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Abstract

Zoonoses are infections or diseases that can be transmitted between

animals and humans through direct contact, close proximity or the envi-

ronment. Clostridium difficile is ubiquitous in the environment, and the

bacterium is able to colonise the intestinal tract of both animals and

humans. Since domestic and food animals frequently test positive for

toxigenic C. difficile, even without showing any signs of disease, it

seems plausible that C. difficile could be zoonotic. Therefore, animals

could play an essential role as carriers of the bacterium. In addition, the

presence of the spores in different meats, fish, fruits and vegetables

suggests a risk of foodborne transmission. This review summarises the

current available data on C. difficile in animals and foods, from when the

bacterium was first described up to the present.
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1 Introduction

Clostridium difficile is a spore-forming anaerobic

bacterium recognised as the leading cause of

antibiotic-associated diarrhoea in hospitalised

patients. However, in recent years C. difficile
infection (CDI) is increasingly common in the

community, in younger patients without a previ-

ous history of hospitalisation or antibiotic treat-

ment (Gupta and Khanna 2014). Studies

worldwide have reported the presence of the

bacterium in animals and foods (Songer and

Anderson 2006; Hoover and Rodriguez-Palacios

2013; Rodriguez-Palacios et al. 2013) with a

prevalence that varies according to the method-

ology used, the geographical area, the age and

the animal species studied. While C. difficile is
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well known as enteric pathogen in some food

producing, wild and companion animal species

(Donaldson and Palmer 1999; Songer and Uzal

2005), there are several reports describing the

presence of the bacterium in the intestinal

contents of apparently healthy animals

(Rodriguez et al. 2012; Hawken et al. 2013).

Moreover, data recently published suggests that

besides the nosocomial transmission, animals are

an important source of human CDI, whether

through environmental contamination, direct or

indirect contact, or food contamination, includ-

ing carcass and meat contamination at slaughter

– or in the case of vegetables and other fruits, by

the use of organic fertilizer or contaminated

water (Rupnik and Songer 2010; Hoover and

Rodriguez-Palacios 2013; Rodriguez-Palacios

et al. 2013).

The European Food Safety Authority (EFSA)

defines zoonoses as infections or diseases that

can be transmitted directly or indirectly between

animals and humans (through direct contact or

close proximity with infected animals, or through

the environment). As noted before (Rodriguez-

Palacios et al. 2013), the relevance of the pres-

ence of C. difficile in some environments,

animals and foods is little understood. This

review describes the current knowledge regard-

ing C. difficile in animals, foods, and the envi-

ronment, as well as the prevalence among

animals with and without signs of disease. The

available data about animals and foods as vectors

of CDI in humans has also been reviewed.

2 The Evolutionary History
of C. difficile Detection
in Animals and the Natural
Environment

C. difficile was first reported in animals in 1960

(McBee 1960). The bacterium was isolated from

a sample of a Weddell seal’s large intestine

contents, obtained during the course of a brief

biological survey in the Ross Sea area of

Antarctica. In 1974, a doctoral thesis described

for the first time the presence of C. difficile in

hay, soil, sand, and mud from the bank of the

river, and in stools from diverse animals such as

donkeys, horses, cows and camels, in Pakistan

(Hafiz 1974). In an experimental study

conducted in 1979 to reproduce neonatal diar-

rhoea in young gnotobiotic hares, the authors

concluded that C. difficile was the causal agent

of neonatal diarrhoea and that other strains of

Clostridium enhanced its pathogenic effect

(Dabard et al. 1979). CDI in pigs was first con-

firmed in 1980 when gnotobiotic pigs were acci-

dentally exposed to C. difficile and accordingly

suffered dehydration and excreted mucoid faeces

containing specks of blood (Nagy and Bilkei

2003). In 1981 C. difficile was isolated from a

goat (Hunter et al. 1981) and in 1982 the bacte-

rium was obtained from rectal samples of healthy

cattle in Nigeria of different breeds aged

6 months and above (Princewell and Agba

1982). Borriello et al. (1983) were the first to

report the carriage of C. difficile in household

pets and their immediate environment, including

dogs, cats, ducks, geese, chicken, ring-necked

parakeets, rabbits, goats, hedgehogs and guinea

pigs. However, most of the recovered isolates

were identified as non-cytotoxigenic. In the

same year, C. difficile was recovered from pigs

(Jones and Hunter 1983) and identified as the

causative agent of antibiotic-associated colitis

in a Kodiak bear (Orchard et al. 1983). Interest

in the study of C. difficile in animals continued to

increase during this period. From 1984 to 1987

three new studies described the bacterium as

causal agent of enteric disease and diarrhoea in

hares, European and cottontail rabbits (Carman

and Evans 1984), horses (Ehrich et al. 1984) and

foals (Jones et al. 1987). These findings raised

the first concerns that domestic animals might be

vectors of C. difficile among humans (Weber

et al. 1988). From 1978 onwards, several studies

focused on the isolation procedures and

characterisation of C. difficile from healthy and

diarrhoeic animals, including not only domestic

animals such as foals (Jones 1989), cats, dogs

(Weber et al. 1989; Riley et al. 1991;

Martirossian et al. 1992) and captive ostriches

(Frazier et al. 1993), but also wild animals such

as cotton-top tamarinds (Snook et al. 1989). In

1995, C. difficile toxins were detected in the
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small intestine and cecum of three juveniles and

one adult rabbit with clinical signs of anorexia,

decreased faecal output, nasal exudate and

laboured breathing before death (Perkins

et al. 1995). A later study in 1996 also reported

the presence of C. difficile in animals (dogs, cats,

horses, sheep and poultry) and in the environ-

ment: in soils, in river, sea and lake waters, and in

swimming pool and tap waters (al Saif and Bra-

zier 1996). Waters et al. (1998) described an

outbreak of C. difficile in suckling piglets, and

in 1999, Rieu-Lesme and Fonty isolated the bac-

terium from the ruminal reservoir of newborn

lambs (Rieu-Lesme and Fonty 1999).

Besides clinical reports of CDI in exotic

animals, such as Asian elephants (Bojesen

et al. 2006) and ocelots (Silva et al. 2013a),

C. difficile has been also isolated from faecal

samples of captive white-tailed deer (Odocoileus

virginianus) in confinement facilities in Ohio,

USA, with a prevalence of 36.7 % (French

et al. 2010). Furthermore, different studies have

investigated the presence of the bacterium in

wild animals, including wild passerine birds

(Bandelj et al. 2011) and barn swallows (Bandelj

et al. 2014); zoo animals (chimpanzees, dwarf

goats, Iberian ibexes and plains zebras)

(Álvarez-Pérez et al. 2014); sea otters (Miller

et al. 2010); free-living South America coatis

(Silva et al. 2014); small and medium-size wild

mammals (raccoons, shrews, deer and house

mice, rats, voles, opossum and groundhogs)

(Jardine et al. 2013); black and Norway rats

(Firth et al. 2014; Himsworth et al. 2014); feral

pigs (Thakur et al. 2011) and Iberian free-range

pigs (Álvarez-Pérez et al. 2013).

In the natural environment, C. difficile has

recently been described in soils of studfarms

and farms with mature horses in Sweden

(Båverud et al. 2003), in homestead soils and

household-stored water in Zimbabwe (Simango

2006), in tropical soils in Costa Rica (del Mar

Gamboa et al. 2005) and in Slovenian rivers

(Zidaric et al. 2010). In a study conducted in

marine environments in the South of Italy, toxi-

genic C. difficile was also detected in seawater

and zooplankton (Pasquale et al. 2011).

3 Clostridium difficile
in Household Pets: Dogs
and Cats

Rodriguez-Palacios et al. (2013) refer to the

importance of household pets as common trans-

mission routes for human infections of

C. difficile: in modern lifestyles dogs and cats

are considered family members and have access

to all parts of the house, including beds, sofas,

kitchens and dining rooms. Children under

16 years old often have close contact with their

pets, as dogs often licked their faces and both

cats and dogs usually sleep in the child’s bed. In a

study conducted in Canada, it was reported that

very few of these children (2.9–4.4 %)

recognised the need for washing their hands

after contact with pets (Stull et al. 2013). A

further study evaluating C. difficile in dogs and

in the household environment indicated that

10 % of dogs were colonised by the bacterium

and 31 % of households were contaminated with

its spores, suggesting that exposure to this patho-

gen may be common (Weese et al. 2010a). In this

environment, children, elderly and immune-

compromised people could be more at risk of

being colonised and developing CDI. In the

same study, molecular characterisation of the

isolates revealed that household and dog strains

were different, concluding that there are sources

of household C. difficile contamination other

than dogs (Weese et al. 2010a). In any case, all

dog isolates were indistinguishable from those

circulating in human hospitals in the same geo-

graphical area (Rodriguez-Palacios et al. 2013).

Therefore, the potential transmission of

C. difficile between pets and humans is currently

unclear.

Conversely, it has been reported that pets

owned by an immune-compromised person or

dogs living with a human receiving antimicrobial

treatment were at greater risk of being colonised,

presumably because the owner is at greater risk

of developing the disease and in turn becoming a

source of infection for the pet (Rodriguez-

Palacios et al. 2013; Weese 2011). C. difficile

has been detected in very high rates in healthy
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dogs that visit human hospitals (58 %) (Lefebvre

et al. 2006a). The risk seems to be particularly

high when they accepted treats during the visit or

licked patients (Lefebvre et al. 2009). However,

it is not yet clear whether the contamination

comes from patients or the hospital environment

(Weese and Fulford 2011). Lefebvre

et al. (2006b) reported the first human epidemic

strain PCR-ribotype 027 in a healthy 4-year-old

toy poodle that visited patients in healthcare

settings in Ontario on a weekly basis. In 2009,

Lefebvre and Weese (2009) reported the acquisi-

tion of toxigenic C. difficile by a therapy dog on

its paws during a visit to an acute care facility. In

this visit, the dog had been encouraged to ‘shake

paws’ with patients. With these findings authors

demonstrated that transient contamination of pet

therapy animals (without colonisation) could be a

source of pathogen transmission.

Regarding C. difficile as a cause of disease in

pets, it seems that infection is more commonly

community-associated rather than acquired at

veterinary hospitals or after antimicrobial ther-

apy (Weese 2011). However, the prevalence and

causes of infections acquired in veterinary

practices is largely unknown. A previous study

identified administration of antimicrobials prior

to admission, or administration of immunosup-

pressive drugs during hospitalisation, as risk

factors for veterinary hospital-associated

colonisation (Clooten et al. 2008). Murphy

et al. (2010) described an important proportion

of veterinary hospitals (58 %) with positive envi-

ronmental swabs for C. difficile. While signs of

disease could range from mild self-limiting diar-

rhoea to chronic or fatal diarrhoea (Berry and

Levett 1986), the relevance of the bacterium in

small veterinary clinics is still uncertain (Weese

2011; Busch et al. 2014). Different other studies

have associated the presence of C. difficile in

faeces with diarrhoea in dogs and cats (Weese

et al. 2001a; 2001b; Weese and Armstrong 2003;

Koene et al. 2012; Wetterwik et al. 2013). How-

ever, dogs can also be healthy carriers of

C. difficile strains belonging to human epidemic

PCR-ribotypes (Schneeberg et al. 2012; Silva

et al. 2013b; Spigaglia et al. 2015), with a high

colonisation in the first period of live (Perrin

et al. 1993; Álvarez-Pérez et al. 2015).

Regarding CDI in cats, little information is

available. It seems that colonisation rates are

relatively low in the general population

(0–21 %), but slightly higher among cats in vet-

erinary hospitals (9.4–31 %) (Marks et al. 2011).

The same C. difficile strains were recovered from

cats and floor drains in the same veterinary hos-

pital, suggesting the clinical environment was a

possible source of contamination (Madewell

et al. 1999).

Pet nutrition has been identified as a possible

source of C. difficile, via pet treats (as bully sticks

for dogs) and other raw or processed foods (Free-

man et al. 2013; Rodriguez-Palacios et al. 2013).

In a study conducted in France, C. difficile was

not detected in any feline raw foods (n ¼ 20)

purchased from 20 Paris stores (Bouttier

et al. 2010). However, a further study conducted

in Ontario reported the presence of toxigenic

C. difficile in turkey-based pet food. In the same

study the authors recommended disinfecting

food and water bowls daily with a 10 % bleach

solution to reduce the potential burden of bacte-

ria. Furthermore, it was proposed owners should

not feed pets with raw diets in households with

young children or immunosuppressed or elderly

individuals (Weese et al. 2005).

4 Clostridium difficile in Horses

C. difficile toxins were associated with equine

diarrhoea for the first time in 1984, in a study of

horses in Potomac River area. In this study,

Ehrich et al. (1984) concluded that toxins

appeared not to be primary determinants of diar-

rhoea but they may have contributed to the dis-

ease. Currently, C. difficile is considered one of

the most important causes of diarrhoea and

enterocolitis in foals and horses (Arroyo

et al. 2006; Weese et al. 2006; Uzal et al. 2012;

Diab et al. 2013b). The prevalence of C. difficile

in foals and adult horses with gastrointestinal

disease varies considerably among studies, rang-

ing between 5 % and 63 % (Diab et al. 2013b).
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In newborn foals, C. difficile has been associated

with spontaneous watery or bloody diarrhoea

immediately after birth, depression, dehydration,

toxaemia and finally death (Diab et al. 2013a).

While in some cases the disease can occur with-

out a history of antibiotic therapy or

hospitalisation (Diab et al. 2013b), the major

risk factors for the development of CDI in horses

are antimicrobial treatment, hospitalisation, pre-

or post-surgical feed withdrawal or changes in

diet. The antimicrobials that have been most

frequently associated with C. difficile diarrhoea

in horses are erythromycin, clindamycin, rifam-

picin and gentamicin (Diab et al. 2013b).

Like other species, horses can carry

C. difficile without showing signs of disease. In

healthy foals the reported prevalence can vary

between 0 and 29 % depending on different

factors such the type of the study, the diagnostic

test used and the method of sample collection

(Diab et al. 2013b). A colonisation rate of up to

44 % has been reported in non-diarrhoeic foals

under antibiotic treatment (Båverud et al. 2003).

Mare-foal pairs can harbour C. difficile subclini-
cally and potentially serve as reservoirs for cross-

colonisation (Magdesian and Leutenegger 2011).

In hospitalised horses without clinical signs of

C. difficile disease, the observed prevalence

ranged from 4.8 to 11 % (Medina-Torres

et al. 2011; Rodriguez et al. 2014a), possibly

under the influence of stresses that alter the intes-

tinal flora (such as change of diet, transportation

to the hospital, hospitalisation, and surgical or

medical treatments) (Båverud 2004). Some stud-

ies have suggested a transient shedding of

C. difficile in adult horses (Schoster et al. 2012)

but also in other animal species including cattle

(Rodriguez-Palacios et al. 2011b) and humans

(Ozaki et al. 2004).

A recent study has evaluated the effect of

probiotics on foals developing diarrhoea within

6 months of birth. The authors concluded that

there was no benefit observable of administering

a 3-week course of probiotics. Furthermore, a

significantly higher incidence of diarrhoea in

foals receiving probiotics than in control groups

suggested a negative impact of probiotics

(Schoster et al. 2015), although in vitro inhibition

of C. difficile and C. perfringens by commercial

probiotic strains has also been reported (Schoster

et al. 2013).

5 C. difficile in Food-Producing
Animals

In the twenty-first century the possibility of

human exposure to C. difficile spores via

environments and foods contaminated with

feces of colonised animals has aroused consider-

able interest. Furthermore, besides the concern

for zoonotic transmission, C. difficile is also a

costly disease on companion animals and live-

stock production. There are no financial loss

estimates for the treatment of household pets,

but veterinary services and medical treatment

for a case of acute diarrhoea without further

complications costs between 100 and 200 euros

in Europe. In production animals, C. difficile

losses and treatment costs have also not been

estimated, but C. difficile can produce mortality

in breeding, weight loss, and delayed weight gain

in animals (Rodriguez-Palacios et al. 2013;

Squire and Riley 2013).

5.1 Food-Producing Animals: Swine

C. difficile has been widely described in both

healthy pigs and pigs with diarrhoea (Table 1).

In neonatal piglets (<15 days old), C. difficile has

been proposed as the most common cause of

diarrhoea (Songer and Anderson 2006) with a

mortality rate of up to 50 % in suckling piglets

(Songer 2000). Previous studies reported spore or

toxin detection ranging between 23 and 93 % in

faeces of diarrhoeic piglets and between 1.4 and

96 % in piglets with normal faeces (Table 1).

The presence of C. difficile toxins in the colon

of neonatal swine has been associated with: pro-

fuse non-haemorrhagic yellow pasty-to-watery

diarrhoea, colitis, typhocoloitis, severe

mesocolonic edema, other microscopic lesions

such as erosive or ulcerative colonic lesions,

infiltration of neutrophils in the lamina propia,

and exudation of fibrin into the lumen, resulting
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in ‘volcano lesions’ (Lizer 2010). Scrotal edema,

dyspnoea, mild abdominal distension, hydrotho-

rax, ascites, anorexia and dehydration are other

extra-intestinal symptoms probably caused by

systemic sepsis (Squire and Riley 2013). How-

ever, an absence of diarrhoea does not discount

possible C. difficile colonisation (Yaeger

et al. 2007). Why some colonised piglets with

toxigenic strains of C. difficile do not develop

any signs of disease remains unclear and may

be explained by the variability in colostrum

intake and colostrum antibody concentration

(Squire and Riley 2013). Similarly, the presence

of C. difficile-negative piglets has been described

in litters where most of the members carried the

bacterium. The reason why these piglets were

negative despite being constantly exposed to the

bacterium is also unknown (Weese et al. 2010c).

The prevalence of the bacterium decreases with

age, varying from 0 to 23 % at finishing in the

farm or at slaughter (Table 1). Furthermore,

outbreaks in adult pigs have only been reported

in periparturient sows (Kiss and Bilkei 2005). It

appears that sows are more likely to be colonised

by C. difficile before or after farrowing (Thakur

et al. 2010; Weese et al. 2010c; Susick

et al. 2012), which may be due to environmental

stress or the administration of antibiotics (Kiss

and Bilkei 2005). While it seems sows would

pose an obvious contamination source for piglets

during farrowing, one study describes the pre-

dominance of different PCR-ribotypes in each

group, suggesting that external sources other

than sows could be responsible for CDI in piglets

(Weese et al. 2010c; Hopman et al. 2011a).

Widespread aerial dissemination of C. difficile
on a pig farm was demonstrated and associated

with personnel activity. Furthermore, possible

aerial dispersal of the bacterium between

farrowing pens was revealed by the detection of

spores in the hallway following relocation of

piglets (Keessen et al. 2011a). On pig farms,

vermin such as house mice, drain flies, lesser

houseflies and yellow mealworms were found

positive for C. difficile and proposed as vectors

for bacteria transmission (Burt et al. 2012).

Despite the progress made in these studies, the

sources of C. difficile in pig farms and aspects of

the infection cycle still remain unclear. Several

procedures, like surface disinfection and the use

of gloves, have been proposed to reduce disease-

associated mortality in piggeries (Squire and

Riley 2013).

5.2 Food-Producing Animals: Cattle

As in the case of swine, the reported prevalence

of C. difficile in cattle can vary wildly from one

study to another depending on the geographical

location studied, with percentages as diverse as

0 % in farms in North America and 60 % in Iran

(Doosti and Mokhtari-Farsani 2014; McNamara

et al. 2011) (Table 2). Furthermore, the pathoge-

nicity of C. difficile in cattle is not fully under-

stood. The bacterium and its toxins have been

associated with diarrhoea in calves and dairy

cows (Table 2). Using post-mortem analysis of

calves infected with C. difficile, it has been

showed that the bacterium was more frequently

encountered in the cecum, where histologic

lesions were also more severe (Rodriguez-

Palacios et al. 2007b).

A higher prevalence (up to 56 %) has been

reported in apparently healthy calves aged less

than three months old (Table 2). One experimen-

tal study investigated the infection of neonatal

calves by oral inoculation (in the colostrum) of

toxigenic C. difficile spores. Results showed

faecal shedding but did not detect toxins or the

induction of enteric disease, and suggested that

simple exposure to C. difficile could not cause

disease in calves (Rodriguez-Palacios

et al. 2007b). Colostrum can also play a protec-

tive role, providing passive immunity in neonatal

calves. A natural protective effect of this first

milk when ingested by calves immediately after

birth is plausible (Rodriguez-Palacios

et al. 2007b) and merits further investigation. In

the literature, many studies have investigated

hyperimmune bovine colostrum (obtained by

repeated immunisation of pregnant cows) as an

effective treatment for CDI in human patients

(Steele et al. 2013). However, with or without

signs of enteric disease, a decrease in the preva-

lence rate of C. difficile is observed in adult
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animals (Table 2). While the reason for this age

effect is still unknown, a probable explanation is

that the bacterium is better able to colonise and

proliferate in the intestinal tract of younger

animals, where the gut microbiota is less devel-

oped (Rodriguez-Palacios et al. 2006).

5.3 Food-Producing Animals:
Poultry

A wide variety of zoonotic diseases can be trans-

mitted by poultry. However, few studies have

focused on the study of C. difficile in these

animals. The limited data available shows that

the situation is similar to other species, with

prevalence decreasing with increasing age (rang-

ing from 100 % in faecal samples of 14-day-old

birds to 0.29 % in mature farm animals), and

with bacterial colonisation observable with or

without development of disease (Table 3).

Only one outbreak of C. difficile has been

described in newly hatched ostriches (Cooper

et al. 2013). In this outbreak, more than 90 %

of birds died within three days of the onset of

diarrhoea. At necropsy, the colon and rectum

were dilated and diffusely haemorrhagic. Micro-

scopic examination also revealed necrotizing

typhilitis and colitis in all the birds. After this

report, 300 additional birds from a subsequent

hatching were also affected by an epidemic of

necrotic enteritis. Identical symptoms were

observed which may suggest that CDI is a com-

mon and important problem in captive ostrich

chicks (Frazier et al. 1993).

In rural communities in Zimbabwe, chickens

were identified as major reservoirs of C. difficile.
Water probably acted as a source of the bacte-

rium for these chickens, as spores were detected

in well water and household-stored water.

Sources of water contamination may be faeces

of domestic animals or humans, although this

was not investigated in the study. In addition,

soils were also heavily contaminated with

C. difficile by chicken faeces. The free movement

of chickens between neighbouring homesteads

highlights the importance of these colonised

animals as vectors for widespread distribution

of C. difficile in rural communities (Simango

2006).

5.4 Food-Producing Animals: Sheep
and Goats

Other production animals such as lambs, sheep

and goats have been also described as carriers of

the bacterium, with a prevalence varying

between 0.6 and 10.1 % (Table 3). As in other

animal species, the rate of C. difficile detection

seems to decrease with age.

On average, a lower prevalence has been

reported in sheep and lambs than in swine. This

may be associated with the greater use of

antimicrobials in production of pigs than in

sheep (Knight and Riley 2013). However, as

stated before, the few studies available in the

literature studying the effect of antibiotics did

not find a direct relation between the use of

antimicrobials and C. difficile colonisation or

infection (Romano et al. 2012; Susick

et al. 2012). While the presence of C. difficile in
apparently healthy sheep and goats in farms and

at slaughter could play a role in animal-to-ani-

mal, environmental or zoonotic transmission,

there are no reports identifying the bacterium as

responsible for outbreaks of enteropathogen in

these animal species.

6 Clostridium difficile in Foods

Recent studies have described the presence of

C. difficile spores in a variety of food products

of both animal and plant origin. These findings

highlight the potential risk of infection

associated with consuming foods, particularly if

they are not cooked prior to eating (Lund and

Peck 2015).

6.1 Prevalence and Food Products
Concerned

The contamination by C. difficile spores has been

detected in different types of food products,
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including seafood, vegetables and meats, with a

prevalence ranging between 2.9 and 66.7 %

(Tables 4 and 5). Considering that C. difficile is

present in healthy food-producing animals at

slaughter, it is not surprising that its spores have

also been found in meats (Table 4). The mean

prevalence of C. difficile spores in these products

ranges between 0 and 15 %. While early studies

conducted in North America reported a much

higher contamination rate than elsewhere

(Rupnik and Songer 2010), recent studies show

the situation to be similar to other countries

(Table 4). Rodriguez-Palacios et al. (2009), not-

ing an increased recovery of the bacterium from

ground beef and chops in winter in Canada,

suggested a seasonal component in C. difficile

contamination in meats, and also hypothesised a

possible epidemiological connection between the

prevalence of C. difficile in food animals, some

foods and humans (Rodriguez-Palacios

et al. 2013).

If the initial contamination of food products

with C. difficile is low, the preservation method

used may play a fundamental role in the spores’

survival. One of the key features of C. difficile in

foods is if the pathogen grows or resides in the

dormant state, especially if there are anaerobic

conditions and the cool chain is not respected.

C. difficile has been reported in vacuum-

packaged meat in France (Bouttier et al. 2010)

and in New Zealand, where the bacterium was

isolated from chilled vacuum-packed meats in

which ‘blown pack’ spoilage had been observed

(Broda et al. 1996). The impact of C. difficile

survival in these storage conditions clearly

demands further study.

There has also been interest with respect to

thermal inactivation of C. difficile spores by ther-

mal treatment. Rodriguez-Palacios and Lejeune

(2011) reported that cooking food at a minimum

of 96 �C for 15 min produced an inhibitory effect

on C. difficile spores. However, minimally-

processed fruits and vegetables are treated

below these temperatures and therefore could

be potential vectors of human infection

(Rodriguez-Palacios et al. 2013). The contami-

nation source of these fruits and vegetables could

be the use of organic fertilizer containing

C. difficile spores, or irrigation or washing with

contaminated water.

6.2 Routes of Food Contamination

As stated before, C. difficile is present in the

intestinal contents of apparently healthy food-

producing animals, suggesting carcasses and

meats could be contaminated during the slaugh-

ter process. A few studies have addressed the

contamination of carcasses at slaughter. In pigs,

C. difficile was detected in a total of 3 out of

20 carcasses (15 %) sampled at post-bleed and a

further 3 out of 20 (15 %) at post-evisceration in

a processing facility in Canada (Hawken

et al. 2013). A further study reported a preva-

lence of 2.2 % and 2.5 % in antimicrobial-free

pigs at post-evisceration and post-chill respec-

tively (Susick et al. 2012). Harvey

et al. (2011b) detected 3 positive samples from

a total of 10 sponge swabs collected from carcass

hide, post-excision hides and ears from pigs in a

processing plant in Texas. In Belgium, the prev-

alence reported in carcasses from slaughter pigs

was 7 % (7/100) (Rodriguez et al. 2013).

C. difficile has also been described in cattle

carcasses. In Belgium, the observed prevalence

in cattle carcasses reached up to 7.9 % (8/101)

(Rodriguez et al. 2013). In a study conducted in

Pennsylvania, Houser et al. (2012) detected the

tpi housekeeping gene in 4 out of 100 cattle

carcass swabs by PCR, but C. difficile was not

isolated using culture techniques. The same data

has been reported in an Australian study of cattle

carcasses sampled in the processing area of the

slaughter line where none of the samples taken

(n ¼ 151) were positive for C. difficile (Knight

et al. 2013). Rodriguez-Palacios et al. (2011b)

reported 0 positive carcasses from a total of

168 samples analysed.. In a further study

conducted in the USA, samples were collected

from pig hides, pre-evisceration carcasses, post-

intervention carcasses and ground beef. The bac-

terium was detected in hides with a prevalence of

3.2 %. However, none of the carcass or meat

samples tested positive, evidencing a low
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Jö
b
st
l
et

al
.
(2
0
1
0
)

a
Y
ea
r
w
h
en

th
e
st
u
d
y
w
as

co
n
d
u
ct
ed

o
r
y
ea
r
w
h
en

th
e
st
u
d
y
w
as

p
u
b
li
sh
ed

b
M
ai
n
P
C
R
-r
ib
o
ty
p
es

fo
u
n
d
w
it
h
st
an
d
ar
d
C
ar
d
if
f
n
o
m
en
cl
at
u
re

(�
)
D
at
a
n
o
t
av
ai
la
b
le

o
r
n
o
t
ap
p
li
ca
b
le

84 C. Rodriguez et al.



contamination of the production chain

(Kalchayanand et al. 2013).

Regarding the environmental shedding of

C. difficile in processing facilities, little data is

available. In seven hamburger processing plants

in Iran, C. difficile was detected in 3.5 % (2/56)

of swabs taken from the environment. The

authors suggested that this environmental con-

tamination might be due to biofilm formation

which could facilitate the attachment of spores

(Esfandiari et al. 2014b). In contrast, in a further

study conducted in three sausage-manufacturing

plants, sponge swabs collected from equipment

and facilities yielded no C. difficile isolates

(Harvey et al. 2011b), while meat samples tested

positive for the bacterium, indicating meat con-

tamination with C. difficile from the intestinal

contents of food animals.

The hands of food handers, especially of those

who produce ready-to-eat food, are well-known

vectors of foodborne pathogens, in most cases

due to poor hygiene. However the impact of

contamination of C. difficile by humans who

handle foods without washing their hands has

not yet been evaluated. In a previous study

investigating the C. difficile contamination of

foods prepared in-house at a Belgian nursing

hom, only 1 out of 188 food samples tested

positive for C. difficile. This positive sample

was recovered from a meal composed of carrot

salad, mustard sauce and pork sausage. However,

as they were analysed together, contamination

could have originated from any of the ingredients

or as a result of manipulation (Rodriguez

et al. 2015).

7 The Threat of Zoonotic
and Foodborne Transmission

The literature of the last decade has presented

several hypotheses about C. difficile transmission

(Bauer and Kuijper 2015). Weese et al. (2002)

reported a risk of zoonotic transmission of some

animal diseases, including C. difficile, especially
in small veterinary hospitals. Goorhuis

et al. (2008) described PCR-ribotype 078 as fre-

quently encountered in human CDI and in pigs

with diarrhoea in The Netherlands. A further

study reported that this ribotype was the most

prevalent type in pig, cattle and horse species

worldwide, and also reported an increase in its

prevalence in humans in different countries

(Rupnik et al. 2008). Other studies conducted in

2008 (Jhung et al. 2008) and in 2009 (Debast

et al. 2009) showed a high degree of similarity

between pig and animal C. difficile PCR-ribotype
078 toxinotype V strains, suggesting a common

origin. Recently, Janezic et al. (2014) showed

that the most prevalent C. difficile types in

humans are also prevalent in different animals

from different geographic areas, evidencing the

potential for global dissemination of some

strains.

In the twenty-first century, the development of

different typing methods has allowed genome

analysis and the comparison of animal, food

and human strains (Griffiths et al. 2010). The

first study investigating the phylogeny of

C. difficile by multilocus sequence typing

(MLST) analysis reported that differences

between phylogenetic lineages do not correlate

with the type of host (human or animal) (Pons

2004). Lemée et al. (2004) studied the genetic

relationships and population structures of

72 C. difficile isolates from various hosts and

geographic sources, including human, dog,

horse, cow and rabbit stools. Results obtained

in the study showed that animal isolates did not

constitute a distinct lineage from human isolates.

In subsequent works, the same study group

(Lemée et al. 2005; Lemée and Pons 2010)

observed that animal isolates were intermixed

with human isolates. In the recent years, clade

5 has been largely studied as it contains

C. difficile PCR-ribotype 078 (Knight

et al. 2015a). This type was classically associated

with animals, especially pigs (Álvarez-Pérez

et al. 2013). However, lately it has been also

reported in hospitals (Indra et al. 2015). At pres-

ent, clade 5 seems to be highly heterogeneous

and divergent from the rest of population

(Janezic and Rupnik 2015).

Marsh et al. (2010) used multiple-locus vari-

able number tandem repeat analysis (MLVA) to

show that toxinotype V (REA group BK) human
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and animal isolates were highly related but

differentiated. In another study conducted in the

Netherlands (Koene et al. 2012), faecal samples

from healthy and diarrhoeic animals were com-

pared with human strains isolated from patients

with diarrhoea and hospitalised patients. MLVA

analysis showed a genotypic correlation between

animal and human PCR-ribotype 078, but a dis-

tinction between human and animal

PCR-ribotypes 012 and 014.

Whole genome sequencing (WGS) has

recently been used to study the epidemiology of

CDI and the genetics of C. difficile (Knight

et al. 2015a). One such study investigated the

evolutionary relatedness of C. difficile
PCR-ribotype 078 isolated from humans and

pigs (in farms) (Knetsch et al. 2014). Results

revealed that farmers and pigs were colonised

with identical or nearly identical C. difficile

clones (with zero or less than two single nucleo-

tide polymorphism differences). These results

supported the hypothesis of interspecies trans-

mission between animals and humans; however,

the existence of a common contamination source

(in the environment) was also possible.

It seems that C. difficile occurs as a low-level

contaminant in meats and other food products.

Therefore foodborne transmission may be

responsible for only a small proportion of

human CDI cases (Curry et al. 2012). However,

other authors have reported no molecular rela-

tionship between clinical human and meat

isolates and, therefore, that sources other than

meat are responsible for CDI (Esfandiari

et al. 2014a). At present, the human infectious

dose for C. difficile is not known (Hoover and

Rodriguez-Palacios 2013) and the risk posed by

the presence of its spores in meat and other foods

is still not clarified. Among healthy people with

normal intestinal flora, the ingestion of low

quantities of spores may not have major

repercussions. However, the consumption of

these contaminated foods by vulnerable

populations with gastrointestinal perturbations

could lead to C. difficile colonisation and infec-

tion, or can contribute to the asymptomatic

C. difficile carriage and transmission in the

community.

8 Conclusions and Perspectives

Eighty years after its discovery, C. difficile
continues to be the focus of attention in hospitals

and an important topic for many research groups

worldwide. Comparisons of strains have revealed

that in some regions animals and humans are

colonised with identical C. difficile clones or

these strains cluster in the same lineage. There-

fore, it is suggested that C. difficile should be

considered as a zoonotic pathogen and that

animals play an important role as reservoirs of

the bacterium.

While many questions remain unanswered,

next generation typing techniques must be

applied in the future to study the relatedness of

strains of human and animal origins. In this con-

text, it will be interesting to assess the presence

of C. difficile in close related human and animal

populations, like pets and their owners or farmers

in close contact with their animals. The analysis

of the isolates by WGS analysis will definitively

confirm the absence of host tropism of certain

strains and the zoonotic transmission of the

bacterium.
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Båverud V, Gustafsson A, Franklin A et al (2003) Clos-
tridium difficile: prevalence in horses and environ-

ment, and antimicrobial susceptibility. Equine Vet J

35:465–471

Berry AP, Levett PN (1986) Chronic diarrhoea in dogs

associated with Clostridium difficile infection. Vet

Rec 118:102–103

Bojesen AM, Olsen KEP, Bertelsen MF (2006) Fatal

enterocolitis in Asian elephants (Elephas maximus)

caused by Clostridium difficile. Vet Microbiol

116:329–335

Borriello SP, Honour P, Turner T et al (1983) Household

pets as a potential reservoir for Clostridium difficile
infection. J Clin Pathol 36:84–87

Bouttier S, Barc MC, Felix B et al (2010) Clostridium
difficile in ground meat, France. Emerg Infec Dis

16:733–735

Broda DM, DeLacy KM, Bell RG et al (1996)

Psychrotrophic Clostridium spp. associated with

“blown pack” spoilage of chilled vacuum-packed red

meats and dog rolls in gas-impermeable plastic

casings. Int J Food Micro 29:335–352

Burt SA, Siemeling L, Kuijper EJ et al (2012) Vermin on

pig farms are vectors for Clostridium difficile PCR

ribotypes 078 and 045. Vet Microbiol 160:256–258

Busch K, Suchodolski JS, Kühner KA et al (2014) Clos-
tridium perfringens enterotoxin and Clostridium diffi-
cile toxin A/B do not play a role in acute haemorrhagic

diarrhoea syndrome in dogs. Vet Rec 176:253

Carman RJ, Evans RH (1984) Experimental and sponta-

neous clostridial enteropathies of laboratory and free

living lagomorphs. Lab Anim Sci 34:443–452

Clooten JS, Kruth S, Arroyo L et al (2008) Prevalence and

risk factors for Clostridium difficile colonization in

dogs and cats hospitalized in an intensive care unit.

Vet Microbiol 129:209–214

Cooper KK, Songer JG, Uzal FA (2013) Diagnosing clos-

tridial enteric disease in poultry. J Vet Diagn Invest

25:314–327
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