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Abstract H+-FOF1-ATP synthase catalyzes synthesis of ATP from ADP and inorganic
phosphate using the energy of transmembrane electrochemical potential difference of
proton (∆µ̃H+ ). The enzyme can also generate this potential difference by working as
an ATP-driven proton pump. Several regulatory mechanisms are known to suppress the
ATPase activity of FOF1:

1. Non-competitive inhibition by MgADP, a feature shared by FOF1 from bacteria,
chloroplasts and mitochondria

2. Inhibition by subunit ε in chloroplast and bacterial enzyme
3. Inhibition upon oxidation of two cysteines in subunit γ in chloroplast FOF1
4. Inhibition by an additional regulatory protein (IF1) in mitochondrial enzyme

In this review we summarize the information available on these regulatory mechanisms
and discuss possible interplay between them.

1
Introduction

H+-FOF1-ATP synthase (also known as F-type H+-ATPase, or simply FOF1)
is a multisubunit membrane enzyme. It synthesizes ATP from ADP and in-
organic phosphate (Pi) using the energy of transmembrane electrochemical
potential difference of proton (∆µ̃H+). In Eukaryota the enzyme is found in
mitochondrial inner membrane and in chloroplast thylakoid membrane; in
bacteria FOF1 is located in the cytoplasmatic membrane.

The conditions under which the enzyme operates vary significantly be-
tween different organisms. In mitochondria the ∆µ̃H+ is constantly generated
by respiratory chain enzymes and the chemical composition of the milieu
on both sides of the coupling membrane is controlled by the cell, so the en-
zyme environment is more or less stable. In chloroplasts the ∆µ̃H+ is high
during daytime, but during the night the membrane is de-energized so that
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no ATP synthesis is possible. The pH on both sides of the thylakoid mem-
brane also varies during the day–night cycle (see (Kramer et al. 1999) and
references therein). In bacteria, the conditions are most variable; the cell has
a very limited control over the chemical composition of the milieu on the
periplasmatic side of the membrane, and the magnitude of ∆µ̃H+ may vary
significantly in response to such factors as concentrations of oxygen, nutri-
ents, ions (pH), temperature, etc.

The need to regulate the activity of ATP synthase, primarily to avoid
ATPase activity upon decrease in ∆µ̃H+ that may result in wasteful ATP
hydrolysis, is evident. Indeed, there are several regulatory features present
in FOF1. This review summarizes the experimental data on these regulatory
features and describes how a common catalytic core of the enzyme was tuned
to the specific needs of different organisms.

2
Structure and Rotary Catalysis: a Brief Summary

2.1
Structure

Before proceeding to the regulation of FOF1, it is necessary to briefly outline
the main structural and functional features of the enzyme.

The enzyme is composed of two distinct portions: membrane-embedded
FO and hydrophilic F1 that protrudes by more than 100 Å from the membrane
plane. Both portions are multisubunit complexes. The F1 portion is involved in
nucleotide and Pi binding/release, while the FO portion is responsible for trans-
membrane proton transport. The two portions are connected by two “stalks”,
one of which is located approximately in the center, and the other is on the
periphery of the enzyme (Fig. 2). The two portions can be separated (e.g. by
sonication in the absence of Mg2+) and reconstituted back. Isolated F1 por-
tion can hydrolyze ATP at high rate, and therefore is often named “F1-ATPase”;
isolated FO portion performs passive proton transport downhill ∆µ̃H+ .

The catalytic core of F1 is capable of high rate ATP hydrolysis and is com-
posed of three kinds of subunits in stoichiometry α3β3γ. The structure was
solved in 1994 for bovine enzyme by X-ray crystallography (Abrahams et al.
1994). Studies revealed that three αβ pairs form a spherical hexamer with
a cavity in the middle. The cavity is filled by part of the elongated γ sub-
unit; the rest of subunit γ protrudes towards the membrane and composes
the central stalk in FOF1. The primary structure of subunits α, β and γ is
highly conserved in ATP synthases from various organisms. Biochemical data
strongly indicate that the catalytic mechanism is also highly conserved.

There are six nucleotide-binding sites located in the clefts between sub-
units α and β (Abrahams et al. 1994). Only three of them are directly involved
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in catalysis (Cross and Nalin 1982; Yoshida and Allison 1986) and reside
mostly on β subunits; the other three are located mostly on α subunits and are
probably involved in regulation of the enzyme.

Besides the α3β3γ, there are other smaller subunits in F1. One of them
(named ε in bacterial and chloroplast enzyme, but δ in the mitochondrial FOF1)
is part of the central stalk connecting FO and F1, and is indispensable for
coupling between proton transport and ATP synthesis/hydrolysis. In bacterial
and chloroplast enzyme this subunit also has regulatory functions, which are
discussed in detail below (for a recent review see Feniouk et al. 2006).

The functional core of the FO portion is composed of a ring-shaped
oligomer of c-subunits, and of a-subunit located on the periphery of the
c-ring. Subunit c is a small hairpin-like protein with two transmembrane he-
lices and a short hydrophilic loop connecting them. Proton transport occurs
on the interface of subunit a with the c-ring. The central stalk connecting
FO and F1 is composed of subunits γ and ε that are bound to the c-ring.
The second, peripheral stalk is composed of other subunits; their number,
stoichiometry, and nomenclature differs among bacterial, chloroplast, and
mitochondrial enzymes. However, the structure itself is quite similar – a com-
plex with transmembrane helices bound to subunit a; a protruding long
α-helical stretch reaching the very distant part of F1 and attached to the lat-
ter in part directly, and in part through an additional small F1 subunit (δ in
bacteria/chloroplasts and oligomycin sensitivity-conferring protein, OSCP, in
mitochondria).

2.2
Catalytic Mechanism

An enormous contribution to our understanding of the ATP synthase catalytic
mechanism was made by Paul Boyer and colleagues. They have demonstrated
that the energy-requiring step was not the chemical step of ATP synthesis, but
the binding of Pi and the release of the tightly bound ATP from the enzyme
(Boyer et al. 1973). Later they found that FOF1 showed a strong dependence of
catalytic events and product(s) release at one site on the binding of substrate(s)
at a second site (Kayalar et al. 1977). This general principle of highly coopera-
tive multisite catalysis was later confirmed by lots of functional and structural
evidence and is usually referred to as “binding change mechanism” (see Boyer
1997, 2002; Senior et al. 2002, and the references therein for details).

The molecular implementation of the binding change mechanism in FOF1
involves rotation of subunit γ inside the α3β3 hexamer. Such a rotary mech-
anism was predicted from the structural data (Abrahams et al. 1994) and later
got support from the biochemical (Duncan et al. 1995) and biophysical (Sab-
bert et al. 1996) studies. Finally, ATP-driven rotation of subunit γ was directly
visualized in the α3β3γ complex from Bacillus PS3 in single-molecule experi-
ments (Noji et al. 1997). More single molecule data followed, demonstrating
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ATP-driven rotation in FOF1 that was sensitive to the FO-inhibitor tributyltin
(Ueno et al. 2005), and ATP synthesis driven by mechanical rotation of sub-
unit γ in immobilized F1 (Itoh et al. 2004; Rondelez et al. 2005). The results of
single-molecule FRET experiments with E. coli FOF1 incorporated into lipo-
somes suggested that rotation of subunit γ also occurs during ATP synthesis
driven by artificially imposed ∆µ̃H+ (Diez et al. 2004; Zimmermann et al.
2005).

Combination of the data from single-molecule experiments with struc-
tural information from X-ray crystallographic studies allowed reconstruction
of a rather detailed molecular mechanism of ATP hydrolysis in isolated F1.
Hydrolysis of one ATP molecule drives a 120◦-unit rotation of subunit γ and,
therefore, hydrolysis of three ATP molecules is required for the one com-
plete 360◦ revolution (Yasuda et al. 1998). Analysis of rotation with a high
speed camera (Yasuda et al. 1998; Shimabukuro et al. 2003), a slow-hydrolysis
mutant F1 (Shimabukuro et al. 2003; Nishizaka et al. 2004), and direct obser-
vation of binding/release of fluorescently labeled nucleotide during rotation
(Nishizaka et al. 2004) suggest the following reaction sequence as a plausi-
ble model (Fig. 1; see Adachi et al. 2007; Ariga et al. 2007 for more details).
Three β subunits are designated as βI, βII, and βIII. When F1 is waiting for
ATP, it is assumed that the catalytic sites of βI, βII, and βIII contain none, ATP,
and ADP/Pi, respectively (states I and V in Fig. 1). The angular position of the
subunit γ in this state is set to be 0◦:

1. ATP binds to an empty catalytic site of βI (Fig. 1, transition I → II).
2. Binding induces an 80◦ rotation of subunit γ. This rotation leads to sim-

ultaneous release of ADP from the catalytic site of βIII (Fig. 1, transition
II→III).

3. Two catalytic events, each with a lifetime of ∼1 ms, occur at the 80◦ pos-
ition. One of these is hydrolytic cleavage of ATP into ADP and Pi at
a catalytic site of βII (state III in Fig. 1). The other event is not known but
we assume it to be Pi release from βIII (state IV in Fig. 1). The order of the
two events is not determined (in Fig. 1 ATP hydrolysis precedes Pi release,
but the opposite event sequence is also probable).

4. A 40◦ rotation occurs to complete one 120◦ rotation (Fig. 1, transition IV
→ V). ATP binds to the newly emptied catalytic site of βIII, and the cycle
repeats.

In this model, all three β subunits participate to drive a 120◦ rotation (ac-
tive β subunits are marked as filled in the cartoon representation of Fig. 1),
and catalytic turnover of one particular ATP molecule needs 360◦ rotation;
the events on βI are ATP-binding at 0◦, ATP-cleavage at 200◦, ADP-release
at 240◦–320◦, and Pi release at 320◦. Recent crystal structure of yeast F1
with two catalytic sites occupied by AMPPNP and one occupied with Pi (Ka-
baleeswaran et al. 2006) may represent state III in Fig. 1, blocked on the level
of ATP hydrolysis in βII.
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Fig. 1 Hypothetical catalytic mechanism of rotary ATP hydrolysis. F1 is depicted as seen
from the membrane; only the three catalytic nucleotide binding sites are shown. The
filled αβ-pairs represent the power stroke step that presumably drives subunit γ rotation.
Only 1/3 of full γ subunit revolution corresponding to hydrolysis of one particular ATP
molecule is shown; state V is identical to state I (just rotated by 120◦). See details in text
(Sect. 2.2)

In the whole FOF1, subunit γ is bound to the ring-shaped oligomer of
c-subunits. In the case of ATP synthesis the proton flow driven by ∆µ̃H+ pow-
ers the rotation of the c-ring with subunit γ (and with subunit ε in bacterial
and chloroplast FOF1, or with δε complex in the mitochondrial FOF1) relative
to other subunits. This rotation induces the cyclic conformational changes
of the catalytic sites on F1 that result in ATP synthesis. Although hypothet-
ical mechanisms of proton translocation and torque generation by FO were
proposed (Junge et al. 1997; Vik et al. 1998), the experimental evidence sup-
porting them is still insufficient. It is likely that FO operates as an entropic
machine, as proposed by Junge and collaborators (Junge et al. 1997). This
model and its later modifications (Dimroth et al. 1998; Elston et al. 1998)
correspond well to the experimental data. A detailed study on Rhodobacter
capsulatus membranes confirmed that the rotary model can quantitatively
describe the proton transport through isolated FO (Feniouk et al. 2004).

The coupling between the FO and F1 is rather tight. For example, DCCD
(N,N-dicyclohexylcarbodiimide), a specific inhibitor of FO, blocks > 75%
ATPase activity of FOF1 from E. coli (Fillingame 1975) or Bacillus PS3 (Suzuki
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et al. 2002); an even higher degree of inhibition is observed in other organ-
isms. No detectable proton leak was observed through Rb. capsulatus FOF1 in
the presence of ∆µ̃H+ under conditions where the F1 portion was blocked,
e.g., by specific inhibitors (Feniouk et al. 2001) or in the absence of nu-
cleotides in the medium (Feniouk et al. 2005).

Such tight coupling ensures that factors affecting the proton transport func-
tion of the enzyme also affect the ATP synthesis/hydrolysis and vice versa.

3
ADP-Inhibition: a Common Regulatory Mechanism

As mentioned above, ATP synthase is capable of both ∆µ̃H+-driven ATP syn-
thesis and ATP-driven ∆µ̃H+ generation. In mitochondria, chloroplasts, and
aerobic/photosynthetic bacteria the former activity is primary (but see Mat-
suyama et al. 1998; St Pierre et al. 2000; Lefebvre-Legendre et al. 2003, for

Fig. 2 Cartoon representation of bacterial/chloroplast FOF1. Zones involved in regulation
are marked:
1 Catalytic sites occlude MgADP without Pi and the enzyme lapses into ADP-inhibited

state (Sect. 3)
2 Binding of ATP or pyrophosphate to non-catalytic sites counteracts ADP-inhibition

(Sect. 3.2)
3 Subunit ε C-terminal α-helical domain is responsible for inhibition of ATPase activity

(Sect. 4)
4 Acid residues of βDELSEED are involved in inhibition exerted by subunit ε C-terminal

domain (Sect. 4)
5 In chloroplast FOF1 oxidation/reduction of a special cysteine pair modulates the en-

zyme activity (Sect. 5)
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the importance of the reverse activity in mitochondria). The universal way to
modulate the ATP synthesis activity is by changing the magnitude of ∆µ̃H+.
It is well documented that ∆µ̃H+ above a certain thermodynamic threshold
is necessary for ATP synthesis, and that further increase in ∆µ̃H+ results in
acceleration of ATP production (Graber and Witt 1976; Slooten and Vanden-
branden 1989; Junesch and Graber 1991; Turina et al. 1991; Pitard et al. 1996).
Therefore, regulation of ATP synthesis activity can be achieved via regula-
tion of ∆µ̃H+ magnitude either by modulation of respiratory/photosynthetic
∆µ̃H+-generating protein complexes or by changing the proton permeability
of the membrane.

There are several regulatory mechanisms controlling ATP hydrolysis
(Fig. 2); most of them are aimed at blocking the ATPase activity of FOF1
upon decrease in ∆µ̃H+, decrease in ATP concentration, or decrease in the
ATP/ADP ratio. This is hardly surprising for aerobic/photosynthetic organ-
isms, where such mechanisms are essential to protect the cellular ATP pool
from wasting upon membrane de-energization. However, in many bacteria
the primary function of FOF1 is ATP-driven proton pumping that provides
∆µ̃H+ necessary for ion transport, flagella rotation, and other vital processes.
Nevertheless, certain regulatory features limiting the ATPase activity of FOF1
are present in these organisms as well.

3.1
Mechanism of ADP-Inhibition

One of the most well-known unidirectional regulatory factors influencing the
activity of FOF1 is MgADP: it not only serves as a substrate for ATP synthesis,
but also inhibits ATPase activity of the enzyme in a non-competitive manner.
Such inhibition (denoted hereafter as “ADP-inhibition”) is described for FOF1
from chloroplasts (Carmeli and Lifshitz 1972; Dunham and Selman 1981b;
Feldman and Boyer 1985; Zhou et al. 1988; Creczynski-Pasa and Graber 1994),
mitochondria (Minkov et al. 1979; Fitin et al. 1979; Roveri et al. 1980; Drobins-
kaya et al. 1985), and bacteria (Yoshida and Allison 1983; Hyndman et al.
1994), and is clearly distinct from simple product inhibition. It is observed
not only in the whole enzyme or F1-portion, but also in the α3β3γ complex
(Jault et al. 1995; Hirono-Hara et al. 2001), indicating that this regulatory fea-
ture is embedded in the very catalytic core of F1.

Numerous biochemical studies indicate that ADP-inhibition is caused by
tight binding of MgADP without Pi at a high-affinity catalytic site (Minkov
et al. 1979; Fitin et al. 1979; Smith et al. 1983; Drobinskaya et al. 1985; Milgrom
and Boyer 1990; Hyndman et al. 1994). It is noteworthy that the presence of
ADP without Pi in the tight binding catalytic site is not inhibitory by itself, but
is a prerequisite for slow transition into the ADP-inhibited state, which prob-
ably includes an additional conformational change that is affected by Mg2+

(Bulygin and Vinogradov 1991).
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Single-molecule experiments on α3β3γ complex from Bacillus PS3 revealed
that ADP-inhibition results in long pauses in ATP-driven rotation of subunit
γ (Hirono-Hara et al. 2001). These pauses occur with subunit γ blocked in
the angular position of 80◦ relative to the “ATP-waiting” state. Spontaneous
re-activation occurs in the tens of seconds time scale, but was completely
abolished if the angular position of subunit γ was fixed at 80◦ by exter-
nal forces. Therefore, it was proposed that spontaneous activation is due to
stochastic rotational fluctuations of subunit γ. This proposal was strongly
supported by the finding that forced rotation of subunit γ by > 40◦ in the
hydrolysis direction relieved ADP-inhibition (Hirono-Hara et al. 2005). Nu-
merous experimental studies on FOF1 from various organisms demonstrated
that the tightly bound inhibitory ADP can be expelled by ∆µ̃H+ (Strotmann
et al. 1976; Graber et al. 1977; Shoshan and Selman 1979; Sherman and
Wimmer 1984; Creczynski-Pasa and Graber 1994; Feniouk et al. 2005). This
phenomenon underlies the so-called “activation by ∆µ̃H+”, or increase in the
ATPase activity of the enzyme after brief membrane energization (Carmeli
and Lifshitz 1972; Baltscheffsky and Lundin 1979; Turina et al. 1992; Galkin
and Vinogradov 1999; Fischer et al. 2000; Zharova and Vinogradov 2004).
In view of the single-molecule data, it is conceivable that such activation is
caused by ∆µ̃H+-driven rotation of the γ subunit (see below for a detailed
discussion).

ADP-inhibition is likely to be a common feature of all ATP synthases. How-
ever, there are many factors that influence ADP-inhibition. As a result, the
ATPase activity of FOF1 is finely regulated to match the needs of different cells
at various physiological conditions.

3.2
Factors Affecting ADP-Inhibition

Phosphate

The role of Pi in the regulation of FOF1, as well as the details of Pi bind-
ing/release during catalysis, has many unclear aspects. In a pioneer study
on Pi binding it was revealed that the mitochondrial F1 (with ADP bound
at a catalytic site and two nucleotides in the non-catalytic sites) reversibly
binds a single Pi anion with a high affinity (Kd of 80 µM) (Penefsky 1977).
Many factors such as pH, Mg2+, inorganic anions, and nucleotides affected
the binding. It was also documented that nucleotide-free mitochondrial F1
binds Pi poorly, and that binding of Pi requires the presence of tightly bound
ADP in the same catalytic site (Kozlov and Vulfson 1985).

There are two points concerning the data above. First, during normal catal-
ysis Pi is likely to be bound/released at an open, not high affinity catalytic site.
Second, in a living cell the enzyme is always in the medium with a millimo-
lar concentration of nucleotides. Therefore, the measurements of Pi binding
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in the presence of ADP and ATP are more physiologically relevant. In the case
of mitochondrial F1, 150 µM of each nucleotide inhibited the high affinity Pi
binding by approximately 50% (Penefsky 1977). It is worthy of note that non-
hydrolyzable ATP analog AMP-PNP was a markedly stronger inhibitor of Pi
binding, confirming that Pi was bound in the position where the γ-phosphate
of ATP resides.

However, a detailed study of mitochondrial F1 revealed that there is a sec-
ond binding site for Pi with Kd of ∼5 mM (Kasahara and Penefsky 1978).
Recently Penefsky confirmed that E. coli F1 also has two Pi-binding sites with
Kd in the range of 0.1 mM (Penefsky 2005). This result contradicts the ear-
lier failure to observe Pi binding to E. coli enzyme (al Shawi and Senior 1992)
and was supposedly due to a rapid dissociation of the bound Pi during the the
centrifuge column separation procedure. Studies of chloroplast FOF1 incorpo-
rated into liposomes also provided evidence for existence of two Pi binding
sites on the enzyme (Grotjohann and Graber 2002).

Until recently the high resolution structures of F1 solved by X-ray crystal-
lography have not revealed any bound Pi. However, a short time ago Walker’s
group solved the X-ray structure of yeast F1 that has a phosphate (or sulfate)
bound at an “empty” catalytic site. The location of the anion is close to the
expected position of ATP γ-phosphate, indicating that Pi might be bound in
the empty catalytic site (Kabaleeswaran et al. 2006).

As a substrate of ATP synthesis, Pi was demonstrated to have Km in the
range 0.2–10 mM in enzymes from various sources (Kayalar et al. 1976; Hatefi
et al. 1982; McCarthy and Ferguson 1983; Junge 1987; Strotmann et al. 1990;
Perez and Ferguson 1990a,b; Richard et al. 1995; al Shawi et al. 1997; Etzold
et al. 1997; Grotjohann and Graber 2002; Tomashek et al. 2003). However, Pi in
millimolar concentrations does not significantly inhibit the ATPase activity of
the enzyme, suggesting that the affinity to Pi is different for ATP synthesis and
for uncoupled ATP hydrolysis. Indeed, the affinity of FOF1 to Pi is strongly
enhanced in the presence of ∆µ̃H+ (Kayalar et al. 1976; Hatefi et al. 1982; Mc-
Carthy and Ferguson 1983; al Shawi et al. 1997), in line with the suggestion of
Boyer et al. that binding of Pi is one of the main energy-requiring steps during
ATP synthesis (Rosing et al. 1977; Rosen et al. 1979).

Interestingly, many experimental studies documented a higher ATPase ac-
tivity of FOF1 in the presence of Pi (Carmeli and Lifshitz, 1972; Melandri et al.
1975; Moyle and Mitchell 1975; Dunham and Selman 1981a; Turina et al. 1992;
Zharova and Vinogradov 2004). A pioneering study by Carmeli and Lifshitz
on chloroplast FOF1 provided evidence that such an increase occurs because
Pi counteracts ADP-inhibition (Carmeli and Lifshitz 1972). Later, it was found
that Pi also relieves ADP-inhibition in isolated mitochondrial (Drobinskaya
et al. 1985; Kalashnikova et al. 1988) and bacterial (Bald et al. 1999; Mitome
et al. 2002) F1, although the concentration of Pi necessary to relieve inhibition
was rather high: > 20 mM for Bacillus PS3 (Mitome et al. 2002) and > 5 mM
for the mitochondrial F1 (Drobinskaya et al. 1985).
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The mechanism of such inhibition relief is not completely clear. It is
likely that the presence of Pi in the same site where ADP is bound prevents
conformational transition to the ADP-inhibited state. Indeed, it has been
demonstrated that in the high-affinity catalytic site ATP is in equilibrium with
ADP+Pi, so if Pi can bind to the high-affinity site having ADP, it is expected
to keep the enzyme in the active state.

It should be noted that the experimental evidence available is insuffi-
cient to determine if Pi can facilitate the re-activation of the enzyme once
it has lapsed into ADP-inhibited form, or if Pi only prevents ADP-inhibition
of the active enzyme. We find the latter possibility more likely, since in
the case of mitochondrial F1 the Pi concentration necessary to relieve ADP-
inhibition (5 mM) matched the experimentally estimated affinity of the sec-
ond Pi-binding site (Kasahara and Penefsky 1978), which is distinct from the
high-affinity catalytic site.

Binding of Nucleotides or Pyrophosphate to Non-catalytic Sites

As mentioned above, there are six nucleotide-binding sites on F1. Three of
them can rapidly exchange nucleotides with the medium, while the other
three exhibit slow nucleotide exchange rates, and were named “non-catalytic
sites” (Cross and Nalin 1982). The details of nucleotide/pyrophosphate bind-
ing to the non-catalytic sites are not completely clear. Early studies have
revealed that in mitochondrial F1 all three non-catalytic sites can be occu-
pied with ATP (Kironde and Cross 1987). The crystal structure confirmed this
finding showing AMP-PNP (an ATP analog) in all non-catalytic sites (Abra-
hams et al. 1994). Experiments with chloroplast F1 (activated by heat treat-
ment at 60 ◦C, since the non-activated chloroplast F1 has almost no ATPase
activity) also indicated that all three sites can be filled with ATP, but that
ADP is able to fill only two (Milgrom et al. 1991). Several other studies have
pointed out that the three non-catalytic sites differ in their binding proper-
ties. Experiments with nucleotide-depleted E. coli enzyme indicated that F1
binds a maximum of two ATP, ADP, or GTP molecules at non-catalytic sites,
whereas all three sites can be occupied only by a mixture of nucleotide di- and
triphosphates (Hyndman et al. 1994). However, a study by Weber and cowor-
kers on the mutant E. coli F1 yielded occupancy of 2.8 and 2.6 non-catalytic
sites by MgATP and MgADP, respectively (Weber et al. 1994). In chloroplast
F1 that was not heat-treated, one non-catalytic site was found to tightly bind
ADP, while the other two could bind both ADP and ATP, albeit with different
affinities (Malyan and Allison 2002). The dissociation of ADP from the latter
two sites was much faster than that of ATP.

In chloroplasts, binding of F1 to FO was demonstrated to significantly
modify the nucleotide occupancy of the non-catalytic sites, decreasing the
ATP/ADP ratio for bound nucleotides (Malyan, 2006). Magnesium ions were
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also found to influence the nucleotide binding to the non-catalytic sites (We-
ber et al. 1994; Malyan 2005).

Experimental studies revealed that the occupancy of the non-catalytic sites
has a marked effect on the activity of FOF1. It was demonstrated on isolated
F1 from mitochondria, chloroplasts, and Bacillus PS3 that binding of ATP to
these sites stimulates the ATPase activity of the enzyme (Milgrom et al. 1990;
Jault and Allison 1993; Jault et al. 1995). This stimulation is due to attenu-
ation of ADP-inhibition: binding of ATP to the non-catalytic sites facilitates
the release of the inhibitory ADP from the high-affinity catalytic site (Mu-
rataliev and Boyer 1992; Milgrom and Cross 1993; Jault et al. 1995). Binding
of pyrophosphate to the non-catalytic sites has a similar effect (Kalashnikova
et al. 1988; Jault et al. 1994). In contrast to ATP and pyrophosphate, ADP
was demonstrated to promote hysteretic inhibition of mitochondrial F1 when
bound to non-catalytic sites, presumably by blocking the binding of ATP to
these sites and thereby preventing the activation mentioned above (Jault and
Allison 1994).

∆µ̃H+

Corresponding to thermodynamic considerations, in well-coupled mem-
branes ∆µ̃H+ acts as a back-pressure that limits the rate of ATP hydrolysis
catalyzed by FOF1. This effect is documented in many experimental stud-
ies demonstrating stimulation of ATPase activity by uncouplers. But, ∆µ̃H+

is also known to stimulate ATP hydrolysis by FOF1. This phenomenon was
first documented in chloroplasts, where the enzyme has only traces of ATPase
activity (albeit competent in ATP synthesis) (Jagendorf and Avron 1958;
Avron and Jagendorf 1959), but can be activated by ∆µ̃H+ (Kaplan et al.
1967; Schwartz 1968; Carmeli and Avron 1972; Bakker-Grunwald and Van
Dam 1974; Smith et al. 1976; Komatsu-Takaki 1986). A similar increase in
the ATPase activity induced by ∆µ̃H+ was also documented for mitochon-
drial and bacterial enzymes (Turina et al. 1992; Galkin and Vinogradov 1999;
Fischer et al. 2000; Pacheco-Moises et al. 2000; Zharova and Vinogradov
2004).

Stimulation of FOF1 ATPase activity by ∆µ̃H+ combines two distinct phe-
nomena. First, ∆µ̃H+ promotes the release of the tightly bound ADP from
the enzyme (Strotmann et al. 1976; Graber et al. 1977; Sherman and Wimmer
1984; Feniouk et al. 2005) and therefore relieves ADP-inhibition (Sherman
and Wimmer 1984; Zharova and Vinogradov 2004). In view of the single-
molecule experiments described in Sect. 3.1, it is highly conceivable that the
enzyme is relieved from ADP-inhibition by ∆µ̃H+-powered rotation of sub-
unit γ. Second, the steady-state ATPase activity is also stimulated by ∆µ̃H+

(Turina et al. 1992; Zharova and Vinogradov 2004; Feniouk et al. 2007), al-
though this phenomenon is partially masked by suppression of ATP hydro-
lysis by ∆µ̃H+ back-pressure. Interestingly, the latter stimulation (unlike
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∆µ̃H+-driven release of inhibitory ADP) is observed only in the presence of
Pi (Zharova and Vinogradov 2004; Feniouk et al. 2007). In a recent study we
investigated this phenomenon and found that the Pi-dependent stimulation
of the steady-state ATPase activity by ∆µ̃H+ in FOF1 from Bacillus PS3 is due
to relief of ADP-inhibition (Feniouk et al. 2007). It is likely that such stimu-
lation occurs because ∆µ̃H+ induces an increase in the affinity of FOF1 to Pi
(Kayalar et al. 1976; Hatefi et al. 1982; McCarthy and Ferguson 1983; al Shawi
et al. 1997). In turn, Pi binding protects the enzyme from ADP-inhibition,
as described above. A scheme illustrating such regulatory interplay between
ADP-inhibition, ∆µ̃H+, and Pi (and other factors discussed below) is pre-
sented in Fig. 3.

As already mentioned, a prerequisite for ADP-inhibition is ADP bound
at a high-affinity catalytic site without Pi (D-state in Fig. 3). Because the
order of ATP hydrolysis product release is unclear, we include both possible
pathways for ADP and Pi liberation from a catalytic site: DP → D → O and
DP → P → O. In the latter pathway ADP-inhibition requires binding of ADP
to the opened site, since the D-state does not occur.

A high Pi concentration or increased affinity of the enzyme to Pi caused by
∆µ̃H+ can increase the rate of ATP hydrolysis by increasing the probability of
the DP→P → O transition that excludes transition to the DI state. Pi bind-
ing to the D state (in the case of both high and low affinity catalytic sites) is
expected to accelerate the D → DP transition and therefore also prevent the
enzyme from lapsing into the DI state.

Fig. 3 Scheme of ATP hydrolysis regulation for bacterial/chloroplast FOF1 (extended from
Feniouk et al. 2007) See text for details (Sect. 3.2)
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If ATP is the nucleotide bound to the empty site after release of ADP and
Pi, then ATP hydrolysis proceeds. However, binding of ADP (O → D transi-
tion) might lead to ADP inhibition. Again, a high concentration of Pi or an
increased affinity to Pi diminishes the probability of the O → D-transition
(and therefore, of ADP inhibition) by biasing the reaction towards the O → P-
transition.

It is probable that ATP or pyrophosphate binding to the non-catalytic (n.c.)
sites might destabilize the ADP-inhibited state. Structurally such destabiliza-
tion might be achieved by facilitating the rotation of subunit γ inside the α3β3
hexamer. Further studies are necessary to clarify this point.

Extending this rationale, one could presume that factors stabilizing the an-
gular position of subunit γ corresponding to the ADP-inhibited state would
enhance ADP-inhibition. Below we discuss such factors in detail.

Subunit ε (in Bacterial and Chloroplast FOF1)

It was proposed by Feniouk and Junge that in the bacterial and chloroplast
FOF1 the ADP-inhibition might be enhanced by subunit ε (Feniouk and Junge
2005), which is part of the central stalk in FOF1 (see below for details). Single-
molecule experiments on cyanobacterial F1 confirmed that subunit ε blocks
the rotation of subunit γ at the same angular position as ADP inhibition does
(Konno et al. 2006). Biochemical studies on the FOF1 from Bacillus PS3 also
confirmed that ADP-inhibition is enhanced by ε, presumably because the lat-
ter subunit stabilizes the ADP-inhibited state (Feniouk et al. 2007). However,
subunit ε affects the ATPase activity of FOF1 also in the absence of ADP, so we
have summarized the data on the inhibitory role of this subunit in Sect. 4.

4
Subunit ε in Bacterial and Chloroplast Enzyme

4.1
Structure of Subunit ε

Subunit ε (subunit δ in mitochondrial FOF1) is a small protein consisting of
the N-terminal β-sandwich domain and the C-terminal domain composed of
two α-helices. Structural NMR and X-ray studies revealed that in E. coli sub-
unit ε the two C-terminal helices form a hairpin (Wilkens et al. 1995; Uhlin
et al. 1997). The location of the subunit within F1 was also determined in
a high-resolution X-ray structure of bovine mitochondrial F1 (Gibbons et al.
2000). The latter structure demonstrated a striking similarity in the fold of
E. coli subunit ε and its homolog in bovine mitochondrial FOF1 (subunit δ).

Subunit ε plays a dual role in FOF1 from bacteria and chloroplasts
(for reviews see Capaldi and Schulenberg 2000; Vik 2000; Feniouk et al.
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2006). On one hand, subunit ε is indispensable for coupling between pro-
ton translocation though FO and ATP synthesis/hydrolysis in F1. On the
other hand, subunit ε has a regulatory role inhibiting the ATPase activity of
the enzyme. These two functions are structurally separated: the N-terminal
β-sandwich domain is responsible for the coupling function, while the
C-terminal α-helical domain is responsible for inhibition of ATP hydrolysis
(but see Cipriano and Dunn 2006, for some evidence on the influence of the
C-terminal domain on coupling efficiency in E. coli FOF1). In this review
we discuss only the inhibitory function of subunit ε. We would also like to
emphasize that there is no sound evidence for a similar regulatory role of mi-
tochondrial FOF1 subunit δ (homologous to the bacterial/chloroplast ε). It is
therefore likely that this regulatory feature is present exclusively in bacterial
and chloroplast FOF1.

4.2
Inhibition of ATP Hydrolysis by Subunit ε

In 1972 Nelson et al. reported that subunit ε inhibits ATP hydrolysis in chloro-
plast F1 (Nelson et al. 1972). Later, a similar inhibitory effect was documented
(Smith et al. 1975) and studied in detail (Smith and Sternweis 1977; Laget and
Smith 1979) on E. coli F1. The possibility of performing mutagenesis makes
bacteria a powerful experimental system for studies of protein function, and
most of the data on subunit ε inhibitory role come from studies on E. coli or
Bacillus PS3 FOF1.

It was revealed that the inhibitory effect of bacterial subunit ε is lost upon
truncation of its C-terminal domain (ε∆C-mutant) (Kuki et al. 1988; Keis et al.
2006; Cipriano and Dunn 2006). However, the details of the inhibitory effect
vary among different species. In E. coli FOF1ε

∆C mutation leads to 1.5-fold
increase in the ATP hydrolysis rate, and the inhibitory effect is constant in
the ATP concentration range from 50 µM to 5 mM (Cipriano and Dunn 2006).
Markedly stronger stimulation was observed in ε∆C-mutant enzyme from
Bacillus PS3 (Kato-Yamada et al. 1999): at 50 µM ATP the activity is more than
fourfold higher in the mutant. However, at 2 mM ATP the steady-state activity
was the same in the ε∆C-mutant and in the wild-type enzyme (but the initial
lag in the onset of ATPase activity present in the wild type was lacking in the
mutant). In FOF1 from thermoalkaliphilic Bacillus TA2.A1 the inhibition was
also dependent on ATP concentration and decreased from a factor of seven at
50 µM ATP to ∼three at 2 mM ATP (Keis et al. 2006). These findings indicate
that there is a pronounced difference between the inhibitory effects of subunit
ε in different bacteria.

In chloroplast enzyme the inhibitory effect of subunit ε C-terminal do-
main is very strong: at 5 mM ATP the ATPase activity of ε∆C-FOF1 in spinach
thylakoids was more than sixfold higher than that of the wild-type enzyme
(Nowak and McCarty 2004).
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Fig. 4 Two conformations of bacterial FOF1 subunit ε C-terminal domain (stereopairs):
A Contracted hairpin state (bovine mitochondrial F1, coordinates from PDB entry 1E79).
B Extended state (E. coli F1, PDB entry 1JNV). The backbone of subunit γ is shown in sur-
face representation (colored light gray); subunit ε (mitochondrial δ) is shown in cartoon
representation (colored dark gray). The image was generated with VMD software package
(Humphrey et al. 1996)

4.3
Conformational Transitions of Subunit ε C-Terminal Domain

An important advance in the understanding of the molecular mechanism of
the inhibitory effect of subunit ε was initiated by a publication reporting the
structure of the γε complex from E. coli FOF1 (Rodgers and Wilce 2000). In
this structure the α-helices of subunit ε C-terminus were not folded in a hair-
pin (A in Fig. 4), but were stretched along subunit γ towards the α3β3 hexamer
(B in Fig. 4). The existence of such conformation in the whole FOF1 was later
confirmed by Tsunoda et al. in cross-linking experiments (Tsunoda et al. 2001).

Similar cross-linking experiments performed in our group demonstrated
that in Bacillus PS3 FOF1 the C-terminus of subunit ε can be stretched even
further, reaching the N-terminus of subunit γ (Suzuki et al. 2003). Moreover,
it was revealed that in the mutant where both the extended and the contracted
hairpin conformations of subunit ε C-terminus could be fixed by a cross-link,
the extended conformation prevailed in the absence of ATP, while the con-
tracted conformation was induced by ATP. Functional studies of the mutants
with one of the ε conformations fixed by a cross-link revealed that subunit ε

in the extended conformation inhibited the ATPase activity of FOF1 but had
no significant effect on ATP synthesis (Suzuki et al. 2003), in agreement with
the results obtained on E. coli FOF1 (Tsunoda et al. 2001). In the contracted
hairpin conformation subunit ε had no effect on either activity (Suzuki et al.
2003). This result explained the earlier data indicating two distinct states of
Bacillus PS3 subunit ε, of which only one was inhibiting ATP hydrolysis (Kato
et al. 1997).
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Experiments on fluorescence resonance energy transfer between labels
introduced in Bacillus PS3 F1 on the N-terminus of subunit γ and on the
C-terminus of subunit ε confirmed that the transition from extended to con-
tracted state is induced by ATP and correlates with the increase in the ATPase
activity (Iino et al. 2005).

The findings described above indicate that in Bacillus PS3 FOF1 subunit ε

might play a regulatory role, and that the molecular mechanism of the reg-
ulation involves large conformational transitions of the C-terminal α-helical
domain triggered by ATP. Although no sound evidence on similar transitions
in FOF1 from other organisms has been published, there are several studies re-
porting conformational changes of subunit ε in response to nucleotides, Pi, and
∆µ̃H+ in the E. coli enzyme (Mendel-Hartvig and Capaldi 1991; Wilkens and
Capaldi 1994; Aggeler and Capaldi 1996). ∆µ̃H+-induced changes in subunit
ε conformations are also reported for chloroplast FOF1 (Richter and McCarty
1987; Komatsu-Takaki 1989; Nowak and McCarty 2004).

4.4
The Role of βDESLEED Region in Inhibition Mediated by Subunit ε

The demonstration of conformational transitions of the ε C-terminus does
not provide information on the interactions responsible for the inhibitory
effect. The latter issue was partially clarified by a study in our group demon-
strating that in Bacillus PS3 FOF1 the inhibitory effect of ε was dependent on
the presence of basic, positively charged residues on the second C-terminal
α-helix of subunit ε and of the negatively charged acid residues in the
DELSDED1 segment of subunit β (Hara et al. 2001). Alanine replacements of
either basic residues in the ε C-terminus or acidic residues in the βDELSDED
segment led to a dramatic decrease of the inhibitory effect. The same effect
of alanine replacements in subunit ε was reported in a recent study on Bacil-
lus TA2.A1 FOF1 (Keis et al. 2006). It should be noted that in E. coli FOF1
the replacement of the first glutamate in the βDELSEED to cysteine also led
to a marked increase in the ATPase activity (Garcia and Capaldi 1998). It is
tempting to speculate that interactions of the βDELSEED segment with the
C-terminal domain of subunit ε is a common inhibitory mechanism in bac-
terial and probably chloroplast FOF1.

In support of the latter suggestion, a marked decrease in the inhibitory ef-
fect of ε was observed in chloroplast enzyme upon truncation of the tenth
C-terminal residue (Arg, marked bold in the sequence motif below), while the
truncation of the previous nine (non-basic) residues had a much weaker ef-
fect (Shi et al. 2001). It should be noted that the AXLAL(R/K)RAXXR motif in
the second C-terminal helix of ε is present both in chloroplast FOF1 and in the
enzyme from the bacteria of Bacillus genera (Feniouk et al. 2006). It is prob-

1 DELSEED in most other organisms; corresponds to the E. coli 380DELSEED386 of subunit β.



Regulatory Mechanisms of Proton-Translocating FOF1-ATP Synthase 295

able that the mechanism of ATPase activity inhibition mediated by subunit
ε in chloroplast and in Bacillus FOF1 is the same. This suggestion is further
supported by experiments demonstrating that Bacillus PS3 FOF1 is effectively
inhibited by chimeric ε with the C-terminus replaced by that from chloroplast
enzyme (Konno et al. 2004).

Although the enzymes from chloroplasts and from Bacillus bacteria share
a conservative motif in the subunit ε second C-terminal α-helix, the lat-
ter region is conserved neither in length nor in its amino acid composition
among bacteria (Feniouk et al. 2006). Moreover, in subunit ε from E. coli ATP
synthase the deletion of the second C-terminal α-helix alone does not have
a detectable effect on the inhibition, and only the deletion of both helices
leads to a pronounced decrease of inhibition (Kuki et al. 1988; Xiong et al.
1998; Cipriano and Dunn 2006). This implies that the role and the inhibitory
power of subunit ε might differ substantially among bacteria. It is likely that
the conservative C-terminal positive residues mentioned above are neces-
sary for a strong inhibitory effect in photosynthetic/aerobic organisms, while
a less “inhibitory” C-terminus is present in species that use FOF1 as an ATP-
driven ∆µ̃H+ generator (Feniouk et al. 2006). In line with this hypothesis, the
whole C-terminal domain is absent in subunit ε from some anaerobic bacte-
ria (e.g. of Bacteroides, Bifidobacterium, or Chlorobium genera) (Feniouk et al.
2006).

It should be noted that isolated subunit ε from bacteria of Bacillus gen-
era can directly bind ATP with Kd∼1–2 mM at optimal growth temperature,
and that the C-terminal domain is critically important for the binding (Kato-
Yamada and Yoshida 2003; Iino et al. 2005; Kato-Yamada 2005). Such bind-
ing was proposed to stabilize the contracted conformation of subunit ε and
thereby prevent the inhibition of ATPase activity (Iino et al. 2005). Recent
high resolution crystal structure of Bacillus PS3 subunit ε with bound ATP is
also in line with this hypothesis (Yagi et al. 2007). It remains unclear if sub-
unit ε has ATP-binding properties in the whole FOF1 and if these properties
are also present in FOF1 from other organisms.

5
Thiol Regulation in Chloroplast Enzyme

Chloroplast FOF1 has a distinctive redox regulatory feature absent in bacte-
rial and mitochondrial enzymes (for reviews see Evron et al. 2000; Hisabori
et al. 2002, 2003; Richter 2004). Early studies revealed that latent ATPase ac-
tivity of chloroplasts is markedly stimulated by reduction with thiol reagents
(Petrack et al. 1965; Kaplan and Jagendorf 1968). Later study by Mills and
Mitchell demonstrated that ATP synthesis was also stimulated by the reduc-
tion of the enzyme under conditions of limiting ∆µ̃H+, suggesting that the
∆µ̃H+ required for activation of the chloroplast FOF1 is larger than that re-
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quired thermodynamically for ATP synthesis (Mills and Mitchell 1982). This
suggestion was confirmed by experiments with flashing light excitation of
thylakoid membranes showing that the ∆µ̃H+ threshold for release of the
inhibitory ADP, for activation of ATP hydrolysis, and for initiation of ATP
synthesis was higher than the phosphate potential of the medium, especially
in the oxidized FOF1 (Hangarter et al. 1987). Increase of ATP concentration
from 10 µM to 1.5 mM had no detectable effect on ∆µ̃H+-induced release of
the inhibitory ADP from reduced thylakoid membranes, indicating that the
phosphate potential has no effect on activation. Assessment of the activa-
tion ∆µ̃H+ value done in the same study yielded ∼42 kJ/mol and ∼51 kJ/mol
for reduced and oxidized enzyme, respectively. Experiments with acid–base
transitions on thylakoids indicated that the ∆pH necessary for half-maximal
activation of reduced FOF1 was 2.2, but increased to 3.4 for the oxidized en-
zyme (Junesch and Graber 1987).

The stimulation of chloroplast FOF1 ATPase activity correlates with reduc-
tion of two cysteine residues in subunit γ (Arana and Vallejos 1982; Nalin and
McCarty 1984). These two cysteines specific for chloroplast enzyme are lo-
cated in a ∼30 residue long “regulatory region” in subunit γ that is not found
in bacterial or mitochondrial enzymes (Hisabori et al. 2002; Hong and Peder-
sen 2003). It is probable that the formation of a disulfide bond between these
two cysteines markedly elevates the ∆µ̃H+ threshold necessary for release of
the inhibitory ADP from chloroplast FOF1, and stabilizes the ADP-inhibited
state. However, this disulfide bond does not affect ATP synthesis rate at high
∆µ̃H+ (Junesch and Gräber 1985, 1987; Hangarter et al. 1987). Therefore, it
is tempting to suggest that the thiol regulation of chloroplast FOF1 is also
partially due to the modulation of the ADP-inhibition efficiency. It is likely
that the formation of the disulfide bond impedes the rotation of subunit γ

necessary to expel ADP from the high-affinity catalytic site.
Besides the modulation of ADP-inhibition strength, oxidation/reduction of

subunit γ also influences the inhibitory effect of subunit ε on ATPase activ-
ity of the chloroplast FOF1. It has been demonstrated that reduction of the
disulfide bond on subunit γ enhances the dissociation of subunit ε from F1
(Duhe and Selman 1990; Soteropoulos et al. 1992). In turn, subunit ε protects
the SS-bond from reduction when bound to F1. Noteworthy, the truncated
ε lacking the C-terminal domain does not protect subunit γ from reduction
(Nowak and McCarty 2004). The influence of subunit ε C-terminal domain on
redox regulation in chloroplast FOF1 is supported by experiments on the in-
troduction of subunit γ regulatory region into Bacillus PS3 enzyme (Konno
et al. 2004). It was found that the redox regulation emerged only when the
regulatory region was introduced together with the C-terminal domain of
chloroplast subunit ε. This finding indicates that specific interactions between
the regulatory region of subunit γ and the C-terminal domain of subunit ε

might be important for the modulation of chloroplast FOF1 activity. It should
be noted, however, that chloroplast F1 lacking subunit ε can still be activated
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by reduction (Richter et al. 1984; Duhe and Selman 1990), as well as the mu-
tant ε∆C FOF1 (Nowak and McCarty 2004). Therefore, despite some interplay
with the inhibition mediated by subunit ε C-terminal domain, the latter is not
a prerequisite for inactivation of chloroplast FOF1 caused by oxidation of the
γ subunit.

From the experiments on chloroplasts it was suggested that in vivo subunit
γ is reduced by thioredoxin, which in turn is photoreduced in the chloroplasts
by ferredoxin–thioredoxin reductase (Mills et al. 1980). Further experiments
supported this suggestion and pointed out that thioredoxin-f rather than
thioredoxin-m is responsible for FOF1 reduction in chloroplasts (Schwarz
et al. 1997). An elegant biophysical study by Kramer and Crofts on leaves
of intact plants provided evidence that light-dependent reduction by thiore-
doxin is indeed involved in the regulation of chloroplast FOF1 activity in
vivo (Kramer and Crofts 1989). It was revealed that full reduction of FOF1
through the thioredoxin system occurs at a light intensity of ∼0.2% of the
physiologically “normal” value that saturates primary photosynthetic pro-
teins. Therefore, the thiol modulation is likely to be a “day–night” switch
rather than being involved into daytime regulation of FOF1 activity (Kramer
and Crofts 1989).

6
Mitochondrial Inhibitor Protein IF1

Mitochondrial FOF1 has a more complicated subunit composition than bac-
terial and chloroplast enzymes. A special mitochondrial “inhibitor protein”
(IF1) that reversibly binds to FOF1 plays a role in regulation of ATP hydro-
lysis (for a review see Green and Grover 2000). The inhibitory effect of this
small α-helical basic protein on ATPase activity of both isolated F1 and of sub-
mitochondrial particles from beef heart mitochondria was reported in 1963
by Pullman and Monroy (Pullman and Monroy 1963). In the same study it
was revealed that IF1 does not inhibit ATP synthesis and that the inhibition of
ATP hydrolysis is pH-dependent and occurs at pH below 8. Later, IF1 was also
found in yeast (Hashimoto et al. 1981) and rat (Cintron and Pedersen 1979)
mitochondria. Bovine IF1 was shown to inhibit FOF1 from yeast and vice verse
(Cabezon et al. 2002; Ichikawa and Ogura 2003). In the case of yeast, it was re-
ported that two other protein factors with molecular masses of 9 and 15 kDa
interact in a complex manner to stabilize the F1–IF1 complex (Hashimoto
et al. 1983).

The X-ray crystallographic studies clarified the structure of IF1–F1 com-
plex from bovine mitochondria (Cabezon et al. 2003). It turned out that α-
helical IF1 N-terminus can insert itself into α3β3 hexamer between the α and
β subunits near their C-terminal regions and the βDELSEED region, which is
involved in the subunit ε inhibitory effect in bacterial FOF1 (see Sect. 4).
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The pH dependence of the IF1-mediated inhibition (Pullman and Monroy
1963; Panchenko and Vinogradov 1985) was reported to correlate with the pH
dependence of IF1 oligomerization (Cabezon et al. 2000). At pH below neu-
tral, IF1 exists as a dimer that efficiently inhibits the ATPase activity of F1,
while at pH above neutral IF1 forms a tetramer that has no inhibitory power.
Such pH dependence was suggested to provide a feedback mechanism for pre-
serving mitochondrial ATP in case of uncoupling or anoxia. When glycolysis
becomes the only source of cellular ATP, it lowers the cytosolic pH, which is
transmitted to the matrix and promotes the inhibition of ATP hydrolysis by
IF1 (Cabezon et al. 2000).

As mentioned above, similar to ADP-inhibition and inhibition mediated
by subunit ε in bacterial and chloroplast FOF1, IF1 inhibits ATP hydrolysis
without detectable effect on ATP synthesis (Pullman and Monroy 1963; Asami
et al. 1970; Iwatsuki et al. 2000). It has been demonstrated that IF1 dissociates
from FOF1 upon membrane energization (Schwerzmann and Pedersen 1981;
Lippe et al. 1988), suggesting that rotation of subunit γ forces the release of
bound IF1. Experiments with mutant yeast strains lacking IF1 revealed that
in mitochondria it is responsible for prompt deactivation of ATP hydrolysis
upon uncoupling (Mimura et al. 1993; Iwatsuki et al. 2000).

In vivo, the deletion of IF1 in yeast does not affect the growth rate on non-
fermentable carbon sources, but it is necessary to preserve mitochondrial and
cellular ATP under starving conditions (Ichikawa et al. 2001).

7
Conclusions

FOF1 cannot be treated as a simple enzyme that merely accelerates a reversible
reaction. Several mechanisms (ADP-inhibition, inhibition mediated by sub-
unit ε in bacteria and chloroplasts, oxidation of subunit γ in chloroplasts, and
binding of IF1 in mitochondria) deactivate the enzyme upon dissipation of
∆µ̃H+ and prevent uncoupled ATP hydrolysis. Re-activation from the inhib-
ited state might require ∆µ̃H+ higher than that necessary for ATP synthesis
from thermodynamic considerations. Therefore, ∆µ̃H+ is necessary not only
to provide energy for ATP synthesis, but also to maintain the FOF1 active
state. High affinity to Pi in the presence of ∆µ̃H+ is a key feature of the active
state maintenance, protecting the enzyme from ADP-inhibition. Such regu-
lation supposedly prevents ATP waste upon membrane de-energization, but
allows ATP-driven ∆µ̃H+ generation on well-coupled membranes.
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