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Abstract Precise design of hybrid nanostructures based on dyes in hybrid materials
toward controlled photochemical reactions and novel photoinduced phenomena is
overviewed with the emphasis on the recent developments. Various clays and clay
minerals with different origins and characteristics have been used as hosts to control
the location, orientation, and aggregation as well as the dynamic states (rotation and
diffusion) of the dyes. The designed nanostructures affect photochemical properties
such as efficiency, selectivity, and the rate of some photochemical reactions. Using
the photochemical reactions in nanospaces, unique photoinduced phenomena such
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as nanostructural/morphological change and adsorption/desorption triggered by
irradiation have been found.

Keywords Clays and clay minerals · Host-guest · Photochemistry · Photoinduced
phenomena · Photophysics

Abbreviations

[Ru(bpy)3]
2+ Tris(2,2-bipyridine)ruthenium(II)

AFM Atomic force microscopy
ATR Attenuated total reflection
AZ Azobenzene
C12TMA Dodecyltrimethylammonium ion
C16TMA Hexadecyltrimethylammonium ion
CEC Cation exchange capacity
CT Charge transfer
DMSO Dimethylsulfoxide
HE A synthetic hectorite (Sumecton SWF)
KF A natural montmorillonite (Kunipia F)
LB Langmuir-Blodgett
LbL Layer-by-layer deposition
LDH Layered double hydroxide
LP-RD A synthetic hectorite (Laponite RD)
LP-XLG A synthetic hectorite (Laponite XLG)
MC Merocyanine
MV2+ Methyl viologen
PEMA Poly(ethyl methacrylate)
PIC Pseudoisocyanine
PMMA Poly(methyl methacrylate)
PSS Poly(styrene sulfonate)
PVP Poly(vinyl pyrrolidone)
R6G Rhodamine 6G
SA A synthetic saponite (Sumecton SA)
SP Spiropyran
STN+ Stilbazolium ion
SWy-1 A Na-montmorillonite from Wyoming, USA
SYn-1 A synthetic mica-montmorillonite
TEOS Tetraethoxysilane
TMA Tetramethylammonium ion
TPP Tetraphenylporphine
TSM Fluoro-tetrasilicic mica
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1 Introduction

Photochemical reactions in heterogeneous systems may differ significantly from
analogous reactions in homogeneous liquids/solutions or gas phases [1–6]. Important
roles of the media/supports to control such parameters as the reaction rates/yields
and product selectivity have been recognized so far, so that various photofunctional
hybrids have been designed by organizing molecular species in/on solid surfaces.
The location (proximity), orientation, association/aggregation, as well as the free-
dom (rotation and diffusion) of molecules on the surfaces or in the solids vary
depending on the host-guest interactions at the interface to affect the characteristics
and functions. The molecular and supramolecular designs (by the selection of host
and guest and their composition and the additives) have been done using nanospace
materials such as zeolites, mesoporous silicas, MOFs, COFs, and layered materials
for organizing molecular and polymeric photofunctional species, and unique/useful
photofunctions of the resulting hybrids have been reported [7–11]. Materials with
defined (ordered) nanospaces have advantages as supports to accommodate guest
species because their structure-property relationships will provide indispensable
information on designing materials with controlled properties [12]. Spectroscopic
properties, which are very sensitive to the environment, of the immobilized species,
have given insights to the nanoscopic structures of the host-guest systems where
conventional instrumental analysis does not have access [11–16]. By utilizing
photoprocesses, one can obtain such information as distribution [17–20], orientation
[21, 22], and mobility [23] of the guest species on/in nanospaces.

In this chapter, among possible host-guest systems, the studies on the organiza-
tion of photofunctional species on/in clays (more accurately clay minerals and their
synthetic analogs) will be summarized with the emphasis on the developments in the
last two decades. The attention will mainly be focused on the role of the
nanostructures, which directly and indirectly correlate the photofunctions of the
guest species and the host-guest systems (Fig. 1).

2 Characteristics of Dye-Clay Hybrids for Photochemical
Studies and Photofunctional Materials

Smectites have been used most extensively for a wide range of application including
environmental and biomedical ones [24–28]. Smectites are a type of swellable 2:1
type layered clay minerals and consist of negatively charged silicate layer and charge
compensating interlayer cations which are exchangeable [29–31]. The negative
charge in the layers is generated by isomorphous substitution of framework metal
cations with similar size and lower valency, and to compensate this negative charge,
metal cations such as sodium and calcium occupy the interlayer space. The terms of
bentonite and montmorillonite have often confused, bentonite is a term of a natural
resource, and montmorillonite is the name of a clay mineral. The amount as well as
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the site of the isomorphous substitution influences the surface and colloidal proper-
ties of smectites. Impurities present both within the structure and on the particle
surface, and elements and their amounts vary depending on the source of the clay
minerals. Synthetic analogs of smectites, i.e., hectorite (Laponite, Rockwood Ind.
Co. and Sumecton SWF, Kunimine Ind. Co.) [32], saponite (Sumecton SA,
Kunimine Ind. Co.) [33], and swelling mica (sodium-fluor-tetrasilicic mica, TSM,
Topy Ind. Co. and others) [33], do not contain colored impurities so that they are
advantages for the photochemical studies. In addition to the commercially available
ones, synthetic analogs of smectite have been prepared in the laboratory and used for
the adsorption of dyes [25, 34]. The interlayer cation, which compensates the
negative charge of the silicate layer, is exchangeable by the reactions in suspension
and in solid state [35–37].

Cation exchange with interlayer exchangeable cations and the adsorption of polar
molecules by ion-dipole interactions with interlayer cations and/or hydrogen bond-
ing with the surface oxygen atom of the silicate sheets are known driving forces for

Fig. 1 Possible effects of dye-smectite hybridization
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the intercalation [38–52]. One of the characteristic features of smectites is the
possible surface modification. Nanoporous pillared smectites have been obtained
using inorganic particles and small organic cations as pillars [53–55]. Organophilic
modification has been conducted by the cation exchange with cationic surfactants of
various structures (Fig. 2) [26, 33, 56–61]. Due to the variation of the layer charge
density and the molecular structures of the surfactants, host-guest systems with
controlled microstructures and properties have been obtained.

Layered alkali silicates, namely, magadiite (Na2Si14O29∙nH2O) and octosilicate
(Na2Si8O17∙nH2O), which are characterized by the higher layer charge density than
smectites, have also been used as hosts to construct photofunctional dye-silicate
hybrids. The reactions of the layered alkali silicates involve covalent attachments
through the reactions with the surface silanol groups [20, 64]. On the other hand,
layered double hydroxides (LDHs) are composed of positively charged brucite-type
layers of mixed-metal hydroxides and exchangeable anions located at the interlayer

Fig. 2 Examples of organic cationic dyes and schematic drawing for possible arrangements of
alkylammonium cations [62, 63]
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spaces, which compensate for the positive charge of the brucite-type layers [65]. Due
to the structural characteristics and compositional variation, the application of LDHs
in such areas as adsorption/separation of ions [65–69], catalysis [66–68], polymer
additives [66–68], and medical and biochemical uses [66, 68] has been proposed so
far. The chemical composition of the LDHs is expressed as [M(II)1-XM(III) X(OH)2]
[An�

X/n]
X� where M(II) ¼ Mg, Co, Ni, etc.; M(III) ¼ Al, Cr, Fe, etc.; and A is an

interlayer anion such as CO3
2� and Cl�.

In addition to the crystalline structures, the particle size and its distributions of
layered solids are key issues in order to achieve optimum performance of layered
solids and their intercalates; accordingly, attention has been paid for the powder
morphology during the syntheses as well as classification [27, 70, 71]. Powders
[36, 72], suspensions [73, 74], and thin films [55, 75–77] have been used for the
evaluation of the photoprocesses, as well as for other application [78]. One of the
unique and attractive properties of smectites is their spontaneous swelling in water.
Platy particles pile up with their ab plane parallel to the substrate to form a film when
the suspension is evaporated on a flat substrate [55, 75, 79]. The preparation of thin
films by the Langmuir-Blodgett technique (LB technique) from exfoliated platelets
of clays has also been reported [80, 81]. Inorganic-organic multilayered films have
also been prepared via alternate adsorption of a cationic species and an anionic sheet
of an exfoliated layered solid (layer-by-layer deposition technique, hereafter abbre-
viated as LbL technique) [82–86].

3 Surface Modification

In addition to the structural and compositional variation of smectites and other clay
minerals (Table 1), the possible surface modification with organic/inorganic cations
and polymers makes the variation of the material more versatile (Fig. 2) [87]. Long-
chain alkylammonium ions have been studied most extensively in the chemistry of
organophilic smectites, and the practical application of the organophilic smectites as
adsorbents [25, 88] has been extensively reported. Phospholipids have been utilized
for the construction of environmentally benign organoclay [89, 90]. Several non-
ionic surfactants have also been used for the surface modification of smectites
[75, 91–93]. Intercalation of alkylammonium ions with more complex structures
into layered silicates to precisely design hydrophobic nanospace, and, recently,
flexibility of the interlayer surfactant aggregates has been discussed based on
quasi-elastic neutron scattering data [57].

Microporous and mesoporous solids have been obtained by crosslinking the
nanosheets. The pioneering example is the pillaring with polyoxocations (e.g.,
[AlO4Al12(OH)24(H2O)12]

7+) [94, 95]. Nanoporous solids composed of silicate
layers and metal/metal oxide finite particles have been prepared [96–100]. The
microporous solids composed of silicate nanosheet and small organoammonium
cations (e.g., tetramethylammonium ion, TMA) have been prepared and used for
the separation/sensing and other functional materials [101–107]. The adsorptive
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properties of smectites modified with aliphatic and aromatic ammonium ions have
also been investigated [101, 108, 109]. Pore size and porosity are controlled by
selecting pillaring agents.

Synthetic clays by hydrothermal method have been developed as summarized in
Table 1 and become necessary products for clay research thanks to the high purities
and regular chemical equations. The careful syntheses of the clay minerals have been
done to control the size of the silicate layers and layer charge densities. The research
about the ion exchange led to the development of organically modified clays, which
enabled to intercalate non-polar organic compounds into the interlayer spaces
[110, 111]. The LB and LbL techniques have been used to fabricate thin films,
while the effective swelling and subsequent evaporation of organically modified
clays [76] led the thick films with improved quality.

4 Photophysics of Dye-Clay Hybrid Systems

4.1 Changes in the Absorption Properties, Color Change,
and Stability

4.1.1 Effects of Host-Guest Interactions

The interactions between lone pair of the oxygen atom of silicate layer of clays and
π-electron of dyes were proposed to affect for relatively planar structured dyes such
as crystal violet [38, 39, 45–47], rhodamine B [48], pyronin Y [49], thiazines [50–

Table 1 Abbreviation of specific clays discussed in this chapter

Abbreviation
in this chapter

Product
name Type and origin Producer/authorization company

KF Kunipia F Na-montmorillonite from
Tsukinuno, Yamagawa,
Japan

Kunimine Ind. Co., Reference Clay
Sample of Clay Science Society of
Japan

SWy-1 Na-montmorillonite from
Wyoming, USA

Source Clays Repository of the Clay
Minerals Society

SYn-1 Barasym
SSM-100

Synthetic mica-
montmorillonite

Source Clays Repository of the Clay
Minerals Society

SA Sumecton
SA

Synthetic saponite Kunimine Ind. Co., Reference Clay
Sample of Clay Science Society of
Japan

HE Sumecton
SWF

Synthetic hectorite Kunimine Ind. Co.

LP-XLG Laponite
XLG

Synthetic hectorite Laporte Industry

LP-RD Laponite
RD

Synthetic hectorite Laporte Industry

TSM Fluor-tetrasilicic mica Topy Industry Co.
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52], and methylene blue [40–44, 112, 113]. The adsorption of pyronin Y (Scheme 1)
has been examined in aqueous suspensions of smectites (Wyoming bentonite from
Wards Natural Establishment Inc., a natural bentonite from Ünye, Turkey and
LP-XLG) [49, 114]. Depending on the concentration and the dye-clay ratios, the
absorption shifted, which has been explained as a result of the interactions between
pyronin Y and silicate layer as well as the dye aggregation, although this latter effect
will be exhaustively explained in Sect. 4.1.2. Thiazine dyes such as thionine [51],
methylene blue [41, 42, 51], and tetraethyl thionine [51] (Scheme 1) showed
hypsochromic shifts in clay suspensions [41, 51]. Thionine had absorption at
595 and 560 nm in an aqueous solution, which were attributed to a π-π� transition
of monomer and the absorption of H-dimer (see further details on aggregation types
in Sect. 4.2.1), respectively [51]. By the addition of a Na-montmorillonite, a new
absorption appeared at 528 nm, which was proposed to be caused by the interactions
between the π-electron of thionine and the oxygen of the silicate layers, and another
new absorption at 690 nm appeared, which was ascribed to J-aggregate (consult
Sect. 4.1.2). Methylene blue [40, 115] and tetraethyl thionine [51] also showed
hypsochromic shifts of monomer and a new absorption appeared by the addition of a
montmorillonite. In LP-XLG, the absorption of thionine and tetraethyl thionine did
not shift compared to the solution [51]. It was thought that the thionines had weaker
π-interactions with the silicate layer than those with the bentonites. In the presence of
a vermiculite (obtained from Zonolite), the absorption of the dimer increased and
that of the monomer decreased, while the absorption shift was not observed
[51]. The authors thought that the limited interlayer expansion for the vermiculite
restricted the molecular conformation of thiazines to interact with the vermiculate.
Thus, the hypsochromic shifts of the absorption of the dimers of pyronin and
thiazines in the clay suspensions were observed by the interactions between lone
pair of oxygen atom of silicate layer and π-electron of dyes. It suggested that the
pyronin formed dimer in an aqueous solution, while it was de-aggregated and
adsorbed in the interlayer space of the clays. The polarized IR spectra of the film
of pyronin Y in LP-XLG and the Wyoming montmorillonite [49] suggested that the

Scheme 1 Molecular structures of pyronin Y and thiazines
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interactions between the oxygen of the layered silicates and the π-electron of the
dyes made the molecular orientation of the dyes parallel to the silicate layer.

Stability of dyes is one of the prerequisites for the practical application, and the
dye-clay interactions have been expected to play a role in it [116–126]. The
improvements of the stability of the dyes upon irradiation and heating have been
seen in (1) cationic dyes with smectites, (2) anionic dyes with layered double
hydroxides (LDHs), and (3) nonionic dyes with organically modified smectites
and LDHs. The improvements of the stabilities of the dyes by the hybridization
with the layered materials were explained as results of reducing the intensity of the
incident light by the absorption and scattering with the host [127–129], electronic
stabilization of the dye [130–132], and suppressed gas diffusion mainly oxygen in
the hydrophobic environment [111, 133–139].

An example of the improved chemical stability of the anthocyanin by the
interactions with SA was shown by the color change upon exposure to acidic and
basic atmospheres repeatedly [102]. Such natural dyes as β-carotene, anthocyanin,
carmine, annatto, and carthamus yellow were adsorbed on a hydrotalcite [111, 139]
and organically modified montmorillonite [110, 111]. Carminic acid, safflomin, and
norbixin (Scheme 2) are the main components of carmine, carthamus yellow, and
annatto, respectively [132]. When interacted with the hydrotalcite, the absorption
spectra of carmine showed bathochromic shift as shown in Fig. 3a. The absorption
shift was explained by the electrostatic interactions between carmine and the
hydrotalcite and the planar molecular conformation induced by the adsorption on
the hydrotalcite. As a result, the photostability was improved. Carthamus yellow
showed the same trend as carmine. On the other hand, the stability of annatto was not
affected in the presence of the hydrotalcite, suggesting the adsorption of annatto at
the external surface of the hydrotalcite. The planar conformation was induced by the
intercalation and was thought to contribute to the photostability of the dyes through
the decrease of the lifetime of the excited state by the effective internal conversion. It

Scheme 2 Molecular structures of dyes, which were reported to be stabilized by the host-guest
interactions with clays
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is known that a rate constant of internal conversion is limited by Franck-Condon
factor which is the overlap integral of vibrational parts of wave functions in the states
before and after the transition [140]. Carmine and carthamus yellow were reported to
have planar molecular conformations in hydrotalcite, expecting similar molecular
conformation in excited state to that of the ground state. The conformation similarity
increased the Franck-Condon factor and increased an effective internal conversion
from the excited states. The opposite phenomenon (the dyes adsorbed on the external
surface of smectites exhibited a decreased internal conversion rate) was also reported
as discussed in Sect. 4.2.1. The change of the molecular conformation of the
adsorbed dyes in the excited states was allowed on the external surface, while the
molecular vibration was suppressed if compared with those in solutions.

Photodecomposition of trifluralin (Scheme 2) was reported as a cyclization
between an alkylamino group and one of two nitro groups to form an imidazole
ring [141]. The adsorption of trifluralin onto SWy-1 suppressed the molecular
motion to form the imidazole ring improving the photostability [142].

Rhodamine 6G (R6G in Scheme 2) was intercalated into smectites, KF, SA, and
synthetic hectorites (HE and LP-RD) [143]. The stability of R6G against irradiation
was remarkably improved on KF in both of a suspension and a film. As shown in
Fig. 4, the emission intensity of R6G depended on the clays, and there is a linear
correlation between the photoluminescence intensity and the dye stability,
suggesting the quenching of the excited state of R6G was the key parameter to
determine the stability. The stability of R6G was substantially modified upon the
adsorption onto KF, where the energy transfer from R6G to KF led shorter lifetime
of the excited state of R6G.

Improvement of the stability of R6G upon visible light irradiation was also
reported for a polymer-smectite intercalation compound [143, 144]. R6G was
intercalated in SA with poly(vinyl pyrrolidone) (PVP) to obtain a film, which the

Fig. 3 (a) Diffuse reflectance UV-vis spectra of carmine intercalated in the hydrotalcite at the
amount of 0.025 g/g (dotted line), 0.46 g/g (thin line), and 1.85 g/g (thick line). (b) Change of the
absorbance during the irradiation for carmine intercalated in the hydrotalcite with the amount of (a)
1.85 g/g and (b) 0.025 g/g, (c) carmine mixed with SiO2, and (d) carmine mixed with the
hydrotalcite (Reproduced from the reference [132] with permission)
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decoloration suppressed upon visible light irradiation over the R6G in SA or in PVP
[144]. It was thought that the suppressed oxygen diffusion in the layered structure of
SA-PVP contributed to the observed stability.

Another important process is charge transfer (CT) interactions from dyes to
layered materials which induce bathochromic shift of absorption spectra
[145, 146]. Hybridization of biphenyl with a synthetic hectorite (laponite)-induced
absorption at 320 nm attributed to the CT transition, where the biphenyl acted as an
electron donor and electron-deficient sites or Lewis acid sites of laponite were
electron acceptors [147]. The CT interactions induced a triplet state of biphenyl by
recombination from the CT state, and subsequent phosphorescence at 480 nm was
observed at 130�C which was stronger than the fluorescence.

Anthraquinone-2-sulfonic acid was hybridized with MgAl-LDH
(Mg0.65Al0.35(OH)2(CO3)0.01), and the hybrid showed photoinduced reduction of
the anthraquinone in formamide as shown by the color change from colorless to red
[148]. The red color returned to the initial colorless in the dark. The mono-anionic
and di-anionic anthraquinones with different lifetime were observed (13.9 and
16.9 min). The solvent was thought to act as the electron donor, and a surface of
the MgAl-LDH provides a high pH environment to stabilize the anionic
anthraquinone.

Another example is the diverse coloration of retinal Schiff base by the interac-
tions with different smectites. Retinal in rhodopsin as a photoreceptive unit exists as
a protonated Schiff base in a cis-isomeric state [149], and the rhodopsin provides
three different environments for the retinal Schiff base to give blue (λmax ¼ 425 nm),
green (λmax ¼ 530 nm), and red (λmax ¼ 560 nm) colors with broad absorption
[150]. The similar absorption changes of the retinal Schiff base were observed by
mixing the retinal Schiff base with three montmorillonites, Bengel Bright
11 obtained from Wyoming, USA (Hojun Ind. Co., Japan) (479 nm), a

Fig. 4 (a) Photoluminescence spectra and (b) the relationship between the photodecolorization rate
constant and the photoluminescence intensity (black squares) and the photoluminescence quantum
efficiency (red squares) of R6G in HE, SA, LP-RD, and KF suspensions (Reproduced from the
reference [143] with permission)
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montmorillonite obtained from Mikawa, Japan (503 nm), and Bengel A obtained
from China (Hojun Ind. Co., Japan) (532 nm) [151]. This is a rare example for the
retinal Schiff base to show the color variation after the isolation from the protein.

4.1.2 Effect of the Dye Aggregation

Aggregation of such dyes [152–156] as acridine orange [157–159], methylene blue
[23, 40, 160], azobenzenes [62, 161–169], merocyanines [170, 171], rhodamines
[172–178], nile blue A [179], and porphyrins [180–182] has been reported to be
induced by the interactions with layered materials [183, 184]. According to Kasha’s
molecular exciton theory [185], J- and H-aggregates are distinguished by an angle
between the line connecting centers of the dyes and the long axis of the dye molecule
(α in Fig. 5). When the angle α is larger than 54.7� as shown on the left side in Fig. 5,
the transition from S0 to S2 is allowed, it is called H-aggregate, and it’s characterized
by a hypsochromic shift in the absorption band. When the angle α is smaller than
54.7� as shown on the right side in Fig. 5, the head-to-head aggregate is stabilized,
and the transition from S0 to S1 is allowed. The aggregate shows a bathochromic
shift (redshift) upon aggregation and is J-aggregate. Some dyes were intercalated
into layered materials as monomolecular or bimolecular layers. The tilt angle
between the silicate layer and dyes transition moment may cause shifts in the
absorption spectra.

The effects of the length of the alkyl chain of the guest molecules were shown to
affect the stability of aggregates in layered materials [159, 171]. Equilibrium con-
stants Kb (M

�1) of the adsorption of N-alkylated acridine oranges [158], whose alkyl
chains were methyl to tetradecyl (Scheme 3), onto KF were estimated [159]. The rate
constant of disaggregation km (M�1 s�1) was estimated by the change in the
absorption change of the monomer. As shown in Fig. 6, the second-order rate
constants km increased by increasing the length of the alkyl group for short alkyl
chains (number of C atoms up to 4), and the opposite behavior was observed for
large alkyl chains (C atoms > 4). The variation of km was thought to be due to a

Fig. 5 Schematic
representation of the
relationship between the dye
arrangement and energy
level change by molecular
aggregation

262 T. Yamaguchi et al.



compromise between the steric repulsion and the hydrophobic attraction between the
alkyl chains, respectively.

By freeze-drying the suspensions, auramine O (Scheme 3) was hybridized with
three montmorillonites SYn-1, SAz-1, and SWy-1 obtained from Source Clays
Repository of the Clay Minerals Society [63]. The basal spacings of SYn-1 and
SAz-1 did not change by the hybridization, while the absorption due to H-aggregate
was observed. The authors proposed that auramine O was adsorbed on the external
surface of SYn-1 and SAz-1 as H-aggregates. The absorption and the emission of J-
and the H-aggregates of auramine O were observed for SWy-1 depending on the dye
loading.

Structure of the intercalation compounds of an amphiphilic cationic azobenzene
(AZC2N

+C2OH, in Scheme 3) KF was proposed from the basal spacing (1.86 nm,
corresponding to the gallery height of 0.9 nm) and the bathochromic shift of the

Scheme 3 Molecular structures of dyes which formed aggregates in layered materials
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visible absorption spectra, which was thought to be due to the head-to-tail orientation
[62]. Considering the molecular size of AZC2N

+C2OH and the observed
bathochromic shifts of the visible absorption spectrum, it was proposed that
AZC2N

+C2OH formed J-aggregate as monolayer or bilayer as shown in Fig. 2.
The absorption spectrum of AZC2N

+C2OH intercalated in magadiite showed a
hypsochromic shift, indicating the formation of H-aggregate, which has a gallery
height of 1.57 nm [165, 186]. It was considered that the larger layer charge density of
magadiite led the AZC2N

+C2OH with the higher tilt angle to the silicate layer than
that in KF to lead the H-aggregate (head-to-tail dimer).

The absorption spectra of methylene blue (Scheme 1) in the aqueous dispersions
of smectites, whose layer charge densities were reduced by Hofmann-Klemen effect,
was investigated [23, 115]. The phenomenon called Hofmann-Klemen effect is
attributed to the migration of interlayer lithium ions to the vacancies in the octahedral
sheet of smectites by heating. The absorption of J-aggregate decreased, and the
dimer increased by reducing the layer charge density of the montmorillonite
(obtained from Apache Country, Arizona) [115]. The same trend was seen in
montmorillonites obtained from San Diego Country, California, and Horní
Dunajovice, Czech Republic; a beidellite obtained from Stebno, Czech Republic;
and a smectite obtained from Grand Country, Washington.

Dialkylated spiropyrans (Alkyl-SP-1 and Alkyl-SP-2 in Scheme 3) were interca-
lated into a film of a didodecyldimethylammonium exchanged montmorillonite, and
the aggregation of photochemically formed merocyanines was investigated [171]. A
photomerocyanine formed from 6-NO2-SP has a characteristic absorption at 552 nm,
while those of Alkyl-SP-1 and Alkyl-SP-2 absorbed at 493 and 617 nm, which were
attributed to H- and J-aggregates, respectively.

Aggregation of dyes in the interlayer space has been reported. The emission of
dyes is weaker for H-aggregate due to that the transition dipoles weaken each other
[187, 188], while the emission of J-aggregate is intense, and the Stokes shift is
smaller than those of the monomer [189–191]. Aggregates of pseudoisocyanine (PIC

Fig. 6 Dependence of the
second-order rate constant,
km, on the alkyl chain length
of 1–14 (Reproduced from
the reference [159] with
permission)
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in Scheme 4) have been studied from 1935 [192] and those in layered materials have
been reported from 1996 [193]. PIC has absorption at 490 and 520 nm in an aqueous
solution, and the absorption of J-aggregate at 577 nm is seen only at high concen-
tration [194]. An aqueous suspension of KF (10 mg/L) with PIC (5 � 10�6 M)
showed absorption at 570 nm, which was attributed to the J-aggregate as shown in
Fig. 7. The absorption of J-aggregates increased with increasing the concentration of
KF. The aggregation of PIC was investigated using montmorillonites (SWy-1,
SAz-1, and SYn-1 supplied from Source Clays Repository of the Clay Minerals
Society and KF), SA, synthetic hectorites (SWN supplied from Coop Chemical and
LP-RD), TSM [195–200], and magadiite [201] to find H-aggregate in SWy-1, SWN,
LP-RD, and SA [197, 199, 202, 203]. For TSM, KF, SAz-1, and SYn-1, the
absorption of J-aggregate was observed, and the absorption of the H-aggregate
increased with the increase of the loading amount of PIC. There was no clear
correlation between the cation exchange capacity (CEC) and the types of aggregates.
It was proposed that the particle size of the clays can be a factor to determine the
aggregation. The broadening of the absorption spectra of PIC due to the aggregation

Scheme 4 Molecular structures of cyanines adsorbed on clays

Fig. 7 Absorption spectra of the (a) 5 � 10�6 M PIC aqueous solution and aqueous mixtures
containing (b) 20, (c) 10, (d) 5, and (e) 1 mg of KF and 100 mL of 5� 10�6 M PIC aqueous solution
(Reproduced from the reference [193] with permission)
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was observed for magadiite and dodecyltrimethylammonium (C12TMA)-exchanged
magadiite [201]. Because, in magadiite, the absorption shift was smaller and the
Stokes shift was larger than those of J-aggregate observed in other clays, PIC formed
aggregates in magadiite, while they were not the H- and the J-aggregates.

The H- and the J-aggregates of PIC were switched by swelling of host SA
[204]. A SA film with 46.4 meq/100 g (70%CEC) of PIC had absorption of the
monomer and a shoulder of the H-aggregate. By adding DMSO, the absorption of
the J-aggregate increased, and the monomer and the H-aggregate decreased. The
absorption spectrum returned to the initial shape by removing DMSO by washing
with ethanol and subsequently drying.

Aggregation of rhodamine 6G (R6G, Scheme 2) in the films of Wyoming
montmorillonites [176, 205] and laponites [172, 174–176] was investigated. R6G
had absorption at 527 nm in an aqueous solution, [172] and, by adding the mont-
morillonite, absorption at 534 nm due to J-aggregate and two shoulders at around
500 and 470 nm appeared [205]. The absorption at 500 nm increased, and the shift of
the monomer absorption from 527 to 538 nm was observed in a laponite film, which
corresponded to the formation of the H- and the J-aggregates [172]. H- and
J-aggregates were observed in the absorption and emission spectra of the film of a
hexadecyltrimethylammonium (C16TMA) exchanged KF [206]. Effective
quenching of the emission from the H-aggregate [207] was observed for auramine
O in SYn-1 powder [63], PIC in LP-RD powder [196], and merocyanine 540 in a
bentonite (obtained from Ordu/Ünye in Turkey) and the bentonite exchanged with
C16TMA [208].

4.2 Changes in the Photoluminescence Properties

4.2.1 Effects of the Host-Guest Interactions

Adsorption on the external surface and in the interlayer space of layered materials
suppresses molecular motion of dyes and induces a planar conformation [183, 209–
217]. Three different effects of electrostatic interactions and the suppression of the
molecular motion on the emission spectra have been proposed: (1) the bathochromic
shift of emission by electrostatic interactions, (2) smaller Stokes shift than that in
solutions owing to the similar molecular conformation of the excited and ground
states inducing hypsochromic shift and increase intensity of the hypsochromic
emission, or (3) decrease of the internal conversion rate due to the fixation of the
molecular conformation in the excited state on the external surface. These effects
were reported for porphyrins [17, 218–222], auramine O [223], and
triphenylbenzene derivatives [224].

Porphyrins have two π-π� transitions known as Soret band at around 400–500 nm
and Q-band at around 500–700 nm. The Soret band and the Q-band of
tetraphenylporphine (TPP, Scheme 5) and Fe(III)-TPP shifted by the adsorption on
a purified Wyoming bentonite from 416 to 445 nm and 620 to 664 nm, respectively
[218]. The shift of the absorption was explained by the coplanar structure of the
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porphyrin moieties and the phenyl substituents on the silicate layer. The relationship
between the shift of the Soret band and the molecular structure of porphyrins has
been studied to find that the matching of the intercharge distance of the porphyrins
and the distance of the adjacent negative charge of the silicate layer was important
[17, 219–221]. The shifts of the Soret bands of p-TMPyP, m-TMPyP, and o-TMPyP
(Scheme 5) on SA were 30, 12, and 6 nm compared to their aqueous solutions
[221]. The shifts were larger when the intercharge distance of the porphyrins ( p-
TMPyP, 1.05; m-TMPyP, 0.99; and o-TMPyP, 0.88 nm) was closer to the distance
of the adjacent negative surface charge (1.19 nm). The planar structure of the three
porphyrin derivatives on SA was proposed to be a reason for the shift of the
fluorescence to longer wavelength region as shown in Fig. 8 [225, 226]. Fluorescence
quantum yields and rate constants of the internal conversion of [SbV(TPP)(OH)2]

+

and [SbV(DMPyP)(OH)2]
3+ (Scheme 4) increased by the adsorption because the

excited states of the two derivatives had more similar structures to the ground states
than those in solutions. Among the three tested porphyrins, [SbV(TMPyP)(OH)2]

5+

adsorbed on SA had the fluorescence quantum yield same as that in an aqueous
solution, while the internal conversion rate was lower than those of the others,
suggesting the suppression of the molecular motion to keep the molecular structure
in the excited state by the stronger electrostatic interactions with SA if compared
with [SbV(TPP)(OH)2]

+ and [SbV(DMPyP)(OH)2]
3+.

The fluorescence of methyl viologen (MV2+) shown in Scheme 6 in hectorite and
montmorillonite was observed as a result of the photoinduced charge transfer from
the silicate layers to MV2+ [227]. Change of the emission spectra of MV2+ by the
adsorption on layered materials has been studied [227]. MV2+ and viologen deriv-
atives have been intercalated into montmorillonites [227–231], saponite [232, 233],

Scheme 5 Molecular structures of porphyrin derivatives and Sb-porphyrin complexes adsorbed on
clays (Reproduced from the reference [225] with permission)
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hectorite [227, 231], nontronite [227, 231], vermiculite [229], titanates [234], nio-
bates [235–238], and layered zirconium phosphate [239, 240]. The absorption
spectra of MV2+ showed bathochromic a shift by the intercalation into smectites
(KF, SA, and LP-XLG) [233], the layered zirconium phosphate/phosphonates
[239, 240], and niobate [235–238]. The intercalated hybrid showed reversible
color change to blue by the photoinduced charge transfer from the host.
Non-emissive MV2+ showed fluorescence in an aqueous suspension of a hectorite
(San Bernardino) and a montmorillonite (Clay Spur, Wyoming), and this phenom-
enon was explained by the planar structure of MV2+ on the silicate layer [231]. This
phenomenon can be explained as “adsorption-induced emission.” The emission
intensity of MV2+ increased by the decrease of the loading amount (by the increase
of the concentration of the clays). The self-quenching of fluorescence of MV2+ on

Fig. 8 Fluorescence spectra of p-TMPyP (A), m-TMPyP (B), and o-TMPyP (C) with clay (solid
line) and without clay (dashed line) (Reproduced from the reference [226] with permission)

Scheme 6 Molecular structures of dyes which form excimer in the interlayer space
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the clays was proposed as a reason of the weaker emission at the high loading
amount.

Absorption at 410 and 450 nm appeared in powder of pyrene hybridized with
LP-RD by UV irradiation. Electron spin resonance experiment with and without O2

(triplet quencher) indicated that the absorption was from a triplet state of radical
cation of pyrene [241]. The radical cation of pyrene was thought to be generated by
the photoinduced charge transfer from pyrene to LP-RD. The color of the hybrid was
different depending on the pre-activation temperature of LP-RD. The intensity of the
ESR signal was higher when the pre-activation temperature was lower, suggesting
the interactions of the surface water/OH groups with the adsorbed pyrene.

4.2.2 Excimer Formation

Pyrene has been used as a probe to investigate the surface chemistry [242–247] and
refractive index [248] of clays as well as the surface modification with
alkylammonium surfactants [249–252]. Excimer emission of pyrenemethylamine
(Scheme 6) was enhanced by adding LP-XLS to an aqueous solution of
pyrenemethylamine, suggesting change in the intermolecular distance between the
adjacent pyrenemethylamine molecules [253]. As shown in Fig. 9, co-adsorption of
N-isopropylacrylamide further enhanced the excimer emission, suggesting that N-
isopropylacrylamide reduced the intermolecular distance of pyrenemethylamines to
induce effective intermolecular interactions.

Fig. 9 Schematic illustration of the adsorption of pyrenemethylamine and N-isopropylacrylamide
on LP-XLS and the corresponding normalized emission spectra. (a) Pyrenemethylamine in the
aqueous solution; (b) pyrenemethylamine adsorption on LP-XLS; (c) co-adsorption of N-
isopropylacrylamide on LP-XLS. The spectra a, b, and c correspond to the conditions A, B, and
C (Reproduced from the reference [253] with permission)
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Packing of DPDP [254] (Scheme 6) changed by the swelling of SA with DMSO
[255]. DPDP was intercalated into SA film with various loading amounts from 0.033
to 49.7 meq/100 g (from 0.05 to 75%CEC). At the loading from 0.033 to 26.5 meq/
100 g, the emission of the monomer at 482 nm decreased, while new emission at
588 nm of excimer appeared by the increase of the concentration. The gallery height
of the hybrid increased from 0.48 to 0.93 nm by the swelling of SA with DMSO and
the excimer emission enhanced, suggesting that the swollen SA provides the
interlayer expansion large enough for the π-π stacking of DPDP.

4.2.3 Energy and Electron Transfer Between Molecules Adsorbed
on Clays

The construction of photocatalyst by energy transfer in the interlayer space is a topic
of interest [256–262]. Adsorption on layered materials is a way to concentrate dyes
and to control the proximity, which resulted in efficient energy [19, 263–269] and
electron transfer [18, 31, 270, 271]. Expected effects of hybridization of dyes and
layered materials are (1) efficient quenching of the excited state of the dyes for
photostabilization, (2) separation of the photosensitizer from photocatalyst to avoid
the photocatalytic decomposition of sensitizer, and (3) directional energy and elec-
tron transfer by locational and orientational design.

A possible way to improve the photostability is quenching the photoexcited state
by energy transfer as discussed in Sect. 4.1. The stability of herbicides [272–274],
bioresmethrin [275], and norflurazon [276] was improved by energy or electron
transfers to methyl green co-adsorbed on montmorillonite and to thioflavin T on
SWy-1. The separation of the photosensitizer from the photocatalyst (anatase parti-
cle) by smectite nanosheet induced durability of the photosensitizer. The
photocatalytic oxidation of benzene to phenol was done in an aqueous suspension
of anatase with the tris(2,2-bipyridine)ruthenium(II) (designated as [Ru(bpy)3]

2+)-
synthetic saponite, resulting in a high yield of benzene decomposition and selectivity
of phenol. The hybrid was processed as a film to be used as the photocatalyst layer to
obtain a photocatalytic flow reactor [277, 278].

The fluorescence of [Ru(bpy)3]
2+ was quenched by SO2 gas [107] suggesting a

possible gas sensor application. The fluorescence of [Ru(bpy)3]
2+ was quenched by

the MV2+ co-adsorbed on smectites, and the quenching efficiency was higher when
smectites with larger particle sizes (e.g., TSM) was used if compared with those on
clays with smaller particle sizes (e.g., SA and LP-XLG) [279]. Such quenchers as
cyanine, MV2+, and anthraquinone derivatives were co-adsorbed with cyanine dyes
on laponite RDS (Southern Clay Products, Inc.) to quench the fluorescence of the
J-aggregate of the cyanine [280].

MV2+ (Scheme 7) in the interlayer space of smectites acted as an electron
acceptor [232, 233, 281–284]. It was reported the photoinduced electron transfer
from TPP (Scheme 5) to MV2+ under visible light irradiation to form the TPP radical
cation and MV+ radical cation [281]. The color of MV2+ intercalated in a hectorite-
like layered silicate changed by the adsorption of N,N-dimethylaniline and

270 T. Yamaguchi et al.



2,4-dichlorophenol [285], and the color depended on the layer charge density and the
concentration of the adsorbents. The hectorite-like layered silicate was synthesized
from LiF, Mg(OH), and SiO2 sol with various ratios to vary the layer charge density
[286]. The color of the hybrids of the hectorite and MV2+ changed from yellow to
purple green and purple by the adsorption of N,N-dimethylaniline depending on the
layer charge density and the increase of the concentration of N,N-dimethylaniline.
Color changed from yellow to orange was seen by the adsorption of
2,4-dichlorophenol. The color of the hybrids with N,N-dimethylaniline was
explained to the formation of methyl violet, and that with 2,4-dichlorophenol was
attributed to the charge-transfer complexes.

Effects of the molecular location and orientation on the energy transfer between
adjacent molecules have been investigated in porphyrin-smectites systems [19, 211,
260, 264, 266, 284]. Energy transfer from Zn complexed aniline-substituted por-
phyrin (ZnTMAP, Scheme 7) to pyridine-substituted porphyrin ( p-TMPyP, Scheme
5) was investigated in SA suspension by monitoring the contribution of the fluores-
cence from ZnTMAP excited at 428 nm, which matched the absorption of Soret
band of ZnTMAP [287]. When the two porphyrins adsorbed on SA individually and
subsequently mixed, the contribution of the fluorescence intensity of ZnTMAP was
the same in the concentration region of the porphyrins to 6.6 meq/100 g (10%CEC,
for each), while the contribution decreased in the higher concentration region
(Fig. 10). When the two porphyrins were co-adsorbed on SA, the contribution of
the fluorescence intensity of ZnTMAP was decreased from 0.6 to 0.1 with increase
of the concentration of the two porphyrins to 0.066 meq/100 g (0.1%/CEC for each),
and then, the contribution of ZnTMAP gradually decreased and become negligibly
small at 29.8 meq/100 g (45%CEC for each) as shown in Fig. 10. These results

Scheme 7 Molecular structures of dyes exhibited energy and electron transfer on layered materials
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suggested that the energy transfer between SA layers was major in the suspension
prepared with SAs that adsorbed porphyrins individually, while the intralayer energy
transfer was major in the suspension prepared with SA with porphyrins by the
co-adsorption.

The sequential energy and electron transfers from 2-acetylanthracene to Zn-p-
TMPyP to DNPV2+ (Scheme 6) on SA were reported [288]. 2-Acetylanthracene was
encapsulated in octaamine to be adsorbed on SA with 1:1 ratio of Zn-p-TMPyP. In a
suspension of SA with 2-acetylanthracene in octaamine and Zn-p-TMPyP, the
decrease of fluorescence of 2-acetylanthracene and the increase of that of Zn-p-
TMPyP compared to suspensions were seen, suggesting the energy transfer from
2-acetylanthracene in octaamine to Zn-p-TMPyP. The shorter lifetime of Zn-p-
TMPyP in a suspension of SA with DNPV2+ than that in a suspension without
DNPV2+ suggested the electron transfer from Zn-p-TMPyP to DNPV2+.

4.3 Alignment of Dyes by Host-Guest Interactions: Study by
Linear Polarized Light

Film of propylammonium-exchanged titanate (Na2Ti3O7) was prepared by casting
an aqueous suspension and used as a host of cationic dyes. Pseudoisocyanine (PIC in
Scheme 7) intercalated in the titanate film showed absorption anisotropy [289] as
shown in Fig. 11. The absorbance in the visible region with 5� of the angle between
the film plane and the incident light was decreased by the rotation of the incident
polarized light from 0� to 90�, while the small absorption change was observed with
90� of the angle between the substrate plane and the incident light. It suggests that a
transition moment of PIC, which corresponds to the long molecular axis, was
parallel to the substrate.

Fig. 10 Contribution of
ZnTMAP for fluorescence at
various porphyrin loading
levels for independent
adsorption (squares) and
co-adsorption (circles)
(Reproduced from the
reference [287] with
permission)
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The angles between molecular axes of the following porphyrin derivatives, p-
TMPyP, trans-DMPyP, and cis-DMPyP (Scheme 4), and the silicate layer of SA
were estimated by polarized visible light attenuated total reflection (polarized
vis-ATR) spectra [290]. Figure 12 shows that the absorbance of p-TMPyP of
s-polarized light was larger than that of the p-polarized light. A similar difference
in the polarized absorption spectra was observed in trans-DMPyP and cis-DMPyP.
The angles between the molecular axes of the three porphyrins and the surface of the
silicate layer were estimated to be less than 5�.

Fluorescent dyes adsorbed in layered materials showed linearly polarized emis-
sion, suggesting the alignment of the dye dipole in the interlayer space [291–293]. A
laponite film was prepared by spin-coating an aqueous suspension and was used to
accommodate rhodamine 6G (R6G, in Scheme 2) by cation exchange by immersing
the film in an R6G solution [206, 294, 295]. Fluorescence intensity excited by
horizontally polarized light depended on the direction of the polarizer. The angle
between the long axis of R6G and the silicate layer was estimated to be 28� from the
difference of the fluorescence intensities observed with horizontal or vertical axes of
the film.

Fig. 11 Polarized visible spectra of a film of PIC-Ti3O7. The angle between the substrate plane and
the incident light was set to (a) 5� and (b) 90� by rotating the film; a represents the angle between
the polarization direction of the incident light and the rotation axis of the film (Reproduced from the
reference [289] with permission)
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Polarized fluorescence of rhodamine B [296], fluorescein [297], pyrene [298],
cyanine [299], niflumic acid [300], bis(N-methylacridinium) [301], tris
(8-hydroxyquinolate-5-sulfonate)aluminum(III) [302], polyphenylene [303], and
polythiophene [304] in LDH films prepared by LbL technique was reported. The
anisotropic value r as defined by Eq. (1) was derived to discuss the dye orientation
from emission anisotropy.

r ¼ IVV � IVH
IVV þ 2IVH

ð1Þ

In (1), IVV and IVH are emission intensities with vertical and horizontal directions
excited by vertical light [305]. The fluorescence spectra of a carbocyanine (Scheme
4) intercalated in a MgAl-LDH [303] showed anisotropy (Fig. 13) with the r value as
high as 0.8, where the value was higher than that in a solution (0.2) and nearly twice
of the theoretical highest value in the case without macroscopic alignment (0.4)
[299]. The r value of the carbocyanine was larger than pyrene (0.26) [298], fluores-
cein (0.3) [297], and fluorenone derivatives (0.25) [306], which have planar molec-
ular structures. The orientation of the intercalated dye in MgAl-LDH was thought to
induce the anisotropy.

Fig. 12 Polarized vis-ATR spectra of p-TMPyP with s- and p-polarized light (Reproduced from the
reference [290] with permission)
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5 Photochemical Reactions

5.1 Intramolecular Reactions Affected by Host-Guest
Interactions

Molecular reactions of organic compounds interacted in clays are different from
those in solutions. The molecular reactions of the organic molecules were affected
by the polarity of interlayer space and/or by the suppression of molecular vibration in
the interlayer space [8, 10, 307].

5.1.1 Azobenzene

Azobenzene (AZ) shows photoisomerization from trans- to cis-isomer by UV
irradiation, and the cis-isomer returns to the initial trans-isomer by heat or visible
light irradiation as shown in Scheme 8. The half-lives of the thermal isomerization of
the cis-isomer to the trans-isomer of AZ in a benzene solution at room temperature
and 60�C were 119 [308] and 1.5 h [309], respectively, in the dark following first-
order kinetics. The polarity and the viscosity of the solvent affect the
photoisomerization of AZ [310, 311], and the photoisomerization was suppressed
in packed states [312]. Accordingly, the host-guest interactions are expected to affect
the photoisomerization.

Here, a fraction of the cis-isomer of AZ is used as a measure of
photoisomerization. The fractions of the cis-isomer of AZ at the photostationary
state in cyclohexane [313] and in toluene [314] solutions were 80 and 90%,
respectively. Although the fraction of the cis-isomer is different depending on the
substituents of the azobenzene and the wavelength of the incident light [315], the
fraction of the cis-isomer in polymethyl methacrylate (PMMA) was as high as that in
the toluene solution [316]. The fraction of the cis-isomer became smaller in poly
(styrenesulfonate) (PSS) [317], azobenzene polymer [318], SiO2 [316], and zeolite

Fig. 13 Polarized
fluorescence with the
intensities of IVV and IVH and
the r value for the hybrid of
the carbocyanine in MgAl-
LDH (Reproduced from the
reference [303] with
permission)

Photofunctions of Dye-Clay Hybrids: Recent Developments 275



[313] as summarized in Table 2. The fraction (83%) of the cis-isomer of trimethylAZ
was larger than that (60%) of hexamethylAZ in the methylcyclohexane-isohexane
2:1 solution [319] and that (64%) of C1AZC2OH (in Table 2) in a SiO2 film prepared
by a sol-gel reaction with tetraethoxysilane (TEOS), but it was smaller than that
(93%) in the ethanol solution [316] (Table 2). It was explained that the steric
repulsion between the azobenzene derivatives and the media is an important factor
to change the molecular fraction of the cis-isomer. The azobenzene derivatives,
which were introduced as building blocks of co-polymers (PEAZ and COClAZ in
Scheme 8), showed a smaller fraction (65–70% for PEAZ and 50% in a swelled film
for COClAZ) of the cis-isomer than that in the AZ solution of cyclohexane. The
steric repulsion between the azobenzene part and the other part of the polymer
suppressed the isomerization. LB films with amphiphilic azobenzene derivatives
(as summarized in Table 2) have been studied [320–332]. The fraction of the cis-
isomer was as high as 90% in the LB films of C8AZC3SO3 (Scheme 8) with poly
(diallyldimethylammonium chloride) [332].

AZ was adsorbed on a sodium montmorillonite by solid-solid reactions [334] and
from vapor [335]. Adsorption of AZ on a kaolinite from aqueous solution was also
reported [217]. Photochemical studies of AZ in layered materials were initiated by
Ogawa et al., and the first one was that on the AZ intercalated in an organically
modified montmorillonite [334]. Then, amphiphilic cationic azobenzenes were
intercalated into a montmorillonite [161], followed by the intercalation of various

Scheme 8 Molecular structures of azobenzenes introduced in this chapter
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ionic azobenzenes (summarized in Table 3) into layered clay minerals [62, 163–165,
167, 186, 336–340], layered double hydroxide (LDH) [341], potassium hexaniobate
(K4Nb6O17) [342], and a titanoniobate [343] by ion exchange reactions.

The photochromism of AZ was observed in organically modified KF [334] and
TSM [162, 349]. The fraction of the cis-isomer of AZ in
didodecyldimethylammonium (2C182C1N

+)-TSM was about 80% at the

Table 2 Fraction of cis-isomer of azobenzene derivatives

Derivative State

cis-
isomer
fraction

Excitation
wavelength
(nm) Reference

AZ Cyclohexane 80% 254 Kojima
et al.
[313]

Toluene 91% 365 Fischer
et al.
[314]

Zeolite NaY (pore size: 0.74 nm) 80% 313 Kojima
et al.
[313]

Sodium mordenite (pore size:
0.7 � 0.65 nm)

50% 313 Kojima
et al.
[313]

TrimethylAZ Methylcyclohexane-isohexane 2:1 83% 313 Gegiou
et al.
[319]

HexamethylAZ Methylcyclohexane-isohexane 2:1 60% 313 Gegiou
et al.
[319]

C1AZC2OH Ethanol 93% 365 Ueda et al.
[316]

PMMA (Mn ¼ 1.0 � 105,
Tg ¼ 105�C)

93% 365 Ueda et al.
[316]

SiO2 (sol-gel film) 64% 365 Ueda et al.
[316]

PEAZ-PAA Multilayer film with
polystyrenesulfonate (PSS)

Dry film:
31%
Swollen
film: 50%

320–380 Suzuki
et al.
[317]

COClAZ Introduced as a part of polymers in
N,N-dimethylacetamide

65–70% 370–400 Beattie
et al.
[318]

AZC2N
+C2OH MCM-41 with 3.2 nm pore size 70% 350 Ogawa

et al.
[333]

C8AZC20Py
+ LB film with

dimyristoylphosphatidic acid
(DMPA)

Ca. 90% 365 Maak
et al.
[332]
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photostationary state under a 500 W super high-pressure Hg lamp [162], while that
in octadecyltrimethylammonium cation (C183C1N

+)-TSM was about 35% under a
100 W high-pressure Hg lamp [349]. The difference of the fraction of the cis-isomer
is thought to be due to the molecular packing of the surfactants in the interlayer
space. The thermal cis- to trans-isomerization of AZ in C183C1N

+-TSM took 2 days
[349] which was faster than the half-life of cis-AZ in a benzene solution (5 days)
[308]. The thermal isomerization of cis-AZ in the solution followed a first-order
kinetics while in such polymers as poly(methyl methacrylate) (PMMA) [350] and
poly(ethyl methacrylate) (PEMA) [351] and a silica gel synthesized by sol-gel
method did not follow the first-order kinetics [350], indicating that the azobenzene
molecules were in several environments in these solid-state materials.

The photochromism of cationic azobenzenes in montmorillonites [62, 161, 344],
saponites [163, 337, 352], a fluorohectrite [337], taeniolite [163], and magadiite
[164, 165, 186, 346] was reported [167]. Organically modified fluoro-tetrasilicic
mica [345], montmorillonite [353], and beidellite [353] were also used. As summa-
rized in Table 2, the fraction of the cis-isomer of AZC2N

+C2OH in mesoporous silica
(MCM-41) with the pore size of 3.2 nm was 70% [333], and those of AZ in a zeolite
NaY (pore size: 0.74 nm) and a sodium mordenite (pore size: 0.7 � 0.65 nm) were
80 and 50%, respectively [313]. The fraction of cis-isomer of the cationic
azobenzene (AZC2N

+C2OH, Table 3) in magadiite at room temperature was 80%,
similar to AZ in a cyclohexane solution [165]. It was thought that the structural
change of azobenzenes was accommodated by the change of the basal spacing to
achieve the relatively high yield of cis-isomer. The thermal isomerization of cis-
isomer of AZC2N

+C2OH in magadiite followed the first-order kinetics, indicating
that AZC2N

+C2OH was homogeneously distributed in magadiite. The fraction of
cis-isomer at the photostationary state decreased in KF [161] and magadiite [165] at
low temperatures. The fraction of cis-isomer of the cationic azobenzenes
(C8AZC10N

+ and C12AZC5N
+, in Table 3) in KF at room temperature was about

50%, while cis-isomer was practically not detected at the temperature lower than
200 K, suggesting that the molecular motion was suppressed in the interlayer space
of KF.

There are several examples of the suppression of the trans- to cis-isomerization.
In a fluorohectorite (obtained from Corning Inc.) in both suspensions and films,
photoisomerization of N+C1AZC1N

+ (Table 3) was suppressed, while AZC1N
+

isomerized as shown by the change in the absorption spectrum (Fig. 14) [337]. It
was explained that attractive electrostatic forces between the silicate layers and the
dicationic N+C1AZC1N

+ hindered the isomerization. Photoisomerization of
N+AZN+ (Table 3) was suppressed by the adsorption on SA [348]. Both trans-
and cis-isomers of N+AZN+ were exchanged on SA. The cis-isomer showed
photoisomerization to the trans-isomer on SA by 420 nm light irradiation with a
higher quantum yield than that in an aqueous solution (without clay), while trans-
isomer on SA did not show photoisomerization. The suppression of the trans- to cis-
isomerization was thought to be due to the matching of the intercharge distance of
the trans-isomer and that of the adjacent negative surface charge of the silicate layer.
The trans-isomer interacted with the silicate layer with both of two cationic moieties
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and the molecular motion was suppressed. In the case of the cis-isomer, one of the
two cationic moieties interacted with the surface charge, leading that the cis-form
isomerized to the trans-isomer.

Nonionic azobenzenes intercalated in organically modified clays and cationic
azobenzenes exchanged on clays showed photochromism with the relatively high
fraction of the cis-isomer at the photostationary state. When a dicationic azobenzene
was adsorbed on SA, the isomerization of the trans-isomer was suppressed. By the
design of the interlayer space of clays, the control of the photochromism of
azobenzene such as the fraction of the cis-isomer, thermal fading speed to achieve
quick response, and bistability is expected.

5.1.2 Diarylethene

Photochromism of diarylethenes is attributed to reversible photocyclization between
two aryl rings [354]. Open-ring isomer of diarylethenes shows photocyclization
under UV irradiation and closed-ring isomer with a planar π-system forms. Both
of the open-ring and the closed-ring isomers do not show the thermal isomerization
to give P-type (thermally irreversible, but photochemically reversible) photochro-
mism. The reversibility and the durability of the diarylethenes have been investi-
gated by Irie through molecular design [354]. The points are (1) substitution with a
ring structure to suppress the cis-trans isomerization of stilbene and (2) substitution
with thiophene rings to stabilize the closed-ring isomer as shown in Scheme 9. The
open-ring isomer of the diarylethenes has two molecular conformations,

Scheme 9 Molecular
design of diarylethenes

Fig. 14 UV-vis absorption spectra of (a) AZC1N
+ and (b) N+C1AZC1N

+ in a fluorohectorite
dispersion. The spectra were recorded before (solid line) and after the UV irradiation (dashed line).
Difference spectra were derived by subtracting the spectrum before the irradiation from that of the
irradiated solution (dotted line) (Reproduced from the reference [337] with permission)
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photoinactive parallel and photoactive antiparallel conformations, and the ratio of
these conformations are almost equal in solution [354]. In addition to the photoin-
duced oxidation of thiophen rings [355], a photoinactive isomer, which formed by
the condensation of two thiophen rings, was reported as a deactivation process of
diarylethenes [356–359]. In order to improve the reversibility and the yield of
photocyclization, control of the molecular conformation of the diarylethene has
been examined by the molecular and supramolecular designs using such intramo-
lecular interactions as hydrogen bonds [360, 361], intramolecular steric repulsion
[362, 363], as well as the host-guest interactions in nanospaces [364, 365]. Almost
unity quantum yield (98%) of a ring-closing reaction of a diarylethene derivative was
achieved in a hexane solution by restricting the molecular motion with intramolec-
ular hydrogen bonds, being smaller in polar solvents (in methanol solution: 54%)
[360, 361].

Restricted molecular motion by host-guest interactions is expected to affect the
ring-closing reaction. A pyridine- and aniline-substituted diarylethenes (Py-DAE
and An-DAE, Scheme 10) were intercalated into KF and magadiite by cation
exchange [366, 367] and covalent functionalization [368, 369], respectively. An
intercharge distance in the parallel conformation of Py-DAE (0.9 nm), which was
shorter than that of the antiparallel conformation (1.3 nm), matched with the distance
between adjacent negative charge of KF (0.9 nm) so that the parallel conformation
was preferred on KF. As a result, a change of absorption owing to the
photocyclization of Py-DAE in KF suspension was smaller than that in a solution
(without clay) [367]. The reversibility of Py-DAE photochromism was improved by
co-intercalation of dodecylpyridinium ion [366]. The formation of the parallel
conformation was suppressed by the co-intercalation of dodecylpyridinium.

Scheme 10 Molecular structures of diarylethenes hybridized with clays

Photofunctions of Dye-Clay Hybrids: Recent Developments 281



An-DAE covalently bound on magadiite gave improved reversibility of the
photocyclization compared with that in an ethanol solution [368, 369]. The molec-
ular rotation from the antiparallel to the parallel conformation of An-DAE was
suppressed by the covalent attachment to the silicate layer. Reversibility of photo-
chromisms was also improved by restricting the molecular motion by the confine-
ments. It was also claimed that the suppression of the parallel conformation
improved the reversibility. The suppression of the generation of the photoinactive
isomer was also concerned for the reversibility.

5.1.3 Spiropyran

Photochromism of spiropyran is dependent on the polarity of the molecular envi-
ronment. In a non-polar environment, spiropyran (SP) is more stable than
photomerocyanine (photoMC) (Scheme 11) as zwitter ionic structure [370]. 6-
NO2-MC is photochemically formed from 6-nitrospiropyran (6-NO2-SP, in
Scheme 12) in toluene showing blue color with a half-life of 5.6 s at room temper-
ature, while 6-NO2-MC in ethanol was red and the half-life is 17 min [371]. The
phenoxyl moiety of merocyanine is protonated in acidic condition, and the proton-
ated merocyanine shows yellow; thus, photochromism of spiropyran in the acidic
condition is related to three isomers of spiropyran, merocyanine, and protonated
merocyanine forms [370, 372, 373].

SP, the protonated MC, and 6-NO2-SP were intercalated into KF by mixing in a
mixed solvent of methanol and water and subsequent filtration [170]. The hybrids of
KF were yellow, suggesting that SP and 6-NO2-SP converted to the protonated MC,
which was stabilized by the interactions with hydroxyl groups at the edge of the
silicate layer. 6-NO2-MC generated from 6-NO2-SP is red in a toluene suspension of

Scheme 11 The photochromism of spiropyran in (a) non-polar and (b) polar environment
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HE by the UV irradiation [374], indicating that 6-NO2-MC adsorbed on HE by the
host-guest interactions.

Dihydropyrenes [375], Stenhouse salts [376, 377], and binaphthyl-bridged imid-
azole dimers [378, 379] showed negative photochromism (opposite behavior to
normal photochromism in non-polar environment; photodecoloration by visible
light and thermal coloration) (Scheme 11b). High conversion of the
photoisomerization of the negative photochromic compounds with respect to normal
photochromism is possible because of the absence of the visible light absorption by
the photochemically formed colorless isomer. In polar environments such as in
mesoporous silicas [380–383], zeolites [383–385], and LDHs [386, 387], MC
form is thermally more stable than SP form. These characteristics were utilized to
control negative photochromism [380, 381, 388]. Both of Py-SP and 6-NO2-Py-SP
showed negative photochromism on KF [389, 390]. It was thought that the cationic
parts of pyridine and aniline moieties electrostatically interacted with negative
charges on the silicate layers and the merocyanine forms were stabilized.

Nonionic spiropyrans, SP and 6-NO2-SP, and a cationic spiropyran, 6-NO2-Py-
SP, showed normal photochromism in a cetyltrimethylammonium (CTA+)
exchanged KF [170, 391, 392]. The CTAB provided the hydrophobic environment
for the spiropyran derivatives to show normal photochromism [171]. The hydro-
phobicity of the clays is controlled by intercalating a wide variety of surfactants.

Scheme 12 Chemical structures of spiropyrans hybridized in clays
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5.2 Intermolecular Reactions

The intermolecular reactions in/on nanospaces have been used for (1) stereoselective
reaction and (2) trigger of photoinduced phenomena [393]. Intermolecular distance
and orientation of guests in layered materials have been utilized to control the
stereoselective reactions [394, 395].

5.2.1 Diels-Alder Reaction in Clay Interlayer

Diels-Alder reaction is known as a [4 + 2] cycloaddition between a π-conjugated
diene and an alkene to form a six-membered ring. A major reaction product is
predicted by Woodward-Hoffman rules, while some by-products are included in
the products [394, 395]. Because the kinetically stable product is the major product
of Diels-Alder reaction (endo rules), high temperatures are not recommended to
accelerate Diels-Alder reaction with keeping the reaction selectivity. The addition of
the catalyst, which does not affect the reaction selectivity, is proposed to increase the
rate constant for Diels-Alder reaction. Acceleration of the dimerization of
1,3-cyclohexadiene [396] and the cycloaddition between 2,3-dimethyl-1,3-butadi-
ene and acrolein [397] in the presence of a montmorillonite (K10) with Fe(III) was
reported. A reaction yield of the dimerization of 1,3-cyclohexadiene increased to
49% even at 0�C for 10 h by adding K10 with Fe(III) with keeping the product
selectivity the same compared to a reaction yield (30%) at 200�C for 20 h without
K10 [398]. The yield (80% at 20�C for 3 h in water) of the cycloaddition increased to
95% at 20�C for 0.3 h by adding the K10 with Fe(III). The reaction condition was
optimized to �24�C for 4 h in dichloromethane to achieve the yield of 96% with
keeping the product isomer ratio. Though the role of the clay for the improved
selectivity of Diels-Alder reaction was not explained clearly [396, 397], molecular
packing of guests in clays are thought to contribute [176, 193].

5.2.2 [2 + 2] Photocycloaddition

According to Woodward-Hoffman rules, a [2 + 2] cycloaddition does not progress
by heat and is photochemically allowed. Some of the stereoisomers are obtained by
the [2 + 2] cycloaddition due to a biradical process [399]. Packing (orientation) at the

Scheme 13 Photocycloaddition of 2-cyclohexene-1-one
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initial state and the molecular conformation of the intermediates affect the
stereoselective [2 + 2] cycloaddition. Three products are possible by the cycloaddi-
tion of 2-cyclohexene-1-one in a solution as shown in Scheme 13. The reaction yield
of photocycloaddition of 2-cyclohexene-1-one in the benzene solution under UV
irradiation for 10 h (without clay) was 25%, and the ratio of the products of anti-HH,
syn-HT, and anti-HT was 8:0.1:29 (Scheme 13) [400, 401]. By adding SA, the
reaction yield remarkably increased to 72%, and the ratio of the products of anti-HH,
syn-HT, and anti-HT was 82:0.1:5 [400, 401]. It was proposed that 2-cyclohexene-1-
one aggregated in a parallel fashion, which led the effective photocycloaddition to
anti-HT. The photoluminescence of the excimer of 2-cyclohexene-1-one was
observed for the clay suspension.

Stilbene shows cis-trans isomerization and dimerization. Four possible
photodimers of the stilbene are obtained as shown in Scheme 14. The photochem-
istry of stilbazolium ion (STN+, Scheme 14) has been investigated to find
stereoselective photodimerization [214, 402–410]. A higher reaction yield of
photodimerization of STN+ (the total yield, 98%, and the cis-isomer, 14%; syn-
HT, 70%, and syn-HH, 5%, respectively) under UV irradiation for 30 min in an
aqueous suspension of a saponite than that in a solution (the total yield, 69%, and the
cis-isomer, 67%, syn-HT, 2%, and anti-HH, 2%, respectively) was reported
[402]. Cyano- and methyl-substituted STN+ were used to show that the hetero
dimer was a major product thanks to the formation of the exciplex between the
electron-donating methyl-substituted and the electron-accepting cyano-substituted
stilbenes in the interlayer space of SA [404]. Recently, three stilbazolium deriva-
tives, STN, MeSTN+, and C16STN

+ (in Scheme 14), were intercalated into a N-(2-
(2,2,3,3,4,4,4-heptafluorobutanamido)ethyl)-N,N-dimethylhexadecan-1-ammonium
bromide exchanged SA by mixing in HCl aqueous solution to examine the selectiv-
ity of the photochemical reactions [409]. Three factors, (1) electronic interactions
between the negatively charges SA surface and the stilbazolium derivatives,
(2) hydrophobic interactions among the long alkyl chains of the surfactants, and
(3) both hydrophobic and lipophobic interactions of the perfluoropropyl moieties of
the surfactant, affected the selectivity.

A [2 + 2] cycloaddition in the interlayer space of a hydrotalcite [411] led oligomer
of phenylenediacrylate with a head-to-head structure [412]. p-Phenylenediacrylate
was exchanged on a hydrotalcite (Alcamac Cl supplied by Kyowa Chemicals Ltd.)
and was irradiated a 300 W medium pressure Hg lamp for 6 h in the aqueous
suspension under stirring. The ratio of monomer, dimer, trimer, and oligomer was
0:22:31:47 after the irradiation for 6 h. In contrast, the ratio of the monomer and the
dimer in an aqueous solution of p-phenylenediacrylate (without the hydrotalcite) was
74:26, and the trimer and the oligomer were not obtained. The polymerization degree
was up to 10. The oligomer was assigned to the syn-head-to-head structure as shown
in Scheme 15. The oligomer of p-phenylenediacrylate was not obtained by the
irradiation to the powder.

The stereoselective cycloaddition was achieved by the molecular packing in the
interlayer space of clays. Aspect ratio [413] and layer charge density [414–417]
affected the yield and the selectivity. The selective cycloadditions were also reported
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in such nanospace materials [418] as zeolites [419, 420], mesoporous silicas [421],
and a surfactant intercalated graphite oxide [422].

Scheme 14 Molecular structures of stilbene derivatives and photoreaction of trans-stilbene
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5.3 Uses of Photochemical Reactions as Trigger
for Photoinduced Phenomena

5.3.1 Photoinduced Change in the Basal Spacing

The change in the basal spacing by photoirradiation is the first example of photoin-
duced structural change in intercalation compounds [334]. Azobenzene (AZ) shows
reversible photoisomerization between a rod-like-shaped trans-isomer and a bending
structured cis-isomer (Scheme 8), and a molecular size of a long axis was switched
between 1.21 nm for the trans-isomer and 0.74 nm for the cis-isomer. AZ was
intercalated into n-dodecylammonium exchanged KF by mechanical mixing without
a solvent [334]. The basal spacing of the organically modified KF increased from 1.8
to 3.0 nm by the intercalation of AZ. The basal spacing of the hybrid increased from
3.0 to 3.1 nm by UV irradiation, which is the first example of photoinduced change
in the basal spacing.

It was reported that the basal spacing of magadiite intercalated with
AZC2N

+C2OH (Table 3) changed from 2.69 to 2.75 nm under UV irradiation and
retuned to 2.69 nm by visible irradiation [165, 186], while those of KF intercalated
C8AZC10N

+ and C12AZC5N
+ (Table 3) did not change by the isomerization of the

cationic azobenzenes in the interlayer space [161]. Basal spacings of the montmo-
rillonite with a cation exchange capacity of 143 meq/100 g intercalated aminoAZ
and 4,40-diaminoazobenzene were simulated [423]. The simulated basal spacings
with the trans-isomers of aminoAZ and 4,40-diaminoazobenzene were 2.0 and
2.1 nm, and those with the cis-isomers were 1.8 nm. The simulation did not match
the experimental observations, suggesting that the photoswitching of the basal
spacing was not explained simply by the isomerization of azobenzene.

To state the point, more recently, it was reported that the basal spacing of
AZC2N

+C2OH-magadiite under humidity of 5% was negligibly small [346], while
the change between 2.69 and 2.75 nm was observed when the reaction was
conducted under ambient condition [165, 186]. It suggests that the basal spacing

Scheme 15 Oligomerization of p-phenylenediacrylate in the interlayer space of the hydrotalcite
(Reproduced from the reference [412] with permission)
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change was induced by the adsorption of vapors. The basal spacing of a naphthalene-
substituted cationic azobenzene (NaphAZ in Scheme 16)-magadiite was observed
during UV irradiation [346]. The basal spacing decreased by UV irradiation from
2.89 to 2.79 nm and did not return to the initial value, indicating that the molecular
packing after the UV irradiation changed from the initial state.

The change of the basal spacing of clays was also induced by photoisomerization
of a pyridine-substituted spiropyran (Py-SP in Scheme 12) [389]. Py-SP was inter-
calated into KF by two methods, (1) ion exchange with the interlayer sodium cation
and (2) guest replacement using the ion exchange of the interlayer sodium cation
with cetyltrimethylammonium bromide (CTAB) and subsequent exchange with
Py-SP. The basal spacing of the hybrid prepared by the ion exchange was switched
between 1.55 and 1.40 nm by 365 nm UV and 600 nm visible light irradiation,
respectively. The basal spacing (1.55 nm) for the spiropyran form with a twisted
molecular structure was larger than that for the merocyanine form with a planar
molecular structure (1.40 nm). In contrast, the basal spacing (1.38 nm) of the hybrid
prepared by the guest replacement did not change. The co-existing CTAB in KF
expanded the inter-layer distance to accommodate Py-SP and Py-SP isomerized
without changing the basal spacing.

The irradiation induced another change of a microscopic region. An azobenzene
derivative with fluoroalkyl chain (C3F7N

+AZC6H13 in Scheme 16) was intercalated
in potassium hexaniobate (K2Nb6O17) [342, 424] to obtain a spiral tube structure
[424]. The interlayer distance of the tube was changed by irradiation of 368 nm UV
and 463 nm visible light irradiation with a simultaneous structure change of the tube
[342]. The size changes of the tube from 244 to 93 nm and to 170 nm by UV and
visible irradiation, respectively, were observed (Fig. 15). As shown in Fig. 16, a
bottom edge of a hybrid film of C3F7N

+AZC6H13 and the niobate was slid out by UV
irradiation (point A) up to 1.5 μm, and the edge returned to the initial position by the
subsequent visible light irradiation (point C) [352, 425]. These reports suggest that
the basal spacing change by photoisomerization of C3F7N

+AZC6H13 with a nano-
meter scale induced the structure change with a micrometer scale.

Scheme 16 Molecular structure of a naphthalene-substituted azobenzene and a trifluoromethyl-
substituted anionic azobenzene
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5.3.2 Photoswitching of Wettability

Photoswitching of surface properties of layered material films [426] by
functionalization with photochromic compounds is expected owing to polarity
change with photoisomerizations. Photoswitching of wettability of a layered double
hydroxide film (ZnAl-NO3-LDH film) was reported by functionalization with a
trifluoromethyl-substituted anionic azobenzene (CF3AZC5COO

� in Scheme 16)
[427]. The film was synthesized by putting a porous anodic alumina/aluminum
(PAO/Al) substrate into the solution containing zinc nitrate and ammonium nitrate
[428] and the subsequent intercalation of CF3AZC5COO

�. The morphology of the
film of the LDH crystal seemed to have a curved hexagonal sheet structure
(Fig. 17a). A water contact angle of the film was 151 � 1�, while the contact
angle decreased to 73 � 1� by 365 nm UV irradiation (Fig. 17b, c). The contact
angle was returned to the initial value by subsequent visible light (420 nm) irradi-
ation. The cis-isomer of azobenzene has larger polarity owing to the bending
structure, indicating that the surface of the film with the cis-isomer had higher
polarity than that with the trans-isomer. An advantage of this system is thought to
be an easy preparation method of ion exchange method [35, 36, 283], which is
expected to make a film with a large area compared to other films that showed
photoswitching of wettability [429, 430].

Fig. 15 Atomic force microscopic (AFM) images of morphological change of a hybrid of
C3F7N

+AZC6H13 and the hexaniobate: (A) AFM top-view and (B) cross sections at the white
dash lines of parallel of the short axis of the tube (Reproduced from the reference [342] with
permission)
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Fig. 16 3D morphology changes in the hybrid film. (a) Height profile of the hybrid film. (b)
Relative distance from the reference point to the film edge vs the number of irradiation cycles. (c)
Film thickness at a point E located a constant distance from the reference point vs the number of
irradiation cycles (Reproduced from the reference [425] with permission)

Fig. 17 SEM images of the top and cross section views of the hybrid of CF3AZC5COO
�

intercalated ZnAl-LDH (a) and shapes of a water droplet on the hybrid film surface (b) before
the UV irradiation and (c) after the UV irradiation (Reproduced from the reference [427] with
permission)
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5.3.3 Photoswitching of Magnetism

Photoswitching of magnetism of layered double hydroxides (LDHs) was reported by
intercalation of photochromic compounds of spiropyrans [431–435], azobenzenes
[436, 437], and diarylethenes [438–440]. Two main contributions of intralayer
superexchange interactions between metal cations and interlayer dipole interactions
between the LDH layers were claimed to control the magnetism of the LDHs
[441]. Because the photochromic compounds change shapes, sizes, and polarities
by irradiation, the photochromic compounds affected the magnetism of the LDHs-
dye hybrids.

Magnetism of layered (C3H7)4N[Fe
IIFeIII(C2O2S2)3] was explained by charge

transfer at 120 and 6.5 K between FeII and FeIII [432, 442, 443]. The phase transition
at 120 K was attributed to the charge transfer between FeII (spin angular momentum
S ¼ 1/2) and FeIII (S ¼ 2) (the authors named high-temperature phase) to form the
state with FeIII (S ¼ 5/2) and FeII (S ¼ 0) (low-temperature phase). The layered
(C3H7)4N[Fe

IIFeIII(C2O2S2)3] showed ferromagnetism below 6.5 K due to the
charge transfer between the FeIII (S ¼ 5/2) and the FeII (S ¼ 0). A hybrid of
[FeIIFeIII(C2O2S2)3] with MePy-SP (Scheme 17) [431, 433, 434] showed the charge
transfer phase transition from the high-temperature phase to the low-temperature
phase at 75 K and the ferromagnetic phase transition at 5 K [434]. Upon UV
irradiation (365 nm), the intercalated MePy-SP isomerized to a merocyanine form
(MePy-MC), and the isomerization induced the charge transfer between FeII and
FeIII. As a result, the charge transfer phase transition from the high-temperature
phase to the low-temperature phase was not observed, and the ferromagnetic phase
transition was observed at 22 K. Taking into account that an alkylammonium
surfactant with a long alkyl chain stabilized the high-temperature phase and

Scheme 17 Anionic photochromic compound intercalated into LDHs for photoswitching of
magnetism

Photofunctions of Dye-Clay Hybrids: Recent Developments 291



increased the ferromagnetic phase transition temperature TC, [431] the longer
molecular length of MePy-MC than that of MePy-SP increased TC.

The magnetism of LDHs depended on the dipole interactions between the LDH
layers which are smaller with longer interlayer distance [441]. A CoAl-LDH
(Co0.69Al0.31(OH)2(CO3)0.155(H2O)0.3) had spontaneous magnetization below the
critical temperature TM at 4.7 K [444]. TM of a CoAl-LDH (Co0.65Al0.35(OH)2)
was switched by the cis-trans photoisomerization of the intercalated
dicarboxylazobenzene (designated as AZCOO�) [436]. TM of the CoAl-LDH hybrid
(4.5 K) increased to 5.2 K by 355 nm UV irradiation accompanied by the basal
spacing change from 20.29 to 20.18 nm, suggesting that the change in the nano-
structure was the reason of the increase of TM. The basal spacing did not revert to the
initial value by visible light irradiation in acetonitrile, while it reverted by exposure
of water under the visible light irradiation. As discussed in Sect. 5.3.1, vapor played
an important role in the change in the basal spacing [346]. It is thought that the
adsorption of the water molecules triggered the backward reaction to the initial
molecular packing.

Magnetism of alkylcarboxylate intercalated layered Co and Cu hydroxides
(Co7(OH)11.6 and Cu2(OH)2) depended on the length and π-conjugate system of
the alkylcarboxylate surfactants due to the interlayer ferromagnetic interaction
[445]. The photocyclization of diarylethene, which accompanies the switching of
the π-conjugate system, affected the magnetic interactions of two nitronyl nitroxide
moieties substituted to the phenylthiophene moieties of the diarylethene
[446, 447]. TC of a hybrid of a layered Co4(OH)7 (designated as Co-LDH) interca-
lated an open-ring isomer of SO3DAE in Scheme 17 was 9 K, while that after UV
irradiation increased to 20 K [439]. Although the mechanism was not reported in
detail [438, 440], the photoswitch of the π-conjugate system of the intercalated
SO3DAE seemed to affect the magnetism of Co-LDH [446, 447].

The photoswitching of the π-conjugate system by the photocyclization and the
photoswitching of the basal spacing caused by photochromism affected to the
magnetism of the LDHs. As discussed in Sects. 5.2.2 and 5.3.1, the design of the
hybrids and the photoinduced adsorption of vapor are expected to make these
phenomena effective, suggesting that the elucidation and improvement of the pho-
toinduced phenomena of the hybrids induce the effective magnetism switching.

5.3.4 Photoinduced Adsorption

As discussed in Sect. 5.3.1, adsorption of vapor during the photochromic changes
induced the change in the basal spacing [346]. Adsorption of phenol onto organically
modified clay from an aqueous solution was also reported [101, 282, 448, 449]. Moti-
vated by the phenomena, photoinduced adsorption of phenol was examined
[166, 167, 344]. AZC2N

+C2OH and C2AZC2N
+ (Table 3) intercalated KF were

mixed with neat phenol. As shown in Fig. 18, gallery heights increased from 0.81 to
1.5 nm and 0.96 to 2.6 nm by mixing with phenol, respectively [344]. The gallery
heights of the hybrids AZC2N

+C2OH-KF with phenol increased further from 1.5 to
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2.3 nm by UV irradiation. The large change of the gallery heights (0.8 nm) indicated
that the phenol was intercalated into the hybrid by the UV irradiation. On the other
hand, the gallery height of C2AZC2N

+-KF increased from 2.6 to 2.8 nm by the UV
irradiation in the presence of phenol. Because the polarity of C2AZC2N

+ was
thought to be smaller than that of AZC2N

+C2OH from a comparison of dipole
moments of cis-AZ (0.41 Debye) and 4-ethylazobenzene (0.34 Debye), the adsorbed
amount of phenol in C2AZC2N

+-KF intercalated with phenol was thought to be
smaller than that of AZC2N

+C2OH-KF. The basal spacing changes of
AZC2N

+C2OH-KF with the adsorbed amount of 105, 91, and 66 meq/100 g were
determined as summarized in Table 4 [167]. Observation of several basal spacing
with 91 meq/100 g suggested the inhomogeneous adsorption of phenol. The changes
in the basal spacings of AZC2N

+C2OH-smectites with varied CEC were also

Fig. 18 The changes in the basal spacings of KF intercalated AZC2N
+C2OH and C2AZC2N

+; (a)
before the intercalation of phenol, (b) after phenol intercalation, (c) after UV irradiation, and (d)
after subsequent visible light irradiation (Reproduced from the reference [344] with permission)

Table 4 Photoinduced expansion of basal spacings of azobenzene exchanged clays

Adsorbent

CEC/
meq/
100 g

Adsorbed amount
of
AZC2N

+C2OH/
meq/100 g

Before
intercalation
of phenol

d(001)/nm
before UV
irradiation

After UV
irradiation

After
visible
light
irradiation

KF 108 105 1.76 2.56 3.16 2.56

91 1.63 2.56, 1.54 3.40,
2.56, 1.54

2.56, 1.54

66 1.54 1.54 1.54 1.54

TSM 84 52 1.89 2.45 3.45, 2.45 2.45

SA 71 76 1.53 1.57 1.57 1.57
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examined to find C2AZC2N
+-clay (with CEC of 108 and 84 meq/100 g) increased by

the UV irradiation, while that with 71 meq/100 g did not change. Changes of the
basal spacings of KF, TSM, and SA intercalated AZC2N

+C2OH in the presence of
phenol by the UV irradiation are summarized in Table 4 [167]. The fraction of the
cis-isomer of AZC2N

+C2OH in TSM was estimated to be ca. 50%, and it was larger
than that in KF (ca. 30%).

To enhance the structural change by the photoinduced adsorption, the following
parameters were proposed: (1) fraction of cis-isomer at the photostationary state
[167, 344], (2) amount [344], and (3) orientation [167] of azobenzene derivative
(corresponding to the surface coverage).

The photoinduced adsorption of photochromic compounds was also reported
recently [374, 382, 450, 451]. As discussed in Sect. 5.1.3, photochromism of
spiropyran was affected by the presence of nanospace materials including
mesoporous silicas and smectites. Color of 6-NO2-MC (Scheme 12) photochemi-
cally formed from 6-NO2-SP was blue in toluene under UV irradiation, while the
color of it was red in the presence of HE [374]. Red-colored sediment was collected
by storing the suspension in the dark so that the adsorbed amount of MC onto HE
was followed, showing that the 6-NO2-SP was adsorbed on HE with the first-order
kinetics [374]. The adsorbed amount of 6-NO2-MC was 2.8 mg/100 g. The photo-
induced adsorption is thought as molecular migration between hydrophobic and
hydrophilic phases by using the bistability of the photochromic compound.

Mesoporous silicas were used as adsorbent of photo 6-NO2-MC, which is named
as “photoinduced adsorption” [382, 450, 452]. Photoinduced migration of SA/MC
between the mesoporous silicas and the organophilic clay [381, 382] was reported to
lead the reversibility of the negative photochromisms. The organically modified clay
was thought to host less polar 6-NO2-SP, which formed by the negative photochro-
misms of 6-NO2-MC accommodated in the mesoporous silica. The thermal colora-
tion of 6-NO2-SP to 6-NO2-MC accelerated by using the mesoporous silicas with
larger pore size [382] and that whose external surface was functionalized with
phenyl groups [451], suggesting that the diffusion inside the pore is important and
the intraparticle diffusion was more efficient than the interparticle diffusion.

6 Conclusions and Future Perspectives

Recent developments on the preparation and the photofunctions of dye-clay hybrids
are reviewed. Photofunctions have been systematically controlled and discussed
based on the variation of hosts, guests, and their compositions. These developments
led to further understanding of the structure and composition-property relationships,
which may provide advance knowledge to optimize materials’ performances. Not
only the nanostructure design by using host-guest interfaces has been revised, but the
search for raw materials and their synthesis of new host materials have been also
done. Successful morphosyntheses of known materials to obtain well-defined parti-
cles and single crystals with narrow particle size distribution expanded the

294 T. Yamaguchi et al.



possibilities of the materials and made detailed characterization possible. Taking the
advantages of the morphosyntheses, interfacial design and the developments of
fabrication techniques, some dye-clay systems have been prepared as thin films.
The application covers traditional pigments application to agriculture (on soil con-
tamination), optical devices including light-emitting ones, sensors, photocatalysts,
etc. Though the practical application is not seen, various unique photoinduced
phenomena have been also ascribed.
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