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Abstract 

Intracellular metabolic rates cannot be directly assessed from metabolome concen-
trations and vice versa. For most biological questions, stable isotope tracers must 
be administered and tracked to effectively determine metabolic fluxes by means of 
numerous computational steps. Although flux analysis targets the same analytes as 
metabolomics, priority is given to measuring their exact isotopic distribution 
rather than their concentration. In the first part of this chapter, I describe principles 
and issues of current 13C flux analysis methods, following the entire process from 
experimental design, to detection of isotopic distributions, and data interpretation. 
Notably, current practice largely relies on the labeling patterns of protein-bound 
amino acids, because of their abundance and stability. In the second part, I focus 
on achievements, challenges, and opportunities of metabolome-based 13C flux 
analyses, which are emerging in response to the need to tackle larger networks, 
higher cells, and to improve both spatial and temporal resolution. 

1 Introduction 

Physiological phenotypes of cells are macroscopic manifestations of their meta-
bolic activity, that is determined by all molecular fluxes through metabolism, i.e. 
the fluxome (Hellerstein 2003; Sauer 2004). In nature, the fate of a cell between 
growth and senescence, or even life and death, is linked to its metabolic capacity 
to utilize heterogeneous substrates that are encountered. Whenever cellular func-
tions have to be adjusted, for example upon shifts in external conditions, after mu-
tations, or upon aberrant growth such as in tumors, the fluxome has to be adapted 
to support growth. To a large extent, adjustment of the fluxome is realized in cen-
tral metabolism. These primary pathways are at the crossroad of catabolism and 
anabolism, and catalyze the largest metabolic fluxes in the cell. They form an in-
tertwined reaction network capable of rearranging carbon and nitrogen from a 
wide range of substrates to fuel growth. Oxidation of the cofactors NADH and 
NADPH in respiration and biosynthesis, respectively, is flexibly balanced by 
modulation of fluxes through alternative routes in central metabolism.  
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How are fluxes regulated? Metabolic fluxes are the integrated result of (i) all 
catalytic activities of enzymes as set by kinetic properties, and concentrations of 
educts, products, cofactors, ions, or protons; and (ii) all non-linear regulatory in-
teractions at the transcriptional, translational, post-translational, and allosteric 
level, which all influence amount and state of enzyme (Hellerstein 2003; Sauer 
2004). An essential consequence is that metabolic fluxes cannot be directly quanti-
fied solely from metabolites concentrations or vice versa. To realize this with 
good confidence, detailed enzyme modeling together with exact data on protein 
amounts and modifications, and metabolite concentrations would be a precondi-
tion. For this purpose, a palette of techniques is available to reveal concentrations, 
interactions, and kinetic parameters. (1) The concentration of cell components is 
determined by transcriptomics, proteomics, and metabolomics, although several 
specific methods are usually necessary to obtain complete information, for exam-
ple on protein levels and modification state, or on chemically diverse metabolites. 
(2) Some approaches exist to discover the binding between proteins (Cusick et al. 
2005) or of proteins to DNA (Hoglund and Kohlbacher 2004; Bulyk 2006). Unfor-
tunately, they can hardly be used to quantify their strength, and the comprehensive 
identification of interactions between DNA, transcripts, proteins, and small mole-
cules is still far out of reach. (3) Estimation of in vivo kinetic parameters can be 
done with stimulus-response experiments (Vaseghi et al. 1999). The drawback of 
such procedures is that these experiments are demanding, performed locally for a 
reduced number of parameters, and require a priori knowledge of all possible in-
teractions: for mid-sized and large networks, the task rapidly becomes prohibitive.  

The general lack of detailed regulation and kinetic information has two main 
consequences. First, today’s omics data can, at most, provide constraints on meta-
bolic fluxes. For example, the absence of a protein or lack of transcription can be 
used to exclude that it is catalytically active. Analogously, the combination of me-
tabolome data and thermodynamics knowledge can delineate directionality of re-
actions in a given state, but is insufficient to precisely assess metabolic fluxes 
(Kümmel et al. 2006). Second, the experimental workflow is preferably reversed: 
metabolic fluxes are measured together with concentrations to infer changes in en-
zyme activity or concentration (Wu et al. 2005), or overlap with proteome or tran-
script data to discover regulation circuits (Krömer et al. 2004; Shimizu 2004).  

Metabolic fluxes are monitored by feeding organisms with substrates enriched 
in stable (i.e. non-radioactive) isotopic tracers such as 13C, 2H, 18O, 34S, or 15N. 
Physiologists extensively employed similar labeled substrates for decades to track 
local metabolism of nutrients or monitor polymerization and degradation of bio-
polymers such as lipids, DNA, or proteins in animals and cells (Hellerstein 2003; 
McCabe and Previs 2004; Bequette et al. 2006), and are nowadays also employed 
to lead drug development (Turner and Hellerstein 2005). Only in the last decade, 
developments independent from physiology led to 13C-based metabolic flux analy-
sis for microbes. These methods were initially developed for purposes of strain 
optimization in industrial biotechnology (Stephanopoulos 1999), but have found 
large application and consensus in systems biology (Blank et al. 2005; Fischer and 
Sauer 2005; Koffas and Stephanopoulos 2005) (Table 1). In contrast to the meth-
ods utilized with animals that focus on local activities, novel 13C metabolic flux 
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analysis methods were devised to comprehensively assess carbon fluxes in large 
metabolic networks. Owing to the fact that microorganisms are rarely differenti-
ated and able to grow on single carbon sources under carefully controlled condi-
tions, an arsenal of 13C flux methods was established to quantify the intracellular 
fluxome with different networks, substrates, and culture conditions. Modern 13C 
flux analyses consequently enabled to investigate - from a global perspective - the 
link between cellular redox equilibrium, generation of energy equivalents, and 
metabolic phenotypes. 

In this chapter, I first present the principles of metabolic flux analysis and the 
corollary methods that were designed to map reaction velocities in microbes with 
13C-labeling patterns of protein-bound amino acids. In the second part, I focus on 
the extension to metabolome-based 13C metabolic flux analysis, that holds promise 
to become a universal tool to monitor the fluxome from microorganisms to ani-
mals for purposes of systems biology, understanding metabolic control in health 
and disease, or drug development.  

2 Fundamentals of metabolic flux analysis 

Metabolic flux analysis aims at measuring in vivo activity of metabolic reactions. 
In contrast to concentrations, rates are per se not directly measurable. In vitro, the 
rate of a reaction is determined via interpretation of measured concentration pro-
files of the substrates and products. Similarly, one can extend this approach and 
quantify the reaction rates in sequential and even branching reaction networks by 
monitoring the concentration profiles of substrates, intermediates, and products. 
The rate of every single reaction is then obtained by a set of material balances, one 
for each compound in the reaction chain. In vivo, however, it is experimentally 
impossible to measure concentration profiles for all metabolites in a cell that en-
compasses thousands of compounds. This problem is obviated when metabolic 
fluxes are measured in a metabolic steady state, meaning that fluxes and intracel-
lular metabolite concentrations are constant over time. When this precondition is 
fulfilled, all intermediates pools are by definition invariant over time and in the 
case of linear, non-converging, non-cyclic pathways metabolic fluxes are calcula-
ble from the time profiles of all substrates and end products, while the concentra-
tions of all balanced intermediates are neglectable.  

Stoichiometric balancing has an additional inherent flaw that normally impairs 
complete flux estimations and that is associated to the topology of the biochemical 
reaction network. In most cells, especially in central carbon metabolism, alterna-
tive biosynthetic routes and reaction cycles exist and generate redundancies. Such 
redundancies cannot be unequivocally resolved by stoichiometric balancing, be-
cause each one introduces an additional degree of freedom where an infinite num-
ber of flux maps lead to identical overall balances. To obtain a unique solution, 
one approach is to select the flux distribution that satisfies all stoichiometric con-
straints and also maximizes an arbitrarily chosen objective function of network 
operation, e.g. maximize ATP overproduction or growth yield (Varma and Palsson 
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1994; Kauffman et al. 2003). The outcome of optimization corresponds to the 
most-likely flux estimate according to the arbitrary assumptions. Systematic stud-
ies have demonstrated that the chosen paradigm of network operation can differ 
between organisms, mutants, and environmental conditions (Küpfer et al.2007; 
Segre et al. 2002). Thus, objective functions have to be carefully selected to avoid 
biased and erroneous results.  

The inherent uncertainty of in silico predictions and their discordance with em-
pirical observations evidenced the importance of experimental metabolic flux de-
termination. This was brought about by the introduction of isotopically labeled 
substrates. Depending upon which pathways are active in catabolism and anabo-
lism, atoms from the substrate are scrambled and rearranged following the 
schemes of enzymatic reaction mechanisms. The labeling patterns of metabolites 
are then detected by either mass spectrometry (MS) or nuclear magnetic resonance 
(NMR), and quantitatively reflect partitioning of substrate through metabolic 
routes. They provide information independent from stoichiometric balances, and 
with a properly designed tracer substrate they serve to distinguish the fluxes 
through alternative pathways or reaction cycles. In general, 13C-tracers enable to 
effectively resolve the redundancies occurring in central carbon metabolism, 
where all catabolic and anabolic pathways diverge from. In contrast to the highly 
interconnected central carbon metabolism, the peripheral metabolism is composed 
by mostly linear biosynthetic routes (e.g. amino acids or nucleotide synthesis). 
Since these pathways are utilized to synthesize the building blocks for growth, 
their in vivo flux is estimated with good precision by stoichiometry with detailed 
models of biomass composition.  

Although 13C metabolic flux analysis enables monitoring of pathway activity in 
vivo in most cases, it is important to stress that (i) quantitative analysis is only 
possible in minimal media, (ii) technical difficulty increases exponentially when 
multiple carbon substrates are utilized, (iii) it is not possible to discriminate be-
tween pathways or reactions that do not differ in the scrambling of labeled atoms, 
i.e. between isoenzymes. 

3 Principles of labeling experiments  

For a labeling experiment, cells are first grown on naturally labeled substrates un-
til metabolic steady state. Once this prerequisite is fulfilled, isotopically enriched 
nutrients can be administered to the cells. In batch cultures, this is done either by 
spiking the tracer substrate to the medium, or by diluting exponentially growing 
cells in fresh, labeled medium. Harvesting and resuspending is preferably avoided 
because handling perturbs metabolic steady state. In continuous or fed-batch cul-
tures, the feed is switched from naturally labeled medium to an equivalently con-
centrated tracer-enriched solution. Ideally, these operations should provoke an 
immediate step change of the tracer fraction in the culture medium. Although such 
rapid shifts can easily be attained in well-stirred systems, enrichment of label 
within the cellular  metabolome will take considerably longer (Fig. 1).  The reason 
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Fig. 1. Progressive propagation of labeling through intermediate pools in experiments with 
stable isotopic substrates. Each plot exemplarily shows time profiles of label enrichment for 
species of central metabolism, peripheral biosynthetic pathways leading to biomass precur-
sors, and biomass components. Exemplary names are indicates in brackets. tSS is the time 
necessary to attain isotopic stationarity, it is specific for each pool, and it sets the minimum 
labeling time that has to be respected for stationary computational methods to be applied. 
Delayed onset of isotopic steady state is typically observed far from tracer substrate uptake, 
in large pools, or when biomass turnover occur. Refer to the text for more detailed explana-
tions. 

is that starting from the entry point of the tracer, the label has to propagate through 
the metabolic network and progressively replace unlabeled intermediates. This is 
an important phenomenon, because routine application of 13C flux analysis is so 
far solely possible from the labeling patterns of metabolites in isotopic steady 
state, i.e. with time-invariant labeling patterns at the time point of sampling. In 
theory such an isotopic steady state is never attained, but due to analytical impre-
cision isotopic equilibrium is experimentally observed within minutes to hours.  

The time after which such an isotopic steady state is achieved depends upon the 
turnover rate of each pool, which is directly proportional to the flux through the 
pool and inversely to the concentration: larger pools slow down the process, 
higher fluxes accelerate it. A general and intuitive consequence is that the closer 
an intermediate is to the original tracer substrate, the faster it will reach isotopic 
steady state. Thus, for 13C glucose tracers, flux analysis based on the labeling pat-
tern of glycolytic intermediates requires shorter labeling times than with tricar-
boxylic acid (TCA) cycle intermediates. Biomass compartments (e.g. proteins) 
exhibit the longest isotopic transients, whose duration is roughly proportional to 
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the inverse of the growth rate. Similarly slow label uptake can also be observed 
for the free pool of corresponding precursors (in the same example the amino ac-
ids) when biomass turnover interferes with quick onset of isotopic steady state 
(Fig. 1) (Grotkjaer et al. 2004).  

Substantial advantages are brought about by the analysis of labeling patterns in 
intermediates of central metabolism. First, it decreases duration of experiments 
and the costs coupled to the amount of employed isotopic tracer. Second, shorter 
observation windows provide much more flexibility in experimental design since 
metabolic steady state does not have to be ensured over several hours (van Win-
den et al. 2005). In turn, this opens for the investigation of slow metabolic tran-
sients for which a quasi steady state can be assumed for the time span of labeling 
(e.g. fed batches). The analysis yields a flux map that averages pathway activities 
over the labeling interval. An extension is to sample the same labeling experiment 
at several time points during the slow flux transients to obtain time-resolved flux 
maps (Zamboni et al. 2005). Limitations are set by the characteristic time of moni-
tored analytes necessary to attain isotopic steady state, which is prone to variation 
during metabolic transients due to changing fluxes and pool concentrations.  

These underlying principles hold for every experiment involving labeling with 
isotopic tracers, and should carefully be considered in the design stage. In the next 
sections, the workflow of 13C-based flux analysis from inception to evaluation and 
current practice is briefly reiterated. 

4 Current practice of stationary 13C flux analysis 

4.1 Experimental design  

The capability of resolving and quantifying fluxes in vivo is a function of (i) the 
tracer substrate used, (ii) the biochemical reaction network, and (iii) the analytes 
that are detectable. Several protocols were presented to assess a priori calculability 
from a dataset in the case of stoichiometric balancing (Klamt and Schuster 2002) 
or 13C metabolic flux analysis (Möllney et al. 1999; van Winden et al. 2001; 
Isermann and Wiechert 2003). Notably, analytical accuracy in the detection of la-
beling patterns strongly influences the confidence of flux estimates. This informa-
tion is frequently neglected in the aforementioned calculability tests and, thus, it is 
often necessary to perform more complex and detailed experiments than the sim-
plest setup prescribed based on such tests (van Winden et al. 2001). 

The selection of the tracer distribution in the substrate is paramount for effec-
tive resolution of metabolic fluxes. Basically two different strategies exist and can 
be combined. Positionally enriched substrates possess an uneven distribution of 
13C in the carbon backbone. These tracers are typically administered in the pure 
form, i.e. 100%, and are ideal to distinguish alternative pathways where only one 
branch losses or transfers the specifically labeled carbon (e.g. by decarboxylation). 
For example, [1-13C]glucose is well suited to track fluxes in the oxidative branch 
of the pentose phosphate pathway (PPP) where the [1-13C] atom is split to form 
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13CO2 and the resulting pentoses are label-free. In contrast, pentoses originating 
via the non-oxidative PPP are enriched in 13C (Christensen et al. 2001). A short-
coming of positionally enriched tracers is that they are tailored for specific path-
ways and poorly suited for global fluxome estimates. Hence, they find wide appli-
cation in networks that are highly constrained by stoichiometry and thus exhibit 
low degrees of freedom, or to determine the network structure in poorly character-
ized organisms (Cannizzaro et al. 2004; Fuhrer et al. 2005). On the other end, uni-
formly (fully) labeled substrates offer a larger scope in exchange for specificity. 
Uniformly labeled substrates are normally administered in combination with unla-
beled isomers, e.g. as a 1:1 mix. When the tracer is metabolized, the carbon back-
bone of both labeled and unlabeled isoforms is broken and rearranged. Reactions 
that combine multiple carbon-containing intermediates will generate chimeric 
molecules with both 12C and 13C atoms, with characteristic labeling imprints. Ex-
amples are the transaldolase and transketolase in the non-oxidative PPP, anaple-
rotic reactions, or cyclic pathway such as the TCA cycle or the modular lipid bio-
synthesis. With uniformly labeled tracers, the essential information for pathway 
flux discrimination is not enclosed in the label that was lost during metabolic ac-
tivity such as with positional enrichment, but in the presence of 13C fine structures 
that reflect enzymatic scrambling specific for a pathway.  

Compartments in higher cells complicate the problem in several ways: (i) addi-
tional reactions are necessary to model pathways independently for each com-
partment. Splitting of intermediate pools across distinct compartments considera-
bly increases the degrees of freedom. (ii) The intracompartmental transport 
mechanisms are very relevant, in particular when coupled to sym- or antiport. (iii) 
Metabolites are measured as the sum of all compartments. When a metabolite is 
localized in two (or more) compartments with possibly different biosynthetic ori-
gin, the corresponding labeling patterns may differ and, thus, are typically dis-
carded for flux calculation. Provided that the model of biochemical reactions is 
correct and complete, mathematical methods for the optimal selection of tracer 
and analytes exist (Möllney et al. 1999; Rantanen et al. 2006). 

Experimental design is also influenced by the analytes that can be detected. The 
majority of 13C-based flux studies published in the last decade was based on the 
labeling patterns of protein-bound amino acids because of their abundance 
(roughly half of total cell dry weight) that facilitates measurement of labeling pat-
tern. High abundance is unfortunately coupled to lower turnover and, hence, short 
transients cannot be investigated. In the case of biomass macromolecules and the 
constituting monomers when turnover occurs, the inverse of the growth rate pro-
vides a rough estimate of the shortest interval that can be investigated with a sta-
tionary 13C metabolic flux experiment (Wiechert and Nöh 2005).  

4.2 From analytes to 13C labeling patterns 

Determination of carbon fluxes in isotopic steady state relies on macroscopic bal-
ances and 13C labeling patterns: intermediates concentrations are superfluous 
unless isotopically non-stationary conditions are tackled (discussed in a later sec-
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tion). During sample harvest, it is important to quench metabolism rapidly enough 
to avoid post-sampling artifacts. The constraints are set by the turnover of the ana-
lytes. When the protein-bound fraction of amino acids is the target, handling op-
erations in the range of minutes are safe. In contrast, when dealing with intracellu-
lar intermediates sub-second quenching and cooling is recommended because their 
pools are exchanged by orders of magnitude more rapidly. In sharp contrast to me-
tabolome experiments, quantitative and reproducible extraction of intermediates 
from cells is not of relevance as long as detection is not compromised by poor re-
coveries. 

Two techniques exist to distinguish and quantify isotopic distributions, namely 
nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). 
Both platforms were equally successful in providing essential information from 
protein-bound amino acids for the estimation of fluxes in central carbon metabo-
lism. In NMR, 2-dimensional heteronuclear [13C,1H] correlation spectroscopy re-
solves all relevant resonances in proteinogenic amino acids without prefractiona-
tion (Szyperski 1995). Labeling patterns are inferred from characteristic spin-spin 
couplings that arise when neighbor 13C atoms are present, and uniformly labeled 
tracers are therefore typically utilized. With MS, amino acids mixtures have first 
to be resolved by chromatographic means. Gas chromatography – mass spec-
trometry (GC-MS) has become the principal workhorse for mainly two reasons. 
First, it combines robustness, fast measurements, fully baseline-resolved amino 
acids, and relative low instrument and running costs. Second, it delivers extensive 
fragment information to unravel central carbon fluxes (Christensen and Nielsen 
1999; Dauner and Sauer 2000). The latter point is crucial for 13C-experiments and 
an important digression must be made. Each carbon atom in a molecule can be ei-
ther labeled (13C) or unlabeled (12C). A molecule with n carbon atoms possesses 2n 
possible states, called isotopomers (from isotope isomers). MS discriminates only 
the mass and is not able to distinguish between all isotopomers: those with identi-
cal weight are detected as a lumped pool. This limits calculability of fluxes when 
alternative pathways lead to isotopomers with equal label content. The hurdle is 
often overcome by inducing analyte fragmentation in the MS: from intact mole-
cules, smaller daughter ions are generated and their isotopic distribution is meas-
ured to yield the isotopic distribution of partial carbon backbone segments or even 
the enrichment of single atom positions. Fragmentation in GC-MS occurs sponta-
neously at the interface between GC and MS when a high energy electrons beam 
is used to ionize the analytes. The resulting fragments enable 13C flux analysis in 
many organisms using various tracers, such as for example [1-13C], [1,2-13C2], and 
[U-13C]glucose, and have contributed to the diffusion of GC-MS as preferred plat-
form. 
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Table 2. Summary of metabolic flux analysis methods for experiments with stable isotopic 
tracers. 

Approach Pros Cons 
NET FLUXES   
Isotopomer balanc-
ing  

- integrates all available infor-
mation 
- calculates net and exchange 
fluxes 
- universal framework is avail-
able that do not need adaptation 
for new networks or tracers 

- requires correct network and 
physiological data 
- cumbersome troubleshooting 

13C-constrained 
metabolic flux analy-
sis 

- simple and fast computation 
 

- exchange fluxes not calcu-
lated 

RELATIVE 
FLUXES 

  

Flux ratios analysis - direct evidence for pathway 
activity 
- independent from measured 
rates 
- fast, unsupervised 

- tedious design of new equa-
tions 
- implicit assumptions on re-
versibility that might do not 
hold after severe genetic per-
turbations. 

PROFILING   
Fluxome profiling - independent from any model 

- suitable for complex media 
- applicable with any tracer 
(13C, 15N, 2H and combinations) 

- qualitative 
- large number of repli-
cas/samples needed 
 

SiDMAP - optimized for mammalian 
cells and glucose 

- qualitative  
- requires multiple experi-
ments to obtain a complete 
analysis 

 
For emerging applications based on free metabolites, MS is currently supersed-

ing NMR owing to its superior sensitivity, simpler hyphenation to chromatogra-
phy, and optional fragmentation capabilities. MS methods are increasingly profit-
ing from the continuous progresses made in liquid chromatography (LC) and 
capillary electrophoresis (CE) that bring about baseline separations of the majority 
of central carbon and other polar metabolites pivotal to unravel fluxes. Flux analy-
ses can build directly upon MS-metabolomics with minor adjustments made to 
prioritize precise estimation of mass distributions before concentrations (cf. 5.2 
and 5.3.1). 

4.3 From 13C labeling patterns to fluxes 

A variety of computational approaches to interpret 13C labeling blueprints have 
bloomed  driven by the  need to  address well-defined  questions  or  hypotheses in 
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Fig. 2. Flow chart of data integration alternatives in 13C metabolic flux analysis. Inputs and 
outputs are shown in black ellipsoids and grey boxes, respectively. 

highly heterogeneous biological systems. Extensions and perhaps simplifications 
had to be introduced to face the sometimes scarce availability of measurements, 
ill-defined networks, and analytical imprecision. Three very different sets of in-
formation are utilized to estimate fluxes:  

• Physiology: extracellular rates of substrate uptake and product formation, 
growth rate. 

• Model of biochemical network: including - for each reaction in the sys-
tem - stoichiometry, assumptions on the irreversibility, and the mapping 
of single atom positions between educts and products. 

• 13C labeling patterns: from NMR, MS, or both. 
I define three major clusters of methods on the basis of which of the above infor-
mation domains are utilized and combined to investigate metabolic fluxes (Fig. 2 
and Table 2). 

4.3.1 Isotopomer balancing 

Isotopomer balancing is the natural extension of the stoichiometric balancing ap-
proach (cf. 2) to include 13C data. It requires and concomitantly integrates ex-
tracellular fluxes, network model, and 13C patterns. A network model is the basis 
for the balance equations. In contrast to simple stoichiometric balancing where a 
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single balance is constructed for each metabolite, here one equation is drawn for 
each isotopomer (Schmidt et al. 1997; Zupke et al. 1997; Klapa et al. 1999; Dau-
ner et al. 2001). As the number of additional equations necessary for each metabo-
lite increases exponentially with the number of carbon atoms, the resulting system 
of linear equations becomes much larger, but the same is true for the variables 
(from metabolites to isotopomers) and the system remains underdetermined. 
Fluxes are resolved iteratively: first, a semi-random flux distribution is generated, 
and is then used to simulate the labeling pattern in intermediates that would result 
from it. The simulated isotopomer fractions are in turn used to generate synthetic 
MS or NMR signals, which are compared to the experimental findings. Until a sat-
isfactory match is attained, the cycle is repeated with a new flux distribution that 
is derived from the previous ones with some rational plan to accelerate conver-
gence and increase the probability of reaching the global optimum. The finally ob-
tained solution constitutes the flux map that best explains the labeling patterns 
within the constraints set by the network topology and the measured rates.  

Isotopomer balancing is the most comprehensive strategy for data interpretation 
as it simultaneously integrates all available data. This kind of global analysis has 
the merit that it exploits the maximum possible information from the dataset. The 
drawback is that the flux estimate is severely biased by incomplete or erroneous 
network models and physiological data. In case of bad fits, the whole flux solution 
has to be rejected. Expertise and time are needed to pinpoint the inconsistencies in 
model or measurements. Calculation is complex and computationally expensive, 
and special derivatives of isotopomer fractions such as cumomers (Wiechert et al. 
1999) or bondomers (van Winden et al. 2002), were demonstrated to effectively 
improve the process. Antoniewicz et al. recently introduced a novel approach to 
reduce the number of systems variables by at least one order-of-magnitude while 
preserving a full description of the isotopomers. This decomposition in so-called 
elementary metabolite units dramatically simplifies the equation system and thus 
accelerates solving, and will most likely constitute a cornerstone for the rapid 
analysis of non-stationary experiments or of concomitant 2H, 13C, 18O, and 15N la-
beling in large networks (Antoniewicz et al. 2006). Notably, a detailed statistical 
analysis is crucial to correctly weight the outcomes (Antoniewicz et al. 2006).  

To our knowledge, 13C-FLUX is currently the most complete and freely avail-
able software tool that offers rigorous 13C-based balancing for generalized net-
works from both NMR or MS experiments (Wiechert et al. 2001). Alternatively, 
NMR2Flux computes fluxes in plants from 2D-NMR spectra of protein-bound 
amino acids (Sriram et al. 2004). Isotopomer balancing has been used to quantify 
fluxes for example from amino acids in microorganisms with NMR (Marx et al. 
1996; Petersen et al. 2000; Emmerling et al. 2002; van Winden et al. 2003) and 
MS data (Fischer and Sauer 2003; Klapa et al. 2003), from free metabolites with 
MS (van Winden et al. 2005; Kleijn et al. 2006), or in plants with NMR of amino 
acids (Sriram et al. 2004). 
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4.3.2 Flux ratios 

The isotopomer balancing approach outlined in the previous section sets strict re-
quirements in terms of input data (Fig. 2). Initially driven by the need to analyze 
fluxes also in absence of physiological data, metabolic flux ratio analysis was de-
veloped to directly decipher 13C labeling patterns (Szyperski 1995). Briefly, meta-
bolic flux ratios quantify the relative fluxes of alternative pathways at the node 
(metabolite) of convergence. For this purpose, analytical equations are developed 
first for each branch point of interest. Each analytical equation is designed to take 
advantage of the labeling features that best discriminates between the theoretical 
13C blueprints of converging pathways. In central metabolism, about 10 independ-
ent flux ratios can be determined from amino acids for 13C-glucose experiments 
with bacteria or yeast using either NMR (Szyperski 1995; Maaheimo et al. 2001) 
or MS data (Christensen et al. 2001; Fischer and Sauer 2003; Blank and Sauer 
2004). For the broadly used flux ratios from 13C experiments and GC-MS data, a 
detailed protocol is given in (Nanchen et al. 2006). Single flux ratios are calcu-
lated from the mass distributions of typically only 1-3 intermediates (or inferred 
from amino acids) and absolutely no kind of measured rate is required. The power 
of ratios lies in their local nature that renders them less susceptible to possibly er-
roneous models or measurements, and in the fact that they provide direct evidence 
for the operation of a particular pathway in vivo. In addition, the rapid and almost 
completely unsupervised computation of flux ratios enables high-throughput - and 
yet quantitative - flux studies. The major drawback is the initial time invested for 
development or adaptation of the analytical equations for new tracers or modified 
metabolic networks. Flux ratios were, for example, used to identify new pathways 
or unexpected cross-activity (Fischer and Sauer 2003; Zamboni et al. 2004), char-
acterize unknown networks (Fuhrer et al. 2005), demonstrate metabolic robustness 
and suboptimal operation of Bacillus (Fischer and Sauer 2005), and to investigate 
adaptive evolution of metabolism (Hua et al. 2006). 

In the so-called 13C-constrained metabolic flux analysis, flux ratios can be used 
to solve the problem of undetermined stoichiometric balances, because they pro-
vide additional, independent constraints to reduce the solution space (Fischer et al. 
2004). If at least one flux ratio is available to fix each degree of freedom in the 
metabolic network, a unique flux map can be calculated by means of a linear sys-
tem or least-square fit for fully and overdetermined systems, respectively. Results 
from 13C-constrained metabolic flux analysis and isotopomer balancing are consis-
tent (Fischer et al. 2004). Yet, the latter provides more detailed information with 
respect to the exchange fluxes in bidirectional reactions. These are neglected or 
implicitly assigned when developing the analytical equations to calculate flux ra-
tios. In knockout mutants with severe growth defects, these tacit assumptions may 
not hold and lead to wrong ratio estimates and, in turn, erroneous net fluxes from 
13C-constrained metabolic flux analysis. Nevertheless, ratios-constrained net flux 
analyses are a robust tool for both large-scale (Blank et al. 2005) and detailed 
studies of cellular carbon, redox, and energy metabolism (Zamboni et al. 2003; 
Blank et al. 2005; Hua et al. 2006). For experiments on glucose minimal medium, 
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software packages for metabolic flux ratio and 13C-constrained metabolic balance 
analysis are freely available (Zamboni et al. 2005).  

A related approach is the so-called stable isotope based dynamic metabolic pro-
filing (SIDMAP), that - akin to metabolic flux ratios analysis - interprets 13C-
patterns according to a metabolic model without measured extracellular rates. It 
features a collection of analytical equations that were tailored to monitor specific 
changes in carbon metabolism of mammalian cells grown on [1,2-13C2]glucose 
and analyzed by GC-MS of biomass or secreted products. The complex composi-
tion of culture medium impairs large-scope fluxome quantitation. Nevertheless, 
this approach affords a specialized profiling tool to, for example, capture meta-
bolic responses in tumoral cells or to lead targeted drug design (Boren et al. 2001; 
Boros et al. 2003; Marin et al. 2004). 

4.3.3 Fluxome profiling 

In analogy to data mining methods applied to other omics data, multivariate analy-
sis can be used to explore large datasets of 13C labeling patterns (Zamboni and 
Sauer 2005). This approach of fluxome profiling features the unique chance to in-
fer structural and quantitative information from raw labeling data without any a 
priori knowledge of the biochemical reaction network.  

What can be discovered in 13C labeling patterns? A first proof-of-concept study 
with bacterial cultures and a variegated set of tracers and conditions was presented 
by our lab (Zamboni and Sauer 2004). The working hypothesis was that the ab-
sence or presence of pathway activity is reflected in the label fingerprints of me-
tabolites. By purely unsupervised statistical techniques, this work (i) demonstrated 
that it is indeed possible to separate the overlapping signatures of independent 
pathways, (ii) proved that signatures are consistent with biosynthetic routes, (iii) 
showed that structural knowledge on biosynthesis of metabolites can be deduced 
from covariating patterns, (iv) showed that mutants can be clustered according to 
metabolic changes, and (v) mapped the effect of transcriptional regulators on 
metabolic activity. Current efforts aim at developing robust tools of machine 
learning and expertise to systematically scavenge all relevant features in large 
datasets. Albeit in progress, first results reveal that for each dataset the number of 
stable (not sensitive to algorithm parameters or to in silico superimposed noise) 
pathway signatures is well defined and sometimes exceeds the number of those 
calculable with the established metabolic flux ratio equations. This suggests that 
novel, still latent blueprints of metabolic activity are contained in the data in addi-
tion to those disclosed by today’s metabolic flux ratio analysis.  

Beyond the qualifiers obtained, for example, from hierarchical clustering or 
classification trees, it is obviously desirable to obtain quantitative insights on 
metabolic fluxes. In fact, quantitative estimators for flux partitioning ratios were 
successfully derived from unsupervised methods such as independent component 
analysis (Zamboni and Sauer 2004), but for some flux ratio no matching estimator 
could be identified.  Supervised  methods  such as  regressions or  adaptive  neural 
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Fig. 3. Quantitative determination of glycolysis-to-PPP split ratio in Bacillus subtilis 
knockout using supervised machine learning and no a priori knowledge of metabolism. (A) 
Schematic representation of approach. Mutants were grown individually on a mix of 50% 
[U-13C] and natural glucose. The mass distributions of 4 mutants were used to train an 
adaptive neural network to estimate the flux ratio. (B) The graph shows the validation of 
the trained neural network: for each mutant the estimated flux split estimated by the neural 
network is compared to the real value calculated from a model-based analytical equation. 
Circles and dots indicate the mutants used for training and validation, respectively. The 
dashed diagonal indicates perfect predictions. 

networks can possibly fill this gap as shown exemplarily in Figure 3, but the gen-
eral applicability and utility of supervised machine learning with 13C labeling pat-
terns is still questionable and has to be assessed in systematic studies. 

Fluxome profiling, based on either supervised or unsupervised procedures, is 
still in its infancy and hence, in contrast to the well-established approaches of iso-
topomer balancing and flux ratio analysis, it is only possible to speculate on its 
practical applications. With this in mind, principally two advantages unique to 
fluxome profiling call for further development. First, fluxome profiling can handle 
labeling data from experiments with higher cells because it is compatible with vir-
tually any network (unicellular – multicellular), isotopic tracer (13C, 2H, 18O, 15N, 
and combinations), and medium composition (Zamboni and Sauer 2004). Second, 
multivariate statistics afford a very simple basis for comparing different omics 
data. For example, if it is true that metabolic fluxes reflect the integration of all in-
teractions between and within metabolites, proteins, RNA, etc., it can be expected 
that statistical correlations and anticorrelations between metabolic fluxes and con-
centration of species in the different layers will contribute to identify the loci were 
control is exerted and the mechanism how regulation occurs (Weckwerth et al. 
2004; Morgenthal et al. 2006).  
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5 Toward metabolome-based 13C flux analysis 

Flux measurements published in the last decade were originated almost exclu-
sively from 13C data of protein-bound amino acids or secreted metabolites, be-
cause of their large abundance that facilitates both sampling due to the low turn-
over and ease of detection. As witnessed by the considerably number of studies, 
this approach has undoubtedly maturated to a robust tool suited for addressing 
various questions. Nevertheless, there are several reasons that call for true me-
tabolome-based 13C flux analyses: 

• Cells without de novo amino acid (or protein) biosynthesis may be ana-
lyzed, e.g. higher cells, microbes grown in rich media or resting. 

• Identifiability of fluxes is increased by monitoring of 13C patterns in me-
tabolites that are not precursors of proteinogenic amino acids. In addition, 
the risk of erroneous or ambiguous mapping of atoms between precursors 
and metabolic end products is circumvented. 

• Labeling experiments are shortened because isotopic steady state is at-
tained earlier. This leads to lower costs and enables the analysis of sys-
tems that cannot be kept long in metabolic steady state.  

• Slow metabolic shifts (in the range of minutes to hours) become observ-
able, as long as a metabolic steady state can be approximated throughout 
onset of the isotopic steady state in intracellular metabolites. 

The full potential of metabolome-based 13C flux analysis to tackle such conditions 
and questions can be unleashed only with direct measurements of intermediates in 
proximity of the pathway of interest. 

5.1 Experimental proof-of-concept 

Two landmark studies of cellular fluxes based on 13C-patterns of primary metabo-
lites have been published so far, both by van Winden and coworkers (van Winden 
et al. 2005; Kleijn et al. 2006). In the first one, baker’s yeast was grown in glu-
cose-limited continuous cultures, and at metabolic steady state the culture was fed 
with 100% [1-13C]glucose. After 40 and 60 min of labeling, two cell aliquots were 
harvested rapidly, quenched, and central carbon metabolites were extracted and 
measured by liquid chromatography (LC)-MS. Isotopomer balancing (cf. 4.3.2) 
was successfully used to fit fluxes in glycolysis and PPP to the 13C labeling pattern 
of ten intermediates. This study demonstrates the feasibility of metabolome-based 
flux analyses, and contributes further relevant observations. First, comparison of 
labeling pattern at the two time points of sampling confirm that already after 40 
min the majority of metabolites is in isotopic steady state. Exceptions are dis-
cussed below. Second, the direct comparison of labeling patterns in reactants at 
both sides of every bidirectional reactions indicates which metabolite pools are 
equilibrated, and thus, which reversible enzymes operate in forward and backward 
direction at rates that are much higher than the apparent net metabolic flux, that is 
the difference of the two. Third, turnover of the storage carbohydrate glycogen 
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was found to interfere with rapid onset of isotopic steady state in glucose-1-
phosphate and glucose-6-phosphate, so that after 60 min isotopic steady state is 
not yet achieved. When a turnover reaction between glycogen and glucose-1-
phosphate is introduced into the model, the result is a worse confidence interval 
for the flux split between glycolysis and the PPP. This is caused by the fact that 
both [1-13C] label loss in the oxidative PPP and variable inflow of unlabeled hex-
ose-phosphates from glycogen produce hardly distinguishable increases in unla-
beled fractions of intermediate. Two solutions can obviate to the problem of large 
pools disturb onset of isotopic steady state. As anticipated by the authors in the 
above study, one option is to label for a longer period of time. The drawback is 
that extensive time is probably necessary to obtain isotopic equilibration of the 
large glycogen pool. Alternatively, differently labeled substrates can be adopted to 
experimentally assess the exchange of large reservoirs. For the aforementioned 
example, [1,2-13C2] or [U-13C]glucose would have served to estimate more pre-
cisely the glycolysis-to-PPP split in the same span of time, because they enable 
concomitant quantitation of the collateral turnover of glycogen.  

Indeed, the second and more recent metabolome-based 13C flux study by the 
same lab affords determination of the flux split between oxidative PPP and glyco-
lysis in filamentous fungi by an analytical equation that calculates the flux ratio 
from the isotopic mass distribution of tree intermediates close to the node (Kleijn 
et al. 2006). This study shows that the results obtained analytically are consistent 
with isotopomer balancing but more accurate, and demonstrates for the first time 
the potential of metabolome-based 13C flux ratio analysis (cf. 4.3.2). 

5.2 Analytics: lessons from metabolomics 

The trivial analogy between metabolomics and metabolome-based 13C flux analy-
sis in terms of analytes is reflected by the similar experimental workflow in the 
steps from cells harvest to analysis. Hence, current best practices for accurate flux 
studies include the use of rapid sampling devices, immediate quenching of me-
tabolism, tailored chromatographic separation to possibly reduce matrix effects, 
and highly-sensitive detection. MS is actually preferred to NMR in the detection 
of 13C labeling in free metabolites due to the higher sensitivity. In addition, chro-
matographic separation becomes compulsory to capture the 13C distributions of 
structurally similar metabolites as it often occur in the same pathway, for which 
MS is prioritized because on-line interfacing to GC, LC, or capillary electrophore-
sis (CE) is well established.  

The topic of analytical separation introduces a relevant question: which of the 
MS-compatible platforms frequently used in metabolomics (i.e. GC, LC, and CE) 
is the most suited for metabolome-based 13C metabolic flux analysis? For the spe-
cifics of the intermediates of interest, i.e. phosphorylated sugars and carboxylic 
acids in glycolysis, PPP, and TCA cycle, all three modes can be used for separa-
tion and subsequent MS detection. Here I survey these separation techniques, 
while the specifics of MS detection are addressed in the following sections. 
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For GC-MS acquisition, volatile derivatives of polar compounds are obtained 
after methoxymation and silylation and separated with simple protocols amenable 
to high-throughputs (Strelkov et al. 2004; Koek et al. 2006). The strength of this 
method is that it is generally suited to detect other classes of compounds such as 
alcohols, amines, amino acids, or purines. Although it suffers from derivatization 
efficiencies varying for the different classes (Koek et al. 2006), this does not affect 
the measurement of isotopic distributions because they do not depend on absolute 
concentrations. To increase the amount of sample introduced onto the column, 
temperature programmable injectors can be used to inject up to 1000x larger vol-
umes. Notably, the benefits are marginal when low and highly concentrated ana-
lytes elute closely or overlapping, because overloading of the more abundant 
compound causes peak broadening and often detector saturation. Due to the exten-
sive fragmentation that is normally caused by electron impact ionization, GC-MS 
spectra are very complex and identification of analytes relies on spectral databases 
of compound libraries (Schauer et al. 2005). 

Analysis by LC-MS is slightly complicated by the ionic and polar character of 
central carbon metabolites because of the poor compatibility between MS ioniza-
tion and the LC buffers commonly used for separating such anionic and hydro-
philic compounds. Electrospray ionization is enhanced by solvents with high or-
ganic phase and low salt content, whereas chromatographic elution is controlled 
by concentrated sodium hydroxide gradients in water (van Dam et al. 2002). Inter-
facing to MS is then only possible with electrochemical exchangers of sodium 
cations-protons that are inserted in the liquid path between column and sprayer but 
comes at the cost of sensitivity and chromatographic resolution. Retention of ionic 
analytes in reverse phase LC can be mediated by hydrophobic ion pairing reagents 
(Huck et al. 2003). Although volatile counter-ions that are compatible with elec-
trospray process can be used, particular care must be dedicated in instrument 
maintenance to loss of sensitivity and signal deterioration. A even more MS-
friendly alternative is hydrophilic liquid interaction chromatography (HILIC), 
which exhibits improved separations of ions in high organic phases and is avail-
able in nanoscale systems, where maximum sensitivity is attained (Alpert et al. 
1994; Tolstikov and Fiehn 2002; Bajad et al. 2006). In general, sensitivity in nano-
LC can be further increased with preconcentration by loading large sample vol-
umes to a short enrichment column that fully retains the analytes in a thin section. 
When the solvent gradient is started, a focused and highly concentrated analyte 
plug elutes from the enrichment column, and is separated on the analytical col-
umn. Unfortunately, the injection volumes of central carbon metabolites is still 
limited when their retention on commercially available phases is not sufficient to 
load large sample volumes without having a fraction already eluting from the en-
richment column, e.g. with most HILIC material. In comparison to GC, the longer 
equilibration time and chromatographic separations of organic gradients reduce 
sample throughputs. In contrast, the milder ionization in LC-MS enables the de-
tection of intact molecules, which produce less populated spectra and facilitates 
identification. 

Among the three platforms, CE-MS features unsurpassed peak capacity, con-
comitant separation of anions and cations, and resolution of most isomers present 
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in central metabolism within short runs (Soga et al. 2003; Harada et al. 2006). CE 
as well offers the possibility to focus the analytes in large volumes by sandwiched 
injection techniques (Britz-McKibbin and Terabe 2003). The drawback of CE-MS 
measurement lies in the expertise and time necessary to obtain reproducible meas-
urements at high-throughputs. In addition, the narrow eluting peaks limit the num-
ber of different fragmentation cycles that can be performed over a peak. 

Overall, all three systems provide access to key intermediates in central me-
tabolism and can cope with large injection volumes which are used to enhance 
sensitivity. To date, GC-MS and LC-MS are the preferred platform to detect label-
ing patterns in amino acids and central carbon metabolism, respectively. CE-MS is 
superior in sensitivity and enables detection of both compound classes. Neverthe-
less, these advantages are apparently not yet sufficient to replace GC and LC. 

5.3 Current developments 

To fulfill the goals of metabolome-based 13C flux analysis (cf. 5), further im-
provements are necessary. In the following sections I address three topics that are 
targets of current research. The first two are of experimental nature and aim at ob-
taining possibly detailed and accurate labeling information from free metabolites. 
Both aspects are pivotal in the quest of comprehensive flux analysis for cells 
grown in complex media. The third topic is the extension of metabolic flux analy-
sis to cope with the frequently occurring isotopically non-stationary systems, 
which will promote metabolome-based flux analyses to a universally applicable 
tool. 

5.3.1 How to measure precise isotopic mass distributions? 

The analogies between fluxome and metabolome measurements stop upon sub-
jecting metabolites to mass spectrometry, because measuring precise mass distri-
butions differs from measuring concentrations, and MS instruments have to be set 
up accordingly. In quantitative concentrations measurements, MS/MS acquisitions 
are the mode of choice for best signal-to-noise and high scanning rate are em-
ployed to obtain more data points on a peak and reduce interpolation errors. In 
contrast, detection of isotopic mass distributions such as needed for 13C flux 
analysis is generally done with full range MS acquisitions, because for each me-
tabolite/fragment a range of 10-15 m/z has to be scanned (or fragmented) due to 
the overlapping presence of naturally occurring isotopes. In complex samples, 
where chromatographic coelution is frequent, or with in-source fragmentation (e.g. 
electron impact ionization in GC-MS), selected ion monitoring looses attractive-
ness because at least 50-100 m/z bins have to be scanned simultaneously and 
complicate acquisition programs must be prepared to ensure that the correct mass 
range is monitored at the elution time of each analyte.  

As a rule of thumb, isotopic fractions of 1 mol% (better if lower) compared to 
the monoisotopic mass should be precisely quantifiable to obtain fluxes with good 
confidence. Hence, the limits of quantitation (LOQ) for mass distributions are at 
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least 2 orders-of-magnitude higher than the LOQ for metabolite concentrations. 
Because of poor ion statistics, low abundant fractions are more prone to inaccu-
racy. Another consequence is that MS detectors must exhibit a wide linear dy-
namic range of >4 decades to effectively measure distributions in real samples 
where analytes are heterogeneously concentrated. If that is not the case (e.g. as in 
most ion traps) multiple injections of different amounts are necessary to character-
ize low and highly abundant species.  

Low mass resolution is also detrimental for exact isotopic distributions, in par-
ticular when quadrupoles or ion traps are used for detection. High-resolving time-
of-flight or Fourier Transform instruments are not affected. Resolution has to be 
increased to ensure that no overlap or crosstalk between neighbor m/z bins occur, 
also after slight calibration drifts. Unfortunately resolution comes always at the 
cost of sensitivity, but this drawback can be partly alleviated with slower scan 
speeds. As mentioned above, this is in conflict with the ideal settings for quantita-
tive concentration measurements because less data points open for peak interpola-
tion errors. In synthesis, detection of exact mass distributions depends on possibly 
high ion counts in full-range MS mode, good mass resolution, and an outstanding 
linear dynamic range. Due to the interdependency of these properties and the gen-
erally low abundance of free metabolites, sensitivity rapidly emerges as the major 
bottleneck in fluxome measurements.  

5.3.2 Fragmentation: the key to obtain the labeling of single atoms 

In metabolomics, fragmentation is extensively utilized for identification and selec-
tive detection. In fluxomics, fragmentation provides labeling imprints at sub-
molecular level and eventually positional enrichment, i.e. the abundance of label 
at single atom positions (Fig. 4). Flux identifiability is subordinated to the 13C pat-
terns that are measurable and hence, in turn, to the fragments that can be gener-
ated. Novel fragments can enable more detailed analyses and more flexibility in 
the choice of the tracer. Also when equivalent fragments of the same metabolite 
are measured (e.g. those with the same carbon backbone), they lead to higher con-
fidence in the flux estimation. As a general rule, it is thus desirable to obtain and 
detect the largest number of fragments possible.  

Routine utilization of fragment data is, however, hindered by the overlap of 
three technical issues: (1) Fragmentation is inducible and happens when molecules 
collide at high energy with gas molecules or electrons, or when they are subject to 
strong electric fields. However, for each ion the break points can only be mini-
mally controlled by the instrument settings. Increasing or decreasing of (collision) 
energy favor formation of low and high molecular weight daughter ions, respec-
tively. It is, however, not possible to break every C-C bond at will, and some at-
oms  are  virtually not  distinguishable  (e.g. C1 and  C2,  or  C5 and  C6  in  Fig. 4). 
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Fig. 4. MS spectra of fragmented glucose-6-phosphate. On each pane, the intact parent 
molecule is drawn with numbered carbon atoms. Directly measurable fragments are indi-
cated by thick arrows. (A) Spectrum resulting by in-source fragmentation in GC-MS. The 
analyte was first methoximated and sylilated to obtain a volatile derivative. Many frag-
ments are observable, but their intensity is too low to quantify isotopic distributions (e.g. 
C3-C6). (B) Spectrum provoked by collisional fragmentation in a LC-MS/MS experiment. 
100% intensity corresponds to that of the parent ion (m/z -259) in absence of collisions. 
Sugar-phosphates are prone to break at the phosphoester bond, so that the carbon-
containing fragments are underrepresented versus the non-informative phosphate ions (m/z 
-97 and -79). Since the charge is located on the phosphate group, only one daughter ion is 
observed when the carbon backbone is broken. Nevertheless, the mass distribution of the 
neutral complement can be calculated from that of the intact molecule. Hence, GC-MS and 
LC-MS/MS provide qualitatively equivalent information, and the true limitation is set by 
ion counts. Considering that for each fragment several m/z have to be measured, LC-
MS/MS might be preferred here because no overlaps between fragments or unknown peaks 
occur. A decision must account for the expected mass shifts caused by 13C enrichment. 
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(2) MS is only able to detected charged species. Hence, when a singly charged 
species is fragmented, two daughter fragments are formed: one is charged and one 
is neutral. The ionic moiety can be detected, while the neutral part is lost and in-
visible in the spectrum (Fig. 4). The isotopic mass distribution of the latter cannot 
be directly measured, but can be inferred with worse precision from those of the 
parent ion and the complementary ionic fragment. (3) The intensities of the frag-
ment peaks are typically 1-2 orders of magnitude smaller than those of the parent 
ion because of ion loss during collisional fragmentation and redistribution of 
daughter ions among different masses (Fig. 4B). Hence, sensitivity becomes once 
more the limiting factor in the determination of accurate mass distributions.  

To summarize, fragmentation is without doubts beneficial to obtain either inde-
pendent information or improved confidence. Accordingly, theories were devel-
oped to deconvolute overlapped fragment spectra (Jeffrey et al. 2002; Rantanen et 
al. 2002). In practice, however, fragment data tends to be qualitative because of 
low ion counts. Since overloading of MS negatively influences resolution and ac-
curacy, the only plausible alternative to obtain sufficient ion counts is seemingly 
to decouple separation and MS detection, i.e. to collect eluate fractions from 
chromatography and then infuse single fractions at very low rates and long times 
to the MS for acquisition. In addition, ad-hoc derivatization protocol can be used 
to provoke breakdown at different sites or increase the abundance (Price 2004). 

5.3.3 Faster, cheaper, and better: non-stationary flux analysis  

Another area of development is isotopically instationary 13C flux analysis 
(Wiechert and Nöh 2005), which undertakes to perform fully-descriptive flux ex-
periments within minutes after introduction of the labeled substrate as isotopic 
steady state is no longer a precondition, also when macromolecules turnover occur 
or large intermediate pools exist (Grotkjaer et al. 2004; van Winden et al. 2005). 
The so far unique strategy outlined to integrate isotopically instationary 13C data is 
the extension of isotopomer balances to the dynamic case by replacement with or-
dinary differential equations. For this purpose, metabolite pool sizes are also 
newly introduced in the equations and fitted in an iterative procedure.  

Time profiles of 13C-patterns must be measured upon start of labeling to moni-
tor the label propagation through the network. Conjoint measurement of metabo-
lite concentrations is not strictly required. Omission, however, causes an increase 
in degrees of freedom, complicates the fitting procedure, and results in worse con-
fidence intervals. Ideally, as many pool sizes as possible should be measured, and 
missing data can only be compensated by multiple labeling experiments (Nöh and 
Wiechert 2006). Notably, due to the metabolic steady state of the culture, the pool 
sizes are constant while the labeling pattern is still instationary. Thus, a single 
measurement fully describes concentrations throughout labeling. Solving the re-
sulting highly non-linear system with thousands of ordinary differential equations 
is the most challenging and time-consuming step, although it can be speculated 
that implementation of elementary metabolite units decomposition would boost 
the calculation by a few orders of magnitude (Antoniewicz et al. 2006). Simula-
tions done by Wiechert and coworkers demonstrate that the flux calculability is 
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tightly connected to sampling time points, total labeling duration, and tracer 
choice. Optimal and detailed a priori design of experiments is therefore mandatory 
(Nöh and Wiechert 2006). 

6 Conclusions 

Metabolome-based 13C metabolic flux analysis is on the track to become a univer-
sal tool to quantify metabolic activity in large networks, higher cells, and complex 
environments. Measuring metabolic fluxes under such conditions is a challenging 
task that demands conjoint experimental, analytical, and mathematical skills. 
Know-how on aspects such as experimental design, execution, and data integra-
tion can be transferred from existing 13C metabolic flux methods developed for 
microbes, where expertise and computation tools were established over the last 
decade. Nevertheless, further technical improvements are still necessary in the 
domains of (i) analytics to increase sensitivity of MS detection, and (ii) mathe-
matical algorithms to efficiently cope with isotopically non-stationary 13C flux ex-
periments.  

These accomplishments will eventually enable to comprehensively estimate 
fluxes, help unravel the underlying control mechanisms that govern metabolic 
fluxes, discriminate genetic mutations, assess the effect of drugs and diet on me-
tabolism, or monitor the metabolic response in health and disease in virtually any 
biochemical reaction network where intermediates are accessible. 
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