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Summary. In this work, we evaluate performance of our distributed coopera-
tion framework, DEMiR-CF, for Naval Mine Countermeasure missions on the
US NAVY’s ALWSE-MC simulator against different contingencies that may
arise run time. Our cooperation framework integrates a distributed task al-
location scheme, coordination mechanisms and precaution routines for multi-
robot team execution. Its performance has been demonstrated in Multi-robot
Multi-target exploration and Object Construction domains. Marine applica-
tions provide additional challenges such as noisy communication, position un-
certainty and the likelihood of robot failures. There is a high probability that
the initial assignments are subject to change during run time, in these kinds of
environments. Our framework ensures robust execution and efficient comple-
tion of missions against several different types of failures. Preliminary results
for MCM missions are promising in the sense of mission completion, and AUV
paths are close to optimal in the presence of uncertainties.

1 Introduction

Undersea operations using AUVs (Autonomous Underwater Vehicle) provide
a different and in some ways a more challenging problem than tasks for UAVs
and UGVs. In particular, communication windows are restricted and band-
width is limited. Coordination among agents is correspondingly more difficult.
In traditional approaches, a central planner initially assigns subtasks for a set
of AUVs to be performed in achieving the team goal. However, initial assign-
ments of tasks may become inefficient during real time execution due to the
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real world issues (e.g. failures), and these allocations are subject to change
if efficiency is a high concern. Therefore reallocations are needed and should
be performed in a distributed fashion. To facilitate this flexibility, we offer a
distributed auction based cooperation framework, Distributed and Efficient
Multi Robot-Cooperation Framework (DEMiR-CF) [8], an online dynamic
task allocation (reallocation) system to achieve a team goal while using re-
sources effectively with integrated task scheduling and execution capabilities,
that can also respond to and recover from real time contingencies such as com-
munication failures, delays, range limitations and robot failures. DEMiR-CF
has been implemented and tested extensively in the multi-robot multi-target
exploration domain [7]. In this paper, we report performance of our framework
against realistic difficulties in multi-AUV coordination for Naval Mine Coun-
termeasure (MCM) mission on the US Navy’s Autonomous Littoral Warfare
Systems Evaluator- Monte Carlo (ALWSE-MC) simulator [1].

2 Background and Related Work

DEMiR-CF is a distributed mechanism for real time task execution and de-
signed to use advantages of auction based approaches and to integrate addi-
tional routines for solution quality. Other efficient works in auction based co-
ordination research are: M+ [2], MURDOCH [5], TraderBots [3] and Lemarie’s
allocation scheme [6]. According to the review given in [4], existing auc-
tion based systems are not fully capable of re-planning task distributions,
re-decomposing tasks, re-scheduling commitments, and re-planning coordina-
tion during execution. Our approach aims at filling these gaps. We propose an
integrated cooperation framework for multi-robot task execution, and here in
this paper, we analyze performance of precaution routines and solution qual-
ity maintenance schemes for single-item auctions in a multi-AUV coordina-
tion context. Experiments are performed in a realistic simulation environment
with real time constraints and events such as AUV failures, communication
range limitations, failures and delays. Precaution routines embedded in the
framework not only recover from failures but also maintain the high solution
quality. With an efficient bid evaluation approach, the framework provides
near optimal solutions [7]. Our experiments show that communication delays
significantly impact the solution quality and should be analyzed in multi-robot
systems especially working in harsh environments. As experiments and sce-
narios demonstrate, online task handling performance of the framework with
task switching mechanism is promising.

Naval mine countermeasures (MCM) are actions taken to counter the ef-
fectiveness of underwater mines. MCM operations include finding and seizing
mine stockpiles before they are deployed, sweeping desired operational areas,
identifying mined areas to be avoided, and locating and neutralizing individ-
ual mines [10]. Our research is focused on the subset of MCM that involves
locating and mapping all individual mines in an operational area. In general,
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recognizing proud mines on the seafloor is not overly difficult; the difficulty
arises with the abundance of non-mine objects on the seafloor that possess
mine-like characteristics (e.g., geologic outcroppings, coral, manmade debris,
etc.). This ample supply of false alarms has necessitated the following strat-
egy typically employed by the Navy: detect and classify the mine-like objects
(MLOs) with high-coverage rate sensors (e.g., sidelooking sonar), employ ad-
vanced signal processing techniques for maximal false alarm reduction, then
revisit the remaining MLOs with identification-quality assets (e.g., electro-
optic sensors) to confirm them as mines or dismiss them as false alarms. It is
this strategy which the research proposed herein attempts to implement in a
distributed, near optimal fashion. Achieving this mission with an AUV team
requires effective task allocation mechanisms and several precautions.

3 The DEMiR-CF Framework for Naval MCM Missions

DEMiR-CF is designed for complex missions including inter-related tasks
(with precedence constraints) that require diverse agent capabilities and si-
multaneous execution. The framework combines distributed task allocation and
coalition formation schemes, and dynamic task selection scheme as coopera-
tion components, and Plan B precaution routines some of which are imple-
mented by dynamic task switching scheme. These components are integrated
into one framework to provide an overall system that finds near optimal so-
lutions for real time task execution. The overall objective of the robot team
(rj ∈ R, 0 < j ≤ ||R||) equipped with our framework is to achieve a mission
(M) consisting of interrelated tasks Ti (0 < i ≤ ||M ||), by incremental assign-
ment of all Ti ∈ M to rj ∈ R while optimizing the specified objective function.
Details of DEMiR-CF are provided in [8], and an extended version of the over-
all framework and the implementation details given in this paper is provided
as a technical report [9]. In this paper, we report experimental evaluations of
our framework and details about application of the framework for a real mis-
sion execution. The reference mission in this research is to detect, classify, and
identify underwater mines in a given operational area simulated in a PC-based
software, ALWSE-MC [1], analysis package designed to simulate multiple au-
tonomous vehicles performing missions in the littoral regions including mine
reconnaissance, mapping, surveillance, and clearance. This mission employs
two types of vehicles: unmanned underwater vehicles (UUVs) which are free
swimming AUVs and possess large-footprint sensors (e.g., side-scan sonar)
for detection and classification (D/C) of mines and seafloor crawlers equipped
with short-range, identification-quality sensors (e.g., camera). The crawlers
have the ability to stop at an object and take a picture with a camera.

Our general task representation is designed as being capable of represent-
ing complex tasks with inter-dependencies. In particular, in this case study,
tasks do not have interdependencies. Two types of tasks are defined for vehi-
cles: “visit waypoint” (w) and “identify MLO” (t). In the task representation,
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required capabilities are represented for each type of task: reqcapw contains
side-scan sonar and reqcapt contains cameras besides the standard capabili-
ties of AUVs common in both types of vehicles. The coverage mission (MC)
contains predefined number of waypoints (wi ∈ MC , 0 < i ≤ ||MC ||) to be
visited by all UUVs (RUUV ⊂ R). One way of task representation is to directly
assign tasks for each waypoint. However this representation has a drawback of
high communication requirements for efficient completion of the mission. In-
stead, we represent waypoint tasks as interest points of regions/search areas
(Wk = ∪wi, ∀wi is unvisited, and Wk ⊆ MC). These regions (and corre-
sponding centers) are determined by robots during runtime dynamically. The
advantage of this representation is that the only information necessary to
negotiate over tasks contains the interest point information, providing data
compression. Regions determined by different UUVs may vary during run-
time and sometimes overlap. However, the uncertainty related to the tasks is
within an acceptable degree compared to the requirements of complete knowl-
edge sharing. Before defining regions, relative distance values, reldist(rj , wi),
are determined for each unvisited waypoint wi as in Eq. 1, where dist function
returns the Euclidian distance between points. rk locations are the latest up-
dated locations of the robots. If there is no known active robot, reldist(rj , wi)
value is taken as only the own distance.

reldist(rj , wi) = dist(rj , wi) − min∀k �=j(dist(rk, wi)), rk is active (1)

Each robot defines its regions (Wjk, 1 ≤ k ≤ ||RUUV ||) number of which
equals to the number of UUVs believed to be running properly. After sorting
reldist(rj , wi) values of unvisited waypoints, the regions are determined on
the sorted list, containing approximately same number of waypoints. The first
region is the region that the robot has the highest interest (but negotiations
are needed to resolve conflicts if there is another UUV with a similar interest).
The identification mission (MI) contains unknown number of tasks for MLO
locations (ti ∈ MI , 0 < i ≤ ||MI ||) to be visited by crawlers. Therefore the
tasks in MI are generated online during runtime. For bid evaluations, we use
heuristic functions proved to provide close to optimal results for multi-robot
multi-target domain [7]. These cost functions, explained in the next section,
provide time extended consideration of tasks for instantaneous assignment
with a tractable and efficient way. A conceptual flowchart summarizing op-
erations of UUVs and crawlers, and the general operations implemented by
both types of AUVs is given in Fig. 1.

3.1 Exploration for Detection and Classification of MLO Locations

To begin the mission, the UUVs survey the operational area following way-
points determined a priori ; however, corresponding regions containing way-
points may be reassigned by negotiations among UUVs autonomously. After
determining regions, each UUV offers an auction for the highest interested re-
gion for itself and offers its selected interest point information as an auction.
After negotiations on several auctions, each UUV is assigned to the closest



Emp. Eval. of Auction-Based Coordination of AUVs in MCT 201

Define Regions
Select the most suitable

region

Offer auction
for the selected region

Visit waypoints in
the

assigned region

MLO
Detection

Broadcast
known unachieved MLO locations
visited waypoints
execution message for the next
waypoint in the schedule

New Messages are
received

Resolve inconsistencies

Warn
others

Update
Models

Reply for
auctions

Select the most suitable
MLO location

Offer auction
for the best MLO location

Award
another

UUV
Visit MLO location

Award
another
crawler

no change

Broadcast
known unachieved MLO locations
achieved waypoints
execution message if executing
MLO task

Dynamic Task Selecting/Switching

Distributed Task Allocation

Plan B Precautions

UUV Operations Crawler OperationsGeneric Operations

System Model is updated / Mission
Execution Begins

failures , recoveries , own
inconsistencies , new MLO tasks

System Model is updated/ Mission
Execution Begins

failures , recoveries , own
inconsistencies , new tasks

no change

Fig. 1. Conceptual Flowchart related to the AUV Operations

region (interest point). If more than one robot is at the same distance to the
interest point, the one with the minimum id is assigned. The other UUVs
continue to offer auctions for the remaining regions. Allocations of the re-
gions may also change during run time to maintain solution quality. Whenever
UUVs detect UUV failures or recoveries from failures they change their region
definitions accordingly and offer new auctions. After region assignments are
implemented, each robot visits waypoints in the corresponding region (Wj)
by ordering them descendingly according to their cost values as in Eq. 2.

c(rj , wi) = α ∗ dist(rj , wi) + (1 − α) ∗ [dist(wf1, wf2)
−max(dist(wi, wf1), dist(wi, wf2))]

{dist(wf1, wf2) = max(dist(wk, wl)), wi,k,l,f1,f2 ∈ Wj}
(2)

This heuristic function considers boundary targets, wf1 and wf2 in Wj

which are the targets having the maximum distance value. The basic idea of
this function is that these targets determine the diameter of the region (Wj)
and both of them should be visited. This heuristic method forwards robots
to these farthest targets within their area to some degree. By introducing a
constant (α), this degree can be adjusted and it is taken as 2/3. This heuristic
function produces close to optimal results for multi-robot multi-target domain
[7]. If there are more than one pair of boundary targets, the pair of which has
a member with the smallest distance to the UUV is selected.

As UUVs detect the MLOs on their way, they broadcast these estimated
target positions to all AUVs (i.e., tasks for crawlers are generated online).
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Then MLO information can propagate (in bucket-brigade fashion) to all other
AUVs in the group that can possibly be reached. Periodic broadcasting of
important information (coming from either own sensors or external agents) is
a way to handle communication range limitations.

3.2 Identification of MLOs

When crawlers are informed about MLO locations, they update their world
knowledge and dynamically select the best MLO target to visit and offer auc-
tions. Therefore they can switch among tasks when new tasks appear, if it
is profitable. It is also possible that a crawler may inadvertently discover a
mine without being informed of its position by a UUV. In this case, the crawler
identifies the target, adds it to its task list as an achieved task, and broadcasts
achievement information for maintaining system consistency. Crawlers deter-
mine their bid values by Eq. 3, where tk is the closest unvisited MLO target
to ti. This cost function provides a greedy look ahead for visiting MLO tar-
gets rather than only considering the distances between target and the AUV.
An additional penalty is applied to the cost, if there is another profitable
alternative way of visiting tasks.

c(rj , ti) =
dist(rj , ti) + dist(ti, tk) − dist(rj , tk) , if (dist(ti, tk) > dist(rj , tk))

dist(rj , ti) otherwise
(3)

In the identification task, when crawlers are within an area close to a
MLO location, they begin keeping time while surveying the MLO location.
Whenever the time limit is reached, they set the task status as achieved and
broadcast this information. If there is detection during this time period, MLO
location is considered as an actual mine and task achievement is directly
applied, otherwise it is determined as a false alarm after deadline. In either
case, the task is achieved.

4 Experimental Results

Performance of our framework and precaution routines is evaluated in ALWSE-
MC. Three sample scenarios in the simulation are given to illustrate perfor-
mance of our framework for Naval MCM missions. UUVs are equipped with
sensors capable of detecting mines within 30 feet from skin of target. How-
ever they are not able to correctly identify them. Crawlers are equipped with
cameras which can both detect and identify mines within 20 feet. None of
the AUVs have certain search patterns. UUVs have internal navigation errors
therefore their estimated location values are different from actual locations
in most cases. Two AUVs can communicate each other whenever the receiver
AUV is in the sender AUV’s transmitter range, within its transmitter beam
width, and sender AUV is within transmitter AUV’s receiver beam width.
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All UUVs and crawlers begin execution from a deployment area. There is
no a priori information about mine locations. 121 waypoint locations (envi-
ronment size: 200x200) are known but are not assigned initially. UUVs begin
negotiations and divide the overall mission area into three (known number
of UUVs) regions. Since they are within line of sight, they can communicate
their location information. Therefore initially defined regions are nearly the
same for all UUVs. Fig. 2 illustrates a successful mission scenario with three
UUVs and two crawlers. Allocations of waypoints after negotiations can be
seen in Fig. 2(b). Since there are no failures, waypoint assignments do not
change during run time. However crawlers sometimes switch among tasks if
they are not informed about tasks that are being executed. And sometimes
parallel executions occur. Whenever they are in communication range, they
can resolve the conflicts efficiently by means of the precaution routines. As in
Fig. 2(a), crawlers can also detect mines without being informed. Routes of
the crawlers may seem somewhat random. However it should be noted that
tasks related to the MLO locations appear online during run time when they
are discovered, and communication ranges are limited.

UUV1
UUV2
UUV3
UUV4
Crawler1
Crawler2
Mines
Detection by crawlers
UUV 1 Search Area
UUV 2 Search Area
UUV 3 Search Area
UUV 4 Search Area

(a) (b)

Fig. 2. Scenario 1. (a) UUVs cover the area by visiting waypoints. Crawlers visit
MLO locations as they are informed. Deployment area is circled. (b) Each AUV is
assigned to a region after auction based allocation of interest points.

In the second scenario, one of the UUVs fails on the same setting of scenario
1 (Fig. 3). Initial regions for all UUVs change after UUV3 fails (Fig.3 (b)).
Other UUVs change region definitions and, after negotiations, they share the
full area as indicated in the figure. Visited waypoints are not in their region
coverage. Because of the uncertainties, some waypoints are left uncovered in
schedules. However this uncertainty related problem is resolved by UUV2 and
the mission is completed.

In the third scenario (Fig. 4), UUV3 fails and other UUVs detect the failure
and they negotiate over the remaining unvisited waypoints and new schedules
are determined as in Fig. 4(b). While these UUVs execute their tasks, another
UUV (4) is released from the deployment area. Detecting a new UUV arrival,
other UUVs change their region definitions accordingly (Fig. 4(d)) and offer
auctions for these areas. UUV4 initially is not informed about the visited
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(a) (b)

(c)

Fig. 3. Scenario 2. (a) Initially all UUVs begin execution. UUV3 fails, other UUVs
take responsibility of all unvisited waypoints. (b) Region assignments are changed
for UUV1-2 after detecting failure. Because of an uncertainty, one waypoint is left
uncovered. (c) UUV2 completes its region coverage task, and adds the waypoint
missing in (b) to its schedule after detecting that it is not visited.

waypoints and it defines its regions with this knowledge. After negotiations,
the regions are assigned and schedules are formed. UUV4 redefines its regions
by considering incoming information for visited waypoints.

On the same settings, experiments are conducted to evaluate message
loss rate effects on mission completion success. Table 1 illustrates the results
(μ | σ) averaged over 10 runs. When message loss rate is different from 0, as
expected, performance is degraded but linearly. It should be noted that even
for rate 0.75, the overall mission (MC and MI) by final identification of mines
is completed. Number of waypoint (w) visits increase for high message loss
rates. When message loss rate is 1 there is no communication among AUVs
and they cannot correctly reason about region portions. Therefore each UUV
searches the full area completely. Crawlers detect and identify 12.8% of mines
by their local detection in a small area (MLO target information can not be
communicated in this case). Since identification is not complete, overall mis-
sion is not completed. This table illustrates performance of our framework
against message losses. As a final remark, auction generation and clearing in
an environment with communication delays desires special attention. Espe-
cially auction deadlines should be determined by considering communication
delays which may vary during run. Plan B precautions could resolve these
kinds of problems. Precautions for delayed messages on out-of-date situations
prevent the system from getting into stuck into further inconsistencies and
deadlocks.
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(a) (b)

(c) (d)

(e)

Fig. 4. Scenario 3. (a) UUV3 fails, other UUVs take responsibility of the waypoints
initially assigned to UUV3. (b) Region assignments are changed for UUV1-2 after
detecting failure. (c) Another UUV(4) is released from the deployment area. (d)
Schedules are changed accordingly after negotiations. However UUV4 is not informed
about visited waypoints and form regions by considering all waypoints. (e) After
being informed about visited waypoints, UUV4 only visits unvisited waypoints in
its schedule.

Table 1. Performance Results (μ | σ) for Different Message Loss Rates

Mssg Loss Rate 0 0.25 0.5 0.75 1

MC Comp. (%) 100.0 | 0.0 100.0 | 0.0 100.0 | 0.0 100.0 | 0.0 100.0 | 0.0

MI Comp. (%) 100.0 | 0.0 100.0 | 0.0 100.0 | 0.0 100.0 | 0.0 12.8 | 4.1

MC Comp. time 3349.4 | 60.5 3683.2 | 167.1 4909.0 | 430.1 5141.2 | 938.1 6304.2 | 139.0

MI Comp. time 2852.8 | 35.3 3227.6 | 205.3 4205.0 | 836.9 5021.2 | 692.7 N/A

(w) first visit 1380.1 | 6.1 1390.0 | 16.3 1922.0 | 92.8 2256.6 | 334.5 2936.0 | 104.5

(w) #of visits 1.0 | 0.0 1.0 | 0.0 1.01 | 0.01 1.09 | 0.04 3.0 | 0.0
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5 Conclusions

In this work, we present performance of DEMiR-CF in the context of a
Naval Mine Countermeasure mission in the realistic simulator, ALWSE-MC.
DEMiR-CF is a distributed framework for multi-robot teams that integrates
an auction based dynamic task allocation scheme and several precaution rou-
tines to handle failures and limitations of real world task execution, and main-
tains high solution quality with available resources. Precaution routines can
respond to several failures some of which are illustrated in the scenarios shown
in this paper. Evaluations also reveal high performance of DEMiR-CF on on-
line task and situation handling. Since the framework is a single item auction
method it can be used for the environments with limited, delayed or unreli-
able communication. In general, the framework is designed for more complex
missions of interrelated tasks. Near future work consists of more complex mis-
sions with more limitations for AUVs and task execution. It should be noted
that the selected application domain, objectives and limitations are similar
to the Search and Rescue (SR) domain. Therefore we believe research in this
work can also be useful for different kinds of domains such as SR.
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