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Abstract Time-tagged TCSPC (time-correlated single photon counting) is a spe-

cial acquisition mode of TCSPC with which one determines not only the excitation-

emission delay time of detected photons but also their arrival times measured from

the start of the experiment. Time-tagged TCSPC enables us to examine slow

fluctuation of fluorescence lifetimes, which is particularly important in the study

of heterogeneous or fluctuating systems at the single-molecule level. In this chapter,

we describe recent development of new methods using time-tagged TCSPC, aiming

at showing their high potential in studying dynamics of complex systems. We

depict two closely related methods based on fluorescence correlation spectroscopy

(FCS), i.e., lifetime-weighted FCS and two-dimensional fluorescence lifetime cor-

relation spectroscopy (2D FLCS). These methods enable us to quantify fluores-

cence lifetime fluctuations on the microsecond timescale. Showing examples

including the study of a biological macromolecule, we demonstrate the usefulness

of these two methods in real applications. In addition, we present another applica-

tion of time-tagged TCSPC, which analyzes photon interval time for characterizing

timing instability of photon detectors.
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1 Introduction

Time-correlated single photon counting (TCSPC) is a sensitive method for the

measurement of fluorescence lifetime with a time resolution of tens to hundreds

of picoseconds. A typical TCSPC setup consists of a pulsed excitation source, a

photon detector having a short response time, and an electronic circuit which can

precisely determine the delay time between the excitation pulse and the photon

signal in the unit of TCSPC channel number (“microtime,” Fig. 1). After accumu-

lating sufficient number of fluorescence photons, a fluorescence decay curve is built

as a histogram of the obtained microtimes. The characteristic fluorescence lifetime

of the sample molecule is evaluated from the fluorescence decay curve, typically by

fitting analysis using exponential functions.

In ordinary TCSPC experiments, only the microtimes of detected photons are

recorded for building the ensemble-averaged histogram, while information of the

temporal fluctuation of the microtime in a slower timescale (microseconds to

seconds) is discarded. On the other hand, in time-tagged TCSPC [1], one keeps a

record of the absolute arrival time of individual photons measured from the start of

the experiment (“time tag” or “macrotime,” Fig. 1). Combined use of the microtime

and macrotime information facilitates simultaneous measurements of fluorescence

lifetime and fluorescence intensity fluctuations. Moreover, this acquisition mode of

fluorescence photons allows us to analyze the correlation of the microtime and

macrotime, which in fact provides information about the fluctuation of fluorescence

lifetimes on the microsecond to second timescale. Such fluctuation of the fluores-

cence lifetime is essential in fluorescence measurements at the single-molecule

level, where the fluctuation is caused by conformational dynamics of the molecule.

In order to access rich information contained in the fluctuation of fluorescence

lifetimes in single-molecule experiments, a reliable, convenient, and versatile

method for analyzing time-tagged TCSPC data is critically important.

To date, several methods have been reported to analyze time-tagged TCSPC

data. For example, burst-integrated fluorescence lifetime (BIFL) [2] and fluores-

cence intensity and lifetime distribution analysis (FILDA) [3] are single-molecule-

based techniques with which one examines distribution of fluorescence lifetimes by

evaluating the mean fluorescence lifetime in short binning windows and analyzing

its statistics. These methods can be used to detect distribution of the fluorescence

lifetime in static multi-component systems. However, they are not suitable for
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dynamic systems that involve rapid lifetime fluctuations, because the time binning

limits the time resolution to the bin width.

Fluorescence correlation spectroscopy (FCS) based techniques treat time-tagged

TCSPC data with a binning-free (photon-by-photon) manner [4]. Therefore, they

allow us to study fluorescence lifetime fluctuations with a time resolution down to

tens of nanoseconds. Fluorescence lifetime correlation spectroscopy (FLCS) [5–8]

is a useful technique when one has information about the fluorescence decay of

each species in advance. In this case, FLCS utilizes the microtime information of

each detected photon to infer the source of the photon, i.e., the species from which

the photon is emitted. By comparing the observed microtimes with the fluorescence

decay curve of each species (reference), FLCS can determine the auto- and cross-

correlations of relevant species in a species-selective manner. Nevertheless, FLCS

is not applicable in case that we do not have information about the fluorescence

lifetime of the component. Therefore, one needs a new “reference-free” method for

studying conformational dynamics of macromolecules where unknown intermedi-

ate states may appear.

In this chapter, we describe our recent effort to develop reference-free methods

to study conformational dynamics of macromolecules using time-tagged TCSPC.

Lifetime-weighted FCS [9] is a simple reference-free method to detect inhomoge-

neity in the sample through fluorescence lifetime fluctuations. This method is used

for finding inhomogeneity in the sample and/or for “the first examination” of the

timescale of the conformational dynamics of macromolecules. Two-dimensional

fluorescence lifetime correlation spectroscopy (2D FLCS) [10–12] is a recently

developed versatile reference-free method which analyzes time-tagged TCSPC data

by building two-dimensional correlation maps. 2D FLCS is particularly useful for

investigating complex dynamics of unknown systems in a visually comprehensible

Fig. 1 Schematic description of a time-tagged TCSPC data. For each detected photon, microtime

(t) and macrotime (T ) are measured with the TCSPC module. Photon data is a combined list of

microtimes and macrotimes of detected photons sorted with the macrotime values

Lifetime-Weighted FCS and 2D FLCS: Advanced Application of Time-Tagged TCSPC 113



manner. At last, we describe another type of application of time-tagged TCSPC. It

is shown that the photon interval analysis on the time-tagged TCSPC data can solve

a long-standing problem of timing instability of photon detectors [13].

2 Lifetime-Weighted Fluorescence Correlation

Spectroscopy

Usually, FCS experiments are performed by observing the correlation function of

time-dependent fluorescence intensity, I(T) [14]:

GI ΔTð Þ ¼ I Tð ÞI T þ ΔTð Þh i
I Tð Þh i2 ; ð1Þ

where ΔT is the correlation lag time and angle brackets denote ensemble averaging.

This quantity is evaluated photon-by-photon using time-tagged photon data as

GI ΔTð Þ ¼

XN
p¼1

XN
q¼1

1 ΔT � ΔΔT=2 < Tq � Tp < ΔT þ ΔΔT=2
0 otherwise

�

N2T�2
max � Tmax � ΔTð Þ � ΔΔT : ð2Þ

Here, Tp(q) is the macrotime of p(q)-th photon, N is the total number of detected

photons,ΔΔT is an arbitrary window size, and Tmax is the measurement time. In this

definition, one searches for all possible pairings of photons in the time-tagged

TCSPC data which satisfy the condition that the time lag between the pair is ΔT
(Fig. 2a). The denominator of Eq. (2) is the normalization factor that is chosen such

that GI(ΔT ) becomes unity when there is no intensity correlation. GI(ΔT ) charac-
terizes the fluctuations of fluorescence intensity.

If one incorporates the microtime data obtained by time-tagged TCSPC to FCS,

one can investigate fluorescence lifetime fluctuations. The simplest way is to

replace “1” in the numerator of Eq. (2) with the product of microtimes (t) of

photons p and q (Fig. 2a) [9]:

GL ΔTð Þ ¼

XN
p¼1

XN
q¼1

tptq ΔT � ΔΔT=2 < Tq � Tp < ΔT þ ΔΔT=2
0 otherwise

�

t2N2T�2
max � Tmax � ΔTð Þ � ΔΔT ; ð3Þ

where t ¼
XN

p¼1
tp=N is the ensemble-averaged mean fluorescence lifetime.

Equation (3) is equivalent to
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GL ΔTð Þ ¼ t Tð ÞI Tð Þt T þ ΔTð ÞI T þ ΔTð Þh i
t Tð ÞI Tð Þh i2 ; ð4Þ

where t(T) is the fluorescence lifetime at the macroscopic time T. The right-hand

side of this equation can be interpreted as the correlation function of the “lifetime-

weighted” fluorescence intensity. Note that, although it may seem counterintuitive,

Eq. (3) is not the correlation function of the fluorescence lifetime itself, i.e., ht(T )t(T
+ΔT)i/ht(T)i2. The intensity factor I(T ) appears in Eq. (4) because the photon-by-

photon evaluation of a correlation function is inevitably influenced by the fluctua-

tion of fluorescence intensity. Therefore, more photons are sampled from the time

region where the fluorescence intensity is higher.

For separating the lifetime fluctuation from the intensity fluctuation, one can

employ the ratio of the lifetime-weighted fluorescence correlation (Eq. (3)) to the

ordinary intensity correlation (Eq. (2)) [9],

R ΔTð Þ ¼ GL ΔTð Þ � 1

GI ΔTð Þ � 1
: ð5Þ

By canceling the correlation amplitude due to intensity fluctuations as Eq. (5), one

can examine the extent and timescale of the fluctuation of the fluorescence lifetime.

If the system is homogeneous, R(ΔT ) becomes unity; In contrast, if the system

consists of multiple species having different fluorescence lifetimes, R(ΔT ) takes a
value deviated from unity. A dynamic process such as conformational dynamics

usually induces an interconversion between species having different fluorescence

lifetimes, and hence it causes a change of R(ΔT). Importantly, as long as there is no

Fig. 2 (a) Correlation calculation from time-tagged TCSPC data. Photon pairs with the interval of

ΔT are looked up in the photon data and their occurrences are counted. In the lifetime-weighted

FCS, the counting is weighted with the product of corresponding microtimes. (b) The result of

lifetime-weighted FCS measurements of a DNA hairpin. Top: correlation ratio defined in Eq. (5).

The arrow indicates a transition of the correlation ratio. Bottom: ordinary fluorescence intensity

correlation
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variation in the diffusion behavior of the molecules in the sample, R(ΔT ) defined as
Eq. (5) is free from the diffusion effect and reports only intramolecular dynamics

that causes fluctuations of the fluorescence lifetime. This feature is particularly

important when one studies conformational dynamics of macromolecules in the

micro to millisecond time region.

Figure 2b shows the R(ΔT ) curve of a single-stranded DNA forming a hairpin

structure (6-FAM-50-TTTAACC(T)18GGTT-30-TAMRA) [12]. The DNA sample is

labeled with two fluorophores that constitute a Förster resonance energy transfer

(FRET) pair. The FRET efficiency from the donor (FAM) to the acceptor

(TAMRA) increases drastically upon formation of the hairpin structure. Therefore,

one can study the formation-dissociation dynamics of the DNA hairpin through

monitoring the FRET efficiency. The FRET efficiency, E, is represented by the

fluorescence lifetime of the donor, τD, as

E ¼ 1� τD
τD0

; ð6Þ

where τD
0 is the intrinsic fluorescence lifetime of the donor in the absence of an

acceptor. Therefore, the fluctuation of τD, which is quantified as R(ΔT ) of the donor
fluorescence, can be used to detect dynamics of the DNA hairpin formation. In

Fig. 2b, the R(ΔT ) curve of the DNA hairpin clearly shows a transition at

ΔT ~ 100 μs. This is a clear evidence of a dynamics on this timescale which changes

the fluorescence lifetime of FAM. In other words, a dynamics that changes the DNA

structure is unambiguously detected by lifetime-weighted FCS. It is noteworthy that

even though the transition is undoubtedly observed in R(ΔT ), the corresponding

signature is not apparent in the raw correlation curve (GI(ΔT); Fig. 2b) because of
coexisting dynamic signals originating from the diffusion and triplet formation.

To summarize, the lifetime-weighted FCS is a simple reference-free application

of time-tagged TCSPC data which can be used for detecting inhomogeneity in the

sample and the relaxation dynamics of the inhomogeneity through R(ΔT ). This
method is advantageous over traditional FCS for detecting the dynamics of biolog-

ical macromolecules. Nevertheless, the lifetime-weighted FCS does not provide

detailed knowledge about the system. Specifically, it does not tell about the number

of independent species, the fluorescence lifetime of them, and the species involved

in the observed dynamics. The next task is to elucidate these details by carefully

examining time-tagged TCSPC data, as described in the next section.

3 Two-Dimensional Fluorescence Lifetime Correlation

Spectroscopy (2D FLCS)

3.1 Constructing Two-Dimensional Correlation Map

Time-tagged TCSPC data consists of lists of the microtimes and macrotimes of

detected photons (Fig. 1). In order to thoroughly investigate the correlation pattern
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contained in the time-tagged data, one should avoid any loss of information in the

analytical process. The best way is to individually evaluate the correlation function

for all possible combinations of microtime values, {t(i), t( j)} [10–12, 15]. In other

words, one should use the following form of a correlation function to fully utilize

the microtime information in time-tagged data:

Mij ΔTð Þ ¼ I T; t ið Þ
� �

I T þ ΔT; t jð Þ� �� �

¼

XN
p¼1

XN
q¼1

δtpt ið Þδtqt jð Þ ΔT � ΔΔT=2 < Tq � Tp < ΔT þ ΔΔT=2
0 otherwise

�

Tmax � ΔTð Þ � ΔΔT

: ð7Þ

I(T; t(i)) is the fluorescence intensity detected by ith TCSPC channel at macroscopic

time T, and δkl is the Kronecker delta function. For example, if we set i¼ 1 and

j¼ 2, Eq. (7) becomes the (unnormalized) cross-correlation function between the

fluorescence intensities detected at the first and the second TCSPC channels. By

gathering allMij(ΔT ) values for various {i, j} combinations together, one obtains a

two-dimensional matrix of correlation data,M(ΔT ). Note that if one sums up all the

elements ofM(ΔT), one obtains the ordinary (unnormalized) fluorescence intensity

correlation, i.e., ∑ i∑ jMij(ΔT )¼hI(T )I(T +ΔT )i.
In practice, computation of M(ΔT) is done as follows (Fig. 3).

1. An arbitrary timescale of interest and a window size are chosen (ΔT and ΔΔT).
2. A two-dimensional array of memory space is prepared for storingM(ΔT). The

size of this array is the square of the number of TCSPC channels, e.g.,

256� 256. M(ΔT ) is initialized by setting zero at all elements of this array.

Fig. 3 Schematic illustration of the procedure for building a two-dimensional correlation map.

Here, the correlation timescale (ΔT ) and the window size (ΔΔT ) are set at 100 and 10, respec-

tively. The first part (left) represents steps 3–7 and the second part (center) represents steps 8–9
(see main text)
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3. The macrotime and microtime of the first photon in the time-tagged TCSPC

data (T1, t1) are examined and stored in buffer memory.

4. The macrotime table is scanned to pick up photons that have macrotime values

between T1 +ΔT�ΔΔT/2 and T1 +ΔT +ΔΔT/2.
5. If a matching photon is found, its microtime is read (tm).
6. The {t1, tm} element of M(ΔT ) is incremented by 1.

7. Steps 4–6 are repeated to find all matching photons.

8. Step 3 is repeated for the second photon. Its macrotime and microtime (T2, t2)
are examined and stored in buffer memory.

9. Steps 4–7 are repeated for T2 and t2.
10. Steps 8 and 9 are repeated for the rest of photons.

Sometimes FCS experiments are performed in the cross-correlation configura-

tion using two independent detectors in order to avoid artifact due to the

afterpulsing effect of the detector [16]. In that case, photons examined in step

3 (or step 8) and in step 4 should be those from different detectors.

Roughly speaking, the physical meaning of the obtained two-dimensional matrix

M(ΔT ) can be interpreted as follows.

• Elements ofM(ΔT ) of small t(i), t( j) values mainly reflect the autocorrelation of

short lifetime species.

• Elements of M(ΔT ) of large t(i), t( j ) values mainly reflect the autocorrelation of

long lifetime species.

• Elements of M(ΔT) of small t(i) and large t( j) values mainly reflect the cross-

correlation between short lifetime species and long lifetime species.

Importantly, M(ΔT ) preserves the full information of two-point correlations

obtainable from a set of the time-tagged TCSPC data. Therefore, any other analyses

of time-tagged TCSPC data can be reinterpreted using M(ΔT ). Such reinterpreta-

tion provides a coherent overview of the existing methods, which can lead us to

further development of a new analysis. For example, FLCS developed by Enderlein

and coworkers [5–8] can be understood in the framework of M(ΔT ) as follows. In
FLCS, it is assumed that the complete prior knowledge of the fluorescence decay

components is available. Then, an observed two-dimensional correlation matrix

M(ΔT ) is expected to be a sum of auto- and cross-correlations of the known decay

curves:

Mij ΔTð Þ ¼
X
k, l

gkl ΔTð ÞIk t ið Þ
� �

Il t jð Þ
� �

: ð8Þ

Here, Ik(l )(t) is the decay curve of species k(l ) and gkl(ΔT ) is the correlation

between species k and l at lag time ΔT. FLCS analysis [5–8] is mathematically

equivalent to the least mean square fitting of the observedM(ΔT) using Eq. (8), i.e.,
the fitting using combinations of Ik(t) and Il(t) to determine unknown gkl(ΔT )’s.
This interpretation of FLCS using a 2D matrix makes it clear that a new analysis is

necessary for more general case where one does not have any prior knowledge of
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the fluorescence decay components. In such cases, one should simultaneously

determine Ik(t), Il(t), and gkl(ΔT) from the observedM(ΔT ) without any references.
In the following, we describe how to achieve this reference-free analysis ofM(ΔT),
which is the core of 2D FLCS [10–12].

3.2 Background Subtraction

First, one needs to note that a correlation signal obtained in FCS is always

accompanied with uncorrelated background due to photon pairs emitted by differ-

ent molecules that coexist in the observation volume. Emissive background signals,

such as solvent Raman scattering, also contribute to the uncorrelated background.

One can separate the information of the correlated photons from the uncorrelated

background by using M(ΔT ) evaluated at a very long ΔT [10].

After a sufficiently long lag time, the correlation vanishes because of diffusion.

Therefore, the {i, j}-th element ofM(ΔT) at a long lag time becomes the product of

the ith and jth points of the ensemble-averaged fluorescence decay curve:

M unc
ij ¼ I t ið Þ

� �
I t jð Þ
� �

: ð9Þ

One can obtain the correlated part of M(ΔT ) by subtracting this uncorrelated part:

M cor
ij ΔTð Þ ¼ Mij ΔTð Þ �M unc

ij : ð10Þ

Mcor(ΔT ) does not contain any contributions from different molecules or

uncorrelated backgrounds, because these contributions do not fluctuate in a corre-

lated manner. It means that this separation of the correlated part enables us to treat

Mcor(ΔT ) as if it is built from a strict single-molecule experiment under an ideal

condition, i.e., infinitesimally low concentration and no background scattering.

Figure 4 demonstrates the effect of subtraction of uncorrelated background

[12]. The sample is a mixture of two fluorescent dyes, Cy3 and TMR (tetramethyl-

rhodamine). Figure 4a shows the fluorescence decay curves of Cy3, TMR, and their

mixture. The fluorescence lifetime of Cy3 is 0.18 ns and that of TMR is 2.4 ns. The

fluorescence of the mixture solution shows a biexponential decay which corre-

sponds to a sum of the TMR and Cy3 decay curves. Figure 4b is the 2D map of the

uncorrelated background, Munc, and Fig. 4c shows that of the correlated part,

M
cor(ΔT ), at ΔT¼ 10–100 μs. A clear difference is seen between the shapes of

these 2D maps. Namely, the correlated part lacks sharp ridges along the time-zero

lines which are, in contrast, obvious in the uncorrelated part. These ridges represent

the cross-correlation between the short lifetime component (Cy3) and the long

lifetime component (TMR), so that their absence in the correlated part indicates

that the cross-correlation between these components is zero. This cross-correlation

should naturally be zero, because the sample is just a mixture of two independent
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dyes. This consistency proves that the uncorrelated background is properly

subtracted in this analysis. Thus, the correlated part can be regarded as an equiv-

alent of the sum of the single-molecule correlation signals of TMR and Cy3.

3.3 Inverse Laplace Transform and Decomposition
into Multiple Species

The next step is decomposition of Mcor(ΔT ) [11, 12]. When a sample consists of

multiple species,Mcor(ΔT ) becomes the sum of contributions from these species. In

such cases, one can decompose Mcor(ΔT ) into each contribution as follows to

identify each species and to study their interconversion:

Fig. 4 (a) Fluorescence decay curves of two fluorescent dyes (TMR and Cy3) and their mixture

measured with the TCSPC method. (b, c) 2D correlation maps of the uncorrelated part (b) and the

correlated part at ΔT¼ 10–100 μs (c) built from time-tagged TCSPC data of the mixture solution.

Note that ridges are clearly visible in (b)
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M cor
ij ΔTð Þ ¼

X
k, l

g cor
kl ΔTð ÞIk t ið Þ

� �
Il t jð Þ
� �

: ð11Þ

Here, gkl
cor(ΔT ) is the correlated part of the species-specific correlation function

between k and l. If no exchange reaction occurs between different species, the

corresponding cross-correlation (gkl
cor(ΔT ), k 6¼l ) becomes zero. On the other hand,

if a reaction exchanging two species k and l takes place, gkl
cor(ΔT ) starts appearing

on the timescale of the reaction.

In practice, however, the decomposition of Mcor(ΔT ) using Eq. (11) is not easy

because the separation of fluorescence decay curves of different species in

Mcor(ΔT ) is not straightforward when reference data (i.e., the functional forms of

Ii(t)’s) are not available. This complexity is reduced by considering the fluorescence

lifetime of each species instead of the fluorescence decay curve. In general, one can

represent the fluorescence decay curve of a certain species by using continuously

distributed fluorescence lifetime, τ, and corresponding amplitude, a(τ):

I tð Þ ¼
ð1
0

a τð Þexp �t=τð Þdτ: ð12Þ

Then, one can rewrite Mcor(ΔT) as,

M cor
ij ΔTð Þ ¼

X
k, l

g cor
kl ΔTð Þ

ð1
0

ak τ0ð Þexp �t ið Þ=τ0
� �

dτ0
ð1
0

al τ
00ð Þexp �t jð Þ=τ00

� �
dτ00

¼
ð1
0

ð1
0

eMτ0τ00 ΔTð Þexp �t ið Þ=τ0
� �

exp �t jð Þ=τ00
� �

dτ0dτ00;

ð13Þ

where we introduced a two-dimensional lifetime correlation map:

eMτ0τ00 ΔTð Þ ¼
X
k, l

g cor
kl ΔTð Þak τ0ð Þal τ00ð Þ: ð14Þ

a(τ) has well-separated peak(s) when each species has a well-defined fluorescence

lifetime. It is also expected that eM ΔTð Þ shows a clear peak pattern in a

two-dimensional map which directly represents auto- and cross-correlations of

the species in the sample. Therefore, eM ΔTð Þ is much more suitable for intuitively

interpreting the whole kinetics on the species basis. The conversion from I(t) to a(τ)
is formally equivalent to inverse Laplace transform (ILT) and the conversion

Mcor(ΔT ) ! eM ΔTð Þ corresponds to two-dimensional ILT. Usually one needs a

special procedure to perform ILT because it is known that ILT is numerically

unstable. MEM (maximum entropy method) is sometimes employed for

suppressing the numerical instability [17, 18]. As described in detail in a published

paper [12], a MEM approach is used for this 2D ILT problem and eM ΔTð Þ is

obtained from Mcor(ΔT ) in 2D FLCS.
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The above-described procedure for obtaining eM ΔTð Þ realizes 2D FLCS. The

cross-correlation between different species (gkl
cor(ΔT ), k 6¼l ) appears in eM ΔTð Þ

map as an off-diagonal peak between two different lifetimes representing the

species k and l (Eq. (14)). Therefore, by examining the ΔT-dependence of the

intensity of off-diagonal peaks, one can trace the temporal evolution of gkl
cor(ΔT),

which represents the equilibration process between the two species (k and l ).
Figure 5 shows an illustrative example of 2D FLCS [11]. Here, in order to

exemplify the 2D FLCS analysis using well-defined parameters, a synthetic photon

data was generated by kinetic Monte Carlo simulation. We assumed a two-state

reaction model between states A and B with the forward rate constant kf and the

backward rate constant kb, where kf¼ kb¼ (100 μs)�1. The fluorescence lifetimes of

the states A and B were set at 1 and 5 ns, respectively. Figure 5a shows Mcor(ΔT)
constructed from the simulated photon data for different lag times. One can see that

the shape of the 2D correlation pattern changes with ΔT, which are also evident in

the slices of the 2D maps at different microtime values (Fig. 5a, bottom). This

change reflects the interconversion between A and B which occurs duringΔT. It can

Fig. 5 2D FLCS applied to the synthetic photon data generated by kinetic Monte Carlo simula-

tion. (a) The correlated part of the 2D map (Mcor(ΔT )) at ΔT¼ 0–10 μs (left), 40–60 μs (center),
and 200–220 μs (right). The slices of these maps integrated over the colored rectangle regions are

shown in the bottom with corresponding colors. (b) The converted 2D lifetime maps (fM ΔTð Þ) at
ΔT¼ 0–10 μs (left), 40–60 μs (center), and 200–220 μs (right)
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be more clearly visualized by using 2D ILT that converts M
cor(ΔT ) to eM ΔTð Þ

(Fig. 5b). In the converted 2D lifetime maps, one can clearly see isolated diagonal

peaks, which correspond to the A (τ¼ 1 ns) and B states (τ¼ 5 ns). Absence of the

cross peaks between these two states at the shortest lag time (ΔT¼ 0–10 μs) is a
clear evidence of independence of these states. Subsequent gradual rise of the cross

peaks reflects transformation between the two states, which accords with the

adopted reaction model. This result exhibits that, by comparing 2D lifetime maps

at different ΔT, one can visualize the equilibration process between different

species and determine its time constant in a species-specific manner.

3.4 Application: DNA Dynamics

Next, we show an application of 2D FLCS to the hairpin-forming DNA molecule

that was examined in the previous section by lifetime-weighted FCS (Fig. 2)

[12]. Here, in order to clarify the dynamics of DNA hairpin observed atΔT ~ 100 μs,
Mcor(ΔT ) is built for three time regions encompassing this timescale (Fig. 6a).

These Mcor(ΔT) exhibit ΔT-dependent change. However, in contrast to the previ-

ous example, the change ofMcor(ΔT) is not very obvious and hence it is difficult to
obtain physical insight directly from this 2D map. In this case, the conversion from

Mcor(ΔT ) to eM ΔTð Þ by 2D ILT is very effective (Fig. 6b). In the 2D ILT analysis

using MEM, we assumed three independent components that coexist in the sample.

For these three components, MEM determined the fluorescence lifetime distribu-

tion, ak(τ), and the auto- and cross-correlations, gkl
cor(ΔT ) (Eqs. (13, 14)). The

analysis was simultaneously performed on the three 2D maps shown in Fig. 6a,

which enabled us to obtain a common set of ak(τ) that is independent of ΔT (global

analysis). The obtained ak(τ)’s (k¼ 1–3) is shown in Fig. 6c. The observed peaks ineM ΔTð Þ in the shortest ΔT (Fig. 6b) correspond to the autocorrelation peaks of these

three components. (Note that some components exhibit multi-exponential decays

due to fast structural fluctuation, so that cross peaks appear in autocorrelation of

these species.) Very importantly, one can find growth of new cross peaks in the

second and third panels of Fig. 6b, as indicated by arrows. These cross peaks

represent the origin of the ~100 μs dynamics of the DNA hairpin observed by the

lifetime-weighted FCS (Fig. 2), and they correspond to the cross-correlation

between the second (k¼ 2) and the third (k¼ 3) components in Fig. 6c. Based on

the fluorescence decay measurements on control samples, the second and the third

components were assigned to the open form and the closed form, respectively,

whereas it was found that the first (k¼ 1) component was due to the DNA molecule

lacking an active acceptor dye [12]. Therefore, the observed dynamics is attributed

to the interconversion between the open form and the closed form. On the other

hand, any cross peaks between the first component and others are not observed. It is

consistent with that the first component stems from a species without an active

acceptor and hence its fluorescence lifetime does not change with the lag time ΔT.

Lifetime-Weighted FCS and 2D FLCS: Advanced Application of Time-Tagged TCSPC 123



Figure 7 summarizes the dynamics of the DNA hairpin concluded from this

experiment. The dynamics of the hairpin DNA can be described by a two-state

model between the open and closed forms, and the acceptor-inactive DNA coexists

in the sample. The 2D FLCS was proven to be useful to obtain the species-specific

correlation that can separate multiple species such as the open form, the closed

form, and even inactive molecules in the sample, without any prior knowledge

about each species.

Fig. 6 2D FLCS of a DNA hairpin. (a) The correlated part of the 2D map (Mcor(ΔT )) at ΔT¼ 10–

30 μs (left), 30–100 μs (center), and 100–200 μs (right). (b) The converted 2D lifetime map (fM
ΔTð Þ) at ΔT¼ 10–30 μs (left), 30–100 μs (center), and 100–200 μs (right). (c) Three independent
components (ak(τ), k¼ 1–3) that are extracted in the analysis. Their auto- and cross-correlations

comprises 2D lifetime maps in (b)
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4 Photon Interval Analysis

So far, we have discussed how to quantify fluctuations of fluorescence lifetime

using time-tagged TCSPC through two newly developed methods, i.e., lifetime-

weighted FCS and 2D FLCS. In this section, we turn our attention to another way of

using time-tagged TCSPC data, focusing on its local property. Instead of collecting

every photon pairs found with a fixed time interval, we consider only photon pairs

directly neighboring in the photon table, and examine the relationship between their

microtimes and the time interval (Fig. 8a). Photon interval distribution is sometimes

investigated by using the Hanbury Brown and Twiss setup [19] to study nanosecond

photon correlations [20, 21], utilizing the definite relationship between the photon

interval distribution and the intensity correlation function. Here, we present an

application of photon interval analysis that incorporates microtime information, and

show its usefulness for analyzing the timing instability problem of photon

detectors [13].

Single photon avalanche photodiode (SPAD) is a photon detector commonly

used in TCSPC experiments, particularly in single-molecule fluorescence lifetime

measurements and fluorescence lifetime imaging (FLIM). A well-known drawback

of SPADs is the counting-rate dependence of the shape and peak position of the

instrument response function (IRF), which hampers accurate determination of the

fluorescence lifetime. It has been claimed that this counting-rate dependence arises

from the quenching circuit in SPADs [22]. In the following, this problem is

analyzed by using the IRF data measured by time-tagged TCSPC, and an efficient

calibration method is given [13].

Fig. 7 A schematic picture

of the dynamics of a DNA

hairpin observed by 2D

FLCS. Green and orange
circles represent the donor
(FAM) and acceptor

(TAMRA) dyes,

respectively. The closed

form (bottom left) and the

open form (bottom right)
are equilibrated in ~100 μs,
whereas an acceptor-

inactive species (top) also
exists in the sample solution
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Figure 8b shows the counting-rate dependence of the IRF of a SPAD. These

curves are obtained by building the microtime histogram of scattered photons of

laser pulses with various intensities. The data clearly shows that the time profile of

IRF drastically changes with the counting rate. To examine this timing instability in

more detail, all the detected photons are classified according to the time interval

with respect to the preceding photon using their macrotime information (Fig. 8a):

ΔTp ¼ Tp � Tp�1: ð15Þ

ΔT-dependent IRF is evaluated by collecting photons that have common ΔT values

(Fig. 8c). The peak position of the IRF shows a monotonous shift with ΔT, whereas
the shape is mostly preserved. This implies that the counting-rate dependence

observed in Fig. 8b is essentially due to ΔT-dependent timing shift. The ΔT-
dependent peak position of IRF was measured at various counting rates and is

plotted in Fig. 8d. It is clearly seen that the data measured with different counting

rates overlap with each other and follow the same trend. This result leads us to

conclude that the time interval, ΔT, rather than the mean counting rate, is the factor

that determines the timing instability.

If one analyzes the ΔT-dependence of the mean delay time (Fig. 8d) in more

detail, one may further obtain some insight into the underlying physics that causes

the timing instability. However, even without going into the detail of the

Fig. 8 Photon interval analysis of time-tagged TCSPC data. (a) Definition of the photon interval

of pth photon. (b) Counting-rate dependence of the IRF obtained with a SPAD. (c) IRF curves

reconstructed from photons of selected ΔT values. They demonstrate ΔT-dependence of the IRF.
(d) ΔT-dependence of the peak position of the IRF measured at various counting rates.

(e) Counting-rate dependence of the IRF after calibration
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mechanism, one can use this ΔT-dependence for calibrating the counting-rate

dependent timing shift [13]. Actually, the calibration curve is obtainable by fitting

the ΔT-dependent peak position of IRF (Fig. 8d) with an appropriate function. We

used the Hill equation to fit the observed data (Fig. 8d, solid line). The microtime of

any photons detected with the same detector can be calibrated using the same

calibration curve. Figure 8e shows the calibrated IRF curves at various counting

rates. The effect of the calibration is obvious, i.e., the shape and position of IRF

become almost independent of the counting rate. This calibration allows us to

obtain the best achievable time resolution in TCSPC experiments, particularly in

applications such as FLIM where the counting rate largely fluctuates.

5 Concluding Remarks

In this chapter, we described two methods using time-tagged TCSPC, which have

been recently developed to derive as much information as possible from the photon

data collected. We note that these methods do not require any modification of the

optical (microscopy) setup of a standard TCSPC, because they are purely numerical

algorithms. However, these methods can extract information that is usually hidden

under seemingly random fluctuations. Even though the structure of time-tagged

TCSPC data is rather simple, we believe that the obtainable knowledge from the

data has not been fully exploited yet. Therefore, there exist vast possibilities to

extend the usage of time-tagged TCSPC for various applications.
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