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Abstract With the increase in demands and applications, techniques to create

electrochemical microdevices have made a remarkable progress over the last four

decades. Key components of the electrochemical devices are electrodes that are

easily fabricated by microfabrication techniques. Because of this, miniaturization,

batch-fabrication, and integration with other components can easily be realized.

This is a contrast to devices based on other detection principles. Miniaturization of

the devices also brings with it additional advantages such as very small consump-

tion of sample and reagent solutions, rapid mixing, and parallel processing. On the

other hand, however, a challenging issue we often encounter is that it becomes

increasingly difficult to maintain the performance that has been achieved by con-

ventional electrochemical devices used in laboratories. To cope with the problem,

nanotechnology provides good solutions. Numerous papers have been published to

demonstrate the effectiveness of nanotechnology. Therefore, it is impossible to

cover all the contents. However, a convincing conclusion is that nanotechnology

really has surprising effects on sensing performance. With the wealth of knowledge

of nanotechnology, their application to microfabricated devices will be the subject

of the next stage. In this chapter, nanotechnologies applicable to the improvement of

the performance of existing microfabricated electrochemical devices will be

introduced. Although various techniques have been developed for single indepen-

dent electrodes, those that may be difficult to apply to microfabricated devices are

excluded. On the other hand, those that are applicable to nanoelectrodes are

included.
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1 Microelectrodes and Nanoelectrodes

1.1 Properties of Independent Micro-/Nano-electrodes

To realize highly sensitive detection in a solution of a very small volume,

microelectrodes are effective [1, 2]. Typical dimensions of reportedmicroelectrodes

are from tens of mm down to sub-mm. Actually, however, there is no clear-cut

boundary, and a microelectrode should refer to an electrode whose characteristic

dimension is comparable with or smaller than the diffusion layer thickness [3]. The

thickness varies as time elapses, which also affects electrode behavior. Here, let us

suppose that a sufficiently large overpotential is applied to a microdisk electrode to

oxidize or reduce a compound. The diffusion of the molecules to the electrode is

quite different from that observed with electrodes usually used in laboratories. With

a planar electrode of the mm order for example, the analyte molecules are depleted

at the electrode surface and diffuses uniformly from the bulk of the solution to the

electrode surface except for the edges of the electrode. On the other hand, with the

microelectrode, analyte molecules move towards the electrode along the concentra-

tion gradient in the diffusion layer (Fig. 1).

The enhanced diffusion brings with it some advantages. These include a current

increase, increase in the signal-to-noise ratio, fast establishment of the steady-state

signal, and reduction of the influence of solution resistance [3]. As the size of the

electrode decreases, the double-layer capacitance also decreases. This results in

the reduction of charging current, which is beneficial in conducting a voltammetric

analysis by scanning electrode potential.
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In cyclic voltammograms observed with an electrode of the mm order, for

example, redox peaks are observed at scan rates usually used in electrochemical

analyses (Fig. 2a). The peaks appear because the rate of mass transport is smaller

than that of electrolysis at higher overpotentials, and the molecules that are subject

to the electrode reaction continue to decrease in the vicinity of the electrode. On the

other hand, with a microelectrode, a sigmoidal curve is observed under a typical

condition (Fig. 2b). It should be noted that the shape of the voltammogram also

depends on the scan rate of potential. With a very large scan rate, even the

microelectrodes show peak-shaped voltammograms. On the other hand, at a very

low scan rate, or in a long time scale, even larger electrodes show sigmoidal

curves [1].

Fig. 1 Diffusion of analyte molecules to a planar electrode of the mm order (a) and to a

microelectrode (b). (c) Microelectrode array. (d) Interdigitated microelectrodes and redox cycling

Fig. 2 Cyclic voltammograms observed with an electrode of the mm order (a) and with a

microelectrode (b)
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As mentioned, the microelectrodes have fascinating and excellent properties.

However, a problem is its very small current. To solve this problem, microelectrode

arrays have been used. In the following discussions, a group of electrodes with

controlled shape, dimensions, and an ordered spacing is called an array, whereas a

group of electrodes with a random spacing will be called an ensemble. Some

geometrical variations are found for the arrays. One is an array of circular

electrodes. The other is a row of thin strips of electrodes. The diffusion profile of

a microelectrode array shown in Fig. 1c is influenced by the relative interelectrode

spacing d/r, where d is the center to center distance and r is the radius of the

electrode. With large d/r, the diffusion of the electroactive species to each electrode
remains independent of all others. In this case, the limiting current is expressed as

the sum of current generated on all the electrodes in the array. On the other hand,

with the decrease in d/r, the diffusion layers overlap, and the diffusion profile

approaches that of a uniform diffusion observed with a macroscopic electrode

with the same geometric area. Although the diffusion is apparently the same as a

macroscopic planar electrode, it should be noted that there is a significant difference

between the microelectrode array and a macroscopic planar electrode. Because the

background and capacitive currents change in proportional to the active area, they

are reduced significantly with the microelectrodes. Consequently, substantial

improvement in signal-to-noise (SN) ratio and Faradaic-to-capacitive current ratios

is achieved with the microelectrode array.

1.2 Redox Cycling

Although the micro/nanoelectrodes themselves are very effective to improve the

detection performance, a more fascinating feature called redox cycling can be

realized by using two groups of microelectrodes [4]. An orthodox configuration is

an interdigitated electrode array (IDA) that consists of a pair of fingers called a

generator and a collector. They are held at appropriate different potentials (Fig. 1d).

An electroactive analyte undergoes oxidation or reduction on the generator then

diffuses to the collector where the analyte undergoes a reverse reaction. The species

then diffuses back to the generator, and the cycle is repeated. This results in

significant amplification of signal.

The array of micro/nanoelectrodes is not necessarily planar. Figure 3 shows a

circular microcavity containing an addressable recessed microdisk gold electrode

formed at the bottom and a tubular nanoband gold electrode on the vertical

microcavity wall [5]. The microcavity consisted of layers (Fig. 3) consisting of

gold layers with a chromium adhesion layer and polyimide insulating layers. The

electrodes were separated from each other by 4 mm. The electrode structure was

used to cause redox cycling. With this method, electrodes and spacing of the nm

order can easily be realized. On the other hand, increasing the number of electrodes

will be a tough work.
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Another approach that has a potential to achieve significantly higher amplifica-

tion is to use a nanocavity [6–9]. A pair of electrodes is located at the bottom and

ceiling of a cavity with a height of the nm order. In this device, the electrodes can be

simple planar electrodes. Redox cycling occurs between the electrodes facing each

other in the nanocavity (Fig. 4).

Although the device uses a nanocavity, the method of formation of the structures

is based on the conventional photolithography and micromachining [6–9]. First, the

bottom electrode is formed on a substrate (Fig. 4a). Then, a pattern of a sacrificial

Fig. 3 Redox cycling in a microcavity with a recessed microdisk electrode and tubular nanoband

electrodes

Fig. 4 Fabrication of a nanocavity with a pair of electrodes located at the bottom and ceiling

(a–d). (e) Redox cycling caused between the electrodes
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layer such as photoresist, chromium, or amorphous silicon is formed on the

electrode pattern (Fig. 4b). After the top electrode is formed on the sacrificial

layer, an insulator layer is formed on the entire structure. Through-holes are formed

in the insulating layer to remove the sacrificial layer and to inject a solution to be

analyzed (Fig. 4c). Finally, by etching the sacrificial layer away by immersing the

structure in an appropriate etchant, the electrode structure separated by a distance of

the nm order is formed (Fig. 4d, e). When in use, the nanocavity is filled with an

analyte solution and appropriate potentials are applied to the electrodes. Because of

the short distance between the electrodes, nearly 100% of the generated product is

cycled between the electrodes. With this approach, redox cycling was significantly

enhanced, which realized the detection of a few hundred molecules [7].

Redox cycling not only brings with it the amplification of current but also brings

additional advantages. In amperometric detection, the interference by electroactive

compounds such as L-ascorbic acid, uric acid, and dissolved oxygen poses a

problem. However, when the reaction for the analyte is reversible and that for the

interferent is irreversible, redox cycling occurs only for the analyte, which

suppresses the influence of the interferent relatively.

Redox cycling caused on IDAs has been used for the detection of proteins and

DNAs. To couple the molecular recognition of probe molecules to electrochemical

detection, the probe molecules are modified with an appropriate enzyme that

produces electroactive molecules. One of such enzymes is alkaline phosphatase.

This enzyme converts p-aminophenyl phosphate (PAPP) into electroactive

p-aminophenol (PAP). PAP is oxidized into quinoneimine, which is also

electroactive. In some reported cases, IDAs of the sub-mm order have been used

to cause redox cycling for this purpose. The technique has been used for the

detection of bacteriophages [10, 11], DNA [12], and RNA [12, 13]. An advantage

of electrochemical devices is the integration of components. In some of the above-

mentioned cases, simultaneous detection of different target molecules on an array

of detection sites has been demonstrated (Fig. 5a) [14].

Fig. 5 Chip with multiple detection sites. (a) Top view of the chip. (b) Magnified view of an IDA

electrodes. (c) Detection of a target DNA. The DNA binds to a probe DNA linked to the IDA

electrodes. Then, the target DNA is enzyme-labeled. A reaction product of the enzymatic reaction

p-aminophenole (p-AP) is detected by redox cycling. With kind permission from Springer Science

+Business Media: [14]
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2 Activation of Electrodes Using Nanostructures

2.1 Activation of Electrode Reactions

Faradaic currents that originate from kinetically controlled electrochemical

reactions depend on the real surface area of the working electrode rather than the

geometric area. Therefore, by increasing the surface area by some orders of

magnitude, the Faradaic current of a sluggish reaction can be enhanced. To this

end, nanotechnology offers an excellent solution.

Hydrogen peroxide is often detected in biosensors that use enzymes categorized

as oxidases. For biosensing, improvement of sensitivity is often required. To

activate the surface of a platinum electrode and improve detection sensitivity, a

relatively easy and effective method is to use platinum black. The platinum black is

formed by electrodepositing platinum from a solution containing chloroplatinic

acid. The platinum black has been used for the hydrogen electrode used for the

reference electrode. Without the platinum black, the reversible potential of the

hydrogen electrode is not expected. For H2O2, a significant improvement in

the sensitivity has been observed [15]. Another effective structure is mesoporous

platinum [16]. The structure is formed by depositing platinum using the three-

dimensional structure of lyotropic liquid crystal phases. Voltammograms obtained

with an ordinary planar platinum electrode do not exhibit well-defined plateaus for

the oxidation and reduction of H2O2, which suggests that the response is under

mixed kinetic and diffusion control [16]. Furthermore, linearity of the calibration

plot is poor with the ordinary platinum electrode particularly at higher con-

centrations. This problem has also been solved with the mesoporous platinum and

the lower detection limit has also been reduced compared with the conventional

platinum electrode.

Glucose is one of the critical target analytes for biosensors. Although numerous

papers have been published with regard to enzymatic biosensors, an inherent

problem in biosensors in general is long-term stability. To solve this problem,

non-enzymatic glucose sensors with nanostructures have been proposed. As

demonstrated for the detection of hydrogen peroxide, porous structure of platinum

is also effective to enhance direct oxidation of glucose [17]. Ordered porous

platinum structure can be formed by depositing platinum through cdse-cds crystal-

line template (Fig. 6a–c) and dissolving the template in hydrofluoric acid (Fig. 6d).

A significant increase in Faradaic current originating from the oxidation of glucose

has been observed. The response of the electrode showed unique pH dependence

with a maximum around pH 9.

Nanostructures can be formed in a variety of other methods. Ordered array of

cylindrical platinum mesopores can be obtained by electrodepositing platinum

within the aqueous domains of the liquid crystalline phases of oligoethylene

oxide nonionic surfactants and removing the surfactant by rinsing with a large

volume of deionized water [18]. Highly ordered platinum nanotube arrays have also

been used for the direct oxidation of glucose [19]. The platinum nanotube arrays
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were fabricated by electrodeposition of platinum in the pores of porous anodic

alumina template. In these electrodes, the oxidation of glucose was enhanced with

the increase in roughness factor. Furthermore, decrease in the influence of

interferents such as L-ascorbic acid, uric acid, and p-acetamidophenol has been

reported. Also, the electrode showed stable responses in the presence of chloride

ions, which can be a cause of poisoning for noble metal electrodes.

Carbon nanotubes (CNTs) have also been used to improve the sensing perfor-

mance. They are classified into single- and multi-walled tubes. The diameter of the

former is typically 0.4–3 nm, whereas that of the latter ranges between 2 and

100 nm. The single-wall CNTs (SWCNTs) consist of a single cylindrical graphene

sheet capped with hemispherical ends. The multi-wall CNTs (MWCNTs) consist of

several to tens of concentric cylinders. Depending on the chirality of wrapping,

CNTs show metallic or semiconducting properties.

Electrodes with a CNT/Nafion coating showed significant enhancement of

sensitivity towards hydrogen peroxide and catecholamines [20]. Furthermore, the

influence of interferents was suppressed significantly. Hrapovic et al. used

SWCNTs and platinum nanoparticles immobilized with Nafion [21]. When com-

pared with electrodes with only the CNTs or platinum nanoparticles, significantly

larger current was observed. Also, due to the perm-selective nature of Nafion, no

detectable responses were observed with L-ascorbic acid and uric acid of physio-

logical concentrations.

An ensemble of MWCNTs also enhances direct oxidation of glucose in alkaline

media [22]. The influence of poisoning by chloride ions was not observed. However,

the influence of L-ascorbic acid and uric acid could not be eliminated completely.

Enhancement of sensitivity is not limited to glucose.With single- ormulti-wall CNTs,

significant enhancement of sensitivity has also been reported for oxygen [23], dopa-

mine [24, 25], epinephrine [25], L-ascorbic acid [25], and NADH [26].

The electrochemistry of CNTs is a little complicated, and it will not be appro-

priate to regard them as simple long electrodes of the nm order. Experimental facts

accumulated up to now suggest that the open end of the MWCNT has a high

electron transfer rate but the sidewall presents a low electron transfer rate

[27, 28]. According to a recent report [29], however, the electrochemical activity

Fig. 6 Fabrication of the platinum microporous structure. (a–b) Deposition of SiO2 spheres on a

gold surface. (c) Electrodeposition of platinum into the interspace of the SiO2 template.

(d) Microporous platinum structure obtained after removing SiO2 spheres by wet etching
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of the parts of CNTs depends on the species to be analyzed and the existence of

oxygen-containing surface functionalities. The accumulation of evidence is still

necessary to reach the final conclusion.

Other than the CNTs, graphene sheets are beginning to be used for electrochemi-

cal devices, and have a potential to realize performance better than that of the CNT-

based devices [28]. However, because there are technical difficulties to handle them

at present compared with CNTs, the graphene-based devices are not addressed here.

2.2 Promotion of Direct Electron Transfer

Nanostructures have an effect to promote direct electron transfer between

biomolecules and an electrode. In many enzymes, redox centers are located in the

core of proteins. Therefore, direct exchange of electrons is often difficult. To

promote electron transfer, mediators or promoters have been used. However,

enzymes with capability of direct electron exchange facilitate fabrication of

biosensors. To this end, CNTs have been used because of the remarkable

electrocatalytic properties. With CNTs, there is a possibility to place them close

to the redox centers of the proteins. This is actually the case. In many of the reported

cases, a layer of single-wall or multiwall CNTs is formed on a base electrode by

casting a CNT solution and the redox proteins are just placed on it. CNT electrodes

have shown superior performance in promoting direct electron transfer with

glucose oxidase [30], cytochrome c [31, 32], horseradish peroxidase [33, 34],

hemoglobin [35], myoglobin [34], and microperoxidase [36], which was not

observed with only the base electrode.

As for the realization of direct electron transfer, various nanomaterials other than

CNTs have been tried, and numerous papers have been published. When improving

sensing performance using this approach, previous trials should be checked by

focusing on specific cases.

2.3 Activation of Electrochemiluminescence

Electrochemiluminescence (ECL) is generated by converting electrochemical

energy into radiative energy [37, 38]. Advantages of the ECL detection when

compared with fluorometry are excellent sensitivity and selectivity, broad dynamic

range, spatial controllability, low cost, and compatibility with separation

techniques. In particular, the most unique feature of ECL is that it can be initiated

and controlled by applying a potential to an electrode. Several different

mechanisms of ECL have been proposed: (1) annihilation ECL, (2) co-reactant

ECL, and (3) cathodic luminescence. Among them, most of the ECL systems have

been developed based on the co-reactant ECL. The co-reactant refers to a species to

produce reactive intermediates, which react with a luminophore to form excited
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states of the luminophore. As an example, a widely used mechanism of tris(2,20-
bipyridyl)ruthenium (II) (Ru(bpy)3

2+) and tri-n-propylamine (TPrA) system is

described in Fig. 7.

Here, Ru(bpy)3
2+ and TPrA are a luminophore and a co-reactant, respectively.

First, Ru(bpy)3
2+ is oxidized on the electrode. TPrA is also oxidized to produce a

strong reductant TPrA•. Then, TPrA• and Ru(bpy)3
3+ react to generate an excited

state (Ru(bpy)3
2+*) capable of emitting light. When the excited state returns to the

ground state, luminescence whose emission peak is at 620 nm is emitted.

Luminophores return to their initial state and can be used repeatedly, which is a

marked contrast to luminophores used for chemiluminescence. This multiple exci-

tation cycle amplifies the signal. On the other hand, the background signal is

minimal because the stimulation mechanism is decoupled from light. The emitted

light is detected using a commercial photomultiplier tube. The intensity of ECL

depends on the applied potential and on the concentration of Ru(bpy)3
2+ and TPrA.

To analyze nucleic acids, hybridization with DNA probes modified with ECL

luminophores has been used. Zhang et al. reported a unique approach to detect a

target single-strand DNA using a thiolated hairpin DNA tagged with Ru(bpy)3
2+

assembled on a gold electrode (Fig. 8a) [39]. The hairpin DNA and the target DNA

hybridize and form a rigid linear double-strand DNA (dsDNA), separating Ru

(bpy)3
2+ from the electrode. This results in the decrease of the ECL intensity,

which can be used for DNA sensing. The lower detection limit was 90 pM.

Intercalation of luminophore to dsDNA has also been used to enhance ECL.

[Ru(bpy)2dppz]
2+ (bpy¼ 2,20-bipyridine; dppz¼ dipyrido[3,2-a:20,30-c]phenazine)

itself emits negligible ECL. However, when it is intercalated into DNA, the ECL

intensity increases by a factor of ~1,000 [40]. With a DNA aptamer against ATP,

the ECL intensity decreases upon binding of ATP. With this technique, the lower

Fig. 7 Reaction mechanism of the Ru(bpy)3
2+/TPrA ECL system
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detection limit was 100 nM [40]. The idea of using a DNA intercalator as an ECL

fluorophore was further developed by Yin et al. (Fig. 8b) [41]. Their label-free ECL

aptasensor was constructed based on the intercalation of Ru(phen)3
2+ (phen¼ 1,10-

phenanthroline) into dsDNA formed with an aptamer and its complementary DNA.

Fig. 8 ECL-based immunoassay. (a) Detection of DNA hybridization using hairpin-DNA probes.

Reprinted with permission of [39]. Copyright 2008 American Chemical Society. (b) Detection of

thrombin using label-free ECL aptasensors. (A) Attachment of the anti-thrombin thiolated aptamer

to an electrode. (B) Formation of dsDNA with its cDNA. (C) Intercalation of Ru(phen)3
2+ into the

dsDNA. (D) Dissociation of dsDNA and release of Ru(phen)3
2+ accompanying the binding of

thrombin to its aptmer, resulting in the decrease of ECL. Reprinted with permission of [41].

Copyright 2009 American Chemical Society
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After the target molecule hybridized with its aptamer, the dsDNA dissociated and

the intercalated Ru(phen)3
2+ was released. The decrease in the ECL signal before

and after the target molecule binding was used to quantify the concentration of the

target molecule. For thrombin, the lower detection limit of 20 fM has been reported.

Unlike the other ECL methods, most of the quantum dots (QDs) ECL biosensors

are developed based on quenching, inhibition, or enhancement of ECL. Quenching

is caused by energy transfer between the excited QD and the analyte (or by-

products generated from the analyte) when they are in close proximity. Liu et al.

demonstrated an ECL quenching process of CdTe QDs and a new method to

quantify catechol derivatives, which are ECL quenchers, as analytes (Fig. 9a)

[42]. In the method, QD was excited by superoxide anion electrochemically

generated at an electrode surface. In the presence of catechol derivatives, such as

dopamine or L-adrenalin, energy transfer from the excited QDs to the catechol

derivatives occurs, resulting in a significant decrease of ECL emission. The lower

detection limit of dopamine was 50 nM.

Fig. 9 Quantum-dot-based ECL. (a) ECL from QDs (left) and quenching (right). Reprinted with

permission of [42]. Copyright 2007 American Chemical Society. (b) Synthesis of gold/silica/

CdSe-CdS nanostructures (left) and fabrication of the ECL immunosensor (right). [44] – Reproduced
by permission of The Royal Society of Chemistry
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One of the advantages of QDs is the easiness of functionalization. Yuan et al.

reported signal amplification for ECL immunoassay [43]. In their system, cdse-cds

nanoparticles were used as cores, which were covalently bound with QDs via

polymer chains. The nanoparticles were further modified with antibodies to specifi-

cally bind target molecules. With the probe, the ECL measurement achieved 10

times as high sensitivity as that using unmodified QDs. The lower detection limit

was a few pg mL�1. As the other superstructure, a gold/silica/CdSe-CdS QD

superstructure, formed by coating CdSe-CdS QDs with gold nanoparticles coated

with SiO2, emits ECL that is 17-fold higher than that from pure CdSe-CdS QDs

(Fig. 9b) [44]. The structure was used for the detection of carcinoembryonic

antigen, and a lower detection limit of 64 fg mL�1 has been achieved.

Detection sensitivity of ECL is significantly improved by using a SWCNT forest

electrode. In the detection of a cancer marker, prostate specific antigen, that used

nanoparticle labels containing Ru(bpy)3
2+, 34-fold better sensitivity and 10-fold

lower detection limit have been achieved compared with cases that used a pyrolytic

graphite electrode [45]. CNT is also effective to enhance ECL from QDs. In the

detection of H2O2, significant enhancement of ECL has been observed by using a

CdS/CNT composite compared with the case without CNT [46].

In the detection of ECL using Ru(bpy)3
2+, it is anticipated that the sensitivity is

enhanced if Ru(bpy)3
2+ ions are concentrated in the vicinity of an electrode. To this

end, an effective approach is to use an ion-exchange polymer such as Nafion. With

only this structure, the increase in the intensity of ECL was actually observed.

However, by incorporating CNT further into this membrane, a 60-fold increase in

the ECL intensity has been observed [47], which has been explained by an open

structure realized accompanying the incorporation of CNT. Otherwise, co-reactants

of Ru(bpy)3
2+ can be concentrated on an electrode. In the enzymatic reaction of

acetylcholinesterase, thiocholine is produced from acetylcholine. Thiocholine

forms a monolayer on a gold electrode by gold-thiol bonding, which works as a

concentrated layer of co-reactants for Ru(bpy)3
2+ [48]. With antibodies labeled

with the enzyme, anti tumor necrosis factor-a (TNF-a) of the sub-pM order has

been detected by ELISA [48].

3 Fabrication of Nanoelectrode Arrays and Ensembles

The nanoelectrode structures discussed in previous sections are often similar.

Therefore, it will be beneficial to describe the fabrication in a separate section to

understand how these structures are formed. In this section, representative

techniques to form nanoelectrode arrays and ensembles will be described. These

techniques could be used independently or combined with other techniques to

improve the detection performance.
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3.1 Formation of Nanoelectrode Arrays by Electron-Beam
Lithography or Focused Ion Beam Milling

IDAs can be formed by electron beam lithography [49]. By reducing the dimensions of

the electrodes to the nm order, improvement of performance is expected. To realize it,

techniques that are different from those used for microscale devices are used.

For the fabrication of electrodes of the mm order, photolithography is an appro-

priate choice. However, fabrication of electrodes with smaller dimensions must rely

on other techniques. For electrodes of the sub-mm scale, electron-beam lithography

has been used. Interdigitated electrodes of the sub-mm order have also been

fabricated by deep UV lithography [50].

As a simple method, an array of nanoelectrodes can be formed by forming a

layer of resist on a metal layer and by forming an array of nanoholes by the

electron-beam lithography [51, 52]. Focused ion beam can also be used to form a

nanoband electrode array. A platinum electrode pattern is formed by conventional

photolithography and is passivated with a silicon nitride layer. Nano-scale openings

are formed by milling the silicon nitride insulating layer to the bottom so that the

underlying platinum is exposed (Fig. 10a) [53]. The exposed platinum areas work

as the nanoelectrode array. Nanopore array electrodes have also been fabricated by

this technique (Fig. 10b, c) [55].

By using additional techniques, the electrode size can be reduced further.

Anisotropic etching is a technique often used for silicon bulk micromachining.

This technique uses the difference in etching rates for various crystallographic

orientations. The resulting structure can be used to shrink the patterns formed by

electron-beam lithography (Fig. 11) [54]. After square patterns are formed in a

silicon dioxide protecting layer formed on a very thin (100)-oriented silicon layer,

the exposed areas of the silicon layer are anisotropically etched (Fig. 11a, b). This

results in inverted pyramid through-holes (Fig. 11c, d). The dimensions of the

through-holes formed on the other side of the silicon layer are much smaller than

those formed in the silicon dioxide layer formed by electron-beam lithography.

Nanoelectrodes with lateral dimensions of 15 nm have been obtained (Fig. 11e, f).

Conical microelectrodes have been fabricated by anisotropic etching of silicon

(Fig. 10d) [56]. After the structure was formed, layers of insulators and platinum

were formed. The platinum layer was exposed only at the tips by removing the

outermost insulating layer after applying a photoresist.

Problems in the above-mentioned techniques are that they are high cost and low

throughput. To solve this problem partially, a novel technique called nanoimprint

lithography has been proposed (Fig. 10e) [57, 58]. In this method, a mold with

nanostructures is first formed using the electron-beam lithography. This mold is

then pressed into a thin film of thermoplastic polymer such as poly(methyl methac-

rylate) (PMMA) formed on a substrate that has been heated above its glass

transition temperature. After separating the mold, the polymer residues in the

compressed areas are removed by reactive ion etching. The patterns have been

used to form interdigitated electrodes by a lift-off process [59, 60] or a nanodisc
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electrode array by forming an insulating layer with an array of holes on a gold

layer [52].

3.2 Formation of Nanoelectrode Arrays by Photolithography

In forming planar nanoelectrode arrays of controlled patterns, the electron-beam

lithography is most widely used. Then, can’t we form such nanoelectrode arrays if

we do not have the very expensive instrument? The answer is yes. Some unique

methods have been proposed based on patterning by ordinary photolithography.

An example is illustrated in Fig. 12 [61]. First, a nickel layer is deposited on a

substrate, and photoresist patterns are formed. Then, the nickel layer is removed by

electrochemically dissolving it. A point here is to overetch the nickel layer and form

a horizontal trench under the photoresist layer. By depositing a metal such as gold,

platinum, and palladium, and removing the photoresist and the nickel layer,

nanoelectrode arrays can be obtained. The patterns of the nanoelectrodes can be

designed in a desired manner and a long nanowire of the cm order can easily be

obtained.

As already shown in Fig. 3, nanoelectrodes can also be formed on the cross-

section of a sandwich structure. Single-band electrodes have been fabricated by

depositing a metal electrode layer and an insulating layer and by exposing the

electrode on one side [62–65]. Platinum and gold electrodes with widths of the nm

order have been reported. Contrary to the width, the other dimension can be very

long with this method. The cross section can be straight, circular, or a comb-like

structure. The number of nanoelectrodes can be increased by stacking metal and

insulator layers alternately [66].

In relation to this technique, a technique named “nanoskiving” has been pro-

posed [67]. As in the previous cases, thin-film metal structures are embedded in

epoxy. The epoxy matrix is then sectioned using an ultramicrotome. A section is

placed on a substrate and epoxy is removed by oxygen plasma etching. Nanowires

fabricated by this technique have been used for electroanalysis [68].

Fig. 10 SEM images of nanoelectrodes. (a) Nanoband electrode array fabricated by focused ion

beam milling. Reprinted from [53], Copyright 2007, with permission from Elsevier. (b) Nanopore
electrode array. (c) Magnified image of a nanopore. Adapted with permission from [55]. Copyright

2007 American Chemical Society. (d) Conical microelectrode with the platinum area exposed

only at the tips. Reprinted from [56], Copyright 2000, with permission from Elsevier. (e) Metal

lines (30 nm width and 70 nm pitch) fabricated by imprint lithography. Reprinted with permission

from [58]. Copyright 1996, American Vacuum Society
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Fig. 12 Fabrication of a gold nanowire. (a) Deposition of a sacrificial Ni layer onto a glass

substrate. (b) Formation of a photoresist pattern. (c) Overetching of the Ni layer. (d) Deposition of
a gold layer into the trench between the photoresist and the glass substrate. (e) Photoresist

removed. (f) Ni removed. Adapted by permission from Macmillan Publishers Ltd: [61], copyright

2006

Fig. 11 Cross-sectional and three-dimensional illustrations of the fabrication process of a

nanoelectrode using electron-beam lithography. (a) Si substrate covered with a SiO2 layer and a

Si3N4 layer. (b) Formation of a square pattern in the SiO2 layer and anisotropic etching of the

exposed Si layer. (c) Formation of pyramid-shaped holes through the wafer. (d) Three-dimensional

view of the structure shown in (c). (e) Deposition of gold on one side of the device. (e) Magnified

view of the nanoelectrode. Adapted with permission from [54]. Copyright 2005 American

Chemical Society
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3.3 Formation of a Layer of Randomly Oriented CNTs

CNTs activate electrode reactions. In taking advantage of this, the simplest method

is to form a layer of randomly oriented CNTs by casting a solution containing

CNTs. Here, a problem is unavailability of appropriate solvents [69]. CNTs can be

made water-soluble by adsorbing surfactant molecules on the surface of CNTs

[69–71]. CNTs are first dispersed in a solution of a surfactant whose concentration

is higher than the critical micellar concentration, which is the concentration at

which surfaces are saturated with surfactant and the surfactant molecules start self-

aggregating into micelles. Then, the solution is sonicated. The solution is used to

cast CNTs onto an appropriate substrate and form the layer. A concern with this

method may be the existence of the surfactant, which may influence the physical

properties of CNTs and induce unwanted chemical reactions. However, when the

CNT layer is used for sensing, the surfactant can be removed by washing the layer

with distilled water [69].

Solubility of CNT has also been improved by wrapping CNT in polymeric

chains. Molecules of high molecular weight thread themselves onto or wrap

themselves around the surfaces of CNTs and disrupt van der Waals interactions

that cause CNTs to aggregate into bundles. For this purpose, poly (metaphenylne-

vinylene) [72] or Nafion [20] has been used.

Solubilization of CNTs is a critical theme in many research fields. Therefore,

many other methods have been developed and the effort continues even now [73].

3.4 Formation of CNT Nanoelectrode Ensembles

If CNTs are formed in a more controlled manner, nanoelectrode ensembles with

appropriate interelectrode spacing could be realized by directly growing CNTs on a

substrate. Low-density nanoelectrode arrays of CNTs have been fabricated by

depositing Ni seeding nanoparticles first by electrochemical deposition and grow-

ing CNTs by plasma-enhanced chemical vapor deposition (Fig. 13) [74]. The CNTs

were embedded in an epoxy layer. After polishing the surface, an array of tips of the

CNT was obtained. Ni or NiFe alloy seeding spots can also be patterned by

electron-beam lithography. Vertically aligned fibers with controlled interelectrode

spacing have been fabricated [75–77].

3.5 Formation of Nanoelectrode Ensembles Using a Template

The porous structure of aluminum anodic oxide films has been used as a template to

form various nanostructures [78]. Gold nanoelectrode ensembles were fabricated

using this technique [79]. In forming the ensembles, a microporous oxide layer was

first grown on an aluminum substrate. After the oxide layer was removed from the
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substrate to use it as a template, a gold layer was formed by vacuum-depositing gold

onto the open ends of the pores. The side of the substrate covered with gold was

attached to a glassy carbon electrode, and the other side of the porous oxide film

was etched. As a result, the gold nanoelectrode ensemble was exposed.

Porous polycarbonate membranes have also been used as templates to form disk

electrode ensembles of platinum [80] and gold [81]. The membranes were formed

by an irradiation/chemical etch technique. In forming the ensemble of platinum

electrodes, the membrane was fixed on a platinum electrode and platinum was

deposited in the pores. After the pores were stuffed with platinum and the mem-

brane surface was covered with overgrown platinum, the membrane surface was

exposed again by removing the excess platinum [80]. The gold disk electrode

ensembles were fabricated by depositing gold on the walls of nanopores by elec-

troless deposition and following the same procedure [81]. With this technique,

three-dimensional nanoelectrode ensembles can also be formed by partially or

totally removing carbonate by dissolving it in an appropriate solvent such as

dichloromethane [81] or by oxygen plasma etching [82].

3.6 Other Techniques

Nanoelectrode ensembles can be formed by opening up nanoholes in an insulating

layer formed on an electrode. Defects in a self-assembled monolayer formed on a

gold electrode work as nanoelectrode ensembles [83–85].

Like many other techniques to fabricate nanoelectrode ensembles, a problem is

the control of pore size and distribution over the electrode surface. To solve this

problem, the insulating film was formed with a highly ordered self-assembling

block copolymer film [86]. The film is formed by spin-coating a polystylene (PS)/

PMMA diblock copolymer solution onto a gold electrode. The dried film is then

annealed in the presence of a strong electric field to orient the PMMA perpendicu-

larly to the electrode surface. Exposure to UV radiation simultaneously cross-links

Fig. 13 Fabrication of a nanoelectrode array using vertically grown low-density CNTs.

(a) Electrochemical deposition of Ni nanoparticles. (b) Growth of CNTs by plasma-enhanced

chemical vapor deposition on the Ni particles. (c) Coating the surface with an adhesive.

(d) Polishing of the adhesive layer. Adapted with permission from [74]. Copyright 2003 American

Chemical Society
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the PS and degrades the PMMA. The PMMA is finally dissolved in glacial acetic

acid to form the pores.

Nanoelectrode ensembles can also be formed on a planar electrode even without

an insulating layer. The overpotential to oxidize or reduce an electroactive analyte

depends on the electrode material. Therefore, if nanoscale deposits of a metal that

are active to an analyte are formed on a planar electrode of a different metal that is

inactive to the analyte, the deposits work as a nanoelectrode ensemble. Platinum

black particles were deposited on a gold electrode to form a nanoelectrode ensem-

ble of platinum black. A significant enhancement of sensitivity to H2O2 was

observed compared with the planar gold electrode used as the base electrode [15].

4 Concluding Remarks

In this chapter, techniques to improve the detection sensitivity of electrochemical

microdevices were reviewed. Here, a convincing conclusion is that nanotechnology

really has an effect for this purpose. Reflecting the fact and growing expectations,

various nanomaterials such as nanotubes, nanowires, and nanoparticles have been

used very actively. As a result, numerous papers have been published and the

tendency continues even now [87–90]. At present, the application of nanotechnol-

ogy to electrochemical microdevices is limited. However, with the wealth of

knowledge of nanotechnology, devices whose performance is comparable with or

better than those of macroscopic counterparts used for ordinary electroanalysis will

surely be realized.
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