
Assembly of protein complexes in plastids 

Eira Kanervo, Marjaana Suorsa, and Eva-Mari Aro 

Abstract 

Photosynthetic multiprotein complexes in plants and cyanobacteria are mainly re-
sponsible for the function of the oxygenic photosynthesis. Great progress has re-
cently been made in resolving the structures of these complexes, most of which 
are now known at 2 to 4Å resolution. Compared to these achievements, amazingly 
little is known about the biogenesis, maintenance, and stability of these macromo-
lecular photosynthetic complexes. So far, the sequential assembly of the Photosys-
tem II subunits is best characterized, yet the ligation of redox co-factors and other 
pigments still remain only poorly understood. There seems to be a general CES 
control of translation of the key chloroplast-encoded subunits of all thylakoid pro-
tein complexes thus ensuring a coordinated synthesis and assembly of the chloro-
plast- and nucleus-encoded subunits. Some light has also recently been shed on 
the function and abundance of the auxiliary proteins necessary for the transloca-
tion of the nucleus-encoded proteins into chloroplasts and for facilitating the as-
sembly processes of the macromolecular photosynthetic protein complexes. 

1 Introduction 

Photosynthetic membrane protein complexes comprise the marvelous machinery 
that provides energy for all living forms on Earth. During the past few years the 
knowledge on the 3D structure of the photosynthetic protein complexes has ad-
vanced tremendously. Photosystem II (PSII) and Photosystem I (PSI) structures 
have been resolved to nearly atomic resolution, and in addition to the protein sub-
units, the coordinates for different ligands and co-factors are largely known (for 
PSII, see Zouni et al. 2001; Ferreira et al. 2004; Loll et al. 2005; for PSI see Ben-
Shem et al. 2003). Similarly, the structure of the cytochrome b6 f (Cyt b6 f) com-
plex was resolved both from the green alga Chlamydomonas reinhardtii (Stroebel 
et al. 2003) and cyanobacteria (Kurisu et al. 2003) as well as the structure of the 
ATP synthase (Seelert et al. 2000). It is a big challenge now to clarify the mecha-
nisms, how these multisubunit complexes are properly assembled in the thylakoid 
membrane. Most of the structural subunits of these multiprotein complexes have 
been identified by now, yet it is not exceptional that new subunits are still recog-
nized (e.g. Khrouchtchova et al. 2005). However, the assembly mechanisms of the 
subunits into the multiprotein complexes are far from being resolved, and we are 
only in the very beginning of understanding of the number and the functions of the 
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auxiliary proteins that finally guarantee the proper synthesis, assembly, and stabil-
ity of the protein subunits. Furthermore, the mechanisms of the ligation of differ-
ent co-factors to the multiprotein complexes still largely remain to be elucidated. 

In general, the synthesis and assembly of the main photosynthetic multiprotein 
complexes in plastids require concerted interactions between the nucleo-cytosolic 
and plastid genetic systems. These interactions occur mostly at the translational 
and posttranslational levels and are controlled by the nuclear-encoded regulatory 
factors (Rochaix 1996; Wollman et al. 1999). A common feature in the assembly 
of the photosynthetic multiprotein complexes in chloroplasts seems to be an as-
sembly-dependent autoregulation of translation of the central chloroplast-encoded 
subunits that makes the core of all thylakoid protein complexes. This phenomenon 
has been defined as a CES process - Control by Epistasy of Synthesis (Wollman et 
al. 1999; Choquet and Vallon 2000; Wostrikoff et al. 2004; Minai et al. 2006). In 
the CES process, the translation of a CES protein is dependent on the presence of 
a specific dominant protein (or protein sub-complex) thus representing a protein-
assembly-mediated autoregulation of translation. Furthermore, a strict quality con-
trol is constantly operating in chloroplasts to guarantee a proper stoichiometry of 
the protein subunits for efficient assembly of the complexes (Yamamoto 2001). 

Besides structural subunits, the photosynthetic membrane protein complexes 
PSI, PSII, and the Cyt b6 f complex contain pigments and co-factors that need to 
be ligated to the proteins during or after the assembly of the complexes, or even 
concomitantly with the translation process. Assembly of the protein subunits oc-
curs sequentially and may require the interaction with several soluble or mem-
brane-bound chaperones, or assembly factors.  

The distinct assembly steps of the multiprotein complexes in plastids are not 
properly known yet. PSII and the Cyt b6 f complex are by far the protein com-
plexes whose biogenesis and assembly have been studied in greatest detail, par-
ticularly of PSII, since it is the major target for the photo-destructive processes. 
Experimental evidence exists on several individual assembly steps of PSII with 
distinct sub-complexes, the processes, which will be reviewed in the following. In 
addition, the assembly of PSI and Cyt b6 f are shortly reviewed, as well as the as-
sembly of Rubisco and ferredoxin:thioredoxin reductase (FTR) as examples of the 
soluble plastid complexes. Focus will be put especially on the assembly of the pro-
tein subunits, since our knowledge on the mechanisms of co-factor ligation into 
the complexes still remains poor. Furthermore, a short survey is presented on post-
translational modifications of plastid proteins that affect the turnover and assem-
bly/disassembly of the protein subunits in the thylakoid membrane complexes. 

2 Assembly of the protein complexes 

2.1 Assembly of PSII 

The PSII complex contains 29 different subunits, from which 15 are plastid-
encoded (PsbA-PsbF, PsbH-PsbN, PsbTc, and PsbZ), the rest of them being nu-
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cleus-encoded (for a review see van Wijk 2001; Rochaix 2006). The nucleus-
encoded PSII proteins are synthesized on cytoplasmic ribosomes as precursor pro-
teins, which contain an N-terminal transit peptide for plastid targeting and for de-
termining the destination of the protein inside the chloroplast. The nucleus-
encoded PSII proteins include proteins, such as PsbR, PsbW, and PsbY, three 
oxygen- evolving complex (OEC) proteins (PsbO, PsbP, and PsbQ), six Lhcb pro-
teins (Lhcb1-6), and PsbS, which also belongs to the Lhcb family of proteins. The 
plastid-encoded PSII proteins are mainly integral membrane proteins, which are 
synthesized on thylakoid-bound ribosomes. Of these proteins particularly the reac-
tion center protein D1 has been shown to be co-translationally inserted into the 
thylakoid membrane. Likewise, the assembly of the D1 protein to PSII during the 
repair process of photodamaged PSII centers was shown to occur co-
translationally (Klein et al. 1988; Keegstra and Cline 1999; Zhang et al. 1999).  

From the methodological point of view, the characterization of gene interrup-
tion or knockout mutants and the studies on plastid development from etioplast to 
chloroplast have been used to get insights into the assembly order of the protein 
subunits to PSII. Furthermore, isolated, intact chloroplasts have been subjected to 
the approaches, such as pulse and chase experiments followed by subfractionation 
of the various PSII subassemblies by sucrose density centrifugation (van Wijk et 
al. 1995; Müller and Eichacker 1999; Zhang et al. 1999). However, these latter 
experiments could only reveal the assembly of the major chloroplast-encoded PSII 
proteins D1, D2, CP43, and CP47, but failed to reveal the synthesis and assembly 
of the low-molecular-mass (LMM) subunits and the nucleus-encoded subunits.  

A more thorough insight into the assembly steps of PSII proteins was received 
recently using different chromatographic methods and the two-dimensional blue 
native (BN)/SDS-PAGE system for separation of both the in vitro and in vivo la-
beled and assembled thylakoid proteins and protein complexes (e.g. Rokka et al. 
2005; Nowaczyk et al. 2006). For resolving the mechanisms of assembly-
dependent autoregulation of translation, an approach of chimeric gene constructs 
and their expression under the control of 5´UTRs of the genes of interest have 
been employed (Minai et al. 2006). Moreover, research on the light-induced turn-
over of the PSII complex has provided information that has also been applied for 
the research on the assembly process of a new PSII center. 

2.1.1. Assembly of the PSII core monomers and dimers 

The prerequisite for PSII assembly is the presence of α- and β- subunits of cyto-
chrome b559 (Cyt b559), which accumulate in the thylakoid membrane even in the 
absence of other PSII subunits (Morais et al. 1998; Müller and Eichacker 1999). 
Cyt b559 interacts with the D2 protein to form an initial complex that further serves 
as a receptor for the co-translational assembly of the D1 protein (Komenda et al. 
2004) (Fig. 1). Indeed, evidence was recently provided indicating that the transla-
tion of D1 (a CES subunit) is strongly decreased in the absence of D2 (Minai et al. 
2006). Also light is required for an efficient translation elongation and accumula-
tion of the D1 protein, most probably due to the requirement of light for the syn-
thesis of the  pigment and  other  co-factor  molecules that  are ligated  to the PSII 



286   Eira Kanervo, Marjaana Suorsa, and Eva-Mari Aro 

 
Fig. 1. Hypothetical scheme of the sequential protein assembly during biogenesis of the 
PSII complexes. Note that a hierarchical CES control is functioning for the translation of 
the D1 and CP47 proteins. So far, no data has been published on the assembly order of the 
PsbN and PsbY proteins, or PsbS. 

complex concomitantly with the assembly process (Kim et al.1991; van Wijk and 
Eichacker 1996; Edhofer et al. 1998). Rapidly after the termination of translation, 
the D1 protein undergoes C-terminal processing (Diner et al. 1988; Bowyer et al. 
1992) by the carboxyl-terminal processing protease CtpA that functions exclu-
sively in the processing of the D1 protein in the thylakoid lumen (Anbudurai et al. 
1994; Oelmüller et al. 1996). 
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The assembly of the D1 protein to the Cyt b559/D2 subcomplex is followed by 
the association of the CP47 protein (Sharma et al. 1997; Müller and Eichacker 
1999; Tsiotis et al. 1999; Zhang et al. 1999; Szabò et al. 2001; Rokka et al. 2005). 
In fact, the presence of D1 is a prerequisite for the high-level translation of the 
core antenna subunit CP47. The biogenesis of PSII thus involves a CES cascade 
where translation of D1 is dependent on the presence of D2 and the translation of 
CP47, in turn, is dependent on the presence of D1 (Minai et al. 2006). After the 
assembly of CP47, the LMM subunits PsbH, PsbL, PsbM, PsbTc, PsbR, and also 
PsbJ associate with the growing PSII subcomplex (Suorsa et al. 2004; Rokka et al. 
2005). These LMM subunits are thought to stabilize the D1/D2/Cyt b559/CP47 
subassembly of PSII. The subunits PsbL, PsbM, and PsbT are located in the 
monomer-monomer interphase (Loll et al. 2005) and therefore are also crucial for 
the dimerization of PSII, whereas PsbR and PsbJ have been shown to be essential 
for the stable assembly of the OEC (see below). In cyanobacteria, the PsbH pro-
tein was found to be associated with CP47 and to be important for the prompt in-
corporation of the newly-synthesized D1 protein to the PSII complex (Komenda et 
al. 2005). 

The subsequent assembly steps involve the association of the core antenna pro-
tein CP43 and the LMM subunit PsbK (Suorsa et al. 2004; Rokka et al. 2005) 
(Fig. 1). PsbK is tightly bound to CP43, and the assembly of PsbK was shown to 
occur only in the presence of CP43 (Sugimoto and Takahashi 2003). Furthermore, 
PsbK was postulated to be required for the PSII core dimerization (Zheleva et al. 
1998). Due to the location of PsbK in the periphery of the dimer complex (Loll et 
al. 2005), this interpretation, however, needs further examination. The PsbI sub-
unit, which was earlier reported to be a component of the PSII reaction center 
complex, was recently assigned to have a role in the PSII dimerization (Schwen-
kert et al. 2006). It is natural that the LMM subunits in the monomer/monomer in-
terphase are crucial for dimerization. Such a role was recently experimentally 
proven for PsbL, which was likewise shown to be required for the stable associa-
tion of CP43 (Suorsa et al. 2004).  

The PsbZ protein, as well as the nuclear-encoded PsbW, are probably the last 
subunits that assemble to the PSII core and thereby facilitate the assembly of the 
minor LHCII proteins (Swiatek et al. 2001), which, in turn, are required for bind-
ing of the trimers of the light-harvesting antenna complex (LHCII) to the PSII 
core dimer (Shi et al. 2000; Rokka et al. 2005). Furthermore, chlorophyll (Chl) a 
synthesis enhances the accumulation and stability of monomers and, subsequently, 
the dimerization of the PSII core monomers (Müller and Eichacker 1999). 

Light and Chl biosynthesis are essential for the synthesis and stability of the 
core antenna proteins CP43 and CP47 (van Wijk and Eichacker 1996). In addition 
to light and the availability of chlorophyll and various assembly partners, the regu-
lation of synthesis and assembly of the PSII complex involves the presence of a 
variety of other factors, such as pheophytin, β-carotene, Fe, Mn, and plas-
toquinone. However, pigments are not always needed for the core protein accumu-
lation; for example, in etioplasts, isolated from dark-grown barley seedlings, a 
PSII pre-complex has been found to exist, consisting of Cyt b559, the D2 protein 
and the precursor form of the D1 protein (Müller and Eichacker 1999).  
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Only a few assembly factors important for the biogenesis of the PSII core com-
plex have been identified so far (Table 1). A molecular chaperone HCF136 in the 
thylakoid lumen was first characterized with a selective role in the assembly of 
only the PSII reaction center complex (Meurer et al. 1998; Plucken et al. 2002) 
(Table 1), yet the specific molecular interactions in assisting the assembly process 
still remain unknown. More recently, an LPA1 (low PSII accumulation1) protein 
was identified in Arabidopsis and shown to be an integral membrane chaperone 
essential for the maintenance and assembly of the PSII core complex, probably 
through a direct interaction with the PSII reaction center protein D1 (Peng et al. 
2006). Yet another membrane-localized protein HCF107, a component of a multi-
subunit complex, has been shown to be crucial for the assembly of PSII, affecting 
particularly the expression of the psbH gene in Arabidopsis (Sane et al. 2005). 

HCF107, HCF136, and LPA1 probably represent only the first examples of the 
growing number of assembly factors, or molecular chaperones, facilitating the 
biogenesis of the PSII core complexes. Additional assembly factors are likely to 
be discovered in the near future by advanced proteomic and reverse genetics ap-
proaches. For example, some member(s) of the Alb3 family are likely to have 
such functions (see Section 3.2.)  

2.1.2 Assembly of the proteins of the oxygen evolving complex 

The OEC complex of higher plant PSII contains three extrinsic, nucleus-encoded 
subunits, PsbO (OEC33), PsbP (OEC23), and PsbQ (OEC16). The OEC complex 
is attached to the lumenal side of PSII and protects the CaMn4 cluster bound to the 
D1 and CP43 proteins (Ferreira et al. 2004). Contrary to the membrane-embedded 
PSII core polypeptides that are subject to rapid proteolytic degradation when not 
assembled, a pool of free, assembly-competent OEC proteins has been shown to 
exist in the thylakoid lumen (Hashimoto et al. 1996, 1997).  

One clear requirement for the assembly of OEC to the luminal side of PSII is 
the C-terminal processing of the precursor D1 protein. It has been demonstrated 
that the CP43 protein is stably assembled only if the D1 protein has undergone 
maturation via C-terminal processing (Zhang et al. 2000). Coordination of the C-
terminal processing and the assembly of CP43 may thus be essential for stable 
ligation of the CaMn4-cluster to the PSII core (Roose and Pakrasi 2004) and for 
the subsequent photoactivation of the oxygen evolving complex.  

Assembly of the PsbO protein of OEC to the PSII core complex occurs in the 
stroma-exposed thylakoid membranes whereas the PsbP and PsbQ proteins have 
been found to associate with PSII in the grana thylakoids (Hashimoto et al. 1997). 
It was believed for a long time that the PsbO protein is the only OEC protein that 
directly binds to the PSII core on the lumenal side of the thylakoid membrane, and 
thereby provides a docking site for PsbP, which in turn binds the PsbQ protein 
(e.g. Miyao and Murata 1989). This model has, however, been recently challenged 
and evidence is accumulating supporting the concept that either all the three OEC 
proteins are independently bound to PSII, or only PsbO and PsbP are independ-
ently bound to PSII and one, or both, of them provide a docking site for PsbQ.  
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Table 1. Assembly factors, chaperones and translocator components involved in the assem-
bly of thylakoid protein complexes. 

Factor or chaperone  
(or nuclear locus) 

function reference 

Assembly factors, chaper-
ones 

  

HCF136 PSII assembly Meurer et al. 1998; Plucken et al. 
2002 

HCF107 PSII assembly Sane et al. 2005 
LPA1 PSII assembly Peng et al. 2006 
TLP40 PSII assembly Fulgosi et al. 1998 
Alb3.1 PSII assembly Ossenbühl et al. 2004 
Alb3.2 PSII and PSI assem-

bly 
Gerdes et al. 2006; Göhre et al. 
2006 

Alb4 PSII assembly Gerdes et al. 2006; Göhre et al. 
2006 

Slr1471p PSII assembly 
(cyano) 

Ossenbühl et al. 2006 

Psb27 PSII/OEC assembly   Chen et al. 2006; Nowaczyk et al. 
2006 

Psb29 PSII/OEC assembly Keren et al. 2005 
Ycf3, Ycf4 PSI assembly Boudreau et al. 1997; Naver et al. 

2001 
Ycf37 PSI assembly (cyano) Wilde et al. 2001 
BtpA PSI assembly (cyano) Bartsevich and Pakrasi 1997 
  Zak and Pakrasi 2000 
PYG7 PSI assembly Stöckel et al. 2006 
HCF145 PSI assembly Lezhneva and Meurer 2004 
HCF101 PSI and FTR 

assembly 
Stöckel and Oelmüller 2004 

APO1 PSI and FTR 
assembly 

Amann et al. 2004 

RubA PSI assembly (cyano) Shen et al. 2002a, 2002b 
HCF164 Cyt b6 f assembly Lennartz et al. 2001 
HCF153 Cyt b6 f assembly Lennartz et al. 2006 
CCDA  Cyt b6 f assembly Page et al. 2004 
CCSA (Ycf5) Cyt b6 assembly Xie and Merchant 1996; Hamel et 

al. 2003 
CCS1-4 Cyt b6 f assembly Inoue et al. 1997; van Wijk 2001 
CCB1-4 Cyt b6 f assembly Kuras et al. 1997; van Wijk 2001 
HSP70  Cyt b6 f assembly Madueno et al. 1993 
HSP70B PSII stability and 

turnover; Rubisco as-
sembly 

Schroda et al. 2001; 
Yokthongwattana et al. 2001; 
Brutnell et al. 1999 

BSD2 Rubisco assembly Brutnell et al. 1999 
Hsp100/ClpC1 PSI, PSII biogenesis Sjögren et al. 2004 
DnaJ Rubisco assembly Hartl 1996; Schlicher and Soll 

1997 
GrpE Rubisco assembly Hartl 1996; Schlicher and Soll 

1997 
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Factor or chaperone  
(or nuclear locus) 

function reference 

Cpn60 Rubisco and Cyt b6 f 
assembly 

Gatenby and Ellis 1990; Madueno 
et al. 1993 

Cpn21 Rubisco assembly Gatenby and Ellis 1990; Madueno 
et al. 1993 

cpSRP54 Lhcb-protein assem-
bly 

Tu et al. 1999; Woolhead et al. 
2001 

cpSRP43 Lhcb-protein 
assembly 

Tu et al. 1999; Woolhead et al. 
2001 

Translocator components   
Hcf106  TAT-translocation Settles et al. 1997; Mori et al. 2001 
Tha4 TAT-translocation Mori et al. 2001 
cpTatC  TAT-translocation Mori et al. 2001 
cpSecY; SecE, SecA Plastocyanin, PsbO Schuenemann et al. 1999 
cyano = cyanobacteria 

 
The PsbO protein attaches to the lumenal loops of the D2 and CP47 core pro-

teins (Nield et al. 2000) and also requires the presence of CP43 for the stable as-
sembly (Suorsa et al. 2004). For PsbP association, it was recently shown using re-
verse genetics approaches that the presence of the LMM protein PsbJ is an 
absolute requirement (Hager et al. 2002; Suorsa et al. 2004). This requirement, 
however, may be only indirect and result from the fact that another PSII protein, 
PsbR, is also missing from the PsbJ mutant thylakoids (Suorsa et al. 2006). In-
deed, the PsbR protein was shown to be important for the structure and function of 
the OEC complex. It was demonstrated that the absence of PsbR results in a re-
duction of the PsbP and PsbQ proteins as well as a reduction in the light-saturated 
rate of oxygen evolution (Suorsa et al. 2006; Allahverdiyeva et al. 2007). These 
results provide evidence that PsbR is an important component in the PSII core 
complex, especially for the stable assembly of the PsbP protein. The third OEC 
protein, PsbQ, was found to be completely missing from a tobacco mutant lacking 
the PsbP protein (Ifuku et al. 2005) suggesting that the PsbP protein provides a 
docking site for the PsbQ protein (for further discussion see Suorsa and Aro, 
2007). Two other PSII proteins, encoded by a single nuclear gene psbY (Gau et al. 
1998), are also important for water oxidation (Neufeld et al. 2004) and possibly 
play a similar role as PsbR by stabilizing the association of the OEC proteins to 
the PSII core dimer.  

Recent proteomic studies have revealed the existence of novel proteins in sub-
stoichiometric amounts in various purified PSII preparations (Kashino et al. 2002). 
Of these proteins, Psb29 was shown important for the assembly of PSII (Keren et 
al. 2005) but Psb27 was particularly assigned a role in the assembly of the OEC 
proteins to the PSII core (Roose and Pakrasi 2004). Psb27 protein seems to bind to 
the PSII core monomer prior to the assembly of the OEC proteins (Nowaczyk et 
al. 2006). Studies with the Psb27 mutant also revealed an impaired repair of the 
PSII centers after photoinhibition, providing evidence that the Psb27 protein pos-
sibly facilitates the assembly of OEC to the PSII core (Chen et al. 2006). 
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2.1.3 Assembly of the PSII-LHCII supercomplexes 

The functional PSII complexes of higher plants exist as PSII-LHCII (light-
harvesting chlorophyll-protein complex II) supercomplexes in the grana appres-
sions. Of the LMM proteins of PSII, particularly the PsbZ (and PsbW) protein has 
been reported to be essential for the stable assembly of the PSII-LHCII supercom-
plexes (Swiatek et al. 2001; Rokka et al. 2005). This chloroplast-encoded protein 
is located in the periphery of the PSII core dimer, in a close vicinity to CP43. 
Overlay of the X-ray structures of spinach LHCII and the cyanobacterial PSII core 
onto the projection map of the cryo-EM 3D structure of the isolated PSII-LHCII 
supercomplexes of spinach revealed a close vicinity of PsbZ to CP26 (Lhcb5) 
(Loll et al. 2005). It remains to be elucidated whether the nucleus-encoded PsbW 
protein is located in the similar vicinity to the CP47 and CP29 (Lhcb4) proteins. 
Upon formation of the PSII-LHCII supercomplex, the CP29 and CP26 proteins at-
tach the LHCII trimers, consisting of the Lhcb1 and Lhcb2 proteins, to the core 
dimers (Boekema et al. 1999). Furthermore, CP24 (Lhcb6) together with CP29 
and CP26 most probably bind additional trimers (composed of Lhcb1-3) in the pe-
riphery of the PSII-LHCII supercomplex. The LHCII trimers are bound to the PSII 
dimer either strongly (S), moderately (M), or loosely (L) (Dekker and Boekema 
2005). Recently, it was shown that the CP24 (Lhcb6)-deficient plants displayed a 
major change in the macro-organization of the PSII-LHCII supercomplexes in the 
grana (Kovacs et al. 2006). It was concluded that CP24 provides the linker for as-
sociation of the M-trimer into the PSII complex, thereby allowing a specific 
macro-organization necessary for optimal function of PSII. 

It is intriguing to note that the OEC proteins possibly also have specific roles in 
the structural integrity of the PSII-LHCII supercomplexes and their macro-
organization in the grana (Dekker and Boekema 2005). Electron microscopy and 
single particle analysis have revealed that the PSII-LHCII supercomplexes lacking 
the OEC proteins differ from the native PSII supercomplexes (Boekema et al. 
2000). It was concluded that the OEC proteins are needed to keep the CP29 and S-
LHCII trimers at a correct distance from the PSII core in order to optimize the mi-
gration of excitation energy to the PSII core. 

The Alb3 protein has been assigned an important role in the membrane inser-
tion and assembly of the Lhcb proteins (see below more about Alb3). So far, how-
ever, no specific assembly factors have been detected to be involved in the asso-
ciation of the light-harvesting apparatus to the PSII core dimer, i.e., in the 
formation of the PSII-LHCII supercomplexes and their macro-organizations in the 
grana.  

2.1.4 Reassembly of the PSII complexes during the photoinhibition 
repair cycle 

The PSII complex performs a unique task in splitting water molecules to oxygen 
and hydrogen (protons). Such oxidizing electron transfer reactions of PSII in an 
atmosphere containing oxygen readily result in the formation of highly reactive 
radicals that are potentially harmful to the proteins and induce imbalance during 
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the linear electron transfer process. Situation like this may lead to photoinactiva-
tion and photodamage of PSII, when the PSII complex is unable to transfer elec-
trons and split water molecules. A constant repair of the photodamaged PSII com-
plexes is required for the maintenance of a sufficient level of active PSII 
complexes for photosynthesis. The efficiency of repair is dependent on the envi-
ronmental conditions, stress factors such as high light or low temperature, impair-
ing the efficiency of the repair process. As far as the repair process is in balance 
with the rate of photodamage, nonfunctional PSII complexes do not accumulate 
and a measurable decrease in the rate of total photosynthesis is not detected. An 
extensive literature has been published on the mechanisms of the PSII photoinac-
tivation and damage to the D1 protein (for a review see Melis 1999; Prasil et al. 
1992; Aro et al. 1993; Chow and Aro 2005) and therefore these subjects are not 
considered here in more detail. 

At the protein level, most often only the D1 protein is the target for the light-
induced damage, but occasionally also the D2 and PsbH proteins become damaged 
and require replacement during the repair cycle (Schuster et al.1988; Bergantino et 
al. 2003; Rokka et al. 2005). However, only the repair steps concerning the re-
placement of the D1 protein are considered here. It is also worth noting that the 
CES process seems to play no role in the recovery from photoinhibition (Minai et 
al. 2006). 

In the beginning of the repair, the LHCII antenna dissociates from the dimer 
and monomerization of PSII occurs. Damaged PSII monomers then migrate from 
the grana to the stroma-exposed membranes, where a contact with the components 
required in degradation and synthesis of the D1 protein are available. OEC disso-
ciates from PSII and a partial disassembly of the PSII core proteins takes place. 
The stages from photodamage to degradation of the D1 protein are regulated by 
phosphorylation-dephosphorylation events of the core proteins (Koivuniemi et al. 
1995; Rintamäki et al. 1996) (see below). The D1 protein is degraded proteolyti-
cally, proteases from the DegP and FtsH families known to act on the process (for 
a review see, for example, Adam et al. 2005; Sakamoto 2006). The closest partner 
of the D1 protein, D2, remains most often intact in the repair process. In the syn-
thesis of the new D1 protein, the nascent D1 protein is co-translationally inserted 
into the thylakoid membrane where the D2 and Cyt b559 act as the first assembly 
partners. In fact, it was demonstrated that not only the insertion into the membrane 
but also the assembly of the D1 protein into the PSII complex, composed of Cyt 
b559, D2 and possibly also of CP47 and several LMM subunits, occur co-
translationally during the repair process (Zhang et al. 1999, 2000; Rokka et al. 
2005). Re-synthesis of the assembly partner subunits is not needed, since they are 
already present in the existing PSII centers under repair.  

After maturation of the D1 protein, the reassembly of the internal core antenna 
protein CP43 occurs. CP43, residing next to the D1 protein, is always dissociated 
from PSII upon the repair process. Before the OEC proteins can re-associate, also 
most of the LMM subunits have to be assembled to the PSII complex. Finally, the 
properly assembled, repaired PSII monomer migrates back to the grana thylakoids, 
where PSII core dimerization and reactivation, with the association of the LHCII 
antenna proteins, take place. These last assembly steps thus accomplish the PSII 



Assembly of protein complexes in plastids   293 

photoinhibition repair cycle providing active PSII-LHCII supercomplexes for pho-
tosynthesis. 

2.2 Assembly of the PSI complex  

The assembly of the PSI complex is rather poorly known due to a difficulty in iso-
lation of various PSI subcomplexes and also to a very slow turnover rate of the 
PSI complexes, which results in a technical difficulty to accumulate radiolabeled 
amino acids into newly synthesized PSI subunits. In higher plants, the PSI core 
complex is composed of 14 subunits (PsaA to PsaL, PsaN, and PsaO), of which 
PsaA, PsaB, PsaC, PsaI, and PsaJ are plastid-encoded (Jensen et al. 2003; Ben-
Shem et al. 2003). A novel subunit of PSI, the previously found phosphoprotein 
TMP14 (Hansson and Vener 2003) was recently identified in Arabidopsis 
(Khrouchtchova et al. 2005). This protein, designated as PSI-P, was suggested to 
locate in the proximity of PsaL, PsaH, and PsaO subunits, on the opposite side to 
the location of the LHCI antenna. Furthermore, the PSI-G subunit has been found 
to be bound to PsaB and to be in contact with Lhca1 (Zygadlo et al. 2006). The 
PSI peripheral antenna is arranged around one side of the PSI core and is com-
posed of four different nuclear-encoded Lhca polypeptides (Lhca1-4) in higher 
plants. In addition, the fifth Lhca protein, which shows a different mode of regula-
tion as compared to the other Lhca proteins, and which is present at sub-
stoichiometric amounts under standard conditions, has recently been characterized 
(Ganeteg et al. 2004).  

A key step in the assembly of the PSI complex is the coordinate synthesis and 
assembly of its two chloroplast-encoded core polypeptides, PsaB and PsaA, that 
form, together with ca 100 Chl a molecules and several redox ligands, the main 
part of the reaction center complex (for a review see Rochaix 2006). In Chlamy-
domonas, the accumulation of PsaB was shown to be required for synthesis of the 
PsaA subunit that, in turn, is needed for synthesis of the PsaC subunit (Wostrikoff 
et al. 2004) on the stromal side of the membrane. All these three subunits, PsaA, 
PsaB, and PsaC, are required for stable accumulation of the PSI core complex. 
The rate of production of PsaB is the controlling stage in order to determine the 
stoichiometric expression of all subunits of the PSI core complex. There is thus a 
clear CES hierarchy in the sequence of polypeptide assembly during PSI biogene-
sis (Wostrikoff et al. 2004). Whether the other chloroplast-encoded PSI subunits 
PsaI and PsaJ are also CES proteins remains unknown. PsaC then coordinates the 
stable assembly of PsaD and PsaE, both on the stromal side of PSI (Yu et al. 
1995).  

Some assembly factors have been assigned a role particularly in the biogenesis 
of the PSI complexes (Table 1). These include the plastid-encoded Ycf3 and Ycf4 
factors (Boudreau et al. 1997). Ycf3 has been found to interact directly with PsaA 
and PsaD, but not with the subunits of other photosynthetic complexes (Naver et 
al. 2001). When Ycf3 and Ycf4 were missing in the deletion mutans of Chlamy-
domonas, no stable assembly of PSI occurred, even though the PsaA, PsaB, and 
PsaC transcripts accumulated (Boudreau et al. 1997). In cyanobacteria, the lack of 
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the Ycf37 protein caused a decrease in photosynthetic activity and lowered levels 
of the PSI complexes, yet the mutant cells were capable of photoautorophic 
growth (Wilde et al. 2001). Recently, the role of a higher plant homolog for 
Ycf37, PYG7 was characterized in Arabidopsis (Stöckel et al. 2006). The plants 
lacking PYG7 were unable for photoautorophic growth and did not accumulate 
PSI complexes. However, the PSI subunits were synthesized in the mutants, indi-
cating that the lack of the PSI complexes is due to accelerated degradation of the 
unassembled subunits (Stöckel et al. 2006). The lack of the HCF145 protein, on 
the other hand, caused dramatically decreased amounts of the PSI subunits as well, 
but the protein was shown to function at the mRNA level, by stabilizing the psaA-
psaB-rps14 operon (Lezhneva and Meurer 2004). In cyanobacteria, the BtpA pro-
tein has been shown to posttranscriptionally affect the accumulation of PSI (Bart-
sevich and Pakrasi 1997), especially under low temperature (Zak and Pakrasi 
2000). 

The correct assembly of the iron-sulphur clusters has been found to be essential 
for the accumulation of the PSI and Cyt b6f complexes, and some proteins needed 
for the (general) assembly of Fe-S clusters have already been identified (Touraine 
et al. 2004; Yabe et al. 2004). PSI has three iron sulphur centers of type [4Fe-4S], 
one of which (Fx) is associated with the PsaA/B heterodimer and the two others 
(FA and FB) with PsaC. The evolutionarily conserved HCF101 protein, found to be 
essential for the accumulation of PSI (Stöckel and Oelmüller 2004), has been 
shown to function particularly in the assembly of the [4Fe-4S] clusters (Lezhneva 
et al. 2004). Also the APO1 protein, which is specific for vascular plants, is 
needed for accumulation of PSI via assembly of the [4Fe-4S] clusters (Amann et 
al. 2004). APO1-mediated function, however, occurs at a different stage or 
through a different mechanism than that os HCF101, since the phenotypes, some 
functional characteristics, chloroplast ultrastructure and the levels of the PSI an-
tenna proteins differ between the apo1 and hcf101 mutants (Lezhneva et al. 2004; 
Amann et al. 2004). Nevertheless, the role of both HCF101 and APO1 in the as-
sembly of PSI is specific for the [4Fe-4S] clusters, since both the hcf101 and apo1 
mutants also exhibited lowered levels of the ferrodoxin-thioredoxin reductase con-
taining [4Fe-4S] clusters (Amann et al. 2004; Lezhneva et al. 2004). Moreover, 
the apo1 mutant also had reduced amounts of the NAD(P)H dehydrogenase 
(NDH) complexes, which likewise harbor[4Fe-4S] clusters (Amann et al. 2004). 
The specificity of HCF101 and APO1 for [4Fe-4S] clusters is corroborated by the 
fact that ferredoxin, which contains a [2Fe-2S] cluster, was present at normal lev-
els in both the hcf101 and apo1 mutants (Amann et al. 2004; Lezhneva et al. 
2004). In cyanobacteria, a rubredoxin protein RubA has been shown to be needed 
for the assembly of the Fx [4Fe-4S] cluster (Shen et al. 2002a), and the rubA inac-
tivation mutant had significantly lower amounts of PSI, and was not capable of 
photoautotrophic growth (Shen et al. 2002b). 
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2.3 Assembly of the Cyt b6 f complex   

The Cyt b6 f complex is a dimer, with one monomer composed of eight subunits, 
from which six subunits are plastid-encoded (PetA, Pet B, Pet D, PetG, PetL, and 
PetN) and two nuclear-encoded (PetC and PetM). The three-dimensional structure 
of the Cyt b6 f complex was resolved recently both from cyanobacteria (Kurisu et 
al. 2003) and Chlamydomonas (Stroebel et al. 2003). The Cyt b6 f complex is also 
the thylakoid protein complex, in which the CES control of the synthesis of the 
chloroplast-encoded proteins was first demonstrated (Choquet et al. 1998), yet the 
precise molecular mechanisms of the CES processes in chloroplasts remain to be 
elucidated.  

Cytochrome f (Cyt f, PetA) is a CES protein because its rate of synthesis is 
regulated by the availability of its assembly partners, which are the chloroplast-
encoded cytochrome b6 (PetB) and the subunit IV (SU IV, PetD). In the absence 
of these assembly partners (or dominant subunits, Cyt b6 and SU IV), the synthesis 
of Cyt f decreases tenfold (Kuras and Wollman 1994). The C-terminal region of 
Cyt f is important for the assembly into the complex (Mould et al. 2001). More re-
cently, it was shown that Cyt f translation is autoregulated by its C-terminal do-
main and that this CES process for Cyt f expression most likely requires an inter-
action with the membrane-bound translational activator (Choquet et al. 2003).  

One of the major Cyt b6 f subunits, the nucleus-encoded Rieske iron-sulphur 
protein (PetC) is synthesized in cytosol as a 26 kDa precursor and subsequently 
transported to the plastid. It is processed in the stroma to the mature 20 kDa pro-
tein, found to be associated with the chaperones Cpn60 and Hsp70 in the stroma 
and targeted to the thylakoid membrane where it is assembled into the Cyt b6 f 
complex (Madueno et al. 1993). For the assembly, it has been found that the pres-
ence of the Rieske [2Fe-2S] cluster, the glycine-rich region or the conserved C-
terminal region is not required as a prerequisite (Kapazoglou et al. 2000). Interest-
ingly, the Rieske protein has also been assigned a role in the assembly-mediated 
control of the Cyt f synthesis, though the effect was lower than that observed in 
the absence of Cytb and SU IV (de Vitry et al. 2004). 

The function of the small subunits PetG, PetL (ycf7), PetM, and PetN (ycf6) of 
the Cyt b6 f complex is not yet known properly. However, it has been demon-
strated in cyanobacteria that inactivation of the petM gene did not affect the activ-
ity of the Cyt b6 f complex itself, but instead affected the stoichiometry of other 
protein complexes, suggesting that specific regulatory processes are mediated by 
the Cyt b6 f complex (Schneider et al. 2001). In the tobacco knockout mutant for 
the petN gene, on the contrary, the Cyt b6 f complex was totally absent, resulting in 
interruption in the electron transfer from PSII to PSI, these two latter complexes 
being, however, intact and physiologically active (Hager et al. 1999). 

At least two auxiliary proteins, HCF164 (Lennartz et al. 2001) and HCF153 
(Lennartz et al. 2006) have been identified that specifically regulate the accumula-
tion of the Cyt b6 f complexes in the thylakoid membrane (Table 1). Both proteins 
have been found to be tightly associated with the thylakoid membrane. HCF164 is 
a thioredoxin-like protein and was recently shown to be able to mediate reducing 
equivalents across the thylakoid membrane (Motohashi and Hisabori 2006). 
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Among the identified target proteins for HCF164 were Cyt f and the Rieske pro-
tein, indicating that the interaction between HCF164, Cyt f and the Rieske protein 
might be an important prerequisite for the assembly of the Cyt b6 f complex (Mo-
tohashi and Hisabori 2006). Moreover, the CCDA protein, which is a homolog for 
prokaryotic thiol disulfide transporter, might be a component of the HCF164-
dependent transthylakoid thioreduction pathway, and the lack of the CCDA pro-
tein caused defects in the accumulation of Cyt b6 f, and resulted in impaired photo-
synthesis (Page et al. 2004). The plastid-encoded CCSA protein (Xie and Mer-
chant 1996) and the nuclear-encoded CCS1-4 proteins are needed for the c-heme 
attachment (Inoue et al. 1997; Hamel et al. 2003). In addition, the nuclear-encoded 
CCB1-4 proteins are specific for binding heme to Cyt b6 (Kuras et al. 1997). For a 
review of the CCS and CCB proteins, see van Wijk (2001). 

2.4 Assembly of soluble complexes 

Increasing amount of research has recently been focused on the assembly of the 
thylakoid-membrane-embedded protein complexes (with the NDH complex as an 
exception) whereas the knowledge concerning the assembly of the chloroplast 
soluble complexes has not much advanced during the past few years. Here we 
briefly summarize the assembly processes of two stromal protein complexes, 
Rubisco and FTR.  

2.4.1 Rubisco 

In higher plants and green algae, Rubisco holoenzyme exists as a 600 kDa soluble 
complex of the L8S8 form. It thus consists of eight large subunits (LSU) of 55 
kDa encoded by the plastome rbcL gene and eight small subunits (SSU) of 15-18 
kDa encoded by the rbcS gene in the nucleus (Spreitzer 1993). Also in red algae, 
Rubisco is of the L8S8 form, but both subunits are plastome-encoded. 

During the assembly of LSU chains, the DnaK/DnaJ/GrpE chaperone complex 
has been found to associate to the chains in order to maintain them in an unfolded 
state (Hartl 1996). Also the BSD2 protein, having homology with the DnaJ pro-
teins, has been suggested to prevent the aggregation of the nascent LSU chains 
(Brutnell et al. 1999). The SSU precursors are processed during their entry into the 
plastid and are subsequently assembled. The Cpn60 and Cpn21 chaperonins assist 
in the assembly of the L8S8 holoenzyme (reviewed in Gatenby and Ellis 1990; 
Gutteridge and Gatenby 1995). The SSU assembly stabilizes the holoenzyme 
complex generating a fully active enzyme complex. In particular, the highly con-
served tyrosine residues at the beta A-beta B loop of the SSU were recently identi-
fied to play a stabilizing role for the holoenzyme (Esquivel et al. 2006). SSU as-
sembly controls LSU expression, but SSU does not have a direct effect on LSU 
translation. If the SSU expression is inhibited (antisense silencing in tobacco), 
Rubisco assembly is prevented and LSU synthesis is reduced (Rodermel et al. 
1996). The assembly of Rubisco has been shown to be sensitive to oxidative 
stress, and it was recently proposed that during oxidative stress, the RNA recogni-
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tion motif in the N-terminus of the LSU becomes exposed and binds any RNA 
molecule, which causes blocking of the translation and degradation of the un-
paired SSU (Cohen et al. 2005, 2006). Thus, in the absence of one subunit in the 
complex, synthesis of another subunit decreases that has also been detected in the 
assembly of other photosynthetic complexes in chloroplasts (Minai et al. 2006). 

2.4.2 Ferredoxin:thioredoxin reductase 

The stromal FTR is a heterodimer protein of 26 kDa, consisting of the catalytical β 
subunit with a [4Fe-4S] cluster and a variable α subunit. The primary structure of 
the catalytical subunit is highly conserved between different species, whereas the 
variable subunit of higher plants has a N-terminal tail. The catalytical β subunit 
stabilizes the α subunit, since the [4Fe-4S] cluster has been shown to be important 
for the stability of FTR (Manieri et al. 2003). Thus, the nuclear-encoded proteins 
HCF101 (Lezhneva et al. 2004) and APO1 (Amann et al. 2004), essential for the 
assembly of the PSI [4Fe-4S] clusters, have been shown to be needed for the ac-
cumulation of FTR subunits as well. 

3 Insertion of proteins to the thylakoid membrane - 
thylakoid translocase complexes and chaperones 

3.1 Thylakoid translocases 

Nucleus-encoded thylakoid proteins, first translocated to the chloroplast stroma 
via the envelope membrane, are generally dependent on thylakoid protein com-
plexes, the translocases, to find their final location. They can be inserted into the 
thylakoid membrane or translocated to the lumen by three distinct pathways that 
have bacterial homologues: the SRP (signal recognition particle), the Tat (twin-
arginine translocase) and the Sec (secretory) pathways. In addition, a fourth path-
way exists that is considered to be ‘spontaneous’. The protein composition of 
these translocases has been partially resolved, but very little is known about the 
assembly processes of the translocases themselves. 

The SRP and Sec pathways translocate proteins in their unfolded state and re-
quire the activity of soluble chaperones (Mori and Cline 2001), while the Tat 
pathway has the rare ability to translocate proteins in their fully folded state (Clark 
and Theg 1997). Proteins using the SRP pathway have a single pre-sequence, 
which is cleaved off after the envelope translocation, while proteins using the Tat 
and Sec routes have bipartite pre-sequences for translocation of proteins to the 
thylakoid lumen. There are also differences in the energetic requirements of pro-
tein translocation between the three routes: the Sec and SRP pathways require hy-
drolysis of nucleoside triphosphates, ATP and GTP, respectively, even though a 
proton motive force may also be involved (Mant et al. 1995; Kouranov and 
Schnell 1996).  
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The chloroplast SRP is a trimer consisting of two subunits of cpSRP43 and one 
cpSRP54 subunit (Li et al. 1995; Tu et al. 1999). The specific substrates for SRP 
pathway are the Lhcb proteins, especially the Lhcb4.1 and Lhcb5 proteins have 
been investigated in detail (Cline 1986; Woolhead et al. 2001). The integration of 
an Lhcb protein into the thylakoid membrane occurs in two steps: the Lhcb protein 
interacts first with cpSRP to form a soluble targeting intermediate, called the tran-
sit complex, and subsequently integrates into the thylakoid membrane in the pre-
sense of GTP and FtsY (Tu et al. 1999). Furthermore, insertion of the Lhcb pro-
tein into the thylakoid membrane is known to require an additional component, 
Alb3 (see also below), a protein that belongs to the Oxa1-YidC family (Moore et 
al. 2000; Woolhead et al. 2001). 

The Tat-pathway is the major route for protein export in prokaryotes, also par-
ticipating in translocation of proteins to plastids (Finazzi et al. 2003). A substrate 
protein for the Tat-pathway contains a characteristic, conserved twin-arginine mo-
tif situated upstream of a hydrophobic stretch in the pre-sequence. The complete 
structure of the Tat-translocation channel is not resolved yet, but three proteins, 
Hcf106, Tha4, and cpTatC, have been identified as the primary components of the 
Tat-pathway (Settles et al. 1997; Mori et al. 2001). Such proteins as PsaN, PsbP, 
and PsbQ have been reported to use the Tat-pathway in their translocation (Niel-
sen et al. 1994; Clark and Theg 1997). The Tat-translocation has also been found 
to be dependent on the ΔpH across the thylakoid membrane, but this has recently 
been questioned by showing that the transport of the Tat-pathway substrates can 
take place in vivo in the absence of ΔpH (Finazzi et al. 2003).  

The Sec-pathway translocates proteins such as plastocyanin and PsbO across 
the membrane to the thylakoid lumen. Components of the Sec-pathway include the 
membrane-bound SecY and SecE proteins, as well as the soluble stromal protein 
SecA (Shuenemann et al. 1999). By analogy to the bacterial Sec-pathway, it is as-
sumed that SecA interacts with a precursor protein in the stroma and subsequently 
inserts itself into the membrane. SecY and SecE, in turn, form the translocation 
channel, maybe with some so far unidentified protein(s).  

Many thylakoid proteins insert spontaneously to the membrane, without any aid 
of stromal components, nucleoside triphosphates, SRP, Alb3, or SecA. These in-
clude the photosynthetic reaction center proteins PsbW, PsbY, and PsaK, as well 
as SecE (Mant et al. 2001; Steiner et al. 2002). 

The insertion mechanisms of the chloroplast-encoded proteins to the thylakoid 
membrane have not been thoroughly investigated. However, there is emerging 
evidence that the chloroplast-encoded proteins, usually synthesized on thylakoid-
bound ribosomes, also use the thylakoid translocases, like SecY (Zhang et al. 
2000). Alb3 interactions with the PSI and PSII reaction center proteins (Göhre et 
al. 2006) also propose the role of Alb3 protein in the folding and translocation of 
chloroplast-encoded proteins. 
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3.2 Chaperones  

Besides the assembly factors discussed above in the context of the assembly of 
specific thylakoid protein complexes, several other assembly factors or molecular 
chaperones have been identified in chloroplasts. These chaperones include chloro-
plast-envelope-associated and stromal members of the Hsp70 family (for review 
see Jackson-Constan et al. 2001; van Wijk 2001; Schroda 2004). In addition to the 
general role of Hsp70 in refolding denatured proteins, some specialized functions 
have also been found for this chaperone. In Chlamydomonas it was shown that 
HSP70B may protect PSII under light stress and/or stabilize photodamaged PSII 
to allow for a coordinated repair (Schroda et al. 2001). Furthermore, in Dunaliella 
salina it was detected that a PSII repair intermediate indeed contained the 
HSP70B protein (Yokthongwattana et al. 2001). Moreover, folding of Rubisco by 
the stromal Hsp70 was shown to be assisted by the BSD2 protein, which has a 
high sequence similarity to the Zn-finger domain of DnaJ proteins (Brutnell et al. 
1999). DnaJ (and also GrpE) proteins function as co-chaperonins in the prokary-
otic Hsp70 system (Schlicher and Soll 1997). In addition, the members of the 
Hsp100/Clp chaperone family participate in specific functions in chloroplasts. In 
Arabidopsis clpC1 mutant line lacking approximately 65% of the total 
Hsp100/ClpC protein, growth retardation, impaired photosynthetic capacity and 
reduced amounts of PSI and PSII were found, indicating that ClpC1 is essential 
for the normal function of the photosynthetic machinery (Sjögren et al. 2004) (For 
a review concerning the recent advances in the study of the Clp proteins, see 
Adam et al. 2006). 

Also the thylakoid lumen contains a separate set of molecular chaperones, such 
as cpn60, cpn10, and hsc70 proteins (Schlicher and Soll 1996). Another lumenal 
protein TLP40 is a cyclophilin-type PPIase that is assumed to catalyze the folding 
of proteins newly inserted in the thylakoid membrane, or translocated into the thy-
lakoid lumen (Fulgosi et al. 1998). This protein also functions as a phosphatase 
inhibitor (Vener et al. 1999). Recent characterization of the TLP40 knockout mu-
tants has revealed that the TLP40 protein is crucial in the growth and development 
of Arabidopsis plants thus indicating its crucial importance for the biogenesis and 
assembly of the thylakoid protein complexes (Khrouchtchova et al. manuscript in 
preparation). 

The Alb3 protein located in the thylakoid membrane is a member of the 
YidC/Oxa1/Alb3 membrane protein family, whose members are multifunctional 
mediators of membrane protein integration, folding and assembly into larger com-
plexes. Their evolutionary conserved and physiologically important roles are gen-
erally linked to the assembly of the major energy-transducing membrane protein 
complexes (van der Laan et al. 2005). In chloroplasts, Alb3 (Alb3.1) is an impor-
tant component of the thylakoid SRP pathway import complex, which is, however, 
not the only function of chloroplast Alb proteins in the insertion of proteins to the 
thylakoid membrane. Indeed, Alb3 is involved in the membrane insertion and as-
sembly of both the nucleus- and plastid-encoded subunits of various photosyn-
thetic membrane protein complexes (Ossenbühl et al. 2004). In Arabidopsis, loss 
of Alb3 results in an albino phenotype and a reduction in the amount of thylakoid 
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membranes (Sundberg et al. 1997). Although the major function of Alb3 (Alb3.1) 
seems to be to assist the integration and assembly of the Lhcb proteins, other 
members of the Alb family, Alb3.2 and Alb4, have recently been reported to also 
participate in the assembly of thylakoid proteins (Göhre et al. 2006; Gerdes et al. 
2006). Alb3.2 was found in a large thylakoid protein complex and showed interac-
tion with Alb3.1 and the reaction center proteins of PSI and PSII (Göhre et al. 
2006). Moreover, downregulation of Alb3.1 resulted in concomitant decrease in 
the number of PSII and PSI reaction centers suggesting a fundamental role of 
Alb3.2 in the assembly of these complexes. More support for the involvement of 
Alb proteins in PSII biogenesis and turnover come from experiments with cyano-
bacterial cells where an Alb3 homolog Slr1471p was shown to directly interact 
with the precursor-D1 protein and facilitate the proper repair of the PSII centers 
(Ossenbühl et al. 2006).  

4 Posttranslational modifications of chloroplast proteins 

Chloroplast proteins are prone to several modifications, which occur either after 
nucleus-encoded proteins have been imported into chloroplasts, or upon or after 
protein translation in chloroplasts. The most important irreversible modifications 
are the N-terminal deformylation, removal of N-terminal methionine, and internal 
processing, whereas protein phosphorylation represents the most common reversi-
ble posttranslational modification of chloroplast proteins. Other modifications in-
clude the reversible addition and removal of functional groups by glycosylation, 
acylation, and nitration resulting in structural changes in proteins. Posttransla-
tional modifications of proteins are important regulators that enhance and increase 
protein complexity and dynamics. They are covalent processes that change the 
primary structure of proteins in a sequence-specific manner. In the following, we 
shortly summarize the recent advances in the fields concerning N-terminal me-
thionine excision and thylakoid protein phosphorylation in plastids. In addition, 
the reader is referred to the recent reviews on studies of posttranslational modifi-
cations in plants (Peck 2006; Kwon et al. 2006; Rossignol 2006; de la Fuente van 
Bentem et al. 2006). For imported proteins, the cleavage of the transit peptide oc-
curs in one or two phases, depending on the final destination of the protein in 
chloroplast (Mori and Cline 2001) as discussed above (Section 3.1.). 

4.1 N-terminal methionine excision 

Although Met is the first amino acid of the newly synthesized proteins, it is usu-
ally removed from mature proteins in a process called N-terminal Met excision 
(NME). NME is an irreversible co-translational mechanism, completed before the 
nascent polypeptide chains are fully synthesized (Arfin and Bradshaw 1988). 
NME is best documented in plastids where the N-termini of most of the proteins 
encoded by the chloroplast genome have been determined (Giglione et al. 2004). 
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Two enzymes of sequential action are needed for NME: 1) peptidyl deformylase 
(PDF), which specifically removes the N-formyl group present in all nascent 
polypeptides synthesized in eubacteria and organelles and 2) methionine amin-
opeptidase (MAP), which removes the methionine specifically in all organisms 
(Giglione et al. 2004).  

Whether the N-formyl group only, or the entire N-formylMet group, is cleaved 
or retained, depends mostly on the nature and bulkiness of the side chains of the 
second amino acid (Frottin et al. 2006). In the proteome of chloroplast-encoded 
proteins, however, all different possibilities exist. The excision of the N-
formylMet is the most common one, this group including, among others, the reac-
tion center proteins D1 and D2 of PSII. Additionally, a more extensive cleavage 
than only the N-formylMet occurs in some chloroplast proteins including RbcL, 
AtpI, PetA, PscC, and PsbK (Giglione et al. 2004).  

In attempts to find the physiological role for NME in chloroplasts, Meinnel and 
colleagues (Giglione et al. 2003) tested the hypothesis whether MNE is determin-
ing the protein half-life. To this end, a specific inhibitor of PDF, actinonin, was 
used and found to cause a progressive loss of photosynthetic activity both in 
Arabidopsis and Chlamydomonas due to the destabilization of the PSII core pro-
teins, particularly the D2 protein. Since the function of PDF is a prerequisite for 
MAP function, it is likely that methionine at the N-terminus of some proteins, like 
the D2 protein, possibly acts as a destabilizing residue. Thus, it was concluded that 
NME is essential for biogenesis of PSII primarily by stabilizing the D2 subunit. 
This conclusion is corroborated by the fact that the disruption of PDF1B (a gene 
encoding the chloroplast targeted PDF) in Arabidopsis led to an albino phenotype 
(Giglione et al. 2003). However, several proteins of various thylakoid complexes 
are substrates of PDF, yet the stability of only PSII and its D2 protein were pri-
marily affected in the presence of actinonin. Therefore, the detailed mechanisms 
of NME in regulation of the life span of chloroplast proteins and thereby the as-
sembly of the chloroplast protein complexes remains to be established. 

4.2 Protein phosphorylation 

A dynamic light- and redox-controlled protein phosphorylation system has 
evolved in the thylakoid membranes of chloroplasts for regulation of photosynthe-
sis and the dynamics of the photosynthetic protein complexes (Bennett 1977, 
1991; Allen 1992; Vener et al. 1998, 2007). The reversible phosphorylation con-
cerns given amino acid residues, most commonly the tyrosine residue on the stro-
mal side of the thylakoid membrane.  

A number of PSII proteins are reversibly phosphorylated in the thylakoid mem-
brane. Thylakoid-bound kinases are responsible for protein phosphorylation, for 
which several regulatory patterns have been described (Pursiheimo et al. 2003). 
Protein dephosphorylation, in turn, is catalyzed by the chloroplast phosphatases, 
being either thylakoid-bound or soluble ones (Bennett 1991). Furthermore, modu-
lation of the thylakoid protein phosphorylation involves the thiol redox state (Rin-
tamäki et al. 2000) and the light-induced conformational changes in the substrate 
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proteins (Zer et al. 1999; Jeschke et al. 2005). Thylakoid phosphoproteins include 
the D1, D2, CP43, and PsbH proteins of the PSII core (Bennett 1991; Vener et al. 
2001; Andreuzzi et al. 2005), the Lhcb1, Lhcb2, and Lhcb4 proteins of the light-
harvesting II antenna (Bennett 1991; Bergantino et al. 1995; Vener et al. 2001; 
Turkina et al. 2004; Tikkanen et al. 2006) as well as the PsaD protein of PSI 
(Hansson and Vener 2003), 9 kDa soluble phosphoprotein (TSP9) (Carlberg et al. 
2003) and TMP14, the latter demonstrated recently to be a novel subunit of PSI 
(Khrouchtchova et al. 2005). In addition, two phosphorylation sites (Thr-2 and 
Ser-3) were detected recently in the Rieske Fe-S protein (PetC) of the Cyt b6 f 
complex in spinach, and three new threonine phosphorylation sites in the CP43 
protein (Rinalducci et al. 2005). 

The role of reversible phosophorylation of the above-mentioned photosynthetic 
proteins is not completely understood, but it has been shown to be involved in 
several aspects of the dynamics of photosynthetic membrane protein complexes, 
especially as a response to environmental cues. Light induces reversible phos-
phorylation of a number of PSII core proteins and of the LHCII antenna proteins 
Lhcb1, Lhcb2, and Lhcb 4 (Bennett 1991) via activation of the redox-dependent 
protein kinases, the identity of which is not yet fully elucidated.  

5 Concluding remarks 

Elucidation of the mechanisms, pathways, and auxiliary components involved in 
the synthesis, assembly, stability, and dynamics of the photosynthetic membrane 
protein complexes is still in its infancy. One pertinent task is to increase our un-
derstanding about the protein networks involved in auxiliary functions in guiding 
the assembly of the individual protein subunits to macromolecular photosynthetic 
complexes. Moreover, the biosynthesis and regulation of the ligation of various 
redox co-factors to the bioenergetic membrane protein complexes awaits extensive 
investigation. Table 1 summarizes our present knowledge of the assembly factors 
and chaperones involved in the biosynthesis of plastid protein complexes. We are 
now in an urgent need to get a systems biology view on the biogenesis of the pho-
tosynthetic energy providing pigment protein complexes. This will greatly facili-
tate, for example, the future plans to construct artificial cell factories for clean so-
lar energy production. 
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