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Abstract Fluorescence Correlation Spectroscopy (FCS) is a non-invasive, highly
sensitive technique for measuring the diffusive and photophysical properties of
fluorescent species as well as their interactions. All of this information needs to be
reliably extracted from the fluctuating fluorescence signal and interpreted in a
theoretical framework. In this chapter, we describe the derivation of the basic
equations governing FCS correlation curves. By pointing out their limitations and
the underlying approximations and assumptions we hope to facilitate applications
and the development of more elaborate models for more complex systems. Two
detection channels are included to accommodate dual-color Fluorescence Cross-
Correlation Spectroscopy. Moreover, we provide a generalized description for the
separation of spatial movement and intramolecular change, taking translational
diffusion (changes in position), rotational diffusion (changes in orientation) and
fluorescence blinking (changes in the quantum mechanical state) into account.
Since, experimentally, particles are often labeled with multiple fluorophores, besides
multiple dynamics and multiple species of particles, multiple fluorophores per
particle are also part of the description.
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Fluorescence correlation spectroscopy (FCS), like dynamic light scattering (DLS), is
a non-invasive and single-molecule sensitive technique based on the temporal
correlation of brightness fluctuations, with which primarily the size, concentration
and photophysical properties of fluorescent particles can be investigated in small
liquid volumes and at thermodynamic equilibrium. It was first described in 1972 by
Elliot L. Elson, Douglas Magde, and Watt W. Webb [1].

FCS is an example of a concentration correlation spectroscopy method [2]. This
type of spectroscopy is based on the measurement of fluctuations of the particle
concentration in small subvolumes of a sample. In principle, FCS can employ any
kind of measurand that depends on these concentrations, such as density, refractive
index, extinction, etc. Notably, in DLS, the signal is the amplitude of the scattered
light and thus depends on the phase distribution of the electric field and the spatial
variation of the permittivity in the sample. In contrast, in FCS, the intensity of the
radiation constitutes the signal. Hence, the fluorescence is separated from the
irradiation and the detected fluorescence photons with all their measurable properties
(number, arrival time, energy, polarization, momentum direction) constitute the
signal.

By virtue of the high specificity of fluorescence labeling, FCS can probe one or
more defined fluorescent species even in complex mixtures and living cells and
measure physical and chemical characteristics of each of them. Static and dynamic
phenomena thus become accessible, provided that a detectable change in the emitted
photons occurs.

For an insight into the theoretical foundations of FCS, this chapter focuses on the
derivation of the underlying equations and highlights the approximations and
assumptions necessary therein (Sect. 1). In many FCS applications, the translational
movement of the fluorescent particles, be it diffusive or directed, can be separated
from their internal changes, e.g., photophysical blinking, rotation or chemical
reactions. A generalized description reflecting this property will be given to disen-
tangle contributions from both types of processes (see Sects. 2 and 3). Furthermore,
the influence of multiple species of particles (Sect. 1) as well as multiple
fluorophores per particle (Sect. 2) is considered.

Multiple dynamics, multiple species and multiple fluorophores per particle are
often encountered experimentally. We, therefore, aim to describe the theoretical
framework in a general, adaptable way, also pointing out the limitations. Examples
of calibration and control experiments, which can be conducted to check applicabil-
ity, can be found in more specialized protocols, see, e.g., [3–6].
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1 Fluorescence Intensity

A certain intensity of the emitted radiation of the fluorophores (in short fluorescence
intensity) causes a stream of photons, which in turn is converted into a sequence of
counting events in the detector. For the correlation functions considered in FCS, the
stochastic properties of these events primarily produce artifacts at small correlation
times, where shot noise and detector afterpulses manifest as potentially strong
positive correlations. In particular, the zero value is contaminated by the variance
of the Poisson distributed counting events and is not useful as a measure of the true
amplitude. The considerations in this chapter therefore refer to the correlations of the
fluorescence intensity itself, which are caused by molecular processes in the sample,
and also no longer draw a distinction between the fluorescence intensity before the
optical system and the count rate of the detector. The quantum yield of the detection
ΦD is included in the molecular brightness Q and the signal is generally denoted
by F.

The molecular brightness Q of a fluorophore is generally not a constant but may

depend on a number of variables, including its location r
→
, its orientation R

→
and its

(quantum mechanical) state Z.
The total detected intensity can now be calculated using the so-called molecular

detection function (MDF) W either as a spatial integral (with the differential volume
element d3 r→ = dx dy dz) over the particle density C of the fluorescent particles

F tð Þ=
Z

W r
→ , t
� �

Q r
→ , R

→
, Z, t

� �
C r

→ , t
� �

d3 r
→ ð1Þ

or as a sum

F tð Þ=
X
i

Q r
→

i, R
→

i, Zi, t
� �

W r
→

i, t
� �

ð2Þ

over the discrete contributions of individual particles i in the sample, where r
→

i

denotes a particle’s location, R
→

i its orientation and Zi its (quantum mechanical) state.
Here, we use the discrete summation approach rather than the integral, because in

this way the contributions of individual fluorophores are treated more intuitively and
the probability distributions with respect to their motions and interactions are used in
a more natural way. Conversely, the first approach does not require taking limits of
infinite sums and it facilitates the description of spatial correlations in particles that
are no longer diffusing independently as well as that of chemical reactions where the
numbers and identities of particles are introduced as another random variable.

The expected value and the (cross-)correlation of the signal can now be defined
starting from
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F tð Þh i=
X
i

Q r
→

i, R
→

i, Zi, t
� �

W r
→

i, t
� �D E

ð3aÞ

=
X
i

ZZZ
Q r

→
i, R

→
i, Zi, t

� �
W r

→
i, t

� �
P r

→
i, R

→
i, Zi, t

� �
d3 r

→
id

3 R
→

idZi ð3bÞ

Fa tð Þ � Fb t þ τð Þh i=
X
i,j

Z Z Z Z Z Z

Qa½ r
→

i, R
→

i, Zi, t
� �

Qb r
→

j, R
→

j, Zj, t þ τ
� �

P r
→

i, R
→

i, Zi, t
n o

\ r
→

j, R
→

j, Zj, t þ τ
n o� �

Wa r
→

i, t
� �

Wb r
→

j, t þ τ
� �

d3 r
→

id
3 r
→

j d
3 R
→

id
3 R
→

jdZidZj

� ð4Þ

where the indices a and b denote different channels, each with its own molecular
brightness and MDF.

The angular brackets denote an ensemble average over all possible states of the
system. In the FCS experiments, this average is realized by time averaging. Through-
out this chapter, ergodicity is assumed to hold. Therefore, in the limit of infinite
duration of the measurement, the time average approaches the ensemble average.

The autocorrelation and cross-correlation functions are defined by a = b and
a ≠ b, respectively. In the technique of dual-color fluorescence cross-correlation
spectroscopy (dcFCCS) described in this chapter, the channels represent different
colors, i.e. different excited and detected regions of the spectrum. However, many
other possibilities are conceivable or have already been realized, e.g., spatially
shifted MDFs (dual-focus FCCS [7] and multi-focus FCS [8]) or detection of
different polarizations (e.g., for measuring rotational diffusion, see [9] for a detailed
derivation and [10] for an application to protein oligomerization). Also related to
dual-focus correlation are image correlation techniques, such as ICS, RICS, and
STICS (see chapter “Theoretical Insight into the Luminescence of Dyes and Pig-
ments” of this book), which provide spatially resolved data in, e.g., biological
samples. DcFCCS has also been combined with fast camera-based imaging to
generate interaction maps (see [5]).

The joint distribution P r
→

i, R
→

i, Zi, t
n o

\ r
→

j, R
→

j, Zj, t þ τ
n o� �

indicates

the probability density of finding at time t particle i at location r
→

i with orientation

R
→

i in the (quantum mechanical) state Zi and additionally at time t + τ particle j at

location r
→

j with orientation R
→

j in the state Zj. The molecular rotation contributes to
the temporally correlated changes in the brightness of the fluorophore, because the
orientations of the transition dipole moments of absorption and emission change
relative to the electric field vector of the incident laser light and relative to the
transmission direction of the polarization filter in front of the detector. The fluctu-
ations arising from changes in the molecular orientation can be used to determine the
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rotational diffusion coefficient and thus the molecular size and shape. The molecular
brightness is explicitly expressed here as a function of time and location, since
photophysical phenomena can lead to a variable brightness, which itself exhibits a
correlation and moreover depends on location due to the spatially varying laser
intensity. In most cases, Q is proportional to the product of the occupation of the
excited S1 state and the rate constant kf of the radiative transition to the ground state.
Since the degree of occupation depends on the one hand on the intensity of the
excitation, but on the other hand, is also limited to unity, the brightness must always
be location-dependent and must approach a limiting value of saturation for increas-
ing excitation. The exact functional dependence on intensity can be very compli-
cated (see [11]), but in the simplest case (laser intensity constant in time; intersystem
crossing (ISC) much slower than fluorescence emission; negligible antibunching)
the result is [12]

Q / kex

1þ kex
ksat

ð5Þ

where

ksat =
k10

1þ kISC
kphos

ð6Þ

Here kex is the rate of excitation for the fluorophore (proportional to the exciting
laser intensity I ), ksat is the excitation rate for which half of the maximum fluores-
cence brightness is obtained, kISC and kphos are the rate constants of ISC and
phosphorescence, respectively, and k10 is the rate constant for the transition to the
ground state (sum of radiative and non-radiative decays).

This treatment does not account for the possibility of photobleaching and pre-
supposes knowledge of the (often quite complex) photophysics of the fluorophores
in question. For practical applications, it is therefore customary to obtain FCS
measurements under a range of excitation intensities to determine the maximum
usable laser power, so as to neither introduce artifacts nor unnecessarily lower the
signal-to-noise ratio [13].

If several species of different brightness exist in the sample, F(t) is calculated as
the sum of the individual intensities according to

F tð Þ=
X
j

Fj tð Þ=
X
i,j

Qj r
→

i,j, R
→

i,j, Zi,j, t
� �

W r
→

i,j, t
� �

: ð7Þ

Here, r
→

i,j denotes the position of the i-th particle of the j-th species. R
→

i,j and Zi, j
denote the corresponding orientations and states.
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2 Fluorescence Correlation

The fundamental equation of FCS is now the normalized correlation function

Ga,b τð Þ= Fa tð Þ � Fb t þ τð Þh i
Fa tð Þh i Fb tð Þh i - 1=

δFa tð Þ � δFb t þ τð Þh i
Fa tð Þh i Fb tð Þh i ð8Þ

where δF(t) = F(t) - hF(t)i is the deviation of the fluorescence intensity from the
expected value. Here, only positive correlation times τ are considered, because for
stationary processes Ga, b(-τ) = Gb, a(τ) applies and differences between Ga, b(τ)
and Gb, a(τ) only occur in the case of a non-stationary process.

In principle, the detected radiation field depends on the exact state and motion of
all molecules in the sample. Since this problem is practically unsolvable, the
following assumptions and simplifications are made, unless noted otherwise:

• The MDF is time-independent: W r
→

i, t
� �

�W r
→

i

� �
.

• The polarization is uniform. This assumption is more accurate the lower the
numerical aperture of the objective.

• The process can be described as weakly stationary
hFa(t) � Fb(t + τ)i � hFa(0) � Fb(τ)i.

• The sample is stationary and isotrop (P r
→

i, R
→

i, Zi, t
� �

� 1
4π P r

→
i, Zi

� �
with

normalization
R
d3 R

→
i = 4π).

• The particle density is homogeneous, implying that P r
→

i

� �
= 1

V is the constant

residence probability of the particles in the sample volume V.
• Individual fluorophores emit independently of one another, meaning there is no

coherence of the fluorescence radiation and no energy transfer between the
fluorophores as in FRET or fluorescence quenching.

• The particles diffuse, rotate and change their states independently of one another

(P r
→

i, R
→

i, Zi, t
n o

\ r
→

j, R
→

j, Zj, t þ τ
n o� �

=P r
→

i, R
→

i, Zi, t
� �

� P r
→

j, R
→

j, Zj, t þ τ
� �

for i ≠ j).
• Rotation and diffusion do not depend on each other (absence of roto-translational

coupling) and are not influenced by the state of the particle, implying that the
particle does not dynamically change its shape

(P r
→

i, R
→

i, Zi, t
� �

=P r
→

i, t
� �

� P R
→

i, t
� �

� P Zi, tð Þ).
• The translational and rotational diffusion coefficients do not depend on position

or time, implying an absence of thermophoretic effects.
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• Photophysical effects do not depend on spatial position

(Q r
→

i, R
→

i, Zi, t
� �

�Q R
→

i, Zi, t
� �

).

• The solvent contributes to the fluorescence only as background noise.

Thus Eq. 3b now simplifies to

F tð Þh i=
X
i

ZZZ
Q R

→
i, Zi, t

� �
W r

→
i

� � 1
4πV

d3 r
→

id
3 R
→

idZi ð9aÞ

=
�Q
V

X
i

Z
W r

→
i

� �
d3 r

→
i =

�Q
V

X
i

Ω1 =
N
V
�QΩ1 ð9bÞ

lim
V →1

F tð Þh i=C�QΩ1 = cNA �QΩ1 ð10Þ

Here, the brightness averaged over all orientations and possible photophysical
processes is defined as

�Q=
ZZ

Q R
→
, Z, t

� � 1
4π

d3 R
→
dZ ð11Þ

and the space integrals of the MDF are defined as

Ωa,n =
Z
V

Wa r
→
� �h in

d3 r
→

ð12Þ

Ωn,a;m,b =
Z
V

Wa r
→
� �h in

Wb r
→
� �h im

d3 r
→
: ð13Þ

The channel index a in Ωa, n can be omitted if only one channel is used.
All identical particles contribute equally. Their contribution is proportional to

their number N in the volume V. For practical purposes, the sample size can be
considered as infinitely large. Under these conditions, the contribution is propor-
tional to the particle density C or molar concentration c (where C = NA c with the
Avogadro constant NA). Finally, in the presence of several species, the total average
fluorescence becomes

F tð Þh i=NAΩ1

X
j

cj �Qj ð14Þ

For the evaluation of Eq. 4 the double sum over the particles of the same species is
split into the correlations between identical particles and the correlations between
different particles. For the former, the conditional probability P BjAð Þ= P A\Bð Þ

P Að Þ is

introduced. For better distinguishability of the different positions of the same
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particle, the time dependence of position, orientation, and state is given in the form
x = x(0) and x′ = x(τ):

Fa 0ð Þ � Fb τð Þh i

=
X
i

Qa R
→

i, Zi, 0
� �

Qb R
→ 0

i, Z 0
i, τ

� �
Wa r

→
i

� �
Wb r

→ 0
i

� �� �

þ
X
i≠ j

Qa R
→

i, Zi, 0
� �

Qb R
→

j, Zj, τ
� �

Wa r
→

i

� �
Wb r

→
j

� �D E
ð15aÞ

=
X
i

Qa R
→

i, Zi, 0
� �

Qb R
→ 0

i, Z 0
i, τ

� �� �
� Wa r

→
i

� �
Wb r

→ 0
i

� �D E

þ
X
i≠ j

Qa R
→

i, Zi, 0
� �

Wa r
→

i

� �D E
� Qb R

→
j, Zj, τ

� �
Wb r

→
j

� �D E
ð15bÞ

¼ N

Z Z Z Z
Qa R

→
, Z, 0

� �
Qb R

→ 0
, Z 0, τ

� �
P R

→
, Z, 0

� �
�

	

P R
→ 0

, Z 0, τ


 �
j R

→
, Z, 0

n o� �
d3 R

→
d3 R

→ 0
dZdZ 0� �

ðð
Wa r

→
� �

Wb r
→ 0� �

1
V
P r

→ 0
, τ

n o
j r

→
, 0

n o� �
d3 r

→
d3 r

→ 0þ N N - 1ð Þ
V2 QaQbΩ1,aΩ1,b ð15cÞ

=QaQb Ω1,a; 1,b
N
V
Θ τð ÞΞ τð Þ þΩ1,aΩ1,b

N N - 1ð Þ
V2

� �
ð15dÞ

In Eq. 15b the averages are simplified by exploiting the presumed independence
of the position and the brightness correlations (first term) and by exploiting the
independence of individual particles from each other (second term). In the first term
of Eq. 15c the averages are made explicit as integrals over their respective variables
and the summation over identical particles is replaced by their total number N. Since
one self-correlation for each particle is already contained in the first term, the sum in
the second term of Eq. 15b runs over a total of N2 - N = N(N - 1) identical
contributions. In Eq. 15c the second term is replaced by a term that is proportional to
N(N - 1) and to the product of the average intensities in both channels (see Eq. 9b).
In Eq. 15d, the brightness correlation function Θ(τ) and the position correlation
function Ξ(τ) are introduced. Θ(τ) describes the dimensionless normalized correla-
tions of the molecular brightness Q(a, b) due to changes of orientation and state. Ξ(τ)
describes the dimensionless normalized correlations of the apparent brightness
changes due to diffusion through the focus:
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Θ τð Þ ¼ Qa tð Þ � Qb t þ τð Þh i
�Qa

�Qb

¼ 1
�Qa

�Qb

Z Z Z Z
Qa R

→
, Z, 0

� �
Qb R

→ 0
, Z 0, τ

� �
P R

→
, Z, 0

� �

�P R
→ 0

, Z 0, τ

 �

j R
→
, Z, 0

n o� �
d3 R

→
d3 R

→ 0
dZdZ 0 ð16Þ

Ξ τð Þ= 1
Ω1,a; 1,b

ZZ
Wa r

→
� �

Wb r
→ 0� �

P r
→ 0

, τ
n o

j r
→ , 0
n o� �

d3 r
→
d3 r

→ 0 ð17Þ

Since for infinite correlation times a complete decoupling of all fluctuations can
be assumed, the conditional probability again attains the equilibrium value according

to P R
→ 0

, Z 0, τ


 �
j R

→
, Z, 0

n o� �
=P R

→ 0
, Z 0, 0

� �
= 1

4π and

P r
→ 0

, τ
n o

j r
→
, 0

n o� �
=P r

→ 0
, 0

� �
= 1

V. The former, via Eq. 11, results in

lim
τ→1Θ τð Þ= 1 ð18Þ

and the latter in

lim
τ→1Ξ τð Þ / 1

V
, ð19Þ

whereby an infinite sample thus leads to lim
V →1

Ξ τð Þ= 0 and

lim
τ→1 Fa 0ð Þ � Fb τð Þh i=C2 �Qa

�QbΩ1,aΩ1,b ð20Þ

Neglecting the one particle that is correlated with itself in the second summand in
Eq. 15d by approximating N(N - 1) ≈ N2 will only be noticeable in very small
compartments, for example when measuring in bacteria or lipid vesicles. After
substituting these results into Eq. 8, we finally obtain

Ga,b τð Þ=
�Qa

�Qb Ω1,a; 1,b
N
V
Θ τð ÞΞ τð Þ þΩ1,aΩ1,b

N N- 1ð Þ
V2

� �
N
V
�QaΩ1,a

� � N
V
�QbΩ1,b

� � - 1 ð21aÞ

≈
�Qa

�Qb Ω1,a; 1,bCΘ τð ÞΞ τð Þ þΩ1,aΩ1,bC2
� 


C�QaΩ1,að Þ C�QbΩ1,bð Þ - 1 ð21bÞ
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=
�Qa

�QbΩ1,a; 1,bCΘ τð ÞΞ τð Þ
C�QaΩ1,að Þ C�QbΩ1,bð Þ ð21cÞ

=
1
C

Ω1,a; 1b

Ω1,aΩ1,b
Θ τð ÞΞ τð Þ ð21dÞ

Here, the proportionality between variance and expected value of the Poisson
distributed particle number in a given volume [14] becomes apparent: The numerator
of the correlation function in Eq. 21c scales linearly with the concentration and
quadratically with the molecular brightness. By normalizing with the square of the
mean fluorescence intensity, which is proportional to the concentration squared and
the molecular brightness squared, the latter no longer enters the equation, but the
function as a whole increases inversely proportional with the concentration.

For practical reasons, the term Ω1,a; 1,b

Ω1,aΩ1,b
is combined with the particle density and the

so-called effective focal volume Veff is defined as a ratio of space integrals over
the MDF:

V eff,x =
Ω1,aΩ1,b

Ω1,a; 1,b
ð22Þ

Veff, a, bð Þ =
Ω2

1, a, bð Þ
Ω2, a, bð Þ

ð23Þ

Here Veff, (a, b) denotes the effective focal volume for the autocorrelation of one of
the two channels and Veff, x that for their cross-correlation. By introducing the
effective particle number

Neff =C V eff ð24Þ

the general form of the F(C)CS correlation function is given by

Ga,b τð Þ= 1
Neff

Θ τð Þ Ξ τð Þ ð25Þ

In the case of autocorrelation, Veff represents Veff, (a, b), in the case of cross-
correlation Veff represents Veff, x.

The diffusion behavior of the particles has no impact on the zero value of the
position correlation function Ξ(0), resulting in lim

τ→ 0
Ξ τð Þ≈ 1 . Provided that the

brightness is constant or correlated on significantly shorter time scales,
lim
τ→ 0

Θ τð Þ≈ 1 also holds. Therefore, the F(C)CS amplitude is given by
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A= lim
τ→ 0

Ga,b τð Þ= 1
Neff

ð26Þ

Moreover, as no motion occurs for τ→ 0,

lim
τ→ 0

P r
→ 0

, τ
n o

j r
→ , 0
n o� �

= δ r
→ 0

- r
→

� �
ð27Þ

The double space integral thus reduces to a simple one in Eq. 17 and the origin of
the normalization factor becomes apparent:

lim
τ→ 0

Ξ τð Þ= 1
Ω1,a; 1,b

ZZ
Wa r

→
� �

Wb r
→ 0� �

δ r
→ 0

- r
→

� �
d3 r

→
d3 r

→ 0 ð28aÞ

=
1

Ω1,a; 1,b

Z
Wa r

→
� �

Wb r
→
� �

d3 r
→ = 1 ð28bÞ

Commonly, the mean fluorescence intensity from the experiment, hF(t)i, is
divided by the effective particle number, Neff, which is readily obtained from the
experimental autocorrelation curve, to yield a measure for the molecular brightness
(counts per molecule, CPM), which is valid in the case of a single species. Using
Eq. 10 for hF(t)i and Eqs. 22 and 24 for Neff, we obtain for the counts per molecule

η=
F tð Þh i
Neff

= �Q
Ω2

Ω1
ð29Þ

If several species of fluorophores i with their individual fluorescence intensities
F(a, b), i and corresponding correlation functions Θi(τ) and Ξi(τ) are present and if
these fluorophores behave as independent particles in the same way as individual
particles of a single species do and if no chemical reactions occur (or chemical
reactions are slow compared to the time scale of the diffusion), then the following
applies

δFa,i tð Þ � δFb,j t þ τð Þ� �
= δij δFa,i tð Þ � δFb,i t þ τð Þh i: ð30Þ

Equation 30 states that the fluorescence signals from different species i and j are
uncorrelated. Signals are correlated if they originate from the same species (i = j).
Since the bilinearity of the covariance leads to the additivity of the contributions of
the individual species to the numerator of Eq. 8, we obtain

F a, bð Þ tð Þ
� �

=
X
i

F a, bð Þ,i tð Þ
� �

ð31Þ
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δF a, bð Þ tð Þ=
X
i

δF a, bð Þ,i tð Þ ð32Þ

δFa tð Þ � δFb t þ τð Þh i=
X
i,j

δFa,i tð Þ � δFb,j t þ τð Þ� �
=
X
i

δFa,i tð Þ � δFb,i t þ τð Þh i

ð33aÞ

=
X
i

Ga,b,i τð Þ Fa,i tð Þh i Fb,i tð Þh i=
X
i

1
V effCi

Θi τð ÞΞi τð Þ Ω1,aCi �Qa,i

� 

Ω1,bCi �Qb,i

� 

ð33bÞ

where Θi and Ξi are the brightness correlation and position correlation function for
species i, respectively. In the last line Eqs. 8, 10, and 21d were used. Upon dividing
by hFa(t)ihFb(t)i and simplifying, the contributions of the individual species to the
correlation functions can be expressed as follows, whereAi are the partial amplitudes
and φi the amplitude fractions:

Ga,b τð Þ=

P
i

δFa,i tð Þ � δFb,i t þ τð Þh iP
i

Fa,i tð Þh i �P
j

Fb,j tð Þ
� � =A

X
i

φiΘi τð ÞΞi τð Þ ð34Þ

A=
X
i

Ai =
X
i

1
V eff

Ci �Qa,i
�Qb,iP

j
Cj �Qa,j �

P
k
Ck �Qb,k

ð35Þ

φi =
Ai

A
=

Ci �Qa,i
�Qb,iP

j
Cj �Qa,j

�Qb,j
ð36Þ

The aim of the last term in Eq. 34 is to separate the different correlation functions
Θi(τ)Ξi(τ) associated with each species from the overall amplitude A , which is
oftentimes the easiest parameter to measure and interpret. The partial amplitudes
Ai thus represent the (absolute) part of the amplitude belonging to species i, while the
amplitude fractions φi represent the same value relative to the overall amplitude.

These equations are needed to analyze FCS measurements of mixtures and derive
the concentrations from fitted amplitudes. It can be seen from the numerator of
Eq. 35 that the amplitude fraction depends quadratically on the brightness, but
linearly on the concentration of a species. This weighting causes a considerable
bias toward the brighter species. If the brightnesses are not known beforehand, only
apparent fractions or concentrations can be obtained and these will always underes-
timate the amount of dim particles in the sample.

The analysis of binding experiments relies on correlation amplitudes (see for
example in [15, 16]), which can be evaluated using Eq. 35. However, to reliably
determine these amplitudes, the time-dependent correlation should be analyzed by
fitting Eq. 34 to the measured correlation curves. Therefore, a more detailed
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examination of the brightness correlation function Θ(τ) and the position correlation
function Ξ(τ) is necessary.

3 Brightness Correlation Function

The main contributions to the time-dependent brightness fluctuations of fluorophores
are given by their rotation, interaction with other particles (e.g., FRET, fluorescence
quenching), chemical and photochemical reactions (e.g., cis-trans isomerization,
photobleaching) and photophysical processes (e.g., ISC, antibunching). All these
phenomena can be used to obtain information about molecular parameters and
interactions of particles with each other (shape and size from rotation, distances
from FRET, binding energies from isomerization rates, oligomerization from
antibunching, etc.).

If the probability density can be completely factorized and the molecular bright-
ness depends multiplicatively on orientation and state, then Θ(τ) can be decomposed
into a product of rotation correlation and state correlation functions. The relevant
processes in FCS applications are typically transitions between states of different
brightnesses of a single fluorophore, which are often described as first-order
unimolecular reactions (ISC, photobleaching, antibunching). If several fluorophores
(number nF) are attached to a particle, states with several excited fluorophores exist
at the same time. If the fluorophores behave independently of each other, apart from
their common diffusion, the sum of their contributions can be written in analogy to
Eq. 30 as:

Q a, bð Þ tð Þ=
XnF
i= 1

Q a, bð Þ,i tð Þ ð37Þ

Qa tð Þ � Qb t þ τð Þh i=
XnF
i,j

Qa,i tð Þ � Qb,j t þ τð Þ� �
ð38aÞ

=
XnF
i= 1

Qa,i tð Þ � Qb,i t þ τð Þ� �þXnF
i≠ j

Qa,i tð Þ
� � Qb,j t þ τð Þ�� �

ð38bÞ

=
XnF
i= 1

�Qa,i
�Qb,iΘi τð Þ þ

XnF
i≠ j

�Qa,i
�Qb,j ð38cÞ

In Eq. 38c the definitions from Eqs. 11 and 16 were used. Inserting these
equations back into Eq. 16 and writing
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�Qa
�Qb =

XnF
i= 1

�Qa,i

 ! XnF
j= 1

�Qb,j

 !
=
XnF
i= 1

�Qa,i
�Qb,i þ

XnF
i≠ j

�Qa,i
�Qb,j, ð39Þ

we obtain for the total brightness correlation function

Θ τð Þ=

PnF
i= 1

�Qa,i
�Qb,iΘi τð Þ þPnF

i≠ j

�Qa,i
�Qb,j

PnF
i= 1

�Qa,i
�Qb,i þ

PnF
i≠ j

�Qa,i
�Qb,j

: ð40Þ

Subtracting one from each side and arranging yields

Θ τð Þ- 1=
XnF
i= 1

�Qa,i
�Qb,iPnF

i= 1

�Qa,i
�Qb,i þ

PnF
i≠ j

�Qa,i
�Qb,j

Θi τð Þ- 1½ �, ð41Þ

which for identical fluorophores can be simplified to

ΘnF τð Þ= nF �Qa
�QbΘ1 τð Þ þ nF nF - 1ð Þ�Qa

�Qb

nF �Qa
�Qb þ nF nF - 1ð Þ�Qa

�Qb
=

Θ1 τð Þ- 1
nF

þ 1: ð42Þ

It can be seen from nF appearing in the denominator in this last expression that a
larger number of individually acting fluorophores on one particle diminishes the
influence of their brightness correlation function. Since the individual brightnesses
do not fluctuate in a correlated manner, the total brightness of the particle represents
an average value with decreased variance.

Photophysical processes usually depend on the intensity of the exciting radiation
and thus on the position of the fluorophore in relation to the focus. Therefore, not all
of the assumptions made above are fulfilled and diffusion and brightness are no
longer decoupled. However, a simplification can be made for slow diffusion, in
which case a local photophysical equilibrium is established at any position.
Although Q still depends on r

→ , now the relationship

Q a, bð Þ r
→

i, R
→

i, Zi, t
� �

Wa r
→

i

� �D E
= Q a, bð Þ r

→
i, R

→
i, Zi, t

� �D E
� Wa r

→
i

� �D E
holds. Therefore, brightness correlations and positional correlations can still be
separated.

A case of practical relevance is that of the three-level system (S0, S1 and T1) with
singlet-triplet transitions [17] and the rate constants kex for the excitation, k10 for the
fluorescence and non-radiative decay, kISC for the intersystem crossing and kphos for
the phosphorescence.

The scheme in Fig. 1 shows the reactions which connect the populations of the
three levels, [S0], [S1], [T]. These populations can be written as a vector, π

→ tð Þ. A
corresponding system of deterministic linear differential equations with constant
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coefficients can be set up to describe the kinetics and can be formulated as a matrix
equation:

d π→ tð Þ
dt

=Q π
→ tð Þ ð43Þ

This results in a 3 × 3 matrix for Q with the rate constants given in the scheme.

Q=
- kex k10 kphos

kex - k10 - kISC 0

0 kISC - kphos

0
@

1
A: ð44Þ

For the usual case k10 ≫ kISC, kphos, an approximate solution for the matrix
equation is given by a sum of two exponential functions with characteristic time
constants τtrip and τanti, associated with triplet blinking and antibunching, respec-
tively [11]:

1
τanti

= kex þ k10 ð45Þ

1
τtrip

= kphos þ kex kISC
kex þ k10

ð46Þ

This leads to an expression for the individual correlation function Θ1(τ), which,
by considering Eq. 42, results in [13]:

ΘnF τð Þ= 1þ �xTe- τ=τtrip - e- τ=τanti

nF 1-�xTð Þ ð47Þ

Here, �xT represents the average fraction of particles in the triplet state.
From this general equation many different applications can be derived, for

example, the calculation of protein oligomerization via antibunching (see
[18, 19]), the detection of single-nucleotide differences in DNA via their influence
on blinking times (see [20]) or the study of protonation dynamics in fluorescent
proteins (see [21]).

[S0] [S1]

[T]

Fig. 1 Scheme of the three-
level system for
photophysical processes
used here. Arrows denote
unimolecular reactions
between the populations of
the singlet and triplet states
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An important result that follows from Eq. 47 is the decreasing height of the
blinking term in the correlation curves with increasing number of fluorophores nF per
particle (see Fig. 2). Therefore, the blinking becomes negligible in FCS measure-
ments of lipid vesicles with a large number of lipidic fluorophores or nanoparticles
containing a large number of dyes. In this case, the blinking term does not need to be
included in the fitting procedure, whereby the uncertainty in the determination of the
other parameters is reduced (Fig. 2).

4 Position Correlation Function

The basis of the calculation of the position correlation function is the knowledge of

the time dependence of P r
→ 0

, τ
n o

j r
→ , 0
n o� �

, where the two endpoints,

lim
τ→ 0

P r
→ 0

, τ
n o

j r
→ , 0
n o� �

= δ r
→ 0

- r
→

� �
and lim

τ→1P r
→ 0

, τ
n o

j r
→ , 0
n o� �

= 1
V

are already known. In addition, for homogeneous and isotropic diffusion which is
not influenced by the laser focus,

P r
→ 0

, τ
n o

j r
→
, 0

n o� �
=P j r→ 0

- r
→ j, τ

� �
=P jΔ r

→ j, τ
� �

ð48Þ

10 -12 10 -8 10 -4 10 0 / s
0

0.5

1

1.5

2

D
 = 1 ms

D
 = 1 µs

D
 = 1 ns

Fig. 2 Theoretical FCS correlation curves G(τ) for particles diffusing through a 3DG focus with
structural parameter S = 6, diffusion time τD = 1 ms and effective particle number Neff = 1. The
particles contain a varying number of fluorophores nF given in the legend. The photophysics follows
Eq. 47 with constants τanti = 1 ns, τtrip = 1 μs and �xT = 0:5
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can be assumed, so that a function of only two parameters remains to be determined.
This probability density function describes the probability of finding a particle after a
certain period of time τ at a certain distance jΔ r

→ j from its point of origin.
Generally, diffusion models can be classified by two criteria: Fickian diffusion

with a mean square deviation (MSD) of the position that increases linearly in time,
and Gaussian diffusion with a normal distribution of step sizes for the particle
movement, whose variance is determined by the MSD. The simplest case of free
diffusion of a particle in space, without any interfering interaction with other matter,

fulfills both criteria. Non-Fickian diffusion with jΔ r
→

tð Þj2
D E

/ tγ is usually called

anomalous diffusion [22]. Non-Gaussian yet Fickian diffusion takes place, for
example, when diffusion processes with different diffusion coefficients are
superimposed in complex structures [23]. Realistically, neither criterion will be
fulfilled exactly, but the simple equations are used as approximations.

For isotropic Gaussian diffusion with independent motion in n spatial directions,
the probability as a function of the vector Δ r

→ = Δx1, Δx2, . . .Δxnð ÞT is given
by [24].

P jΔ r
→ j, τ

� �
=
Yn
i= 1

e
- jΔxi τð Þj2

2 jΔxi τð Þj2h iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π jΔxi τð Þj2
D Er ð49aÞ

=
e
- jΔ r

→ j2
2 jΔ r

→
τð Þj2h i=n

2π jΔ r
→

τð Þj2
D E

=n
� �n=2 : ð49bÞ

If a reference measurement for Ξ(τ) is available on a system containing particles
that follow Fick’s law of diffusion and whose diffusion coefficient is known, a one-

to-one relation between mean square displacement jΔ r
→

τð Þj2
D E

and position corre-

lation function Ξ(τ) exists, from which first Ξ τð Þ= f jΔ r
→

τð Þj2
D E� �

and by (numer-

ical) inversion finally jΔ r
→

τð Þj2
D E

= f - 1 Ξ τð Þð Þ can be obtained. Thus, anomalous

diffusion can be investigated even without explicit knowledge of W(a, b), which can
be used e.g. for the calculation of viscoelastic properties in passive microrheology
[25]. By conducting FCS measurements on different spatial scales via multiple focus
sizes (spot variation FCS), the nanoscopic material properties behind the anomalous
diffusion can be investigated, such as lipid domains or protein and polymer mesh-
works, see for example [26–28].

Nonetheless, for practical applications of the correlation functions in FCS and
FCCS experiments, it is convenient to devise a model for the MDF and calculate
Ξ(τ) analytically. The simplest and most common model for the MDF in a confocal
setup is a three-dimensional Gaussian function (3DG) with cylindrical symmetry,

where we now use the vector r
→ = x, y, zð ÞT and the center of focus is at r

→ = 0
→

and
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the ratio of the axial vs. lateral elongation of the focus is called the structural
parameter (or structure parameter) S = ωz/ωxy [29]:

W3DG r
→
� �

= e
-

2 x2þy2ð Þ
ω2xy � e-

2z2

ω2z = e
-

2 x2þy2þz2

S2

� �
ω2xy

ð50Þ

Veff,x =
π
2

� �3
2
ω2
xy,a þ ω2

xy,b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2aω

2
xy,a þ S2bω

2
xy,b

q
ð51Þ

V eff, a, bð Þ = π
3
2S a, bð Þω3

xy, a, bð Þ: ð52Þ

Due to the Gaussian functions, the integration according to Eq. 17 can be solved
analytically.

Introducing the diffusion time with the definition

τD, a, bð Þ =
ω2
xy, a, bð Þ
4D

ð53Þ

as the characteristic time a particle takes to traverse the focus in lateral direction, one
obtains for the position correlation function:

Ξ τð Þ= 1þ τ
τD,a þ τD,bð Þ=2

� �- 1

1þ τ

S2aτD,a þ S2bτD,b
� 


=2

 !- 1=2

: ð54Þ

For the experimentally important case of species of different brightnesses with a
single diffusion time diffusing in 3D the FCS correlation function (not including
photophysical effects) is given by [29]

G a, bð Þ τð Þ=A
1

1þ τ
τD, a, bð Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ

S2a, bð ÞτD, a, bð Þ

r ð55Þ

If diffusion is restricted to a plane which is centered in the focus and perpendic-
ular to the laser beam the MDF can be modeled as a two-dimensional Gaussian
function (2DG). In this case, the FCS correlation function simplifies to

G a, bð Þ τð Þ=A
1

1þ τ
τD, a, bð Þ

ð56Þ

Figure 3 illustrates the typical shapes of FCS diffusion curves for the 2DG model
and for the 3DG model, including different values of the structural parameter S.
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