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Abstract The only enzyme that is able to fix nitrogen, nitrogenase, reduces inert and
abundant dinitrogen (N2) into bioavailable ammonia (NH3) under ambient conditions.
The most investigated variant, the MoFe nitrogenase, uses three metallo-cofactors:
the [Fe4S4] cluster in the electron-carrier component (Fe protein), as well as the
[Fe8S7] (P-cluster) and [MoFe7S9C] (M-cluster) clusters in the catalytic component
(MoFe protein). To better understand the physical properties of these cofactors,
various methods have been developed for the chemical synthesis of model metal-
sulfur clusters. In this review,we address the following topics with emphasis on recent
developments: (a) the synthesis of all-ferrous [Fe4S4]

0 clusters, which are isoelec-
tronic to the super-reduced state of the cluster in the Fe protein, (b) the reproduction of
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the unique [Fe8S7] inorganic core of the P-cluster, and (c) the synthesis of metal-sulfur
clusters relevant to theM-cluster and their variants that incorporate a light atom. Even
though reproduction of the M-cluster remains elusive, some recent advances seem
promising toward new classes of metal-sulfur clusters that satisfy the key structural
features of the M-cluster.

Keywords [Fe4S4] cluster · M-cluster (FeMo cofactor) · Nitrogenase · P-cluster ·
Synthetic models

1 Introduction: Biological N2 Fixation and Nitrogenase
Systems

Nitrogen is an essential element in nucleic and amino acids, which are in turn
indispensable to biological activities. Such organic nitrogen compounds are pro-
duced through numerous metabolic pathways, where ammonia (NH3) is used as a
raw material. Even though most organisms are unable to supply NH3, a biological
process is present for the reduction of inert and abundant dinitrogen (N2).

Nitrogenase is the only known enzyme that catalyzes the reduction of N2 into
NH3. Three variants, i.e., MoFe, VFe, and Fe-only nitrogenases, have been identified
and named after their essential metal content [1]. These enzymes, encoded in nif, vnf,
and anf gene clusters, respectively, are co-induced with the corresponding biosyn-
thetic machinery under nitrogen-deficient environments. As a survival strategy of
N2-fixing bacteria under varying conditions, the variant to be expressed is regulated
by the availability of the metals. Likely following the order of catalytic activity, the
bacteria prioritize the production of the MoFe, VFe, or Fe-only variant [1]. All these
variants are homologous and consist of two components, i.e., an electron-carrier
oxidoreductase and a catalytic component.

The MoFe nitrogenase is the best-studied variant, whose catalytic component,
known as the MoFe protein, is encoded by nifD and nifK genes. The resulting α2β2
tetrameric protein receives electrons from the Fe protein, which is the homodimeric
oxidoreductase component encoded by nifH. In the Fe protein, two binding sites for
adenosine triphosphate (ATP) are present. The ATP-bound form associates with the
MoFe protein to form a transient complex that leads to the electron transfer from the
Fe protein to the MoFe protein. Hydrolysis of the protein-bound ATP into adenosine
diphosphate (ADP) and monophosphate (Pi) has been suggested to trigger the
dissociation of the Fe protein from the MoFe protein [2]. By repeating this
ATP-dependent process, nitrogenase transfers electrons from the Fe protein to the
MoFe protein, and eventually to N2 together with protons, for the formation of NH3.
The reduction of one molecule of N2 is presumably accompanied by the obligate
production of one molecule of H2 according to the following chemical equation:
N2 + 8H+ + 8e� + 16ATP ! 2NH3 + H2 + 16ADP + 16Pi [3, 4].
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To achieve its extraordinary activity, the MoFe nitrogenase uses three redox-
active metallo-cofactors, which are metal-sulfur clusters consisting of multiple metal
and sulfur atoms. The metallo-cofactor in the Fe protein is a typical [Fe4S4] cluster,
while the other two in the MoFe protein are unique to nitrogenase and designated as
the P-cluster and M-cluster, whose compositions have been determined as [Fe8S7]
[5] and [(cit)MoFe7S9C] (cit ¼ R-homocitrate) [6, 7], respectively (Fig. 1). Recent
protein crystallographic analyses associated with biochemical studies have further
elucidated some properties of these metallo-cofactors, such as the predominant
involvement of the 1e� redox process of the P-cluster under the turnover conditions
[8] and the proposed displacement of one of the bridging sulfides of the M-cluster for
the generation of the reactive form [9, 10]. Recently, the possible removal of a
bridging sulfide has been revisited based on the protein crystallographic analyses of
the VFe nitrogenase [11, 12], where a light atom (theoretically proposed as an OH
moiety derived from H2O) [13] replaces one of the bridging sulfides under reducing
conditions. Even though enzymatic studies have uncovered some important clues as
to how such nitrogenase metallo-cofactors might work, a number of uncertainties
remain regarding their structure-function relationships that represent a major issue to
be addressed from a chemical perspective. Thus, the chemical synthesis of model

Fig. 1 Schematic illustration of the electron-transfer pathway in the MoFe nitrogenase, highlight-
ing the metallo-cofactors and the protein-bound MgATP molecules. (a) [Fe4S4] cluster of the Fe
protein; (b) P-cluster and (c) M-cluster of the MoFe protein. The Fe protein is colored in green,
while the MoFe protein is colored in purple and yellow. Only half of the α2β2-heterotetramer of the
MoFe protein is shown for clarity. PDB ID: 4WZA (left) and 3U7Q (right). Color legend: C, gray;
Fe, orange; N, blue; Mo, teal; O, red; S, yellow
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compounds and the analysis of their detailed properties and reactivity could provide
valuable insight into the metallo-cofactors. While some reviews have been published
on model compounds of nitrogenase metallo-cofactors (for representative reviews of
the model chemistry of nitrogenase, see [14, 15]), here we revisit this topic with
emphasis on the most recent advances.

2 Model [Fe4S4] Clusters of the Fe Protein

Cuboidal [Fe4S4] clusters are arguably the most prominent class of biological iron-
sulfur clusters, and their oxidation states typically range between [Fe4S4]

+ and
[Fe4S4]

3+ (for representative reviews, see [16–19]). In contrast to ordinary [Fe4S4]
clusters, the cluster in the Fe protein can be reduced to the formal oxidation state
[Fe4S4]

0 (for a review specifically focusing on Fe protein, see [20]), the so-called
super-reduced state, in the presence of reducing agents [21, 22]. The physiological
importance of this super-reduced state still remains unclear; however, it demon-
strates the exceptional stability of the [Fe4S4] cluster of the Fe protein under reducing
conditions. Furthermore, recent studies have revealed that the Fe proteins from some
prokaryotes and archaea are able to catalyze the reduction of carbon dioxide to
furnish carbon monoxide and short-chain hydrocarbons [23, 24]. Thus, synthetic
[Fe4S4] clusters in the reduced states are of interest not only as the models for the
cluster in the Fe protein but also as potential catalyst precursors for artificial carbon
fixation and small-molecule activation.

2.1 Synthesis of Super-Reduced [Fe4S4] Clusters

In a pioneering study from 1972, Holm et al. reported the first chemical synthesis of
an [Fe4S4] cluster bearing four thiolate ligands [25]. Since then, over 80 examples of
thiolate-supported [Fe4S4] clusters in [Fe4S4]

+/2+/3+ oxidation states have been
synthesized, while only a limited number of [Fe4S4]

0 clusters are accessible. As
the chemistry of [Fe4S4]

+/2+/3+ clusters has been summarized elsewhere (for repre-
sentative reviews, see [26–29]), this section focuses on synthetic [Fe4S4]

0 clusters.
Even though the [Fe4S4] cluster in the Fe protein is supported exclusively by

cysteine residues [30], no thiolate-supported [Fe4S4]
0 cluster has been synthesized

and isolated thus far. As short-lived species, [Fe4S4(SR)4]
4� have been generated

under certain electrochemical measurement conditions [31–33], but their instability
has so far prevented their isolation. This instability arises from the dissociation of
thiolate(s) from [Fe4S4(SR)4]

4�, as the σ-donation of thiolate anions is not suitable
for the stabilization of relatively low-valent, electron-rich metal centers. In contrast,
π-acceptor ligands stabilize electron-rich metals through back-bonding [34]. As
phosphines (PR3) are a representative class of π-acceptor ligands for transition
metals, Holm and co-workers have employed phosphines for the attempted
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stabilization of the super-reduced [Fe4S4]
0 cluster in the form [Fe4S4(PR3)4]

0

(R ¼ cyclohexyl (Cy), isopropyl (iPr), tert-butyl (tBu)). However, the synthesis of
[Fe4S4(PR3)4]

0 via the chemical reduction of [Fe4S4(PR3)4]
+ using sodium

acenaphthalenide was not successful due to the subsequent dissociation of some of
the phosphines from the postulated [Fe4S4(PR3)4]

0, resulting in the formation of an
[Fe4S4] dimer (R ¼ Cy) or tetramers (R ¼ iPr, tBu), in which the [Fe4S4] units are
connected via Fe-S edges [35–37]. In order to prevent the dissociation of supporting
ligands from Fe, Holm and co-workers then employed cyanide as a more π-acidic
ligand and successfully isolated the first super-reduced [Fe4S4]

0 cluster,
[Fe4S4(CN)4]

4� (1), where the 4� net charge results in high susceptibility toward
oxidation [38]. Moreover, the strong binding properties of N-heterocyclic carbenes
toward Fe [39] were able to stabilized another [Fe4S4]

0 cluster, [Fe4S4(I
iPrMe2)4] (2,

IiPrMe2 ¼ 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) (Fig. 2) [40]. These
examples indicate that the use of stabilizing ligands that exhibit a combination of
π-acidic and strong σ-bonding properties is crucial for the isolation of synthetic
[Fe4S4]

0 clusters.

2.2 Physical Properties of the Super-Reduced Clusters

The Fe centers of [Fe4S4]
0 clusters 1 and 2 are supported by non-native π-acidic

ligands. Nevertheless, their structures closely resemble the [Fe4S4]
0 cluster in the Fe

Fig. 2 Synthesis of [Fe4S4]
0 clusters [Fe4S4(CN)4]

4� (1) and [Fe4S4(I
iPrMe2)4] (2; I

iPrMe2 ¼ 1,3-
diisopropyl-4,5-dimethylimidazol-2-ylidene)
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protein from Azotobacter vinerandii (Av). As summarized in Table 1, the average
Fe-Fe/Fe-S bond distances of 1 and 2 are nearly identical to those of the super-
reduced Av Fe protein, as determined by X-ray crystallography [42] and extended
X-ray absorption fine structure (EXAFS) spectroscopy [43]. A structural comparison
of [Fe4S4]

0 clusters and the [Fe4S4]
+ cluster [Fe4S4(CN)4]

3� [41], which is the
one-electron oxidized form of 1, allows evaluating the influence of the oxidation
state on the [Fe4S4] core structures. A notable difference in [Fe4S4]

0,+ clusters lies
in the volumes of the S4 tetrahedra, which are larger for [Fe4S4]

0 clusters
(6.14–6.21 Å3) than for the [Fe4S4]

+ cluster [Fe4S4(CN)4]
3� (5.64 Å3). Similarly,

the volume of the S4 tetrahedron in the thiolate-supported [Fe4S4]
2+ and [Fe4S4]

+

clusters, [Fe4S4(SR)4]
2�/3–, is smaller than 6 Å3 [27], indicating that the volume of

the S4 tetrahedron may serve as a diagnostic parameter to identify the super-reduced
[Fe4S4]

0 state. Some theoretical studies have been conducted in order to understand
the physical properties of the [Fe4S4]

0 clusters [44, 45], but the postulated relation-
ship between the oxidation state of [Fe4S4] clusters and the volume of the S4
tetrahedron remains unclear.

Similarities between the [Fe4S4]
0 clusters of 1 and 2 and the super-reduced Av Fe

protein can also be found in their Mössbauer spectra. The spectra of 1 and 2 display
two doublets with δ ¼ 0.65/0.65 mm/s and ΔEQ ¼ 1.45/2.00 mm/s (1:1 ratio; 1) as
well as δ ¼ 0.54/0.62 mm/s and ΔEQ ¼ 2.92/1.54 mm/s (1:3 ratio; 2) at 77 K
[38, 40]. The spectrum for the super-reduced Av Fe protein exhibits two doublets at
δ ¼ 0.68/0.68 mm/s with ΔEQ ¼ 3.08/~1.5 mm/s (1:3 ratio). Electron paramagnetic
resonance (EPR) and more detailed Mössbauer spectroscopic investigations on
2 revealed an S ¼ 4 ground state for this cluster [45], and the same assignment
should be applicable to the super-reduced Fe protein, as the g tensor of 2 (g¼ 16.08)
observed by parallel-mode EPR is very similar to that of the Av Fe protein
(g ¼ 16.4) [22].

Table 1 Comparison of the bond distances (Å) and Fe4/S4 tetrahedron volumes (Å3) for the super-
reduced [Fe4S4]

0 cluster of the Fe protein and synthetic [Fe4S4]
0,+ clusters

[Fe4S4(CN)4]
3–

[41]

[Fe4S4(CN)4]
4–

[38]
(1)

[Fe4S4(
iPr2NHCMe2)4]

[40]
(2)

Fe protein

XRD
[42]

EXAFS
[43]

Oxidation
state

[Fe4S4]
+ [Fe4S4]

0

Av. Fe-Fe 2.70(2) 2.67(2) 2.68(6) 2.65 2.60

Av. Fe-S 2.29(1) 2.33(2) 2.33(2) 2.33 2.26

Volume
(Fe4)

2.34 2.25 2.26 2.17 –

Volume
(S4)

5.64 6.21 6.14 6.21 –
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3 P-Cluster Models

The [Fe8S7] composition common to the MoFe and VFe nitrogenases is referred to
as the P-cluster, which has been suggested to mediate electron-transfer processes
through its redox activity. In the reduced form, denoted as the PN state, the [Fe8S7]
core has been described as a fused form of two cuboidal [Fe4S4] clusters that share
one of the sulfides. This inorganic core is supported by two bridging and four
terminal thiolate moieties from cysteine residues. The two-electron oxidized form
of PN is denoted as the POX state (or the P2+ state), which has the same core
composition but a more open configuration due to the cleavage of two Fe-S bonds
with the central sulfide and coordination of a serine residue and a backbone amide
moiety (Fig. 3) [5]. The one-electron oxidized P1+ state has been detected as a
transient species using spectroscopic methods [46, 47], while its structure has
recently been determined by X-ray crystallography upon electrochemical generation
of such a P1+ state [48]. In comparison with the PN-cluster, the [Fe8S7] core in the P

1+

state lacks an Fe-S bond with respect to the central sulfide and instead forms an Fe-O
bond with a serine residue. Thus, the P1+ state displays an intermediary structure
between the PN and POX states. The redox-dependent dynamic structural
rearrangements across the PN, P1+, and POX states should be important to regulate
the electron flow from the [Fe4S4] cluster of the Fe protein to the P-cluster and then
to the M-cluster, while the redox couple of the PN/P1+ states has been proposed to be
predominant under the turnover conditions of nitrogen fixation [8].

Fig. 3 Redox-dependent
structural rearrangement of
the P-cluster in the MoFe
protein. PDB ID: 3U7Q.
Color legend: C, gray; Fe,
orange; N, blue; O, red; S,
yellow
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Early structural models of the P-cluster were based on dimers of [Fe4S4] cubes,
such as the sulfido-bridged [Fe4S4]-(μ2-S)-[Fe4S4] and edge-bridged [Fe4S4]-[Fe4S4]
clusters [14, 15, 26–29], because the structure of the P-cluster had initially been
proposed as two [Fe4S4] clusters bridged by cysteine residues [49] until the precise
structure was reported in 1997 [5]. Although these [Fe4S4] dimers are no longer
considered to represent P-cluster models, the former [Fe4S4]-(μ2-S)-[Fe4S4] cluster
was coincidentally discovered to be the cofactor of a double-cubane cluster protein
from Carboxydothermus hydrogenoformans (DCCPCh) [50]. The [Fe4S4]-(μ2-S)-
[Fe4S4] cluster of DCCPCh catalyzes the reduction of acetylene, which indicates its
potential for the reduction of small molecules.

Previous attempts to extract the P-cluster from the protein by addition of excess
thiol (HSR, R¼ p-[dichloro(fluoro)methyl]phenyl) resulted in the degradation of the
[Fe8S7] core, furnishing [Fe4S4] clusters in high yield (>90%) [51]. This result
indicates the importance of the specific arrangement of six cysteines for the stabili-
zation of the [Fe8S7] core of the P-cluster, which renders the chemical synthesis of
the [Fe8S7] cluster challenging. It should also be noted that the μ6-S atom at the
center of the [Fe8S7] core is not only unique to the P-cluster among the biological
iron-sulfur clusters but also rare in synthetic metal-sulfur clusters. Thus, synthetic
strategies for the P-cluster models have been directed toward how to generate such
an unusual μ6-S center. Here we address three strategies that have been devised to
meet this requirement.

3.1 Rearrangement of Edge-Bridged Mo(V)-Fe-S Double-
Cubane Clusters

While the P-cluster core contains only Fe and S atoms, the first structurally identified
molecule with μ6-S atoms was a heterometallic Mo-Fe-S cluster. An edge-bridged
[MoFe3S4] double-cubane precursor, [(Cl4-cat)MoFe3S4(PEt3)3]2 (3, Cl4-
cat ¼ tetrachlorocatecholate) [52], was treated with 2 equiv. of [NEt4][SH], leading
to the rearrangement of the cluster core to give a complicated mixture. From this
mixture, crystals of the giant [Mo2Fe6S9]-[Mo2Fe8S12]-[Mo2Fe6S9] cluster, which
consists of two P-cluster-like [Mo2Fe6S9] units and a bridging [Mo2Fe8S12] units,
were obtained [53]. From a similar reaction of 3 with [NEt4][SH] and KC14H10

(potassium anthracenide), a dimer of P-cluster-like [Mo2Fe6S9] clusters bridged by
potassium atoms and sulfides was obtained. This synthetic method was further
modified to employ [MFe3S4]-[MFe3S4] (M ¼ Mo (4a), V (4b)) clusters bearing
tris(pyrazolyl)hydroborate (Tp) ligands on the heterometals (M), and their structural
rearrangement in the presence of [NEt4][SH] proceeds in a more controlled
manner to provide the P-cluster models [(Tp)2Mo2Fe6S9(SH)2]

3� (5a) and
[(Tp)2V2Fe6S9(SH)2]

4� (5b) (Fig. 4) [54, 55]. In this case, the protection of M
by the tridentate Tp ligand may extend the lifetime of intermediary species
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generated from the precursor, facilitating the formation of 5a and 5b. A possible
intermediate is a sulfur-voided [MFe3S3]-[MFe3S4] cluster that contains an incom-
plete cubane-type [MFe3S3] fragment (cf. Sect. 4.1.2), in which the sulfur-voided
corner can accommodate a sulfur atom of the neighboring [MFe3S4] cube to furnish
a central μ6-S atom.

The structural rearrangement of the [MFe3S3]-[MFe3S4] double-cubane into PN-
type [M2Fe6S9] is triggered by hydrosulfide (HS�), hydroselenide (HSe�),
methoxide (MeO�), or ethane thiolate (EtS�). Attempts to introduce further structural
modifications on the [M2Fe6S9] clusters have had limited success so far. For example,
terminally bound HS� ligands or μ2-bridging sulfides have been replaced with
cyanides [56] and MeO� [57], respectively, while substitution of μ2-sulfides with
thiolates has not been achieved. Recovery of the double-cubane structure from the PN

-type cluster has been demonstrated by the reaction of [(Tp)2Mo2Fe6S8(OMe)3]
3�

with Me3SiX (X¼ Cl, Br), where MeO� is replaced by X�. Such core convertibility

Fig. 4 Core rearrangement
of the edge-bridged double-
cubane clusters into
[(Tp)2Mo2Fe6S9(SH)2]

3�

(5a) and
[(Tp)2V2Fe6S9(SH)2]

4�

(5b)
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indicates a comparable thermodynamic stability for the [MoFe3S3]-[MoFe3S4] and
[Mo2Fe6S9] cores.

A number of M-Fe-S (M ¼ Mo or V) clusters in this section feature a [M2Fe6S9]
core, which is a fused form of two cubes with a central μ6-S atom, two inter-cubane
μ2-sulfides, and peripheral M atoms, that exhibits a similar arrangement to that of the
metal and sulfur atoms in the PN-cluster. Their structural similarity is further
supported by the superposition of the [M2Fe6S9] cores of 5a (M ¼ Mo) and 5b
(M ¼ V) with the [Fe8S7(μ2-S-Cys)2] core of the PN-cluster and the obtained
weighted root mean square deviations (RMSDs) of 0.38 Å (5a vs. PN) and 0.33 Å
(5b vs. PN) [54]. In the Mössbauer spectra of clusters 5a and 5b at 4.2 K, a broad
doublet is observed for 5a at δ ¼ 0.55 mm/s with ΔEQ ¼ 0.62 mm/s, while two
overlapping doublets are found for 5b at δ ¼ 0.52/0.59 mm/s with ΔEQ ¼ 1.23/
0.65 mm/s (major/minor ¼ 3:1). These δ values indicate a relatively reduced Fe
(II) state, in agreement with an all-ferrous state of the PN-cluster [58]. The relatively
low Fe(II) state in [M2Fe6S9] clusters indicates the retention of the oxidation state of
Fe in edge-bridged double-cubane precursors prepared by chemical reduction of
single cubanes. For instance, cluster 3 was prepared by reduction of the chloride-
bound [MoFe3S4] cube in the presence of PEt3 [52]. Similarly, the [MoFe3S3]-
[MoFe3S4] precursor for 5a was prepared from [(Tp)MoFe3S4Cl3]

� through substi-
tution of the iron-bound chlorides with PEt3 and subsequent reduction with [NBu4]
[BH4].

3.2 Self-Assembly in a Nonpolar Media

A successful approach to reproduce the [Fe8S7] core of the P-cluster is the self-
assembly reaction shown in Fig. 5, where an iron(II) amide complex Fe{N(SiMe3)2}2
is treated with HSTip (Tip ¼ 2,4,6-tri(isopropyl)phenyl), tetramethylthiourea [SC
(NMe2)2], and elemental sulfur (S8) in toluene. This reaction selectively furnishes
the crystalline [Fe8S7] cluster [Fe4S3{N(SiMe3)2}(SC(NMe2)2)]2(μ6-S){μ2-N
(SiMe3)2}2 (6) in up to 82% yield [59, 60]. For this assembly reaction, some
elementary steps can be postulated: (1) the –N(SiMe3)2 group on iron should serve
as a Brønsted base to abstract a proton from HSTip, which leads to a ligand exchange
between –N(SiMe3)2 and –STip; (2) a subsequent treatment with S8 results in the
oxidation of the Fe centers via the formation of Fe-S bonds; (3) the oxidation reaction
in (2) should be followed by a reduction process to retain the average oxidation state
of Fe between Fe(II) and Fe(III) through the reductive elimination of disulfide TipS-
STip; (4) upon dissociation of some –STip ligands as TipS-STip, vacant coordination
sites are generated on the Fe centers, which facilitate the aggregation of small iron-
sulfur intermediates into high-nuclearity species. Steps (2)–(4) are repeated until
(a) the depletion of S8 and (b) the product becomes thermodynamically and/or
kinetically stable enough for isolation. It is interesting to note that once isolated,
6 is stable for a few hours in solution at 50�C, suggesting that the core structure of the
P-cluster is one of the thermodynamically stable forms of such iron-sulfur clusters.
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The [Fe8S7] core of cluster 6 reproduces well that of the P
N-cluster (Fig. 6), and in

fact, a structural comparison between 6 and the PN-cluster from the Protein Data
Bank (ID: 3U7Q) [6] provided a low RMSD value (0.34 Å) [61]. The Mössbauer
spectrum of 6 exhibits two doublets in an approximate ratio of 3:1 at δ ¼ 0.61/
0.37 mm/s with ΔEQ ¼ 0.54/1.28 mm/s (major/minor), which indicates a formal Fe
(II)6Fe(III)2 oxidation state. This oxidation state corresponds to the P

OX state, which
is the two-electron oxidized form of the all-ferrous PN state [62], while cluster
6 adopts a PN-type structure. The discrepancy between the oxidation states of
6 and the PN-cluster may be partly attributed to tentative hydrogen bonding between
the PN-cluster and adventitious water and/or the peptide backbone. The dependence
of the redox potentials of [Fe4S4] clusters on the number of hydrogen bonds between
the clusters and the water/peptide backbone has been discussed elsewhere [29, 63,
64]. In contrast to the PN-cluster embedded in the protein, cluster 6 is in a completely
hydrophobic environment, facilitating a higher oxidation state. An additional factor
speculated for the relatively high oxidation state of 6 is the strong electron-donating
property of the –N(SiMe3)2 ligands.

The [Fe8S7] core of 6 is supported by amide and thiourea ligands, which have less
relevance to the native P-cluster. Thus, replacement of these ligands with cysteine
analogues was attempted to provide improved models. The –N(SiMe3)2 and thiourea
ligands in 6 could be replaced by –SR via reactions with HSR and –SR, respectively;
however, such ligand exchange reactions require careful optimization of the

Fig. 5 Synthesis of the [Fe8S7] clusters [Fe4S3{N(SiMe3)2}(SC(NMe2)2)]2(μ6-S){μ2-N(SiMe3)2}2
(6) and [(SAr){CpFe(C6H5S)}Fe4S3]2(μ6-S){μ-N(SiMe3)2}2 (7; Ar ¼ 2,4,6-tris[bis(trimethylsilyl)
methyl]phenyl), which reproduce the core of the P-cluster
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conditions due to the facile degradation of the [Fe8S7] core. Thus, the reaction of
6 with 2 equiv. of CpFe(C6H5S) (Cp ¼ cyclopentadienyl) [65] and HSAr
(Ar ¼ 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl) at �40�C in fluorobenzene
enabled the substitution of the terminal amide and thiourea ligands with thiolates
to afford the [Fe8S7] cluster [(SAr){CpFe(C6H5S)}Fe4S3]2(μ6-S){μ-N(SiMe3)2}2
(7), which bears four terminal thiolate ligands (Fig. 5) [60]. In agreement with the
facile degradation of the native P-cluster in the presence of excess thiol [51], the
[Fe8S7] core of 6 readily decomposes into [Fe4S4] clusters in the presence of proton
sources and nucleophiles, possibly because cleavage of the μ2-bridging ligand in the
middle of the cluster triggers such irreversible degradation. This assumption may
also explain why the replacement of the μ2-N(SiMe3)2 ligands in 6 has not been
successful so far.

3.3 Reductive Desulfurization of a High-Valent [Fe4S4]
Cluster

Another “nonpolar” approach for the formation of the PN-type [Fe8S7] cluster is the
reductive desulfurization of a highly oxidized [Fe4S4] cluster [66]. [Fe4S3{N
(SiMe3)2}(SPR3)]2(μ6-S){μ2-N(SiMe3)2}2 (R ¼ Me (8a), Et (8b)), i.e., analogues
of 6 that bear phosphine sulfides SPR3 (R ¼ Me, Et) instead of tetramethylthiourea,
have been obtained from the reaction of an all-ferric [Fe4S4]

4+ cluster [Fe4S4{N
(SiMe3)2}4] [67] with phosphines (Fig. 7a). In this reaction, the phosphine abstracts

Fig. 6 Structural
comparison of 6 and the PN-
cluster (transparent) via an
overlay. The PN-cluster is
obtained from a crystal
structure of MoFe
nitrogenase (PDB ID:
3U7Q). Color legend: C,
gray; Fe, orange; N, blue; S,
yellow; Si, wheat
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one of the sulfur atoms of the [Fe4S4] cube to produce SPR3 and a transient sulfur-
voided [Fe4S3] cluster. The vacant Fe sites of this tentative [Fe4S3] intermediate have
been proposed to capture a sulfur atom of the [Fe4S4] cube to furnish the central μ6-S
atom of the resulting [Fe8S7] core (Fig. 7b).

The reaction pathway proposed for the formation of 8a and 8b has relevance to
the biosynthesis of the P-cluster. The maturation of the P-cluster has been postulated
as the coupling of two [Fe4S4] clusters under reducing conditions (for recent
reviews, see [68, 69]). Gene knockouts and subsequent isolation of the MoFe protein
from the resulting strain revealed that there is a precursor state of the P-cluster
(P*-cluster) with an S ¼ 1/2 EPR feature in the dithionite-reduced form, which is
characteristic for [Fe4S4]

+ clusters [70]. The assignment of the P*-cluster as a pair of
[Fe4S4] cubes was further supported by an Fe K-edge EXAFS analysis [71]. The
P*-cluster can be converted into the P-cluster in the presence of the Fe protein with
ATP and a chaperone-like supporting protein (NifZ), as evident from the appearance
of the characteristic EPR signal of the P-cluster at g ¼ 11.8 in the parallel-mode
spectrum [71, 72]. Thus, the P*-cluster, a pair of [Fe4S4] clusters, is likely converted
into the [Fe8S7] core of the P-cluster via removal of a sulfur atom and generation of
an [Fe4S3]-type intermediate [73].

Fig. 7 (a) Synthesis of [Fe4S3{N(SiMe3)2}(SPR3)]2(μ6-S){μ2-N(SiMe3)2}2 (R¼Me (8a), Et (8b))
from an all-ferric [Fe4S4] cluster. (b) Proposed reaction pathway toward the [Fe8S7] core via the
formation of an [Fe4S3] intermediate
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4 M-Cluster Models

The catalytic site of MoFe nitrogenase, denoted as theM-cluster, is arguably the most
complex and enigmatic metallo-cofactor in nature. The M-cluster core in the resting
state consists of one Mo, seven Fe, nine S, and one C atoms. This [MoFe7S9C] core
can be viewed as a fused form of [MoFe3S3C] and [Fe4S3C] cubes that share the
central C atom and that is supported by three μ2-S atoms in themiddle [6, 7]. As one of
the μ2-S atoms can be exchanged with an inhibitor carbon monoxide molecule or a Se
atom [9, 10], the displacement of such “belt” S atoms represents a plausible expla-
nation for the generation of the catalytically active M-cluster.

In an early stage of the biosynthetic pathway of the M-cluster, the coupling of two
[Fe4S4] clusters occurs via incorporation of a carbon atom derived from S-
adenosylmethionine to give an [Fe8S9C] species, denoted as the L-cluster (Fig. 8)
[74]. Subsequent replacement of one of the peripheral Fe atoms of the [Fe8S9C] core
with Mo and incorporation of a homocitrate moiety, followed by inter-protein
transfer of the cluster, eventually furnishes the M-cluster [68, 69, 75, 76]. Given
that most of the details of the biosynthesis of the M-cluster have been uncovered,
imitation of the biosynthetic processes seems to be a promising approach for the
chemical synthesis of M-cluster models. However, two major obstacles are easily
identified when attempting to mimic the biosynthetic pathway based on the current
synthetic methods of metal-sulfur clusters: (a) the incorporation of a carbon atom
derived from the CH3 moiety of S-adenosylmethionine and (b) the selective and
asymmetric substitution of an Fe atom with Mo. Methods to carry out these difficult
reactions remain challenging.

One of the intriguing properties of the M-cluster is its stability, even in the
absence of a protein scaffold. Unlike the P-cluster, which is supported by six
cysteine residues, the M-cluster is bound to the MoFe protein only by one cysteine
and one histidine residues, and the Mo site carries a bidentate R-homocitrate ligand

Fig. 8 Overview of the M-cluster biosynthesis. The precursors, a pair of [Fe4S4] clusters
(K-cluster) in the NifB protein, are transformed into the [Fe8S9C] cluster (L-cluster) and then into
the M-cluster that is accompanied by inter-protein transfer of the clusters to NifEN and then to
NifDK. Color legend: C, gray; Fe, orange; N, blue; Mo, teal; O, red; S, yellow
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as a nonprotein ligand. Probably owing to the loose binding from only two protein
residues, the M-cluster can be extracted from the protein into organic solvents such
as N-methylformamide, N,N-dimethylformamide, or acetonitrile without significant
degradation, where the catalytic activity is recovered after reintroduction into the
original protein-binding site [77, 78]. The robustness of the M-cluster as a discrete
molecule in solution has stimulated the interest of synthetic chemists toward its
reproduction. While the significant amount of work related to M-cluster models is
summarized elsewhere ([14, 15]; for representative reviews on the functional
models of nitrogenase, see [79–81]), we will herein focus on some recent advances
in synthetic models and potential approaches toward the reproduction of the
M-cluster core.

4.1 [MS3] (M ¼ Mo, W) Complexes as Building Blocks

Prior to the structural identification of the M-cluster, the available information was
limited to, e.g., the proposed MoFe8S6 composition of the extracted cofactor
[77]. Soon after, Holm and co-workers reported the synthesis of a double-cubane
cluster with thiolate/sulfide inter-cubane bridges, [MoFe3S4(SEt)3](μ2-S)2(μ2-SEt),
through the assembly reaction of [MoS4]

2�, FeCl3, and EtS� [82]. The [MoFe3S4]
cluster was intensively studied thereafter, together with other heterometallic cubanes
such as the [VFe3S4] and [WFe3S4] clusters. One of the most significant results from
these studies is arguably the synthesis of the PN-type model clusters, which is
described in Sect. 3.1 [14]. Although the chemistry of these cubanes in the field of
heterometallic cofactor models has been well developed, we herein approach the
utility of metal trisulfide [MS3] (M ¼ Mo, W) complexes, which serve as building
blocks for heterometallic clusters.

4.1.1 [M6S9]-Type Clusters Derived from [MS3] Precursors

After the synthesis of organometallic trisulfide complexes of the type [Cp*MS3]
(M¼Mo,W; Cp*¼ pentamethylcyclopentadienyl) [83], the reactivity of the sulfide
moiety was examined through the synthesis of various heterometallic clusters with
noble metals such as Cu, Ag, and Au [84]. The successful isolation of discrete
heterometallic clusters demonstrated the synthetic potential of [MS3] complexes as
building blocks for biomimetic Mo-Fe-S andW-Fe-S clusters. In this context, [(Tp*)
WS3]

� (9, Tp* ¼ tris(3,5-dimethylpyrazolyl)hydroborate) [85] was the first trisul-
fide complex in the field of nitrogenase cofactor models. While the initial study [86]
reported analogues of relevant Tp-M systems (Tp ¼ tris(pyrazolyl)hydroborate;
M ¼ Mo, V) (cf. Sect. 3.1 as well as [54–57, 87]), later this approach proved the
utility of the [WS3] precursor in the synthesis of high-nuclearity clusters.

The reaction of 9 with FeCl2 (2 equiv.) and HS� (2 equiv.) generated
[(Tp*)2W2Fe4S9]

� (10), which can be further reduced to [(Tp*)2W2Fe4S9]
2� (11)
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by treatment with [BH4]
� (Fig. 9) [88]. More importantly, a slightly modified

reaction using Se2� instead of HS� led to the formation of [(Tp*)2W2Fe4S6Se3]
2�

(12), which confirmed the retention of the [(Tp*)WS3] platform even after the
assembly reaction with Fe and Se sources (Fig. 9). Retention of three sulfides on
M (Mo or W) is a common feature in cluster synthesis employing [MS3] precursors.
Analogous reactions of [(tBu3tach)MS3] (M ¼ Mo (13), W (14); tBu3tach ¼ 1,3,5-
tri-(ter-butyl)-1,3,5-triazacyclohexane) with FeCl2, RS�, and Se2� provided
heterochalcogenide-incorporated [MFe3S3Se] cubes (15–18), in which three sulfides
are bound to M and thus the selenide is located at the position opposite to M
(Fig. 10) [89].

The zero-field 57Fe Mössbauer spectra of 10 and 11 show signals at δ ¼ 0.37
(ΔEQ ¼ 1.21) and δ ¼ 0.42 (ΔEQ ¼ 0.98), respectively, suggesting W(IV)2Fe
(III)3Fe(II) (10) and W(IV)2Fe(III)2Fe(II)2 (11) states. Cyclic voltammetry
(CV) measurements on 11 and 12 revealed that the incorporation of Se stabilizes
the reduced states of the [W2Fe4S6Q3] (Q ¼ S, Se) core, which is reflected in the
positive shift of the [2–/3–] redox couple (E1/2 ¼ �1.91 V (12) and �1.97 V (11) in
DMF vs. saturated calomel electrode (SCE)) as well as in the appearance of an
irreversible [3–/4–] couple for 12. It should be noted that 10–12 are not the only
[M6S9]-type clusters, i.e., other precedents of this class exist, e.g., [Fe6S9(SR)2]

4�

[90–93], [Fe6Se9(SR)2]
4� [94], and [(edt)2Mo2Fe4S9]

3�/4– (edt ¼ ethane-1,2-
dithiolate) [95], while that their synthesis involves typical assembly reactions
employing Fe (and Mo) precursors, thiolates, and sulfide (selenide) sources.

Even though the trisulfide [MS3] (M ¼ Mo, W) complexes are useful precursors
for M-Fe-S(Se) clusters, reproduction of the asymmetric arrangement of metals in
the M-cluster, in particular the location of Fe and Mo atoms at the opposite ends, has
remained a significant challenge. We have recently revisited [Cp*MoS3]

� (19) as a
precursor of the Mo-Fe-S cluster and found a way to replicate the asymmetric
arrangement of metals in the M-cluster. Surprisingly, a simple assembly reaction
of 19 with FeCl2 (5 equiv.) and HS� (20 equiv.) resulted in the formation of
[Cp*MoFe5S9(SH)]

3� (20) in 54% yield (Fig. 11a) [96]. Similarly to other clusters,

Fig. 9 Synthesis of [(Tp*)2W2Fe4S9]
n� (n ¼ 1 (10) or 2 (11); Tp* ¼ tris(3,5-dimethylpyrazolyl)

hydroborate) and Se-containing [(Tp*)2W2Fe4S6Se3]
2� (12) from a template [WS3] complex
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20 also exhibits reversible redox properties at E1/2 ¼�0.91 V ([2–]/[3–] couple) and
�2.06 V ([3–]/[4–] couple) vs. Ag/AgNO3 in acetonitrile. It is interesting to note that
20 and [Fe6S9(SEt)2]

4� catalyze the reduction of C1 substrates such as CN�, CO,
and CO2 into short-chain hydrocarbons in the presence of reducing agents and
proton sources [97].

A single-crystal X-ray diffraction analysis confirmed the asymmetric [MoFe5S9]
core of 20. As shown in Fig. 11b, the peripheral positions of the [M6S9]-type
inorganic core are occupied by Mo and Fe atoms. In comparison with the
M-cluster [6], 20 lacks one of the Fe-(μ2-S)-Fe moieties and possesses a central
μ4-S atom instead of the μ6-C atom of the M-cluster. As a result, cluster 20 adopts a
more open conformation than the M-cluster, which is indicated by the longer
Mo� � �Fe distance between the opposite ends of 20 (7.473(1) Å) compared to the
corresponding distance in the M-cluster (7.00 Å) (Fig. 11b) and the smaller dihedral
angles between two Fe-(μ3-S)-Fe planes opposing the μ4-S atom in 20 (58.87(5)�)
relative to the corresponding angle in the M-cluster with respect to the μ6-C atom
(83.1–86.6�) (Fig. 11c).

4.1.2 Conversion of [MS3] Complexes into Cuboidal Clusters
as Potential Precursors for M-Cluster Models

Until the turn of the millennium, the central μ6-atom of the M-cluster had not been
identified, and its core structure had been considered as a pair of sulfur-deficient

Fig. 10 Heterochalcogenide incorporation into cubane clusters by using [(tBu3tach)MS3]
(M ¼ Mo (13), W (14); tBu3tach ¼ 1,3,5-tri-(tertiary-Butyl)-1,3,5-triazacyclohexane) as a struc-
tural template
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[M4S3]-type incomplete cubanes linked by three μ2-S atoms. Thus, sulfur-voided
[M4S3]-type clusters drew attention as suitable precursors for M-cluster models, and
these are summarized elsewhere [15, 26]. Even after the precise structure of the
M-cluster had been determined, the [M4S3]-type clusters or their equivalents
remained potential and attractive precursors, given that a carbon atom can be
accommodated at the sulfur-voided corner of the [M4S3] core to possibly link two
[M4S3] fragments with a central μ6-C atom. Even though the incorporation of a
carbide ligand in a metal-sulfur cluster remains unprecedented, this section provides
some examples of cubic and trinuclear clusters with a bridging light atom (N or O).
The methods described herein may serve as a guide to devise further strategies to
furnish metal-sulfur clusters that contain a μ6-C atom.

Recently, cubic clusters of the type [WFe3S3Q] (Q ¼ Cl, Br), in which Q is
expected to be exchangeable, have been synthesized. For example, [(Tp*)
WFe3S3(μ3-Q)Q3]

2� (Q ¼ Cl (21), Br(22)) have been obtained from the reaction
of the trisulfide complex [(Tp*)WS3]

� (9) with FeQ2 (3 equiv.) in the presence of
sodium benzophenone ketyl as the reducing agent (Fig. 12) [98]. As in the cases of
other clusters prepared from such trisulfide complexes, the three sulfur atoms in the

Fig. 11 (a) Synthesis of [Cp*MoFe5S9(SH)]
3� (20). Overlay of 20 and the M-cluster (transparent):

(b) top view and (c) side view. PDB ID: 3U7Q
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[WFe3S3Q] core remain attached to the W atom, and thus halide Q in clusters 21 and
22 occupies the corner opposite to W. An analogous reaction in the presence of FeQ2

(2 equiv.) led to the formation of trinuclear clusters [(Tp*)WFe2S3(μ2-Q)Q2]
�

(Q¼ Cl (23), Br (24); Fig. 12). It has been proposed that in these cases, the presence
of a reducing agent is important for the successful incorporation of halides in the
cubic [WFe3S3(μ3-Q)]

2+ or the trinuclear [WFe2S3(μ2-Q)]
2+ cores. Other notable

examples of cubic metal-sulfur clusters with μ3-RN
2� ligands are [Fe4(N

t

Bu)nS4�nCl4]
z� (n ¼ 0–3, z ¼ 0–2) [99–101], which were synthesized via stepwise

assembly reactions using intermediary dinuclear iron-imide or iron-imide-sulfide
complexes.

The structure of trinuclear [WFe2S3] cluster 23, which was determined by a single-
crystal X-ray diffraction analysis, revealed that the mean Fe-(μ3-Cl) distance (2.495
(3) Å) is longer than the Fe-Clterminal distance (2.284(4) Å), suggesting a possible
substitution of Cl. In fact, the core μ2-Cl of 23 was replaced through salt metathesis

Fig. 12 Synthesis of halide-containing clusters [(Tp*)WFe3S3(μ3-Q)Q3]
2� (Q ¼ Cl (21), Br(22))

and [(Tp*)WFe2S3(μ2-Q)Q2]
� (Q ¼ Cl (23), Br (24)) from a template [WS3] complex and their

ligand substitution reactions
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reactions to furnish [WFe2S3] clusters with μ2-N3 (25) and μ2-OMe (26) ligands. On
the other hand, an analogous approach for the substitution of μ3-Cl in the cubic
[WFe3S3Cl] cluster 21 remained unsuccessful, which indicates that the μ3-Cl ligand is
less labile relative to the μ2-Cl ligand in 23. Successful examples for the replacement
of μ3-Cl in 21 include reactions with oxidative reactants such as Me3SiN3

� and S8,
fromwhich cubic clusters [(Tp*)WFe3S3(μ3-X)Cl3]

� (X¼Me3SiN
2� (27), S2� (28))

were obtained.

4.2 Nonpolar Approach and the Incorporation of Light
Atoms

Following the successful synthesis of [Fe8S7] clusters modeling the PN-cluster (c.f.
Sect. 3.2), the nonpolar approach was further extended to the synthesis of relevant
iron-sulfur clusters, which are structurally analogous to the M-cluster [102, 103]. The
precursors, i.e., an iron-thiolate complex [Fe(STip)(μ-SDmp)]2 (Tip ¼ 2,4,6-tri(iso-
propyl)phenyl, Dmp ¼ 2,6-di(mesityl)phenyl) and an iron-thiolate-mesityl complex
(DME)Fe(SDmp)(mesityl) (DME ¼ 1,2-dimethoxyethane), react with elemental
sulfur in toluene at ambient temperature to afford [Fe8S7] clusters [(DmpS)
Fe4S3]2(μ-SDmp)2(μ-SR)(μ6-S) (R ¼ Tip (29a), mesityl (29b)), which feature a
central μ6-S atom (Fig. 13). In these assembly reactions, the use of bulky thiolate
ligands appears to be important to dissolve the precursors in toluene and to stabilize
the products at an appropriate size with eight Fe atoms. By encapsulating the Fe-S
cores, bulky substituents may provide kinetic stabilization that prevents further
assembly beyond the target size, while sufficient thermodynamic stability is a general
prerequisite for the synthesis of metal-sulfur clusters.

The molecular structures of 29a and 29b revealed that their common inorganic
core is a fused form of two [Fe4S4] cubes that share the central μ6-S atom, which is
additionally supported by two μ2-SDmp and one μ2-SR (R ¼ Tip or mesityl)
ligands. The six inner Fe atoms around the μ6-S atom are arranged in a slightly
distorted trigonal prism. The sulfur-centered trigonal prismatic structure of 29a–b
resembles that of the M-cluster. Due to the large size of the μ6-S atom of 29a–b
relative to the μ6-C atom of the M-cluster, the edge Fe-Fe distances of the
trigonal prisms of 29a (2.9103(10)–3.7050(10) Å) and 29b (2.9212(7)–3.6506
(6) Å) are significantly longer than the corresponding distances of the M-cluster
(2.58–2.62 Å). Given their homometallic nature, 29a–b can also be considered as
structural models of the L-cluster (Fig. 8), which is a recently identified [Fe8S9C]
precursor of the M-cluster [68, 69, 104, 105]. Antiferromagnetic interactions
across the eight Fe atoms are a common feature of the L-cluster and 29a–b. In
the EPR spectrum, the oxidized form of the L-cluster exhibits an isotropic S ¼ 1/2
signal at g ¼ 1.92 [105, 106], while clusters 29a–b in the [Fe8S7]

5+ state display
rhombic S ¼ 1/2 signals at g ¼ 2.19, 2.07, and 1.96 (29a) and g ¼ 2.21, 2.07, and
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1.95 (29b). These EPR signals are different from the S ¼ 3/2 feature that appears
at g ¼ 4.31, 3.67, and 2.01 for the M-cluster in the resting state.

An oxygen atom can be encapsulated within an Fe-S cluster by the reaction of [Fe
(OCPh3)(μ2-SDmp)]2 with H2O and S8 (Fig. 14) [107]. The major product from this
reaction, an [Fe8S6O] cluster (30), often co-crystallizes with the [Fe8S7] by-product
(31). Therefore, their occupancy ratio within single crystals varies from 100/0 to
75/25 (30/31). In the crystal structure of 30, the central O atom displays a μ4-binding
mode, which stands in sharp contrast to the μ6-mode of the central atoms of 29a–b
(μ6-S) and the M-cluster (μ6-C). As a result, two inner Fe atoms of 30 deviate from
the oxygen atom and interact with the mesityl groups of the μ2-SDmp ligands (2.505
(2) Å for the shortest Fe-C distance) surrounding the inner Fe atoms. Given the
absence of some Fe-Ocentral bonds and the presence of compensating Fe-mesityl

Fig. 13 (a) Synthesis of [(DmpS)Fe4S3]2(μ-SDmp)2(μ-SR)(μ6-S) (R ¼ Tip (29a), mesityl (29b)).
(b) Crystal structure of 29a (side and top view). Color legend: C, gray; Fe, orange; S, yellow
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interactions, it seems possible to assume an analogous mode of substrate binding to
the inner Fe atoms of the M-cluster. This speculation is consistent with a proposal for
the M-cluster, where the N2-binding site is generated through the reversible cleavage
or weakening of an Fe-(μ6-C) bond [108, 109].

5 Concluding Remarks and Future Directions
for Nitrogenase Model Studies

In this review, we have summarized recent advances in synthetic metal-sulfur
clusters that serve as models for the nitrogenase metallo-cofactors as well as
some selected notable achievements of older studies. Representative recent devel-
opments include (a) the synthesis of all-ferrous [Fe4S4]

0 clusters as models for the

Fig. 14 Synthesis and crystal structure of [(DmpS)Fe4S3O][(DmpS)Fe4S3](μ-SDmp)2(μ-OCPh3)
(30)
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super-reduced [Fe4S4] cluster of the Fe protein; (b) the synthesis of [Mo2Fe6S9],
[V2Fe6S9], and [Fe8S7] clusters, which model or reproduce the P-cluster; and (c) the
synthesis of Mo-Fe-S, W-Fe-S, Fe-S, and Fe-S-O clusters, which are structurally
relevant to the M-cluster. The chemical synthesis of such model clusters and their
structural modifications remain attractive research topics, especially with respect to a
better understanding of the properties of metallo-cofactors, given that spectroscopic
studies on nitrogenases are often hampered by the presence of nontarget clusters.
Since the (potential) models for the M-cluster remain insufficient as they lack key
structural features, one of the most important issues to be addressed in future studies
is the synthesis of more reliable M-cluster models, e.g., carbon-centered Mo-Fe-S
clusters with eight metal atoms.

Another remaining major issue in nitrogenase studies is the relationship between
the structure of the M-cluster and its N2-reducing function. Recent protein crystal-
lographic studies on MoFe and VFe nitrogenases have disclosed some important
details in this respect [9–12], implying the displacement of one of the belt μ2-S atoms
may be necessary for the generation of the reactive species. Thus, synthetic metal-
sulfur clusters that feature such belt μ2-S and central μ6-C atoms are required.
Furthermore, the N2 chemistry of metal-sulfur clusters is in a very early stage, and
synthetic developments are needed to uncover the requirements for the reduction of
N2 on metal-sulfur clusters. In this regard, it should be noted that a cubic Mo-Ti-S
cluster is able to activate N2 at the Ti site under reducing conditions. The N2 moiety
bridging two [MoS4Ti] cubes was converted into sub-stoichiometric amounts of
NH3 and N2H4, demonstrating the molecular basis for the reduction of N2 on metal-
sulfur clusters [110].

The application of synthetic metal-sulfur clusters in biochemical studies can offer
a relatively new avenue of research. For instance, we have achieved the incorpora-
tion of [Fe6S9(SEt)2]

4� into the M-cluster-binding site of the apo-MoFe protein and
demonstrated the catalytic reduction of acetylene and CN� with this protein
[111]. Furthermore, we have recently employed a synthetic [Fe4S4] cluster to
elucidate the source of an additional sulfur atom required for the biosynthesis of
the M-cluster [112]. Since analogous strategies should be applicable to various iron-
sulfur proteins, the combination of synthetic chemistry and biochemistry represents
one of the future directions for metal-sulfur chemistry.

Acknowledgment Y. O. thanks the Japanese Ministry of Education, Culture, Sports, Science and
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