
Distributed Robotic: a Language Approach

Claude Guéganno1 and Dominique Duhaut2

1 University of South Britanny – France claude.gueganno@univ-ubs.fr
2 University of South Britanny – France Dominique.Duhaut@univ-ubs.fr

Summary.

In this paper we present a powerful and versatile architecture dedicated for
robotic and mechatronic systems. The originalities of our study are, (i) that
we consider a robot with a dynamic and explicit language approach and (ii)
that the communication aspects are abstracted and take place as a natu-
ral part in the language. This approach allows easy transfers towards other
fields of research like network of sensors, ambient intelligence and ubiquitous
robotic. These works concern low-cost micro-system easy to embed in little
mechatronic devices. For demonstration of the effectiveness of our architec-
ture and developing tools, we have implemented it in the maam robot which
is a reconfigurable robot composed of several modules autonomous for CPU,
energy and motion. Some results can be found in the last part.

1 Introduction

Distributed architecture for control are widely studied ([1],[2],[3]) but gener-
ally address system fitted with operating system and network functionalities.
The promising field of ambient intelligence with its variation in ambient and
ubiquitous robotic has similar requirements but with reduced capacities. In
the field of collective robotic, swarms or teams of robots or even in recon-
figurable robotic with autonomous units, some of these requirements are: to
distribute the roles for a mission, to take unforeseen events into account, to
localize neighbors, to report status to the host. The behavior of the group
must be reactive inside a planification itself function of time. Two examples
of collaboration are shown in figure 1. In the first one, the robots are associ-
ating to make a chain in order to move together, in the second one, the chain
is moving, but some agents are left as radio-relays in order to keep a data
link with the host. So, the agents must be able to collaborate autonomously
to achieve the mission or a part of it. In some cases, the robots must work

62 Claude Guéganno and Dominique Duhaut

without any external help (host unreachable). Obviously, the communication
aspect is very important in such systems. To take full requirements into ac-
count we generally need line in sight communication for solving localization
and docking problems and, on an upper layer a network communication for
full control purpose including request of reachable robots, broadcast of new
plans, control/command of subsets of robots . . .

Fig. 1. Two kinds of collaboration. (a)The agents are building a chain. (b)They
scatter some of them to ensure a communication between the host and all of them.

So we propose an architecture which gives answers to the following con-
straints:

• taking into account a centralized control system;
• distributing the intelligence between agents;
• giving possible autonomy for each agent, or subsets of agents;
• allowing collaboration between agents (autonomous group);
• reacting at events by possibly broadcasting new plans towards agents or

subset of agents;
• each agent may control a group and in the same time be controlled by

another entity.

Moreover, this architecture must not decide of the kind of control which will
be apply to the society of agent. It could be deliberative or reactive, or one
after the other.

Our proposition is that each agent is likened to a local language, so, con-
trolling it involves (i) to request its own language (or, at least, its set of
instructions) (ii) to generate and upload programs according to its particular
capacities, and/or to remote-control it directly.

The next section presents the embedded part of this architecture.

Distributed Robotic: a Language Approach 63

2 An architecture for ambient and distributed robotic

2.1 External overview

As we have seen, managing a team of robots with effectiveness suppose to
guess the actual robots reachable in the area, to learn the capabilities of each
one, to be able to distribute an application between them, and, possibly to
remote-control any of them.

The figure 2 summarizes the functionalities of our architecture, and show
how we can use it from a control point of view. The first important aspect
is that the control system is not supposed to know who are the robots in its
environment. It has to inquire for them, an to achieve a mission, to compose
with the robots which are actually presents and ready to use (Fig 2-a). Since
robots could be different (family, or version in a family) the host requests
for the identity of each of them (Fig 2-b). This is done by downloading an
XML description from the robots. After a parsing stage, the host can generate
dedicated user-friendly tools for each agent for remote control (Fig 2-c) and
also programming tools (Fig 2-d). Indeed, the XML file permits to reconstitute
the particular language of the robots, and also gives informations about remote
invocations allowed towards the robot. So new programs can be uploaded in
the agents (Fig 2-e). A new program replaces the current one instantaneously.
All the previous operation from inquiry to uploading can be chained in a
standalone program (Fig 2-f).

2.2 Internal overview

Embedded architecture

The embedded architecture is built around a configurable system on chip in-
cluding a FPGA based hardware easy to adapt for many mechatronic and
robotic applications and a micro-controller. It communicates with an indus-
trial bluetooth module driven at the Host Control Interface level. More infor-
mations about the hardware can be found in [4].

The software include (i) a communication manager made of two finite
state automates, one dedicated for permanent inquiry of neighbors, and the
other for general communication purpose (remote control, up/download of
files); (ii) an event scheduler that can launch some particular instructions of
the main program; (iii) an interpreter which runs the main program of the
agent (figure 3-left). The IO functionalities of the robot are directly accessed
trough the communication interface as well as from the interpreted program
(figure 3-right).

64 Claude Guéganno and Dominique Duhaut

Fig. 2. Ambient behavior. (a) The host inquires for robots in its area. (b) The
XML description of each robot is requested by the host. all the robots send their
own XML files. With these informations the host (c) will be able to generate direct
command on one robot or programs over a set of robots. (d) While the XML de-
scription contains elements of the local language of the robots, programming tools
can be build. (e) New programs in local language are upload in the robots. (f) All
these operations can be centralized in a global multi-agent program.

Distributed Robotic: a Language Approach 65

Fig. 3. BIOS. Data flow view (left) and layered view of the embedded software.

2.3 The highest layer: an interpreter

General structure of a program

A program is composed with a list of event, a list of variables and a list of
instructions. Some of the instructions are specific to the agent and coincide
with the embedded XML description. The control structures are the same.

Example

{K=0}

<SUP(can6,10):On2(1);>

<SUP(can3,20):On2(2);>

SET(K,-50);

EVT();

*[TRUE](WAIT(50); INC(K);

[EQU(K,50)]((SET(K,-50)!(PwmA(1,K);));

);

In this example, two events are considered. can6 and can3 are internal regis-
ters implemented in the language. In this case they are the values of analog
inputs, so these events aim at controlling the threshold of two sensors. The
instruction EVT() starts the event scheduler.

Overview of the language

The syntax for instructions is the same as in many languages. All parameters
and return values are integers. All basic operators are provided: arithmetic
(ADD, SUB, INC, DEC, MUL, DIV); relational (INF, SUP, EQU, NEQ, LEQ, GEQ); logic
(AND, OR, NOT) and affectation SET.

Control structures

The following examples gives three usual situations:
{X=255, K=0} var: X ← 255 and K ← 0

100*(PwmA(1,X); WAIT(10); DEC(X);); repeat 100 times

*[LEQ(K,127)](SET(K,Analog(1));); while K(analog input)≤127 do ()

*[TRUE](On(1); Off(1);); while (true) do ()

66 Claude Guéganno and Dominique Duhaut

The instruction BREAK can end a loop, and the CONT (for continue) redirect
the execution to the previous test.

The conditional instruction has the usual structure, as shown in the fol-
lowing example:

[EQU(X,0)]((On(1);WAIT(10);) // executed if X==0

!(Off(1);WAIT(20);) // else ...

);

2.4 Instruction for communication

The major originality of this local language is to incorporate special native
instructions for communication. They can be divided in four groups:

1. Control of local unit:
RSTBT(); → resets the bluetooth module;
ST("name/message"); → changes the user-friendly name of the blue-
tooth module; since this string can be read without opening a link be-
tween agents, we use it as a mail-box. An example of name should be
"a1/2,6,7,9" meaning (i) that the name of this robot is "a1", and (ii)
that from "a1", the four robots "a2", "a6", "a7" and "a9" are reachable.
So the host can initiate an ad-hoc graph without any connexion at the
application level.

2. Link management:
SET(Id,OPEN(address));→ opens a data link between the local module
and the given address. The link number is stored in the variable Id.
WCX(); → waits for a connection, this agent has nothing else to do.

3. Signals management:
SYN(K); → waits for the signal K, incoming from any agent;
SIG(Id,K); → sends the signal K towards the opened data–link Id.

4. Remote invocations: assume that the set of IO instructions of the agent is

E = {INSk}k∈[0,N]

then, this agent can apply all these instructions to a remote identical
agent, after a successful connection. So the instructions of the set

(r ◦ E) = {rINSk}k∈[0,N]

are implicitly integrate part of the language. They take as first parameter
the identification of the target. The figure 4 shows an example of dis-
tributed action where a robot controlled by the host (planification level)
is ordered to control three other robots. We can note the local instruction
PwmA(x,y) and the remote invocation rPwmA(Id,x,y), where Id identifies
an opened data–link.

Distributed Robotic: a Language Approach 67

Fig. 4. Communication between agents. The host uploads a program in the
agent a0 and launches it. Then, a0 take control of a1,a2 and a3.

2.5 Inner XML card

A DTD for mechatronical systems

The DTD is a set of grammar rules specifying the document generic logical
structure. Thus in the DTD we enumerate all generic operations that concern
the robots. Because we want easy transfers of this technology, we impose that
(i) the number of kind of operation must be limited, and; (ii) the descrip-
tion can induce an object vision of the robot (a robot can be composed of
subsystems themselves decomposable . . .).

According to the first constraint, we propose only four kinds of functions:⎧⎪⎪⎨⎪⎪⎩
binary outputs
outputs in a range ∈ [min, · · · , max]
inputs
general procedures and functions

A response for the second constraint is to add a concept of entity in the DTD
and provide links between entities. So we can associate an operation with
one of its subsystem. Because robots are often composed of many identical
subsystems an entity can be link to n sub-systems (ex: hexapode, composed
of 6 legs) Here is an extract of this DTD.

<?xml version=’1.0’ encoding=’utf-8’?>

<!-- interfaceRobot.dtd -->

<!ELEMENT Robot (Link*,BOutput*,Output*,Input*,

Function*, Load?)>

<!ATTLIST Robot name CDATA #REQUIRED>

<!ATTLIST Robot BT CDATA #IMPLIED>

<!-- Logical link between objects -->

68 Claude Guéganno and Dominique Duhaut

<!ELEMENT Link EMPTY>

<!ATTLIST Link name CDATA #REQUIRED>

<!ATTLIST Link parent CDATA #REQUIRED>

<!ATTLIST Link nb CDATA #REQUIRED>

<!ELEMENT Output EMPTY>

<!ATTLIST Output name CDATA #REQUIRED>

<!ATTLIST Output min CDATA #REQUIRED>

<!ATTLIST Output max CDATA #REQUIRED>

<!ATTLIST Output prot CDATA #REQUIRED>

<!ATTLIST Output parent CDATA #IMPLIED>

...

The name attribute concerns all the operations and entities of the robot.
The Link element relies one system to n subsystems. When an operation
addresses a subsystem, it fills the parent field.

The prot field appears for each operation element. Since we want to pro-
vide remote control tools and allow execution of distributed algorithms in a
team of robots, we must access to all the internal basic functions of each robot.
So this required field is necessary for defining the protocol of communication
between the host and the robot.

XML example

The following code is an example of XML description using the previous DTD:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Robot SYSTEM ’interfaceRobot.dtd’>

<Robot name="H2" BT="07003F273A">

<Link name="leg" parent="H2" nb="6"/>

<Output name="PwmA" parent="leg" min="-115" max="115" prot="A"/>

<Output name="PwmB" parent="leg" min="-115" max="115" prot="B"/>

...

The control system of the team of robots requests for all the XML files of the
detected robots, and parse them in order to generate instructions for them.
By reading this file, we guess that the robot H2 is composed of 6 legs, each
of them is powered by two PWM commands. The next section shows the use of
these informations.

Distributed Robotic: a Language Approach 69

3 Implementation in maam robot

3.1 Overview maam project

The maam 3 project is a self-reconfigurable robotic architecture where each
module is autonomous for energy and CPU. The basic unit (called atom) is
composed of six legs which are directed towards the six orthogonal directions
of space. They allow the atom move itself and/or couple to another one. The
first walking prototypes of atom appears on the figure 5.

Fig. 5. The first prototypes of maam robot walking (right). These prototype embeds
all the electronic and software functions described in this paper. They do not include
the pincers.

The twelve PWM signals, and the command for the analog converter
(driven in pipeline mode) are built in the FPGA. Some internal signals of the
servo are processed in order to identify the legs in contact with the ground.
Each leg is fitted with an IR transmitter/receiver for perception and docking.
All the features described in this paper (XML inside, local language, wireless
properties) are implemented and tested.

Because this robot do not take any inspiration from human or animal world
a realistic simulator is written to study their behavior. The virtual robots have
the same properties than the real robots and, moreover, are also driven by
identical interpreted programs. The figure 6 reports a simulation were eight
robots are searching for an attractor.

4 Conclusion

In this paper we presented an architecture for distributed robotic, completely
abstracted by a language approach. Moreover, we proposed that every agent is
fitted with an inside XML card, and that tools for control/command (includ-
ing the dedicated local language) can be guessed thanks to this description.

3 Molecule = Atom | (Atom+Molecule)

70 Claude Guéganno and Dominique Duhaut

Fig. 6. Simulator. Like in the real context, the agents are independent and their
own thread runs a program written in the interpreted local language.

The usual requirements in synchronization an remote invocation from one
agent to another appear as a natural part in the language, since the middle-
ware in charge of communication acts as a background task. The efficiency of
this approach has been proved during its implementation in the maam robot
which is a complex mechatronic system.

Acknowledgment

The maam project is supported by the Robea project of the CNRS. All refer-
ences to people participating to this work can be found in [5].

References

1. Raja Chatila, ”Control Architecture for Automous Mobile Robots”,From Per-
ception to Action Conference (PERAC’94), Lausanne , 1994, pp.254-265.

2. Medeiros, Adelardo A. D. ”A survey of control architectures for autonomous
mobile robots.” J. Braz. Comp. Soc., Apr. 1998, vol.4, no.3. ISSN 0104-6500.

3. Dominik Henrich, Thomas Höniger, ”Parallel Processing Approaches in
Robotic”, ISIE (1997)

4. Claude Guéganno and Dominique Duhaut , ”A Hardware/Software Architec-
ture for the Control of Self-Reconfigurable Robots”, DARS 2004, Toulouse
(France).

5. http://www.univ-ubs.fr/valoria/duhaut/maam

