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Quantum Computation with Molecular

Nanomagnets: Achievements, Challenges,

and New Trends

Alberto Ghirri, Filippo Troiani, and Marco Affronte

Abstract Molecular nanomagnets exhibit quanto-mechanical properties that can be

nicely tailored at synthetic level: superposition and entanglement of quantum states

can be created with molecular spins whose manipulation can be done in a timescale

shorter than their decoherence time, if the molecular environment is controlled in a

proper way. The challenge of quantum computation is to exploit the similarities

between the coherent manipulation of molecular spins and algorithms used to process

data and solve problems. In this chapter we shall firstly introduce basic concepts,

stressing analogies between the physics and the chemistry of molecular nanomagnets

and the science of computing. Then we shall review main achievements obtained in

the first decade of this field and present challenges for the next future. In particular we

shall focus on two emerging topics: quantum simulators and hybrid systems made by

resonant cavities and molecular nanomagnets.
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1 Introduction

Quantum computation exploits tight similarities between the time evolution of a

quantum system and some algorithms. This parallelism is essentially given by the

mathematical description that accounts – at the same time – for the dynamics of the

quantum system and for the calculation rules on which the algorithm relies.

Experimentally, performing quantum computation implies to control the dynamics

of the quantum system under the action of an external stimulus. Thus, defining the

input of the calculation means to prepare our system in a given quantum state,

processing data means to let our system evolve under the action of a given stimulus

and reading the output stands for measuring the final quantum state of our system.

It is clear that basic requirements for a system to be used as quantum computer

are the description of its states and the full control of its dynamics in terms of

both modeling and experimental procedures. On the other hand, quantum compu-

tation exploits specific characteristics of quanto-mechanics, like superposition and

entanglement of quantum states; thus, it results to be more efficient than classical

computers in solving a number of computationally complex problems. Starting

from the suggestive intuition (the aforementioned parallelism) of Richard Feynman

in the 1980s, several quantum systems, such as isolated atoms or ions, photons,

electrons in quantum dots or superconducting circuits, have been successfully used

to encode quantum bits (qubit). Spins are also excellent quantum systems for which

both mathematical description and experimental tools for their manipulation have

been largely developed.

The spin of molecular clusters may also work well for qubit encoding if we are

able to manipulate them as quantum objects. As a matter of fact, the first proposal to
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use molecular nanomagnets for quantum computation appeared in 2001 when the

field of molecular magnetism achieved its maturity with the Agilent Technology

Europhysics Prize awarded to Sessoli, Gatteschi, Wernsdorfer, Barbara, and Fried-

man for their discovery of Quantum Phenomena in molecular nanomagnets (2002).

At that time quantum phenomena were primarily studied by magnetization mea-

surements in different conditions. Pulsed ESR experiments at very low tempera-

tures are required to manipulate electron spins in molecules and this introduced new

experimental challenges. On the other hand, theoreticians immediately realized the

huge potentialities of arranging spins in well-defined architectures like those

provided by molecular assemblies and new challenges have been proposed to

synthetic chemists since then. After one decade from its start, several important

results have been obtained: the decoherence time has been measured on several

molecular nanomagnets and different molecules have been designed and synthe-

sized with inspiration to computing schemes.

In this chapter, we firstly introduce some fundamentals and then we review

achievements obtained so far. No ambition to be exhaustive since this new field is

strongly interdisciplinary and in rapid evolution. We shall rather focus on these

questions: how a given molecular spin cluster fits a specific quantum scheme?

Which are the advantages in using molecular spins with respect to other quantum

systems to encode qubits? How far can a molecule be engineered in order to

preserve the spin dynamics from the environmental noise? How should we assem-

ble molecular spins in order to fabricate complex quantum devices?

The chapter is organized as follows: in Sect. 2 we summarize some basic

concepts while we refer the reader to textbooks for a systematic presentation

of quantum computation [1, 2] and for a detailed description of the spin dynamics

[2, 3]. In Sect. 3 we discuss the problem of understanding and controlling the

mechanisms of decoherence which limit the spin dynamics in molecular nano-

magnets; in Sect. 4 we introduce concept of entanglement and we discuss super-

position of quantum states in molecular spin clusters. In Sect. 5 we review results

and specific proposals involving molecular spin clusters. The last two paragraphs

are devoted to two emerging areas (trends): in Sect. 6 we introduce the idea of

quantum simulators, i.e. small quantum computers dedicated to efficiently solve

specific problems; finally in Sect. 7 we overview the possibility to link molecular

spin clusters with other quantum systems in order to realize hybrid quantum

devices. Finally, in the last paragraph we summarize the results and try to highlight

open questions.

2 Spin Qubits

While for classical bits only two states 0 or 1 are possible, a qubit can exist as a

superposition states: |Ψ i ¼ α|0i + β|1i, being |0i and |1i two eigenvalues representing
a basis of the two-level system. In this representation, any unitary transformation

that acts on the wavefunction |Ψ i can work as a quantum gate. A spin 1/2 is a
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prototypical case. The spin components along three perpendicular directions follow

the commutation rules given for angular momentum. The Pauli operator σ̂ with

components:

σx ¼ 0 1

1 0

� �
, σy ¼ 0 �i

i 0

� �
, σz ¼ 1 0

0 �1

� �
,

satisfy such conditions and are the proper tools to describe the spin operator

Ŝ ¼ ℏσ̂ =2. We can fix the z-direction by an applied magnetic field B0. Two

eigenstates of the σz operator are the | " i and | # i states, i.e. the spin lying along

or opposite to the magnetic field direction. In this context, qubits are well

represented by spinors, i.e. any superposition: |Ψ i ¼ α| " i + β| # i with |α|2 + |β|2¼ 1.

It is also convenient to visualize spinors by points on a Bloch sphere profiting from

the correspondence with vectors sin(θ/2)| " i + cos(θ/2)eiϕ| # i (Fig. 1).
Quantum gates operating on single-spin qubit are elementary rotations along

particular directions as we shall see in Sects. 5 and 7 in more detail. We can now

realize that spin impurities in solids and nuclear spins in solution can be considered

as natural candidates for qubits encoding and the required tools – algebra and

experiments – to control their dynamics have been largely developed. Nuclear

spins are generally well isolated from the environment and can maintain free

rotation for seconds even at room temperature, but it is hard to detect their small

magnetic moment. Electron spins can be detected more easily but they are linked to

the environment more closely and several damping mechanisms limit their free

rotations.

We mentioned S¼ 1/2 but one may wonder whether higher spins can also be

used to encode quantum bit. Certainly yes, if we identify two sub-levels, for

instance two m-states of the ground multiplet and the allowed transition related to

these sub-levels. There are also (quantum) algorithms that require multi-level

Fig. 1 Representation of

the Hilbert space of a

two-level system on the

Bloch sphere. The

eigenstates | " i and | # i of
the Pauli matrix σz
correspond to the basis

states |0i and |1i. A point on

the Bloch sphere with polar

coordinates θ and ϕ
corresponds to a

superposition of |0i and |1i
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registers, thus one can also try to exploit more sub-levels in a high-spin multiplet.

Generally speaking, the use of high spin may facilitate the manipulation and the

measurement of the final state but high spins are more sensible to the environment,

thus a tradeoff needs to be found taking into account also the specific computational

scheme.

A quantum computer can be designed to solve different types of problems.

Similarly to classical computers, two possible strategies can be adopted: the first

one is to build a “universal” computing machine versatile enough to solve – in

principle – any type of problem. Alternatively, one can identify specific classes of

problems and design specialized quantum machines that result in being more

efficient than any classical analogue for that task. In both cases, quantum computers

are designed to perform sophisticated quantum algorithms. Like for the classical

ones, it is convenient to decompose complex algorithms in sequences of elementary

(quantum) gates. Thus the first problem is to identify a set of gates which can be

combined to perform more complex algorithms and therefore to constitute the basis

for a universal quantum computer. Keeping this scheme in mind, we can now

describe quantum operations with spins.

Basic operations on single qubit are given by rotations of the spin about arbitrary

directions in the space. Elementary rotations of an angle θ around the x-axis can be

described by using the Pauli matrices:

Rx θð Þ ¼ e�iθσx=2; ð1Þ

or – equivalently – by the matrix:

Rx θð Þ ¼ cos θ=2ð Þ
�i sin θ=2ð Þ

�i sin θ=2ð Þ
cos θ=2ð Þ

� �
: ð2Þ

Again, the Bloch sphere helps us to visualize these rotations (Fig. 2) and this is a

useful tool to understand how a simple quantum gate actually works on a spin qubit.

x

y

z
|

B1

Fig. 2 Representation of spin rotation using the Bloch sphere. This rotation can be generated by

the action of a magnetic pulse B1. In this case, for θ¼ π, the rotation represents a NOT-gate

inducing a spin flip
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In practice, a spin flip is obtained by electromagnetic pulses with the magnetic field

component along the suited axis (see Sect. 7 for further discussion).

In analogy with the classical ones, a convenient way to represent gates is to

provide the so-called truth table which gives the final state for each possible

combination of initial states.

Next we need to perform gates involving two or more qubits. One qubit is chosen

as control while the other(s) are considered as target(s) in such a way that the final

state of target is determined also as a function of the initial state of the control.

For instance, a basic two-qubit gate is the control-NOT (CNOT) that operates as

described by the truth table (see Table 1). Qubit–qubit coupling is an essential

resource to build multi-bit quantum gates. That is why it is important to control

inter-molecular interaction and spin entanglement in molecular assemblies as

described in the Sect. 4. Moreover since the implementation of both single- and

multi-qubit gates requires a dynamical control of such interactions, fast molecular

switches or protocols to switch the coupling between spin clusters are also of great

interest for the realization of multi-bit gates.

The key point here is that it is demonstrated that any unitary operation on

n-qubits can be implemented by a sequence of single-qubit and CNOT gates.

Equivalent universality can be proved with other sets of elementary operations of

one- and two-qubit gates [1]. This is an important result that suggests to focus effort

in proving the feasibility of elementary quantum gates with new qubit candidates

like molecular nanomagnets.

In principle, there are many other quantum algorithms of interest. Yet, not for

many of them it has been proved that they are more efficient than classical

analogues. That’s why the interest is generally focused on few of them which

become popular for their proven efficiency.

A first one is the Shor’s algorithm that is based on the quantum Fourier transform

of a given set of N states. The algorithm increases exponentially its efficiency with

respect to a classical computer by exploiting both the superposition and the

entanglement of quantum states. The Fourier transform allows to solve a large

class of problems including the factoring in prime numbers. Worth to be mentioned

here is a very nice experiment that proved the ability to factorize the number 15 has

been realized by NMR with nuclear spins [4]. Factorization of larger numbers (143)

has been recently demonstrated by implementing an adiabatic approach [5].

A second class of problems that quantum computers have been proved to solve

more efficiently than classical ones is the search of items in an unsorted database of

N entries. Schematically the problem can be simplified as follows: suppose we have

Table 1 Truth table of

the Controlled-NOT gate. The

first qubit acts as control

while the second is the target:

the target qubit is flipped if

and only if the control is set

to 1

Input Output

|00i |00i
|01i |01i
|10i |11i
|11i |10i
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to find a number in a phonebook. A classical computer splits the database into two

and finds the part where the number is and it will proceed like this until the

requested number is found. In 1996, Lev Grover proposed an algorithm exploiting

the superposition and interference of quantum states (but not the entanglement!).

In this way, the quantum computer operates in parallel by exploring different

possibilities at the same time. This requires
ffiffiffiffi
N

p
steps instead of N needed by a

classical computer.

3 Decoherence Mechanisms in Molecular Nanomagnets

Communication and processing of quantum information is based on the coherent

evolution of the system state vector: |Ψ (t)i ¼ e� iHt/ℏ|Ψ (0)i. In real systems, how-

ever, the coupling to the environment (ℰ) tends to spoil the coherent character of the
system ( S ) dynamics. This process is known as decoherence [6, 7], and its

characteristic timescale is the (de)coherence time τd. The environment can induce

transitions between different eigenstates of the system Hamiltonian, as in the

relaxation and incoherent excitation. These processes can be made relatively

inefficient by introducing a large energy mismatch between the system and the

environment excitation energies. The most harmful form of decoherence is typi-

cally represented by dephasing, resulting from elastic interactions betweenS and ℰ.
Dephasing consists in the loss of phase coherence between the components of a

linear superposition and implies the evolution of a pure state into a statistical

mixture: |Ψ i ¼∑ ici|ϕii! ρ¼∑ i|ci|
2|ϕiihϕi|. If relaxation and dephasing display

exponential dependences on time, they can be characterized by the so-called

longitudinal (T1) and transverse (T2) relaxation time constants. Decoherence is an

ubiquitous phenomenon; yet, its features and timescales depend strongly on the

system, the experimental conditions, and the specific linear superpositions under

consideration.

In molecular nanomagnets, decoherence of the electron spin mainly arises

from the coupling to phonons and nuclear spins [8, 9]. In addition, being

most experiments performed on ensembles of nanomagnets, dipolar interactions

between different replicas of the system can result in decoherence [10, 11]. While

dipolar interactions and coupling to phonons depend on the arrangement of the

nanomagnets within the sample, and can be possibly reduced by modifying such

arrangement, the coupling between electron and nuclear spins of each molecule

represents an intrinsic source of decoherence. Hyperfine interactions might there-

fore represent the fundamental limitation of the electron-spin coherence.

Let’s consider the case of a nanomagnet with an S¼ 1/2 ground state doublet, that

is initialized into a linear superposition: Ψj i ¼ Ψ 1j i þ Ψ 2j ið Þ= ffiffiffi
2

p
, where |Ψ 1i ¼ |* i

and |Ψ 2i ¼ |+ i are the lowest eigenstates of the molecule spin Hamiltonian H. In the
presence of a static magnetic field B0 along z, the molecule spin tends to precess in

the xy plane. The (contact and dipole–dipole) coupling between the electron (si)
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and the nuclear spins (Ik) modifies such idealized picture in different respects. Firstly,

the nuclear bath generates a magnetic field (the so-called Overhauser field BN);

this adds to B0 a contribution that renormalizes the Larmor frequency of the

nanomagnet spin S and depends on the state of the nuclei. The state of the nuclear

bath is generally undefined and is thus represented by a statistical mixture of different

states |ℐαi, each with probability pα and each inducing a different renormalization δα
of the Larmor frequency. As a consequence of such dispersion in the Larmor

frequency, the state of the nanomagnet evolves from |Ψ i into a mixture

ρ¼∑ αpα|Ψα(t)ihΨα(t)|, with Ψα tð Þj i ¼ *j i þ ei ωLþδαð Þt +j i
h i

=
ffiffiffi
2

p
. On timescales

where the dynamics of the nuclear bath is frozen, the phase coherence can be ideally

recovered by refocusing techniques. On timescales where the nuclear bath dynamics

can’t be neglected, the electron-spin decoherence tends to be irreversible. In fact,

even if the nuclei cannot efficiently induce transitions between electron-spin states

(due to the large mismatch between the electron and the nuclear Zeeman energies),

these can in turn affect the nuclear dynamics. In first order in the hyperfine coupling,

such dependence results from the chemical and Knight shifts, i.e. from the magnetic

field generated by the spins si on the Ik. Higher-order processes can also contribute,

such as those where a (real) transition between nuclear states involves a virtual

transition of the electron state. The evolution of the nuclear-bath state, resulting

from the interplay between such hyperfine interactions and the (dipole–dipole) ones

between the nuclei, nuclei is different if the electron spin of the nanomagnet points in

one direction or in the opposite one. As a consequence, electron-nuclear correlations

arise, and an initial state which is factorizable into the product of an electron

and a nuclear state (e.g., (|* i + |+ i)� |ℐi, evolves into an entangled state |* i�
|ℐ*i + |+ i� |ℐ+i, where |ℐχ¼*,+i are the states of the nuclei conditioned upon the

electron spins being in either of the two eigenstates). The state of the electron spins

alone is defined by the reduced density matrix, which is obtained by tracing away the

nuclear degrees of freedom, i.e. by averaging over the nuclear spins state. One can

show that the stronger the dependence of the nuclear state on the electron state, the

smaller |hℐ*|ℐ+i|, the smaller the modulus of the electron-spin coherence.

The control of decoherence represents indeed one of the key challenges for the

implementation of quantum-information processing. In order to maximize the

decoherence time, a detailed understanding of the process is required [9]. This

represents the prerequisite for engineering the system by chemical synthesis;

besides, it allows one to identify the degrees of freedom that are more robust with

respect to decoherence and that are thus more suitable for encoding quantum

information. The simulation of the nuclear dynamics in Cr7Ni rings, for example,

has allowed one to highlight the dominant role played by the H nuclei that represent

the majority of the nuclear spins in the molecule [12].

Quantum-information processing heavily relies on linear superpositions of

multi-qubit states. The decoherence of such states is therefore also relevant and in

general cannot be simply reduced to that of the single qubit. Let’s consider the case

of two exchange-coupled Cr7Ni rings. A linear superposition of two eigenstates of

the dimer such as **j i þ ++j ið Þ= ffiffiffi
2

p
, which is also an entangled state, decoheres
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under the effect of hyperfine interactions with the same characteristic timescales of

linear superpositions in the single ring. Two (effective) 1/2 spins can also be used to

encode a single qubit. In the singlet–triplet qubit, for example, the logical states

0 and 1 are identified with the singlet and triplet (with M¼ 0 states). In the dimer

of Cr7Ni rings, a linear superposition between these two states is much more

robust than that between the polarized states (M¼�1) [13]. In fact, for both the

M¼ 0 states, the expectation values of the electron spins vanish. As a consequence,

neither state induces a shift of the nuclear energies. The main contribution to the

electron-nuclear entanglement is thus represented by processes that are second

order in the hyperfine couplings, which are orders of magnitude smaller. These

processes consist of flip-flop transitions between pairs of nuclei, mediated by virtual

transitions of the electron-spin state. The comparison between these two linear

superpositions in the ring dimer shows how decoherence can depend not only

quantitatively but also qualitatively on the state in question.

A similar argument applies to the eigenstates of the chirality qubit, where the logical

states coincide with eigenstates of opposite spin chirality Cz ¼ 4=
ffiffiffi
3

p� �
s1 � s2 � s3.

If Cz is used for the qubit encoding, the states |0i and |1i also correspond to identical
expectation values of the spin projections, both of the total and of the individual

spins. As a consequence, the timescale related to nuclear-induced decoherence is

enhanced by at least two orders of magnitude with respect to the value of Sz [14].
Such a robustness with respect to decoherence represents a potential advantage of

the chirality qubit, along with the possibility of performing the manipulation

through electric – rather than magnetic – fields.

Experimentally a first estimation of decoherence effects can be obtained by

measuring the line-width of continuous-wave EPR spectra. However this includes

several effects and more detailed information can be obtained by pulsed ESR

experiments, as also explained in another chapter of this book. Specific pulse-

sequences are adopted in order to minimize some contingent effects – like inho-

mogeneity – and evidence intrinsic dephasing effects. These techniques are nor-

mally used to evaluate T2. Experimental values measured on specific molecular

nanomagnets are reported in Sect. 5.

4 Linear Superpositions and Entanglement of Quantum

States in Molecular Nanomagnets

In order to outperform classical devices, quantum computers need to exploit quantum

interference and entanglement. A preliminary condition for implementing quantum-

information processing is thus represented by the capability of understanding and

controlling such quantum-mechanical effects in the systems of interest. In this

perspective, we introduce hereafter criteria for quantitatively investigating linear

superpositions and entanglement in molecular nanomagnets.
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4.1 How Large Is a Linear Superposition?

Quantum mechanics allows superpositions of quantum states in systems of – in

principle – arbitrary dimensions. This leads to admit the paradoxical possibility that

a macroscopic system be suspended between two classically incompatible states. In

the last decades, the controlled generation of linear superpositions in systems of

increasing sizes has also gained a practical relevance, especially in the fields of

quantum-information processing and quantum metrology. However, the question

on whether or not a linear superposition is truly macroscopic, or, more generally, on

how large a linear superposition actually is, doesn’t admit a simple and general

answer.

This issue was first addressed by Leggett [15], who introduced the so-called

disconnectivity as a possible measure of the size of a quantum state. The

disconnectivity essentially corresponds to the number of particles within the system

that are quantum correlated with each other. Other measures have been proposed in

the last years, with reference to a more specific class of linear superpositions, namely

that between two semiclassical states: Ψj i ¼ Ψ 1j i þ Ψ 2j ið Þ= ffiffiffi
2

p
. One possible

starting point for quantifying the size of |Ψ i is represented by the observation that

linear superpositions of this kind tend to be extremely fragile with respect to

decoherence. In fact, the rate at which the phase coherence between the components

decays is expected to increase exponentially with the number of particles that form

the system (Quantum mechanics would thus explain why linear superpositions in the

macroscopic world, though possible in principle, are generally not observable).

Therefore, the decoherence rate itself can be used to quantify the size of the linear

superposition [16]. Another possible criterion is based on the use of macroscopic

linear superpositions to increase the sensitivity of interferometric experiments. Here,

the typical experimental setting includes a quantum system that evolves in time under

the effect of a single-particle Hamiltonian αH, where α is the parameter to be

estimated. One can show that the sensitivity of the interferometric estimation of α
depends on the time that the quantum system takes to evolve into a state orthogonal to

the initial state and is maximized by linear superpositions of semiclassical states

[17]. The measures that have been introduced according to this criterion are closely

related to the ones that are discussed in the second part of the present paragraph.

Hereafter, we consider pure quantum states of the form Ψj i ¼ Ψ 1j i þ Ψ 2j ið Þ= ffiffiffi
2

p
,

where |Ψ 1i and |Ψ 2i are two ground states of the nanomagnet of interest, and, more

specifically, of its spin Hamiltonian. In particular, we shall assume that these

ground states have well-defined values of the total spin (S) and of its projection

along z (M1 and M2, respectively). Linear superpositions of this kind can be

dynamically generated by pulsed magnetic fields, or statically induced by resonant

tunneling.

There are at least two simple and intuitive ways to quantify the size of such a

linear superposition. The first one would be to identify the size of the linear

superposition with the number of spins that form the cluster (N ). The second way

would be to quantify the size of |Ψ i in terms of the spin length S, or of the difference
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between the total-spin projections corresponding to the two components

(|M1�M2|). The shortcomings of such approaches are, however, quite apparent.

The first criterion only depends on the structure of the nanomagnet and therefore

doesn’t discriminate between any two linear superpositions generated within a

given system. On the opposite side, the second criterion leaves completely out of

consideration the number of constituent spins involved in the linear superposition,

as well as the features of |Ψ 1i and |Ψ 2i that depend on any quantum number but

S and M. In the following, we discuss two ways to measure the size of linear

superpositions, which can be regarded as two refined versions of the above ones.

In the first measure we consider the size of the linear superposition corresponds to

the number N0 of units (or subsystems) into which the spin cluster can be partitioned,

such that one can discriminate between the states |Ψ 1i and |Ψ 2i with a probability

P larger than some fixed threshold 1� ε, by performing arbitrary measurements

within each subsystem [18]. The definition of such units, and the value of N0, is
thus state-dependent. According to such a criterion, the fact that a linear superposition

|Ψ i is large requires not only large values of N, but also that the which-component

information is available within each fewmicroscopic units. In the limiting case where

the single-spin states corresponding to |Ψ 1i and |Ψ 2i are orthogonal, the

corresponding size attains its theoretical maximum N¼N0. This would be the case,

for example, with a linear superposition between fully polarized states

(|Ψ 1i ¼ | " " " . . . i and |Ψ 2i ¼ | # # # . . . i), or between two states with maximum

values of the staggered magnetization (|Ψ 1i ¼ | " # " . . . i and |Ψ 2i ¼ | # " # . . . i).
The second measure we consider can be traced back to the intuitive idea that a

large linear superposition |Ψ i, and more specifically a Schrödinger-cat state, is

characterized by a high degree of quantumness, while its components |Ψ 1i and |Ψ 2i
are classical-like states. A classical-like state of a spin cluster is possibly one where

each of the spins is in a defined state, and more specifically one that minimizes the

overall fluctuations in the spin-component operator. Conversely, a nonclassical (pure)

state is identified by the fact that the state of each spin is undefined, being the spin

entangled with the rest of the system. As a result, the fluctuations of any single-spin

operator tend to be large. The size of the linear superposition can thus be quantified

by the variance of an operator that can be written as the sum of single-spin operators:

V X;Ψð Þ ¼ Ψh jX2 Ψj i � Ψh jX Ψj i2, where X ¼ PN
i¼1 n̂ i � si [19]. If Ψ k¼ 1,2 is given

by the product of single-spin coherent states, one can always find a set of versors n̂ i

such that V X;Ψ kð Þ vanishes. In general, the versors n̂ i are chosen so as to maximize

the fluctuations of X for each given linear superposition. In the simplest case, n̂ i ¼ ẑ ,

the operator X reduces to Sz and its variance coincides with (M1�M2)
2/4. In other

cases of interest, n̂ i ¼ �ẑ , and X coincides with the staggered magnetization

S�z ¼ SAz � SBz , being A and B two sublattices into which the spin cluster is partitioned.

In any case, in order to single out the degree of quantumness which specifically

comes from the linear superposition of |Ψ 1i and |Ψ 2i, rather than from the compo-

nents themselves, the fluctuations of X in |Ψ i can be normalized to those in the states

Ψ k¼1,2j i : Vn X;Ψð Þ ¼ 2V X;Ψð Þ= V X;Ψ 1ð Þ þ V X;Ψ 2ð Þ½ �.

Quantum Computation with Molecular Nanomagnets: Achievements, Challenges. . . 393



The two criteria outlined above have been used to quantify the size of linear

superpositions that have been – or might be – generated in a number of noticeable

molecular nanomagnets [20]. Here, a major distinction is that between high-spin

molecules, such as Mn12 and Fe8 ground state, and low-spin systems, such as Cr7Ni

or V15 (S¼ 1/2). The former ones are characterized by more classical-like ground

states (in particular, those with M¼�S) In the latter ones, the ground states are

highly nonclassical, and a large amount of quantum fluctuations of the single-spin

operators results from the competing exchange interactions. These general features

are clearly reflected by the values of N0 and V X;Ψð Þ obtained for the different

nanomagnets.

The largest linear superpositions can be generated in high-spin molecules, by

linearly combining states of maximum spin projection (M¼�S). Here, the size

based on the distinguishability of |Ψ 1i and |Ψ 2i by local measurements corresponds

to N0 ¼ 8 and N0 ¼ 5 for Mn12 and Fe8, respectively (Fig. 3). In the case of Mn12, the

spins at the center of the sides (even-numbered, blue circles) are highly polarized –

and in opposite directions – in the M¼�10 ground states. Therefore, one can

discriminate between the two ground states with high probability through local

measurements performed on each of these spins. In the remaining spins, the

dependence of the state on M is less pronounced. The minimum subsystem that

carries the required amount of which-component information is represented by spin

pairs (green areas in the Fig. 3). In the case of Fe8, the only spins that are highly

polarized in the M¼�10 ground states are the four external ones: these can thus

form a subsystem each. The state of the spins that form the central core is instead

less defined and weakly dependent onM. Therefore, one needs to measure the state

of the whole central core in order for the measurement to provide the required

which-component information, and this should be regarded as a single subsystem.

In both cases, the size N0 of the linear superposition remains below the theoretical

maximum N. One can show that, without changing the geometry and the pattern of

exchange couplings within these clusters, nor the partition in sublattices of (approx-

imately) antiparallel spins, one could increase the value of N0 by modifying the

values of the Js [20].
The values obtained for the measure N0 in Cr7Ni and V15 are much smaller, and

non-proportionate to the number of spins that compose the two nanomagnets. In

both cases, the considered linear superpositions are those between ground states

with M¼�1/2. The size of |Ψ i in Cr7Ni (which is formed by seven spins s¼ 3/2

and one spin s¼ 1) is N0 ¼ 2. This is essentially due to the fact that each spin is

highly entangled with its nearest neighbors, such that its state is highly mixed. As a

consequence, the spin states corresponding to the two components are hardly

distinguishable, and the smallest subsystem that contains enough which-component

information is formed by (any) four spins. The case of V15 is in some sense even

more instructive. Here, 12 of the 15 s¼ 1/2 spins (those belonging to the two

hexagons) are practically frozen in a singlet state in the low-energy sector of the

system. They thus have (approximately) identical states in the two ground states

|Ψ 1i and |Ψ 2i and carry no which-component information. This is distributed

amongst the remaining three spins, such that the system cannot be partitioned at
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all, and N0 ¼ 1. This measure thus gives the same value that would be obtained in a

single s¼ 1/2 spin, in spite of the large number of spins that form the V15 cluster.

The characterization of the above linear superpositions in terms of quantum

fluctuations of single-spin operators leads to qualitatively similar results. For the

high-spin molecules Mn12 and Fe8, the values of Vn are 45.4 and 48.7, respectively,

denoting that the linear superposition |Ψ i of the ground states with M¼�10 has a

highly nonclassical character, with respect to the components. This is not the case

with Cr7Ni and V15, where the size Vn of the linear superpositions between the

ground states M¼�1/2 is given by 2.7 and 1.1, respectively. In these systems,

linear combinations of the ground states are not significantly more quantum than the

ground states themselves.

4.2 Which and How Much Entanglement?

Entanglement has been recognized as one of the most peculiar features of quantum

mechanics already in its early days. In the last decades, both the theoretical

understanding of entanglement and the capability of generating and detecting it

in diverse physical system have known a rapid development [21, 22]. This interest

has been partly fueled by the identification of entanglement as a fundamental

resource in quantum-information processing.

Hereafter, we recall some basic notions on entanglement. Given a two-spin

system in some pure state |Ψ 12i, the spins are entangled if it is impossible to

write the overall state as a product of single-spin states (i.e., in a factorized form

|Ψ 12i ¼ |ψ1i � |ψ2i). Here, the presence of entanglement can be inferred from the

mixed character of the single-spin reduced density matrices ρ1 and ρ2. In fact,

entanglement measures such as the von Neumann entropy quantify entanglement

between s1 and s2 in terms of the degree of disorder of their states: S¼� tr

(ρk log ρk) (k¼ 1, 2). If the overall state is not pure, then the spins are entangled

Fig. 3 Schematic view of the Fe8 (left) and Mn12 (right) molecular nanomagnets. The magnetic

core of Fe8 is formed by N¼ 8 spins s¼ 5/2, while that of Mn12 consists of eight external s¼ 2

spins and four internal s¼ 3/2 spins. The shaded areas define the subsystems into which each spin

cluster can be partitioned, such that the local measurement within each of them allows the

discrimination between |Ψ1i(M1¼� 10) and |Ψ 2i(M2¼+ 10) with a probability higher than 0.99
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if the overall density matrix ρ12 can’t be written as a mixture of factorized states. If,

instead, ρ12¼∑ lpl|ψ1
l
ihψ1

l |� |ψ2
l
ihψ2

l |, then the two spins are said to be in a sepa-
rable state. Deciding whether or not a mixed state ρ12 is entangled is in general a

nontrivial problem. This is because any given density matrix can in general be

obtained by mixing different set of states: the decomposition of the density matrix is

not unique. As a consequence, it is not easy to exclude that, e.g., a mixture ρ of

entangled states cannot be obtained also by combining factorizable states, in the

which case ρ would be separable. Measures such as those used for pure overall

states can still be applied, through the so-called convex-roof construction. This
corresponds to taking averaging the measure over the states |Ψ li that define a given
decomposition of ρ12, and minimizing over all possible decompositions. Such a

procedure can be computationally very demanding and the relevant quantities are in

general not directly accessible by experimental means. We note that one often deals

with mixed two-spin states. This can result from the finite temperature of the system

or, if the two spins in question are part of a larger system, by the partial trace

performed on the state of the remaining spins in order to obtain ρ12.
The above considerations apply to other forms of bipartite entanglement, such as

that between two generic subsystems A and B. In this case, each of the two parties is
itself a composite system, rather than an individual spin. The so-called multipartite
entanglement, instead, is substantially different. The state |Ψ 123i of three spins, for

example, is multipartite entangled if it can’t be written in a fully factorized form

(|ψ1i � |ψ2i � |ψ2i), nor in any biseparable form (such as |ψ12i � |ψ3i, or |ψ1i � |ψ23i).
Prototypical examples of three-spin multipartite entangled states are the so-called

GHZ and W states, defined for qubit systems: GHZj i ¼ """j i þ ###j ið Þ= ffiffiffi
2

p
and

Wj i ¼ ""#j i þ "#"j i þ #""j ið Þ= ffiffiffi
3

p
. The above definition can be generalized to the

case of a mixed state ρ123 along the same lines of the bipartite case. In particular, three

spins are considered multipartite entangled if ρ123 cannot be written as a mixture of

factorized and biseparable states. A three-spin cluster is thus the smallest system

where one can discuss multipartite entanglement. In a cluster formed by N> 3 spins,

one can investigate a hierarchy of multipartite entanglement states, involving k spins
at a time, with 2< k	N. A particularly useful notion in this respect is represented by

the so-called k-producibility. A state ρ of theN-spin system is k-producible if it can be
written as the mixture of states |Ψ i, corresponding to a product of n states,

|ϕl
1
i � . . .� |ϕl

n
i, each involving no more than k spins. A state ρ of the N-spin clusters

contains k-spin entanglement if it is not (k� 1)-producible.

Molecular spin clusters with dominant antiferromagnetic interactions can be

regarded as prototypical examples of strongly correlated systems [23]. The ground

state of such system generally exhibits highly nonclassical features and different

forms of entanglement (Fig. 4). In the following, we briefly review these forms, as

well as the experimental and theoretical tools that can be used to detect and quantify

them.
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4.2.1 Entanglement Between Individual Spins

Possibly the simplest form of entanglement is that between individual spins. An

antiferromagnetic interaction between two spins si and sj (Jsi · sj), with J> 0, tends

to entangle them. In particular, if si¼ sj, the exchange energy is minimized if the

two spins are in a singlet state. If si and sj are part of a wider spin cluster, then the

exchange interaction between the two will generally compete with that between

si(sj) and other spins sk 6¼ sj (sk 6¼ si), and none of these contributions to the overall

exchange energy will be minimized in the system ground state. Correspondingly, at

low temperatures (T< J), spin-pair entanglement tends to be present, though not

maximum, in pairs of exchange-coupled spins.

Given the reduced two-spin density matrix ρij, the entanglement between si and
sj can be quantified by functions such as negativity (N ), which measures the

violation of the positive partial transpose separability criterion [21]. Unfortunately,

the only way to deriveN by experimental means is to perform the full tomography

of ρij, which is generally unfeasible with the experimental techniques available in

molecular magnetism. There are, however, experimentally accessible quantities

that allow the detection of spin-pair entanglement, the so-called entanglement

Fig. 4 Different forms of entanglement that can be investigated within a molecular spin cluster:

(a) entanglement between two individual spins (circles with squared and linear patterning), tracing

out the remaining N� 2 spins (empty circles); (b) entanglement between complementary sub-

systems A (squared) and B (linear), formed by more than one spin each; (c) k-partite entanglement,

involving more than k> 2 spins at a time (and all of them, in the case k¼N ); (d) entanglement

between one spin and the rest of the system
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witnesses. One such observables is represented by the exchange operator si � sj itself,
which is now accessible in four-dimensional inelastic neutron scattering [24]. In

fact, one can easily show that the expectation value of the above operator

corresponding to (mixtures of) factorizable states |ψ ii � |ψ ji of the two spins cannot
be lower than a given threshold: hsi � sji 
� sisj. From the violation of such inequal-

ity, one can thus infer the presence of entanglement between the two spins.

With these simple tools, one can investigate the presence of spin-pair entangle-

ment in molecular nanomagnets and its dependence on the tunable physical param-

eters. For example, one can show that in an antiferromagnetic wheel such as Cr8
entanglement is only present between nearest neighbors and at temperatures

T< 1.5 J (this should be contrasted with the classical correlations that are instead

present in such a system between any two spins and at any finite temperature).

Besides, the controlled introduction of a chemical substitutions allows one to

investigate the effect of magnetic defects on the distribution of entanglement. In

particular, the replacement of a spin s within a ring with an s 0 6¼ s reduces the

amount of frustration (in terms of both energy and entanglement) and tends to

induce an oscillating dependence of entanglement as a function of the distance from

the defect [25]. These features can be clearly observed in the molecules of the Cr7M

series (with M¼Zn, Cu, Ni, Cr, Fe, Mn), together with the dependence of the sign

and amplitude in such oscillations on the length of the spin sM (with respect to

sCr¼ 3/2). An analogous effect can be produced by a different kind of magnetic

defect, namely the introduction of an exchange coupling J 0 6¼ J. In the presence of

two (or more) substitutions, one can observe a constructive or a destructive inter-

ference between the oscillations induced by each defect separately, depending on

the distance between the two. This can be observed in the molecules of the series

Cr2nCu2 [26]. Finally, a suitable engineering of the exchange couplings

(in particular, of the ratio between the Cr–Cu coupling J0 and the Cr–Cr coupling

J) also allows one to induce entanglement between distant and uncoupled spins,

which is generally absent in homometallic rings with nearest-neighbor interactions.

4.2.2 Multipartite Entanglement

There are forms of entanglement that cannot be traced back to entanglement

between spin pairs, for they involve more than two spins at a time. As a limiting

case, the state |Ψ i of an N-spin cluster is said to be N-partite entangled if it can’t be
factorized into the any product |ΨAi � |ΨBi of states of NA and NB¼N�NA spins.

Rather counterintuitively, such a form of entanglement can be detected through the

expectation value of the exchange Hamiltonian, even though this only includes

spin-pair operators. In fact, one can show that the ground state of a ring or chain of

N spins is N-partite entangled, and that its energy is separated from that of the

lowest biseparable state by a finite gap [27]. More generally, for any given system,

one can calculate a number of lower bounds Ek for hHi, such that the condition
hHi<Ek implies the presence of k-spin entanglement in the systems state, where

larger values of k correspond to lower thresholds Ek. Therefore, as the system
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temperature decreases, the expectation value of the exchange energy progressively

violates all lower bounds Ek, thus demonstrating the presence – in the equilibrium

state – of higher and higher orders of multipartite entanglement. The approach

developed for calculating the lower bounds Ek of a given system applies to arbitrary

spins and to spin clusters that include spins of different lengths (such as

heterometallic rings) [28].

4.2.3 Entanglement Between Subsystems

Another form of entanglement that is not conceptually reducible to that between spin

pairs is that between two subsystems A and B into which the spin cluster can be

partitioned. Some molecular systems, such as the dimer of Cr7Ni nanomagnets, can

be naturally thought in terms of two weakly coupled subsystems: in this case, A and

B would in fact coincide with the two rings [29]. However, physically motivated

bipartitions can be identified in a variety of spin clusters, such as those with

ferrimagnetic ordering, where spins belonging to different sublattices point in oppo-

site directions. Entanglement between all these subsystems can be quantified by

means of the negativity or, if the overall state is pure, by entropic measures, such

as the von Neumann entropy. As already mentioned, the practical disadvantage

presented by these quantities is that they cannot be expressed as simple combinations

of observable quantities and are therefore difficult to estimate experimentally. A

possible solution to this problem is represented by the generalization to the case of

composite spins of criteria – based on the use of entanglement witnesses – that allow

the detection of entanglement between individual spins. For the sake of simplicity, we

refer specifically to the already mentioned inequality, namely hSA � SBi 
� SASB,
whose violation implies entanglement between the two spins, and consider the

case where SA and SB are not individual spins, but partial spin sums (Sχ ¼
PNχ

i¼1 s
χ
i ,

where χ ¼ A,B), corresponding to subsystems of the spin cluster, which are formed

by NA and NB spins, respectively. The fact that the spin lengths SA and SB are state-

dependent quantities, and no longer intrinsic properties of the system, makes the

application of the above inequality less straightforward. However, one can show that

the criterion can be generalized to the case of composite spins, exploiting the fact that

the witness SA � SB commutes with the partial spin sums S2χ¼A;B [30]. The generalized

inequality reads: SA � SBh i 
 �P
SA,SB

p SASBð ÞSASB, where p(SA∙SB) is the probabi-

lity corresponding to each pair of values of the partial spin sums. As a further step,

one can show that such probabilities can be expressed in terms of experimentally

accessible quantities, and specifically of spin-pair correlation functions. This can be

done for a finite but limited amount of fluctuations of S2A and S2B in the (equilibrium)

state of interest. Such condition turns out to be satisfied in a number of system and

bipartitions, well beyond the limit where A and B are weakly coupled subsystems

(i.e., the couplings between the spins of A, or B, are much larger than those between

the spins of A and B, as is the case in typical dimer-like structures).
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A particular case of bipartition into complementary subsystems is that where one

of the two consists of a single spin. In this case, along the lines of the discussed

above, one can derive the minima of exchange energy corresponding to states

where the single-spin si isn’t entangled with all the others. In the case where the

spin clusters are formed by inequivalent spins (as for rings with a magnetic defect,

or for spin segments), different minima ei correspond to different spins. One can

thus extract a local, spin-selective information by the measurement of a nonlocal

quantity, such as the expectation value of the exchange Hamiltonian H. In fact, the

violation of the inequality hHi 
 ei allows one to infer that the spin si is entangled

with the rest of the system.

5 Molecular Nanomagnets for Quantum Computation

Molecular spin systems have attracted much interest for the almost-unlimited

number of possibilities they offer to engineer functionalities at molecular level as

extensively presented also in the other chapters of this book. They also constitute an

ideal playground for observing quantum phenomena [31]. They possess both

electron and nuclear spins. Clusters of transition metals (or lanthanides) are

bound together by superexchange interactions in such a way that is possible to

define, on the one hand, the pattern of the low-lying molecular states and their

relative energy splittings and, on the other hand, the environment in proximity of

the magnetic core, an essential ingredient to control decoherence mechanisms as

discussed in the previous paragraph. If sufficiently isolated from excited states, the

ground S multiplet of one molecule can be used as register for the encoding of

quantum information. Chemistry also allows one to control the external part of the

molecule by introducing functional organic groups. These allow one to stick two or

more molecules together with some control on the magnetic coupling. For instance,

the use of organic conjugated groups can induce a permanent super-exchange

interaction at supramolecular level [32]. Alternatively, the use of molecular

switches between two-spin qubits allows one to create – at the synthetic level! –

simple molecular architectures suitable for the implementation of quantum gates.

The independent control on the external ligands also allows the use of functional

groups that can stick onto different surface (for a review, see [33] and other chapters

of this book). For instance, the use of thiol groups exploits the affinity of the

terminal sulfur to bind to gold surface, while the use of cyclic organic terminations,

like pyridine or benzene, favors the sticking of the molecule to carbon-based

surface (graphite, nanotubes, fullerenes, graphene). Alternatively, the use of polar

terminations may allow the exact positioning of molecules on a surface prepared

with the corresponding counter-ion. Further examples can be found in another

chapter of this book dedicated to the deposition and characterization of molecular

spin clusters on surface. All these points indicate clear advantages in using molec-

ular spins, instead of spin impurities, for the design and the realization of architec-

tures for computation. In the following, we review some recent achievements and
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list real examples of molecular spin systems of interest for data processing. As

discussed in the previous paragraphs, it is worth to point out, however, that a

systematic investigation is required to consider a system suitable for the encoding

of qubits, as clearly spelled out by the DiVincenzo criteria [34] listed here below:

– Individuation of well-defined quantum states for the qubit encoding and scal-

ability of the system.

– Definition of a protocol to initialize the system.

– Ability to perform a set of quantum gates.

– Robustness of the system with respect to decoherence mechanisms and long

coherence time as compared to the gating time.

– Definition of read-out of the final state.

5.1 Radicals

Simple molecules provide already the possibility to encode qubits. Radicals with

one delocalized electron have a S¼ 1/2 net spin per molecule. They are well known

to spectroscopists to provide very sharp line-width in EPR even at room tempera-

ture. For instance, the diphenyl-1-picrylhydrazyl (DPPH) that is commercially

available normally shows S¼ 1/2, g¼ 2.0037 and about 2.4 gauss line-width in

X-band EPR spectroscopy. Among a large variety of radicals the attention is

focused on those that are stable in ambient conditions and can be dispersed in

solution or safely deposited on surface. The group of Prof. Gatteschi in Florence

works on nitronyl nitroxides and measured T2¼ 0.9 μs at 300 K (5 μs at 80 K) by

pulsed ESR [35] (Fig. 5a). The group of Prof. T. Takui at Osaka City University is

working on malonyl [36] or TEMPO [37] radicals reporting μs lifetimes at room

temperature. Finally, the application of optimal dynamical decoupling was shown

to allow an enhancement of the decoherence time of three orders of magnitude,

achieving the value of 30 μs at 50 K [38].

5.2 Single-Ion Molecules

Next step is the use of single-ion magnets comprising one single lanthanide per

molecule.

After the publication of Ishikawa et al. [40], single-ion magnets comprising one

lanthanide sandwiched in a bis-phthalocyanine complex (Fig. 5b) have attracted

much attention for the huge energy barrier due to magnetic anisotropy they offer

and the versatility and robustness they show when deposited on surfaces. Quantum

tunneling of the magnetization has been observed in TbPc2 [41] which presents

well-defined split of the ground J¼ 6 electronic state due to the hyperfine interac-

tion with I¼ 3/2 nuclear spin. These features make it an ideal molecule for the

realization of molecular quantum spintronic devices as presented in another chapter
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of this book. Very interestingly, lifetimes exceeding 10 s for nuclear spin states

have been measured on a single TbPc2 molecule in a spin transistor setup [42].

The group of Prof. Coronado at University of Valencia isolated mononuclear Gd

polyoxometallates (POM), namely GdW10 and GdW30 (Fig. 5c) for which two

states of the ground S¼ 7/2 multiplet have been identified for the qubit encoding

and a transverse relaxation time T2¼ 410 ns has been measured [39]. POMs offer

wide possibilities to control the crystal field acting on the lanthanide magnetic

center and to drastically reduce the number of nuclear spins in its environment.

5.3 Molecular Spin Clusters

The possibility to choose among an almost-endless catalog of molecules with core

made by several transition metals (or lanthanides) tightly bound each other by ferro-

or antiferromagnetic superexchange interactions allows to find molecules with

quite different ground state, i.e. with magnetic moment ranging from 0 to values

much higher than what is possible to find with a single magnetic ion.

In 2001, Leuenberger and Loss noticed that the M-states of the ground S¼ 10

multiplet of Mn12 and Fe8. Single Molecule Magnet are not regularly spaced in

Fig. 5 Some examples of molecular spin qubits: (a) S-4-(nitronyl nitroxide) benzyl ethanethioate

(NitSAc) radical. (b) Mononuclear Tb bis-phthalocyanine. (c) Mononuclear LnW10 polyoxometallate.

(d) High spin (S¼ 10) Fe8 [(tacn)6Fe8O2(OH)12]. (e) Supramolecular dimer of low-spin Cr7Ni rings
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energy and they can be addressed separately by microwave radiation. Based on this

consideration they proposed to perform the Grover’s algorithm with these mole-

cules [43]. Up to now, the experimental implementation of this proposal has not

been realized probably due to the tough experimental requirements. That was,

however, the first proposal for using molecular spins for quantum computation in

which specific quantum algorithm fits the features of a given molecule, and it drove

the attention and curiosity for exploiting molecular spin clusters for quantum

computation as promptly realized by Tejada and co-workers [44].

5.4 Low-Spin Molecular Clusters

Few years later, Loss and co-workers proposed to consider antiferromagnetic spin

arrangements in order to isolate molecular S¼ 1/2 qubits [45]. Low-spin (S¼ 1/2)

molecular clusters certainly represent nice examples of two-level systems. Follow-

ing this line of reasoning, in 2005 we proposed to consider heterometallic rings as

suitable candidates for a specific qubit encoding [46]. Heterometallic Cr7Ni rings

with a well-isolated doublet as ground state have been synthesized by Dr. G. Timco

in the group of Prof. R.E.P. Winpenny at Manchester University [47]. Coherent spin

oscillations within the ground doublet have been shown to persist for timescales as

long as 10 μs at 2 K by the group of Dr. A. Ardavan in Oxford [48, 49] (Fig. 6). In

these antiferromagnetic rings, the main mechanism for decoherence at low temper-

ature is related to the hyperfine coupling between electron and nuclear spins.

The motion of the nuclei can provide an additional decoherence channel, whose

presence can, however, be controlled by changing the external organic groups [49].

This molecule can be successfully grafted on different substrates, including gold

and graphite, showing to be robust enough to suffer only minor changes in the

pattern of its low-lying levels when single units are anchored on surface [50]. Due

to the flat ring shape, Cr7Ni self-assemble when gently sublimed on gold surface

[51]. More recently, two or more Cr7Ni rings have been linked together (see Fig. 6e)

and the chemistry behind this seems to provide great flexibility in the choice of the

linker (including switchable ones) and therefore in the tunability of the magnetic

coupling [52]. Spin entanglement at supramolecular level has been proven and

discussed in different cases [23]. Thus, it seems that all the prerequisites for the

implementation of universal set of one- and two-qubit gates are present for this

family of molecules.

Another prototypical example of low-spin molecule is V15 whose ground state is

given by the coupling of 15 V4+ in spherical arrangement. The lowest lying states

are two S¼ 1/2 doublets, split by only 80 mK and separated by 3.8 K from the first

S¼ 3/2 excited state. Rabi oscillations within these low-lying multiplets have been

observed on V15 with a coherence time estimated to be few hundreds of ns at 2.4 K

[53] (Fig. 7). More recently, Rabi oscillations have been measured on low-spin Cu3
antiferromagnetic trimers [54] dispersed in nanoporous Si: the spin coherence time

was found to be T2¼ 1.066 μs at 1.5 K in this case.
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5.5 High-Spin Molecular Clusters, SMM

Coherent oscillations have also been measured in high-spin molecules considering

transitions between two M-states of the ground multiplet. For Fe8 (Fig. 5d) a

decoherence time T2 of 712 ns at 1.3 K was reported [55]. Similar experimental

values have been reported for Fe4 SMM for which direct experimental evidence for

long-lasting, T2¼ 640 ns, quantum coherence and quantum oscillations between

two M-states has been reported by using pulsed W-band ESR spectroscopy [56].

All these results show that the search of molecular spin qubits is at present a

very effervescent field. Since the time to manipulate an electronic (molecular) spin

range between 1 and 10 ns in real experimental conditions, the above mentioned

experimental results demonstrate that the typical figure of merit for molecular

spin qubit, i.e. the ratio between the coherence time and the manipulation time

Q¼ T2/τ ranges between 102 and 103. This figure of merit is comparable to what

found in other solid state qubits and it is a good starting point to consider the

molecular spins suitable for the implementation of one-qubit gate.

Fig. 6 Hahn-echo pulsed-

ESR technique was used

in these experiments to

evaluate the spin relaxation

times as a function of

temperature for Cr7Ni

(open circles), Cr7Mn

(open squares), and
perdeuterated Cr7Ni

(filled circles). (a) Spin–
phonon relaxation T1
(expressed in ns). (b) Spin–

spin relaxation T2 (in ns).

Reprinted with permission

from Ardavan

et al. [48]. Copyright 2007

by American Physical

Society
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5.6 Molecules for the Implementation of Multiple-Qubit
Gates

Considerable effort has also been recently devoted to identify and synthesize

supramolecular structures comprising two or more molecular qubits (or, more

simply, bi- or poly-nuclear clusters). A prototypical example is the (Mn4)2 dimer

comprising two Mn4 moieties weakly coupled one to another [57, 58]. The family

of Cr7 Ni rings offers a great deal of possibilities to realize supramolecular

architectures, including molecular spin qubits linked by organometallic switches

[47]. In 2007, the groups of Coronado and Loss proposed to exploit the properties of

[PMo12O40(VO)2]
q� POM comprising two S¼ 1/2 spins to perform the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gate. Other proposals for the implementation of two-qubit gates with bi-nuclear

molecules have been reported for the Tb2 [59] and manolyn bi-radical [37]. Finally,

it is worth mentioning the activity of the group of Dr. G. Aromi who is using

β-diketonates ligands to synthesize linked SMMs designed for the implementation

of different (multi-)gate schemes [60, 61]. These achievements indicate that the

bottom-up – synthetic – approach allows one to assemble complex molecular

architectures reflecting the scheme of quantum computers, and many conditions

to perform multi-qubit gates appear to be met by different molecular systems. Yet,

at the time of writing, no experiments have been successfully completed to prove

the functioning of a molecular multi-bit gate. The use of – at least – two frequencies

Fig. 7 Time dependence of the average hSzi component after a spin-echo sequence. The lower

curve shows the Rabi oscillations of the S¼ 1/2 ground state, while the upper one displays the Rabi

oscillations of the S¼ 3/2 first excited state. Measurements were performed by spin-echo spec-

troscopy on V15 single crystals at 2.4 K. The inset shows the T2 decay measured with Hahn-echo

sequence. Reprinted with permission from Yang et al. [53]. Copyright 2012 by American Physical

Society
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in the pulse sequence (e.g., for separately addressing the qubits, or switching their

interaction) requires noncommercial setups, and this is certainly one of the main

experimental limitations at the moment. Further difficulties in combining different

experimental conditions (low temperature, high power pulse, finite relaxation time)

and fitting the properties (frequency) of a specific molecular system need to be

overcome in future in order to achieve this fundamental goal and bring this field to

maturity.

6 Quantum Simulators

Generally speaking, a simulator is a device able to reproduce the dynamics of a

different system. Similarly, a quantum simulator is a device designed to efficiently

reproduce the time evolution induced by a given target Hamiltonian, describing the

behavior of a specific quantum system (for an extensive review, see [62, 63]). This

is a very difficult task for a classical computer. For instance, to simulate a system

with few quantum objects it requires an incredibly large amount of power, time and

registers to a classical computer and, as soon as the size of the quantum system

increases, the problem becomes intractable. In 1982, Richard Feynman firstly

pointed out that a specifically designed set of quantum registers and processors

may – instead – well do this job [64]. Since then, the idea of using quantum

computers to solve problems in quantum physics and chemistry has been identified

as one of the most intriguing problems in the field of quantum computation. More

recently, simulation of simple quantum systems has become an achievable goal

with current technology and a race in this direction has started with interesting

proposals and results.

Typical problems that are treated by quantum simulators are those related to

basic models in quantum magnetism and phase transitions of frustrated systems, or

models for electron pairing in high temperature superconductors. Simulation of

many-body fermionic systems is one of the most difficult tasks for a classical

computer, also due to the change of sign of the wavefunction when two particles

are swapped. Problems such as those related to the Hubbard Hamiltonian could

instead be addressed by quantum simulators. Another typical many-body problem

is the pairing mechanism at the basis of the BCS theory of superconductivity. In

quantum chemistry, quantum simulators have been proposed for the design of new

molecules as complex as those used for drugs.

Quantum simulators are nothing but quantum computers designed to solve

specific problems. As such, they may not be able to perform a universal set of

operations; yet, they can be extremely efficient in performing their specific task.

Efficiency is indeed one crucial aspect. In 1996 Lloyd clearly presented cases for

which a quantum simulator requires resources (registers and processors) increasing

in polynomial way with the size of the simulated system, whilst a classical com-

puter would require a number of resources increasing exponentially [65].
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As mentioned above, the typical problem addressed by quantum simulators is

the time evolution of a quantum system described by a wavefunction |Ψ (t)i under
the action of the Hamiltonian Ĥ ℏ � 1ð Þ:

Ψ tð Þj i ¼ e�iĤ t Ψ 0ð Þj i: ð3Þ

Different ways to simulate the time evolution of the quantum system have

been proposed, but an efficient strategy, if Ĥ ΣĤ i only includes local terms Ĥ i, is

that to split the overall time evolution into a discrete sequence of simple steps [65],

where the total simulation time T is then divided into N intervals τ¼ T/N and the

overall time evolution is approximated by the so-called Trotter–Suzuki formula:

e�iĤ t ’ e�iĤ 1τ . . . e�iĤ Nτ
	 
N

, ð4Þ

where terms of higher order can be neglected for sufficiently large N. Thus, the

general time-evolution operator is decomposed in a set of gates e�iĤ 1τ, . . . , e�iĤ Nτ,

each operating on a few qubits, and whose number scales favorably with both

the time T and the number of qubits. Since elementary gates are known to form

basis for a universal computation, each e�iĤ iτ can be in turn expressed as a sequence

of logical gates. We just notice that the type of the interaction between qubits

that are exploited in the elementary gates e�iĤ iτ as well as the architecture of the

quantum simulator, need not reflect those of the system to be simulated.

Like in any other (quantum) computer, for quantum simulators we need to

define both the preparation of the initial state and the measurement of the final

state. The simplest way to initialize a quantum simulator is to let it cool down into

its ground state. Another possibility is to measure and project it into a specific

state. Besides these simple methods, one might need to define specific sequences of

gates to prepare the simulator into the desired state. Measuring the output is also not

a trivial task.

From the experimental point of view, the main problem is to engineer the

interactions between qubits and at the same time to build up the scalable architectures

required to simulate the target system. In the last years, simple quantum simulators

have been realized and successfully tested with the most advanced quantum techno-

logies. We can find examples of quantum simulators made of only few qubits, as well

as extended architectures.

Nuclear spins benefit from their long coherence time and implementation of

elementary and complex algorithms has been extensively carried out in the last

two decades [66]. Effective nearest-neighbor Heisenberg interactions are naturally

set between nuclear spins, and numerous groups have already attempted to simulate

the three- and four-body problem as well as the behavior of spin chains [62].

Simulation of both fermionic and bosonic systems has been successfully performed

by NMR [67–69].
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The technology to realize arrays of cold atoms with optical lattices, as well as

that to trap ions in architectures suitable for quantum simulators, is certainly one of

the most advanced in the field. For trapped ions the mutual interaction can also be

controlled, and simulation of spin systems has been designed and successfully

performed by this technology [70, 71]. Nitrogen vacancies in diamond are one of

the most promising ways for the implementation of quantum computation, due to

their long coherence time – even at room temperature – and to the advanced optical

techniques for the read-out. Recently, important progresses have been made in

controlling the position of such vacancies and this opens the way for the fabrication

of scalable architectures. Also, a quantum simulator using nuclear spins in diamond

has been realized, where nitrogen vacancies have been implanted in a controlled

manner [72]. Phase transitions of a frustrated magnetic system have been simulated

and successfully tested [72].

Solid state qubits have also been used to realize quantum simulators. For

instance, the basic problem of the hydrogen molecule has been simulated by

using three quantum dots [73, 74]. Yet, for quantum dots, as well as for

superconducting circuits, the main problem for the realization of large simulators

remains the fabrication of identical qubits by lithographic methods and bottom-up

approaches. The synthesis of molecular qubits looks very appealing in this respect.

In this context, proposals for the realization of quantum simulators with molec-
ular spins have recently appeared [75]. Santini and co-workers considered an

infinite chain of alternating A–B molecules, both with spin 1/2 but addressable

separately and effectively coupled with each other through antiferromagnetic

dimers that may switch on and off such coupling. They demonstrated that the

dynamics of such a spin system may actually map different Hamiltonians, including

those of fermionic systems or that describing the quantum tunneling of a spin

1. One peculiarity of this simulator is that there is no need to use local fields, thus

operations can be run in parallel by microwave pulses [75]. This work has imme-

diately inspired the synthesis of polymeric structures comprising the Cr7Ni molec-

ular qubits like those reported in [76], and efforts are currently on the way in order

to synthesize metallo-organic frameworks fulfilling all the conditions to realize a

quantum simulator with molecular qubits.

A different approach has been proposed by the Osaka group who focus the

attention to air-stable radicals (hexa-methoxyphenalenyl) with an extremely well-

resolved ESR hyperfine splittings a very small line-width in solution. Although the

Hamiltonian description still needs to be defined, this molecule provides a specific

cluster of both electron and nuclear spins interacting with each other. This suggests

that ENDOR technique can also be used in order to exploit the long coherence time

of nuclear spins and combine it with the easy read-out of electrons to realize a

quantum simulator within only one molecule [77]. Indeed, hyperfine interactions

represent one of the major obstacles in many electron-spin-based approaches to

quantum computation. However, alternative schemes have been developed where

the coupling between electron and nuclear spins represents a key ingredient for the

quantum-gate implementation [78, 79].
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7 Hybrid Quantum Systems and Devices

So far, the physical implementation of quantum-information processing has been

pursued by using different quantum systems and techniques. Hybrid devices, in

which different elements are assembled to exploit the best characteristic of each of

them, are today considered promising in this perspective. Engineering the interac-

tion of single photons with isolated quantum objects (atoms, ions, spins, etc.) is a

fundamental goal in quantum mechanics, as testified by the 2012 Nobel Prize in

Physics to Haroche and Wineland. The physics and technology associated with

cavity quantum electrodynamics (cavity-QED) [80] has largely contributed to the

development of quantum information.

In 2004 the Schoelkopf’s group at the Yale University demonstrated that it is

possible to implement cavity-QED on a chip by means of superconducting resona-

tors and qubits [81]. In this approach, planar resonators substitute the 3D mirror

cavities, thus opening the way to efficiently couple photons with any two-level

systems lying on the same substrate. Hybrid circuits that incorporate

superconducting hardware and spin systems were soon proposed to exploit the

fast manipulation of superconducting qubits and the long decoherence times of

electronic spins [82]. Moreover, superconducting lines can act as a quantum bus,

linking different subsystems on the same chip by means of the coherent exchange of

microwave radiation.

In this context, molecular nanomagnets can provide alternative elements of

hardware. This is an emerging field for which theoretical proposals and experiments

started to appear very recently. Besides the coherent coupling between molecular

spins and photons in cavities, planar resonators are of interest for magnetic reso-

nance experiments, since they allow measurements on thin films or nanostructured

molecular nanomagnets. The purpose of the next paragraphs is to give an overview

of these topics and to figure out possible scenarios in which molecular nanomagnets

can play a role.

7.1 Coupling a Single Spin to Electromagnetic Radiation

We consider here a prototypical experiment where photons in a cavity interact with

a two-level quantum system. An electromagnetic cavity is a physical constriction

with mirrors that forces photons to multiple reflections, allowing the electromag-

netic (e.m.) field to resonate as a stationary wave. Under appropriate experimental

conditions the field has a single harmonic mode at frequency ω. Although the

problem can be treated in general terms (the two-level quantum system can be

either a cold atom (ion) or a superconducting qubit, a quantum dot, etc.), we

consider more specifically the case of an isolated spin 1/2 placed in a static

magnetic field B0 oriented, let’s say, along the z-axis. When the temperature is

sufficiently low, the Boltzmann population of the two levels is different. The spin
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precesses at the Larmor frequency ω0¼� γB0 about B0 and the degeneracy of the

two eigenstates | " i¼ |0i and | # i¼ |1i is lift by the corresponding energy splitting

ℏω0¼ gμBB0.

The application of an oscillating magnetic field B1 induces a change of the

magnetic moment μ¼ γℏS associated with the spin S, which is given by

dμ

dt
¼ γμ ^ B1: ð5Þ

When B1 is oriented in the x–y plane and oscillates with angular frequency

ω’ω0, it can induce dipole transitions between the | " i and | # i states and change

the relative populations (Fig. 8). This problem was first treated by Rabi and it is still

a milestone for the spin resonance techniques [83]. The semiclassical model that

describes the motion of a spin 1/2 under the action of a classical e.m. radiation field

at the resonant frequency can be easily found in textbooks [2]. The probability P(t)
to find the spin in its eigenstates oscillates as:

P tð Þ ¼ Ω2
R

Δ2
c þΩ2

R

sin 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
c þΩ2

R

q
t

2

� �
, ð6Þ

where Δc¼ω�ω0 is the detuning of the e. m. field frequency (ω) from ω0 and

ΩR¼� γB1 is the Rabi frequency.

When the intensity of the e.m. radiation is progressively decreased, only few

photons (n) statistically interact with the two-level system and the quantum

mechanical features of the field come into play. These can be described by the

x

y

z |0

|1|

B0

B1

Fig. 8 Graphical representation of the Rabi nutation of |Ψ i in the laboratory frame. The spin,

initially in the |0i state, evolves under the effect of the static field B0 and the oscillating field B1
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Jaynes–Cummings model in which the e.m. field is quantized. These conditions are

typically encountered in cavity-assisted experiments, where few photons are con-

fined in a limited space by multiple reflections at the cavity walls. This topic is

described more in detail in Appendix 1 and here we simply summarize the main

results. The spin–photon states tend to cross each other as the ω and/or B0 change.

As ω approach ω0(Δc¼ 0) they strongly interact giving rise to a level repulsion

(anticrossing) centered at resonance (Fig. 9a). The energy gap at resonance, known

as Rabi splitting, quantifies this interaction. Photon and spin states become tightly

correlated and for n¼ 1 and Δc¼ 0, the eigenstates of the whole system correspond

to the entangled states

χþ
�� � ¼ 1ffiffiffi

2
p �1=2, 1j i þ þ1=2, 0j i½ � ð7Þ

χ�j i ¼ 1ffiffiffi
2

p �1=2, 1j i � þ1=2, 0j i½ �: ð8Þ

b

|-1/2, n+1

|+1/2, n

| -(n)

| +(n)

n

a

En
er

gy

c/ n

Fig. 9 (a) Vacuum Rabi splitting. The repulsion between the dressed states |χ+(n)i and |χ�(n)i
determines an anticrossing for Δc¼ 0 (see Appendix 1 for definitions). The energy splitting on

resonance is related to the Rabi frequency ℏΩn. (b) Reflection spectrum of lithium phthalocyanine

(N¼ 2.2� 1012) measured for varying frequency and applied field by means of a three-

dimensional cavity. The anticrossing behavior is well visible and theoretical fitting gives

gc/2π¼ 0.71 MHz and κc¼ 2π¼ 5.4 MHz. Right panel shows the cross sections measured for

3,469.2 G (black, on resonance) and 3,468.5 G (gray). Reprinted with permission from Abe

et al. [84]. Copyright 2011 by American Institute of Physics
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In realistic physical situations, the effect of the environment on the quantum states

of both cavity and spin system is relevant and finite lifetimes must be considered.

Photons are either absorbed by the environment or they escape from the feedlines.

The decay rate κ is related to the quality factor Q of the resonator κ ¼ 1
τp
¼ ω

Q. When

Q is sufficiently high, the photon can be absorbed and emitted many times before

escaping from the cavity and the corresponding lifetime τp is long. Similarly, the

effects of the environment to the spin dynamics can be taken into account by

considering the decoherence mechanism characterized by the rate γs¼ 1/T2 at suffi-
ciently low temperature (see Sect. 3). To observe the coherent dynamics of the

coupled spin–photons system, the Rabi frequency must be faster than γs and κ,
more specifically the coupling strength gc between spin and photons must be

gc� γs, κ. When this condition is met, the system is in the so-called strong-coupling
regime. A dimensionless measure of the coupling strength is the cooperativity,

defined as C ¼ g2

γsκ
such that the strong-coupling regime corresponds to C � 1.

The strong-coupling regime has been observed in several experiments on

Rydberg atoms, cold atoms, Coulomb crystals, or semiconductors by exploiting

the electric coupling with the electromagnetic radiation. Coupling strengths in the

100 MHz range have been reported, thanks to either the strong electric dipole or the

strong electric component of the cavity field. Conversely the strong coupling of a

single spin to electromagnetic radiation is more difficult to observe, as the magnetic

dipole gives only fairly weak gc ~ 1 Hz. However, this value can be enhanced by

using high-spin states, although higher magnetic moments would also result in

stronger dipolar coupling to the environment and faster decoherence. Alternatively,

the spin photon coupling can be enhanced by using spin ensembles as described in

the following.

7.2 Spin Ensembles in a Cavity

Following Dicke [85] who considered the spin ensemble as a single quantum-

mechanical system, Tavis and Cummings [86] generalized the problem to an

ensemble of N independent two-level (spins) systems (Fig. 10). When the number

of photons in the cavity is n
N, the excitations of the spin ensemble can be

described in terms of non-interacting spin waves. Due to the constructive inter-

ference between single-spin transitions, the effective coupling of the spin ensemble

with the field is enhanced to gens ¼ gc
ffiffiffiffi
N

p
. The strong coupling between spin

ensemble and e.m. field can be achieved for N sufficiently high [84, 87].

For an increasing number of photons that populate the cavity, a transition from

pure quantum to classical dynamics is predicted [87]. For n¼ 1, the ensemble

oscillates between two available spin–photon states with energy separation given

by the vacuum Rabi splitting ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
c þΩ2

n

q
(Fig. 9a). Each progressive addiction of a

photon to the cavity creates a transition whose Rabi splitting depends on n.
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Experimentally, the occurrence of the vacuum Rabi splitting in experiments

involving spin ensembles is detected by microwave spectroscopy by looking at both

dispersive and absorptive signals. The former (usually neglected in conventional

EPR spectrometers by locking the source to the central frequency of the resonator)

is associated with the frequency shift with respect to the resonance frequency of the

unperturbed cavity (ω).

ωc ¼ ω� g2ΔB

Δ2
B þ γ2s

, ð9Þ

where ΔB¼m0(B�B0)/ℏ is the field detuning. The absorption signal is associated

with an increase of the Q-factor

κ0 ¼ κ þ g2γs
Δ2
B þ γ2s

: ð10Þ

The full frequency and magnetic field spectrum shows by the appearance of two

branches in the spectrum.

ω� ¼ ωc þ ΔB

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

n þ Δ2
B

q
2

ð11Þ

This behavior is well visible in Fig. 9b, which shows the EPR signal measured

for a lithium phthalocyanine with very narrow line-width (0.0083 G). The

anticrossing is seen at about 3,469 G where the absorption line of the cavity

meets that of the spin doublets.

Fig. 10 Pictorial

representation of a

N-spin system coupled

to the e.m. field of a

three-dimensional cavity.

The level structure within

the spin ensemble has a

harmonic character, where

the excitation energy is

determined by the Zeeman

splitting due to the static

field B0. The coupling

strength gc between the

oscillating field (B1) and

the collective spin system

is enhanced by a factor
ffiffiffiffi
N

p
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The main complication of using ensembles is probably represented by the need

of replacing single spin with collection of spins in the physical implementation of

each qubit, in order to achieve the strong-coupling regime with the cavity modes.

The source of the complication is twofold. On the one hand, spin ensembles behave

(in the low-excitation regime) as harmonic systems: the qubit, whose logical states

correspond to the presence in the ensemble of 0 or 1 excitations, is not naturally

protected from population leakage to states with a higher number of excitations, as

is the case for single S¼ 1/2 spin systems. On the other hand, small differences

between the nominally identical systems within the ensemble, as well as inhomo-

geneities in the applied fields, can result in additional sources of qubit dephasing,

with respect to single-spin (cluster) qubits.

7.3 Superconducting Hardware and Spin Ensembles

Hybrid circuits composed by superconducting and spin qubits are intensively

studied in order to exploit the best of both worlds. The strong coupling constant

of superconducting qubits to external fields makes them easy and fast to manipu-

late, while the long coherence times of electronic spins, as long as 2 s at room

temperature for isolated impurities in crystals [88], make them ideal as quantum

memories. Hybrid circuit-QED devices have been proposed in different schemes

[89–92], with spin ensembles as quantum memories [93] to complete an architec-

ture formed by the coplanar quantum bus and the superconducting qubits.

The experimental demonstration of the strong coupling with the cavity field is

the first, necessary, step for spin ensemble to enter in the realm of circuit-QED.

Exploiting the magnetic dipolar interactions, crystals of – typically 1012 –

non-interacting magnetic entities can be placed on the planar resonator directly

above the region where the magnetic field antinode is localized (Fig. 11). Different

systems have been investigated, namely N–V centers [94–96], ruby [94], Er:

Y2SiO5 [97] with coupling strengths gens ranging between 10 and 65 MHz.

Recently, strong-coupling regime has been reported for ferrimagnetic Ga-doped

Y3Fe5O12(gens¼ 4,540 MHz) [98].

In the strong-coupling regime, the resonator can be implemented to work as a

“quantum bus” that coherently transfers the qubit state. Seminal experiments,

performed in non-resonant strong dispersive regime, have, for instance, demon-

strated the possibility to couple two qubits placed few millimeters apart by means of

virtual photons [99]. The controlled phase interaction among the qubits has allowed

the production of Bell states with concurrence up to 94%, reporting 1 μs of

coherence time of the two-qubit device [100]. The exploitation of these quantum

protocols also relies on the generation of a single or few microwave photons

[101, 102] and controlled photon states [103], as well as on the possibility to detect

the entanglement by means of a two-state tomography [104]. The successful

execution of the Grover and Deutsch–Jozsa quantum algorithms has been carried

out in proof-of-concept experiments [100].
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The storage and retrieval of a quantum state from photons to a spin ensemble has

been achieved by means of suitable sequences of magnetic pulses in pulsed EPR

experiments by Wu et al. [105]. In a planar device, the direct transfer of a single

photon between a superconducting qubit and an ensemble of NV centers has been

assessed by the observation of vacuum Rabi oscillations when the qubit is brought

to resonance with the spin ensemble [106]. A variable frequency superconducting

resonator has been employed by Kubo et al. as quantum bus to perform a SWAP

operation. An arbitrary qubit state α|gi + β|ei has been transferred into a

corresponding photonic state α|0i + β|1i of the bus. The adiabatic SWAPgate has

been performed by sweeping the resonance frequency of the bus across the qubit

frequency. The resonance frequency of the bus is then tuned to resonance with the

spin ensemble for a certain interaction time; hence, it is tuned back to the qubit

frequency and the quantum tomography is performed. The fidelity was of about

10% only, limited by hyperfine effects and by the inhomogeneous broadening at

resonance. Julsgaard et al. [107] have recently proposed a restoring protocol, based

on magnetic resonance refocusing methods, reporting an improved fidelity of 80%

for a storage time of 10 μs.

7.4 Molecular Spins in Hybrid Quantum Circuits

The idea to combine molecular spins with resonant cavities has naturally risen in

this context. Organic radicals provide narrow EPR lines and long spin–spin

spin 
ensemble

gap

gap

B1

B0

resonator

dielectric 
substrate

superconductor

Fig. 11 Schematic representation of a coplanar waveguide microwave resonator realized by

conducting strips on a dielectric substrate. For a quasi-TEM e.m. wave, the magnetic field

component (B1) is maximized at the center of the resonator and the flux lines are perpendicular

to the central strip conductor. The physical dimension of the capacitance gaps determines the

coupling degree of the resonator to the feedlines
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decoherence times; thus, they can be used as first testbed. Chiorescu and co-workers

studied the spin–photon coupling in a cylindrical cavity exploiting the doublet

transition of DPPH radicals, showing the occurrence of a Rabi splitting of

10.9 MHz [87]. The Oxford team (Ardavan, Morton, and others) obtained the

strong-coupling regime by using DPPH and lithium phthalocyanine in an X-band

cylindrical dielectric ring resonator and they showed the
ffiffiffiffi
N

p
dependence of the

coupling g-factor to the number of spins N [84]. In Stuttgart, superconducting

striplines have been used to demonstrate frequency-swept EPR on organic radicals

of the nitronyl-nitroxide family, as well as on Cr3+ atoms in ruby [108].

7.4.1 High-Spin Molecular Clusters

High-spin molecular clusters have been theoretically considered by Jenkins

et al. [109] for use in hybrid quantum circuits. High spin can actually favor the

establishment of strong coupling with modes in a resonating cavity. Thus, allowed

transitions in high-spin clusters of Fe8, GdW10, GdW30, TbW30 have been theoret-

ically investigated in order to find optimal conditions for coupling with

superconducting coplanar resonators. Hybrid circuits made of high-spin clusters

and flux qubits have also been considered. The authors concluded that high-spin

ensembles tend to couple more strongly to flux qubits than to resonators and they

demonstrated that coupling strength of 10% of the qubit natural frequency could be

obtained under realistic experimental conditions [109].

The case of Mn12 in a resonant superconducting cavity has been theoretically

considered by Tsang et al. (private communication) in order to find conditions for

strong coupling and then study the Quantum Tunneling of magnetization in this

regime. From this study, it turns out that the molecule-cavity system exhibits a

three-well potential with tunable inter-well interactions making conditions acces-

sible for novel process of photon-assisted tunneling. Interestingly, this hybrid

molecule-cavity system can be further exploited for simulating similar quantum

systems.

7.4.2 Low-Spin Molecular Clusters

In the schemes based on the use of molecular nanomagnets, the interaction between

the qubits is induced by superexchange bridges (see Sect. 4). It thus has a permanent

and short-range character. Therefore, a suitable engineering of the intermolecular

bridges is required in order to allow the switching of the effective qubit–qubit

coupling or, alternatively, global-field approaches might be needed in order to

bypass the requirement of an individual addressing of the nanomagnets [110]. In

both these instances, the use of planar cavities offers the possibility of different

solutions and suggests the development of different schemes. In particular, cavity

photons can be used as bus qubits that possibly induce an effective coupling
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between distant qubits within the array. Also, neighboring qubits can be separated

by larger distances, so as to facilitate their selective addressing.

In schemes based on the use of planar cavities, spins are generally used as

quantum memories. The quantum processors are instead represented by systems

that can be manipulated on shorter timescales, such as (different kinds of)

superconducting qubits. Within such an approach, the role of the cavity is that of

coupling the quantum memory and the quantum processor, i.e. the spin and the

superconducting qubits. Starting from a similar hybrid device, a different approach

to the implementation of quantum-information processing has been theoretically

proposed [111]. This is based on a hybrid dual-rail encoding, where each qubit is

physically implemented by a spin ensemble and a mode of the stripline resonator,

and the logical states 0 and 1 correspond to the localization of an excitation,

respectively, in the spin ensemble and in the cavity mode. Therefore, spins and

photons don’t have distinct roles, but rather enter on the same footing. The possible

advantage resulting from such an encoding is represented by the fact that all the

manipulation is performed by the same means, namely the dynamical tuning of the

resonator frequency. In particular, the single-qubit rotations of the form eiϕσx=2 can
be implemented by putting in resonance the cavity mode with the lowest excitation

mode of the spin ensemble for a defined time interval, thus allowing an excitation

transfer between the two. Rotations around the z axis result instead from the

modulation of the cavity frequency alone. The harmonic character of the spin-

ensemble qubit represents a potential limitation in the implementation of condi-

tional dynamics, and thus of the two-qubit gates. In order to introduce the required

nonlinearity, a Cooper-pair box is added to the hardware, with three relevant energy

levels. A suitable sequence of pulses (i.e., variations of the cavity frequencies)

transfers the excitations of the two neighboring cavities to such three-level system

and back to the qubits, thus adding a phase factor to the two qubits, only if these

were initially in the logical state 11. This operation, combined with single-qubit

gates, implements the CNOT gate.

In most of the developed schemes, the spin degree of freedom that is considered

is the projection along z of the molecule spin. This choice implies the use of the

magnetic component of the confined field for the spin manipulation. An alternative

possibility is provided by spin chirality, which represents a good quantum number

in odd-numbered spin rings with antisymmetric exchange. It has been predicted

that such degree of freedom can be manipulated by means of pulsed electric fields

[112, 113]. The actual value of the spin-electric coupling has been theoretically

estimated in the case of some specific nanomagnets [114]. In suitably chosen

molecules, such coupling might exceed that of the magnetic component, thus

allowing the achievement of the strong-coupling regime with the cavity mode

with smaller ensembles. As another possible advantage, spin chirality is expected

to couple weakly to the nuclear-spin environment, and thus to present much longer

decoherence times [14].
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8 Conclusions and Perspectives

In Sect. 1 we rose some questions at which we can now try to answer.

8.1 Molecules Fitting Quantum Schemes

Many good examples of S¼ 1/2 molecules are available: while simple radicals

provide sharper EPR lines, metallo-organic molecules look more appealing for their

extraordinary ability to be functionalized and assembled in complex architectures.

While experiments have assessed the feasibility of single-qubit gates, the next goal

is the implementation of two-qubit gates with molecular nanomagnets.

Noncommercial setups are required for this and dedicated effort should be devoted

in order to open the way to more complex algorithms. Alternatively the use of high-

spin molecules may allow the implementation of nontrivial qubits but these also

require dedicated experiments.

8.2 Advantages in Using Molecular Qubits

One advantage of molecular nanomagnets is related to their functionalization,

which opens to the control in positioning and linking them each other or to the

surface. From this point of view, molecular nanomagnets are clearly superior with

respect to spin impurities. This aspect may really open the way for the design and

the synthesis of complex quantum devices being them either purely molecular or

hybrid if molecules are further attached to solid state nano-objects. This looks like a

real peculiarity of molecular nanomagnets which may give a plus to these systems

to solve the problem of scalability.

8.3 Control of Decoherence at Molecular Level

The possibility to have a huge number of identical replicas makes molecular qubits

robust with respect to inhomogeneities. However, in order to avoid pairwise dipolar

interaction, diluted crystals need to be grown. Coherent dynamics of electron spins

is quite sensitive to any excitation from the environment. To avoid incoherent

relaxation processes, molecular spins work well only at very low temperature,

like most of solid state quantum devices. Dephasing by interaction with nuclear

spins remains the main source of noise at low temperature. Here the synthesis of

derivatives with suitable ligands of nuclear-free isotopes has proved to be a viable

route to improve the coherence time. As a matter of fact, the best T2 values
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measured on molecular spins now range between 1 and 10 μs at 2 K giving up to 103

as figure of merit for electron-spin manipulation. This is a good starting point that

should be used as benchmark for new molecular candidates to quantum computa-

tion. Since nuclear spins have much longer coherent lifetime (range of seconds even

at room temperature), an interesting route – not yet fully explored – is to use them as

qubits instead of trying to avoid them.

In this chapter we have also presented two emerging trends in the field: quantum

simulators and spin in QED cavities as example of hybrid devices. Quantum

technologies are now pushing in many other interesting directions, for instance,

quantum communication and quantum cryptography for which application of

molecular nanomagnets has been not explored yet. Very impressive are, at the

time of writing, pioneering experiments on single-spin transistors and molecular

spin valves: if quantum properties and spin dynamics can be controlled at single

molecule level, this can overcome several problems encountered with spin ensem-

bles and open an alternative way to quantum computation with molecular

nanomagnets as discussed in another chapter of this book (Molecular Spintronics).
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Appendix 1: Quantum Description of the Spin Dynamics

in a Resonant Cavity

In this section we provide further formalism to describe the interaction of single spin

with a quantized electromagnetic field following the quantum approach [80, 87, 115].

We consider a cavity in which the field has a single harmonic mode of frequency ω.
The intensity of the electromagnetic field determines the number n of photons in the

cavity and we consider the situation for which few photons are present in the

resonator. Let’s assume that the quality factor of the cavity Q is very high so that

the photons lifetime is very long. Such a quantized electromagnetic field can be

described as ℋc ¼ ℏω a{aþ 1
2

� �
, where a and a{ are the creation and annihilation

operators for photons, in analogy with a quantum one-dimensional oscillator [116].

The dipolar spin–photon interaction ℋcs¼� μ �B can be written as:

ℋcs ¼ ℏgc e � Sð Þaþ e� � Sð Þa{
 �
: ð12Þ
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For this expression we make use of the Rotating Wave Approximation (RWA)

that consists in neglecting fast-oscillating, non-energy-conserving terms which

play a minor role in the dynamics of the system. The prefactor gc is the coupling

strength of the magnetic moment with the oscillating magnetic component of the

electromagnetic field B1(t) The unitary vector e describes the polarization of B1(t),
which can be conveniently chosen to obtain the circular polarization σ+ or σ� with

respect to the static field B0 along the z-axis. Being S�¼ Sx� iSy, we have thus

ℋσþ ¼ ℏgc aSþ þ a{S�
� �

, ð13Þ

for photons with helicity +ћ along z, and

ℋσ� ¼ ℏgc aS� þ a{Sþ
� �

, ð14Þ

for photons with helicity�ћ along z. The Jaynes–Cummings model [117] considers

the full Hamiltonian ℋ¼ℋc+ℋs+ℋcs, i.e.:

ℋ ¼ ℏω a{aþ 1

2

� �
þ ℏω0Sz þ ℏgc aS� þ a{S�

� �
: ð15Þ

being ℋs¼ μBB0Sz¼ ℏω0Sz the term describing the spin precession about B0. The

interaction term ℋcs imposes the conservation of the z component of the total

angular momentum since it has nonzero matrix element only between eigenstates

of ℋc +ℋs that are characterized by the same value of ms + n. This reproduces

the selection rules Δms¼ 1 for σ+ and Δms¼� 1 for σ� expected for conventional

perpendicular-mode EPR [118]. Since ms ¼ �1
2
, we have only two possible values

� 1/2 + n + 1 and + 1/2 + n, so the diagonalization of Eq. (15) can be carried out

separately in each of the two-dimensional subspaces. It is convenient to make

use of the dressed atom approach to describe the evolution of an isolated system

composed by n photons and one spin [115]. Each subspace is represented by the

photon plus spin states:

φaj i ¼ � 1

2
, nþ 1

����
�

φbj i ¼ þ 1

2
, n

����
�

ð16Þ

related to the two allowed conditions, ground �1/2 spin state plus n + 1 photons

and exited +1/2 spin state plus n photons. The correspondent eigenvalues

Ea ¼ nþ 1ð Þℏω� ℏω0=2ð Þ ð17Þ
Eb ¼ nℏωþ ℏω0=2ð Þ ð18Þ

are separated by the detuning frequency Δc ¼ 1
ℏ Ea � Ebð Þ ¼ ω� ω0. At resonance

(Δc¼ 0), the unperturbed levels would be degenerate. The matrix elements of the

interaction potential ℋσþ result
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φa ℋσþ

�� ��φa

� � ¼ φb ℋσþ

�� ��φb

� � ¼ 0 ð19Þ
φb ℋσþ

�� ��φa

� � ¼ ℏgc
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
: ð20Þ

showing that for a system with n photons, the coupling strength scales nonlinearly

as
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
. By defining the n-photon Rabi frequency as Ωn ¼ 2gc

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
, the

eigenvalues of Eq. (15) read

Eþ nð Þ ¼ ℏ nþ 1

2

� �
ωþ ℏ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
c þΩ2

n

q
ð21Þ

E� nð Þ ¼ ℏ nþ 1

2

� �
ω� ℏ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
c þΩ2

n

q
: ð22Þ

They form two branches of hyperbola with the unperturbed energies as asymp-

totes (see Fig. 9a). With respect to the unperturbed states, the interaction potential

determines the formation of an anticrossing centered on resonance. The minimum

gap between E1 and E2 is ℏΩn for Δc¼ 0. The corresponding eigenstates, expressed

as function of the unperturbed basis, result

χþ nð Þ�� � ¼ sin θ � 1

2
, nþ 1

����
�
þ cos θ þ 1

2
, n

����
�

ð23Þ

χ� nð Þj i ¼ cos θ � 1

2
, nþ 1

����
�
þ sin θ þ 1

2
, n

����
�

ð24Þ

with mixing angle

tan 2θnð Þ ¼ �Ωn

Δc
0 	 2θn < π: ð25Þ

Each added photon creates a two-dimensional subspace, the complete manifold

is a ladder of the two-level states shifted in energy by ћω.
Let’s now focus on the resonant case. For Δc¼ 0 the mixing angle is θn¼ π/4

and the perturbed states result

χþ nð Þ�� � ¼ 1ffiffiffi
2

p � 1

2
, nþ 1

����
�
þ þ 1

2
, n

����
�� �

ð26Þ

χ� nð Þj i ¼ 1ffiffiffi
2

p � 1

2
, nþ 1

����
�
� þ 1

2
, n

����
�� �

: ð27Þ

The time evolution can be calculated by applying the unitary evolution operator

to the perturbed dressed states and by recasting in the |� 1/2i or | + 1/2i unperturbed
basis. The time evolution of the ground |Ψ�i state is
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Ψ� tð Þj i ¼ cos
Ωnt

2

� �
� 1

2
, nþ 1

����
�
� i sin

Ωnt

2

� �
þ 1

2
, n

����
�

ð28Þ

while the excited state evolves as

Ψþ tð Þj i ¼ cos
Ωnt

2

� �
� 1

2
, nþ 1

����
�
þ i sin

Ωnt

2

� �
þ 1

2
, n

����
�

ð29Þ

These expressions describe the dynamics of entangled spin and photon states

which have a time evolution that recalls the beat signal of two coupled degenerate

quantum oscillators. The eigenmodes are a symmetric and antisymmetric combi-

nation of the independent modes of the free oscillators. The cavity and the spin

coherently exchange a photon, which is absorbed and then emitted following the

spin flip.

The population of the |� 1/2, n + 1i and | + 1/2, ni states oscillates and for

n� 1 the transition probability can be written as

Pba tð Þ ¼ Ω2
n

Δ2
c þΩ2

n

sin 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
c þΩ2

n

q
t

2

� �
: ð30Þ

This formula reproduces the classical result of Eq. (6) with Ωn¼ΩR.

Appendix 2: Planar Resonators

Fabrication of Microstrip and Coplanar Resonators

Planar transmission lines are commonly used in microwave technology as they

provide a simple way to transmit electromagnetic waves on a printed board circuit

realized by standard lithographic methods. Among many different geometries,

microstrip and coplanar waveguides are the most frequent choices. Microstrip lines
are constituted by a dielectric substrate having a metal strip on the top and a ground

plane on the bottom side. Coplanar waveguides differ from microstrips for the

presence of two ground planes placed beside the central strip on the top side. The

ground conductor in the backside can also be removed. With these geometries, it is

possible to match the impedance of the feeding coaxial lines (usually 50Ω) with

relative physical dimensions that spans frommillimeter to micron size. By design, the

transmission of quasi-transverse electromagnetic modes (TEM) can be achieved,

while higher-order non-TEM modes can be appropriately suppressed [119].

Coplanar waveguides are the best choice for minimizing the irradiation of the

microwave field outside the surface and to arrange ground electrodes close to the

central signal line. A coplanar resonator of length l is realized when the central strip
is interrupted in correspondence to two selected positions. These dielectric gaps are
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capacitors that electrically couple resonator and transmission line, acting like

mirrors do in an optical cavity. Resonant conditions are met when input and

reflected wave signals give constructive interference into the cavity. The value of

the resonant frequency ωc is determined by the length l of the resonator and by the

speed of propagation of the electromagnetic wave in the coplanar waveguide. The

latter is related to the effective dielectric constant εeff of the insulator. For a cavity
resonating at half wavelength λ/2 [120], the resonance frequency is:

ωc ¼ 2πcffiffiffiffiffiffiffi
εeff

p 1

2l
ð31Þ

As mentioned in the previous sections, the quality factor of the resonator must be

maximized to reduce the decay rate of the cavity κ and to increase the photon

lifetime. The Q-factor is defined as the ratio between the energy stored in the cavity
and the power dissipated in a time interval 1/ω or, alternatively as the width of the

resonance Δωc since Q¼ωc/Δωc. For a resonator coupled to the feedlines, the

loaded quality factor must be considered

1

Q
¼ 1

Qext

þ 1

Qint

, ð32Þ

which is calculated by including the external quality factor (Qext) related to the coupling

capacitances and the intrinsic Qint, due to the internal losses of the resonators.

The capacitance of the input and output gaps controls the coupling with the

transmission line and consequently the power flow κin and κout along the waveguide.
The maximum transfer of microwave energy is obtained when the impedance of the

resonator is matched to the feedline. This corresponds to the condition Qext¼Qint

and the resonator is said to be critically coupled. For Qext<Qint the resonator is

undercoupled. This configuration corresponds to reduced transmission, thus lower

signal-to-noise ratio, but maximum Q. In the experiments it is often reported

because the low output signals can be restored by a low noise microwave amplifier

inserted along the output line. Conversely, in the overcoupling regime (Qext>Qint)

high κin and κout are obtained, thus lower Q. This configuration has been used to get
fast measurement rates of the cavity photon states [81].

Intrinsic losses often determine the loaded quality factor of the resonator.

They are related to different dissipation mechanisms that finally determine the

performances of the coplanar resonator. Losses depend on the geometry, material

choice, temperature, frequency range, and applied magnetic field. Resonators are

rather susceptible to their environment, so they are usually enclosed in metal boxes.

Without applied magnetic field, three are the main dissipation mechanisms:

resistive, dielectric, and radiative losses [121].

Resistive losses are due to energy dissipated by an electromagnetic wave

traveling along a waveguide with finite conductance. Just considering resistive

losses, the Q factor passes from ~101 to 102, typically obtained for resistive cavities,

up to Q ~ 107 for superconducting resonators [122]. Niobium is commonly
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employed for its relatively high critical temperature (Tc’ 9.2 K) and critical

field. Superconducting films of TiN, Al, Ta, Re, or YBCO are also reported.

Spin systems usually require the application of static magnetic fields to split the

degeneracy of the energy levels. For instance, X-band resonance of a spin 1/2

paramagnet requires about 340 mT. Trapping of magnetic flux can be minimized by

aligning the field parallel to the resonator surface and experiments report limited

degradation of Q up to 350 mT [123]. For higher field or other orientations the

penetration of magnetic flux determines a decrease of the quality factor down to 103

or lower values. Strategies for the reduction of the magnetic losses have been

applied, for instance, by pinning the vortex motion by patterning of slots or

microdots [124–126]. Magnetic hysteresis effects are also present and determine

the dependence of the Q-factor on the magnetic history of the sample [127].

Dielectric losses are due to absorption of the electromagnetic power by the

dielectric substrate. For a lossy material the complex dielectric constant ε¼ εr+ iεi
has a finite imaginary part εi and loss tangent (tan δ). The quality factor associated

with the dielectric losses is Qdiel¼ 1/tan δ, thus it is desirable to choose insulating

substrates with low loss tangent. Sapphire has very low losses with tan δ ~ 10� 8 in

high-purity crystals [128]. High resistivity silicon and thermally grown SiO2 pro-

vide a valid alternative [129]. Fabrication strategies, like suspended resonators with

grooves etched in the regions of high electric field, have been proposed for reducing

the dielectric losses [130].

Radiative losses are an additional contribution due to the emission of electro-

magnetic radiation in the free space. The associated quality factor is Qrad ~ (l/b)
2,

where l and b are, respectively, the length and the distance between the ground

electrodes in the top plane [131]. For a typical coplanar waveguide resonator

Qrad ~ 10
6.

The temperature dependence of the Q-factor shows a sudden increase below Tc
reaching a maximum value for T’ Tc/10 (T’ 1 K for Nb). At lower temperature,

Q progressively decreases due to a further loss mechanism inducted by the

two-level (spin) transitions. These losses, which dominate in the millikelvin

range, are ubiquitously reported in lithographed resonators and they are indepen-

dent by the materials used. They have been assigned to oxides or impurities located

close to the active region of the resonator [132–135]

The fundamental resonance frequency of planar resonators is usually located in

the 2–15 GHz range by appropriate choice of l. Higher-order harmonics provides

further resonances, although the quality factor progressively deteriorates by

increasing the mode number [136]. Tunable superconducting resonators have

been realized by means of Josephson junctions demonstrating large tunable range

and high quality factor [137–139], and the possibility to tune ωc faster than photon

lifetime [140].
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Planar Resonators for Magnetic Resonance Experiments

Modern conventional three-dimensional EPR spectrometers report a spin

sensitivity up to ~109 spins Hz�1/2 thanks to the high quality factor of cavity. The

minimum detectable number of spins of an EPR cavity depends also on a set of

different parameters, such as cavity volume and strength of the microwave field

[118]. For small samples, such as thin films or nanostructures, an efficient way to

improve the sensitivity of the EPR measurement is to increase the filling factor

η ¼
Ð
Vs

B1j j2dVÐ
Vc

B1j j2dV ð33Þ

being Vc and Vs respectively, the e.m. mode and sample volume [141], by

fabricating resonators that match the sample size and that can concentrate the

microwave field in the sample space.

Planar resonating circuits show microwave fields confined in a small Vc, limited

to about 100 μm above the surface, where the intensity of B1 can reach the

0.1 mT range with a limited input power (~100 μW). These devices have been

proposed as EPR cavities [142, 143], also because they are suitable for low

temperature experiments where microwave heating must be avoided. With the

purpose to maximize the power to field conversation efficiency on the sample

volume, several designs have been studied, including microstrips [144], planar

microcoils [145, 146], and surface loop-gap microresonators [147]. These devices,

investigated by means of both continuous-wave and pulsed EPR experiments,

report an increase of the sensitivity up to ~106 spins Hz�1/2 [147]. Similar resona-

tors were also used for ferromagnetic resonance measurements [148–150]. In

addition, cross-shaped resonators were proposed for controlling the polarization

of the microwave mode [151].

Continuous-wave EPR of different spin ensembles has been exploited for

strong-coupling experiments with coplanar waveguide resonators [94–97, 152].

Superconducting resonators have also been studied for pulsed EPR [123, 153]

or non-resonating frequency-sweeping EPR [108]. Optimized resonators made

with parallel arrays of superconducting microstrip have been also developed for

improving the homogeneity of B1 over a large region [123].
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