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Summary. The structural features of a system significantly affect the attributes
and functions of the system. The effect of this phenomenon can be widely observed,
from areas such as the WWW to the brains of animals. In the present paper, a
method for controlling the behavior of a system by manipulating the structure is
examined using a coupled nonlinear oscillator model. We first describe a property
of the eigenfrequencies of coupled oscillators and show that convergent transition is
possible by connecting oscillators with significantly different eigenfrequencies. More-
over, using the eigenvalues of a graph matrix, we reveal that a combination of distant
oscillators can shift the converged state independent of the eigenfrequencies.
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1 Introduction

Morphological approaches to biological motion represented by a passive dy-
namic walker[1] are attracting attention particularly with regard to the re-
lationship between morphological properties and functional creation. Facul-
ties derived from topology as such are not restricted only to motion. In the
field of networks, The small world (SW) structure[2, 3] has a high trans-
ferring efficiency, and networks with an approximately power-law vertex de-
gree distribution, such as the Internet, strongly resist the random removal
of nodes[4]. These types of generation phenomena can also be seen in the
brain. Synapses, the connections between neurons, are classified into electri-
cal and chemical types according to their transmission mechanisms. Chemical
transmission synapses are mediated by message-carrying chemicals, and the
combination of chemicals can be changed by the amount of message-carrying
chemicals. This transformation is used for memory and learning abilities. For
instance, the tendency of crickets to change their behavior based on past ex-
perience is caused by the variation of message-carrying chemicals influenced
by nitric oxide (NO)[5].
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In order to understand the relationship between structure and function, an
appropriate model is necessary. Nonlinear oscillators can serve this purpose
because they can generate the forces for synchronization. Research regarding
the nonlinear oscillator has been carried out for a long period. For example,
Linkens[6, 7] analyzed a coupled van der Pol (VDP) oscillator system, particu-
larly with respect to its convergence. Among recent studies, Kuramoto[8] pro-
posed a model that has a phase as only one free parameter and indicated that
synchronization is affected by the connection coefficient. Jadbabaie et al.[9]
and Earl et al.[10] investigated the relationship between network structure
and convergence by introducing geometric factors to the Kuramoto model.

Current oscillator models can be effectively used as a brain model; this is
based on some biochemistry reports, such as one indicating that the synchro-
nization of neurons is essential in the visual information processing of a cat[11].
In particular, oscillatory neural networks (ONNs) proposed by employing the
oscillatory feature to a neural network (NN), the most popular information
processing model of the brain, has attracted considerable attention. As an
example, Hoppensteadt[12] realized associative memory with synchronization
by introducing a Hebbian learning rule to the Kuramoto model.

Using ONNs, research on the structural features of the oscillator network
may facilitate a discussion on the morphology of the brain. However, in or-
der to consider the changes in synapses, the examination of a change in the
synapse structure cannot be avoided. Nonetheless, there is little research on
convergence in this regard, and current research mainly considers mainly the
static properties. The purpose of this research is to elucidate the dynamic phe-
nomenon of structural change and to control convergence by the manipulation
of only the transition of structure.

We first understand a property of the phase gap of coupled oscillators us-
ing the Kuramoto model and propose a control method for the convergence
state. Next, we confirm this method via simulation. Then, by using the eigen-
values of a graph matrix, we describe a geometric manipulation that enables
a converged transition independent of the eigenfrequencies.

2 Models and Characteristics of Oscillators

2.1 Nonlinear oscillator

In order to consider the relationship between the system and structure, an
appropriate model is required. In this study, we constructed a model by con-
sidering the characteristics of nonlinear oscillators as follows:

1. Connected nonlinear oscillators can cause the forces required for synchro-
nization.

2. The converged states can be changed by these forces.
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Fig. 2. Quasi-Periodic

The transition of converged states considered in this study is shown by the
apparent change from the cyclic state (limit cycle) shown in Fig. 1 to the
non-cyclic state (quasi-periodic oscillation) shown in Fig. 2.

By using nonlinear oscillators as models, a structural change produces
forces between the oscillators in the system(property 1), and this effect can
change the state of the oscillators, i.e., the state of the system (property 2).

2.2 Kuramoto model

We used the Kuramoto model[8] as nonlinear oscillators for this model. In
this model, the phase of the ith oscillator θi is as follows:

θ̇i = ωi +
K

N

N∑
j=1

Γ (θj − θi). (1)

Here, K is the connection coefficient; ωi, the eigenfrequency, Γ , the interaction
function; and N , the total number of oscillators. We suppose that Γ is odd-
symmetric (Γ (θ) = −Γ (−θ)) and Γ (0) = 0.

3 Convergent Transition via Properties of Eigenfrequency

3.1 Characteristics of coupled oscillators

We express a group of oscillators connected to the ith oscillator as Oi and that
connected to the jth oscillator as Oj . When we consider further connections
between the ith and jth oscillators, the transition can be represented by a
change in γ (0→1); the equations of motion regarding these oscillators then
become

θ̇i = ωi +
K

N + γ

{∑
s∈Oi

Γ (θs − θi) + γΓ (θj − θi)

}
(2)

θ̇j = ωj +
K

N + γ

⎧⎨⎩∑
t∈Oj

Γ (θt − θj) + γΓ (θi − θj)

⎫⎬⎭ . (3)
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In this case, a phase gap between the ith and jth oscillators φ(= θi − θj)
is expressed as

φ̇ = θ̇i − θ̇j = ωi − ωj +
K

N + γ
s∈Oi

Γ (θs − θi) −
t∈Oj

Γ (θt − θj) − 2Kγ

N + γ
Γ (φ)

(4)

∂φ(t, γ)

∂t
= δω +

K

N + γ
s∈Oi

Γ (θs − θi) −
t∈Oj

Γ (θt − θj) − 2Kγ

N + γ
Γ (φ(t, γ)) .

(5)

In the case widthout any connection,

∂φ(t, 0)

∂t
= δω +

K

N

⎧⎨⎩∑
s∈Oi

Γ (θs − θi) −
∑
t∈Oj

Γ (θt − θj)

⎫⎬⎭ . (6)

When N is sufficiently large, by the approximation of K
N+γ � K

N

(
1 − γ

N

)
=

K
N − γ

N2 � K
N ,

∂φ(t, γ)

∂t
� δω +

K

N

⎧⎨⎩∑
s∈Oi

Γ (θs − θi) −
∑
t∈Oj

Γ (θt − θj)

⎫⎬⎭− 2Kγ

N
Γ (φ(t, γ))

=
∂φ(t, 0)

∂t
− 2Kγ

N
Γ (φ(t, γ)) . (7)

This equation indicates that the addition of new combinations produces an
effect of adding (or substituting) an integer multiple of the interaction func-
tion.

If the interaction function Γ (φ(t, γ)) = sinφ(t, γ),

∂φ(t, γ)

∂t
= −2Kγ

N
sin (φ(t, γ)) +

∂φ(t, 0)

∂t
, (8)

which denotes a sine function with center ∂φ(t, 0)
∂t and amplitude 2Kγ

N .
From eq.8, following properties can be determined:

1. If
∣∣∣∂φ(t, 0)

∂t

∣∣∣ < 2Kγ
N , there exists a certain φ that satisfies

∣∣∣∂φ(t, 0)
∂t

∣∣∣ = 0.

2. If
∣∣∣∂φ(t, 0)

∂t

∣∣∣ > 2Kγ
N , no φ satisfies

∣∣∣∂φ(t, 0)
∂t

∣∣∣ = 0.

Similar to the concept of frequency locking[13], converged states become a
limit cycle in case 1 because of the existence of an equivalent point and become
a quasi-periodic oscillation in case 2. Figs. 3 and 4 display the graphs of eq.8

under the condition that ∂φ(t, 0)
∂t is constant.

As a result, we can control the converged states from the limit cycle to the

quasi-periodic oscillation by coupling oscillators whose
∣∣∣∂φ(t, 0)

∂t

∣∣∣ is large, i.e.,

the gap in eigenfrequencies is large.
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ẋ

2 -1 2
x

10

⇒
-2
-1
0
1
2
3

ẋ
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Fig. 5b. Convergent shift by structural transition

3.2 Simulation

We simulated the state of the oscillators by altering the connection structure
based on the eigenfrequencies (Fig. 5a and 5b). We used VDP oscillators in this
simulation. The equation of a VDP oscillator is ẍi − εi(1 − x2

i )ẋi + ω2

i xi = 0,
and the interaction forces for synchronization is expressed as xi(t + 1) =

xi(t)+K
{

1

Ni(t)

∑Ni(t)
j=1

xj(t) − xi(t)
}

. Here, xj(t) is the state of an oscillator

that is connected to the ith oscillator and Ni(t) is the total number of the
connected oscillators.

In Fig. 5a, the vertices of the graph represent the oscillators, the edges
express the relationship of the connections and the values of the vertices rep-
resent the eigenfrequencies.

We change the structure by creating a new connection between oscilla-
tors whose eigenfrequencies are significantly different. Through the simula-
tion, converged states shift from the limit cycle to quasi-periodic oscillations;
this is confirmed by Fig. 5b.
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4 Convergent Transition via only Geometric Properties

4.1 Kuramoto model considering structural disposition

Jadbabaie et al.[9] proposed an oscillator model that builds on the Kuramoto
model and includes connection relationship between oscillators.

θ̇ = ω − K

N
B sin (BT θ) (9)

The N × e matrix B represents an oriented graph that has N vertices and e
edges, and the following conditions hold:

• If edge j incoming to vertex i, Bij = 1.
• If edge j outcoming from vertex i, Bij = −1.
• If edge j and i are not connected, Bij = 0.

In eq.9, θ and ω are N vectors expressing the phase and eigenfrequency, re-
spectively.

4.2 Convergent condition via eigenfrequency

In addition, Jadbabaie showed that there is at least one convergent oscillator
if the connection coefficient K satisfies

K >
(π

2

)2 Nλmax(L)

λmin(L)2
‖ω‖2. (10)

Here, L = BBT is a matrix called the Laplacian and λ(L) is the eigenvalue of
L. λmax and λmin are the maximum and minimum eigenvalues, respectively.

In eq.10, the geometric property is expressed only by

λmax(L)

λmin(L)2
, (11)

therefore, convergent control is possible by considering the eigenvalues of the
Laplacian.

Moreover, a similar conclusion can be gathered from the theses of Pecora
et al.[14] and Barahona et al.[15]. They also modeled oscillator states using
a geometric matrix and showed that oscillators can converge when the differ-
ence between the maximum eigenvalue and minimum eigenvalue goes below
a certain constant value.
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4.3 Eigenvalues of the Laplacian

In order to investigate the elemental property of structural transition, we con-
sider connecting a pair of oscillators to a simple cycle-graph-shaped oscillator
network.

B =

−1 0 · · · 0 1
1 −1 0 · · · 0 0

1 −1

. . .
. . .

...

0 1 −1 0
1 −1

, L = BBT =

2 −1 0 · · · 0 −1
−1 2 −1 0

0 −1 2
. . .

...
...

. . .
. . . 0

0 2 −1
−1 0 · · · 0 −1 2

(12)

We express the matrix of a graph that has an additional combination as B′ =

[B|x] by using N vector x; x =
[
0 · · · 0 −1

m︷ ︸︸ ︷
0 · · · 0 1 · · · 0

]T
. In this vector,

m denotes the interval of the coupling oscillators. Because the current graph
is ring-shaped, the variation in the starting point of the connection makes

no difference. Therefore, x can be written as x =
[
0 − 1

m︷ ︸︸ ︷
0 · · · 0 1 · · · 0

]T
without a lack of generality. Then, the Laplacian of B′ becomes

L′ = BBT + xxT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 ··· 0 0 ··· 0 −1

−1 3 −1

... −1 0

0 −1 2

. .. 0

...
...

. ..
. .. 0

...−1 0 0

0 ··· 0 −1 2 −1 0 ··· 0

0 −1 0 ··· 0 −1 3 −1

...
... 0 −1 2

.. .
. ..

.. . 0

0

... −1 2 −1

−1 0 ··· 0 0 ··· 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

|L′ − λI| =

1 2 3 1 +1 1

−1 0 ··· 0 −1 2−λ
2−λ −1 0 ··· 0 0 ··· 0 −1

−1 3−λ −1

... −1 0

0 −1 2−λ
. . . 0

...
...

. . .
. . . 0

...
−1 0 0

0 ··· p 0 −1 2−λ −1 0 ··· 0

0 −1 0 ··· 0 −1 3−λ −1

...
... 0 −1 2−λ

. . .
. . .

. . . 0

0 ··· 0 −1 2−λ −1

. (14)
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We set (m + 1) × (m + 1) matrix S, (m + 1) × (N − m − 1) matrix T ,
(N − m − 1) × (m + 1) matrix U and (N − m − 1) × (N − m − 1) matrix V
as follows:

S =

1 2 3 1 +1

−1 0 ··· 0 0

2−λ −1 0 0

−1 3−λ −1 0 ··· 0 −1

...

0 −1 2−λ
. . . 0

...
. . .

. . .
...

−1 0

0 ··· 0 −1 2−λ −1 0

0 −1 0 ··· 0 −1 3−λ −1

, T =

0 ··· 0 −1 2−λ
−1

. . . 0

0
...
0

,

U =

0 ··· 0 −1 2−λ
−1

. . . 0

0
...
0

V =

−1

2−λ −1 0

−1

. . .
. . .

0

...
0 ··· 0 −1 2−λ −1

.

Based on these matrices, eq.14 becomes |L′−λI| = | S T
U V | = |V | |S−TV −1U |.

Because |V | = 1, |L′ − λI| = 0 ↔ |S − TV −1U | = 0.
If we set V −1 = {vij} (i, j indicates row and column number respectively),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[TV −1U ]1(N−1) = v(N−1)1 − (2 − λ)vN1

[TV −1U ]1N = −(2 − λ)v(N−1)1 + (2 − λ)2vN1

+v(N−1)2 − (2 − λ)vN2

[TV −1U ]2N−1 = vN1

[TV −1U ]2N = −(2 − λ)vN1 + vN2

[TV −1U ]other = 0

. (15)

Further, [ −1 0
2 − λ −1

]−1

=

[ −1 0
−(2 − λ) −1

]
⎡⎣ −1 0 0

2 − λ −1 0
−1 2 − λ −1

⎤⎦−1

=

⎡⎣ −1 0 0
2 − λ −1 0

−(2 − λ)2 + 1 −(2 − λ) −1

⎤⎦
...

indicates the following about V −1:[
v1(N−1) v2(N−1) · · · vN(N−1)

]T
=
[
0 · · · 0 −1 −(2 − λ)

]T
(16)[

v1N v2N · · · vNN

]T
=
[
0 · · · 0 −1

]T
, (17)

therefore,
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TV −1U = 0. (18)

As a result, |L′ − λI| = 0 ↔ |S| = 0.

|S| =

1 2 3 1 +1

−1 0 ··· 0 0

2−λ −1 0 0

−1 3−λ −1 0 ··· 0 −1

...

0 −1 2−λ
. . . 0

...
. . .

. . .
...

−1 0

0 ··· 0 −1 2−λ −1 0

0 −1 0 ··· 0 −1 3−λ −1

= 0 (19)

∣∣∣∣∣∣∣∣∣∣∣∣

1 2 ··· m−3

2−λ −1 0

−1 2−λ
. ..

.. .
. .. −1

0 −1 2−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)m. (20)

The size of this determinant is decided by the interval of the coupling
oscillators. This result suggests that an even more distant connection induces

a larger variation of the eigenvalues. Therefore, λmax(L)

λmin(L)2
increases due to the

remote oscillator connection, which breaks the condition of eq.10, and the
oscillators become quasi-periodic.

Moreover, the right-hand side of eq.20 is −1 to the power of m. Therefore,
the sign changes depending on whether the distance of the oscillators is an
even or odd number; this causes a non-trivial difference in the convergent
condition.

5 Conclusion

In this study, we examined the effect of structural transition on the behavior
of systems and investigated a method whereby convergence can be controlled
only by structural manipulation, using an oscillator network as the system
model.

We first analyzed the behavior of a network from the viewpoint of phase
gap and showed that it is possible to control the converged state by connecting
oscillators with significantly different frequencies. In addition, we confirmed
this phenomenon by simulation.

We then calculated the rate of maximum and minimum eigenvalues of a
graph matrix to find a control method mainly via the structural properties
based on the thesis by Jadbabie. Assuming that the oscillator network is
constructed on a circular graph, we showed that the variation of eigenvalues
depended on the distance of the additional coupled oscillators, i.e., a remote
connection can induce convergent transition.
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