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Abstract Fluorescence Correlation Spectroscopy (FCS) is a widely used technique
to determine molecular dynamics and interactions. It uses observation volumes on
the order of a femtolitre in size to distinguish the signal from single molecules
against the background. As it is difficult to illuminate and specifically detect signals
from such a small observation volume, FCS was originally conceived as a
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single-spot measurement that measures mainly temporal information. Multiplexing
was then achieved by sequential scanning and detecting different spots in a sample
and thus also providing spatial information. With advances in technology, the
introduction of different illumination and detection methods, and the emergence of
super-resolution and light-sheet microscopy, new opportunities opened up to collect
thousands of contiguous spots in a sample and thus provide high-resolution spatio-
temporal information over a whole cross-section of a sample. This chapter describes
the different 2D FCS modalities, their advantages and disadvantages, and some of
their applications.

Keyword Fluorescence correlation spectroscopy · Image correlation spectroscopy ·
Imaging FCS · Scanning FCS

1 Introduction

Fluorescence Correlation Spectroscopy (FCS) combines various principles and
concepts to provide a powerful technique to gain insights into molecular processes
[1, 2]. First, as the name indicates, FCS is based on fluorescence, a technique that
provides multiple advantages. A fluorophore excited in a particular wavelength
range, determined by its excitation spectrum, will generally emit at a longer wave-
length, defined by its emission spectrum. This shift in wavelength, the so-called
Stokes shift, allows easy distinction of the fluorescence from the excitation wave-
length. It is this property, in combination with its high absorption cross-section and
quantum yield, that results in a signal-to-noise ratio in fluorescence measurements
that allows detection of a single molecule against the scattering background of other
processes. Furthermore, fluorescence is linear over a very wide concentration range,
up to mM, covering most physiological relevant concentrations of biomolecules,
making quantification simple. And by using fluorescent labels to tag molecules of
interest, it is specific and selective in its observations.

The second concept is the concept of fluctuations, i.e. the deviation of the signal
from its mean value. Fluctuations of system-characteristic molecular processes in an
equilibrium system are driven by thermal energy. These molecular processes, in turn,
can be analysed in detail by the properties of the fluctuations. The importance of this
concept is sometimes reflected in the overarching name of Fluorescence Fluctuation
Spectroscopy (FFS), which denotes all fluorescence modalities that are based on the
measurement and analysis of fluorescence fluctuations, including FCS and many
derived modalities.

Lastly, correlations are a statistical analysis tool that is used to extract information
from the measured fluorescence fluctuations. Suppose one has an understanding of
the fluctuation-creating process and its parameters. In that case, this can be combined
with the mode of fluorescence excitation and detection to create theoretical models
for the expected correlation functions. These theoretical models can be fitted to
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experimental data to extract values for the characteristic parameters. Although any
process that can influence the fluctuations can be investigated by FCS, including
chemical reactions, photophysical processes, rotation, and more, it mainly measures
translational diffusion. Translational diffusion creates fluctuations by particles mov-
ing in and out of an observation volume. The correlation analysis can extract the
diffusion coefficient and the average number of particles in the observation volume.

FCS was originally conceived as a single-point time trace measurement but was
soon afterwards extended to spatial and spatiotemporal correlations. This extension
was pursued along three interrelated paths. First, the concept of FCS, which mea-
sures temporal correlations at a single point, was transferred to spatial correlations
within fluorescence images in Imaging Correlation Spectroscopy (ICS) [3]. ICS has
no intrinsic time resolution and reports on spatial patterns that allow counting
particles and determining particle cluster’s sizes. Time resolution in ICS can be
added by acquiring multiple images, with the time resolution being limited by the
available image acquisition time. This was first achieved in temporal ICS, or TICS
[4]. TICS is a compelling approach and was the first to be extended to spatiotemporal
correlations for whole images in the form of Spatiotemporal ICS (STICS) [5] and
other related techniques, as will be discussed in later sections.

The second approach was based on laser scanning. Flow influences the correla-
tion function as it changes the way and the duration of particles moving through the
observation volume [6]. As flow is in principle indistinguishable from a steady laser
movement, the same correlation function applied to scanning FCS in which the laser
beam is scanned through the sample at a constant speed [3, 7–10].

In scanning approaches, the confocal volume was moved at a particular speed and
path through the sample. Although this required the use of more complex correlation
functions, it provided several advantages. First, FCS is inherently only able to
measure a process if fluctuations are created. In the classical approach, slowly
moving or immobile particles cannot be observed when diffusion is measured,
leaving crucial molecules in a sample inaccessible. By scanning the confocal
volume, even stationary particles will contribute to the correlation function when
the confocal volume is scanned over them, leading to characteristic fluctuations
related to the scan speed instead of the diffusion coefficient [6]. Mobile particles still
contribute to the correlation function with their processes now dependent on diffu-
sion coefficient and scan speed. Second, scanning breaks the symmetry of the
correlation function as the scanning process defines a direction within the sample.
This is useful in the case that the process under study itself has a privileged direction.
The classic example, in this case, is flow or active transport of particles.

In the case of flow, the autocorrelation function (ACF) derived from a stationary
confocal volume will show the changing dynamics but cannot determine the flow
direction. In contrast, scanning FCS will lead to different correlation functions
depending on whether one scans along, against, or at an angle to the flow direction
[11, 12]. It can thus determine flow velocities and profiles. Finally, the inherent time
resolution in scanning, specified by the time the confocal detection dwells on a single
pixel, is much higher than can be reached in the acquisition of whole images, as done
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in other spatiotemporal correlation techniques and thus can detect even very fast
events.

To access the spatial information, one needs to know the position of the laser
beam at each time point, i.e. the scan path needs to be known precisely. Scanning
allows calculating correlations for each point of the laser trajectory. Koppel et al.
used a confocal microscope to determine molecular mobility in solution and bilayers
in so-called Scanning Concentration Correlation Spectroscopy (SCCS) [13]. In
Position-Sensitive Scanning FCS (PSFCS), a circular trajectory was used to deter-
mine flow directions [14]. Using the inherent time structure in confocal images,
Raster Image Correlation Spectroscopy (RICS) finally allowed to access molecular
mobility in a whole image [15].

The third path was based on FCS multiplexing by collecting multiple temporal
correlation functions simultaneously. Brinkmeier et al. used two-beam cross-corre-
lation analysis to measure flow in microstructures [16, 17], which was subsequently
extended to two-photon excitation [18]. A similar idea was implemented by
detecting different parts of one single confocal volume, either using two pinholes
[19] or using one pinhole but shifting the detectors with respect to the pinhole instead
[20]. This was further optimized with modern instruments that use multi-element or
multipoint detectors [21, 22].

Here also the advantage of combining temporal and spatial correlation functions
was immediately recognized. A single-point measurement was able to determine
flow speeds but could not determine the direction of flow, necessary for the deter-
mination of flow velocities and flow profiles. In the case of two points, however, the
forward and backward correlation functions provide a means to determine flow
directions and thus to measure flow profiles. Another advantage of multipoint FCS
was that the distance between the points could be precisely controlled and thus was
known. Since cross-correlations between the points provided information on how
long particles needed to move from one point to the other and the distance between
the points was known, the measurements required no calibration.

The measurements could be made so precise that even sub-nanometre differences
in hydrodynamic radius could be measured by the so-called dual-focus FCS [23–
25]. The extension to more points was first achieved only with a small number of
points by either using multiple single-point detectors [26, 27] or using small multi-
pixel devices that could be read out sufficiently fast to measure molecular dynamics
in biological samples [26, 28].

This situation changed when it was shown that electron-multiplying charged-
coupled device (EMCCD) and scientific complementary metal-oxide semiconduc-
tor (sCMOS) cameras could be read out sufficiently fast, at least for regions of
interest on the order of 100–1,000 pixels [29–33]. Since then, the so-called Imaging
FCS approaches have allowed the temporal correlation function for each pixel or the
spatiotemporal correlation functions between any pixels or group of pixels to be
calculated. Imaging FCS has been developed and applied to a wide range of samples,
from solution measurements to cells and organisms [34, 35].
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The three approaches thus resulted in methods to measure molecular spatiotem-
poral dynamics over whole images with different advantages and disadvantages as
will be discussed in this chapter.

2 Image-Based Correlation Spectroscopy

Image Correlation Spectroscopy (ICS) is the spatial analogue to FCS. While FCS
analyses patterns in time, which are interpreted as the dynamics of molecular
processes, ICS analyses patterns in space in images or series of images (Fig. 1a) to

Fig. 1 Image-based correlation spectroscopy. (a) A single image or a time stack of images is
recorded. (b) Single images can provide spatial resolution in ICS, providing data on the number of
particles and cluster sizes. (c) If the image was scanned and contained inherent time resolution, it
could be used in RICS to extract the number of particles at each ROI and spatiotemporal
information, including diffusion coefficients, flow parameters, and binding interactions. (d) In a
stack of frames, the temporal information can be extracted for each ROI in an image. (e) And in
STICS the spatial and temporal information of the image stack is recovered. (f) Examples of
processes in STICS: diffusion broadens the central peak of the correlation function; flow moves
the peak with time; diffusion and flow of a single component shows a combination of correlation
peak movement and broadening; and if there are two components, one diffusing and the other
undergoing flow, then two correlation peaks will develop a broadening central peak and a second
peak that broadens and moves away from the origin
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yield information on numbers and sizes of structures. The combination of time and
spatial correlation analysis leads to the general equation for the correlation function.

Gab ξ, ψ , τð Þ=
δIa x, y, tð ÞδIb xþ ξ, yþ ψ , t þ τð Þh ixy

D E
t

Iah it Ibh itþτ
ð1Þ

Here δIa(x, y, t) is the intensity fluctuation in wavelength channel a at a particular
position (x, y) at time t. δIb(x + ξ, y + ψ , t + τ) is the intensity fluctuation in
wavelength channel b at a particular position and time shifted by (ξ,ψ , τ) compared
to δIa(x, y, t). The values (ξ,ψ , τ) are often called the spatial and temporal lags of the
correlation. The angular brackets h. . .ip indicate averaging with respect to the
parameter p. The indices a and b stand for different wavelength channels when
performing dual colour-cross-correlation spectroscopy, for auto correlation analysis
they can be omitted. This equation will be adapted in multiple ways, leading to
various 2D FCS methods that emphasize the correlations’ spatial, temporal, or
spatiotemporal aspects. In principle, any imaging technique can provide data for
these methods, including confocal scanning laser microscopy (CLSM), spinning
disk confocal microscopy (SDCM), total internal reflection fluorescence microscopy
(TIRFM), or light-sheet microscopy (LSM).

All these microscopy techniques contain, in principle, spatial and temporal
information as images can either be collected as a time series, or in the case of
CLSM, have an inherent time structure as pixels in the image are collected sequen-
tially. However, the exploitation of the temporal information is only possible if the
acquisition times are faster than the molecular processes to be observed. This section
reviews different versions of ICS and how it expanded over time to arrive at
spatiotemporal ICS (STICS), which fully analyses spatiotemporal information.

2.1 Image Correlation Spectroscopy: ICS

In the following, we write the correlation function again in the most general form
with the indices a and b presenting images taken of the same sample in two different
wavelength ranges. For a= b, we have an autocorrelation for ICS proper (Fig. 1b). If
a ≠ b, we speak of Image Cross-Correlation Spectroscopy (ICCS). ICS/ICCS takes
input images and analyses them only in the spatial domain. Thus, the general
function has no time component and takes the form

Gab ξ, ψ , 0ð Þ= δIa x, y, tð ÞδIb xþ ξ, yþ ψ , tð Þh i
Ia tð Þh i Ib tð Þh i ð2Þ

In this case, the correlation function can be calculated over the 2D Fourier
Transforms (FT) of the image(s)
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Gab ξ, ψ , 0ð Þ=FT - 1 FT Imagea½ �×FT Imageb½ �f g ð3Þ

In contrast to FCS, its imaging analogue ICS relies on the fluctuation of the
intensity across an image, i.e. it is defined by the difference between pixel intensities
at any point in space to the average intensity of an image. As in FCS, ICS functions
are calculated for all possible pixel shifts (ξ,ψ) to provide a full spatial correlation
function. However, it should be noted that in FCS, one calculates typically over
many thousands if not millions of time points, while in ICS, the size of the sample
ultimately limits its statistics.

The correlation in fluctuations arises from the non-random structures that are
found in the image. As in microscopy, the smallest size of a structure in an image is
given by the system’s point spread function (PSF), whose radius is given by ω0. It
means that even a point source gives rise to spatial correlations of the size of the PSF.
Therefore, pixels should be smaller than the PSF so that the correlations between
pixels can be measured. In ICS the correlation function is, thus, fitted with a 2D
Gaussian as an approximation for the PSF.

Gab ξ, ψ , 0ð Þ=Gab 0, 0, 0ð Þ exp -
ξ2 þ ψ2

ω2
0

� �
þ Gab1 ð4Þ

Here Gab(0, 0, 0) is the amplitude of the spatial correlation function (SCF), which
is inversely proportional to the number of particles in the observation area. Gab1 is
the convergence value for long distances. This is kept as a fit parameter to take
account of possible incomplete decay of the SCF. The width of the SCF will be
larger than the PSF if particles move during the acquisition of a single frame,
something that is better treated in temporal measurements as discussed in later
sections, and if there are non-random structures in the image of a size comparable
or larger than the PSF.

ICS measures several important parameters. First, ICS determines the size of the
PSF if one uses immobile particles that are much smaller than the size of the PSF
itself [3]. Second, one can measure the number of particles in the observation area
over the amplitude Gab(0, 0, 0). With the knowledge of the size of the observation
area and the size of the image, one can count the number of particles [3, 36]. Note
that the laser focus needs to be of comparable to the size of the fluorescent entity to
capture the cluster density accurately [37].

In principle, several ICS measurements can be taken, and the temporal evolution
of the system can be determined. However, the dynamic information is limited
because long exposure times are used, or several images averaged to increase the
signal-to-noise ratio. It has been shown that for reliable characterization, the tempo-
ral resolution must be at least 10 times shorter than the dynamics of interest.
Therefore, the reverse is true; any diffusive processes with a time scale longer than
the time resolution appear to be static and can be quantified by spatial ICS. In other
words, immobile populations contribute to the SCF while fast diffusing populations
add to the noise of the SCF. Like confocal FCS, ICS has a concentration limit above
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and below data fitting becomes difficult because of a decreasing signal-to-noise ratio.
As a rule of thumb, densities of up to 100 particles per μm2 in a 2D system can be
quantified, and this holds for other related techniques [38, 39]. Further, spatial ICS is
not a parametric free technique. The experimenter is required to adjust frame-time
and the total number of images to compensate for photobleaching and signal-to-
noise ratio. The counting capability of ICS combined with gradual photobleaching of
fluorophores leads to the so-called pbICS [40] for determining the aggregate distri-
bution of immobilized cluster as demonstrated in CHO cell transfected with green
fluorescent protein (GFP)-tagged epidermal growth factor (EGF) receptor. In case of
non-optimal acquisition settings, the experimenter can optimize for frame-time and
signal-to-noise ratio during the data treatment stage.

A two-colour variant of spatial ICS, spatial image cross-correlation spectroscopy
(spatial ICCS), has been introduced to measure colocalization of two different
labelled species [41]. Two-colour variation has been employed to study the extent
of interactions between two slow-moving species where different macromolecules
labelled with two fluorophores of distinct emission wavelength are imaged simulta-
neously or alternatingly. In fact, ICS is employed behind the scenes in many
algorithms. In camera-based microscopy (TIRFM and LSM), the principle of
two-colour spatial ICCS doubles up as an alignment tool for the simultaneous
two-colour experiment [42]. As it is a purely static method, it limits biology
application to immobile and flat samples. An offline analysis tool is available with
the JaCoP ImageJ Plugin [43]. Cerutti et al. have shown that ICS can be used to
provide quality metrics from a single super-resolution image for evaluation. This
method, called QuICS [44], quantitates image quality and can give useful hints on
optimizing the imaging conditions.

Recently, the combination of super-resolution and ICCS has been explored.
Oneto et al. combined ICCS with STED (STED-ICCS) [45] to estimate the nano-
scale distance of nuclear sites with a spatial resolution down to ~50 nm by leveraging
the shape of the cross-correlation function shift from the origin. This has been
extended to Structured Illumination Microscopy and Image Cross-Correlation Spec-
troscopy (SIM-ICCS) [46]. Compared to single-molecule localization, the applica-
tion of super-resolution and ICCS does not provide a complete statistical analysis of
distances. Instead, the super-resolution implementation is helpful to analyse average
distances between correlated particles in the region.

Up to now, we have discussed ICS mainly as it is performed in a confocal
microscope. Nevertheless, it can also be performed in TIRFM with a camera as a
detector and improved temporal resolution.

2.2 Temporal Image Correlation Spectroscopy: TICS

The temporal variant of image correlation spectroscopy (TICS) takes the same
fluorescence microscopy image series as an input (Fig. 1d). Of all variations, it has
the closest working principle to FCS. Unlike spatial ICS, TICS does not average
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several images. Instead, intensity fluctuations are recorded from frame to frame,
correlated in time, and averaged over multiple pixels. This increases time resolution
while keeping the signal-to-noise level high. The decay of the temporal correlation
function (TCF) reflects the average time that particles require to move in and out of
the observation volumes sampled across selected portions of an image; hence, the
underlying molecular transport parameters (diffusion coefficient and flow speed) can
be extracted [4, 47].

TICS captures the heterogeneity of molecular transport parameters and numbers
across raster-scanned regions instead of single points in confocal FCS. However, the
ability to sample temporal fluctuations in a larger space comes at the cost of reduced
temporal resolution because of the limited confocal scanning speed, therefore
imposing an upper limit on diffusion coefficients accessible to TICS. In other
words, the fluorophore needs to be within the same beam focal area when the raster
scan returns to the same position following the typical ~1 Hz frame rate.

The general correlation function for TICS is given by

Gab 0, 0, τð Þ=
δIa x, y, tð ÞδIb x, y, t þ τð Þh ixy

D E
t

Iah it Ibh itþτ
ð5Þ

TICS can also be performed as cross-correlation analysis [48, 49] if one records
images in different wavelength channels a and b. For autocorrelation analysis in
TICS we obtain the following function for diffusion [50].

Gdiff
ab 0, 0, τð Þ=Gab 0, 0, 0ð Þ 1þ 4Dτ

ω2
0

� �- 1

þ Gab1 ð6Þ

where the parameters have the same definitions as discussed in the previous sections.
For flow we obtain

Gflow
ab 0, 0, τð Þ=Gab 0, 0, 0ð Þ exp -

vτð Þ2
ω2
0

� �
þ Gab1 ð7Þ

where v represents the flow speed. For the case that a species of particles undergoes
simultaneously flow and diffusion, we obtain a combination of the two previous
equations.

Gdiff,flow
ab 0, 0, τð Þ=Gab 0, 0, 0ð Þ 1þ 4Dτ

ω2
0

� �- 1

exp -
vτð Þ2

4Dτ þ ω2
0

� �
þ Gab1 ð8Þ

The inclusion of temporal analysis in a stack of frames extends the information
available from ICS and allows the measurements of diffusion at least of slow clusters
[51]. Using two-photon temporal ICS, diffusion coefficient of as large as 1 μm/s in
cell can be measured along with flow [47]. Interesting applications of TICS include
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the measurement of nanocarrier motion in live cells [49] or the determination of the
mechanosensitive responses of integrin under different conditions over whole cells
[52]. Moreover, as two-colour cross-correlation (TICCS) it characterized the recruit-
ment of the proteins deleted in colorectal cancer (DCC) and UNC5B to the plasma
membrane after netrin-1 activation [48]. The increased information content provided
by TICS came at the cost of temporal and spatial resolution as the time resolution
was limited by available acquisition times, and correlation functions were averaged
over a user-defined region to improve the signal-to-noise ratio.

2.3 Spatiotemporal Image Correlation Spectroscopy: STICS

ICS captures effectively static information from the SCF of an image (Fig. 1b). In
contrast, similar to FCS, TICS analyses the fluctuations of particles diffusing
through an observation volume (Fig. 1d). As observation volumes are typically
rotationally symmetric, no information on the direction of the movement of the
particles is captured [53]. Measuring flow directions is possible by cross-correlating
pixels intensity in space [51], and thus one needs to capture both spatial and temporal
information. In addition, the characterization of flow in a sample requires the
determination of multiple parameters. Flow in the sample might not be homoge-
neous, and a spatially resolved flow profile needs to be measured, comprising
information about magnitude and direction, ideally at each point in the acquired
image. Spatiotemporal ICS, or STICS, is the first 2D FCS method that captures both
spatial and temporal correlations in a temporal series of images as indicated in Eq. 1
and thus can provide complete information of flow profiles [5, 54].

In principle, the spatiotemporal correlation function (STCF) is a function of three
(two spatial and one temporal) if not four (three spatial and one temporal) variables.
However, as this is difficult to picture, we restrict ourselves to two spatial and one
temporal variable and describe the development of the two-dimensional spatial
STCF as a function of the temporal variable. In the following discussion of the
STCF, we will differentiate several cases. The first will be a static sample without
any movement (Fig. 1e). The second will be a sample where particles undergo only
diffusion (Fig. 1f(left)). The third sample will have particles under active transport
(Fig. 1f (2nd from left)). Here we will assume that these particles are exclusively
transported but do not diffuse. Lastly, we will look at particles undergoing flow,
assuming that these particles are transported and diffuse (Fig. 1f (3rd from left)). The
general equation for STICS is given by

Gab ξ, ψ , τð Þ=Gab 0, 0, 0ð Þ 1þ 4Dτ
ω2
0

� �- 1

exp
ξ- vxτð Þ2 þ ψ - vyτ

� �2
4Dτ þ ω2

0

( )

þ Gab1 ð9Þ
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which is the extension of the equation of TICS (Eq. 8) to include the spatial lags ξ
and ψ for the x- and y-directions.

In the case of a static sample, STICS reduces to ICS with a time-invariant STCF
that peaks at the origin of the spatial variables with the width of the PSF if the
particles are much smaller than the PSF. If particles or structures imaged are on the
same scale or larger than the PSF, width widens. In the presence of a diffusing
particle population, the amplitude of the STCF will remain centred at the origin but
with a wider peak representing the movement of the particles during the lag time. In
this case, the STCF will increase in width with the increase in lag time, and the rate
of the increase in width depends on the mean square displacement of the diffusing
particles. In the case of actively transported particles, the STCF will not change
shape but move with longer lag times further away from the origin as determined by
the transport velocity. If flow is present, the STCF will displace from the origin with
time as determined by the flow velocity, but it will also extend in width due to
diffusion. Lastly, if multiple populations exhibit different dynamics, then multiple
peaks will develop, with each peak representing the characteristics of the movement
of one of the populations (Fig. 1f (right)). In practice, the resolution of these multiple
populations is not always easy and removing the immobile fraction by Fourier or
moving average filtering in the time domain is often necessary to reveal the dynamic
population [50].

STICS has been used to analyse flow in microfluidic channels [55], transport of
proteins in cells [56–58], kinetics of protein networks [59], and fast and confined
diffusion in bacteria [60]. It has also been implemented with two-photon microscopy
[61] to measure protein flow in developing C. elegans embryos. Furthermore,
Pandzic et al. showed that STICS can be used with photo-activation to measure
the diffusion of various membrane proteins and that it provides very similar data
compared to single-particle tracking (SPT) in photo-activation localization
microscopy [62].

As with other correlation methods, STICS can be conducted in a cross-correlation
modality between different wavelength channels, leading to spatiotemporal image
cross-correlation spectroscopy (STICCS) [63]. STICCS can determine protein inter-
actions, and potentially even transient interactions [63].

In addition to STICS, spatiotemporal dynamics has also been addressed in some
related techniques. ICS has been combined with single-particle tracking (SPT) in the
so-called particle ICS (PICS), which circumvents the limitations of both SPT and
ICS [64]. It can measure at high particle densities, unlike SPT, but has a high spatial
resolution, unlike ICS. In another combination of SPT and correlation analysis, the
so-called Tracking Image Correlation or TrIC, Dupont et al. analysed 3D tracking
data with correlation analysis providing a tool for dynamic colocalization analysis in
3D [65]. Ashdown et al. demonstrated TIRF-SIM imaging can be combined with
STICS to quantify molecular flow on subresolution length scales [66]. The high
spatiotemporal resolution of these techniques makes them excellent members of the
2D and even 3D FCS toolset.
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2.4 k-Space Image Correlation Spectroscopy: kICS

The image in a fluorescence microscope is the convolution of the microscope PSF
and the actual distribution of the fluorescent-tagged molecules in the sample. We
saw this in the fact that the PSF always limits the STCF in STICS. A common
approach to disentangle deconvolutions is transforming the data into Fourier space
where the convolution operation is simplified to a product making data treatment
much simpler. It is used in k-space ICS (kICS), ICS in the spatial frequency domain,
to separate various contributions to the correlation function. By performing the
correlation in k-space, Kolin et al. have shown that they can determine the PSF
and the diffusion coefficient independently [67].

The second problem in 2D FCS techniques is photobleaching as a whole cross-
section of a sample is illuminated with elevated laser intensities – compared to
simple imaging – to reach a sufficient signal-to-noise ratio when reading out data at
high frame rates. Photobleaching causes a steady decrease in average fluorescence
intensity with time. Bleaching can have multiple effects. If bleaching of a molecule
is much slower than the time a particle requires to traverse a pixel observation
volume, then there is only a general decrease in the overall intensity, which will lead
to artefacts in the correlation functions with a time scale determined by the bleaching
time. However, if bleaching is so high that fluorescent molecules have a
non-negligible probability of being bleached during the transition of a pixel obser-
vation area, then the average transit time of molecules will be underestimated, and
the diffusion coefficient will be overestimated. The latter form of bleaching is
sometimes called cryptic photobleaching.

Over the years, there have been various ways to correct for photobleaching as
none of the methods allows analysing uncorrected datasets without imposing bias
and artefacts. One way to combat the observational bleaching effects is detrending
by normalizing to the first recorded intensity value. Kolin et al. recover accurate
diffusion parameters via TICS if the bleaching process is well-characterized as a
function of time by a fit function [67]. It is important to note that detrending intensity
trace is not the solution to correct cryptic bleaching. In principle, an optimum laser
power exists which varies as a function of the diffusion coefficient and observation
area. A quick and easy laser power calibration protocol would be a step towards
automated fluorescence microscopy [68].

In the presence of photobleaching, kICS has a significant advantage. Under the
spatiotemporal image correlation domain, STICS and kICS are similar in their
working principle, with some key differences. In k-space, image correlation does
not directly correlate fluctuations of image pixel intensities, and instead, it calculates
the time-correlation function from a spatially Fourier transformed image. By doing
so, kICS overcomes STICS limitations due to photobleaching and photophysics and
can separate photophysics and photobleaching from dynamics [69]. Although ini-
tially developed for CLSM, kICS can also be applied to TIRFM. Furthermore, kICS
can also work with scattering signals, as was shown in the characterization of the
intracellular dynamics of gold nanoparticles [70].
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Brandao et al. have shown that, in principle, kICS can extract ligand–receptor
binding kinetics when certain conditions are met [71]. First, the photophysics,
including bleaching and blinking, should be independent of binding and be measur-
able before the actual experiment. This is fulfilled for many fluorophores but needs
to be verified. Second, only receptor-bound ligand should be visible. This second
condition can be fulfilled when, for instance, measuring ligand binding to membrane
receptors on a TIRFM with relatively slow acquisition rates. The diffusion coeffi-
cient for ligands in solution compared to the diffusion coefficient of membrane
receptors differs by a factor of about 100. Thus, the fast-moving ligands will
contribute a uniform background signal compared to the much slower-moving
receptors. Under these conditions, when the photophysics is known, the primary
source of unknown fluctuations are the binding and unbinding events of the ligand to
the receptor, which can be determined with kICS. Receptor–to-receptor binding and
interaction of membrane proteins with membrane domains can also be determined
this way [72–74]. This, together with the fact that kICS can measure at a wide range
of fluorophore densities, in contrast to other techniques like SPT, that can work only
at low concentrations, makes kICS a very versatile technique to measure membrane
events.

Originally, ICS variants were conducted at limited spatial and temporal resolu-
tion. Acquisition times at video rates allow only measurement of slow diffusing
particles, e.g. membrane proteins. But they were also performed at limited spatial
resolution as a minimum dimension is necessary to calculate spatial correlations.
Nevertheless, this is not a fundamental limit as modern cameras allow fast read-out
with time resolutions less than 100 μs per region of interest, containing hundreds to
thousands of pixels. The pixels and frames can then be binned to optimize the data
for different evaluation techniques, including 2D FCS modalities. With the new
technology and advances in computation, these techniques will be able to also
measure cytosolic or extracellular protein diffusion in cells and organisms and can
be extended to 3D.

2.5 Image Mean Squared Displacement: iMSD

Biological systems are generally inhomogeneous, leading to anisotropy in transport
and diffusion, as particles encounter different environments in different directions or
are hindered by obstacles. In that case, directional analysis of particle mobility is
required. This can be provided in scanning and imaging approaches, in which, e.g.,
flow profiles were measured, as discussed in the next section. But this can also be
addressed in image-based approaches by analysing the spatial cross-correlations
between different points in an image. For this purpose, a technique called image
Mean Squared Displacement (iMSD) was introduced [75–77].

iMSD is a STICS modality in which the spatial correlations in all directions are
analysed in time with respect to a particular point. This can be achieved in scanning
systems as well as in multi-pixel detection systems. The calculations are performed
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on a polar grid, and values are calculated over a limited number of angles. This
allows averaging more pixels the larger the distance from the central pixel, improv-
ing the signal-to-noise ratio. This kind of analysis allows to determine a direction-
dependent measurement of transport and diffusion and provides a connectivity map
of a sample, identifying obstacles to diffusion and transport [78].

In another application, iMSD was used to evaluate the spatial analogue of the
FCS diffusion laws [79, 80] to analyse the diffusive modes of molecules in the
cytoplasm [76]. If diffusion is length scale-dependent, e.g., when obstacles and
trapping sites are present, then an analysis of the diffusion coefficient with length
scale can identify diffusion mode. In analogy, different diffusive modes measured
over the same length scale but at different time scales will show a similar depen-
dency, which can be used in iMSD at different scan speeds to identify diffusive
modes. In work combining most of the ICS techniques, including iMSD and RICS
(see next section) discussed here, Hendrix et al. analysed the HIV-1 Gag polyprotein
assembly in live cells using a customized confocal system [81]. This work shows the
differences in applications of the various ICS techniques but also demonstrates that
many of them can be applied to the same data.

Finally, iMSD was recently also implemented on a confocal microscope with an
Airyscan [21], or multi-element single-photon avalanche diode [22] detector,
allowing much faster acquisitions and widening the possibilities to measure dynam-
ics with iMSD.

2.6 Pair Correlation Function: pCF

Pair correlation function (pCF) analysis is a special case of spatiotemporal correla-
tions, in which two points in space are correlated in time. If the two points are
sufficiently far apart so that their observation volumes do not overlap, the resulting
pCF will possess a peak at the time it takes fluorescent probes to move from one
location to the other [82]. In principle, this approach can be applied to any data that
has some inherent spatial and temporal information, including line scanning, multi-
focus, and imaging approaches. The probability that a particle that originated at (x0,
y0, z0) at time t is found at location (x1, y1, z1) at a time t + τ is given by the diffusion
propagator

P r, τð Þ= 1

4πDτð Þ3=2
exp -

x1 - x0ð Þ2 þ y1 - y0ð Þ2 þ z1 - z0ð Þ2
4Dτ

� �
ð10Þ

At a particular distance r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 - x0ð Þ2 þ y1 - y0ð Þ2 þ z1 - z0ð Þ2

q
between two

points (x0, y0, z0) and (x1, y1, z1), this function will peak for a time τ that depends on
the diffusion coefficient D and which can be calculated from the mean squared
displacement, hr2i = 6Dt. The corresponding pair correlation is
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G τð Þ= δI x0, y0, z0, tð ÞδI x1, y1, z1, t þ τð Þh it
I x0, y0, z0, tð Þh it I x1, y1, z1, tð Þh itþτ

ð11Þ

where the strength of the correlation depends on how many particles have diffused
from the first to the second point at time τ as described by the diffusion propagator.

If there are obstacles between the two locations, the peak will occur later
depending on how long a probe will need to bypass the obstacle. In the extreme
case that a barrier exists that prevents probes from translocating from one point to the
other, the pCF will be zero. This principle was used to measure molecular transport
across nuclear pore complexes [83], and in the cellular nucleus at different chromatin
densities, during different cell cycle stages, and during DNA repair [84–86]. This
work nicely demonstrated the advantage of spatiotemporal correlations as single-
point FCS only measures local mobility but not long-distance transport. The use of
pCF allows the determination of intracellular as well as membrane organization
[87, 88] and was used in plants to measure the movement of transcription factors
[89]. The method was extended to 2D to measure anisotropic movement [78]. It
should be noted that instead of calculating the temporal pCF for two positions, one
can also calculate the spatial pCF at a particular time, describing the variation of
molecular densities in space [90].

3 Scanning FCS

FCS was originally conceived as a single-point measurement, but it was early on
realized how sample flow or laser scanning can provide extra information [6]. In the
most simple case, flow or scanning increases sample throughput [91, 92]. But of
interest in this chapter is the inclusion of spatial information into the originally
temporal FCS measurements. We will therefore progress from simple scanning FCS
approaches that provide 1D spatiotemporal information, to more complex scanning
patterns that provide 2D spatiotemporal information, to finally RICS (Fig. 1c) that
uses the inherent time structure in confocal images to obtain the same information
but from readily commercially available instrumentation [15]. RICS thus made
spatiotemporal correlations widely available. The different approaches have their
own advantages and disadvantages and show different ways of monitoring fluctua-
tions depending on the data collection method.

3.1 Scanning FCS in the Presence of Immobile Particles

FCS is insensitive to immobile or very slowly moving particles as these do not cause
fluctuations and thus cannot be detected in the correlation functions. However, a
fluctuating signal even from immobile particles can be obtained when one either
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moves the sample, e.g. by stage scanning or by driving some movement in the
sample, or by scanning the beam. Weissman et al. developed a similar concept to
measure molecular weights of macromolecule [93] although it differed in experi-
mental configuration.

In 1986, the first implementation of Scanning Fluorescence Correlation Spectros-
copy (SFCS) arose by translating samples linearly and horizontally by a translation
stage while fixing the illumination beam (Fig. 2a). Petersen et al. successfully
employed this configuration to extract aggregation/cluster size and the density of
clusters from a line segment of a cell [7], aggregation of virus glycoproteins [8],
ligand binding [9], and EGFR distribution on the cell plasma membranes with an
average of 130 receptors per cluster and 7–8 clusters per μm2 [10].

FCS statistical accuracy [94] depends on the signal-to-noise ratio and thus on the
number of photons detected per detection interval and the square root of data points.

For SFCS, one can scan slowly and thus increase the counts per second. How-
ever, the scan range is limited by the physical dimension of the sample (~20 μm in
the case of mammalian cells), while the characteristic fluctuation width is defined by
the dimension of the focused laser beam, yielding at best some tens of fluctuations
per scan. Therefore, multiple independent scans need to be averaged to improve the
accuracy of immobile particle analysis.

To understand how this is done, let us take a look at the relevant correlation
functions. The basic correlation function for confocal microscopes describing diffu-
sion in 2D is

Fig. 2 Principles of scanning FCS for immobile particles. (a) An illumination spot with calibrated
beam radius (w0) is scanned across a sample either by confocal or stage scanning at a known speed.
(b) The start of the line scan t0 is synchronized with the data acquisition. The TCF decay shows the
characteristic scan speed, while the amplitude is related to the particle density
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G2D diffusion τð Þ= 1
N

1þ 4Dτ
ω2
0

� �- 1

þ G1 ð12Þ

where D is the diffusion coefficient and w0 is the e
-2 radius of the laser focus. In the

case of sample flow or when the laser focus is scanned at a constant speed in the focal
plane, and the absence of diffusion the equation changes to [6].

G2D flow τð Þ= 1
N

exp -
v2x þ v2y

	 

τ2

ω2
0

8<
:

9=
;þ G1 ð13Þ

where vx and vx describe the flow/scan speed in the x and y direction. The only
unknown in this equation is the number of particles N, which measures the number
of particles per observation volume observed on average and which can be obtained
by fitting the experimental curve (Fig. 2b). If one has an estimate of the total number
of monomers in the sample, then the aggregate size can be determined. However,
one has to assume that the fluorescence is not altered in the aggregates compared to
the monomeric state, that all molecules are fluorescent, and that photobleaching is
negligible, as otherwise, the estimates will be biased to lower numbers.

Scanning FCS for the characterization of immobile particles provided estimates
of the mean number of virus glycoprotein aggregates from Sindbis virus and
vesicular stomatitis virus [8] and was later extended to measure cell surface receptor
aggregation [9, 10]. The method was applied to 2D CLSM images [39] and extended
to other microscopy technique which does not necessarily require scanning. For
instance, Number and Brightness analysis [95] revealed the presence of a large
bright immobile aggregate within a heterogeneous region of a sample.

3.2 Scanning FCS in the Presence of Flow

If flow is present in a sample in which the particles themselves also diffuse, then we
obtain a correlation function which is a combination of the ones derived for flow and
for diffusion:

G2D diff, flow τð Þ= 1
N

1þ 4Dτ
ω2
0

� �- 1

exp -
v2τ2

4Dτ þ ω2
0

� �
þ G1 ð14Þ

However, as the confocal volume is rotationally symmetric, Eq. 14 does not allow
us to determine the flow velocity v

→
flow and direction of flow (θ), as the correlation

function is independent of the flow direction. The flow direction and thus the
velocity can nevertheless be determined if one measures the correlation function
with a stationary beam to determine the flow speed (Fig. 3a) and then in a second
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measurement (Fig. 3b) determines the correlation function in the presence of a
known scan speed [11]. In that case, the correlation function changes to

G2D diff,flow,scan τð Þ= 1
N

1þ 4Dτ
ω2
0

� �- 1

exp -
v
→

flow þ v
→

scan

	 
2
τ2

4Dτ þ ω2
0

8><
>:

9>=
>;

þ G1 ð15Þ

and one can determine the velocity according to the following equation:

v
→ 2

nett = v
→

flow þ v
→

scan

	 
2
= v

→ 2
flow þ v

→ 2
scan þ 2 v

→
flow v

→
scan cos θ ð16Þ

The sequential strategy to determine flow and its directionality can be extended to
3D with three measurements, a stationary measurement to determine the flow speed
and one in plane and on axial scan [12].

As a rule of thumb, the separation of diffusion and flow (Fig. 3c) is possible if the
average time it takes a particle to traverse the focal volume by diffusion and by flow
is within a factor 10 of each other. Otherwise, the faster process dominates to the
extent that the slower one cannot be determined anymore. Line-scan FCS was used
to characterize flow profiles in microfluidic channels and blood flow direction in
living zebrafish with an accuracy down ±10° [11].

Cross-correlation has proven to be a valuable tool to elucidate vectorial flow
information and, in the case of diffusion, yields absolute values without knowledge
of the PSF of the system. The technique has been applied to a flow system with two
spatially separated volumes using scattering of two wavelengths [96] or fluorescence
with a single wavelength [17]. Since the maximum cross-correlation is proportional

Fig. 3 Flow measurement. (a) Using a stationary beam, the flow speed can be determined as
particles are driven through the focus and thus influence the shape and width of the autocorrelation
function. (b) Scanning the beam in the sample leads to a characteristic change in the ACF as the
flow (vflow) and scan (vscan) add up to a new effective speed (vnett) from which the angle between
scan and flow can be determined
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to the average time a molecule takes to move from a specific location to another, one
can tune the time resolution of the technique by changing the distance between the
two foci. As in line-scan FCS, directional information can be extracted by changing
the direction of the placement of the point in the sample.

As line-scan FCS determines flow characteristics only in one direction, circular-
scan FCS was developed. In circular-scan FCS, one can cross-correlate opposite
points on the scan path to obtain directional information. Circular-scan FCS thus
produces a map of molecular flows indicating if barriers are present [97, 98]. Since
the laser beam is scanned repeatedly over the different locations, information is
limited to the scan orbit with a resolution given by the size of the laser focus. The
equation for circular-scan FCS is given by

G2D diff,circular scan τð Þ= 1
N

1þ 4Dτ
ω2
0

� �- 1

exp -
4ρ2 sin ωt

2

� �2
τ2

4Dτ þ ω2
0

( )
þ G1 ð17Þ

In circular-scan FCS, the experimenter can choose radius (ρ) and angular scan
frequency (ω) of the scan and produce intensity traces for each position on the scan
and has the option to evaluate the data as auto- or cross-correlations as required.
There are at least two ways to perform data analysis to study sample dynamics
quantitatively.

Ruan et al., for instance, leveraged temporal and spatial information along the
circular path independently [99]. With this approach, the confocal volume is scanned
circularly at speed much faster than the particle needs to diffuse through a single
location, resulting in a set of correlation functions from all points along the scanned
path. This method recovers diffusion coefficients in giant unilamellar vesicle (GUV)
membranes up to 20 μm2/s with the same precision as conventional FCS measure-
ment. On the other hand, Petrasek et al. used the inherent spatiotemporal information
in circular scanning to address the need for calibration of the focal volume and the
problem of focusing on membranes. They suggested spatially cross-correlating
points on the circular-scan path with a known diameter 2 ρ and a size smaller than
1 μm. This was successfully applied to determine diffusion coefficients ranging from
dyes in solution [100] to slower diffusion in model membranes [101]. This approach
to measuring diffusion is independent of the size of the focal volume and is not
sensitive to the position of the membrane with respect to the focal plane but comes at
the cost of more limited spatial information (Eq. 17).

While both scanning paths can be applied, circular scanning has some essential
advantages. First, the statistics are no longer limited to the scanned path. Second, a
broader range of dynamics can be observed [101] compared to earlier work
[11]. Third, the autocorrelation can be easily computed with the existing algorithm
without synchronizing data acquisition with the line scan.

Fluorescence Correlation Spectroscopy in Space and Time 251



3.3 Scanning FCS as a Tool for Multiplexing and Avoidance
of Artefacts

Scanning FCS with line or circular patterns (Fig. 4a) can also provide FCS mea-
surements at multiple points, i.e. along the scan path. The spatial realization first
came by continuously scanning the laser beam across a sample in a line (Fig. 4c) or
circle (Fig. 4d) while the emitted light from each spatial location was recorded in
sequence, providing an intensity carpet. The intensity time-trace at each spatial
location is then correlated in time with the temporal resolution given by the scanning
frequency. At each location, one thus obtains information about diffusion.

Fig. 4 (a) Laser scanning can be performed in various patterns, here shown as linear or circular
scan. (b) A linear scan can be analysed continuously in time without explicitly using spatial
information. In this case, a single autocorrelation function is calculated for all scan repeats. While
this is experimentally simple, it provides only information on diffusion and flow speed. (c) Spatial
information can be used by arranging multiple scans in an intensity carpet ordered according to the
position in the sample along with the scan and different times they were recorded in the repeat scans.
Auto- and spatial cross-correlation functions provide information about diffusion, flow, and con-
nectivity in the sample. (d) In circular scanning, the same information can be obtained. Calculating
the time autocorrelation function shows characteristic repeating peaks when the laser beam returns
to the same point (green line). Two extremes envelop this function, first the autocorrelation function
for a beam with the radius of the scan circle (black line), and second the spatial cross-correlation
function between two points on opposite ends of the circle (red line). The two enveloping
correlation functions are obtained by setting the sin function in Eq. 17 to either 0 or 1
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This approach allows FCS multiplexing, but at the expense of temporal resolution
since the observation volume returns to the same spot only once per scan. When
10–100 points are scanned, diffusion coefficients of about 0.05–1 μm2/s can be
determined, enough to cover lipid membrane measurements and slow-moving
complexes in solution. Software to process local ACFs from confocal scanning
data is available as FoCuS-scan [102]. An alternative approach is represented by
scanning the beam slowly across the sample. In this case, one can calculate the
correlations within short time segments. The segmented FCS data can be combined
to extract average diffusion values in specific compartments.

Di Bona et al. have used this approach to detect the small variations of diffusion
of GFP in heterochromatin vs euchromatin [103]. Overall, SFCS is particularly
useful for slower dynamics and is insensitive to photobleaching as the illumination
beam spends very little time per observation volume.

Besides reducing sensitivity to photobleaching, scanning FCS can also be
employed to remove movement artefacts. If the sample to be measured moves within
a limited range, then scanning the laser beam over this range can ensure that the
sample is captured at least once per scan (Fig. 5a). Cellular plasma membranes, for
instance, have a tendency to undulate or move perpendicular to the membrane
surface. In a point measurement, this will lead to large fluctuations in the signal
due to the membrane movement, and thus artefacts in the correlation function
[104]. By scanning the confocal volume perpendicular to the membrane, one can

Fig. 5 Line scanning to reduce artefacts of sample movement. (a) The observation volume can be
scanned laterally or axially across a fluctuating membrane. (b) Once per scan, the observation
volume is on the membrane. These points are selected, aligned in time and then correlated to
provide a correlation function. The time resolution, in this case, is limited to the time for one scan.
However, the correlation function does not suffer from sample movement artefacts as only points on
the membrane are correlated
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locate the position of the membrane in each scan. By aligning the data collected
when the beam is on the membrane, their temporal correlation yields information
about processes slower than the scan rate. In this modality, line-scan FCS sacrifices
the multiplexing aspect to produce a single correlation function that is free from
movement artefact (Fig. 4b).

Recent application of scanning a line in the z-direction, i.e. the optical axis of the
microscope, has also been used to overcome sample movement and photobleaching
artefacts [105] and was used to determine equilibrium dissociation constants (Kd)
of ligand–receptor interactions in the Wnt signalling pathway at near-native
amounts [106].

Scanning with two foci of different wavelengths, either in continuous-wave
excitation or with pulsed interleaved excitation, can determine membrane dynamics
and binding interactions with the advantage of reduced artefacts as discussed before
[104]. This was used in combination with atomic force microscopy (AFM) to study
rafts in model membranes [107]. Moreover, in live zebrafish embryos, in vivo
binding affinities of Fgf8 to its receptors, Fgfr1 and Fgfr4 were measured [108]. In
combination with STED, called axial ls-STED-FCS, time resolution on the μs-scale
and spatial resolution of ~50 nm were achieved using tunable acoustic gradient index
of refraction lenses [109]. Dual-colour dual-focus line scanning was applied in Wnt
signalling pathway study to quantify ligand–receptor concentration, and diffusion
coefficient without the need for a separate observation volume calibration [110].

3.4 Raster Image Correlation Spectroscopy: RICS

Scanning FCS utilizes the temporal and spatial information in a scan. In these
applications, typically, the scan speed was uniform along a line or circular path.
Nevertheless, even a confocal image contains an inherent time structure, with
different time constants and the two perpendicular scan directions, that can calculate
correlation functions. The fast scan direction is similar to the line-scan FCS with
small delays τp between the acquisition of neighbouring pixels. However, when
moving to the next line, the delay between the pixels of neighbouring lines, τl is
much longer, depending on the time to scan one line. RICS uses this inherent time
structure to calculate spatiotemporal correlation functions over small regions of
interest (Fig. 6a).

To see how this works, let us look at the time structure of a confocal image. The
time delay between any two pixels depends on their distance on the image grid. If we
call the spatial lag, measured in number of pixels, in the fast scan direction ξ and the
spatial lag in the slow scan direction (i.e. the lag in number of lines) ψ , then the time
delay between these two pixels will be given by τp. ξ + τl. ψ , the RICS correlation
function can thus be expressed as a correlation function of the spatial lags, which
inherently defines the time dependence.
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GRICS ξ, ψð Þ= δI x, yð ÞδI xþ ξ, yþ ψð Þh i
Ih i2 ð18Þ

The RICS correlation function (Fig. 6b (right)) contains now at least two contri-
butions. First is the decay of the correlation function for diffusion (Fig. 6b (left)) due
to the time delay between two pixels. Second, the broadening of the PSF (Fig. 6b
(middle)) due to particle movement as we have seen before in the section on ICS.

In confocal FCS the correlation function for diffusion in 3D is given by (Magde
1974):

GFCS τð Þ= δI tð ÞδI t þ τð Þh i
Ih i2 =

1
N

1þ 4Dτ
ω2
0

� �- 1

1þ 4Dτ
ω2
z

� �- 1
2

þ G1 ð19Þ

Fig. 6 Schematic illustration of a RICS experiment. (a) Rastered scanned image(s) can be analysed
over multiple regions of interest (ROI) to create parameter maps. (b) The first two graphs show the
different RICS correlation function components for diffusion and the PSF. The third graph shows
the combination of the two. The red and green lines show the characteristic correlation function over
the slow and fast regions. (c) RICS simulation and analysis for slow and fast-moving particles
performed with simFCS3 [111]. The graph on the right shows the resulting 2D spatiotemporal
correlation functions. (d) RICS allows binding to be discriminated against diffusion, provided
binding/unbinding is much slower than diffusion. RICS cross-sections along and perpendicular to
the scanned direction are plotted in orange and pink. The dotted curves stand for the PSF profile
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Here G1 is the value of the correlation function at long times, which is ideally
0 but is typically used as fitting parameter as the ideal value is only reached for
infinitely long times. In RICS, due to its particular time structure, this component is

Gdiff ξ, ψð Þ= 1
N

1þ 4D τpjξj þ τljψ j
� �

ω2
0

� �- 1

1þ 4D τpjξj þ τljψ j
� �

ω2
z

� �- 1
2

ð20Þ

The second component describing the broadening of the PSF due to particle
diffusion is given by

GPSF ξ, ψð Þ= exp -
a2 ξ2 þ ψ2
� �

4D τpjξj þ τljψ j
� �þ w2

0

( )
ð21Þ

where we denote the size of a pixel by a, note that if there is no diffusion, this
equation will describe the PSF (Eq. 4). Putting this together, we obtain the correla-
tion function for RICS

GRICS ξ, ψð Þ
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þ G1 ð22Þ

Other processes, e.g. blinking or binding, can be included in the correlation
function as well [112]. This correlation function is very similar to the correlation
functions for STICS (Eq. 9) and scanning FCS (Eq. 15). However, in RICS, we have
explicitly taken the third axial dimension into account, as RICS can acquire suffi-
ciently fast to measure diffusion in solution (Fig. 6c). An interesting point about
RICS is that it covers different temporal ranges as the temporal delays in different
image directions are different by 1–2 orders of magnitude. Moreover, these time
ranges can be tuned by the scanning speed to acquire the data in a suitable range for
the probe under investigation. Note that for RICS the pixel size is set smaller than the
PSF, and multiple frames are averaged, especially in the case of small regions of
interest. Other measures such as filtering immobile structures to detect better-
diffusing particles were performed in the time domain by averaging images and
subtracting the average image from each frame [15].

A two-colour variant called cc-RICS has been used to quantitatively evaluate the
fraction of intact DNAs with both green and red fluorescence in living cells [81, 113,
114]. Compared to FCS/FCCS, such image-based RICS/cc-RICS has the advantage
to allow monitoring of diffusion dynamics, reaction kinetics, and molecular inter-
action at multiple ROIs [115–117].

256 D. Y. K. Aik and T. Wohland



As RICS is implemented on a confocal microscope, it can be easily integrated
with stimulated emission depletion (STED) microscopy providing simultaneous
super-resolution and dynamics measurements [118, 119]. It is by now also possible
to scan random areas [115]. For more details on its implementation and evaluation of
RICS characteristics, we refer the interested reader to the literature [111, 120].

The fact that RICS can be used with commercially available confocal micro-
scopes without any customization is a major advantage, and it consequently has been
widely used. Among others, RICS has been used to detect binding (Fig. 6d) to
adhesions and scaffolds [112, 121] and to measure lipid dynamics in cell membranes
[122–125].

4 Multipoint and Imaging FCS

The idea to record multiple points for FCS simultaneously is an obvious extension of
single-point confocal FCS, although not easily implemented as mentioned earlier.
The availability of array detectors with a large number of detection elements and
sufficiently fast read-out changed that situation. By using a spinning disk confocal
microscope with a resting spinning disk to create multiple confocal areas, this was
extended to ~1,000 detection elements [126]. This approach has recently culminated
in the so-called massively parallel FCS (Fig. 7a), where a diffractive element creates
a grid of confocal points and the signal is detected by recently developed single-
photon avalanche diode (SPAD) arrays, where each pixel functions as its own
pinhole and detector [127, 128]. This approach has the advantage of having large
numbers of detection elements and having excellent time resolution sufficient even
to measure fluorescence lifetimes, which other array detectors, especially cameras,
cannot reach. Oasa et al. combined FLIM with massively parallel FCS (mpFCS) to
characterize the diffusion across a cell of oligodendrocyte transcription factor
2 [129].

However, all these approaches use confocal illumination schemes. As the laser
beams in confocal schemes are highly focused and traverse the whole sample as they
converge before and diverge after the focal point, they create significant cross-talk
for neighbouring pixels (Fig. 7a), a problem long known for spinning disk confocal
microscopes [130]. For FCS this sets various lower limits on the minimum spacing
between pixels required to avoid cross-talk between neighbouring pixels [29]. If
pixels, and thus laser beams, are too close, the signal detected in one pinhole will
stem from multiple laser beams, increasing the cross-talk and the effective observa-
tion volume, making the measurement of fluctuations necessary for FCS impossible.
But even if ACFs can be recorded for each pinhole, the pixels need to be far enough
apart to avoid an influence of the sample observed by one pixel to influence the shape
of the ACF of the neighbouring pixel. One needs at least two photons from a particle
for a correlation. Therefore, as long as a pinhole can detect two photons from a
molecule in a neighbouring laser beam, it will lead to extra correlations in the ACF.
However, more stringently, to avoid an influence of the cross-talk on the amplitude

Fluorescence Correlation Spectroscopy in Space and Time 257



(not the width or shape) of the ACFs, the pixels need to be even further apart.
Although single photons are not enough for a correlation, uncorrelated single
photons will contribute to the background and thus lower the ACF amplitude.
These restrictions limit the number of pixels that can be used in confocal approaches.

A partial solution to the problem was found with new detection schemes that
illuminate only a cross-section of limited thickness in a specimen. This can come in
the form of TIRF (Fig. 7c (top)) with only ~100 nm above the cover slide illuminated
[32, 131], or in light-sheet microscopy (Fig. 7b (top)) with light-sheet thicknesses of
~1 μm [132]. This minimizes cross-talk between pixels as only single sections of the
sample are illuminated, and no signal from the bulk or other parts of the sample is
excited and detected. This then allows the use of cameras with contiguous pixels as
detectors [29, 30]. It should be noted that neighbouring pixels will still be correlated
to some extent due to the finite size of the PSF, and the image of one molecule can

Fig. 7 Illumination scheme of various FCS multiplexing methods. (a) Simultaneous excitation and
detection of fluorescent molecules in multiple confocal spots (mpFCS). The observation volumes
have to be placed at a certain distance to avoid cross-talk. On the right, three observation volumes
are placed contiguously in the sample. As indicated by the colours, some parts of the sample are
illuminated and detected by all three observation volumes (red), some by two (yellow), and some by
only one green. Note that because the laser beam in a confocal setup propagates through the whole
sample, and thus the amount of cross-talk depends on the sample thickness, which is typically on the
μm scale. (b) The use of light-sheet illumination and array detectors in SPIM-FCS. As the
illuminating light sheet is only ~1 μm thick, cross-talk is limited, as indicated again by the
colour-coded observation volumes, and contiguous pixels can be used. Nevertheless, the cross-
talk will change the correlation function and needs to be accounted for. Cross-talk between pixels is
indicated at the bottom of the graph. (c) In Imaging Total Internal Reflection FCS (ITIR-FCS),
optical sectioning is based on the confinement of the evanescent wave generated at the glass/water
interface. In ITIR-FCS the cross-talk is limited by both, the sample which is typically a membrane
with ~5 nm thickness, or if measuring in solution by the exponentially decaying evanescent wave of
~100 nm thickness. Cross-talk between pixels is indicated at the bottom of the graph
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always span at least neighbouring pixels (Fig. 7b, c (bottom)), and imaging FCS
takes account of these effects in their data evaluation. But this effect is limited and is
similar to the effect of the PSF in imaging. However, camera-based FCS, although
allowing for the recording of contiguous pixels in a sample and thus creating full
spatial maps (Fig. 8b, c), can do so only at a much lower time resolution. Most
experiments in Imaging FCS have been performed at ~ms time resolution, although
a resolution down to 0.02 ms has been reached [33, 133].

Imaging FCS was calibrated against a range of other techniques to ensure
consistency of its results with the main techniques used to measure diffusion and
diffusion modes [134–137] and was applied in a variety of contexts [35]. Cooper
et al. measured the diffusion at liquid–solid interfaces and determined molecular
interaction kinetics with surfaces [138]. Xu et al. measured diffusion within
nanotubes and determined the influence of charge on molecular transport [139],
Erstling et al. determined the photophysics of nanoparticles [140], and several
applications for the characterization of lipid bilayers were reported [134, 141]. In

Fig. 8 Study of sample organization by Imaging FCS. (a) TIRFM image of PMT-mEGFP showing
two CHO-K1 cells at different expression levels (TIRFM image displayed as average intensity
z-projection for clarity). Each pixel was temporally correlated and fitted, and quantitative param-
eters are rendered as heat maps for (b) the number of particles N and (c) the diffusion coefficient D.
(d) Imaging FCS allows pinhole size selection during data treatment by pixel binning. The
autocorrelation function amplitude decreases (left top) to (middle bottom). Furthermore, its width
increases (bottom right) with the increase of the effective observation area. (e) Diffusion and its
length-scale dependency to identify diffusive modes
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the life sciences the interaction of peptides with lipid bilayers [142] and cell
membranes [143] and the characterization of membrane receptor diffusion are
typical applications of Imaging FCS [144–146]. By pooling several Imaging FCS
measurements, Bag et al. obtained very precise diffusion coefficient measurements
of lipids and membrane proteins in live cells [147, 148]. Imaging FCS was also used
in developing small organisms to determine cytoplasmic and membrane diffusion
[133, 149–151], and in biofilms to characterize diffusion in dependence of size and
charge of diffusants [152]. In the form of Imaging FCCS (Fig. 9) it measured
interactions of proteins in live cells [149, 153, 154].

This brings us to the question of what advantages or extra information these FCS
modalities provide. The obvious answer is multiplexing. The approaches described
in this section provide thousands of points routinely simultaneously, and even more
than one million points in a single measurement have been achieved (Wohland
unpublished data). The measurements can also be performed with two colours
allowing to perform FCCS with a single array detector with excitation either in a
continuous [149, 153–155] or interleaved manner (Wohland unpublished data).

A further advantage is that – similar to what was earlier mentioned in confo-
cal microscopy with multipoint detectors for a single detection element – the data on
array detectors can detect different parts of a sample and determine whether there is
existing flow or transport [29] or characterize anisotropic diffusion [156]. Further-
more, the pixels on a camera can be binned to provide observation areas and volumes
of different sizes [29]. The FCS diffusion law (Fig. 8e) can be used to determine the
length-scale dependence of diffusion and thus determine the particular diffusion
mode the particle is undergoing [79, 157, 158]. In 2D FCS and especially Imaging
FCS this can be easily achieved as only one set of data is needed, and various
binning sizes (Fig. 8d) can be applied to the existing data to create different
observation areas [134, 141, 145, 159–161]. Thus, FCS diffusion law analysis can

Fig. 9 DC-ITIR-FCCS modality [136]. (a) Schematic of TIRFM instrumentation coupled with an
image splitter device to capture images of PMT-mEGFP-mApple into wavelength channels at
500 fps. (b) Image of double-labelled plasma membrane targeting PMT-mEGFP-mCherry
displayed on two halves of the camera chip. (c) The double-labelled protein yields a positive
cross-correlation in HEK cells; the auto- (green and red) and cross-correlation (blue) functions
displayed are the spatial average across a selected ROI (in yellow)
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be derived from a single measurement and can be even performed on multiple areas
of a cell [145]. Nevertheless, these approaches based on array detectors have wider
applicability. By recording the maximal possible amounts of photons with as high
spatial and temporal resolution as possible, one is not restricted to perform exclu-
sively FCS but can evaluate the data in each or between any pixels or group of pixels
with whatever analytical tools available. So it was already shown that FCS can be
combined with super-resolution microscopy [162, 163] and simultaneously with
other fluctuation or single-molecule fluorescence techniques [135, 162, 163].

Another approach that provides binding kinetics and that is at the origin of many
of the techniques discussed here is the combination of TIRFM with FCS with
single-point detection [164–167]. Although not strictly 2D, several studies have
demonstrated the application of TIRF-FCS to measure biomolecular diffusion in
membranes and ligand–receptor binding kinetics [164, 165, 168]. Extension to an
imaging version could extend binding kinetics analyses to whole surfaces. A modal-
ity that integrates over a whole image to characterize reversible binding has already
been established [169].

Finally, we need to discuss the differences between these schemes and how the
data is evaluated. The 2D FCS modalities based on confocal schemes can use the
already developed formulas for confocal FCS. This includes not only the parts for
diffusion but as well for photophysical and other processes. Here, spatial information
can be exploited by calculating spatial cross-correlations. In the case of two obser-
vation volumes with negligible cross-talk, the spatial cross-correlation function is
given by [170]:

G τ, dð Þ= 1
N

1þ 4Dτ
w2
0

� �- 1

1þ 4Dτ
z20

� �- 1
2

exp -
d2x þ d2y
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0

-
d2z

4Dτ þ z20
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ð23Þ

Here, dx, dy, and dz are the distances between the two observation volumes in x, y,
and z directions, and the other parameters are as previously defined.

As typical in confocal FCS, the observation volume is approximated here by a 3D
Gaussian. However, in the case of 2fFCS, this approximation is not sufficient
anymore, and a more sophisticated model needs to be used that requires numerical
integration [23, 25]. 2fFCS is more robust against typical FCS artefacts, including
optical aberrations, e.g., introduced by cover glass thickness variations or mismatch
of refractive indices between mounting and immersion medium, and saturation
effects stemming from the use of high laser powers for excitation [23, 171]. In the
case of TIRF and SPIM-based illuminations with cameras as detectors, the excitation
and detection change significantly compared to the confocal case. First, in the
confocal case, the excitation profile is a Gaussian function and thus falls off as one
moves away from the centre of the focus. In the TIRF and SPIM cases, the excitation
intensity is constant in the focal plane and varies only in the axial direction. In
addition, while in confocal FCS typically round pinholes are used, pixels on cameras
are typically quadratic, which changes and simplifies the derivation of the FCS fit
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models [172]. Solutions for single-spot TIRF-FCS correlation functions taking into
account the full 3D geometry and also binding interactions are available [166]. In the
case of camera-based FCS, assuming measurements in a membrane, i.e., a strictly
2D layer in the focal plane, the correlation function has an analytic solution
[173–175]. We provide here the basic correlation function for two square pixels
assuming only diffusion and refer the reader to literature for special cases [156]. If
we define the function p as

p τ, dð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dτ þ w2
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π
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where d is the distance between two pixels in x- or y-direction, then we can write the
function describing the shape of the correlations function separately for the x- and y-
directions as

gx τð Þ= p τ, aþ rxð Þ þ p τ, a- rxð Þ- 2p τ, rxð Þð Þ ð25Þ
gy τð Þ= p τ, aþ ry

� �þ p τ, a- ry
� �

- 2p τ, ry
� �� � ð26Þ

The function for the 2D case is then just the product of the correlations for the x-
and y-directions

g τð Þ= gx τð Þgy τð Þ ð27Þ

The ACF is obtained by setting the distances rx and ry to zero. Finally, we
normalize the correlation function with the effective observation volume

G τð Þ= 1
N

g τð Þ
g 0ð Þ þ G1 ð28Þ

Normalization ensures that the ACF amplitude is inversely proportional to the
number of particles. For the CCF, the peak amplitude is proportional to the particles
moving from one pixel to the other. A comparison with the ACFs of the two spatially
correlated areas is necessary to deduce the number of cross-correlated particles,
similar to dual-colour FCCS. If the two areas to be cross-correlated are not single
pixels, then the spatial cross-correlations between two arbitrary binned pixel areas
are just the sum of all possible CCFs between all pixels in the two areas
[156]. Models for 3D measurements in SPIM-FCS [33, 149, 155] have also been
derived, although they neglected cross-talk between pixels. Taking into account
cross-talk between pixels, as can be necessary in 3D measurements, requires numer-
ical integration as analytical solutions are no longer obtainable (in preparation).

If the characteristic length scale over which diffusion is measured is precisely
known, the methods become essentially calibration-free. In confocal FCS, the
precise dimensions of the confocal volume are typically unknown and are alignment
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dependent on which FCS is very sensitive. Thus, they need to be calibrated each
measurement day. However, Imaging FCS modalities are much less alignment
dependent as the illumination intensity is constant, the pixel size and their distance
are exactly known, and the microscope PSF of an optical setup, which is an essential
determinant of the observation volume of a pixel, typically does not change over
time. Thus, Imaging FCS can directly determine the diffusion coefficient (Fig. 8c)
without extra calibrations, and D is a fitting parameter in the model. In contrast, in
confocal FCS the characteristic time a molecule needs to traverse the confocal
observation volume is fitted and later recalculated into diffusion coefficients using
a calibration measurement.

However, camera-based methods have also disadvantages. First, they are typi-
cally much slower with time resolutions in the millisecond range. This has been
addressed by using the newly available SPAD arrays, which can measure faster
[21, 22] and can even determine fluorescence lifetimes [129]. In addition, the
observation volume in light-sheet microscopy for 3D measurements is generally
larger than in the confocal case, limiting the concentration range and the signal-to-
noise ratio accessible in SPIM-FCS. This results from the lower numerical aperture
of the illumination objectives used in SPIM-FCS, mainly for practical reasons due to
space constraints, making it impossible to align two high NA objectives. The lower
limit in concentration has been addressed by using two objectives with equal but
somewhat lower numerical aperture [176] and by SPIM using a single objective
(soSPIM) for illumination, and detection [177]. Finally, the amount of data acquired
in any of the 2D FCS methods is typically large as thousands of pixels are recorded
over thousands of frames, and thus more storage and faster data evaluation are
required. In the last years, several groups have therefore developed GPU based
algorithms that speed up data evaluation by 1–2 orders of magnitude [128, 163, 178]
and analyse data in real time [179].

5 Concluding Remarks

Correlation-based approaches are compelling tools to extract information from
signals by analysing signal fluctuations around their mean value. By using fluores-
cence as the signal, the measurements become specific and provide single-molecule
sensitivity. The resulting Fluorescence Correlation Spectroscopy measurements
yield information on molecular transport, actions, and interactions. As FCS was a
single-point measurement, it was multiplexed to measure multiple FCS curves
simultaneously and was extended to include spatial correlations to obtain more
information from a single measurement. We grouped these measurements here
under the name of two-dimensional FCS, as they measure some or all points in a
2D sample cross-section and exploit spatial, temporal, or spatiotemporal
correlations.

With new developments in microscope, detector, and computational technology
and advances in data evaluation strategies, many of these techniques can be now
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performed on standard commercially available microscopes without extra modifica-
tions. Moreover, the publication of more open-source software tools [179] and
reviews around the topic [34, 180] makes two-dimensional FCS easily accessible
to a broad spectrum of users (for a list of software, see [175]). Finally, these methods
are ideal to be combined with various microscopy and super-resolution techniques
[66, 118, 122, 162, 163, 181–184] presenting the possibility to record the structure
and dynamics of the system under investigation simultaneously and thus creating a
much more complete picture of molecular events in live cells and organisms.
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