deteriorated after 1 year of treat-
ment, the treated knees were still better compared
to untreated knees after 5 years. Although it was
unclear why the improvements declined after
1 year, MSCs’ behavior supposedly would
change in response to the new microenvironment.
Inflammation in the defect area causes local
MSCs to produce metalloproteinases (MMPs)
instead of ECM, which leads to further cartilage
degeneration (Richardson et al. 2016).

Over past 16 years, autologous MSCs have
been frequently used in trials rather than alloge-
neic MSCs to eliminate immunogenic responses.
However, allogeneic MSCs combined with autol-
ogous chondrocytes revealed more promising
results than the group without MSCs. Although
the therapeutic mechanism of MSCs has yet to be
identified, it seemed that suppression of inflam-
mation was more likely to be responsible for the
major healing efficacy of MSCs at the transplan-
tation site (Davatchi et al. 2016). Given the short
life span of transplanted MSCs, chondrogenic
differentiation would hardly be a decisive factor
in the healing process.

An important issue in using MSCs for cartilage
regeneration is the formation of fibrocartilage
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instead of hyaline cartilage, which has an inferior
therapeutic outcome. Additionally, hypertrophy
occurs upon chondrogenic differentiation. The
biomechanical properties of the chondrocytes
change after production of collagen type
II. Although different techniques have been used
to address this issue, there is a need to develop
more effective methods to generate hyaline carti-
lage at the defect site.

4.3 Muscles

Skeletal muscle is a highly organized tissue com-
posed of numerous myofibers as basic structural
units, in addition to blood vessels, nerves, and
extracellular connective tissue. It attaches to the
bone via tendons and generates forces for volun-
tary movement and locomotion. In adulthood,
skeletal muscle has an inherent ability to regener-
ate minor injuries. This ability is mainly allocated
to the existence of a population of undifferenti-
ated mononuclear cells, known a satellite cells
(SCs) (Yin et al. 2013). During postnatal muscle
development, these cells reside in a quiescent
state and activate in response to environmental
cues such as injury and inflammatory factors
(cytokines). They subsequently proliferate,
undergo terminal differentiation and form
myofibers, and eventually integrate into the mus-
cle tissue (Collins et al. 2005). On the other hand,
muscle does not have the capability to regenerate
severe injuries, such as myopathies, large trau-
matic injuries, muscle tumors, and chronic dener-
vation. Lack of regeneration frequently leads to
fibrous scar tissue formation and fatty degenera-
tion of muscle causes volumetric muscle loss.

Current treatments for severe muscle trauma
and myopathy include engraftment of intact,
vascularized, and innervated autologous muscle
and injection of myoblasts. Although myoblasts
are the first natural cell sources for cell therapy of
skeletal muscle, they have not shown a favorable
outcome (Mendell et al. 1995). Myoblasts derived
from patients who suffer from Duchenne muscu-
lar dystrophy (DMD) poorly expand under
in vitro conditions and rapidly undergo senes-
cence (Gussoni et al. 1997). Muscle SCs are an

alternative cell sources for muscle treatment.
However, various clinical and preclinical studies
have reported the shortcomings of SCs transplan-
tation (Boldrin et al. 2015). In addition to the need
for a large numbers of injected SCs to treat a
complete muscle, they provoke immune
responses in the host body and most die during
the early hours after the injection.

Muscle-derived stem cells were examined to
determine if they could contribute to muscle
repair. BM-MSCs were the first that underwent
myogenic differentiation and participated in mus-
cle repair (Bossolasco et al. 2004). However,
Gang et al. reported contradictory results and
observed that BM-MSCs could not regenerate
muscle in dystrophin-deficient mice (Gang et al.
2009). Overexpression of PAX3, the master reg-
ulator of the embryonic myogenic program, in
BM-MSCs was performed to evaluate the ability
of these cells to restore dystrophin expression in
immunodeficient mice. Transplantation of PAX3-
transduced MSCs resulted in more clusters of
dystrophin+ myofibers, but there was no func-
tional improvement observed compared to
untransduced MSCs (Gang et al. 2009). Dezawa
efficiently induced BM-MSCs to differentiate
into mature myotubes that were PAX7+ and
caused muscle regeneration in mdx-nude mice
(Dezawa et al. 2005). To achieve the best out-
come, a number of research groups examined the
potential cells from adipose, UC, and synovial
membrane sources (De Bari et al. 2003; Fukada
et al. 2002; Goudenege et al. 2009). The safety
and efficacy of muscle-derived CD133+ stem
cells in patients with DMD was also assessed in
a phase I clinical trial which resulted in positive
outcomes with no observed adverse effects
(Torrente et al. 2007). Another study compared
the regenerative capacity of intramuscular injec-
tion of human muscle–derived CD133+ cells and
myoblasts to cryoinjured tibialis anterior
(TA) muscle in a mouse model. There was effi-
cient muscle regeneration in the group that
received muscle-derived CD133+ cells in terms
of the numbers of fibers that expressed human
proteins and the numbers of human cells in a SC
position compared to the myoblast group
(Negroni et al. 2009). Despite the apparent
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success of MSCs, generation of functional, large-
scale muscle tissues is a tremendous clinical chal-
lenge. Cells, as therapeutic agents, combined with
TE approaches would provide an integrated sys-
tem whereby the cells could interact with their
environment to have a fully functional, mature
skeletal muscle. Vandenburgh et al., for the first
time, have described the use of tissue engineered
constructs for muscle regeneration (Vandenburgh
et al. 1988). They cultured myotubes in collagen
matrix in vitro and observed that the cells highly
preserved their contractile state during expansion
Another group developed a poly-ε-caprolactone
(PCL)/collagen based nanofiber scaffold to guide
morphogenesis of skeletal muscle cells (Choi
et al. 2008). Recent attempts have been
undertaken to create functional, engineered skel-
etal muscle with enhanced vascularization,
increased innervation, and morphology similar
to native muscle (Chan et al. 2006). Witt et al.
co-cultured MSCs with myoblasts. Under stimu-
lation with hepatocyte growth factor (HGF) and
IGF-1, the three-dimensional (3D) cultivation in
fibrin-collagen I gels induced higher levels of
myogenic differentiation compared with the
two-dimensional experiments (Witt et al. 2017).
For the most part, the in vivo applications of
muscle TE technologies are in the early stage of
pre-clinical development.

4.4 Tendons

Tendons, as specialized connective tissues, are
joint stabilizers that curb skeletal muscle damages
by transmitting mechanical forces from muscle to
bone. Tendons are mainly composed of collagen
type I (approximately 80%-95%) and small
amounts of other types of collagen (III,V,VI,XII,
XIV), glycosaminoglycans, and proteoglycans.
Collagen fibers are longitudinally aligned along
the tendon axis that causes high mechanical
strength and elasticity of the tendon (Spanoudes
et al. 2014). Tenocytes and tenoblasts, two major
cell types within the tendons, produce the com-
plex tissue-specific extracellular environment.
Tenocytes are fibroblast-like cells with an elon-
gated morphology, which are located between the

collagen fibers (Spanoudes et al. 2014). Tendons
or surrounding tissue contribute to the healing
process of an injured tendon by producing a
new ECM. There are two healing mechanisms in
tendons, intrinsic and extrinsic. Tenocytes and
tenoblasts are actively involved in the intrinsic
healing mechanism, whereas other cell types,
such as BM-MSCs from surrounding tissues, are
implicated in the extrinsic healing mechanism.
Nevertheless, the healing mechanisms cannot
effectively deal with rehabilitation of injured tis-
sue because of the tendon’s limited vascularity
and low cellularity.

Among the available therapeutic strategies
known to promote regeneration of injured
tendons, cell-based TE appear to be the most
promising. Studies have demonstrated that
tenocytes cultured in vitro encounter numerous
difficulties that include dedifferentiation, mor-
phology deformation to spindle shape, and
trans-differentiation (Yao et al. 2006). The phe-
notypic drift in tenocytes affects its function and
makes it inappropriate for cell based therapy
approaches. To overcome this issue, numerous
studies have demonstrated the potential of
transplanted MSCs for tendon repairs (Awad
et al. 1999). Nevertheless, providing suitable
mechanical and chemical cues for fully tenogenic
differentiation of MSCs in vitro and in vivo is of
significant importance. Due to the longitudinal
alignment of collagen fibrils within the tendon
units, it has been proven that aligned scaffolds
promote tenogenic differentiation of MSCs as
they imitate the tendon’s architecture (Erisken
et al. 2013). Despite promising preliminary
outcomes, some reports indicated formation of
ectopic bone after injection of MSCs in the defect
site. In order to address this issue, pre-treatment
of MSCs in vitro should be taken into consider-
ation. Recent researches have shown that utilizing
growth factors (GDF-5, BMP12) and mechanical
stimulation upregulated collagen type I and other
tendon specific markers in MSCs (Lee et al.
2011).

There are limited numbers of clinical trials in
which the efficacy of MSCs for tendon repair is
unclear. The lack of control groups and a defined
protocol guideline make it difficult to show
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successful tendon regeneration after MSCs trans-
plantation (Veronesi et al. 2017). Despite the
promising results from in vitro and in vivo stud-
ies, the optimal scaffold and cell population for
tendon repair and regeneration has yet to be
addressed to avoid ectopic bone formation after
cell therapy.

5 MSCs in Non-skeletal Tissues

According to the official website of the NIH, most
MSC-based clinical trials evaluated the biomedi-
cal potential of hMSCs to treat hematological,
inflammatory, and graft versus host disease
(GVHD) conditions. Bone and cartilage injuries,
heart disease, diabetes, gastrointestinal
conditions, diseases of the liver and kidneys, as
well as neurological disorders are the targets of
MSCs-based therapy (Table 1). Other diseases
constitute 12% of total clinical studies (Squillaro
et al. 2016). The least number of clinical trials of
MSCs therapies belong to lung and related
diseases (Liu et al. 2016). Use of MSCs for treat-
ment of neurological disorders is relatively com-
mon, despite the scant evidence for their
conversion to neural cells in vivo. Autologous
MSCs isolated from BM and injected intrathe-
cally into spinal cord cerebrospinal fluid,
allowing access to the brain and spinal column,
can be accomplished safely in patients with mul-
tiple sclerosis (MS) and ALS (Rushkevich et al.
2015). The combination of cell therapy and TE
provide an efficient therapeutic approach in RM,
particularly in complicated organs and limbs.
Advances in tissue engineered materials are of
crucial importance as they are the main tools in
cell therapy used to rebuild damaged tissues.
Material carriers designed to spatially and tempo-
rally mimic the tissue cell niche may be of partic-
ular importance for the complete regeneration of
severely damaged organs. Hence, in complicated
organs such as the limbs, a lack of tissue
engineered proper composite and proper cell
sources (Taghiyar et al. 2017) cause limitations
in RM in this field. Here, we discuss MSC-based
therapy in three organs.

5.1 Liver

The liver is the largest organ of the body. It
displays a multicellular architecture. The liver
performs a variety of functions that include detox-
ification, synthetic and metabolic processes. Liver
diseases are caused by different factors such as
viral infections, alcoholism, genetic syndromes,
and autoimmune attacks. These diseases often
lead to liver failure, which results in multiple
organ dysfunctions and eventually death. The
liver has a unique self-regenerative capacity to
restore its function after massive injuries. How-
ever, in acute liver failure it is unable to repair the
damage. Thus, the liver loses its function. In this
cases, orthotropic liver transplantation is the only
current treatment to save patients (Bhatia et al.
2014). Lack of a live human liver donor and the
increasing demands for transplantation have
urged scientists to find an alternative treatment
to organ transplantation. TE and cell-based ther-
apy have been recently offered as a promising
method to treat end stage liver failures (Lee
et al. 2015).

Hepatocytes constitute the main cell type in
the liver and are responsible for hepatic regenera-
tion. Transplantation of either hepatocytes or
stem cells have been explored in a number of
preclinical and clinical studies (Piscaglia et al.
2010). Although hepatocytes are the priority for
cell based therapy approaches, they lose their
function and proliferative capacity in vitro
(Hu and Li 2015). Additionally, an insufficient
supply of human hepatocytes is a challenge for
therapeutic applications. In the quest for an alter-
native, since 2004, MSCs have been considered
as appropriate cell sources that have the ability to
give rise to functional hepatocytes (Ohkoshi et al.
2017). BM-MSCs, UCB-MSCs, and AD-MSCs
have hepatogenic capabilities, but AD-MSCs are
more likely to be an excellent source for liver
regeneration (Alizadeh et al. 2016; Berardis
et al. 2015). Interestingly, it has been proven
that MSCs secrete anti-fibrotic, anti-inflamma-
tory, and anti-apoptotic molecules, which enables
them to treat acute and chronic liver injuries
(Christ et al. 2015). Therefore, the idea of
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utilizing MSC-CM culture seems to be as effec-
tive as using MSCs. Numerous in vivo studies
have shown that MSC secretomes stimulate
hepatic regeneration after transplantation
(Fouraschen et al. 2012).

Since 2007, several clinical trials reported
promising results of systemic injections of
MSCs to treat liver disorders (Mohamadnejad
et al. 2007). Nonetheless, the exact mechanism
of MSCs in healing liver diseases has yet to be
completely understood. In addition, some studies
reported the formation of myofibroblasts upon
MSCs transplantation, which must be addressed
in future research.

5.2 Heart

Cardiovascular diseases account for the highest
mortality worldwide and more than half are
allocated to myocardial infarction
(MI) (Go et al. 2014). The heart has a limited
capacity to naturally regenerate; hence, cardiac
diseases may lead to heart failure (HF) and
death. Although there are various medical and
surgical treatments, cardiac transplantation is the
only current options for patients with end-stage
myocardial failure. However, the limited numbers
of donors preclude its extensive use. One of the
leading treatments under investigation for HF
is MSCs.

Numerous studies have been published about
the therapeutic potential of autologous and allo-
geneic MSCs from various sources for treatment
of cardiovascular diseases. In a pioneering study,
Toma et al. injected hMSCs into murine hearts,
which gave rise to a cardiac lineage (Toma et al.
2002). These researches showed that MSCs medi-
ate the migration and differentiation of cardiac
progenitor cells (CPCs) through paracrine signal-
ing by secreting growth factors, cytokines, and
angiogenic factors (Nakanishi et al. 2008; Zhao
et al. 2016). Zhao et al. specifically showed that
overexpression of HGF in UC derived MSCs
reduced cardiomyocytes apoptosis, enhanced
angiogenesis, and cardiomyocyte proliferation
(Zhao et al. 2016). A recent work suggested that

the chemotactic effect of MSCs on proliferation,
migration, and differentiation of endogenous
CSCs was regulated via the SDF1/CXCR4 and
SDF1/CXCR4 signaling pathways (Hatzistergos
et al. 2016).

A number of published or ongoing clinical
trials have demonstrated beneficial effects of
MSC-based therapy in cardiovascular settings.
The findings of clinical trials on patients with
MI treated with MSCs revealed the beneficial
effects of MSCs on improving heart function
(Jeong et al. 2018). IV infusion of allogeneic
UC-MSC in patients with chronic heart failure
considerably upregulated the expression of HGF
involved in myogenesis, and improved left ven-
tricular function (Bartolucci et al. 2017). In
another clinical study, 53 patients with dilated
cardiomyopathy (DCM) were randomized to IC
infusion with either autologous MSCs, BM
mononuclear cells (BMMC), or normal saline.
Improved left ventricular ejection fraction,
New York Heart Association (NYHA) classifica-
tion, and myocardial perfusion were reported
after 12 months of follow-up (Xiao et al. 2017).
A recent work stated the importance of cell dose
for achieving efficient clinical outcome. A total of
30 patients with ischemic cardiomyopathy ran-
domly received 20 million (n¼15) or 100 million
(n¼15) allogeneic MSCs. Only patients who
received the high cell dose had an increased ejec-
tion fraction (Florea et al. 2017). A phase II
clinical trial confirmed the safety and efficacy of
ischemia-tolerant MSCs (itMSCs) in 22 patients
with nonischemic cardiomyopathy (Butler et al.
2017). Despite the relative success of clinical
trials, further studies are required to improve the
efficacy of MSC therapy.

5.3 Kidneys

The kidney is a highly complicated organ that
consists of millions of functional units, termed
nephrons. Nephron production or nephrogenesis
in mammals only occurs during gestation. Hence,
no new nephrons are generated after birth. There
are various specialized cell types in the kidneys –
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podocytes, endothelial cells, and tubular
epithelial cells. Depending on the type of disease,
one or more cell types may be affected and lose
their function (Humphreys et al. 2008).

The kidneys have limited regeneration capac-
ity; therefore, an injury may more likely cause
tubular necrosis, apoptosis and, eventually, acute
kidney injury (AKI) (Liu and Brakeman 2008).
AKI in turn, leads to chronic kidney disease
(CKD) as a result of fibrosis, scarring, and organ
failure (Moon et al. 2016). Dialysis and kidney
transplantation are the current therapies for end
stage kidney diseases. Nevertheless, long-term
follow-up shows a high mortality rate in patients,
which highlights the necessity of an alternative
treatment. First attempts to administer MSCs in
the kidneys has led to partial renal regeneration
and opened up a new horizon towards treatment
of renal diseases (Morigi et al. 2004). Recent
studies have demonstrated the dedifferentiation
of tubular epithelial cells and trans-differentiation
of interstitial cells after injuries in the kidneys,
which facilitated the regeneration process
(Chawla and Kimmel 2012). According to these
data, MSC-based therapy supposedly renders an
efficient alternative to the current therapeutic
approaches. In vitro studies have shown MSCs
differentiation potential into the renal-specific
lineage (Singaravelu and Padanilam 2009). How-
ever, the results of in vivo studies are not as
promising in the regeneration of renal cells.
Given the complexity of the kidney structure,
TE might overcome numerous difficulties related
to the regeneration of this organ. Combinations of
various MSCs and scaffolds have been used to
improve MSCs differentiation potential for renal
lineages. BM-MSCs and AD-MSCs are two
potential candidates for a cell-based therapy
approach in kidney regeneration (Prodromidi
et al. 2006). In terms of 3D structure for the
cells, different scaffolds have been evaluated in
which collagen and HA had some levels of simi-
larity to the renal microenvironment (Rosines
et al. 2007). However, the mechanical properties
of hydrogels have been always an issue. More
recently, decellularized kidney has been
suggested as a unique microenvironment for
seeded cells for kidney TE. In vivo experiments

in a rat model showed promising results in a short
term study (Song et al. 2013).

Preclinical studies showed some degrees of
kidney regeneration which were attributed to the
differentiation potential and paracrine properties
of MSCs, yet more efforts are needed to develop a
fully functional organ. Imitating this complex
microenvironment is very challenging and
necessitates increased basic knowledge regarding
the kidney development and regeneration.

6 Future Trends and Concluding
Remarks

Over the past decades, tremendous efforts have
been made to disclose the unknown biological
and functional characteristics of MSCs to pave
the way for their perspective clinical applications.
There are several major issues that remain contro-
versial about the use of MSCs in RM. Completed
and on-going clinical trials have shown that
MSCs are a powerful therapeutics tool. However,
these trials are inadequate to assure their safety.
Subsequent to a recent report that intravitreal
injection of AD-MSCs in patients with macular
degeneration led to complete blindness, it
increased the certainty to use the MSCs with
caution (Kuriyan et al. 2017). Indeed, all benefi-
cial characteristics of MSCs might cause adverse
effects. Multilineage potential of MSCs might
create unwanted tissue after transplantation.
Intramyocardial calcification was observed as a
consequence of BM cells injected into zones of
acute myocardial ischemia (Yoon et al. 2004).
Therefore, discovery of regulatory factors and
signaling pathways in the MSC niche that deter-
mine the cell fate to a distinct lineage would be a
breakthrough in RM. Risk of tumorigenicity is
the major concern related to clinical administra-
tion of MSCs. Occurrence of increased immune-
suppressive factors and prohibition of immune
cells (B-cells and NK cells) as a result of the
immunomodulatory properties of MSCs also
increases the possibility of tumor progression. It
has been indicated that MSCs preferentially
migrate to a tumor site due to an inflammatory
microenvironment and may contribute to growth
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of cancer cells (Lee and Hong 2017). The poten-
tial for MSCs in new-blood vessel formation and
angiogenesis could promote tumor growth and
metastasis. These issues necessitate further effec-
tive clinical and preclinical studies to clearly
address the safety of MSCs, particularly with
long-term follow-up.
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