
Single-Molecule Fluorescence Spectroscopy
of Intrinsically Disordered Proteins

Hagen Hofmann and Wenwei Zheng

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
2 Technical Aspects of smFRET Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

2.1 Confocal smFRET Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
2.2 Correction Parameters in smFRET Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

3 Single-Molecule FRET: A Blurry Window into Molecular Disorder . . . . . . . . . . . . . . . . . . . . . . 411
3.1 Compaction and Expansion of Unfolded and Disordered Proteins Probed

with smFRET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
3.2 Mean-Field Homopolymer Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
3.3 More Accurate Polymer Models: Combining smFRET with Molecular Simulations . . . 422

4 Probing and Modeling Sub-microsecond Dynamics of Disordered Proteins . . . . . . . . . . . . . . 427
4.1 Nanosecond Fluorescence Correlation Spectroscopy (nsFCS) Coupled

with FRET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
4.2 Polymer Models for IDP Dynamics and Their Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 432

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Abstract The past two decades have seen a substantial leap forward in our under-
standing of intrinsically disordered proteins, in terms of both thermodynamics and
dynamics, but also in terms of structural ensembles. From understanding the prin-
ciples and biological importance of their solvent pliability up to characterizing their
dynamics including an identification of the molecular origins of internal friction,
single-molecule FRET experiments have been an important driver of this progress.
By now, the methods and analysis tools in single-molecule FRET have grown to an
extensive toolbox that allows a straightforward comparison of experiments with
analytical theories and results of molecular simulations. This chapter summarizes the
technologies behind single-molecule FRET experiments and molecular simulations
together with the key findings on intrinsically disordered proteins.
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1 Introduction

It often takes time for discoveries to settle in. After the first findings that proteins do
not necessarily fold for function, intrinsically disordered proteins (IDPs) and intrin-
sically disordered regions (IDRs) changed our structure-based view on how proteins
interact [1]. While initially being identified as “nasty” flexible extrusions of proteins
that notoriously escaped X-ray structure determinations, we now know that IDRs
and IDPs longer than 30 amino acids compose nearly 30–44% of the human
proteome [1, 2] with functions as diverse as those of classical proteins. As fascinat-
ing this discovery has been, our understanding of the “why” and “how” is only
slowly emerging. Why have IDPs evolved? How do they combine specificity and
affinity without forming structured complexes? What evolutionary advantage do
IDPs offer compared to folded proteins? In fact, prokaryotes that are nearly void of
IDPs also populated our planet successfully. Answers to these questions are pending
and it seems questionable whether they will ever be obtained in detail. IDPs (here
synonymously also for IDRs) form molecular complexes upon binding to other
proteins, DNA, RNA, or small molecules, but contrary to most folded proteins,
IDPs are often multi-functional, which enables them to form hubs in protein inter-
action networks [1, 3, 4]. Similar to folded proteins, they are often chemically
modified via post-translational modifications and their degradation rates in cells
are substantially increased compared to folded proteins [5]. While some of these
features, e.g., high turnover rates or efficient post-translational modifications, are
explained by the lack of stable structures, their ability to interact with a multitude of
different ligands [1, 3] is more difficult to understand. Although some IDPs indeed
fold upon binding to ligands, thus forming specific binding interfaces in folding-
coupled binding reactions, folding is not necessary for binding and specificity
[6]. For instance, an extremely flexible protein complex bare of structure is formed
between the two IDPs Prothymosin α and Histone H1 [7]. Other examples of high-
affinity complexes that retain a large degree of disorder include the RNA-chaperone
NCD and nucleic acids [8], Sic1 and Cdc4 [9], the Na+/H+ exchanger tail and ERK2
[10], nucleoporin tails and nuclear transport receptors [11], and the cytoplasmic tail
of E-cadherin and β-catenin [12].

Clearly, structure determinations based on X-ray or cryogenic electron micros-
copy (cryo-EM) do not provide detailed information about this enormous flexibility
such that mainly four methods have been used in the past to characterize the behavior
of IDPs: NMR (nuclear magnetic resonance), SAXS (small-angle X-ray scattering),
SANS (small-angle neutron scattering), and fluorescence-based methods, particu-
larly single-molecule Förster resonance energy transfer (smFRET). In fact, the past
two decades have seen an overwhelming number of studies in which smFRET
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approaches provided insights into the physical principles that dictate the behavior of
IDPs and unfolded proteins such as their environmental sensitivity [13–32] and their
dynamics [23, 33–37].

Here, we discuss some of the common smFRET methods used to characterize the
size and the dynamics of IDPs. Our particular goal is to discuss the principles behind
dynamic smFRET approaches and how they can be linked to analytical and numer-
ical models of IDPs and unfolded proteins. Given the excellent introduction into the
principles of FRET in Chapter “Laboratory instrumentation”, we will not repeat the
basic theory to avoid redundancy. We start by introducing technical aspects of
smFRET experiments in Sect. 2, followed by a discussion of findings, theories,
and simulation approaches to characterize IDPs using smFRET experiments (Sect.
3). In Sect. 4, we discuss smFRET methods and analytical theories used to study the
dynamics of IDPs.

2 Technical Aspects of smFRET Experiments

2.1 Confocal smFRET Experiments

Before we discuss how exactly smFRET experiments help to characterize IDPs, we
would like to remind the reader of a few technical aspects of single-molecule
spectroscopic techniques. Based on the instrumentation, single-molecule experi-
ments can roughly be divided into two categories: camera-based and confocal
experiments. Camera-based imaging experiments offer the advantage to observe
many surface-tethered molecules simultaneously. Yet, the time-resolution of such
experiments is in the order of 1–10 ms, depending on the camera used (sCMOS or
EM-CCD), which is insufficient to capture the very fast sub-microsecond dynamics
of disordered proteins. Hence, most insights into IDPs and their behavior were
obtained with confocal microscopes that offer a much higher time-resolution. With
the development of detectors with high detection efficiencies (SPADs –
single-photon avalanche detectors) and single-photon counting devices [38, 39],
the time-resolution of confocal smFRET experiments is only limited by the counting
precision of a few picoseconds. The design of a confocal microscope is rather simple
(Fig. 1a). An excitation laser is focused through an objective of high numerical
aperture (NA) to a diffraction limited spot whose diameter is given by d = λ/2NA.
Since typical numerical apertures are in the order of 1.35–1.45, the confocal spot size
is in the order of several hundreds of nanometers, i.e., small compared to many
cellular structures, but very large compared to the size of proteins (2–5 nm) (Fig. 1b).
The fluorescence of an emitter in the confocal spot is collected via the same
objective, imaged on a pinhole to remove out-of-focus fluorescence, before it is
directed onto a SPAD. Clearly, smFRET experiments with two colors (donor and
acceptor) require two detectors and often even four detectors are being used to obtain
information about the rotational degrees of freedom of protein-attached dyes in
fluorescence anisotropy single-molecule measurements.
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In the past, most smFRET experiments on IDPs and unfolded proteins were
performed with freely diffusing molecules. These types of experiments are relatively
easy to realize and typically capture timescales from hundreds of picoseconds (the
rotational motions of dyes attached to a protein) up to several milliseconds. The raw
data of these experiments are photon traces that contain the arrival times of photons
on the detectors (Fig. 1c). The construction of FRET histograms therefore requires
an identification of the photons that were emitted by a molecule while it was
diffusing through the confocal spot, thus resulting in a burst of photons. In addition,
these raw photon counts have to be corrected for a number of experimental imper-
fections. Importantly, state-of-the-art burst-search algorithms already take these
corrections into account [30, 41], which minimizes the risk of biasing the distribu-
tion of FRET efficiencies.

Fig. 1 The principle of confocal single-molecule FRET experiments. (a) Scheme of a confocal
microscope. Excitation light (blue) from a laser is focused via an objective into the sample solution.
Fluorescence photons from the sample are collected via the same objective, filtered, imaged on a
pinhole, and finally recorded with single-photon avalanche detectors (SPADs). (b) The confocal
volume created by the objective has a higher intensity in the center (blue) and lower intensity at the
periphery [40]. The diffusion time of molecules through this volume is in the order of a millisecond.
(c) Example of the raw data of a smFRET experiment. Molecules diffusing in and out of the
confocal volume cause bursts of donor and acceptor photons in the time trace, which is shown here
at a low resolution of 1 ms (upper panel). At higher time-resolution (0.1 μs), individual photons can
be distinguished in the time trace (lower panel). The identification of bursts is based on a threshold
of inter-photon times
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2.2 Correction Parameters in smFRET Experiments

In the following, we describe the correction of FRET values for two-color FRET
experiments. However, the correction methods are general and also applicable to
multi-color experiments. To determine correct FRET efficiencies (E) in a smFRET
experiment with the channels 1 (acceptor) and 2 (donor), the raw photon counts (n1
and n2) of an individual molecule have to be corrected by the differences in
brightness of the two dyes, cross-talk between the channels, background photons,
and direct excitation of the acceptor at the wavelength used to excite the donor. Two
main approaches are currently being used for these corrections: the determination of
correction factors in separate experiments [30, 42, 43] and the determination within
the same experiment [44].

Let us start with the separate-sample method. Here, the correction parameters are
determined from two separate samples of the donor and acceptor dyes in which their
concentrations are adjusted such that both samples have an absorbance of 0.1 at the
wavelength of the donor excitation laser [42]. The fluorescence signal of both
samples after donor excitation will then be measured in channel 1 and 2, and three
correction factors can be determined: γ which accounts for the different detection
probabilities of photons from the two dyes, β21 and β12, the leakage of donor photons
from channel 2 into the acceptor channel 1, and the leakage of acceptor photons
(channel 1) into the donor channel 2, respectively. In addition, the probability α to
directly excite the acceptor dye at the excitation wavelength specific for the donor
can be computed from the extinction coefficients of the dyes at the donor excitation
wavelength (see below). If n1 and n2 are the detected raw photon counts for a
molecule in channel 1 and 2, respectively, and b1 and b2 are the background rates
in both channels (in units of photon/s), the corrected photon counts for acceptor and
donor (n′D, n′A) of this molecule are given by

nA
n ′ D

� �
= 1 - β21

- β12 γ

� �
n1 - b1T
n2 - b2T

� �
and n0A = nA - α n0D þ nA

� � ð1Þ

Here, T is the duration of a burst, which typically is in the order of a millisecond.
As an example, for the frequently used FRET-pair Alexa Fluor 488 as donor and
Alexa Fluor 594 as acceptor, our lab obtained γ = 1.12 ± 0.09, β21 = 0.050 ± 0.003,
and β12 = 0.0021 ± 0.0004 over 5 years with 21 measurements of these correction
factors. As mentioned above, the probability of directly exciting the acceptor dye at
the donor excitation wavelength is given by α = EA/(EA + ED) where EA and ED are the
extinction coefficients of the dyes at the donor excitation wavelength. For the dye
pair mentioned above, one finds α= 0.049. Hence, the correct FRET efficiency of an
identified molecule is given by
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E=
n0A

n0A þ n0D
: ð2Þ

Importantly, to prevent a bias in sampling molecules with different FRET effi-
ciency, the corrections (Eq. 1) have to be taken into account during the identification
of molecules (bursts) in the raw photon trace. Commonly, bursts are identified from
the measured photon traces following Eggeling et al. [41] and Hoffmann et al.
[30]. If Δti = ti - ti - 1 is the inter-photon time of the i-th photon (Fig. 1c), the
photon is retained if Δti ≤ γjΔtmax, in which Δtmax is an inter-photon time threshold
set by the researcher, typically ~100 μs, and γj is the correction factor of the ith

photon detected in channel j= [1, 2], i.e., γ1 = 1 and γ2 = 1.12 with the definition in
Eq. 1. The algorithm then proceeds to the next photon i + 1, stops after n photons
onceΔti + n> γjΔtmax, and provides the total length of the burst by T= tn - 1- ti - 1.
The photon number in the resulting photon string is now corrected via Eq. 1 using
estimated background rates b1 and b2. The initial guess of b1 and b2 is given by all
detected photons in channel 1 and 2, respectively, divided by the total measurement
time. A burst is finally identified if nA + nD > nT where again, nT is a photon
threshold that has to be set. Based on our experience, the photon threshold to identify
a burst (molecule) is in the order of 30–100 photons in most smFRET experiments.
In the next iteration, the photons belonging to each identified burst are removed from
the photon trace and a new guess for b1 and b2 is computed based on the remaining
photons. Subsequently, the burst search is performed again with updated back-
ground rates. This procedure converges after three iterations to the correct back-
ground rates and a constant number of identified bursts.

The disadvantage of the separate-sample method is that experiments with differ-
ent samples (proteins) might require different correction factors since the quantum
yield of the dyes and therefore γ also depend on the chemical environment. Simi-
larly, experiments at different solvent conditions might change the brightness of
donor and acceptor differently, thus leading to errors in the correct determination of
FRET efficiency if a single set of correction factors is being used. An alternative
method is based on ALEX (alternating laser excitation) [45] or PIE (pulsed-
interleaved excitation) [46] excitation schemes. Here, the donor and the acceptor
are excited in an alternating manner: a period of donor excitation is followed by a
period of acceptor excitation with a second laser (Fig. 2a). If switching between both
excitation sources is much faster than the diffusion of a molecule through the
confocal spot, important additional information can be obtained. For example, by
exciting the acceptor dye directly in a period, molecules that do not contain an active
acceptor due to photo-bleaching or imperfect labeling can be identified and removed
from the further analysis. To this end, a second parameter, the stoichiometry ratio,
defined via
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S=
n0DD þ n0DA

n0DD þ n0DA þ γPIEnAA
, ð3Þ

is computed for each molecule. Here, the first subscript indicates the excitation and
the second subscript indicates the emission, i.e., n′DA indicates the fully corrected
acceptor photons after donor excitation. The parameter γPIE is a correction factor to
account for the different excitation intensities for donor and acceptor. A
two-dimensional plot of S versus E for all identified molecules now provides
valuable information (Fig. 2b). For example, subpopulations of molecules with
different FRET efficiency should show the same stoichiometry ratio if properly
corrected. How is the correction performed? A detailed discussion of the method
can be found in Hellenkamp et al. [44], which summarizes the work by the labs of
Shimon Weiss [45, 47, 48] and Don Lamb [46]. In a first step, molecules are
identified without any correction. A two-dimensional E - S plot of the uncorrected
FRET efficiencies and stoichiometry ratios immediately reveals the acceptor direct

Fig. 2 Pulsed-interleaved single-molecule detection (PIE). (a) Excitation scheme of a PIE exper-
iment. Excitation lasers for donor (blue peaks) and acceptor (red peaks) alternate during the
experiment. Photons after donor excitation (DD or DA) are used to compute FRET efficiencies
whereas photons after acceptor excitation (AA) are used to compute stoichiometry ratios. (b)
Stoichiometry versus FRET maps for a sample containing four populations of molecules: donor-
only molecules (green area), acceptor-only molecules (red area), and two FRET populations (white
area). The maps are shown before (left) and after (right) correction of the photon counts, the FRET
population is at S = 0.5
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excitation probability and the cross-talk probability. For example, the population of
molecules without an acceptor dye, often called donor-only molecules, should show
a true mean FRET efficiency hEi = 0. Yet, due to spectral cross-talk, some donor
photons leak into the acceptor channel and the uncorrected mean FRET efficiency of
the donor-only populations hErawi (only corrected by background) will be located at
hErawi > 0 (Fig. 2b, left). The cross-talk probability is then given by

β=
Erawh i

1- Erawh i : ð4Þ

Similarly, the effect of direct excitation of the acceptor by the donor excitation
laser can be obtained. Acceptor-only molecules should have a mean stoichiometry
hSi = 0. Yet, due to a non-zero chance to directly excite the acceptor with the donor
excitation laser, the uncorrected stoichiometry of acceptor-only molecules is at
hSrawi > 0 (Fig. 2b, left). The acceptor direct excitation coefficient is then given by

d=
Srawh i

1- Srawh i : ð5Þ

Importantly, the quantity d is different from the quantity α used in the separate-
sample method in Eq. 1. However, the two are directly related via

d=
α

1- α
γPIE: ð6Þ

The correction for cross-talk and acceptor direct excitation then gives a partially
corrected acceptor photon number nDA via

nDA = nD1 - βnD2 - dnA1: ð7Þ

Again, the first subscript indicates the excitation source (D-excitation or
A-excitation) and the second subscript indicates the emission, i.e., channel 1 or
2 with channel 1 being the acceptor channel. With the definitions nDD = nD2 and
nAA = nA1, we can now compute stoichiometries and FRET efficiencies corrected for
background, cross-talk, and acceptor direct excitation for each molecule. These
partially corrected stoichiometries (Sp) and FRET efficiencies (Ep) depend on the
true FRET efficiency (E) and the correction factors γ and γPIE via

Ep =
nDA

nDA þ nDD
=

E
E þ 1-Eð Þ=γ and Sp =

nDA þ nDD
nDA þ nDD þ nAA

=
E γ þ 1-Eð Þ

E γ þ 1-Eð Þ þ γ=γPIE
: ð8Þ

From the resulting two-dimensional map (Ep, Sp), we obtain the two missing
parameters γ and γPIE by combining Eq. 8 as
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Sp
� �

=
1

1þ βPIE Ep

� �þ γ- γ Ep

� �� � with βPIE =
1

γPIE
: ð9Þ

Here, the bracket h. . .i indicates an average over a subpopulation of molecules.
Eq. 9 defines a curve in the Ep - Sp map that intersects the mean position of a
subpopulation of molecules. Yet, Eq. 9 has two unknown parameters (γ and γPIE),
which means that their determination requires two positions (molecule populations)
in the (Ep, Sp) map. The correction method is therefore only applicable for multi-
modal FRET histograms, i.e., histograms with at least two subpopulations of differ-
ent FRET efficiencies (Fig. 2b). If this is not the case, a separate sample, e.g., a
mixture of double-stranded DNA, labeled with donor–acceptor at different positions
can be used as calibration sample to apply this procedure [44]. Once all correction
parameters have been obtained, the fully corrected photon counts for each molecule
can be obtained using Eq. 1.

3 Single-Molecule FRET: A Blurry Window into Molecular
Disorder

3.1 Compaction and Expansion of Unfolded and Disordered
Proteins Probed with smFRET

Ensemble fluorescence techniques, particularly when combined with fast mixing
such as in a stopped-flow apparatus, provided the first hint that unfolded proteins
compact after quickly diluting out chemical denaturants such as guanidinium chlo-
ride (GdmCl) or urea. Yet, at the time, it was unclear whether these so-called burst
phases in protein folding experiments resembled a non-cooperative compaction of
an unfolded protein or whether it was rather indicative of the fast formation of a
structured, i.e., partially folded intermediate. The first clear indication that the
dimension of an unfolded protein, measured in terms of the distance between
chemically attached FRET donor (D) and acceptor (A) fluorophores, came in 2000
by the group of Shimon Weiss [13]. Using a confocal microscope, the authors
monitored D-A labeled chymotrypsin inhibitor molecules while the molecules
were randomly diffusing through the confocal volume of their microscope. The
experiments revealed a clear bimodal distribution of FRET efficiencies P(E) that
included a peak resulting from folded molecules at high FRET and a peak from
unfolded molecules at lower FRET efficiency. With the FRET efficiency being a
proper molecular reaction coordinate (collective variable) in the sense that it is
related to the distance between donor and acceptor dyes according to
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E rð Þ= R6
0

R6
0 þ r6

: ð10Þ

where R0 is the Förster distance and r is the distance between D and A, the
experiment provided the distribution of folded and unfolded molecules directly,
without requiring fast mixing technologies. Importantly, a change in the concentra-
tion of GdmCl caused a change in the average FRET position of the unfolded peak,
which indicated that the dimension of unfolded polypeptide chains responds to
changing solvent conditions.

Given this result, one is tempted to equate the measured FRET histogram P(E)
with a Boltzmann distribution that reflects a potential of mean force V(E) via
V(E) = - ln P(E). Yet, nothing could be further from the truth. First, the average
time it takes for a nanometer-sized molecule in water to diffuse through the confocal
volume (burst time) is in the order of a millisecond. This means that conformational
rearrangements faster than 1 ms will be averaged such that the resulting FRET
efficiency E for a single molecule is in fact a time-averaged quantity. Second, the
numbers of D- and A-photons (n′D and n′A) are only in the order of ~100, which
causes a substantial uncertainty in the determination of FRET values of individual
molecules. Hence, the width of a FRET-peak is not necessarily related to the width
of the underlying distribution of DA distances. Instead, it is in large parts determined
by shot noise. The expected width of the FRET histogram that results from shot-
noise σnoise can be estimated [49] via

σ2noise = E2
� �

- Eh i2 = Eh i 1- Eh ið Þ n ′ - 1
0

� �
≤ Eh i 1- Eh ið Þn- 1

T : ð11Þ

Here, n′0 = n′D + n′A is the total number of photons obtained for a molecule, the
bracket h. . .i indicates the average over a population of molecules, and nT is the
photon threshold to identify a molecule. For example, with a typical threshold of
50 photons and a FRET-peak centered at hEi= 0.5, one finds σnoise ≤ 0.07, which is
a substantial contribution to the width of a FRET histogram. In the extreme case in
which the interconversion of different conformations is much faster than the diffu-
sion time of a molecule through the confocal spot, such as for IDPs and unfolded
proteins, shot noise is often the dominating contributor to the width in the FRET
histogram (Fig. 3a).

Contrary to the width, the average position of the FRET distribution hEi contains
distance information, which has been used to quantify the extreme solvent-
sensitivity of unfolded proteins. The first well-studied example of this sensitivity
was given by the Eaton-lab, who demonstrated that the unfolded state of the cold
shock protein (CspTm) compacts dramatically with decreasing concentrations of
GdmCl [14, 50]. These experiments were confirmed with many other unfolded and
disordered proteins in the following years [15–18, 28], indicating that an expansion
or compaction of unfolded proteins with changing solvent conditions is a rather
generic polymer effect. A quantification of this change in dimension in terms of
average donor–acceptor distances is possible by expressing the mean FRET
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efficiency hEi as an average over the conformational distribution P(r) of a polypep-
tide chain according to

Eh i=
Z L

a
P rð ÞE rð Þdr: ð12Þ

The integration ranges from the closest possible donor–acceptor distance a to the
maximum distance, which for a disordered polypeptide chain is given by its contour
length L= Nb. Here, N is the number of peptide bonds and b is the distance between
two consecutive Cα-atoms (b = 0.38 nm). Clearly, the distribution P(r) cannot be
recovered solely from the mean FRET efficiency hEi such that suitable analytical
models for P(r) are required to extract distance information. A variety of models
have been used in the past [23], the simplest of it being the Gaussian chain model
given by

P rð Þ= 4
R

3
2π

� �1=2 r
R

� �2
exp -

r
R

� �2� 	
: ð13Þ

Here, R=
ffiffiffiffiffiffiffiffi
2=3

p
bKN

1=2
K =

ffiffiffiffiffiffiffiffi
2=3

p
r2
� �1=2

is the most likely donor–acceptor dis-
tance, a parameter that can be obtained from hEi by solving Eqs. 12 and 13
numerically. The parameters bK and NK are the length and number of virtual Kuhn
segments that are related to the real bond length b and amino acid number N via

Fig. 3 Identifying conformational heterogeneity in IDPs. (a) SmFRET histogram of the intrinsi-
cally disordered DNA-binding domain of c-Myc. The histogram shows a single population of
molecules (red) whose width is mainly determined by shot noise (dashed line). Molecules lacking
an active acceptor are shown in gray. (b) 2D-map of the relative donor fluorescence lifetime τDA/τD
and FRET efficiency for the data shown in (a). The dashed line is the prediction from Förster theory
for the case in which all molecules have the same donor–acceptor distance (Eq. 18). The solid line is
obtained for the case of a Gaussian distance distribution that is sampled at timescales much slower
than the fluorescence lifetime (Eq. 19). Although the FRET distribution of c-Myc molecules is very
narrow (a), conformational heterogeneity is identified in the lifetime-FRET map (b)
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bK = 2lp and NK =
b
bK

N, ð14Þ

with lp being the persistence length (stiffness) of the chain. Persistence lengths
determined from smFRET experiments using Eqs. 12, 13, and 14 are ~0.4 nm at
physiological condition [30], which roughly agrees with results from other methods,
e.g., see [20] and references therein. Importantly, more recent experiments and
simulations [22, 25, 51] found that the Gaussian chain model (Eq. 13) overestimates
chain dimensions from smFRET experiments when used in Eq. 12 and a more
realistic self-avoiding random walk (SAW) model

P rð Þ=A
4π
R

r
R

� �2þg
exp -B

r
R

� �δ� 	
, ð15Þ

is better suited to extract mean donor–acceptor distances from smFRET experiments
on IDPs and unfolded proteins. In Eq. 15, the parameters A and B are obtained from
the conditions 1=

R1
0 P rð Þdr and R2 =

R1
0 r2P rð Þdr, and the exponents are given by

g ≈ 1/6ν and δ= 1
1- ν [51–53]. The quantity ν = (ln R - ln bK)/ ln NK is the length-

scaling exponent of the chain, a parameter that we will discuss in more detail in the
following section. Although Eq. 15 is strictly correct only for expanded homopol-
ymers (good solvent) [54], a direct comparison with molecular simulations indicated
that it is also a good approximation for more compact chains [51].

Although smFRET histograms do not contain direct information on the width of
the distribution P(r) of donor–acceptor distances r in a disordered chain, the fluo-
rescence lifetime of the donor contains this information. By combining confocal
single-molecule detection with time-correlated single-photon counting (TCSPC)
using pulsed excitation sources, fluorescence lifetimes of both donor and acceptor
can easily be obtained. For a distribution of distances P(r), the fluorescence lifetime
decay of the donor is given by

I tð Þ= I0

Z 1

0
P rð Þ e- kDþkT rð Þ½ �tdr, ð16Þ

where τD = 1/kD is the fluorescence lifetime of the donor in the absence of an
acceptor, kT(r) = kD(R0/r)

6 is the rate of transferring energy to the acceptor. For the
hypothetical case in which all molecules have the same donor–acceptor distance R,
i.e., P(r) = δ(r - R) and E(R) = hEi,1 Eq. 16 gives

I tð Þ= I0 e
- kD 1þ R0=Rð Þ6½ �t ð17Þ

and the average donor fluorescence lifetime is given by

1Here, δ indicates the Dirac delta function.

414 H. Hofmann and W. Zheng



τDAh i=
Z 1

0
t I tð Þdt=

Z 1

0
I tð Þdt= k- 1

D 1þ R0=Rð Þ6
h i- 1

= τD 1- Eh ið Þ: ð18Þ

Hence, the donor fluorescence lifetime depends linearly on the FRET efficiency,
which is the classical prediction from Förster theory (Fig. 3b). Importantly, the same
result is obtained for more complicated distance distributions, as long as the dynam-
ics, i.e., the sampling of this distribution and therefore the fluctuations of the energy
transfer rate kT, are much faster than the intrinsic fluorescence lifetime of the donor
τD [55]. Yet, this is not the case for IDPs and unfolded proteins that typically
reconfigure at timescales of tens to hundreds of nanoseconds (Sect. 4), i.e., signif-
icantly slower than the fluorescence lifetimes of typical dyes (1–4 ns). In case of such
slow sampling, we can compute the static average over the distance distribution P(r)
and obtain

τDAh i=
Z 1

0
t I tð Þdt=

Z 1

0
I tð Þdt=

Z 1

0
P rð Þ τDA rð Þ2dr=

Z 1

0
P rð ÞτDA rð Þdr ð19Þ

with

τDA rð Þ= k- 1
D 1þ R0=rð Þ6
h i- 1

:

A plot of the average donor fluorescence lifetime hτDAi as a function of the mean
FRET efficiency hEi will not follow a simple linear scaling (Fig. 3b). In fact,
substituting τDA(r) = τD[1 - E(r)], we can express Eq. 19 in different form

τDAh i= τD 1- Eh ið Þ þ τD
σ2E

1- Eh i , ð20Þ

with σ2E = E2
� �

- Eh i2 and hE2i= R
E(r)2P(r)dr, given that the distance distribution

is properly normalized such that
R
P(r)dr = 1. Notably, the term σ2E should not be

confused with the width of the FRET histogram, which is largely affected by shot
noise as explained above. It rather is the width of the “true” FRET distribution,
which is typically inaccessible in smFRET experiments. Hence, a model for P(r) is
required to obtain information about the width of the distance distribution. Since the
second term in Eq. 20 is always positive, distance fluctuations quantified by P(r) will
increase the average donor fluorescence lifetime compared to the prediction given by
Förster theory (Eq. 18, Fig. 3b). Strong deviations from the classical Förster predic-
tion have indeed been observed for a multitude of disordered and unfolded proteins
[23, 30, 33] such that a comparison of experimental donor lifetimes with the Förster
prediction in Eq. 18 can generally be used to identify distance heterogeneity in
proteins [55, 56]. Importantly, these relationships only hold under the condition that
the orientation of donor and acceptor dye dipoles averages sufficiently at timescales
faster than the fluorescence lifetimes of the dyes. If this is not the case, the

Single-Molecule Fluorescence Spectroscopy of Intrinsically Disordered Proteins 415



relationship between donor–acceptor distances and measured FRET efficiencies is
more complicated. For example, the FRET efficiency will now depend on both, the
distance and the orientation of the dyes via [57]

E r, κ2
� �

= 1þ 2
3κ2

r
R0

� �6
" #- 1

with κ2 = cos θT - 3 cos θD cos θAð Þ2: ð21Þ

Here, θT is the angle between donor and acceptor dipole, whereas θD and θA are
the angles between these dipoles and the vector that connects both dipoles. While the
value of κ2 can range from 0 to 4, it will fluctuate in general such that several
averaging regimes have to be considered. Assuming an isotropic orientation of the
dye dipoles, the distribution of κ2 is given by [57, 58]

p κ2
� �

=

1

2
ffiffiffiffiffiffiffi
3κ2

p ln 2þ
ffiffiffi
3

p� �
0≤ κ2 ≤ 1

1

2
ffiffiffiffiffiffiffi
3κ2

p ln
2þ ffiffiffi

3
pffiffiffiffiffi

κ2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 - 1

p
� �

1< κ2 ≤ 4

8><
>: : ð22Þ

In the most commonly used limit, the fluctuation of κ2 is much faster than the
fluorescence lifetime of the dyes and an average value for κ2 obtained from Eq. 22
via hκ2i =

R
κ2p(κ2)dκ2 = 2/3 can be used. In this limit, the FRET efficiency

(Eq. 21) simplifies to Eq. 10. Yet, exceptions have been found for cases in which the
dyes interact with extended protein surfaces [59, 60], thus hampering the fast
averaging of dipole orientations of the dyes. Fluorescence anisotropy experiments,
ideally in a time-resolved manner, should be used to check the applicability of the
hκ2i = 2/3 limit. For intrinsically disordered and unfolded proteins, the fast averag-
ing limit is often fulfilled due to the absence of extended protein surfaces that would
facilitate dye–protein interactions.

In summary, the combination of mean FRET efficiencies and fluorescence life-
times does not only provide information on average chain dimensions, but it also
allows an estimate of the width of distance distributions. Yet, analytical models of
these distributions such as the SAW model (Eq. 15) are still required to retrieve this
information from smFRET experiments. Similarly, experiments alone are insuffi-
cient to understand another important property of IDPs, their extreme sensitivity
toward changes in external conditions such as denaturants [13–18, 28], temperature
[21, 32], crowding [31], or ionic strength [7, 18, 19, 26]. Clearly, a change in any of
these conditions will unambiguously affect the balance of attractive and repulsive
interactions within the chain, thus resulting in altered chain dimensions. To obtain a
more quantitative understanding of the interactions that drive such compactions or
expansions, we will extend the Gaussian chain model (Eq. 13) to generate a rather
general mean-field homopolymer model.
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3.2 Mean-Field Homopolymer Theory

The fact that polymers expand and contract in a solvent-dependent manner is not a
new observation. In fact, plenty of examples have been studied in the twentieth
century, the most well-known being poly-styrene in cyclohexane [61]. Although
chemically tremendously more complex than homopolymers, IDPs exhibit a similar
pliability to solution changes (Fig. 4a) and homopolymer theories have therefore
been used in the past to model them. Clearly, the results should be interpreted with
care. However, it is undeniable that homopolymer models have greatly advanced our
understanding of disordered and unfolded proteins not only by providing simplified
parameters to describe the molecular processes behind chain expansions or collapse
but also by spotting deviations from homopolymer properties.

To model the expansion and compaction of polymers, let us start with the
Gaussian chain model in Eq. 13. To simplify notation, we first express Eq. 13 in
terms of a reduced distance coordinate α2 = r

R

� �2
, where α is also known as the

expansion factor. Keep in mind that R is the most likely donor–acceptor distance of a
Gaussian chain, i.e., of an ideal mathematical chain without interactions and volume.
Neglecting constant prefactors, Eq. 13 can be re-written as

P αð Þ / α2 exp - α2
� �

: ð23Þ

As any molecular property that underlies the statistical laws of thermodynamics,
the distance distribution is associated to a free energy profile (P(α) / e-F (α)), which
is given by F(α) = - ln P(α) / α2 - 2 ln α. Since our chain model at this point is
just a mathematical chain of points connected by vectors, i.e., it lacks volume or any

Fig. 4 Solvent-induced expansion of an IDP. (a) Average donor–acceptor distances (RDA) of the
disordered Max protein as function of the GdmCl concentration. The solid line is a fit with a
polyampholyte theory [26]. Inset: SmFRET histograms of Max at two concentrations of the
denaturant GdmCl (indicated). The FRET population shifts to lower FRET values, indicating an
expansion of the chain. (b) Coil-to-globule transition as predicted by the mean-field theory of de
Gennes (Eq. 25) for NK = 100 and three different values (indicated) of the three-body interaction
parameter (3k2W2)
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type of interactions, the free energy F(α) only describes the elastic entropy of the
chain that results from the multiplicity of random conformations of this ideal chain.
To introduce interactions of any type between monomers, repulsive or attractive, we
will use the mean-field approximation in which the number of interactions within a
chain is proportional to the density (volume fraction) ϕ= d3NK/α

3R3 of monomers in
the chain. Here, d is the size (radius) of a single monomer in the chain. Thus, a
reasonable extension of the free energy of an ideal chain by interactions would be
given by a virial expansion of the type

F αð Þ / α2 - 2 ln αþ NK W1ϕþW2ϕ
2 þ . . .

� �
, ð24Þ

with the virial coefficients W1 for two-body interactions and W2 for three-body
interactions. To simplify the expression, we will only consider the first two terms
of the expansion, which already provide a rather general model that has first been
proposed (in slightly different form)2 by de Gennes in 1975 [62]. Finding the free
energy minimum dF/dα = 0 gives

~α5 - ~α3 -
3k2W2

~α3
=

3
2
kW1

ffiffiffiffiffiffiffi
NK

p
with k= d=bKð Þ3: ð25Þ

Here, ~α indicates the expansion factor at the free energy minimum. Notably,
Eq. 25 can also be obtained using variational approaches [26, 63, 64]. A plot of ~α as
function of the two-body interaction energy clearly uncovers a substantial compac-
tion of the chain with decreasing (attractive) W1 and positive (repulsive) W2

(Fig. 4b). Contrary to folding/unfolding transitions, this compaction is
non-cooperative [62, 65] and rather resembles a higher-order phase transition com-
pared to the cooperative first-order like folding–unfolding transition of proteins.
However, as pointed out by de Gennes [62], Eq. 25 also predicts a first-order coil-to-
globule transition for homopolymers for sufficiently small values of W2, a finding
that has so far not been confirmed experimentally and that is likely an artifact of the
theory. It is instructive to analyze the individual energetic contributions to the two-
body interaction termW1, often called χ, which can be expressed as a Flory-Huggins
interaction parameter [66]

W1 / wsp - wss þ wpp

� �
=2, ð26Þ

2De Gennes derived his model for the radius of gyration (rG) of the polymer. Since the distribution
of radii of gyration for a Gaussian chain is not known in closed analytic form, he used the
approximation P(α) / α3 exp (-3α2/2) where α = rG/RG, ideal. Notably, compared to donor–
acceptor distances measured with smFRET, the radius of gyration is by far the better quantity to
construct a mean-field theory due to its direct link to the monomer-density of a chain. The long-
known fact has more recently gained renewed attention in the so-called FRET-SAXS controversy
[see Refs. 22 and 77].
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where the energy changes wpp, wss, and wsp are due to polymer–polymer (pp),
solvent–solvent (ss), and solvent–polymer contacts (sp), respectively. Notably,
Eq. 26 had been derived for lattice-polymer models and processes such as the
adsorption of denaturant molecules on the polypeptide chain might not be ade-
quately captured by it. Hence, an awareness of these pitfalls is required when
interpreting experimental results in terms of wpp, wss, and wsp. The exact molecular
effects of GdmCl and urea on polypeptide chains, which might affect multiple
interactions simultaneously, have been debated much in the past [67]. A combina-
tion of polar interactions, hydrogen bonding, and stacking to non-polar surfaces has
been suggested. Yet, it is unclear whether any of these contributions really dominate
the action of GdmCl and urea. Based on experimental transfer free energies (ΔgT) of
amino acids from water to solutions of these denaturants, it is clear that both
denaturants assist in the solvation of non-polar side chains [67, 68]. In fact, the
molecular transfer model developed by Thirumalai and co-workers [69, 70] explic-
itly describes the change in dimension of unfolded proteins and the thermodynamic
stability of folded proteins based on the experimentally determined transfer free
energies of amino acids. In addition, smFRET experiments on a broad variety of
IDPs and unfolded proteins suggest a clear relationship between ΔgT andW1 [20, 21,
71, 72]. Whereas the approximate values of W1 between high molar concentrations
of denaturants and water are known to be in the order of a few kBT [20, 26], absolute
values for the three-body interaction term W2 in Eq. 25 are more difficult to obtain.
Recent results suggest values in the order of 4–30 kBT for the term 3k2W2 [26]. Yet,
care has to be taken as these energies also depend on the precise numerical factors
used in Eq. 25 and mean-field theories alike. In fact, a more independent parameter
to quantify the compaction of disordered proteins (and polymers in general) is the
length-scaling exponent ν.

For sufficiently long chains, the dimension scales with its length according to
RDA / Nν

K, where RDA = ~α R is the equilibrium distance between donor and acceptor
that can be determined in smFRET experiments (see Eqs. 12, 13, 14, and 15). The
length-scaling exponent ν can be obtained from Eq. 25 for three limits: (1) swollen
chains in good solvent, i.e.,W1 is repulsive (W1> 0) and three-body interactions can
be neglected (W1 ≪ W2), (2) compact chains in poor solvents, i.e., W1 is strongly
attractive (W1< 0) andW2 is repulsive (W2> 0), and (3) conditions in whichW1≈ 0
and W2 > 0 such that the chain behaves like an ideal chain, a condition that is also
called Θ-condition (Fig. 4b). Let us start with an expanded chain in good solvent. At
such conditions, the effect of three-body interactions is substantially reduced and we
can safely assume W2 ≈ 0. Equation 25 then simplifies to the well-known Flory
result [73]

~α5 - ~α3 =
3
2
kW1

ffiffiffiffiffiffiffi
NK

p
: ð27Þ

In the extreme limit of expanded chains (~α5 ≫ ~α3) and with the definitions for ~α
and R, we obtain
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RDA =CebKN
3=5
K / N

3
5
K with Ce =

2
3

� �1
2 3kW1

2

� �1
5

: ð28Þ

Hence, polymers in good solvent should exhibit a length-scaling exponent of
ν = 3/5. In fact, the result is surprisingly close to the exact value from
renormalization-group field theory of ν = 0.588 ± 0.001 [74]. Notably, this success
of Flory theory is based on a fortuitous cancelation of errors: the term W1NKϕ in
Eq. 24 (first term in brackets) overestimates the monomer interaction energy because
correlations between monomers along the chain are neglected [75] and the term
α2 - 2 ln α (Eq. 24) of the Gaussian chain model overestimates the elastic energy of
the chain.

A number of experimental studies using a diverse set of methods from SAXS
[22, 27, 76, 77], smFRET [20, 22, 27], over NMR [78] to FCS (fluorescence
correlation spectroscopy) [20, 22], and molecular simulations [22, 27, 51] demon-
strated that IDPs and unfolded proteins at high concentration of denaturants (GdmCl
and urea) indeed exhibit a length-scaling exponent of ~3/5. Hence, sequences and
amino acid compositions are less relevant for chain dimensions under these condi-
tions. This is particularly the case for proteins in GdmCl, which is not only a
denaturant but also a salt, thus capable of effectively screening charge–charge
interactions in unfolded proteins and IDPs as shown with smFRET on a number of
systems [18, 19, 26].

The second limit that can be obtained from Eq. 25 is that of a strongly collapsed
chain in poor solvent. Under these conditions (~α5 << ~α3 >> 1, and W1 < 0), Eq. 25
simplifies to

~α3 =
2kW2

jW1j N
- 1=2
K , ð29Þ

which gives

RDA =CgbKN
1=3
K / N

1
3
K with Cg =

2
3

� �1
2 2kW2

jW1j
� �1

3

: ð30Þ

Hence, if the chain forms a highly collapsed globule due to strong polymer–
polymer contacts, the growth in dimension with chain length is tremendously
reduced compared to the excluded volume limit (Eq. 28). It should be mentioned
that although Eq. 30 follows naturally from Eq. 25, it is only valid for mean-field
theories constructed in terms of radii of gyration. For a distance such as that
measured with smFRET (RDA), the volume fraction of a chain ϕ is ill-defined in
the limit of compact chains and the chain volume cannot be reliably estimated from
the end-to-end distance. In fact, the de-coupling of distances RDA inferred from
smFRET and radii of gyrations RG for compact chains has been studied in detail [27]
and shows that chains with similar RG can obey largely different FRET efficiencies.
Hence, scaling exponents of extremely compact chains cannot be extracted from
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donor–acceptor distance measurements alone but require either the additional help of
molecular simulations or the direct determination of better quantities for chain
dimensions such as the radius of gyration [77, 79] or the hydrodynamic radius of a
chain [80, 81]. So far, only a few cases of disordered polypeptide chains with scaling
exponents close to 1/3 have been published, one being poly-glutamine peptides
[80]. Non-equilibrium SAXS experiments using fast continuous-flow mixing also
identified a scaling exponent close to 1/3 for early folding intermediates of seven
proteins [82]. It is unclear however to which extent the low scaling exponent is
affected by structure formation in those intermediates after being diluted from high
concentrations of denaturant.

Finally, we discuss the limit at which wpp, wss, and wsp balance such thatW1 = 0.
At this Θ-condition, the chain behaves like an ideal chain and only three-body
interactions (W2) and chain elasticity, i.e., configurational entropy, contribute to
the chain dimension. Importantly, since W2 > 0 at Θ-conditions, the absolute
donor–acceptor distance will not be identical to that of an ideal chain (~α≠ 1) but
rather be close to it (~α � 1). To see this, we start with Eq. 25 and set W1 = 0, which
gives

~α8 - ~α6 = 3k2W2: ð31Þ

To obtain an approximate solution, we expand the polynomial (LHS) around
~α= 1, which leads to the series 2 ~α- 1ð Þ þ 13 ~α- 1ð Þ2 þ 36 ~α- 1ð Þ3 þ . . . . Since
~α- 1< 1,we only keep the leading term, which admittedly is a brave assumption
given the significant pre-factor of the second term, resulting in

RDA =CΘbKN
1=2
K / N

1
2
K with CΘ =

3
2

� �1
2

1þ 3
2
k2W2

� �
, ð32Þ

which exceeds the distance of the ideal chain that would be given by R=ffiffiffiffiffiffiffiffi
2=3

p
bKN

1=2
K . Indeed, a large number of smFRET and SAXS experiments have

demonstrated that the scaling exponents of IDPs and unfolded proteins under
physiological conditions (absence of denaturants) cluster around ν = 1/2 [20, 22,
29, 77]. These results indicated that polypeptide chains in water are surprisingly
close to Θ-conditions, i.e., conditions at which attractive and repulsive interactions
in the chain roughly balance. Given the rather small number of proteins tested so far,
it is unclear whether this finding is pure coincidence or indeed the result of evolution.
In fact, it has been speculated that the balance of attractive and repulsive interactions
at Θ-conditions could be advantageous for protein folding reactions, e.g., by
allowing a more efficient sampling of intra-chain contacts during folding
[20, 83]. Clearly this interpretation is difficult to draw for IDPs that do not neces-
sarily fold, yet, Θ-conditions might still be advantageous for liquid–liquid phase
separation processes. Although the scaling exponents for many polypeptide chains
are close to 1/2, differences in sequence composition, but even in the precise
sequence such as patterning of charges [84–86] or hydrophobic and aromatic
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residues [87] can cause significant variations in the size of polymers [88, 89]. For
example, a nearly balanced number of positively and negatively charged amino acids
can strongly compact IDPs [26]. On the opposite, high net-charges cause strong
electrostatic repulsions that lead to extremely expanded chains [19]. Naturally, such
charge-driven interactions are sensitively affected by ionic strengths, and even small
variation within the physiological regime (100–300 mM) can cause large changes in
chain dimensions and scaling exponents. Many studies over the past decades
explicitly incorporated the effect of charge interactions in mean-field theories [90–
93] and their application in interpreting salt-induced compaction of highly charged
IDPs and the expansion of nearly charge-balanced IDPs found with smFRET has
been enormously successful [19, 26]. Yet, a drawback of these theories is their
inability to account for specific charge patterns along the sequence. In fact, mean-
field polyelectrolyte and polyampholyte theories are only applicable for well-mixed
sequences in which it can be safely assumed that amino acid charges are essentially
smeared out across the chain. Although attempts have been made to develop
analytical heteropolymer theories for quenched sequences [94], modern approaches
to account for sequence specificity in the polymer behavior of IDPs and unfolded
proteins are mainly based on molecular simulations.

3.3 More Accurate Polymer Models: Combining smFRET
with Molecular Simulations

Mean-field theory is a convenient first option to understand smFRET data of IDPs.
However, local secondary structure preferences and long-range interactions caused
by either charged amino acids or hydrophobic patches in the sequence might have
significant populations and lifetimes. In such cases, homopolymer theories have
limited capabilities of faithfully interpreting FRET-based distance information.

To combine smFRET data with molecular simulations, one often relies on the
accuracy of the simulation model, which is described by a force field that accounts
for interactions between amino acids. Since force fields were often parameterized
using data from a variety of IDPs, i.e., not necessarily for the IDP studied in a
particular smFRET experiment, there is no guarantee that a simulation will repro-
duce a FRET signal out of the box, thus complicating an interpretation of physical
mechanisms with the model. To ease mechanistic interpretations of smFRET exper-
iments therefore requires a molecular ensemble that can reproduce the smFRET data.
One strategy has been to reweight conformations generated with an existing simu-
lation model such that the calculated observables (e.g., FRET efficiency) best match
the experimental values [22]. A tremendous advantage of ensemble reweighting is
its low computational cost compared to the strategy of adapting parameters using
iterative simulations to match experimental outcomes. However, reweighting also
has its limits. For instance, if the initial ensemble obtained from a simulation deviates
significantly from the experimental measurement, or in other words, if important
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conformations are not sampled in the simulation, reweighting will not provide a
realistic description of the IDP ensemble. Moreover, the outcome from ensemble
reweighting methods could be biased by the initial ensemble, which depends on the
quality of the force field [95]. In such cases one has to downgrade the expectation
from bottom-up simulation models with predictive power and instead either bias the
simulations using experimental data [96] or adapt the simulation parameters such
that the simulated trajectory can still interpret the experimental data [97]. Further
cross-validation using experimental inputs other than smFRET, such as solvation
free energy, SAXS, and NMR, is then necessary to verify the refined model. In the
following, we will therefore mostly focus on those molecular simulation methods
that can be easily integrated with smFRET experiments and do not discuss bottom-
up simulation methods.

Depending on the spatial resolution of the model, all-atom implicit/explicit-
solvent simulations [97, 98] and coarse-grained simulations [99] have been used in
the past to describe smFRET data. Clearly, all-atom explicit-solvent models have the
highest resolution but can be limited by force field accuracy and sampling efficiency.
Taking advantage of the increasing amount of experimental measurements on IDPs,
significant efforts have been undertaken in recent years to improve all-atom force
fields [97, 100, 101] such that modern force fields will provide meaningful IDP
ensembles. In terms of sampling, most software packages [102–105] have now taken
advantage of the rapidly improving GPU resources such that microseconds simula-
tions of an IDP with less than 100 amino acids can be achieved within few days in
standard high-performance computing clusters. In addition, the development of
specialized supercomputers for molecular dynamics such as “Anton” even enabled
IDP-simulations of 100 μs in length within few days [106], which even allows
investigations of IDP–ligand interactions [107].

Using all-atom simulations to interpret smFRET experiments requires modeling
of the dyes. In fact, commonly used dyes such as Alexa Fluor 488 and Alexa Fluor
594 have significant sizes of a few amino acids (Fig. 5a). The simulation has to either
model dyes explicitly or specific correction factors have to be included to calculate
FRET efficiencies from simulations without dyes. Using a carefully parameterized
force field of FRET dyes, Best et al. showed that the orientational factor hκ2i is
indeed close to 2/3, as estimated in many experiments [108] and FRET efficiency
calculations can be simplified using Eq. 10 (see Sect. 3.1). However, to improve the
sampling efficiency, dyes are not commonly included. In such cases, only distances
between the Cα-atoms of the labeled residues are accessible from the simulations.
These distances should then be rescaled by a factor of [(N + Nlinker)/N]

ν, where N is
the number of peptide bonds between the labeled amino acids and ν is the length-
scaling exponent which can be determined by the scaling of internal chain distances
with sequence separation in the simulation [109] or from experiments with multiple
labeling positions [20]. Importantly, Nlinker is a free parameter that represents the
effective length of both dye linkers in terms of an equivalent number of peptide
bonds. It has experimentally been estimated to be ~9 [29, 30], which agrees well
with estimates obtained from all-atom simulations with and without dyes [110]
(Fig. 5b).
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Importantly, the heterogeneous ensemble of IDP conformations is better charac-
terized by different experimental techniques rather than smFRET alone and all-atom
simulations have become essential in integrating them, not only to generate realistic
IDP ensembles but also to identify and reconcile discrepancies between findings
with different experimental methods. For instance, while smFRET experiments
showed that unfolded and disordered polypeptide chains expanded substantially
upon addition of denaturants, SAXS experiments suggested that expansions were
much less pronounced [111]. All-atom simulations were then used as benchmarks to
test empirical ways of using polymer models for analyzing the smFRET and SAXS
data (see Sect. 3.1) by comparing artificial experimental signals, e.g., FRET effi-
ciencies and SAXS scattering curves together with the correct “answers,” i.e.,

Fig. 5 Comparing smFRET experiments with molecular simulations. (a) One representative
conformation of a simulation with the IDP ACTR, including the dyes Alexa Fluor 488 and Alexa
Fluor 594, is shown. Two different ways of calculating donor–acceptor distances for comparison
with smFRET experiments are depicted: RDA between the donor and acceptor for simulations that
explicitly include the dyes and RCα between the Cα atoms of the labeled residues for simulations
without dyes. (b) Deviation between the FRET efficiencies calculated using RDA and RCα as a
function of the linker length Nlinker (in amino acids) used for correcting FRET values from
simulations without dyes [110]. (c) End-to-end distances from all-atom simulations (red) are
compared with the distances obtained from mean FRET values that were computed from the
same simulation. Two polymer models, the Gaussian chain (Eq. 13) and the SAW model
(Eq. 15) were used to compute the distances from FRET using Eq. 12. (d) The radius of gyration
RG obtained from smFRET using SAW model is compared to an all-atom ensemble reweighted
using both smFRET and SAXS data
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donor–acceptor distance and radius of gyration (RG) that could be directly calculated
from the simulation. This comparison showed that the Gaussian chain model over-
estimates distances in smFRET experiments whereas Guinier analysis underesti-
mates RG when the chain deviates from a random coil [22]. A SAW model (Eq. 15),
in which the distance distribution is adjusted according to the scaling exponent, has
been found to be a better choice for interpreting smFRET and SAXS data for ν larger
than 0.5 [51, 112] (Fig. 5c). In addition, simulations [51] also verified that a size-
dependent factor λ [113] is necessary to convert the average donor–acceptor distance
RDA from smFRET into RG

λ=
R2
DA

R2
g

=
2 γ þ 2νð Þ γ þ 2νþ 1ð Þ

γ γ þ 1ð Þ : ð33Þ

Here, γ = 1 + g/ν ≈ 7/6 as in Eq. 15. Equation 33 shows that the estimated
conversion factor ranges between 4.1 and 6.3, depending on the chain compaction
specified by the length-scaling exponent ν, which added to the deviations found
between smFRET and SAXS measurements [27]. With both corrections, the radius
of gyration estimated from smFRET experiments was comparable with that esti-
mated from an ensemble using both FRET and SAXS measurement for the unfolded
R17 protein at different denaturant concentrations [22, 51] (Fig. 5d). Integrated with
molecular simulations, smFRET measurements have also been found to complement
other experimental methods such as NMR and PRE (Paramagnetic Relaxation
Enhancement) [114], thus showing that all-atom simulations provide an effective
way of integrating multiple sources of experimental data.

Although all-atom simulations certainly provide the most accurate representation
of molecular processes, particularly when combined with explicit water models,
sampling can be time consuming and resource demanding for IDPs with more than
100 residues. It is often informative to use a coarser representation of the molecular
complexity at substantially lower computational cost. An ideal “interpolation”
between all-atom simulations and simple polymer models are low-resolution
coarse-grained models. Coarse-grained models contain about the same number of
free parameters as analytical polymer theories but additionally include specific
sequence details of IDPs such as the patterning of charges and hydrophobic sequence
patches that are absent in mean-field theories. The fast sampling of coarse-grained
models even allows a quick adjustment to experimental data and can be used to
generate multiple IDP ensembles at a variety of solvent conditions. For instance, in a
recent study of the disordered cytoplasmic tail of E-cadherin [12], smFRET exper-
iments of differently labeled variants of E-cadherin showed that a mean-field
polyampholyte theory [90] failed to predict the salt-dependent conformational
change of all variants. A description using a coarse-grained model instead
reproduced the salt-dependence of all variants with just one global fitting parameter
and identified the reason for the failure of the mean-field description. The segrega-
tion of oppositely charged residues along the sequence, i.e., charge patterning, was
found to be essential for the dimension of this IDP, an effect that cannot be captured
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with mean-field theories. Finally, systems involving IDP assemblies such as in
liquid–liquid phase separation (LLPS) processes [115] or already only those that
include one IDP in complex with another macromolecular ligand [116] typically
exceed the sampling-capabilities of all-atom simulations, thus making coarse-
grained models unavoidable.

Clearly, the level of coarse-graining depends on the specific task and the balance
between the computational efficiency and modeling accuracy. Coarse-graining
levels range from representing individual residues by multiple beads over one
bead per residue down to one bead for several residues. Yet, the need of calculating
distances between labeled residues in describing smFRET experiments clearly
favors one bead per residue models. Coarse-graining at the single-residue level is
particularly important if sequence-specific effects play an important role in the
system at hand. To capture electrostatic interactions at different ionic strength,
which is a relevant factor considering physiological salt concentrations of
100–300 mM [117], the Debye-Hückel approximation is commonly used
[118]. The computational efficiency of such a screening potential in contrast to an
explicit ion model often outweighs the disadvantage of neglecting the true radial
distribution of ions around the charged amino acids in studies of IDPs [119, 120]. In
addition, other interactions between every pair of amino acids also add up to
significant factors that can sensitively affect the dimension of an IDP. In a recently
developed coarse-grained model (HPS model) [99] such pairwise interactions were
introduced using the amino acid hydropathy in the Ashbaugh-Hatch functional form
[121]. It was shown that a tuning of the strength of this amino acid hydropathy
described the experimental results of a variety of IDPs with high accuracy [99, 122–
125]. Further tuning the pairwise interaction strengths to match smFRET experi-
ments of a specific IDP is then a straightforward way to understand the main
sequence contribution to the overall dimension [12], which is information that
cannot be obtained from analytical polymer theories.

The enormous flexibility of coarse-grained models can even be used to study the
behavior of IDPs that interact with another folded protein. Since such complexes will
also involve specific contacts between both partners, a structure of the complex,
obtained experimentally or via computational methods, is a necessary starting point
to identify specific contacts. Using this structural information, the stability of the
folded binding partner is ensured either via strong harmonic constraints between
native residue pairs or by treating the folded partner as a rigid body. In fact, the latter
strategy is preferred since it saves computational resources and a number of molec-
ular dynamics packages such as LAMMPs [126] and HOOMD-Blue [127] already
provide this option. Specific inter-molecular contacts between IDPs and a folded
partner can then be introduced using tunable harmonic or Lennard-Jones
(LJ) potentials. Here, harmonic potentials strongly restrain the complex in its
bound state such that the IDP will not dissociate from its folded partner and an LJ
potential might be a more reasonable choice to sample both bound and unbound
states. By tuning the interaction strengths of the potential, experimental smFRET
values can be matched and a description of conformational flexibility of an IDP in
complex with a folded protein can be obtained. This strategy has recently been used

426 H. Hofmann and W. Zheng



to quantify the conformational ensemble of disordered E-cadherin in complex with
the folded protein β-catenin [12].

In summary, both all-atom explicit-solvent and coarse-grained models have their
merits and limits. All-atom models provide a more accurate representation of the
protein and also describe dyes explicitly, which simplifies the interpretation of
smFRET experiments. However, all-atom models are limited by both sampling
and force field accuracy. Even though force fields are being continuously improved
with an increasing amount of experimental data, the quadratic scaling between
timescales and system size will continue to limit sampling. Coarse-grained models
are therefore a cost-effective solution. In fact, they can be considered as an extension
of analytical polymer models. Yet, coarse-grained models average over many
degrees of freedom and are less transferable among different systems. For instance,
the strengths of interactions between amino acids often depend on the local sequence
context. While charge–charge interactions are typically predicted well by coarse-
grained models due to their substantial interaction energies, the combined effect of
many weak interactions is much more difficult to catch. Hence, parameterizing
(tuning) coarse-grained models with experimental data on the specific system at
hand is very helpful for interpreting experimental data in terms of a molecular model.
Clearly, specific interactions might be missed and the timescales of motions will be
unrealistically fast such that all-atom simulation can be used as a complementation.

4 Probing and Modeling Sub-microsecond Dynamics
of Disordered Proteins

4.1 Nanosecond Fluorescence Correlation Spectroscopy
(nsFCS) Coupled with FRET

So far, we discussed the average dimension of disordered and unfolded proteins and
its susceptibility toward changes in solution conditions. Our starting point for this
discussion was the distribution of donor–acceptor distances that we expect for the
extremely heterogeneous conformational ensemble of IDPs. In this section, we focus
on the timescales at which such disordered ensembles are sampled, i.e., the
reconfiguration time. The first attempts to identify this timescale were based on an
analysis of the width in FRET histograms [14] and resulted in an upper limit of
≤25 μs for the unfolded state of CspTm. However, even extremely slow transitions at
the timescale of seconds have been reported for surface-immobilized and unfolded
RNase H [15]. Yet, already at that time, estimates from ensemble experiments such
as contact-quenching, pioneered by Eaton and Hofrichter [128] and triplet–triplet
energy transfer [129], pioneered by Kiefhaber and colleagues, suggested
reconfiguration timescales <1 μs for flexible polypeptides. Indeed, the first rigorous
measurement of donor–acceptor distance fluctuations in an unfolded protein identi-
fied dynamics in the order of 50 ns [34]. Technically, these smFRET measurements
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required a Hanbury Brown and Twiss detection scheme [130] to circumvent dead
times of detectors and counting electronics3 and the inter-photon times between
photon pairs were measured with picosecond time-resolution (256–304 ps). Since
then, the development of powerful counting electronics with a time-resolution down
to 8 ps [38, 39] has greatly simplified smFRET-based nsFCS experiments [7, 23–25,
32, 33, 35–37, 131–135] such that they can even be used to study the dynamics of
IDPs inside living cells [136, 137]. In their essentials, smFRET-based nsFCS
experiments do not differ much from classical FCS experiments, which retrieve
the timescale of fluorescence fluctuations, e.g., due to the diffusion of molecules in
and out of the confocal volume, thus allowing the determination of translational
diffusion coefficients and Stokes radii as a measure of the size of the diffusing
particle. Differences are twofold: first, instead of one color, two colors are monitored
in smFRET-based nsFCS experiments, and second, the timescale at which fluctua-
tions are observed is much shorter (ns). Admittedly, the latter factor is of more of
technical origin and simply requires fast counting electronics that allows the storage
of photon arrival times with high, i.e., picosecond precision.

What is the principle of nsFCS? Due to the flexibility of IDPs, the distance
between donor and acceptor dyes attached to them fluctuates thus giving rise to
fluctuations in the rate of photons (~n= n=T ) from donor ~nD tð Þ and acceptor ~nA tð Þ.
The timescale of these fluctuations can be quantified with four correlation functions
(gDD, gAA, gDA, gAD) defined by

gij τð Þ= ~ni tð Þ~nj t þ τð Þ� �
~ni tð Þh i ~nj tð Þ

� � with i= D, Af g and j= D, Af g: ð34Þ

For distance dynamics slower than the fluorescence lifetime of the dyes, the shape
of these correlation functions differs characteristically between auto- (gDD, gAA) and
cross-correlation functions (gDA, gAD) in the presence of FRET between donor and
acceptor (Fig. 6a). Whereas the autocorrelation functions decay (positive amplitude),
the cross-correlation functions should increase (negative amplitude) due to the anti-
correlated change in photon rates from donor and acceptor. Since only distance
changes coupled with FRET can cause such anti-correlated behavior, an increasing
cross-correlation function unambiguously indicates the presence of distance dynam-
ics. Conversely, an absence of this increase does not exclude distance fluctuations
because other effects, e.g., static quenching of the dyes by aromatic amino acids such
as tryptophan or tyrosine [12, 133], can mask the anti-correlated fluctuations of
donor and acceptor emission. At very short timescales in the order of the fluores-
cence lifetimes of the dyes, all correlation functions increase due to photon anti-
bunching. Organic dyes in smFRET experiments are single-photon emitters, i.e.,
after a photon has been emitted, the emission of a second photon takes time since the
dye has to be excited again. Thinking of correlation functions as probability of
observing two photons separated by the lag-time τ, this probability should ideally be

3Here, photons from each color are randomly distributed to two detectors.
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zero at τ = 0, i.e., gij(0) = 0. Notably, this is rarely the case for cross-correlation
functions because donor and acceptor can sporadically populate their excited states
at the same time,4 which can cause the simultaneous emission of a donor and an
acceptor photon.

Initially, the practical goal of nsFCS experiments in the characterization of IDP
dynamics was to determine the decay time of the correlation functions (Eq. 34).
Importantly, the decay of the autocorrelation functions and the rise in the cross-
correlation functions should provide the same relaxation time if these decays result
from distance dynamics. Hence, the strategy of globally fitting the four correlation
functions using exponentials such as

gij τð Þ= 1- aije
- jτj=τija

� �
1± bije

- jτj=τb
� �

1þ cije
- jτj=τijc

� �
=Nij ð35Þ

is frequently used [33, 34, 131]. Here, the first factor (RHS) accounts for anti-
bunching with a correlation-function-specific amplitude (aij) and decay time (τija ),
the second factor accounts for FRET-based distance dynamics (bunching) with a
correlation-function-specific amplitude (bij) and a global decay time of distance
fluctuations (τb), and the third factor accounts for the photo-physical triplet dynamics
of the dyes that typically take place at timescales of several microseconds with a
correlation-function-specific amplitude (cij) and decay time (τijc ). The factor N

- 1
ij is

related to the average number of molecules in the confocal volume. The ± sign in the
second factor is for autocorrelations (+) and cross-correlations (-). The global
correlation time τb (global for all four correlation functions) then characterizes the
timescale of distance fluctuation between donor and acceptor. Yet, caution has to be
taken. The highly nonlinear distance dependence of FRET (Eq. 10) acts as a filter
that flattens photon rate fluctuations much below and above the Förster distance R0,

Fig. 6 Probing IDP dynamics with nsFCS. (a) Correlation functions from nsFCS for the intrinsi-
cally disordered DNA-binding domain of the protein c-Myc together with a global fit with multi-
exponential decays as given by Eq. 35 (black lines). (b) Simple photo-physical scheme of a
smFRET experiment (see text). The rate matrix for this scheme is given by Eq. 37

4For example, after FRET from donor to acceptor, the acceptor is in the excited state. If the donor is
re-exited before the acceptor relaxes to the ground state, both dyes will be in the excited state.
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which affects the correlation time. To retrieve the correct timescale of distance
fluctuations, i.e., the reconfiguration time of the disordered chain, this filter has to
be taken into account. Gopich et al. showed that the correlation time is given by
[138]

τb =D- 1
Z L

a
P rð Þ- 1

Z r

a
δ~n ρð ÞP ρð Þdρ

� 	2
dr=
Z L

a
δ~n rð Þ2P rð Þdr: ð36Þ

As in Eq. 12, P(r) is again the donor–acceptor distance distribution and D is the
intra-chain diffusion coefficient that characterizes the timescale of distance fluctua-
tions. Knowing D and P(r) then fully characterizes the dynamics of an IDP or an
unfolded protein. The goal is therefore to compute D assuming a suitable model of
the distance distribution. Since τb is identical for all correlation functions, it suffices
to only consider the photon rates ~n of one of the dyes, the donor in our case (~n= ~nD).
The term δ~n rð Þ= ~n rð Þ- ~nh i can then be computed from the kinetic photo-physical
scheme of excited states and ground states in a two-color FRET system (Fig. 6b).
Neglecting the possibility that donor and acceptor can simultaneously populate their
excited states and using the base (DA, D*A, DA*) where D and A indicate the
ground state of donor and acceptor, respectively, and the asterisk indicates the
excited states of the dyes, the populations of these photo-physical states expressed
in the vector p= pDA pD�A pDA�ð Þ are given by a linear and homogeneous differen-
tial equation system

_p=Kp

with the rate matrix

K=
- kex kD kA
kex - kDþkT rð Þ½ � 0
0 kT rð Þ - kA

 !
: ð37Þ

Here, kex = σI/hν is the excitation rate of the donor that depends on the laser
intensity (I ) and the absorption cross-section of the donor (σ) at the excitation
wavelength λ (ν = c/λ where c is the speed of light), kD and kA are the decay rates
of the excited states of donor and acceptor, respectively, and kT(r) is the distance-
dependent rate of energy transfer from donor to acceptor (see Eq. 16). The photon
rate of the donor as function of the distance is then given by ~n rð Þ=ϕDkDp

ss
D�A where

the superscript ss indicates the steady-state population that is obtained from 0 = Kp
and ϕD is the quantum yield of the donor dye. As usual, the average donor photon
rate is given by ~nh i= R

~n rð ÞP rð Þdr such that the term δ~n rð Þ is directly accessible.
Typical values of these parameters for the dye pair Alexa Fluor 488 and Alexa Fluor
594 are kex ≈ 0.02 ns-1, kD~kA ≈ 0.25 ns-1, and ϕD > 0.9. Thus, Eqs. 36 and 37
together with the measured correlation time and a model for the distance distribution
P(r) can now be used to compute the intra-chain diffusion coefficient D, i.e., the
diffusion coefficient characterizing the motion of donor and acceptor dyes relative to
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each other.5 Once D is known, also the reconfiguration time of the chain τr can be
calculated using a similar approach, i.e., by replacing ~n rð Þ with r in Eq. 36. Hence,
reconfiguration times obtained using FRET-coupled nsFCS experiments typically
depend on the model P(r).

Importantly, Gopich and Szabo derived an elegant formalism with which auto-
and cross-correlation functions can be directly computed for any kinetic model
[139]. In contrast to the semi-empirical approach of determining correlation times
using fits with exponential functions (Eq. 35) followed by a conversion to intra-chain
diffusion coefficients and reconfiguration times using Eqs. 36 and 37, the method
also effectively utilizes the amplitude information of the correlation functions. With
the definitions in Eq. 37, the correlation function is given by

gij τð Þ= 1TVjeKτVipss
1TVjpss
� �

1TVjpss
� � : ð38Þ

Here, 1T = (1 1. . .) is the transposed unit vector, eKτ is the matrix exponential of
Kτ, pss is the steady-state solution of Eq. 37, and Vj and Vi are detection matrices for
channel i and j that indicate which transition is being monitored. For donor and
acceptor detection, the matrices in our particular case are given by

VD = ξDkDQD

0 1 0
0 0 0
0 0 0

 !
and VA = ξAkAQA

0 0 1
0 0 0
0 0 0

 !
: ð39Þ

Here, QD and QA are the quantum yields of donor and acceptor, and ξD, ξA are the
detection efficiencies. Also, leakage (cross-talk) from the donor to the acceptor
channel can easily be implemented by correcting the acceptor detection matrix via
V′A = VA + βVD. Using Eqs. 38 and 39 to directly fit the correlation functions of
IDPs and unfolded proteins that sample a distance distribution P(r) requires a
combination of photophysics with the distance dynamics of the chain [34]. To this
end, the dynamics of the chain are described as a one-dimensional diffusive process
in the potential of mean force (PMF) given by the distribution P(r). This approach
essentially pictures the molecule as a dumbbell with donor and acceptor on opposite
ends, linked by a spring whose potential is given by the PMF. The rate matrix then
becomes a combination of two parts, intra-chain diffusion and photophysics

Kdiff =D∂=∂rP rð Þ∂=∂r P rð Þ- 1 IþK rð Þ ð40Þ

where K(r) describes the distance-dependent photophysics and the first term
describes diffusion in a PMF. Here, I is a 3 × 3 unit matrix and D is the diffusion
coefficient. To use Eq. 40 for computing correlation functions with Eq. 38, the

5Importantly, the intrinsic diffusion of donor and acceptor relative to each other should not be
confused with the translational diffusion of the whole molecule.
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diffusion operator (first term) has to be discretized, a procedure detailed in Nettels
et al. [34]. For a practical perspective, fits of correlation functions with empirical
exponentials (Eq. 35) or with an appropriate model (Eqs. 37–40) are very similar in
quality. However, the number of free parameters is significantly reduced in the
model-dependent fit since the excitation and emission rates of the dyes can be
determined in advance, thus leaving only two free parameters, the diffusion D and
the average donor–acceptor distance hr2i1/2 = RDA as fitting parameters, the latter of
which being additionally constrained by the average FRET efficiency hEi (Eq. 12).

4.2 Polymer Models for IDP Dynamics and Their Limitations

Which microscopic molecular processes determine the reconfiguration timescales
of IDPs? Clearly, the complex arrangement of thousands of atoms in IDPs and an
astronomical number of chain conformations poses challenges to analytical theories.
Yet, rather simple analytically solvable bead-and-spring models, such as the Rouse
model and derived models, turned out to be surprisingly successful [33, 36, 37, 140,
141]. The concept of these model goes back to P. E. Rouse who aimed at describing
the viscoelastic properties of homopolymer solutions [140]. In the Rouse model
[140], an IDP is composed of n = NK + 1 beads that are connected by NK segment
bonds. As described in Sect. 3.1, these Kuhn segments consist of several bonds such
that the chain obeys Gaussian statistics, resulting in a “phantom chain” in which
beads are linked via harmonic springs [142]. The length of a segment bK is chosen
such that the mean square end-to-end distance of the chain can be written as
r2
� �

= b2KNK (Eq. 14). The force-balance of a bead at position k will now be given
by three terms: (1) an elastic spring force fek, (2) a friction force due to the solvent fsk,
and (3) a random force fbk (Fig. 7a):

fsk þ fek = fbk ð41Þ

Assuming that solvent friction acts on individual beads, fsk is given by
Stokes’ law

fsk = ζs _rk with ζs = 6πηa: ð42Þ

Here, ζs is the solvent friction coefficient for an individual bead, which is
determined by its hydrodynamic radius a and by the solvent viscosity η, and rk is
the vector that defines the position of bead k. The second term in Eq. 41, i.e., the
elastic spring force, can be derived from Hooke’s law. However, a bead in position
k experiences an elastic force from two neighbors, namely at k + 1 and k - 1
such that
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fek = α 2rk - rkþ1 - rk- 1ð Þ with α= 3kBTNK= r2
� � ð43Þ

and the spring constant α describes the stiffness of the harmonic potentials between
neighbored beads. With Eqs. 41–43, we can write the Langevin equation for the x-
coordinate of a bead k as

ζs _x k, tð Þ þ α 2x k, tð Þ- x k þ 1, tð Þ- x k- 1, tð Þ½ �=X k, tð Þ ð44Þ

Here, X(k, t) is the x-component of the random force that satisfies the usual
fluctuation dissipation theorem of Gaussian-distributed white noise according to

X k, tð ÞX k, t0ð Þh i= 2kBTζsδ t � t0ð ÞΔ k � k0ð Þ:

Here, Δ indicates the Kronecker-delta. The solution has been described in the past
[36, 141] and we will not re-iterate it here. It suffices to say that a spectrum of
relaxation times is obtained, as expected for a coupled harmonic oscillator, and the
mode-dependent relaxation time τR of the Rouse model is given by

τR ≈ ζs=αq
2 / η ð45Þ

with q= πz/NKwith z= {1, 2, 3, . . .} being the mode number. Eq. 45 implies that the
dynamics of the chain will slow down with increasing solvent viscosity and the
relaxation of the chain is faster for higher modes, i.e., for larger z. Notably, Eq. 45
predicts τr / N2

K , which is different from the correct scaling τr / N3ν
K given by the

Zimm model that also accounts for hydrodynamic interactions [63, 75].

Fig. 7 Polymer dynamics models and their comparison with nsFCS. (a) A scheme of a coarse-
grained homopolymer and a comparison of the equations of motion (Langevin equations) of the
Rouse model without (left) and with (right) internal friction. (b) Reconfiguration times for the IDP
(ACTR) obtained with nsFCS (circles) and a fit with the Rouse model with internal friction (RIF,
black line). The internal friction component is indicated as red area. A Rouse model with the same
monomer size (gray line) extrapolates to zero reconfiguration time at vanishing viscosity
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Numerous nsFCS experiments on IDPs have shown that Eq. 45 does not correctly
capture the dynamics of IDPs [33, 131] (Fig. 7b). Although the proportionality
between reconfiguration time and solvent viscosity has indeed been found, a
solvent-independent friction component of the type [143, 144]

τr ≈ ζeff=αq
2 with ζeff = ζs þ q2ζi ð46Þ

had to be invoked to satisfactorily fit the experimental chain reconfiguration time τr
(Fig. 7a). Here, ζi describes an additional friction process independent of the solvent
viscosity that comes from processes internal to the protein. Eq. 46 can also be written
as τr = τR + τi where τi is a viscosity-independent internal friction timescale
(Fig. 7b). How can an additional friction process be justified? At high solvent friction
such as in aqueous solutions, Kramers’ reaction rate theory predicts that the reaction
time τ is proportional to the friction coefficient of a particle [145]. Assuming
continuum hydrodynamics, the reaction time should therefore scale with the solvent
viscosity (τ / η) without an offset, which has indeed been observed for slow
reactions such as the barrier-dominated millisecond folding dynamics of two-state
folders [146, 147]. However, substantial deviations were found for comparably fast
reactions [148–150] where a linear extrapolation of the reaction time to zero
viscosity also identified a limiting time scale τi [148]. An alternative to a viscosity
dependence with an offset (as in Eq. 46) can be found if the scaling between reaction
time and solvent viscosity has a weaker dependence such as τ / ηβ with β < 1
[151, 152]. Indeed, such fractional viscosity dependencies have been identified for
the diffusion of small molecular compounds [153–157] and physical interpretations
range from a viscosity-dependent change of the hydrodynamic coupling between
solvent and particle [158, 159], over a breakdown of the continuum hydrodynamics
due to the granularity of the solvent at small length scales [153, 160], up to a
breakdown of Kramers’ theory due to memory effects caused by solvent relaxation
[161, 162].

Yet, support for the presence of a limiting internal friction timescale (τi) came
from recent nsFCS experiments of unfolded and intrinsically disordered proteins
(IDPs) [33, 131, 163]. Though these experiments suggested that internal friction
results from a rather local process that acts on individual Kuhn segments (typically
around 4 peptide bonds) [33], its molecular origin remained elusive and several
possibilities such as bond rotations [143, 164], mode-coupling [165], or steric
interference of chain segments [166] are in discussion [36]. Identifying the molec-
ular events that cause internal friction in unstructured polypeptides might be a crucial
step toward understanding the elementary processes in the folding of proteins and
IDPs. Recent simulations and experiments point toward a combination of effects,
including dihedral angle flipping, intra-chain interactions, and solvent memory
effects [37, 167–169]. Importantly, some of these effects have already been incor-
porated in theories by Bazùa and Williams [143], Allegra and Ganazzoli [164], and
de Gennes [166]. Other authors even addressed more essential simplifications in
Rouse-type models such as the assumption of harmonic springs in bead-and-spring
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models [165]. However, a direct comparison of this variety of theories with exper-
imental results demonstrated that all these theories are capable of describing exper-
imental results on the disordered protein ACTR [36].

It might not be surprising that analytical theories capture internal friction effects
with an additional fitting parameter yet, an identification of the molecular processes
that give rise to this parameter remains elusive based on experiment and theory
alone. All-atom simulations with explicit solvent therefore became an ideal tool to
disentangle the molecular contributions that define reconfiguration times, intra-chain
diffusion coefficients, and internal friction effects. However, precise estimates from
all-atom simulations require an optimized water model. In fact, viscosities of
different water models vary tremendously [170], which strongly alters intra-chain
dynamics. TIP4P/2005 has been found to correctly capture the viscosity of water
[170, 171] and therefore force fields using this water model have been shown to
provide a faithful estimate of the intra-chain dynamics measured with smFRET-
nsFCS experiment in the order of hundred nanoseconds [22, 97]. Most importantly,
simulations allow a direct analysis of the molecular origins of internal friction effects
in IDPs. Also in simulations, the reconfiguration time of IDPs deviates from the
prediction of the simple Rouse model (Eqs. 40–43). By modifying the mass of water
to mimic changes in solvent viscosity, internal friction behavior was reproduced in
all-atom explicit-solvent simulations down to viscosities that are typically inacces-
sible experimentally (η ≫ 1cP) [168]. These simulations showed that internal
friction effects were primarily associated with backbone dihedral transitions
[167, 169] as suspected by Bazùa and Williams four decades ago [143], but also
intra-chain interactions contributed to the nonlinear viscosity dependence of IDPs,
thus showing that they are sequence-dependent [172].
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