
A Distributed Biconnectivity Check
Mazda Ahmadi and Peter Stone

Department of Computer Sciences,
The University of Texas at Austin,
{mazda,pstone}@cs.utexas.edu
http://www.cs.utexas.edu/˜{mazda,pstone}

Summary. For many distributed autonomous robotic systems, it is important to maintain
communication connectivity among the robots. That is, each robot must be able to commu-
nicate with each other robot, perhaps through a series of other robots. Ideally, this property
should be robust to the removal of any single robot from the system. In this work, we define
a property of a team’s communication graph that ensures this property, called biconnectiv-
ity. We present a distributed algorithm to check if a team of robots is biconnected, prove its
correctness, and analyze it theoretically.

1.1 Introduction
Many applications of distributed autonomous robotic systems can benefit from, or
even may require, the team of robots staying within communication connectivity.
For example, consider the problem of multirobot surveillance [1, 2], in which a team
of robots must collaboratively patrol a given area. If any two robots can directly
communicate at all times, the robots can coordinate for efficient behavior. This con-
dition holds trivially in environments that are smaller than the robots’ communication
range. However in larger environments, the robots must actively maintain physical
locations such that any two robots can communicate — possibly through a series
of other robots. Otherwise, the robots may lose track of each others’ activities and
become miscoordinated. Furthermore, since robots are relatively unreliable and/or
may need to change tasks (for example if a robot is suddenly called by a human
user to perform some other task), in a stable multirobot surveillance system, if one
of the robots leaves or crashes, the rest should still be able to communicate. Some
examples of other tasks that could benefit from any pair of robots being able to com-
municate with each other, are space and underwater exploration, search and rescue,
and cleaning robots.

We say that robot R1 is connected to robot R2 if there is a series of robots, each
within communication range of the previous, which can pass a message from R1 to
R2. In order for the team to stay connected, it must be the case that every robot is
connected to each other robot either directly or via two distinct paths that don’t share
any robots in common. We call this property biconnectivity: the removal of any one
robot from the system does not disconnect the remaining robots from each other.

In previous work, we developed algorithms for multirobot surveillance under the
assumption that each pair of robots could communicate directly [2]. This communi-
cation assumption enabled the robots to negotiate to achieve an efficient task division,



2 Mazda Ahmadi and Peter Stone

but it constrained us to small environments. This work is the first attempt to extend
these algorithms to larger environments.

To the best of our knowledge, the problem of enabling robots to remain con-
nected in the face of robot failures has not been explored before. Typical related
work in graph theory is on algorithms to find a biconnected component in a graph
with optimal time complexity (e.g. [3]), in dynamic graphs (e.g. [4]), or in a restricted
subclass of all graphs (e.g. [5]). In all these cases, the algorithms are either central-
ized, or if distributed, each node has full knowledge of the whole graph. Some work
in distributed computing is closer in spirit to our work, however a main difference be-
tween their problem statement and ours is that in distributed computing (e.g. [6, 7]),
any node can send a message to any other node. That is, the nodes are not restricted
to send messages only through existing edges of the graph.

We tackle this problem by dividing it into three main steps: (1) Checking whether
a team of robots is currently biconnected, (2) Maintaining biconnectivity should a
robot be removed from (or added to) the team, and (3) Constructing a biconnected
multi-robot structure from scratch. To be applicable for teams of autonomous robots,
all algorithms must be fully distributed.

In this paper we focus on fully achieving and analyzing Step 1. Steps 2 and 3
remain as future work. Note that it is possible to achieve steps 2 and 3, even if inel-
egantly, by having the robots move back to a base and disperse from there whenever
they find that they are no longer biconnected.

For the purposes of this paper, we assume that robots have constant and identical
communication ranges. This assumption applies in the case of homogeneous robot
teams (or at least teams with homogeneous transmitters) such that the range is not
dependent on a robot’s battery level. This assumption allows us to assume the con-
nection graph among robots is undirected: if robot A can send a message to robot B,
then the reverse is also true. Extension of this work to the case where robots have
heterogeneous communication capabilities is also a part of our future work plans.

After the introduction, in Section 1.2 graph theory background and assump-
tions about the investigated multirobot systems is presented. Section 1.3 presents
distributed algorithms to detect if the robots are biconnected. Finally Section 1.4
concludes the paper.

1.2 Preliminaries
We first provide some graph definitions and theorems which will be used later in
the paper. For basic graph definitions, such as vertex, edge, neighbor, path and loop
please see [8]. Later in the section, definitions and assumptions which are specific to
our multirobot system will be presented.
Definition 1. Internally vertex-disjoint paths. Two paths between v1 are v2 are
internally vertex-disjoint if they have no vertices in common except v1 and v2.
Definition 2. Biconnected graph. If in graph G, after removing any vertex, it is
possible to find a path from any vertex to any other one, the graph G is said to be
biconnected.
Definition 3. Doubly connected vertices. In graph G, we say vertex v1 and v2 are
doubly-connected iff there are two or more internally vertex-disjoint paths between
v1 and v2.



A Distributed Biconnectivity Check 3

Lemma 1. Undirected graph G(V, E) is biconnected if and only if any two vertices
v1, v2 ∈ V are doubly-connected.
Proof. It is a special case of Menger’s Theorem (See Theorem 3.3.1 of [8]).

Note that in undirected graphs one vertex being doubly-connected to all other
vertices is not a sufficient condition for the graph to be biconnected. For an example
see Figure 1.1 where v is doubly-connected

to all other vertices, but removing
v

Fig. 1.1. V is doubly-connected to all other ver-
tices, but the graph is not biconnected.

v makes the graph disconnected. In
the following theorem we show that
in an undirected graph if there are two
vertices that are doubly-connected to
all other vertices, then the graph is bi-
connected.
Theorem 1. Undirected graph G(V, E) is biconnected if and only if there exists two
distinct vertices v1, v2 ∈ V such that both v1 and v2 are doubly-connected to any
other vertex in V .
Proof. If Graph G(V, E) is biconnected, then by Lemma 1 any two vertices are
doubly-connected to all other vertices.

It remains to prove that if there exists v1, v2 ∈ V (v1 �= v2) such that they are
doubly-connected to all other vertices in V , then G(V, E) is biconnected. Assume
vi ∈ V is removed from V . We must show that the graph remains connected. If
vi = v1, then since any other vertices vj ∈ V were doubly-connected to v2, the
graph remains connected. Similarly for vi = v2. Now assume vi �= v1, v2. Since
every other vertex vj ∈ V was doubly-connected to v1, and vi is in at most one of
the two paths between vj and v1, after removal of vi, vj remains connected to v1.
Thus the graph remains connected after removal of any vertex: it is biconnected.

We look at our multirobot system as a graph, such that its vertices are robots and
edge (v1v2) exists in the graph iff the robot corresponding to v1 can communicate
directly to the robot corresponding to v2 (i.e. v1 and v2 are in communication range
of each other). A formal definition of robot graph follows.
Definition 4. Robot graph RG(V, E) is a graph, where its vertices (V ) are the
robots and (v1, v2) ∈ E iff corresponding robots to v1 is a neighbor of correspond-
ing robot to v2. Size of V (i.e. number of robots in the multirobot team) is called n in
this paper.

Assumption 1 Robots are aware of the maximum number of robots in the system,
which can be considerably higher than the actual number of robots. The maximum
number is called N throughout the paper.
Assumption 2 Robots have identical communication capabilities.

As a result of the above assumption, the neighbor property is symmetric, and the
robot graph is undirected.
Definition 5. Connected. We say robot R1 and robot R2 are connected, when in the
corresponding robot graph, there is a path between R1 and R2.

Assumption 3 Each robot has a unique and ordered ID. For robot X its ID is called
X.id.



4 Mazda Ahmadi and Peter Stone

Next, the definition and assumption regarding the communication between robots
is provided.
Definition 6. Message, stamped message. For our purposes, a message, which is
used for robot communication, is a string in format (T, (S)), where T indicates the
type of the message, and S is a list of robot stamps. Message (T, (S)) is said to be
stamped by robot R iff R.id ∈ (S). Robot R stamps message (T, (S)) by generating
new message (T, (S, R.id)).

Assumption 4 When called for by the protocol, robots relay messages to one an-
other. Robots start processing received messages, as soon as they get them. The
maximum period from the time that robot R1 receives message X, until its neigh-
bor robot R2 receives the processed (possibly stamped) version of message X from
R1 is c seconds.

1.3 Algorithms to Check Biconnectivity
As mentioned in Section 1.1, checking for biconnectivity is the first step towards
the overall goal of achieving and maintaining a biconnected multirobot structure.
It is an important step, because the robots must be able to detect if they are not
biconnected, so that they can take remedial actions to restore biconnectivity before
they lose connectivity. The remedial actions could be as simple as all robots moving
back to a base and dispersing from there.

Note that the biconnected property is a global property of the multirobot system:
robots cannot determine whether or not it holds from purely local information. For
example see Figure 1.1, where the graph is not biconnected, and the robots associated
with the nodes on the right side of the graph need global information about the nodes
on the left side to know that the whole structure is not biconnected.

In our approach, each robot R, maintains two lists:
• CRR (connected robots): the list of robots that are connected to R.
• DCRR (doubly-connected robots): the robots doubly-connected to R.

Each robot R first fills the CRR list, then using that, the DCRR list is computed.
Finally with the help of the DCRR list, it detects if the robot graph is biconnected.

In the rest of this section, we first provide an algorithm (CR-FILL) for filling CRR

in Section 1.3.1, then another algorithm (DCR-FILL) is presented in Section 1.3.2
which fills the DCRR lists with the help of the already computed CRR lists. After-
wards in Section 1.3.3, an algorithm which checks the biconnectivity with the help
of the computed DCRR lists is provided. All these algorithms are distributed and
each robot runs them independently. Finally an analysis of the presented algorithms
is provided in Section 1.3.4.

1.3.1 CR-FILL

In this subsection, we provide an algorithm for filling the CRR list. That is for robot
R, it finds the robots that are connected to it.

The basic idea is for the robots to stamp and pass messages in the system. In this
way, if there is a path of r0 → r1 → r2 → R, between r0 and R, robot R will receive
a message that is stamped by r0, r1 and r2. Thus it will know that it is connected to
those robots, and will add them to the CRR list.



A Distributed Biconnectivity Check 5

Two helper algorithms must run continuously on all the robots to help the CR-
FILL algorithm. The first helper algorithm dictates how messages should be passed
around. In the second, if robot r has not sent a message for a while and another robot
is running a CR-FILL algorithm and needs a stamped message initiated from r, it will
send a stamped message. After introducing these two helper algorithms, the CR-FILL

algorithm itself will be presented.
Using the first helper algorithm, all robots continually stamp and pass bicon-

nected type messages that they receive. Any robot r, which receives (“CR”, (S)),
checks the content of S, and if r.id /∈ S it stamps the message and send it out. That
is, it sends message (“CR”, (S, r.id)). If r.id ∈ S, it does not send any message
because stamping and sending it would lead to a duplicate ID in (S, R.id). For an
overview of this algorithm see Algorithm 1.

Algorithm 1 Message passing algorithm which robots continually run
1: upon receiving a message of form (“CR”, (S)) do
2: if R.id /∈ (S) then robot R broadcast message (“CR”, (S, R.id)).
3: end upon

Any robot, upon receiving a message of format (“CR”, S), if it has not sent
out a (“CR”, (R.id)) message in the last Nc seconds (Recall from Assumption 1,
that N is the maximum number of robots in the system), it sends out message
(“CR”, (R.id)) (see Algorithm 2).

Algorithm 2 The condition for initiating a “CR” message.
1: upon receiving a message of form (“CR”, (S)) do
2: if has not sent out a (“CR”, (R.id)) message in the last Nc seconds then
3: broadcast message (“CR”, (R.id))
4: end if
5: end upon

When calling the main CR-FILL algorithm, robot R starts by initializing the CRR

list to empty. Afterwards each time it receives message (“CR”, (S)), it adds all the
IDs in S to CRR. While still adding IDs to the CRR, at time Nc, robot R sends out
a stamped message (“CR”, (R.id)). The pseudocode of this algorithm is available
in Algorithm 3.

Algorithm 3 Pseudocode for the CR-FILL algorithm for robot R

1: Time 0 (start of the algorithm): initialize the CRR to empty.
2: Time Nc: broadcast message (“CR”, (R.id))
3: if message of form (“CR”, (S)) is received then add IDs in (S) to CRR.

Since the length of the longest path in the graph is less than N , the maximum
time for a message to reach robot r2 from r1 is Nc seconds. We now show any robot
r that is connected to R will be added to CRR within 3Nc seconds. Any robot r that
is connected to R, receives the stamped message from robot R within 2Nc seconds



6 Mazda Ahmadi and Peter Stone

(note that the first message is sent at time Nc). If it has sent a message in the last
Nc seconds, robot R has gotten that message. Otherwise, it will send out a message
which will be heard by R in at most Nc seconds. Thus after 3Nc seconds, CRR

represents the correct list of robots that are connected to R. This analysis is based on
the assumption that the robots do not change connectivity in the 3Nc seconds that
CR-FILL runs. Note that after 3Nc seconds, no message is left in the system. Because
message (“CR”, (S)) can only survive if it is received by robots such that their ID is
not in (S), 2Nc seconds after sending the first message any remaining message in the
system has been stamped by all robots, and it cannot survive any longer. Also note
that c is ideally on the order of milliseconds, though in practice it may be difficult
to guarantee such small bounded transmission times. In such cases, the algorithms
as is may become impractical for large teams of fast-moving (so that connectivity
changes quickly) robots.
1.3.2 DCR-FILL

In this subsection, DCR-FILL, an algorithm to fill the DCR lists is presented. It is
assumed the message passing algorithm (Algorithm 1) is running continually by all
robots.

The basic idea for filling DCRR for robot R is to find the robots that are in a
common loop with R. When the robot graph is undirected (Assumption 2), there is
a loop including both R and R′ iff two internally vertex-disjoint paths (Definition 1)
exist between R and R′. In this case, R and R′ are doubly-connected (Definition 3).
According to Algorithm 1, robots pass stamped messages around. When robot R
receives a message that has been stamped by itself (i.e. R), it knows the robots that
have stamped the message after the R stamps are in a common loop with R, and
should be added to DCRR.

Robot (r) starts by broadcasting message (“DCR”, (r.id)), which will be heard
by all of its neighbor robots. Upon receiving message (“DCR”, (S)), if this is the
first time to receive a “DCR” message, it resets DCRr to empty (initializing), after-
wards it checks the content of (S). If its own ID is in the stamp part of the message
(S), it can represent (S) as (S1, r.id, S2). If S2 includes more than one vertex, it
means that there is a loop and the robot adds all the IDs in S2 to DCRr. If S2 in-
cludes only one vertex, it means that the robot has got back a message from a robot
that it has just sent a message to, and should be ignored. Algorithm 4 presents the
pseudocode of this algorithm.

We now show that for robot R, the DCR-FILL algorithm sets the correct DCRR

list within nc seconds.
Theorem 2. For any robot R, the DCR-FILL algorithm finds the full list of doubly-
connected robots (DCRR) within nc seconds.
Proof. Consider the robot graph RG(V, E) for the robots, and also v1 ∈ V repre-
sents robot R. To prove this theorem, we need to show for any vertex v2 ∈ V , if v1

is doubly-connected to v2, then v2 ∈ DCRv1
, and if (v2 ∈ DCRv1

) then v2 and v1

are doubly-connected. Also we need to show DCR-FILL is completed (i.e. there is no
message in the system) after nc seconds.

We start with the first part, and assume v1 and v2 are doubly-connected, so there
are two internally vertex-disjoint paths (a loop) between them. The starting message



A Distributed Biconnectivity Check 7

Algorithm 4 Pseudocode for DCR-FILL algorithm
1: Time 0: robot R broadcasts (“DCR”, (R.id)).
2: upon receiving a message of form (“DCR”, (S)) do
3: if this is the first time to receive a “DCR” message then
4: reset DCRR to empty
5: end if
6: if R.id ∈ (S) then
7: split (S) to (S1, R.id, S2)
8: if size(S2) > 1 then add the IDs in S2 to DCRR

9: end if
10: end upon

from v1 will go through the loop, and vertex v1 will get back the message that it
stamped earlier, which is now also stamped by v2. Thus, v2 will be added to DCRv1

.
Now we have to prove the other part, assuming v2 ∈ DCRv1

. Based on the al-
gorithm, the only way that v2 is added to DCRv1

is when v1 receives a message
(“DCR”, (Si, v1.id, Sj , v2.id, Sk)). Notice that based on the condition in the al-
gorithm (size(S2) > 1 (Algorithm 4), if both Sj and Sk are empty, the IDs will
not be added to DCRR, also recall that there is no duplicate IDs in messages, be-
cause no robot stamps a message that it has previously stamped. The two internally
vertex-disjoint paths between v1 and v2 are v1Sjv2 and v1Skv2. Thus v1 and v2 are
doubly-connected.

Similar to the argument at the end of Section 1.3.1, after nc seconds no message
remains in the system, and the algorithm terminates.

1.3.3 Biconnectivity Check
After running CR-FILL and DCR-FILL consecutively, the CR and DCR lists will be
accurate. Notice that both algorithms for filling the CR and DCR lists finish within
a known time limit. Thus the robots should wait 3Nc seconds, and afterwards CR
and DCR lists will be accurate. For robot r if CRr and DCRr are equal, it means
that r is doubly-connected to all the robots that it is connected to. By Theorem 1,
we know if there are two robots r1 and r2 that are doubly-connected to all other
robots, then the robot graph is biconnected. Also, we know by Lemma 1 that if there
is a robot that is not doubly-connected to all other robots, the robot graph is not
biconnected. Thus if the robot and one of its neighbors is doubly-connected to all
other robots, the robot knows that the robot graph is biconnected. Also if the robot
or one of its neighbors is not doubly-connected to all other robots, it will know that
the robot graph is not biconnected.

The overview of the biconnectivity check algorithm is shown in Algorithm 5. The
initiator robot (which can be any robot who wants to check biconnectivity) starts by
sending a (“CHECK-REQUEST”,()) message to its neighbors to ask them to check
if they are doubly-connected to other robots or not. Upon receiving a (“CHECK-
REQUEST”,()) the other robots run biconnectivity check (unless they are already run-
ning it) as non-initiators (skipping line 3 of Algorithm 5). Note that multiple robots
can run the biconnectivity check algorithm in parallel.



8 Mazda Ahmadi and Peter Stone

If the robot is doubly-connected to all other robots, it sends the message (“DC-
TRUE”, ()) to all its neighbor robots, and a (“DC-FALSE”,()) message otherwise. If
the robot is doubly-connected to all other robots and receives a (“DC-TRUE”, ()) mes-
sage, it knows that the robot graph is biconnected. Otherwise (if it is not biconnected
to all other robots, or receives a (“DC-FALSE”, ()) message) it knows that the robot
graph is not biconnected. Since the initiator and its neighbors should run the bicon-
nectivity check, the total time needed for the biconnectivity check to complete is
6Nc + 2c seconds.

Algorithm 5 Pseudocode for biconnectivity check algorithm. It returns true if the
robot graph is biconnected, and false otherwise.
1: run CR-FILL and DCR-FILL in parallel, and wait 3Nc seconds for them to be finished.
2: if (initiator) then send message (“CHECK-REQUEST”,())
3: if size(DCRR) = size(CRR) then
4: send message (“DC-TRUE”,())
5: else
6: send message (“DC-FALSE”,())
7: return false;
8: end if
9: if a message of form (“DC-FALSE”, ()) is received then return false;

10: if a message of form (“DC-TRUE”, ()) is received then
11: if size(DCRR) = size(CRR) then return true;
12: end if

1.3.4 Algorithms’ Analysis
In this section we analyze both the time and communication complexity of the CR-
FILL and DCR-FILL algorithms.

CR-FILL, DCR-FILL and biconnectivity check algorithms use 3Nc, nc, and 6Nc+
2c seconds to complete respectively.

For the analysis of the number of messages, we assume that the time needed
for the message sent by a robot to reach its neighbor is constant (c). This assumption
does not change the total number of messages, but possibly can change the maximum
number of messages at any point in time. The worst case for the number of messages
in the multirobot system happens when the robot graph is fully connected, that is
every two robots are neighbors. For both DCR-FILL and CR-FILL algorithms, the
maximum number of messages in the system is n!, because when robot R receives
message (T, (S)), where S has size of i, the message only survives if robot R sends
it to the robots that have not already stamped the message, and n− i− 1 such robots
exist. Thus from the messages that have started from robot R, (n − 1)! can exist in
the system, and since each of the n robots starts one message of its own, at any point
in time, the maximum number of messages in the system for DCR-FILL or CR-FILL

algorithm is n!.
Note that the times provided above are the worst case, and especially when there

are many robots, the robot graph is most likely not fully connected. An example of
a still densely connected robot graph with 35 robots is given in Figure 1.2, there
in each time period, on average each robot deals with 1037 messages, which is a
manageable number. But 1037 messages is still a lot to process in each time step.



A Distributed Biconnectivity Check 9

Our analysis is based on the assumption that CR-FILL must generate special-
purpose messages. When messages are being sent for other purposes, the stamps
required can simply be appended to those, thus eliminating the need for many extra
messages. Though if each message does not normally generate a broadcast responses,
some extra messages may be needed in order to keep the time complexity the same.
In principle, DCR-FILL only needs to be started by 2 robots, thus reducing the number
of messages required by a factor of 2

n
. When those two robots have computed their

DCRR, they can let the others know if the robot graph is biconnected. The technical
details of how to determine which two robots send the starting messages is beyond
the scope of this paper. However in essence, it is similar to maintaing team leaders,
which is a common practice in multirobot systems (e.g. [9]).

If CR-FILL uses existing mes-

Fig. 1.2. An example of a common robot graph with
35 robots.

sages and DCR-FILL is run by only
2 robots, the total number of mes-
sages is 2(n − 1)! in the worse
case, and for the graph of Fig-
ure 1.2, on average each robot deals
with approximately 69 messages,
which is an easily manageable num-
ber in most realistic scenarios.

All the presented algorithms
only store CR and DCR lists, which
have a maximum size of n. Thus all algorithms use O(n) memory space.

The time complexity discussed here is for each received message. That is, we
assume the decisions are made when messages arrive. Both the CR-FILL and DCR-
FILL algorithms have time complexity of O(n) because they only traverse a list of
IDs, which has size of at most n. The time complexity of biconnectivity check, which
include both CR-FILL and DCR-FILL is of O(2n).
1.4 Conclusion and Future Work
In this paper, we defined and argued the need for biconnected multirobot structures.
A distributed algorithm for checking biconnectivity is presented, proven correct, and
analyzed theoretically.

In future work, we aim to provide optimality bounds for the provided checking
biconnected algorithms. The assumption that robots have identical communication
capabilities should be relaxed, which will result in the robot graph being directed.
Also, our algorithms for maintaining biconnectivity and constructing biconnected
structure from scratch remains as future work.

Acknowledgments
We would like to thank Kurt Dresner and Nick Jong for their valuable comments on
an earlier version of this paper. This research was supported in part by NSF CAREER
award IIS-0237699 and ONR YIP award N00014-04-1-0545.

References

1. Parker, L.E.: Distributed algorithms for multi-robot observation of multiple moving targets.
Autonomous Robots 12 (2002) 231–255



10 Mazda Ahmadi and Peter Stone

2. Ahmadi, M., Stone, P.: A multi-robot system for continuous area sweeping tasks. In:
Proceedings of International Conference on Robotics and Automation (ICRA), to appear.
(2006)

3. Tarjan, R., Vishkin, U.: Finding biconnected componemts and computing tree functions
in logarithmic parallel time. In: 25th Annual Symposium on Foundations of Computer
Science, 1984. (1984) 12–20

4. Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected and biconnected components
on-line. Algorithmica (Historical Archive) 7 (1992) 433–464

5. Galil, Z., Italiano, G.F.: Maintaining biconnected components of dynamic planar graphs.
In: Proceedings of the 18th International Colloquium on Automata, Languages and Pro-
gramming, London, UK, Springer-Verlag (1991) 339–350

6. Swaminathan, B., Goldman, K.J.: An incremental distributed algorithm for computing bi-
connected components (extended abstract). In: Proceedings of the 8th International Work-
shop on Distributed Algorithms, London, UK (1994)

7. Ahuja, M., Zhu, Y.: An efficient distributed algorithm for finding articulation points,
bridges, and biconnected components in asynchronous networks. In: Proceedings of the
Ninth Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, London, UK, Springer-Verlag (1989) 99–108

8. Diestel, R.: Graph Theory. Springer, New York (1997)
9. R. Alur et al.: A framework and architecture for multirobot coordination. In: Seventh

International Symposium on Experimental Robotics. (2001)


