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Abstract The endogenous ligand for growth-hormone secretagogue receptor (GHS-R)
was purified from the stomach and we named it “ghrelin”, after a word root (“ghre”) in
Proto-Indo-European languages meaning “grow”, since ghrelin has potent growth hor-
mone (GH) releasing activity. In addition, ghrelin stimulates appetite by acting on the
hypothalamic arcuate nucleus, a region known to control food intake. Ghrelin is orexi-
genic; it is secreted from the stomach and circulates in the blood stream under fasting
conditions, indicating that it transmits a hunger signal from the periphery to the central
nervous system. Taking into account all these activities, ghrelin plays important roles for
maintaining growth hormone release and energy homeostasis in vertebrates. The diverse
functions of ghrelin raise the possibility of its clinical application for GH deficiency, eat-
ing disorder, gastrointestinal disease, cardiovascular disease, osteoporosis and aging, etc.

1
Introduction

In recent years, searches for novel ligands using orphan GPCR-expressing
cells have resulted in the discovery of several novel bioactive peptides, such as
nociceptin/orphanin FQ (Reinscheid et al. 1995), orexin/hypocretin (Sakurai
et al. 1998), prolactin-releasing peptide (Hinuma et al. 1998), apelin (Tate-
moto et al. 1998), metastin (Ohtaki et al. 2001), neuropeptide B (Fujii et al.
2002; Tanaka et al. 2003), and neuropeptide W (Shimomura et al. 2002; Tanaka
et al. 2003). For the orphan-receptor strategy used to identify the endogenous
ligands, we first established a cell line that stably expresses an orphan GPCR.
Then, a peptide extract is applied to the cell line and a second messenger
response is measured. If a target orphan GPCR is functionally expressed on
the cell surface and the extract contains the endogenous ligand that can acti-
vate the receptor, the second messenger response, as usually monitored by the
levels of cAMP or intracellular Ca2+ concentration, will increase or decrease.
Through monitoring of this assay system, the endogenous ligand can be pu-
rified through several chromatographic steps. In this way, orphan receptors
represent important tools for the discovery of novel bioactive molecules and
for drug development (Civelli et al. 2001).
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Among the numerous orphan GPCR receptors, GHS-R (growth hormone
secretagogue receptor) attracted the attention of many academic and indus-
trial scientists, since its endogenous ligand could potentially be used directly
for treatment of GH deficiency. Many groups tried unsuccessfully to isolate
the endogenous GHS-R ligand from extracts of brain, pituitary, or hypothal-
amus, the known sites of GHS-R expression. Unexpectedly, we succeeded in
the purification and identification of the endogenous ligand for the GHS-R
from the stomach, and named it “ghrelin” (Kojima et al. 1999). Ghrelin is
a growth-hormone-releasing and appetite-stimulating peptide.

In this review, we review the structure, distribution, and physiological
functions of ghrelin.

2
Discovery and Structure Determination of Ghrelin

A cultured cell line expressing the GHS-R was established and used to identify
tissue extracts that could stimulate the GHS-R, as monitored by increases in
intracellular Ca2+ levels. After screening several tissues, very strong activity
was unexpectedly found in stomach extracts (Kojima et al. 1999). The pep-
tide that stimulated GHS-R was purified from the rat stomach through four
steps of chromatography: gel-filtration, two ion-exchange HPLC steps, and
a final reverse-phase HPLC (RP-HPLC) procedure. The second ion-exchange
HPLC yielded two active peaks (P-I and P-II), from which ghrelin and des-
Gln14-ghrelin were purified, respectively (Hosoda et al. 2000b). The active
peaks were finally purified by RP-HPLC. The name ghrelin is based on “ghre”,
a word root in Proto-Indo-European languages for “grow”, in reference to its
ability to stimulate GH release. Ghrelin is a 28-amino-acid peptide, in which
the serine 3 (Ser3) is n-octanoylated and this modification is essential for
ghrelin’s activity (Fig. 1). Ghrelin is the first known and only case of a peptide
hormone modified by a fatty acid.

In rat stomach, a second type of ghrelin peptide has been purified and iden-
tified as des-Gln14-ghrelin (Hosoda et al. 2000b). Except for the deletion of
Gln14, des-Gln14-ghrelin is identical to ghrelin, even retaining the n-octanoic
acid modification. Des-Gln14-ghrelin has the same potency of activities as that
of ghrelin. The deletion of Gln14 in des-Gln14-ghrelin arises due to the usage
of a CAG codon to encode Gln, which results in its recognition as a splicing
signal. Thus, two types of active ghrelin peptide are produced in rat stomach,
ghrelin and des-Gln14-ghrelin. However, des-Gln14-ghrelin is only present in
low amounts in the stomach, indicating that ghrelin is the major active form.

In mammals, ghrelin homologues have been identified in human, rhesus
monkey (Angeloni et al. 2004), rat, mouse, mongolian gerbil (GenBank Acces-
sion number: AF442491), cow (GenBank Accession number: AB035702), pig
(GenBank Accession number: AB035703), sheep (GenBank Accession num-
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Fig. 1 Structures of human ghrelins. Human ghrelin is a 28-amino-acid peptide, in which
Ser3 is modified by a fatty acid, primarily n-octanoic acid. This modification is essential
for ghrelin’s activity

ber: AB060699), dog (Tomasetto et al. 2001), and cat (Ida et al. 2007), etc.
The amino-acid sequences of mammalian ghrelins are well conserved; in
particular, the ten amino acids are with respect to their N-termini identical
(Fig. 2). This structural conservation and the universal requirement for acyl-
modification of the third residue indicate that this N-terminal region is of
central importance to the activity of the peptide.

Ghrelin has also been identified and the structures determined in birds,
fishes, amphibians and reptiles (Kojima and Kangawa 2005) (Fig. 2). All ver-
tebrate ghrelins are mainly produced in stomach, or stomach-like organs,
and modified by medium-chain fatty acid. The fatty acids used for acyl-
modification are n-octanoic, n-decanoic acid or other minor medium-chain
fatty acids. The characteristic features of non-mammalian ghrelins are their
multiple forms in tissues: ghrelins could be classified by the type of acyl-
modification and amino acid length.

3
Des-Acyl Ghrelin

A non-acylated form of ghrelin, des-acyl ghrelin, also exists at significant
levels in both stomach and blood (Hosoda et al. 2000a). In blood, des-acyl
ghrelin circulates in amounts far greater than acylated ghrelin. Des-acyl ghre-
lin does not replace radiolabelled ghrelin at the binding sites of acylated
ghrelin in hypothalamus and pituitary and shows no GH-releasing and other
endocrine activities in rats. Moreover, des-acyl ghrelin does not possess en-
docrine activities in humans.

One question is whether there is a specific receptor for des-acyl ghrelin.
Baldanzi and coworkers have suggested the existence of another ghrelin re-
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Fig. 2 Sequence comparison of vertebrate ghrelins. Identical amino acids in each species
of mammal, bird, fish and frog are colored. The asterisks indicate acyl-modified third
amino acids. N-terminal cores with acyl-modification sites are well conserved among
all vertebrate ghrelins. A unique third residue (Thr3) in two frog ghrelins differs from
the Ser3 in ghrelins of other species. Because serine and threonine both possess hy-
droxyl groups on their side chains, they can both be modified by fatty acids. Indeed, the
frog ghrelins are modified by either n-octanoic or n-decanoic acids. Fish ghrelins were
found to contain an amide structure at their COOH-terminal ends, though these amide
structures are not necessary for activity

ceptor in the cardiovascular system (Baldanzi et al. 2002). They showed that
ghrelin and des-acyl ghrelin both recognize common high-affinity binding
sites on H9c2 cardiomyocytes, which do not express the ghrelin receptor,
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GHS-R. However, BLAST searches of the human genome using ghrelin re-
ceptor (GHS-R) cDNA as a search sequence have not revealed any ghrelin
receptor homologues. Further study is required to determine whether des-
acyl ghrelin is biologically active and binds to an as-yet-unidentified receptor.

4
Ghrelin Gene and the Structure of the Ghrelin Precursor

The human ghrelin gene is localized on the chromosome 3p25–26. The
human ghrelin receptor gene has also been identified on chromosome 3, at
position q26–27 (Smith et al. 1997).

The human ghrelin gene, like the mouse gene, comprises five exons
(Kanamoto et al. 2004; Tanaka et al. 2001). The short first exon contains only
20 bp, which encode part of the 5′-untranslated region. There are two differ-
ent transcriptional initiation sites in the ghrelin gene; one occurs at –80 and
the other at –555 relative to the ATG initiation codon, resulting in two distinct
mRNA transcripts (transcript-A and transcript-B). Transcript-A is the main
form of gastric ghrelin mRNA.

The 28 amino acids of the functional ghrelin peptide are encoded in ex-
ons 2 and 3. In the rat and mouse ghrelin genes, the codon for Gln14 (CAG) is
used as an alternative splicing signal to generate two different ghrelin mRNAs
(Hosoda et al. 2000b). One mRNA encodes the ghrelin precursor, and an-
other encodes a des-Gln14-ghrelin precursor. Des-Gln14-ghrelin is identical
to ghrelin, except for the deletion of Gln14.

The amino-acid sequences of mammalian ghrelin precursors are well con-
served. In these precursors, the 28-amino-acid active ghrelin sequence imme-
diately follows the signal peptide. The cleavage site for the signal peptide is
the same in all mammalian ghrelins. Although propeptides are usually pro-
cessed at dibasic amino acid sites by prohormone convertases, the C-terminus
of the ghrelin peptide sequence is processed at an uncommon Pro-Arg recog-
nition site. The Pro-Arg sequence is also used for the C-terminal processing
of atrial natriuretic peptide (ANP) (Seidah and Chretien, 1999; Steiner, 1998).
Zhu et al. reported that the protease that acts at the Pro-Arg site is prohor-
mone convertase 1/3 (PC1/3) (Zhu et al. 2006).

5
Enzyme for Acyl-Modification of Ghrelin

An enzyme that catalyzes the acyl-modification of ghrelin has not yet been
identified. The universal incorporation of n-octanoic acid in mammals, fish,
birds, and amphibians suggests that this putative enzyme is rather specific in
its choice of medium-chain fatty acid substrates.
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Ingestion of either medium-chain fatty acids (MCFAs) or medium-chain
triacylglycerols (MCTs) specifically increases production of acyl-modified
ghrelin without changing the total (acyl- and des-acyl-) ghrelin level (Nishi
et al. 2005). When mice ingested either MCFAs or MCTs, the acyl group at-
tached to nascent ghrelin molecules corresponded to that of the ingested
MCFAs or MCTs. Moreover, n-heptanoyl (C7:0) ghrelin, an unnatural form
of ghrelin, was produced in the stomach of mice following ingestion of
n-heptanoic acid or glyceryl triheptanoate. These findings indicate that in-
gested fatty acids are directly utilized for acyl-modification of ghrelin.

A number of acyltransferases have previously been identified in mam-
mals; the only reported enzymes that use MCFAs as substrates are carni-
tine octanoyltransferases, which function in the β-oxidation of fatty acids
(Ramsay and Naismith 2003). Members of the serine acyltransferase fam-
ily that transfer acyl groups to serine residues of target molecules have
been identified, including two serine palmitoyltransferases functioning in the
biosynthesis of sphingolipids in mammals (Hanada 2003) and a plant Ser O-
acetyltransferase gene family in Arabidopsisthaliana (Howarth et al. 2003).
The putative ghrelin Ser O-acyltransferase may have structural homology
with these acyltransferases. Further investigations characterizing the putative
ghrelin Ser O-acyltransferase are required to elucidate the mechanism of the
unique acyl modification seen in ghrelin.

6
Ghrelin Receptor Family

The ghrelin receptor, or GHS-R, is a typical G protein-coupled receptor with
seven transmembrane domains (7-TM). Two distinct ghrelin receptor cDNAs
have been isolated: GHS-R type 1a mRNA and type 1b mRNA (Howard et al.
1996). The first, GHS-R Type 1a, encodes a 7-TM GPCR with binding and
functional properties consistent with its role as ghrelin’s receptor. This Type
1a receptor has features characteristic of a typical GPCR, including conserved
cysteine residues in the first two extracellular loops, several potential sites
for post-translational modifications (N-linked glycosylation and phosphory-
lation), and an aromatic triplet sequence (E/DRY) located immediately after
TM-3 in the second intracellular loop. Another GHS-R cDNA, type 1b, is pro-
duced by an alternative splicing mechanism. The GHS-R gene consists of two
exons; the first exon encodes TM-1 to 5, and the second exon encodes TM-6
to 7. Type 1b is derived from only the first exon and encodes only five of
the seven predicted TM domains. The type 1b receptor is thus a C-terminal
truncated form of the type 1a receptor and is pharmacologically inactive.

The ghrelin receptor (GHS-R) has several homologues, whose endoge-
nous ligands are gastrointestinal peptides or neuropeptides. This receptor
superfamily contains receptors for ghrelin, motilin (Feighner et al. 1999),
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neuromedin U (Howard et al. 2000; Kojima et al. 2000) and neurotensin (Vin-
cent et al. 1999). All of these peptides are found in gastrointestinal organs
and regulate gastrointestinal movement and other functions. This family also
contains an orphan receptor, GPR39, whose endogenous ligand was identi-
fied as obestatin, a ghrelin precursor-derived peptide (Zhang et al. 2005).
However, negative results have been reported against obestatin as the ligand
for GPR39.

The ghrelin receptor is most homologous to the motilin receptor; the
human forms share 52% identical amino acids (Inui 2001; Smith et al. 2001).
Moreover, their ligands, ghrelin and motilin peptides, have similar amino-
acid sequences. Preliminary studies have shown that motilin can stimulate the
ghrelin receptor, albeit at a low level. In contrast, ghrelin does not activate the
motilin receptor (Dass et al. 2003).

The ghrelin receptor is well conserved across all vertebrate species exam-
ined, including a number of mammals, chicken, and pufferfish (Fugu) (Palyha
et al. 2000; Smith et al. 2001). This strict conservation suggests that ghrelin
and its receptor serve important physiological functions.

One case of familial short stature associated with a missense mutation in
the ghrelin receptor has been reported (Pantel et al. 2006). This mutation
changed a single amino acid, resulting in a charge change at a highly con-
served extracellular position. This mutated ghrelin receptor shows severely
impaired ghrelin binding.

7
Ghrelin and Motilin

The ghrelin receptor is most homologous to the motilin receptor (Feighner
et al. 1999; Inui 2001). Accordingly, the amino-acid sequence of ghrelin has
homology with that of motilin, another gastric peptide with gastric contrac-
tile activity (Asakawa et al. 2001). Alignment of the 28 amino-acid peptide
ghrelin and the 19-amino-acid motilin reveal that they share eight identical
amino acids. In fact, after our discovery of ghrelin, Tomasetto and cowork-
ers reported the identification of a gastric peptide, the motilin-related peptide
(MTLRP) (Tomasetto et al. 2000). They had tried to isolate new protein clones
whose expression was restricted to the gastric epithelium using differential
screening. The amino-acid sequence of MTLRP turned out to be identical to
that of ghrelin[1-18]; however, the putative processing site of MTLRP, Lys–
Lys, is not used in ghrelin in gastric cells. Moreover, the sequence data alone
could not reveal any potential acyl-modifications (Del Rincon et al. 2001;
Folwaczny et al. 2001).

Interestingly, the region of homology between ghrelin and motilin lies not
near the N-terminus, where ghrelin’s acyl-modification occurs, but in their
respective central regions. Ghrelin and motilin play similar roles in the stom-
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ach. Both peptides stimulate gastric-acid secretion and gastric movement
(Masuda et al. 2000). Thus, ghrelin and motilin are structurally and function-
ally considered to compose a peptide superfamily, and may have evolved from
a common ancestral peptide.

8
Distribution of Ghrelin

8.1
Plasma Ghrelin

Two major forms of ghrelin are found in plasma: n-octanoyl-modified and
des-acyl ghrelin (Hosoda et al. 2000a). The normal ghrelin concentration
of plasma samples in humans is 10–20 fmol/ml for n-octanoyl ghrelin and
100–150 fmol/ml for total ghrelin, including both acyl-modified and des-acyl
ghrelins. Plasma ghrelin concentration is increased in fasting conditions and
reduced after habitual feeding, suggesting that ghrelin may be an initiation
signal for food intake or ghrelin secretion is controlled by some nutritional
factors in blood (Cummings et al. 2001; Tschop et al. 2001a).

It is not clear what factors are involved in the regulation of ghrelin secre-
tion. Blood glucose level may be critical: oral or intravenous administration of
glucose decreases plasma ghrelin concentration (McCowen et al. 2002; Shiiya
et al. 2002). Since gastric distention by water intake does not change ghrelin
concentration, mechanical distention of the stomach alone clearly does not
induce ghrelin release. Plasma ghrelin concentration is sensitive, however, to
the makeup of a meal; it is decreased by a high lipid meal and increased by
a low protein one.

Plasma ghrelin concentration is low in obese people and high in lean
people, indicating that plasma ghrelin concentration is in inverse proportion
to BMI (Hanada 2003; Hansen et al. 2002; Shiiya et al. 2002; Tschop et al.
2001b). Related to this fact, the plasma ghrelin level is highly increased in
anorexia nervosa patients and returns to normal levels upon weight gain and
recovery from the disease (Ariyasu et al. 2001; Cuntz et al. 2002; Otto et al.
2001). Ghrelin concentration is also increased in cachexia due to cancer, heart
failure, and chronic fasting disease, etc.

8.2
Gastric and Intestinal Ghrelin

In all vertebrate species, ghrelin is mainly produced in the stomach. In the
stomach, ghrelin-containing cells are more abundant in the fundus than in
the pylorus (Date et al. 2000a; Yabuki et al. 2004) (Fig. 3A). In situ hybridiza-
tion and immunohistochemical analyses indicate that ghrelin-containing cells
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Fig. 3 Ghrelin cells in the stomach and hypothalamus. A Ghrelin-immunoreactive cells in
the stomach are found from the neck to the base of the oxyntic gland. Scale bar: 400 µm.
This distribution pattern is typical for gastric endocrine cells. B Ghrelin-producing
cell has many round, compact, electron-dense granules in its cytoplasm. Scale bar:
500 nm. C Arrows indicate ghrelin neurons in the hypothalamic arcuate nucleus. Scale
bar: 500 µm. D High magnification of (C). Scale bar: 200 µm. E Localization of ghrelin-
immunoreactive neurons in the porcine hypothalamic paraventricular nucleus. Scale bar:
200 µm. F A ghrelin-producing neuron in the paraventricular nucleus. Scale bar: 20 µm

are a distinct endocrine cell type found in the mucosal layer of the stomach
(Date et al. 2000a; Rindi et al. 2002).

Four types of endocrine cells have been identified in the oxyntic mucosa:
ECL, D, enterochromaffin (EC), and X/A-like cells and they show the fol-
lowing relative abundances. The rat oxyntic gland contains approximately
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60–70% ECL cells, 20% X/A-like cells, 2–5% D cells, and 0–2% EC cells; in hu-
mans, the corresponding percentages are 30%, 20%, 22%, and 7%. The major
products in the granules have been identified as histamine and uroguanylin
in ECL cells, somatostatin in D cells, and serotonin in EC cells. However, the
granule contents of X/A-like cells were unknown until the discovery of ghre-
lin. The X/A-like cells contain round, compact, electron-dense granules that
are filled with ghrelin (Date et al. 2000a; Dornonville de la Cour et al. 2001)
(Fig. 3B). These X/A-like cells account for about 20% of the endocrine cell
population in adult oxyntic glands. However, the number of X/A-like cells in
the fetal stomach is very low and increases after birth (Hayashida et al. 2002).
As a result, the ghrelin concentration of fetal stomach is also very low and
gradually increases after birth until five weeks of age.

The gastric X/A-like cells can be stained by an antibody that is specific to
the N-terminal, acyl-modified portion of ghrelin, indicating that ghrelin in
the secretory granules of X/A-like cells has already been acyl-modified. Two
major forms of ghrelin are found in the stomach as in plasma: n-octanoyl-
modified and des-acyl ghrelin.

Ghrelin-immunoreactive cells are also found in the duodenum, jejunum,
ileum, and colon (Date et al. 2000a; Hosoda et al. 2000a; Sakata et al. 2002). In
the intestine, ghrelin concentration gradually decreases from the duodenum
to the colon. As in the stomach, the main molecular forms of intestinal ghrelin
are n-octanoyl ghrelin and des-acyl ghrelin.

8.3
Pancreatic Ghrelin

The pancreas is a ghrelin-producing organ. Analyses combining HPLC and
ghrelin-RIA revealed that ghrelin and des-acyl ghrelin both exist in the rat pan-
creas (Date et al. 2002b). However, the cell type that produces ghrelin in the
pancreatic islets remains controversial, whether it be the α cells, β cells, the
newly identified islet epsilon (ε) cells, or a unique novel islet cell type (Prado
et al. 2004).

The homeodomain protein Nkx2.2 is essential for the differentiation of
islet β cells and α cells, and lack of Nkx2.2 in mice results in replacement of
pancreatic endocrine cells by cells that produce ghrelin (Prado et al. 2004).
Normal murine pancreas also contains a small number of the newly identified
islet cell type, ε cells.

The pancreatic ghrelin profile changes dramatically during fetal devel-
opment (Chanoine and Wong 2004); pancreatic ghrelin-expressing cells are
numerous from midgestation to the early postnatal period, comprising 10%
of all endocrine cells, and decrease in number after birth. Ghrelin mRNA ex-
pression and total ghrelin concentration are markedly elevated in the fetal
pancreas, 6–7 times greater than in the fetal stomach. Thus, the onset of
islet ghrelin expression precedes that of gastric ghrelin. Pancreatic ghrelin
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expression is highest in the prenatal and neonatal periods. In contrast, gas-
tric ghrelin levels are low during the prenatal period and increase after birth
(Hayashida et al. 2002). Moreover, pancreatic ghrelin levels are not affected by
fasting.

8.4
Pituitary Ghrelin

GH-releasing somatotrophs in the pituitary gland are the target cells of ghre-
lin. In an in vivo assay, ghrelin stimulated primary pituitary cells and in-
creased their intracellular Ca2+ concentration, indicating that the ghrelin
receptor, GHS-R, is expressed in pituitary cells (Bennett et al. 1997; Guan et al.
1997; McKee et al. 1997a). Also, ghrelin has been found in the pituitary gland
itself (Korbonits et al. 2001a; Korbonits et al. 2001b), where it may influence
the release of GH in an autocrine or paracrine manner. Pituitary tumors, such
as adenomas, corticotroph tumors, and gonadotroph tumors contain ghrelin
peptides.

8.5
Ghrelin in the Brain

Since the ghrelin receptor, GHS-R, is mainly expressed in the hypothalamus
and pituitary, its endogenous ligand is thought to exist mainly in the hy-
pothalamic regions. This is supported by the finding that another growth-
hormone-releasing peptide, GHRH (growth-hormone-releasing hormone) is
produced in the hypothalamus and is secreted into the hypophyseal portal
system to stimulate GH release from the pituitary somatotrophs. However, the
ghrelin content of the brain was found to be very low (Hosoda et al. 2000a; Ko-
jima et al. 1999). Ghrelin has been found in the hypothalamic arcuate nucleus,
an important region for controlling appetite (Fig. 3C,D). In addition, it has
been reported that ghrelin is found in previously uncharacterized hypothal-
amic neurons adjacent to the third ventricle between the dorsal, ventral,
paraventricular, and arcuate hypothalamic nuclei (Cowley et al. 2003; Sato
et al. 2005) (Fig. 3E,F). Two major ghrelin peptides are identified in the rat
hypothalamus: n-octanoyl-modified and des-acyl ghrelins (Sato et al. 2005).
Thus, in a manner similar to ghrelin in the stomach, the two major forms of
ghrelin are also found in the hypothalamus.

9
Physiological Functions of Ghrelin

Ghrelin exerts two main physiological functions: growth hormone releas-
ing activity from the pituitary and increase of food intake by stimulation of
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the hypothalamic appetite regulatory region. Ghrelin also shows many other
physiological functions.

9.1
Growth Hormone Releasing Activity of Ghrelin

Ghrelin has been shown to induce GH release not only in rats and humans
(Kojima et al. 1999), but also in non-mammalian vertebrates, including
chicken (Kaiya et al. 2002), fish (Kaiya et al. 2003a,b), and frog (Kaiya et al.
2001). Ghrelin stimulates growth-hormone release both in vitro and in vivo
in a dose-dependent manner (Fig. 4). Figure 4A shows the increase of GH

Fig. 4 Effects of ghrelin on pituitary hormone secretion in vitro and in vivo. A Effects of
a high dose (10–6 M) of ghrelin on hormone secretion from rat primary pituitary cells in
vitro. ACTH, adrenocorticotropin; FSH, follicle-stimulating hormone; LH, lutenizing hor-
mone; PRL, prolactin; and TSH, thyroid-stimulating hormone. B Time courses of plasma
hormone concentrations after IV injection of ghrelin into anesthetized male rats in vivo
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concentration that was secreted from primary pituitary cultured cells into
medium after ghrelin addition (Kojima et al. 1999). Moreover, intravenous in-
jection of ghrelin induces potent GH release in many species. Thus, ghrelin is
a potent GH-releasing peptide.

A single intracerebroventricular administration of ghrelin also increased
rat plasma GH concentration in a dose-dependent manner, with a minimum
dose of only 10 pmol (Date et al. 2000b). Thus, ICV injection appears to be
a more potent route of delivery than IV administration.

Co-administration of ghrelin and GHRH had a synergistic effect on GH se-
cretion; that is, co-administration results in more GH release than does either
GHRH or ghrelin alone (Hataya et al. 2001). This finding implies that GHRH
is necessary for GH release to be maximally effective.

9.2
Appetite Stimulating Activity of Ghrelin

Recent identification of appetite-regulating humoral factors reveal regulatory
mechanisms not only in the central nervous system, but also mediated by fac-
tors secreted from peripheral tissues (Coll et al. 2007; Stanley et al. 2005).
Leptin, produced in adipose tissues, is an appetite-suppressing factor that
transmits satiety signals to the brain, while ghrelin, produced in the stomach,
is an appetite-stimulating factor that transmits hunger signals to the brain.
Ghrelin, thus, is functionally a natural antagonist to leptin.

Ghrelin is produced primarily in gastrointestinal organs in response to
hunger and starvation, and circulates in the blood, serving as a peripheral
signal telling the central nervous system to stimulate feeding. When ghrelin
is injected into the cerebral ventricles of rats, their food intake is potently
stimulated (Nakazato et al. 2001; Shintani et al. 2001; Tschop et al. 2000; Wren
et al. 2000) (Fig. 5A). Furthermore, chronic ICV injection of ghrelin increases
cumulative food intake and decreased energy expenditure, resulting in body
weight gain (Fig. 5B). Ghrelin-treated mice also increase their fat mass, both
absolutely and as a percentage of total body weight. Not only ICV injection,
but also IV and subcutaneous injection of ghrelin have been shown to in-
crease food intake. IV injection of ghrelin (5.0 pmol/kg/min) into human
volunteers increased food intake by an average of 28% in every individual
(Wren et al. 2001).

The hypothalamic arcuate nucleus is the main site of ghrelin’s activity in
the central nervous system. The arcuate nucleus is also a target of leptin,
an appetite-suppressing hormone produced in adipose tissues, and NPY and
AgRP, which are both appetite-stimulating peptides (Morton and Schwartz,
2001). NPY and AgRP are produced in the same population of neurons in
the arcuate nucleus, and their appetite-stimulating effects are inhibited dir-
ectly by leptin. At least part of the orexigenic effect of ghrelin is mediated by
upregulating the genes encoding these potent appetite stimulants (Fig. 6).
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Fig. 5 Stimulation of feeding by ICV administration of ghrelin. A Two-hour food intake
of free-feeding rats injected with various doses of ghrelin. Control rats were given 0.9%
saline. B Effect of chronic ghrelin ICV administration on rats. Cumulative body weight
gain during an ICV infusion of 250 pmol/day for 12 days

ICV injection of ghrelin induces c-Fos expression in NPY-expressing
neurons and increases the amount of NPY mRNA in the arcuate nucleus
(Kamegai et al. 2001; Nakazato et al. 2001; Shintani et al. 2001). Moreover, ICV
ghrelin injection increases the AgRP mRNA level in the hypothalamus. The
appetite-stimulating effects of ghrelin are blocked by an antagonist of NPY re-
ceptor 1. ICV injections of an AgRP inhibitor, anti-NPY IgG, and anti-AgRP
IgG inhibits the appetite-stimulating effects of ghrelin. Intravenous injection
of ghrelin also stimulates NPY/AgRP neurons in the hypothalamus. Immuno-
histochemical analysis indicated that ghrelin neuron fibers directly contact
NPY/AgRP neurons (Cowley et al. 2003). These results indicate that ghrelin
exerts its feeding activity by stimulating NPY/AgRP neurons in the hypotha-
lamus to promote the production and secretion of NPY and AgRP peptides.
Studies with knockout mice of NPY, AgRP or both confirms these results. Al-
though deletion of either NPY or AgRP caused a modest or no effect on the
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Fig. 6 Hypothalamic appetite regulation by ghrelin and leptin. The arcuate nucleus (ARC) of
the hypothalamus is the main target of ghrelin and leptin. Ghrelin is a peripheral orexigenic
signal secreted from the stomach, whereas leptin is a peripheral anorexigenic signal secreted
from adipose tissue. The effects of ghrelin are opposite to those of leptin. In the ARC, ghrelin
stimulates NPY/AgRP neurons and suppresses POMC neurons. On the other hand, leptin
suppresses NPY/AgRP neurons and stimulates POMC neurons. Moreover, ghrelin increases
AMPK activity in the hypothalamus, whereas leptin decreases AMPK activity

orexigenic action of ghrelin, the double knockout mice lacked the action of
ghrelin completely (Chen et al. 2004).

Recently, AMP-activated protein kinase (AMPK) has been shown to be in-
volved in hypothalamic appetite regulation (Minokoshi et al. 2004). Injection
of 5-amino-4-imidazole carboxamide riboside, an activator of AMPK, sig-
nificantly increases food intake. Administration of ghrelin in vivo increases
AMPK activity in the hypothalamus (Andersson et al. 2004). By contrast, in-
jection of leptin decreases hypothalamic AMPK activity.

9.3
Pathway of the Ghrelin Signal;
from Peripheral Tissues to the Central Nervous System

Peripherally injected ghrelin stimulates hypothalamic neurons and stimulates
food intake. In general, peptides injected peripherally do not pass the blood–
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brain barrier. Indeed, the rate at which peripheral ghrelin passes the barrier
has shown to be very low. Thus, peripheral ghrelin must activate the appro-
priate hypothalamic regions via an indirect pathway.

The detection of ghrelin receptors on vagal afferent neurons in the rat no-
dose ganglion suggests that ghrelin signals from the stomach are transmitted
to the brain via the vagus nerve (Date et al. 2002a; Zhang et al. 2004). More-
over, the observation that ICV administration of ghrelin induces c-Fos in the
dorsomotor nucleus of the vagus and stimulates gastric-acid secretion indi-
cates that ghrelin activates the vagus system (Date et al. 2001).

In contrast, vagotomy inhibits the ability of ghrelin to stimulate food in-
take and GH release (Date et al. 2002a). A similar effect was also observed
when capsaicin, a specific afferent neurotoxin, was applied to vagus nerve ter-
minals to induce sensory denervation. However, the basal level of ghrelin con-
centration is not affected and a decrease of ghrelin levels is not observed after
vagotomy. On the other hand, fasting-induced elevation of plasma ghrelin is
completely abolished by subdiaphragmatic vagotomy or atropine treatment
(Williams et al. 2003).

Moreover, peripheral ghrelin signaling, which travels to the nucleus trac-
tus solitarius (NTS) via the vagus nerve, increases noradrenaline (NA) in
the arcuate nucleus of the hypothalamus (Date et al. 2006). Bilateral mid-
brain transections rostral to the NTS, or toxin-induced loss of neurons in the
hindbrain that express dopamine β-hydroxylase (an NA synthetic enzyme),
abolished ghrelin-induced feeding. Thus, the noradrenergic system is neces-
sary in the central control of feeding behavior by peripherally administered
ghrelin. These results indicate that the response of ghrelin to fasting is trans-
mitted through vagal afferent transmission.

9.4
Ghrelin and Eating Disorders

Anorexia nervosa (AN) is a syndrome often seen in young women character-
ized by a combination of weight loss, amenorrhea, and behavioral changes.
Some of these changes are reversible with weight gain. Plasma ghrelin levels
in AN patients are high and return to control levels after weight gain by renu-
trition (Ariyasu et al. 2001; Cuntz et al. 2002; Otto et al. 2001). AN patients
often show markedly elevated GH levels, which may be due to high circulating
levels of ghrelin. Moreover, high ghrelin increases ACTH, prolactin, and cor-
tisol levels in humans (Takaya et al. 2000), which may explain the amenorrhea
and behavioral changes observed in AN patients.

High plasma ghrelin concentration is observed in Prader–Willi syndrome
(PWS) (Cummings et al. 2002a), cachexia with cancer or chronic diseases.
PWS is a complex genetic disorder characterized by mild mental retardation,
hyperphagia, short stature, muscular hypotonia, and distinctive behavioral
features. Excessive appetite in PWS causes progressive severe obesity. The
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PWS genotype is characterized by a loss of one or more paternal genes in
region q11–13 on chromosome 15 (Nicholls and Knepper 2001). It has been
suggested that this genetic alteration leads to dysfunction of several hypothal-
amic areas, including appetite regulatory regions.

To treat severe obesity, gastric bypass operations are often performed
(Fobi 2004). Recent research has revealed that ghrelin may contribute to the
body-weight reduction that occurs following gastric bypass. Total ghrelin se-
cretion was found to be reduced by up to 77% compared to normal-weight
control groups and by up to 72% compared to matched obese groups (Cum-
mings et al. 2002b). Furthermore, the normal meal-related fluctuations and
diurnal rhythm of ghrelin level were absent in these patients. Thus, the
mean plasma ghrelin concentration decreased significantly after gastric by-
pass surgery, which may have been responsible for their lack of hyperphagia
and contributed to their weight loss.

9.5
Cardiovascular Function of Ghrelin

Evidence for a cardiovascular function of ghrelin has been found: expression
of mRNA encoding both ghrelin and its receptor has been observed in the
heart and aortas (Gnanapavan et al. 2002; Nagaya et al. 2001a). Moreover, an
intravenous bolus of human ghrelin decreased mean arterial pressure without
changing the heart rate (Nagaya et al. 2001a). Ghrelin increased the car-
diac index and stroke volume indices. Rats with chronic heart failure (CHF)
that were treated with ghrelin showed higher cardiac output, stroke volume,
and LV dP/dt[max] when compared to afflicted, but placebo-treated controls
(Nagaya and Kangawa 2003). Furthermore, ghrelin increased the diastolic
thickness of the non-infarcted posterior wall, inhibited LV enlargement, and
increased LV fractional shortening in these CHF rats (Nagaya et al. 2001b).
Ghrelin, thus, improves LV dysfunction and attenuates the development of LV
remodelling and cardiac cachexia.

The decrease in mean arterial pressure induced by ghrelin seems not to
occur through its direct action on the circulatory system, but through its ac-
tion on the nucleus of the solitary tract (Lin et al. 2004; Matsumura et al.
2002). Microinjection of ghrelin into this nucleus significantly decreased the
mean arterial pressure and heart rate. This injection also suppressed sympa-
thetic activity. It has been reported that ghrelin inhibits apoptosis of primary
adult and H9c2 cardiomyocytes and endothelial cells in vitro.

9.6
Gastrointestinal Function of Ghrelin

Intravenous administration of ghrelin dose-dependently increases gastric-
acid secretion and stimulates gastric motility (Masuda et al. 2000). The max-



106 M. Kojima · K. Kangawa

imum response to ghrelin in terms of gastric-acid secretion is almost as high
as that elicited by subcutaneous treatment with histamine (3 mg/kg). These
responses to ghrelin were abolished by pretreatment with either atropine or
bilateral cervical vagotomy, but not by a histamine H2-receptor antagonist.
ICV administration of ghrelin also increases gastric-acid secretion in a dose-
dependent manner (Date et al. 2001).

ICV administration of ghrelin was shown to induce c-Fos expression in the
nucleus of the solitary tract and the dorsomotor nucleus of the vagus nerve
(Date et al. 2001), indicating that ghrelin’s ability to stimulate gastric-acid
secretion is mediated through activation of the vagus nerve.

9.7
Ghrelin and Pancreatic Function

The role of ghrelin in insulin secretion is likewise under debate. Ghrelin has
been shown to inhibit insulin secretion in some experiments and stimulate
insulin release in others (Adeghate and Ponery 2002; Broglio et al. 2001; Date
et al. 2002b; Lee et al. 2002). These discrepancies may be due to species dif-
ferences and/or experimental design. Plasma ghrelin and insulin levels are
affected by blood glucose level; high glucose suppresses ghrelin secretion and
stimulates insulin secretion. Thus, the glucose level in experiments may be
important. Date and colleagues reported that ghrelin stimulates insulin re-
lease in the presence of high levels of glucose (8.3 mM) that could release
insulin from cultured islet cells (Date et al. 2002b). In contrast, ghrelin had
no effect on insulin release in the context of a basal level of glucose (2.8 mM).
In contrast, Dezaki and colleagues reported that ghrelin inhibits insulin se-
cretion, while administration of ghrelin-receptor antagonists or anti-ghrelin
antibodies increases insulin secretion that was induced by glucose injection
(Dezaki et al. 2006). Moreover, they reported that an increase of glucose-
induced insulin secretion was observed in ghrelin-null mice. Ghrelin knock-
out mice showed no change in density, size, insulin level and insulin mRNA
of pancreatic island.

9.8
Ghrelin and the Process of Learning and Memory

Ghrelin may be involved in the process of learning and memory. Diano et al.
reported that circulating ghrelin entered the hippocampus and bound to the
hippocampal neurons to promote synapse formation of the dendritic spines
and generate long-term potentiation (Diano et al. 2006). This synapse forma-
tion may be paralleled by enhanced spatial learning and memory after ghrelin
injection. In contrast, ghrelin knockout mice had a decreased number of den-
dritic spine synapses in the hippocampal CA1 region and were impaired in
behavioral memory in the novel object recognition test. Moreover, the de-
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crease in synapse formation and impairment of memory test were promptly
recovered by ghrelin administration. Further studies are needed to confirm
that ghrelin directly acts on the hippocampal cells to enhance learning and
memory processes.

10
Obestatin, a Ghrelin Precursor-Derived Peptide?

In November 2005 Zhang and colleagues from Stanford University reported
a novel peptide hormone called “obestatin” from the Latin “obedere”, mean-
ing to devour, and “statin”, meaning suppression, because it suppressed
food intake (Zhang et al. 2005). An interesting fact is that obestatin is pro-
cessed from the ghrelin precursor; this means that the two peptide hor-
mones with opposing action on food intake, orexigenic ghrelin and anorectic
obestatin, are derived from the same hormone precursor. They proposed
that no obvious phenotypes in ghrelin knockout mice were due to the lack
of both ghrelin and obestatin. Moreover, obestatin is the endogenous lig-
and for GPR39, an orphan GPCR that shows amino-acid sequence homol-
ogy to ghrelin, motilin, neurotensin and neuromedin U receptors (McKee
et al. 1997b).

However, several reports that followed raised objections to obestatin in its
action and the matched receptor (Chartrel et al. 2007; Gourcerol et al. 2007;
Holst et al. 2007; Lauwers et al. 2006; Nogueiras et al. 2007; Seoane et al.
2006).

The amino acid sequences of mammalian obestatins are well conserved.
However, in non-mammalian species the obestatin parts are not conserved,
while the ghrelin parts are well conserved. Moreover, the original paper
on obestatin reported that the C-terminal amide structure is essential for
obestatin to bind and activate GPR39, however, the precursor parts that seem
to contain non-mammalian obestatins lack the Gly residue for the amide
formation. Thus, non-mammalian obestatins, if they were contained in the
stomach, are not of C-terminal amide structure. Furthermore, the general
processing sites for the prohormone convertases, such as Arg-Arg or Lys-Arg,
were not found in the non-mammalian obestatin parts. In addition, if both
ghrelin and obestatin are processed from the same ghrelin precursor protein,
the amount and secretion of both ghrelin and obestatin should be of a similar
level and manner. However, the plasma content of ghrelin is higher than that
of obestatin and after fasting plasma obestatin concentration did not change
while ghrelin concentration was increased. Thus, it is likely that obestatin is
not produced by a proper processing of the ghrelin precursor, but by a non-
specific protease digestion. Future studies are needed to elucidate the role of
obestatin.
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11
Epilogue

Seven years have past since the discovery of ghrelin and since that time
intensive research has been carried out on ghrelin. However, there remain
many interesting questions regarding ghrelin-related biology. These include
the identification of the pathways regulating ghrelin’s production and release
from the stomach, the enzyme that catalyzes its acyl-modification, as well
as the continuing search for its physiological actions. Further research will
answer these questions and elucidate the biochemical and physiological char-
acteristics of this unique hormone.
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