

ABC

springeronline.com

Preface

The goal of the 8th Symposium on Distributed Autonomous Robotic Systems
(DARS) is to exchange and stimulate research ideas to realize advanced dis-
tributed robotic systems. Technologies, algorithms, and system architectures
will be presented and discussed during the symposium.

DARS 2006 builds upon past successes and provides an exciting environ-
ment for researchers to present and discuss their novel theoretical results, im-
plementations, and applications. DARS successfully took place in 1992, 1994,
and 1996 in Japan (Riken, Wako), in 1998 in Germany (Karlsruhe), in 2000
in Knoxville (Tennessee, USA), in 2002 at Fukuoka (Japan), and in 2004 at
LAAS in Toulouse (France).

DARS 2006 will be held in the Minneapolis campus of the University of
Minnesota, in the Electrical Engineering and Computer Science building.

A total of 42 technical papers were submitted by authors from multiple
countries. All the submissions were rigorously reviewed by the Program Com-
mittee. Of those submissions 24 were accepted. The overall outcome of the
revision process is an excellent selection of papers that showcase the research
in distributed autonomous robotics today.

We would like to take this opportunity to thank everyone involved with
the organization of DARS 2006. First, we would like to thank the members
of the Program Committee, who did a thorough and conscientious job in
reviewing a large number of papers. The members of the Advisory Commtitee
provided invaluable help and support throughout the process of organizing the
conference.

We warmly welcome all representatives from industry, government, and
academia joining us in Minneapolis in July 2006.

Minneapolis, MN, USA Maria Gini
July 2006 Richard Voyles

VI Preface

DARS 2006 Advisory Committee

Tamio Arai, University of Tokyo, Japan
Hajime Asama, University of Tokyo, Japan
Raja Chatila, LAAS, Toulouse, France
Rüediger Dillmann, University of Karlsruhe, Germany
Toshio Fukuda, Nagoya University, Japan
Lynne Parker, University of Tennessee, Knoxville, USA

DARS 2006 Program Committee

Julie Adams, Vanderbilt University
Mazda Ahmadi, University of Texas
Marcelo Ang, Jr., National University of Singapore
Yoshikazu Arai, Iwate Prefectural University
Minoru Asada, Osaka University
Silvia Botelho, FURG, Brazil
Zack Butler, Rochester Institute of Technology
Andres Castano, JPL, USA
Stephen Damer, University of Minnesota
Alexis Drogoul, IRD, France
Dominique Duhaut, Universite de Bretagne-Sud
Hugh Durrant-Whyte, University of Sydney
Patrick Fabiani, ONERA, France
Roderich Gross, Université Libre de Bruxelles
Akio Ishiguro, Nagoya University
Kuniaki Kawabata, RIKEN, Japan
Kazuhiro Kosuge, Tohoku University
Vijay Kumar, University of Pennsylvania
Daisuke Kurabayashi, Tokyo Institute of Technology
Monica LaPoint, University of Minnesota
Amy Larson, University of Minnesota
Alcherio Martinoli, EPFL, Switzerland
Bruce Maxwell, Swarthmore College
Satoshi Murata, Tokyo Institute of Technology
Anibal Ollero, University of Seville
Jun Ota, University of Tokyo
Enrico Pagello, University of Padova
Lucia Pallottino, Universita di Pisa
Ioannis Rekleitis, McGill University
Isabel Ribeiro, Instituto Superior Tecnico
Andy Russell, Monash University
Paul Rybski, Carnegie Mellon University
Alessandro Saffiotti, Orebro University

Preface VII

Behnam Salemi, USC/ISI
Frank Schneider, FGAN, Germany
Sanjiv Singh, Carnegie Mellon University
Sascha Stoeter, ETH, Switzerland
Ken Sugawara, Tohoku Gakuin University
Il Hong Suh, Hanyang University
Ichiro Suzuki, University of Wisconsin, Milwaukee
ZhiDong Wang, Tohoku University
Kjerstin Williams, Cal Tech
Heinz Wörn, Universitat Karlsruhe
Ning Xi, Michigan State University
Jizhong Xiao, City College of New York
Mark Yim, University of Pennsylvania
Eiichi Yoshida, AIST, Japan

Contents

A Distributed Biconnectivity Check

Mazda Ahmadi, Peter Stone . 1

A Method for Building Small-Size Segment-Based Maps

Francesco Amigoni, Giulio Fontana, Fabio Garigiola 11

Learning When to Auction and When to Bid

Dı́dac Busquets, Reid Simmons . 21

System Identification of Self-Organizing Robotic Swarms

Nikolaus Correll, Alcherio Martinoli . 31

Synchronization Control by Structural Modification of

Nonlinear Oscillator Network

Tetsuro Funato, Daisuke Kurabayashi, Masahito Nara 41

Frontier-Graph Exploration for Multi-robot Systems in an

Unknown Indoor Environment

Mark Gossage, Ai Peng New, Chee Kong Cheng . 51

Distributed Robotics: a Language Approach

Claude Gueganno, Dominique Duhaut . 61

A Particle Swarm-Based Mobile Sensor Network for Odor

Source Localization in a Dynamic Environment

Wisnu Jatmiko, Kosuke Sekiyama, Toshio Fukuda . 71

Cooperative Multi-robot Target Tracking

Boyoon Jung, Gaurav Sukhatme . 81

A Comparative Study of Market-Based and Threshold-Based

Task Allocation

Nidhi Kalra, Alcherio Martinoli . 91

X Contents

Single Operator, Multiple Robots: Call-Request Handling in

Tight-Coordination Tasks

Gal Kaminka, Yehuda Elmaliach . 103

Distributed Metamorphosis Control of a Modular Robotic

System M-TRAN

Haruhisa Kurokawa, Kohji Tomita, Akiya Kamimura, Satoshi Murata,
Yuzuru Terada, Shigeru Kokaji . 115

Preliminary Results in Tracking Mobile Targets Using Range

Sensors from Multiple Robots

Elizabeth Liao, Geoffrey Hollinger, Joseph Djugash,, Sanjiv Singh 125

Robotic Swarm Dispersion Using Wireless Intensity Signals

Luke Ludwig, Maria Gini . 135

Distributed, Play-Based Role Assignment for Robot Teams

in Dynamic Environments

Colin McMillen, Manuela Veloso . 145

Simultaneous Planning, Localization, and Mapping in a

Camera Sensor Network

David Meger, Ioannis Rekleitis,, Gregory Dudek . 155

Adaptive Robotic Communication Using Coordination Costs

Avi Rosenfeld, Gal Kaminka, Sarit Kraus . 165

What to Communicate? Execution-Time Decision in

Multi-agent POMDPs

Maayan Roth, Reid Simmons,, Manuela Veloso . 177

A Distributed Multi-robot Cooperation Framework for Real

Time Task Achievement

Sanem Sariel, Tucker Balch . 187

Empirical Evaluation of Auction-Based Coordination of AUVs

in a Realistic Simulated Mine Countermeasure Task

Sanem Sariel, Tucker Balch,, Jason Stack . 197

Principled Synthesis for Large-Scale Systems: Task

Sequencing

Dylan Shell, Maja Mataric . 207

A Study on Proportion Regulation Model for Multi-robot

System

Ken Sugawara, Tsuyoshi Mizuguchi . 217

Market-Based Multi-robot Coalition Formation

Lovekesh Vig, Julie Adams . 227

Contents XI

Multi-robot User Interface Modeling

Alan Wagner, Yoichiro Endo, Patrick Ulam,, Ronald Arkin 237

Index . 249

List of Contributors

Julie A. Adams

Department of Electrical Engineering
& Computer Science
Vanderbilt University
Nashville, TN 37212, USA
julie.a.adamsg@vanderbilt.edu

Mazda Ahmadi

Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712, USA
mazda@cs.utexas.edu

Francesco Amigoni

Dipartimento di Elettronica e
Informazione
Politecnico di Milano
Piazza L. da Vinci 32
20100 Milano, Italy
amigoni@elet.polimi.it

Ronald C. Arkin

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA
arkin@cc.gatech.edu

Tucker Balch

College of Computing
Georgia Institute of Technology
Atlanta, GA, 30332, USA
tucker.balch@cc.gatech.edu

D́ıdac Busquets

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
busquets@eia.udg.es

Chee Kong Cheng

Cooperative Systems and Machine
Intelligence Lab
DSO National Laboratories
20 Science Park Drive
Singapore 118230
ccheekon@dso.org.sg

Nikolaus Correll

Swarm-Intelligent Systems Group
Ecole Polytechnique Fédérale
Lausanne, Switzerland
nicholaus.correll@epfl.ch

Joseph Djugash

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
robojoe@cmu.edu

Gregory Dudek

School of Computer Science
McGill University
Montreal, Quebec, Canada H3A 2A7
dudek@cim.mcgill.ca

XIV List of Contributors

Dominique Duhaut

VALORIA
University of South Britanny
56017 Vannes Cedex, France
Dominique.Duhaut@univ-ubs.fr

Yehuda Elmaliach

Computer Science Department
Bar Ilan University
Ramat Gan, Israel
elmaley@cs.biu.ac.il

Yoichiro Endo

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA
endo@cc.gatech.edu

Giulio Fontana

Dipartimento di Elettronica e
Informazione
Politecnico di Milano
Piazza L. da Vinci 32
20100 Milano, Italy
fontana@elet.polimi.it

Toshio Fukuda

Dept. of Micro-Nano Systems
Engineering
Nagoya University
Furo-cho, Chikusa-ku
Nagoya 464-8603, Japan
fukuda@mein.nagoya-u.ac.jp

Tetsuro Funato

Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku
Tokyo 152-8552, Japan
funato@irs.ctrl.titech.ac.jp

Fabio Garigiola

Dipartimento di Elettronica e
Informazione
Politecnico di Milano
Piazza L. da Vinci 32
20100 Milano, Italy
garigiol@airlab.elet.polimi.it

Maria Gini

Dept of Computer Science &
Engineering
University of Minnesota
Minneapolis. MN 55455, USA
gini@cs.umn.du

Mark Gossage

Cooperative Systems and Machine
Intelligence Lab
DSO National Laboratories
20 Science Park Drive
Singapore 118230
gmark@dso.org.sg

Claude Guéganno

VALORIA
University of South Britanny
56017 Vannes Cedex, France
claude.gueganno@univ-ubs.fr

Geoffrey Hollinger

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
gholling@andrew.cmu.edu

Wisnu Jatmiko

Dept. of Micro-Nano Systems
Engineering
Nagoya University
Furo-cho, Chikusa-ku
Nagoya 464-8603, Japan
wisnu@robo.mein.nagoya-u.ac.jp

Boyoon Jung

NavCom Technology, Inc.
20780 Madrona Avenue
Torrance, CA 90503, USA
bjung@navcomtech.com

Nidhi Kalra

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
nkalra@cmu.edu

List of Contributors XV

Akiya Kamimura

Intelligent Systems Institute
National Institute of Advanced
Industrial Science and Technology
(AIST)
Tsukuba, Japan
kamimura.a@aist.go.jp

Gal A. Kaminka

Computer Science Department
Bar Ilan University
Ramat Gan, Israel
galk@cs.biu.ac.il

Shigeru Kokaji

National Institute of Advanced
Industrial Science and Technology
(AIST)
Tsukuba, Japan
s.kokaji@aist.go.jp

Sarit Kraus

Computer Science Department
Bar Ilan University
Ramat Gan, Israel
sarit@cs.biu.ac.il

Daisuke Kurabayashi

Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku
Tokyo 152-8552, Japan
dkura@irs.ctrl.titech.ac.jp

Haruhisa Kurokawa

Intelligent Systems Institute
National Institute of Advanced
Industrial Science and Technology
(AIST)
Tsukuba, Japan
kurokawa-h@aist.go.jp

Elizabeth Liao

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
eliao@andrew.cmu.edu

Luke Ludwig

Dept of Computer Science &
Engineering
University of Minnesota
and BAESystems
Minneapolis, MN 55455, USA
ludwig@cs.umn.du

Alcherio Martinoli

Swarm-Intelligent Systems Group
Ecole Polytechnique Fédérale
Lausanne, Switzerland
alcherio.martinoli@epfl.ch

Maja J Matarić

Computer Science Department
University of Southern California
Los Angeles, CA 90089, USA
mataric@usc.edu

Colin McMillen

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
mcmillen@cs.cmu.edu

David Meger

School of Computer Science
McGill University
Montreal, Quebec, Canada H3A 2A7
dmeger@cim.mcgill.ca

Tsuyoshi Mizuguchi

Osaka Prefecture University
1-1, Gakuen-cho
Sakai, 599-8531, Japan
gutchi@ms.osakafu-u.ac.jp

Satoshi Murata

Graduate School of Science and
Engineering
Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku
Tokyo 152-8552, Japan
murata@dis.titech.ac.jp

XVI List of Contributors

Masahito Nara

Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku
Tokyo 152-8552, Japan
m-nara@irs.ctrl.titech.ac.jp

Ai Peng New

Cooperative Systems and Machine
Intelligence Lab
DSO National Laboratories
20 Science Park Drive
Singapore 118230
naipeng@dso.org.sg

Ioannis Rekleitis

Canadian Space Agency
Longueuil, Canada
Ioannis.Rekleitis@space.gc.ca

Avi Rosenfeld

Computer Science Department
Bar Ilan University
Ramat Gan, Israel
rosenfa@cs.biu.ac.il

Maayan Roth

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
mroth@andrew.cmu.edu

Sanem Sariel

Department of Computer
Engineering
Istanbul Technical University
Istanbul, 34496, Turkey
sariel@cs.itu.edu.tr

Kosuke Sekiyama

Department of Human and Artificial
Intelligence Systems
Fukui University 3-9-1 Bunkyo Fukui
910-850, Japan
sekiyama@dis.his.fukui-u.ac.jp

Dylan A. Shell

Computer Science Department
University of Southern California
Los Angeles, CA 90089, USA
shell@usc.edu

Reid Simmons

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
reids@cs.cmu.edu

Sanjiv Singh

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
ssingh@ri.cmu.edu

Jason Stack

Naval Surface Warfare Center
Panama City, FL, 32407 USA
Jason.stack@navy.mil

Peter Stone

Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712, USA
pstone@cs.utexas.edu

Ken Sugawara

Tohoku Gakuin University
2-1-1, Tenjinzawa, Izumi
Sendai, 981-3193, Japan
sugawara@cs.tohoku-gakuin.ac.jp

Gaurav S. Sukhatme

Computer Science Department
University of Southern California
Los Angeles, CA 90089, USA
gaurav@robotics.usc.edu

Yuzuru Terada

Graduate School of Science and
Engineering
Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku
Tokyo 152-8552, Japan
string@mrt.dis.titech.ac.jp

List of Contributors XVII

Kohji Tomita

National Institute of Advanced
Industrial Science and Technology
(AIST)
Tsukuba, Japan
tomita@aist.go.jp

Patrick Ulam

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA
pulam@cc.gatech.edu

Manuela Veloso

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213, USA
veloso@cs.cmu.edu

Lovekesh Vig

Department of Electrical Engineering
& Computer Science
Vanderbilt University
Nashville, TN 37212, USA
flovekesh.vig@vanderbilt.edu

Alan R. Wagner

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA
alan.wagner@cc.gatech.edu

A Distributed Biconnectivity Check
Mazda Ahmadi and Peter Stone

Department of Computer Sciences,
The University of Texas at Austin,
{mazda,pstone}@cs.utexas.edu
http://www.cs.utexas.edu/˜{mazda,pstone}

Summary. For many distributed autonomous robotic systems, it is important to maintain
communication connectivity among the robots. That is, each robot must be able to commu-
nicate with each other robot, perhaps through a series of other robots. Ideally, this property
should be robust to the removal of any single robot from the system. In this work, we define
a property of a team’s communication graph that ensures this property, called biconnectiv-
ity. We present a distributed algorithm to check if a team of robots is biconnected, prove its
correctness, and analyze it theoretically.

1.1 Introduction
Many applications of distributed autonomous robotic systems can benefit from, or
even may require, the team of robots staying within communication connectivity.
For example, consider the problem of multirobot surveillance [1, 2], in which a team
of robots must collaboratively patrol a given area. If any two robots can directly
communicate at all times, the robots can coordinate for efficient behavior. This con-
dition holds trivially in environments that are smaller than the robots’ communication
range. However in larger environments, the robots must actively maintain physical
locations such that any two robots can communicate — possibly through a series
of other robots. Otherwise, the robots may lose track of each others’ activities and
become miscoordinated. Furthermore, since robots are relatively unreliable and/or
may need to change tasks (for example if a robot is suddenly called by a human
user to perform some other task), in a stable multirobot surveillance system, if one
of the robots leaves or crashes, the rest should still be able to communicate. Some
examples of other tasks that could benefit from any pair of robots being able to com-
municate with each other, are space and underwater exploration, search and rescue,
and cleaning robots.

We say that robot R1 is connected to robot R2 if there is a series of robots, each
within communication range of the previous, which can pass a message from R1 to
R2. In order for the team to stay connected, it must be the case that every robot is
connected to each other robot either directly or via two distinct paths that don’t share
any robots in common. We call this property biconnectivity: the removal of any one
robot from the system does not disconnect the remaining robots from each other.

In previous work, we developed algorithms for multirobot surveillance under the
assumption that each pair of robots could communicate directly [2]. This communi-
cation assumption enabled the robots to negotiate to achieve an efficient task division,

2 Mazda Ahmadi and Peter Stone

but it constrained us to small environments. This work is the first attempt to extend
these algorithms to larger environments.

To the best of our knowledge, the problem of enabling robots to remain con-
nected in the face of robot failures has not been explored before. Typical related
work in graph theory is on algorithms to find a biconnected component in a graph
with optimal time complexity (e.g. [3]), in dynamic graphs (e.g. [4]), or in a restricted
subclass of all graphs (e.g. [5]). In all these cases, the algorithms are either central-
ized, or if distributed, each node has full knowledge of the whole graph. Some work
in distributed computing is closer in spirit to our work, however a main difference be-
tween their problem statement and ours is that in distributed computing (e.g. [6, 7]),
any node can send a message to any other node. That is, the nodes are not restricted
to send messages only through existing edges of the graph.

We tackle this problem by dividing it into three main steps: (1) Checking whether
a team of robots is currently biconnected, (2) Maintaining biconnectivity should a
robot be removed from (or added to) the team, and (3) Constructing a biconnected
multi-robot structure from scratch. To be applicable for teams of autonomous robots,
all algorithms must be fully distributed.

In this paper we focus on fully achieving and analyzing Step 1. Steps 2 and 3
remain as future work. Note that it is possible to achieve steps 2 and 3, even if inel-
egantly, by having the robots move back to a base and disperse from there whenever
they find that they are no longer biconnected.

For the purposes of this paper, we assume that robots have constant and identical
communication ranges. This assumption applies in the case of homogeneous robot
teams (or at least teams with homogeneous transmitters) such that the range is not
dependent on a robot’s battery level. This assumption allows us to assume the con-
nection graph among robots is undirected: if robot A can send a message to robot B,
then the reverse is also true. Extension of this work to the case where robots have
heterogeneous communication capabilities is also a part of our future work plans.

After the introduction, in Section 1.2 graph theory background and assump-
tions about the investigated multirobot systems is presented. Section 1.3 presents
distributed algorithms to detect if the robots are biconnected. Finally Section 1.4
concludes the paper.

1.2 Preliminaries
We first provide some graph definitions and theorems which will be used later in
the paper. For basic graph definitions, such as vertex, edge, neighbor, path and loop
please see [8]. Later in the section, definitions and assumptions which are specific to
our multirobot system will be presented.
Definition 1. Internally vertex-disjoint paths. Two paths between v1 are v2 are
internally vertex-disjoint if they have no vertices in common except v1 and v2.
Definition 2. Biconnected graph. If in graph G, after removing any vertex, it is
possible to find a path from any vertex to any other one, the graph G is said to be
biconnected.
Definition 3. Doubly connected vertices. In graph G, we say vertex v1 and v2 are
doubly-connected iff there are two or more internally vertex-disjoint paths between
v1 and v2.

A Distributed Biconnectivity Check 3

Lemma 1. Undirected graph G(V, E) is biconnected if and only if any two vertices
v1, v2 ∈ V are doubly-connected.
Proof. It is a special case of Menger’s Theorem (See Theorem 3.3.1 of [8]).

Note that in undirected graphs one vertex being doubly-connected to all other
vertices is not a sufficient condition for the graph to be biconnected. For an example
see Figure 1.1 where v is doubly-connected

to all other vertices, but removing
v

Fig. 1.1. V is doubly-connected to all other ver-
tices, but the graph is not biconnected.

v makes the graph disconnected. In
the following theorem we show that
in an undirected graph if there are two
vertices that are doubly-connected to
all other vertices, then the graph is bi-
connected.
Theorem 1. Undirected graph G(V, E) is biconnected if and only if there exists two
distinct vertices v1, v2 ∈ V such that both v1 and v2 are doubly-connected to any
other vertex in V .
Proof. If Graph G(V, E) is biconnected, then by Lemma 1 any two vertices are
doubly-connected to all other vertices.

It remains to prove that if there exists v1, v2 ∈ V (v1 �= v2) such that they are
doubly-connected to all other vertices in V , then G(V, E) is biconnected. Assume
vi ∈ V is removed from V . We must show that the graph remains connected. If
vi = v1, then since any other vertices vj ∈ V were doubly-connected to v2, the
graph remains connected. Similarly for vi = v2. Now assume vi �= v1, v2. Since
every other vertex vj ∈ V was doubly-connected to v1, and vi is in at most one of
the two paths between vj and v1, after removal of vi, vj remains connected to v1.
Thus the graph remains connected after removal of any vertex: it is biconnected.

We look at our multirobot system as a graph, such that its vertices are robots and
edge (v1v2) exists in the graph iff the robot corresponding to v1 can communicate
directly to the robot corresponding to v2 (i.e. v1 and v2 are in communication range
of each other). A formal definition of robot graph follows.
Definition 4. Robot graph RG(V, E) is a graph, where its vertices (V) are the
robots and (v1, v2) ∈ E iff corresponding robots to v1 is a neighbor of correspond-
ing robot to v2. Size of V (i.e. number of robots in the multirobot team) is called n in
this paper.

Assumption 1 Robots are aware of the maximum number of robots in the system,
which can be considerably higher than the actual number of robots. The maximum
number is called N throughout the paper.
Assumption 2 Robots have identical communication capabilities.

As a result of the above assumption, the neighbor property is symmetric, and the
robot graph is undirected.
Definition 5. Connected. We say robot R1 and robot R2 are connected, when in the
corresponding robot graph, there is a path between R1 and R2.

Assumption 3 Each robot has a unique and ordered ID. For robot X its ID is called
X.id.

4 Mazda Ahmadi and Peter Stone

Next, the definition and assumption regarding the communication between robots
is provided.
Definition 6. Message, stamped message. For our purposes, a message, which is
used for robot communication, is a string in format (T, (S)), where T indicates the
type of the message, and S is a list of robot stamps. Message (T, (S)) is said to be
stamped by robot R iff R.id ∈ (S). Robot R stamps message (T, (S)) by generating
new message (T, (S, R.id)).

Assumption 4 When called for by the protocol, robots relay messages to one an-
other. Robots start processing received messages, as soon as they get them. The
maximum period from the time that robot R1 receives message X, until its neigh-
bor robot R2 receives the processed (possibly stamped) version of message X from
R1 is c seconds.

1.3 Algorithms to Check Biconnectivity
As mentioned in Section 1.1, checking for biconnectivity is the first step towards
the overall goal of achieving and maintaining a biconnected multirobot structure.
It is an important step, because the robots must be able to detect if they are not
biconnected, so that they can take remedial actions to restore biconnectivity before
they lose connectivity. The remedial actions could be as simple as all robots moving
back to a base and dispersing from there.

Note that the biconnected property is a global property of the multirobot system:
robots cannot determine whether or not it holds from purely local information. For
example see Figure 1.1, where the graph is not biconnected, and the robots associated
with the nodes on the right side of the graph need global information about the nodes
on the left side to know that the whole structure is not biconnected.

In our approach, each robot R, maintains two lists:
• CRR (connected robots): the list of robots that are connected to R.
• DCRR (doubly-connected robots): the robots doubly-connected to R.

Each robot R first fills the CRR list, then using that, the DCRR list is computed.
Finally with the help of the DCRR list, it detects if the robot graph is biconnected.

In the rest of this section, we first provide an algorithm (CR-FILL) for filling CRR

in Section 1.3.1, then another algorithm (DCR-FILL) is presented in Section 1.3.2
which fills the DCRR lists with the help of the already computed CRR lists. After-
wards in Section 1.3.3, an algorithm which checks the biconnectivity with the help
of the computed DCRR lists is provided. All these algorithms are distributed and
each robot runs them independently. Finally an analysis of the presented algorithms
is provided in Section 1.3.4.

1.3.1 CR-FILL

In this subsection, we provide an algorithm for filling the CRR list. That is for robot
R, it finds the robots that are connected to it.

The basic idea is for the robots to stamp and pass messages in the system. In this
way, if there is a path of r0 → r1 → r2 → R, between r0 and R, robot R will receive
a message that is stamped by r0, r1 and r2. Thus it will know that it is connected to
those robots, and will add them to the CRR list.

A Distributed Biconnectivity Check 5

Two helper algorithms must run continuously on all the robots to help the CR-
FILL algorithm. The first helper algorithm dictates how messages should be passed
around. In the second, if robot r has not sent a message for a while and another robot
is running a CR-FILL algorithm and needs a stamped message initiated from r, it will
send a stamped message. After introducing these two helper algorithms, the CR-FILL

algorithm itself will be presented.
Using the first helper algorithm, all robots continually stamp and pass bicon-

nected type messages that they receive. Any robot r, which receives (“CR”, (S)),
checks the content of S, and if r.id /∈ S it stamps the message and send it out. That
is, it sends message (“CR”, (S, r.id)). If r.id ∈ S, it does not send any message
because stamping and sending it would lead to a duplicate ID in (S, R.id). For an
overview of this algorithm see Algorithm 1.

Algorithm 1 Message passing algorithm which robots continually run
1: upon receiving a message of form (“CR”, (S)) do
2: if R.id /∈ (S) then robot R broadcast message (“CR”, (S, R.id)).
3: end upon

Any robot, upon receiving a message of format (“CR”, S), if it has not sent
out a (“CR”, (R.id)) message in the last Nc seconds (Recall from Assumption 1,
that N is the maximum number of robots in the system), it sends out message
(“CR”, (R.id)) (see Algorithm 2).

Algorithm 2 The condition for initiating a “CR” message.
1: upon receiving a message of form (“CR”, (S)) do
2: if has not sent out a (“CR”, (R.id)) message in the last Nc seconds then
3: broadcast message (“CR”, (R.id))
4: end if
5: end upon

When calling the main CR-FILL algorithm, robot R starts by initializing the CRR

list to empty. Afterwards each time it receives message (“CR”, (S)), it adds all the
IDs in S to CRR. While still adding IDs to the CRR, at time Nc, robot R sends out
a stamped message (“CR”, (R.id)). The pseudocode of this algorithm is available
in Algorithm 3.

Algorithm 3 Pseudocode for the CR-FILL algorithm for robot R

1: Time 0 (start of the algorithm): initialize the CRR to empty.
2: Time Nc: broadcast message (“CR”, (R.id))
3: if message of form (“CR”, (S)) is received then add IDs in (S) to CRR.

Since the length of the longest path in the graph is less than N , the maximum
time for a message to reach robot r2 from r1 is Nc seconds. We now show any robot
r that is connected to R will be added to CRR within 3Nc seconds. Any robot r that
is connected to R, receives the stamped message from robot R within 2Nc seconds

6 Mazda Ahmadi and Peter Stone

(note that the first message is sent at time Nc). If it has sent a message in the last
Nc seconds, robot R has gotten that message. Otherwise, it will send out a message
which will be heard by R in at most Nc seconds. Thus after 3Nc seconds, CRR

represents the correct list of robots that are connected to R. This analysis is based on
the assumption that the robots do not change connectivity in the 3Nc seconds that
CR-FILL runs. Note that after 3Nc seconds, no message is left in the system. Because
message (“CR”, (S)) can only survive if it is received by robots such that their ID is
not in (S), 2Nc seconds after sending the first message any remaining message in the
system has been stamped by all robots, and it cannot survive any longer. Also note
that c is ideally on the order of milliseconds, though in practice it may be difficult
to guarantee such small bounded transmission times. In such cases, the algorithms
as is may become impractical for large teams of fast-moving (so that connectivity
changes quickly) robots.
1.3.2 DCR-FILL

In this subsection, DCR-FILL, an algorithm to fill the DCR lists is presented. It is
assumed the message passing algorithm (Algorithm 1) is running continually by all
robots.

The basic idea for filling DCRR for robot R is to find the robots that are in a
common loop with R. When the robot graph is undirected (Assumption 2), there is
a loop including both R and R′ iff two internally vertex-disjoint paths (Definition 1)
exist between R and R′. In this case, R and R′ are doubly-connected (Definition 3).
According to Algorithm 1, robots pass stamped messages around. When robot R
receives a message that has been stamped by itself (i.e. R), it knows the robots that
have stamped the message after the R stamps are in a common loop with R, and
should be added to DCRR.

Robot (r) starts by broadcasting message (“DCR”, (r.id)), which will be heard
by all of its neighbor robots. Upon receiving message (“DCR”, (S)), if this is the
first time to receive a “DCR” message, it resets DCRr to empty (initializing), after-
wards it checks the content of (S). If its own ID is in the stamp part of the message
(S), it can represent (S) as (S1, r.id, S2). If S2 includes more than one vertex, it
means that there is a loop and the robot adds all the IDs in S2 to DCRr. If S2 in-
cludes only one vertex, it means that the robot has got back a message from a robot
that it has just sent a message to, and should be ignored. Algorithm 4 presents the
pseudocode of this algorithm.

We now show that for robot R, the DCR-FILL algorithm sets the correct DCRR

list within nc seconds.
Theorem 2. For any robot R, the DCR-FILL algorithm finds the full list of doubly-
connected robots (DCRR) within nc seconds.
Proof. Consider the robot graph RG(V, E) for the robots, and also v1 ∈ V repre-
sents robot R. To prove this theorem, we need to show for any vertex v2 ∈ V , if v1

is doubly-connected to v2, then v2 ∈ DCRv1
, and if (v2 ∈ DCRv1

) then v2 and v1

are doubly-connected. Also we need to show DCR-FILL is completed (i.e. there is no
message in the system) after nc seconds.

We start with the first part, and assume v1 and v2 are doubly-connected, so there
are two internally vertex-disjoint paths (a loop) between them. The starting message

A Distributed Biconnectivity Check 7

Algorithm 4 Pseudocode for DCR-FILL algorithm
1: Time 0: robot R broadcasts (“DCR”, (R.id)).
2: upon receiving a message of form (“DCR”, (S)) do
3: if this is the first time to receive a “DCR” message then
4: reset DCRR to empty
5: end if
6: if R.id ∈ (S) then
7: split (S) to (S1, R.id, S2)
8: if size(S2) > 1 then add the IDs in S2 to DCRR

9: end if
10: end upon

from v1 will go through the loop, and vertex v1 will get back the message that it
stamped earlier, which is now also stamped by v2. Thus, v2 will be added to DCRv1

.
Now we have to prove the other part, assuming v2 ∈ DCRv1

. Based on the al-
gorithm, the only way that v2 is added to DCRv1

is when v1 receives a message
(“DCR”, (Si, v1.id, Sj , v2.id, Sk)). Notice that based on the condition in the al-
gorithm (size(S2) > 1 (Algorithm 4), if both Sj and Sk are empty, the IDs will
not be added to DCRR, also recall that there is no duplicate IDs in messages, be-
cause no robot stamps a message that it has previously stamped. The two internally
vertex-disjoint paths between v1 and v2 are v1Sjv2 and v1Skv2. Thus v1 and v2 are
doubly-connected.

Similar to the argument at the end of Section 1.3.1, after nc seconds no message
remains in the system, and the algorithm terminates.

1.3.3 Biconnectivity Check
After running CR-FILL and DCR-FILL consecutively, the CR and DCR lists will be
accurate. Notice that both algorithms for filling the CR and DCR lists finish within
a known time limit. Thus the robots should wait 3Nc seconds, and afterwards CR
and DCR lists will be accurate. For robot r if CRr and DCRr are equal, it means
that r is doubly-connected to all the robots that it is connected to. By Theorem 1,
we know if there are two robots r1 and r2 that are doubly-connected to all other
robots, then the robot graph is biconnected. Also, we know by Lemma 1 that if there
is a robot that is not doubly-connected to all other robots, the robot graph is not
biconnected. Thus if the robot and one of its neighbors is doubly-connected to all
other robots, the robot knows that the robot graph is biconnected. Also if the robot
or one of its neighbors is not doubly-connected to all other robots, it will know that
the robot graph is not biconnected.

The overview of the biconnectivity check algorithm is shown in Algorithm 5. The
initiator robot (which can be any robot who wants to check biconnectivity) starts by
sending a (“CHECK-REQUEST”,()) message to its neighbors to ask them to check
if they are doubly-connected to other robots or not. Upon receiving a (“CHECK-
REQUEST”,()) the other robots run biconnectivity check (unless they are already run-
ning it) as non-initiators (skipping line 3 of Algorithm 5). Note that multiple robots
can run the biconnectivity check algorithm in parallel.

8 Mazda Ahmadi and Peter Stone

If the robot is doubly-connected to all other robots, it sends the message (“DC-
TRUE”, ()) to all its neighbor robots, and a (“DC-FALSE”,()) message otherwise. If
the robot is doubly-connected to all other robots and receives a (“DC-TRUE”, ()) mes-
sage, it knows that the robot graph is biconnected. Otherwise (if it is not biconnected
to all other robots, or receives a (“DC-FALSE”, ()) message) it knows that the robot
graph is not biconnected. Since the initiator and its neighbors should run the bicon-
nectivity check, the total time needed for the biconnectivity check to complete is
6Nc + 2c seconds.

Algorithm 5 Pseudocode for biconnectivity check algorithm. It returns true if the
robot graph is biconnected, and false otherwise.
1: run CR-FILL and DCR-FILL in parallel, and wait 3Nc seconds for them to be finished.
2: if (initiator) then send message (“CHECK-REQUEST”,())
3: if size(DCRR) = size(CRR) then
4: send message (“DC-TRUE”,())
5: else
6: send message (“DC-FALSE”,())
7: return false;
8: end if
9: if a message of form (“DC-FALSE”, ()) is received then return false;

10: if a message of form (“DC-TRUE”, ()) is received then
11: if size(DCRR) = size(CRR) then return true;
12: end if

1.3.4 Algorithms’ Analysis
In this section we analyze both the time and communication complexity of the CR-
FILL and DCR-FILL algorithms.

CR-FILL, DCR-FILL and biconnectivity check algorithms use 3Nc, nc, and 6Nc+
2c seconds to complete respectively.

For the analysis of the number of messages, we assume that the time needed
for the message sent by a robot to reach its neighbor is constant (c). This assumption
does not change the total number of messages, but possibly can change the maximum
number of messages at any point in time. The worst case for the number of messages
in the multirobot system happens when the robot graph is fully connected, that is
every two robots are neighbors. For both DCR-FILL and CR-FILL algorithms, the
maximum number of messages in the system is n!, because when robot R receives
message (T, (S)), where S has size of i, the message only survives if robot R sends
it to the robots that have not already stamped the message, and n− i− 1 such robots
exist. Thus from the messages that have started from robot R, (n − 1)! can exist in
the system, and since each of the n robots starts one message of its own, at any point
in time, the maximum number of messages in the system for DCR-FILL or CR-FILL

algorithm is n!.
Note that the times provided above are the worst case, and especially when there

are many robots, the robot graph is most likely not fully connected. An example of
a still densely connected robot graph with 35 robots is given in Figure 1.2, there
in each time period, on average each robot deals with 1037 messages, which is a
manageable number. But 1037 messages is still a lot to process in each time step.

A Distributed Biconnectivity Check 9

Our analysis is based on the assumption that CR-FILL must generate special-
purpose messages. When messages are being sent for other purposes, the stamps
required can simply be appended to those, thus eliminating the need for many extra
messages. Though if each message does not normally generate a broadcast responses,
some extra messages may be needed in order to keep the time complexity the same.
In principle, DCR-FILL only needs to be started by 2 robots, thus reducing the number
of messages required by a factor of 2

n
. When those two robots have computed their

DCRR, they can let the others know if the robot graph is biconnected. The technical
details of how to determine which two robots send the starting messages is beyond
the scope of this paper. However in essence, it is similar to maintaing team leaders,
which is a common practice in multirobot systems (e.g. [9]).

If CR-FILL uses existing mes-

Fig. 1.2. An example of a common robot graph with
35 robots.

sages and DCR-FILL is run by only
2 robots, the total number of mes-
sages is 2(n − 1)! in the worse
case, and for the graph of Fig-
ure 1.2, on average each robot deals
with approximately 69 messages,
which is an easily manageable num-
ber in most realistic scenarios.

All the presented algorithms
only store CR and DCR lists, which
have a maximum size of n. Thus all algorithms use O(n) memory space.

The time complexity discussed here is for each received message. That is, we
assume the decisions are made when messages arrive. Both the CR-FILL and DCR-
FILL algorithms have time complexity of O(n) because they only traverse a list of
IDs, which has size of at most n. The time complexity of biconnectivity check, which
include both CR-FILL and DCR-FILL is of O(2n).
1.4 Conclusion and Future Work
In this paper, we defined and argued the need for biconnected multirobot structures.
A distributed algorithm for checking biconnectivity is presented, proven correct, and
analyzed theoretically.

In future work, we aim to provide optimality bounds for the provided checking
biconnected algorithms. The assumption that robots have identical communication
capabilities should be relaxed, which will result in the robot graph being directed.
Also, our algorithms for maintaining biconnectivity and constructing biconnected
structure from scratch remains as future work.

Acknowledgments
We would like to thank Kurt Dresner and Nick Jong for their valuable comments on
an earlier version of this paper. This research was supported in part by NSF CAREER
award IIS-0237699 and ONR YIP award N00014-04-1-0545.

References

1. Parker, L.E.: Distributed algorithms for multi-robot observation of multiple moving targets.
Autonomous Robots 12 (2002) 231–255

10 Mazda Ahmadi and Peter Stone

2. Ahmadi, M., Stone, P.: A multi-robot system for continuous area sweeping tasks. In:
Proceedings of International Conference on Robotics and Automation (ICRA), to appear.
(2006)

3. Tarjan, R., Vishkin, U.: Finding biconnected componemts and computing tree functions
in logarithmic parallel time. In: 25th Annual Symposium on Foundations of Computer
Science, 1984. (1984) 12–20

4. Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected and biconnected components
on-line. Algorithmica (Historical Archive) 7 (1992) 433–464

5. Galil, Z., Italiano, G.F.: Maintaining biconnected components of dynamic planar graphs.
In: Proceedings of the 18th International Colloquium on Automata, Languages and Pro-
gramming, London, UK, Springer-Verlag (1991) 339–350

6. Swaminathan, B., Goldman, K.J.: An incremental distributed algorithm for computing bi-
connected components (extended abstract). In: Proceedings of the 8th International Work-
shop on Distributed Algorithms, London, UK (1994)

7. Ahuja, M., Zhu, Y.: An efficient distributed algorithm for finding articulation points,
bridges, and biconnected components in asynchronous networks. In: Proceedings of the
Ninth Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, London, UK, Springer-Verlag (1989) 99–108

8. Diestel, R.: Graph Theory. Springer, New York (1997)
9. R. Alur et al.: A framework and architecture for multirobot coordination. In: Seventh

International Symposium on Experimental Robotics. (2001)

A Method for Building Small-Size

Segment-Based Maps

Francesco Amigoni, Giulio Fontana, and Fabio Garigiola

Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano MI, Italy
{amigoni,fontana}@elet.polimi.it, garigiol@airlab.elet.polimi.it

Summary. Segment-based maps have recently emerged as an effective solution to
reduce the dimensions of environment models built by mobile robots. In this paper,
we present a novel method for building segment-based maps that contain a small
number of line segments. The method works also when data are collected by many
robots. Experimental results show that our approach is effective in significantly
reducing the size of the resulting maps.

1 Introduction

Robotic mapping addresses the problem of acquiring spatial models of physical en-
vironments through mobile robots [12]. Multirobot mapping has attracted atten-
tion because of both the robustness and the efficiency of exploring in parallel with
multiple robots. Maps can be represented topologically (e.g., by graph-based data
structures) or geometrically (e.g., by data structures storing grids, points, or line
segments). Segment-based maps have been recently advocated as a way to reduce
the dimensions of the data structures storing the representation of the environ-
ment [2, 3, 7, 13]. If, on the one hand, information can be extracted more efficiently
from segment-based maps, on the other hand, the advantages are effective only when
the number of line segments is kept as small as possible to avoid redundancy in data.

In this paper, we propose a novel method for building segment-based maps
composed of a small number of line segments. Our method incrementally integrates
a newly acquired scan S with an existing map Mt. It aligns S with Mt on the
basis of the estimated pose (i.e., position and rotation) from which S has been
acquired; then, it fuses the line segments of S and Mt to reduce the complexity of
the resulting map Mt+1. Our method for fusing line segments constitutes the main
original contribution of this paper. Experimental results show that our approach is
effective in significantly reducing the number of line segments in the final map.

Our method does not make any assumption about how the scans S are col-
lected. This makes our approach naturally applicable to cases in which the scans
are acquired by multiple mobile robots, possibly equipped with different sensors.
Actually, in a multirobot scenario, the need of reducing the number of line segments
in the final map is even more pressing, since the robots, exploring independently,

11

12 Francesco Amigoni, Giulio Fontana, and Fabio Garigiola

may acquire redundant information about the same portions of the environment.
With multiple mobile robots, the scans can be sent to a map manager that, upon
receiving a scan S, integrates it with the previous map. Although a centralized map
manager can constitute a bottleneck for the scalability of the system, it appears to
be the simplest solution when few mobile robots are involved and communication is
reliable.

This paper is organized as follows. In the next section, our map building approach
is illustrated. Section 3 presents the proposed method for fusing line segments. Sec-
tion 4 shows some experiments that validate our method. Section 5 compares our
method with other methods for segment-based maps. Section 6 concludes the paper.

2 Our Map Building Approach

We provide a method for map building that integrates a newly acquired scan S and
an existing map Mt into an updated map Mt+1, trying to keep the number of line
segments in Mt+1 as small as possible. A scan is the result of a sensing operation
and it is assumed to be a collection of line segments in a 2D space. The map Mt,
being built by integrating a number of scans, is composed of line segments. Mt is
updated whenever a new scan is available, thus t is not intended to represent absolute
time but the number of sensing operations (and of consequent integrations). We do
not make any assumption about how and by which robot the scans are acquired.
This makes our approach naturally applicable to scenarios in which multiple robots
equipped with different sensors explore an environment. In our experiments, we used
laser range finders but, in principle, cameras and other sensors can be used as long
as they can provide segment-based scans. We assume that all the relevant obstacles
are at the height of sensor perception and, in the case of multiple sensors, we assume
that all the sensors perceive the environment at the same height.

Our map building method works in three steps: scan acquisition, scan align-
ment, and scan fusion. In the following of this section, we briefly describe the first
two steps. Scan fusion is presented in the next section. We first introduce a prelim-
inary definition. The distance between two line segments s and s′ is calculated as
D(s, s′) = min(d(s, s′), d(s′, s)), where d(s, s′) = maxp∈s(minp′∈s′(||p − p′||)), and
|| · || is the Euclidean distance. Note that D(s, s′) is similar to, and always less than,
the Haussdorff distance (H(s, s′) = max(d(s, s′), d(s′, s)), often used in computer
graphics and in computer vision.

Scan acquisition produces a scan S. In our experimental activity, we used a
SICK LMS 200 laser range scanner operating at a height of approximatively 50 cm.
For each scan, the sensor acquires an ordered (counterclockwise) sequence of 361
distance measurements along directions separated by 0.5◦, sweeping 180◦. The raw
data returned by the sensor can thus be seen as a set of (ordered) points expressed
in polar coordinates, with the origin of the coordinate frame in the sensor itself.
These points are processed to obtain line segments: they are first clustered and then
the points in each cluster are approximated by a line segment following a technique
similar to that used in [5]. The main differences are: firstly, our clusters contain points
that are approximated by a single line segment instead of a polyline; secondly, we fit
the approximating line segment using a least mean square algorithm and calculating
the distance between a point and a line segment along the line connecting the sensor
to the point. In this way, we better cope with the errors of laser range scanners.

A Method for Building Small-Size Segment-Based Maps 13

Each scan S is associated with the estimated pose PS (in the reference frame
of the map Mt) from which it has been acquired. In our case, the robots maintain
knowledge about their pose using data coming from odometry. However, it is well-
known that odometry is unreliable. In order to refine the estimated poses, after each
scan acquisition, we apply a scan alignment algorithm derived from that presented
in [9]. That algorithm aligns two scans composed of points and iteratively performs
two steps. Firstly, it finds the pairs of corresponding points belonging to the two
scans. Secondly, it calculates the transformation (i.e., rotation and translation) that
minimizes the distances between the corresponding points. We adapted this algo-
rithm to align the scan S and the map Mt, both composed of line segments. The
main issue of our algorithm is how to establish that two line segments correspond
to each other. Two line segments correspond when their angle is smaller than Tθ

and their distance is smaller than TD (in our experiments, we used the following
thresholds: Tθ = 5◦ and TD = 10 cm). Our scan alignment algorithm aligns S and
Mt in the following way.

1. Represent S in the reference frame of Mt, by applying to S the transformation
given by the estimated pose PS .

2. Find the rotation θ̄ that, when applied to S, minimizes the distance between S
and Mt:

D(S, Mt) =
1

Nm + Nn

· (

Nm

i=1

D′(si) + Nn ·TD) (1)

where Nm is the number of line segments of S that correspond to at least a
line segment in Mt and Nn is the number of line segments of S that do not
correspond to any line segment in Mt. In general, given a line segment s of
S there is a set Cs of line segments of Mt that correspond to s (according to
the definition of correspondence given above). Note that Cs can be also empty.
D′(si) is the average distance of line segment si (of S) to the line segments in
Csi

, weighted according to their lengths.
3. Apply the rotation θ̄ to S.
4. Find the translation (x̄, ȳ) that, when applied to S, minimizes D(S, Mt).
5. Apply the translation (x̄, ȳ) to S.
6. Repeat from step 2 until a given number of iterations or until D(S, Mt) is below

a threshold.

We assume that the estimated pose PS is precise enough to make two line seg-
ments representing the same portion of the environment correspond when calcu-
lating D(S, Mt) with (1). “Precise enough” is difficult to quantify exactly since it
depends on the geometry of the environment. In our experiments, estimated (ini-
tial) poses with errors up to 10 cm and 15◦ were “precise enough”. At the end of the
above algorithm, S and Mt are aligned and their line segments can be fused.

3 The Proposed Method for Scan Fusion

In this section we present the proposed method for scan fusion that represents the
main original contribution of this paper.

We represent a line segment s with the following tuple (see also Fig. 1):

14 Francesco Amigoni, Giulio Fontana, and Fabio Garigiola

s = 〈θ, ρ, (x1, y1), (x2, y2), σθ, σρ〉 (2)

where θ and ρ are the parameters (angle and distance from origin, respectively) of
the line supporting s, (x1, y1) and (x2, y2) are the coordinates of the extreme points
of s, and σθ and σρ represent the uncertainty of θ and ρ, respectively. When, as in
our experimental activity (see the scan acquisition step in the previous section), a
line segment s is obtained from points acquired by a laser range scanner, σθ and σρ

are calculated as follows:

σθ = arcsin
ε

L/2
σρ = ε

where ε is the maximum distance between s and the points that “generated” it and
L is the length of s (in our experiments ε = 20mm). This representation for line
segments is based on that of [4]. We use the parameters σθ and σρ instead of the
parameter j of the original formulation, that represented the number of points from
which the line segment has been derived. By eliminating j, our method is applicable
also to cases in which line segments are not obtained from approximation of points
(e.g., when they are obtained processing images captured by cameras), provided
that σθ and σρ are calculated properly.

Fig. 1. The parameters of a line segment

We now illustrate the basic method for fusing two line segments s and s′; later
we will extend it to a set of line segments. To decide whether s and s′ can be fused,
three conditions, called fusion conditions, must be satisfied:

1. the angle between s and s′ is smaller than Tθ: ss′ < Tθ,
2. the distance between s and s′ is smaller than TD: D(s, s′) < TD,
3. the projections Ps and Ps′ of s and s′ on their bisector (i.e., on the line that

bisects the angle formed by s and s′) overlap: Ps ∩ Ps′ �= ∅.

Note that the first two conditions above define the correspondence of line segments
(as introduced in the previous section).

When two line segments s = 〈θ, ρ, (x1, y1), (x2, y2), σθ, σρ〉 and s′ = 〈θ′, ρ′, (x′

1, y
′

1),
(x′

2, y
′

2), σ
′

θ, σ
′

ρ〉 can be fused, namely when they satisfy all the above conditions, we

calculate the resulting line segment sf = 〈θf , ρf , (xf

1
, yf

1
), (xf

2
, yf

2
), σf

θ
, σf

ρ 〉 in the
following way. The parameters of the line supporting sf are:

θf =
ωθ · θ + ω′

θ · θ
′

ωθ + ω′

θ

ρf =
ωρ · ρ + ω′

ρ · ρ
′

ωρ + ω′
ρ

(3)

A Method for Building Small-Size Segment-Based Maps 15

where the weights ωθ and ωρ are defined as:

ωθ =
L

L + L′
·

1

σ2

θ

ωρ =
L

L + L′
·

1

σ2
ρ

where L and L′ are the length of s and s′, respectively. In a similar way, ω′

θ and ω′

ρ

can be defined. The weights of a line segment are directly proportional to its length
and inversely proportional to its uncertainty. This reflects the idea that long line
segments are more “reliable” than short line segments.

The extreme points (xf

1
, yf

1
) and (xf

2
, yf

2
) of sf are calculated by projecting the

extreme points of s and s′ on the line with parameters θf and ρf and by selecting,
among the four projected points, the pair of farthest points.

Finally, the uncertainty σf

x (either σf

θ
or σf

ρ) of sf is calculated as shown in
Fig. 2, that represents the behavior of σf

x as a function of L and L′. When L � L′,
σf

x is approximatively equal to σx (s “absorbs” s′); conversely, when L 	 L′, σf

x is
approximatively equal to σ′

x (s is “absorbed” by s′). When L = L′, σf

x is calculated
as:

σf

x =
1

σ2
x

+
1

σ′2
x

−1

Namely, the uncertainty of the final segment sf is reduced with respect to the
uncertainty of both s and s′. In our experimental activity, we used a linearization
of the curve of Fig. 2.

Fig. 2. The function σf

x

In order to reduce as much as possible the number of the line segments in the
resulting map Mt+1, we apply the above fusion procedure to a set of line segments.
More precisely, given Mt and S, acquired and aligned as explained in the previous
section, we build, for each line segment s in S, the set Cs that contains all the
line segments in Mt that can be fused with s (i.e., that satisfy the three fusion
conditions stated above). Then, we approximate the line segments in Cs ∪ {s} with
a line segment sf , that is inserted in Mt+1 (together with the line segments in Mt

that do not correspond to any line segment in S). It is straightforward to extend
the formulas (3) for θf and ρf to the case of many line segments. Similarly, also the

16 Francesco Amigoni, Giulio Fontana, and Fabio Garigiola

extreme points (xf

1
, yf

1
) and (xf

2
, yf

2
) can be easily calculated in the case of many

line segments. To calculate σf

θ
and σf

ρ we use the following (approximate) iterative
procedure. We order the line segments in Cs ∪ {s} from the longest one to the
shortest one: s0, s2, . . . , sn. Then, we calculate σ0,1

x = Φ(σ0

x, σ1

x), where Φ is the
function of Fig. 2 (recall that x stands for either θ or ρ). At this point, we calculate
σ0,1,2

x = Φ(σ0,1

x , σ2

x) and so on until σf

x = σ0,1,...,n

x = Φ(σ0,1,...,n−1

x , σn

x) is obtained.
In this way, the uncertainty of the longer line segments in Cs ∪ {s} has a stronger
impact on the values of σf

θ
and σf

ρ .

4 Experimental Results

In order to validate the proposed map building approach, we performed several
experiments with a mobile robot (based on a Robuter platform) equipped with a
SICK LMS200 laser range scanner. The experiments have been conducted in different
wall-bounded environments (both indoor and outdoor). We manually moved the
robot through a sequence of observation points, with an average distance between
observation points of about 800 mm. For each observation point we collected two
scans. For each scan S, we applied our method to fuse S with the current map
Mt to obtain Mt+1. We compared the maps obtained with our approach with maps
obtained following our approach without performing the scan fusion of Section 3. Due
to space limitations, in this section we report only some of the results we obtained.

In the first experiment we drove the robot along a corridor closed at one end.
Along the path, 26 scans have been acquired. Fig. 3 shows the final maps obtained
without scan fusion (composed of 151 line segments) and with scan fusion (composed
of 21 segments). The reduction in the number of line segments is 86%. Fig. 4 shows
the number of line segments in the two maps as the scans are acquired.

Fig. 3. First experiment: maps obtained without (left) and with (right) scan fusion

To preliminarily test our method in a multirobot scenario, we simulated the
presence of two mobile robots. Given an environment, we initially drove our robot
along a path, storing the acquired scans and odometry data in a log file. Then, we
used the same robot to follow another path in the same environment. This time, as

A Method for Building Small-Size Segment-Based Maps 17

of line segments

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25

scan #

map without scan fusion

map with scan fusion

Fig. 4. Number of line segments vs. number of scans

the robot was acquiring scans along the second path, we applied our map building
method to integrate these scans interleaved with those read from the log file. Overall
20 scans have been acquired: 8 along the first path and 12 along the second path.
Fig. 5 shows the maps built (without scan fusion) integrating the scans collected
along the two paths. Fig. 6 (left) shows the map obtained with scan fusion. The
number of line segments in this map is reduced of 89% with respect to total number
of line segments in the 20 scans (and in the maps of Fig. 5). Fig. 6 (right) shows the
number of line segments as the scans are acquired.

Fig. 5. Second experiment: maps obtained without scan fusion

We show another multirobot experiment. We simulated the second robot as
illustrated above, collecting a total of 33 scans in an environment. Fig. 7 shows the
final map obtained with scan fusion and the number of line segments as scans are
acquired. In this case, the reduction in the number of line segments, with respect to
the number of line segments in the 33 scans, is 85%.

The results presented above constitute a preliminary validation of the effective-
ness of our approach. The proposed method dramatically reduces the number of
line segments in the maps without loss of significant features of the environment.
In our experiments, the reduction rates have ranged from 80% to 90%. Not surpris-

18 Francesco Amigoni, Giulio Fontana, and Fabio Garigiola

of line segments

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19

scan #

map without scan fusion
map with scan fusion

Fig. 6. Second experiment: map obtained with scan fusion (left) and number of line
segments vs. number of scans (right)

of line segments

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

scan #

map without scan fusion

map with scan fusion

Fig. 7. Third experiment: map obtained with scan fusion (left) and number of line
segments vs. number of scans (right)

ingly, the best results have been obtained in environments with long straight walls.
In cluttered environments, a lot of small line segments approximate the irregular
boundaries of objects; these line segments are difficult to fuse together in longer line
segments, complicating the reduction of the dimensions of the maps (see the left
wall of the corridor in Fig. 3, where a bicycle was present). The values of the pa-
rameters Tθ and TD used as thresholds in the fusion conditions proved to be highly
critical. We experimentally found satisfactory values; an analytical study could help
in finding optimal values.

5 Related Works

In this section, we compare our approach to those presented in literature to build
segment-based maps. Some approaches keep all the line segments in the final map
without attempting any fusion, or applying limited fusion procedures (e.g., fusing
collinear segments [5]).

A Method for Building Small-Size Segment-Based Maps 19

In [10], line segments are represented by their extreme points. The authors pro-
pose a procedure to merge a newly acquired line segment sn and an old line segment
so. The procedure finds a line segment that approximates the measured points that
form sn and the points obtained by sampling so. The solution proposed in [14] de-
scribes a line segment using the center of gravity of its points and the direction θ of
its supporting line. Line segments are grouped in clusters and, for each cluster, a new
line segment is generated. Its parameters are the weighted average of the parameters
of the line segments in the cluster. In this case, the weights are the variances of the
center of gravity. Both these methods are applicable only when line segments are ob-
tained starting from sensors that perceive points. The method in [13] calculates the
probability that two line segments can be fused according to their angle, distance,
and overlapping, in a way similar to our fusion conditions. However, it is not clear
how the line segments are merged. In [7], the authors propose to evaluate whether
two polylines can be fused on the basis of the similarity of their convex arcs. The
fusion of two polylines is performed simulating a laser range scanner and so reducing
the problem to the fusion of points. In [1], close line segments form matching chains,
according to a measure of distance similar to that used in this paper. A matching
chain is then approximated by a polyline with an iterative procedure.

There are some approaches using the so-called fuzzy line segments that provide
a representation for line segments that intrinsically includes uncertainty. A simple
fuzzy approach is proposed in [8], but it is suitable only for highly structured envi-
ronments with perpendicular walls. A more complex solution appears in [4] where,
as already discussed, line segments are defined similarly to (2). In this method, un-
certainty values are used to decide if two or more line segments can be grouped in
a cluster; whereas the numbers of measured points used to build line segments are
used to merge the line segments of a cluster. A similar representation of line seg-
ments is used in [11], where a chi-squared criterion is used to identify line segments
that can be merged. The resulting line segment is calculated as the average of the
merged line segments, weighted by their accuracies. Clustering and fusion of fuzzy
line segments are used also in [6] with a two-step process: local clustering (to group
scan points and extract line segments by a fuzzy c-means algorithm) and global
clustering and fusion (to reduce the total number of line segments of the map).

When compared with the approaches discussed above, the method proposed in
this paper explicitly addresses the problem of reducing the number of line segments
in the final map. In [2] a similar problem is considered, but with emphasis on the
selection of the proper geometric primitives (line, arc, or cubic segments) to reduce
the dimensions of maps. Moreover, our method is applicable to situations in which
the line segments are not obtained starting from points. Finally, while the approaches
for segment-based maps presented in literature are mainly oriented to single robot
systems, our method is naturally applicable to multirobot systems.

6 Conclusions

In this paper we have presented a novel method that builds small-size segment-
based maps. Experimental results validated the effectiveness of our approach in
significantly reducing the number of line segments in the maps. The importance
of the proposed method in a multirobot scenario lies in two main considerations.
Firstly, it supports the building of small-size maps that can be easily managed and

20 Francesco Amigoni, Giulio Fontana, and Fabio Garigiola

transmitted over low-bandwidth networks of mobile robots. Secondly, it is indepen-
dent from the way in which the scans are acquired and, in principle, it is naturally
scalable as the number of robots increases, since scans are integrated one at a time.

Future research will address the testing of our method in large environments and
the use of different sensors mounted on different robots to collect the scans; we are
currently working on scan acquisition performed by cameras. In this way, we aim
to analyze the dependence of the parameters to the type of sensors and to the type
of environments. Another future research direction is to consider techniques used in
computer graphics for segment and polygon reduction.

References

1. F. Amigoni, S. Gasparini, and M. Gini. Scan matching without odometry infor-
mation. In Proc. of the Int’l Conf. on Informatics in Control, Automation and
Robotics, pages 349–352, 2004.

2. D. Austin and B. McCarragher. Geometric constraint identification and map-
ping for mobile robots. ROBOT AUTON SYST, 35:59–76, 2001.

3. E. Brunskill and N. Roy. SLAM using incremental probabilistic PCA and di-
mensionality reduction. In Proc. of the IEEE Int’l Conf. on Robotics and Au-
tomation, pages 342–347, 2005.

4. J. Gasós and A. Mart́ın. Mobile robot localization using fuzzy maps. In T. Mar-
tin and A. Ralescu, editors, Fuzzy Logic in AI - Proc. of the IJCAI’95 Workshop,
volume LNAI 1188, pages 207–224. Springer-Verlag, 1997.

5. H. H. Gonzáles-Baños and J. C. Latombe. Navigation strategies for exploring
indoor environments. INT J ROBOT RES, 21(10-11):829–848, 2002.

6. Y. L. Ip, A. B. Rad, K. M. Chow, and Y. K. Wong. Segment-based map building
using enhanced adaptive fuzzy clustering algorithm for mobile robot applica-
tions. J INTELL ROBOT SYST, 35:221–245, 2002.

7. L. J. Latecki, R. Lakaemper, X. Sun, and D. Wolter. Building polygonal maps
from laser range data. In Int’l Cognitive Robotics Workshop, 2004.

8. M. López-Sánchez, F. Esteva, R. López De Màntanaras, and C. Sierra. Map
generation by cooperativa low-cost robots in structured unknown environments.
AUTON ROBOT, 5:53–61.

9. F. Lu and E. Milios. Robot pose estimation in unknown environments by match-
ing 2D range scans. J INTELL ROBOT SYST, 18(3):249–275, 1998.

10. R. Mázl and L. Přeučil. Building a 2d environment map from laser range-finder
data. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 290–295, 2000.

11. J. W. Burdick S. T. Pfister, S. I. Roumeliotis. Weighted line fitting algorithms
for mobile robot map building and efficient data representation. In Proc. of the
IEEE Int’l Conf. on Robotics and Automation, pages 1304–1311, 2003.

12. S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel, editors,
Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2003.

13. E. Zalama, G. Candela, J. Gómez, and S. Thrun. Concurrent mapping and local-
ization for mobile robots with segmented local maps. In Proc. of the IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems, pages 546–551, 2002.

14. L. Zhang and B. Ghosh. Line segment based map building and localization
using 2D laser rangefinder. In Proc. of the IEEE Int’l Conf. on Robotics and
Automation, pages 2538–2543, 2000.

Learning when to Auction and when to Bid

Dı́dac Busquets and Reid Simmons

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{didac,reids}@cs.cmu.edu

Summary. The market based approach is widely used to solve the problem of
multirobot coordination. In this approach, communication and computation costs
are key issues, but have not been carefully addressed by the different architectures in
the literature. In this paper, we present a method to reduce these costs, by adding the
capability to learn whether a task is worth offering up for auction and also whether
it is worth bidding for the task, based on previous experience about successful and
unsuccessful bids. We show that the method significantly decreases communication
and computation costs, while maintaining good overall performance of the team.

1 Introduction

In the past few years, the field of mobile robotics has begun to consider prob-
lems involving groups of robots. A team of robots can achieve tasks much more
efficiently than using only one robot, and it has a wide range of applications,
including planetary exploration, search and rescue, and surveillance. However,
having multiple robots adds complexity to the problem, since some means of
coordinating them is needed. To this end, many researchers in the field have
focused their efforts on the topic of multirobot task allocation (MRTA). The
problem posed by MRTA is: given a set of robots and a set of tasks to be
executed, which tasks should be assigned to which robot in order to achieve
the team’s goal as effectively as possible?

This problem can be solved using different techniques, including those from
operations research, scheduling, combinatorial optimization, and economic-
based. In this paper we focus on the latter, the economic or market based
approach. The main idea of this approach is to consider the tasks to be accom-
plished as goods, and the robots as self-interested agents that bid in auctions
for these goods. As result of the auctions, the tasks are distributed among the
robots and, if the robots bid rationally, the task distribution is the one that
gets the most profit for the overall team. Moreover, once a robot is assigned
a task, it can auction it off to the other robots, and it can also bid for tasks
offered by other robots, if selling or getting those tasks is profitable.

22 Dı́dac Busquets and Reid Simmons

Two key issues in this approach are the communication and computation
costs for holding auctions and computing bids. Communication costs refer to
the number of messages needed for running the auctions. Obviously, the fewer
number of messages, the better, since the network resource in a team of robots
is often limited. Computation costs refer to the computational cost of running
the auctions, which consists of the bidder’s cost of computing the bid for each
task, and the auctioneer’s cost for clearing the auctions.

In this paper, we present a method to reduce these costs, by adding the
capability to learn which tasks to include in auctions and which tasks to
submit bids for. The first reduces the number of tasks the bidders need to
evaluate, the number of bids for the auctions, and the sizes of the call for
bids. The second reduces the number of messages and the number of bids the
auctioneer receives, since the bidders send fewer bids. Our empirical results
demonstrate significant savings in both communication and computational
costs, with little effect on the overall performance of the system.

2 Related work

Market-based mechanisms have been widely used in the multiagent commu-
nity, and in the past few years the field of robotics has borrowed these ideas
to solve multirobot problems. Examples of such architectures include those of
Dias and Stentz [2], Gerkey and Matarić [4] and Golfarelli et al. [7]. However,
as Gerkey and Matarić [5] point out, none of the existing implementations
have carefully taken into account the communication and computational costs,
which can have a major impact on the system’s performance. Although they
give a formal analysis of the cost of different implementations, they do not
address how the costs could be reduced in order to improve the performance.

Gage and Murphy [3] addressed this problem using an emotion-based ap-
proach. They extended Parker’s ALLIANCE architecture [10] adding a shame
emotion to the robots, which controls the willingness of each robot to respond
to a call for help from another one. This shame level increases as a function of
the task being announced (namely, as a function of the time needed to arrive
at the task location). However, the final decision of whether the robot is going
to respond is based on a fixed threshold, no matter what task has caused the
shame level to reach this threshold. This differs from our approach, in which
the task characteristics directly drive the robot’s decision of bidding or not.

We should point out that in our work the robots learn when to bid and not
what to bid (i.e. the amount of the bid). The latter approach has been widely
studied, and it focuses on learning bidding strategies that lead to maximizing
the profit of an agent in an economic system [8, 9]. In contrast, our approach
focuses on learning the probability of whether a given bid may win an auction.
Similarly, our approach also learns when to auction, by learning the likelihood
that a task being offered by a robot will be awarded to any of the other robots.

Learning when to Auction and when to Bid 23

3 The market architecture

Before describing how we have addressed the problem of communication and
computational costs, we give a brief overview of the market based architecture
on which we have based our work [2].

Consider a team of robots assembled to perform a set of tasks, each of
which has a specific reward for its completion, where each robot in the team
is modeled as a self-interested agent and the team of robots is modeled as
an economy. The goal of the team is to complete the tasks successfully while
maximizing overall profit. Each robot aims to maximize its individual profit.
However, since all revenue is derived from satisfying team objectives, the
robot’s self-interest is equivalent to maximizing global team objectives.

Internally, each robot is controlled by a three-layered architecture (see
[2] for more details). In this paper we focus on the Planning layer, which is
responsible for holding and participating in auctions to allocate tasks. It has
two main components: a Trader that participates in the market, auctioning
and bidding on tasks [2], and a Scheduler that determines task feasibility and
costs for the Trader and interacts with other layers for task execution [1].

The tasks are introduced in the system by the OpTraders (Operator
Traders), which receive high-level commands from human operators and trans-
late them into task descriptions the robots can recognize. These tasks are then
auctioned so that the robots bid for them. Upon receiving a Call for Bids, the
Trader sends the task (or set of tasks) to the Scheduler, which computes the
cost of executing it and the bid that should be sent back to the auctioneer.
Basically, a bid is the amount a robot is willing to pay to get the opportunity
to perform a task and later collect the corresponding reward. The Scheduler
computes the bid as the difference between the profit obtained by including
the task into the current schedule and the profit obtained if the robot does
not execute this task. This calculation is computationally expensive, since the
Scheduler needs to solve a hard optimization problem. Therefore, the fewer
tasks it has to schedule (or reschedule), the faster it can compute the value of
the bid. The auctioneer awards the task to the highest bidder, as long as that
bid increases the auctioneer’s overall profit (for the OpTraders this is always
the case, since any bid will produce some profit). When the winning bidder
completes the task, it informs the auctioneer and collects the reward.

4 Learning the probabilities

In most current implementations of the market-based approach, bidders re-
spond to all the tasks being announced by the auctioneers. This massive re-
sponse causes a large communication overhead that could be reduced if the
bidders bid only for some of the tasks being offered. Obviously, if bidders are
going to be selective about what bids to make, they should bid only for those
tasks that they are most likely to get awarded.

24 Dı́dac Busquets and Reid Simmons

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

ba
bi

lit
y

Bid value

Award prob for OT auctions
Award prob for RT auctions

Reception probability

Fig. 1. Award and reception probabilities

Moreover, a robot can also try to auction the tasks it has been assigned, but
has not yet executed, in order to increase its profit by trading them. In most
market based models, the robot would try to auction all its pending tasks,
which also incurs a large communication cost. Not only this, but it also forces
the other robots to evaluate each of these tasks (increasing their computational
cost) and send their bids (increasing again the communication load, and the
computational cost for the auctioneer to clear the auction). These costs could
be reduced if the robots offered only some of their remaining tasks. Again,
one would prefer the robot to offer only those tasks that are most likely to be
successfully bid for by some other robot (that is, receiving a bid that makes
the trade profitable and, therefore, the auctioneer can award the tasks).

In the following sections, we present the heuristics that bidders and auc-
tioneers use to determine whether to bid for a task and whether to offer a task
to the other robots, respectively. These heuristics are based on the probability
of a bid being the winner of an auction, and the probability of a bidder send-
ing a successful bid for a task being offered. These probabilities are estimated
by the robots from previous experience.

4.1 Award probability

In order to reduce the communication cost, the bidder should bid only for a
few of the tasks being auctioned. When deciding whether to bid, the bidder
should take into account the chances of the bid being awarded. To do so, the
probability of a given bid being awarded in an auction is computed, which is
then used by the bidder to decide whether to send a bid to the auctioneer.
A uniform random number is generated, and if it is less than or equal to the
probability of a bid of that value being awarded, the bid is sent. Thus, even
bids with a low probability may eventually be bid for.

First, note that the auctions held by the OpTrader (OT) are different from
those held by the robots (RT) because the OT does not have a minimum bid

Learning when to Auction and when to Bid 25

value for trading a task; it always makes some profit by accepting any bid.
Thus, we learn two probability distributions, AwProbOT and AwProbRT .
With AwProbOT the bidders try to learn the probability of a bid being the
winner of an auction (that is, the highest bid), while with AwProbRT the
bidders try to learn the probability of a bid being higher than the minimum
bid required by the auctioneer to trade a task.

These probabilities are computed as follows. Let WBOT be the set of
winning bids for OT auctions, WBRT the set of winning bids for RT auctions,
and MLB the set of the maximum losing bid for each RT auction (only when
there is no winning bid, i.e. no bid was above the minimum price). Since the
OT always awards a task if bid for, there is no such set for OT auctions. The
probability of a bid of value b being awarded is computed as:

AwProbOT (b) =
wonOT (b)

|WBOT |
AwProbRT (b) =

wonRT (b)

wonRT (b) + lost(b)

where, wona(b) = |(x ∈ WBa|x ≤ b)| and lost(b) = |(x ∈ MLB|x ≥ b)|.
That is, the award probability for OT auctions is the percentage of suc-

cessful auctions whose winning bid is below than or equal to b, while for RT
auctions it is the percentage of winning bids lower than or equal to b, with
respect to all auctions in which a bid of b would definitely win or lose the
auction. Note that there are RT auctions where a bid b is below the winning
bid, but is not counted as a losing bid since it still may have been above the
auctioneer’s minimum bid price (which is private information).

Figure 1 shows the award probabilities for OT and RT auctions computed
using these formulas (the bid values are in the interval 0-2000 because in
our experiments the reward of each task is 2000, thus this is the maximum
possible bid). As expected, the higher the bid, the higher the chances of being
awarded. It can also be observed that for low bid values (below 500) the award
probability for OT auctions is much higher than that for RT auctions, due to
the fact that an OT does not impose a minimum value for trading a task.

4.2 Probability of auctioning a task

As discussed above, the number of tasks auctioned by the robots also increases
the communication load of the system and the computational cost for the
bidders. Thus, a robot should offer only a small percentage of its tasks. The
decision of whether to auction a given task should be affected by the likelihood
of the task being finally awarded to some other robot. A task auctioned by a
robot (the auctioneer) is awarded to another one (the bidder) if the bid sent
by the bidder is greater than the loss incurred by the auctioneer by giving
away the task. In other words, an auctioneer trades a task only if it gets more
profit by doing so than by keeping the task for itself.

Thus, the auctioneer should use the probability of receiving a bid greater
than the loss of not executing a task to decide whether to offer it to the rest

26 Dı́dac Busquets and Reid Simmons

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
w

ar
d

P
ro

ba
bi

lit
y

Bid value

Initial
After 1 step

After 5 steps

Fig. 2. Award probabilities for RT auctions after several learning steps

of the robots. Given the set B = WBRT ∪MLB, the probability of receiving
a bid with a value greater than b is computed as:

P (bid > b) =
|(x ∈ B|x > b)|

|B|

As with the award probabilities, the auctioneer generates a random num-
ber, and if it is less than or equal to P (bid > b) it offers the task.

Figure 1 shows this probability for bids from 0 to 2000. As expected, there
is a high probability of receiving a bid with a low minimum value, while this
probability decreases as the minimum required value increases.

4.3 Iterative learning

The probabilities shown in the previous (and subsequent) figures are learned
off-line. That is, we let the system run for a fixed period of time, gather
information about auctions, bids and awards and, once the run is finished, we
use this information and the equations presented above to compute the award
and reception probabilities. Initially, the award and reception probabilities
are computed using a configuration where robots bid for all tasks and include
all tasks in their auctions. However, the scenario is not the same when the
robots actually use the probabilities, since there will be fewer tasks being bid
for or auctioned. Thus, we repeat the process for several steps, updating the
probabilities after each run, in order to learn better probability distributions.

Figure 2 shows how the award probabilities for RT auctions change after
1 and 5 learning steps. In the initial step all the probabilities are set to 1,
which is equivalent to including all tasks in auctions and sending all bids. The
figure shows that the probability of mid-level bids winning increases, while the
probability of low-level bids winning decreases (mainly because fewer of them
are offered up for auction). Similar graphs are obtained for OT auctions and
for the reception probabilities, which are not shown due to space limitations.

Learning when to Auction and when to Bid 27

NP AuP AllP
Num Rocks 422.37 (10.14) 424.27 (9.38) 415.0 (9.75)

Num Tasks Auctioned 1394.05 (93.89) 350.45 (31.06) 523.35 (103.01)

No Awards 65.18% (2.32) 52.38% (2.43) 74.24% (3.82)

Messages 13606.31 (443.06) 8608.77 (153.27) 3814.81 (265.68)

Table 1. Results for each configuration. Average values (and standard deviations)

Note that we assume that the experimental environment does not change
from run to run. That is, the number and distribution of tasks are similar,
and the number of robots in the team remains constant. If the environment
were different at each run, the probabilities would be of limited help since the
robots would be facing a totally different scenario.

5 Experimental results

We have used the FIRE (Federation of Intelligent Robotic Explorers) multi-
robot system [6] to evaluate how well our approach performs when using
the learned probabilities. The scenario involves multiple robots exploring the
surface of Mars. The goal of the team is to characterize a set of rocks at
different (known) locations. A task is described as the location of the rock,
the type of sensor to be used, and the reward to be paid upon completion. In
our experiments, we used a scenario with 5 robots and only one type of rock,
which all the robots can characterize. Each rock has the same reward of 2000.

This scenario has been used in each of the following configurations: No
Probabilities (NP), where robots bid for all the tasks being offered and they
auction all their remaining tasks, Auction Probabilities (AuP), robots use the
reception probabilities to decide whether to include a task in a Call for Bids
and bidders bid on all tasks, and All Probabilities (AllP), both award and
reception probabilities are used.

Table 1 shows the results obtained for each configuration using the proba-
bilities obtained after 5 learning steps. To evaluate them, we have focused on
the following aspects: number of rocks characterized by the team (i.e. perfor-
mance), number of tasks auctioned by robots, percentage of auctions for which
no awards could be made (including those for which there were no bids), and
number of task messages sent (we consider a message offering a task in a Call
for Bids and a bidding message for a task to have the same cost).

Observing the results, we can see that the Auction Probabilities configu-
ration performs as well as the No Probabilities, while reducing the communi-
cation cost by almost 40%. Although we were expecting a small decrease in
performance when using the reception probabilities (since not all the tasks
would be auctioned), the high frequency of auctions (each robot is constantly
trying to auction its tasks) makes that tasks are considered for being offered
often enough so that they are eventually auctioned and assigned to a better

28 Dı́dac Busquets and Reid Simmons

robot, and therefore the performance is not affected. As for the All Probabili-
ties configuration, while it uses only a third of the number of messages used in
the No Probabilities configuration, its performance degrades somewhat. This
drop in performance is due to the fact that since not all robots bid for all
tasks, some of the tasks may not be awarded to the optimal robot.

Regarding the number of auctions with no awards, the first thing to point
out is that in the No Probabilities configuration, there is a high percent-
age of such auctions. The reason is that when a robot auctions any of its
pending tasks, it is sometimes already the best suited robot for that task,
and none of the bids sent by other robots is good enough for the task to be
traded. However, the robot keeps trying to auction it over and over. Although
some of the tasks are awarded to other robots (and this does indeed improve
the performance of the system, see [6]), most of these auctions are a waste
of communication and computation resources. This percentage is reduced in
the Auction Probabilities, since only those tasks with high chances of being
successfully bid for (and thus, awarded) are offered to the other robots. Al-
though we expected similar results in the All Probabilities configuration, we
found that the percentage of auctions without awards did not decrease but
increased (actually, almost 60% of the auctions received no bids because of the
robot’s selective bidding). The problem is that the auction and bid probabili-
ties are “acting against each other”. On one hand, a robot usually auctions a
task if the probability of receiving a successful bid is high. On the other hand,
a bidder usually bids for those tasks for which its bid has high probability
of being awarded. However, when a robot auctions a task for which a low
minimum bid is sufficient, it is often the case that the bids computed by the
other robots are also low, therefore with a low probability of being awarded,
and usually not sent, and thus, the auctioneer does not receive any bid.

Regarding the computational cost, it can be observed that the Auction
Probabilities and All Probabilities configurations drastically reduce the num-
ber of tasks being auctioned by the robots (they are offering only 25% and
37% of the tasks offered by the No Probabilities configuration, respectively).
This has a major impact on the computation cost incurred by the Scheduler,
since very few bids have to be computed.

We have also evaluated how accurate are the learned probabilities. For the
award probabilities, each “bid decision” a bidder faced was classified as: bid
sent and won, bid sent and lost, bid not sent but would have won, and bid
not sent and would have lost. From these four classes, the first and last ones
are right decisions, while the other two are wrong decisions. Figure 3 shows
the percentage of right decisions as a function of the award probability. As
we can see, there is an improvement of at least 30% (up to 60% for some
probability values) of the percentage obtained when not using probabilities.
Moreover, the right decision percentage is much higher at the ends than in the
middle. This make sense, since at both ends the bidder is very confident that
it will either lose or win the auction. However, in the mid-range probabilities,
it is not clear what is the right thing to do, since the outcome of the decision

Learning when to Auction and when to Bid 29

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
ig

ht
 d

ec
is

io
n

%

Award probability

No Probs
After 1 step

After 5 steps

Fig. 3. Right decision percentage for award probability for RT auctions

is almost 50-50. We can also observe that this percentage improves after 5
learning steps. We used a similar method to evaluate the award probability
for OT auctions and the reception probability, computing the percentage of
tasks awarded over those being offered. The results show that the probabilities
also lead to a higher award percentage, with similar improvements. We do not
show them due to space limitations

6 Discussion and Future work

Coordinating a team of robots is still a major issue in the field of robotics.
One important aspect of the coordination is the multirobot task allocation
problem. Many approaches try to solve this problem, one of them being the
market-based approach. However, this approach usually has a high cost in
communication and computational resources, which has usually not been ad-
dressed. In this paper, we have presented a method for reducing these costs.

To do so, the robots learn whether a task is worth bidding for and also
whether it is worth offering any of its pending tasks to the other robots. The
robot learns two probability functions, the award probability and the reception
probability, that are used to decide when to bid and when to auction.

The results show that the use of probabilities considerably decreases both
communication and computation costs. Moreover, the Auction Probabilities
configuration does not affect the performance at all. Thus, if performance is
the main concern, this configuration is the most adequate. However, if the
main concern is communication cost, then the All Probabilities configuration
should be chosen, since it drastically decreases this cost, but it does affect the
performance somewhat.

For future work, we would like to investigate if a better model for the
award probabilities can be developed, so that its effect on performance can be
eliminated. We would also like to extend our probability method so that it can

30 Dı́dac Busquets and Reid Simmons

be used when the system works with combinatorial auctions. The difficulty in
this case is that the bids sent by the robots are not for single tasks, as in the
work we have presented in this paper, but they are for bundles of task. Thus, it
is not clear how the bids should be treated when computing the probabilities
(we could use either the absolute value, the ratio between bid and reward of
the bundle, or some other function).

An assumption we have made is that the robots repeatedly perform their
mission in a similar environment, so that the probabilities learned offline can
be used in future missions. It would be interesting to have this learning process
on-line, so that the robots can learn the probabilities while performing the
given mission. This would allow for using the method on one-time missions,
and would also allow the robots to adapt to dynamic environments where the
distribution of bids and tasks could change while performing their task.

References

1. V. Cicirello and S. Smith. Amplification of Search Performance through Ran-
domization of Heuristics. In Proceedings of the 5th International Conference on
Principles of Constraint Programming (CP 02), 2002.

2. M. B. Dias and A. Stentz. A Free Market Architecture for Distributed Control
of a Multirobot System. In Proceedings of the 6th International Conference on
Intelligent Autonomous Systems, pages 115–122, 2000.

3. A. Gage and R. Murphy. Affective Recruitment of Distributed Heterogeneous
Agents. In Proc. of 19th National Conference on AI, pages 14–19, 2004.

4. B. Gerkey and M. Matarić. Sold! Auction methods for multi-robot control.
IEEE Transactions on Robotics and Automation, 18(5):758–768, 2002.

5. B. Gerkey and M. Matarić. A formal analysis and taxonomy of task allocation
in multi-robot systems. Int. J. of Robotics Research, 23(9):939–954, 2004.

6. D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smith, and A. Stentz.
Market-Based Multi-Robot Planning in a Distributed Layered Architecture. In
Multi-Robot Systems: From Swarms to Intelligent Automata: Proceedings from
the 2003 International Workshop on Multi-Robot Systems, volume 2, pages 27–
38. Kluwer Academic Publishers, 2003.

7. M. Golfarelli, D. Maio, and S. Rizzi. A Task-Swap Negotiation Protocol Based
on the Contract Net Paradigm. Tech. Report, 005-97, CSITE (Research Centre
for Informatics and Telecommunication Systems), University of Bologna, 1997.

8. K. Larson and T. Sandholm. Costly Valuation Computation in Auctions. In
Proc. of Theoretical Aspects of Reasoning about Knowledge, pages 169–182, 2001.

9. P. Milgrom. Auctions and bidding: A primer. Journal of Economic Perspectives,
3(3):3–22, 1989.

10. L. Parker. Alliance: An architecture for fault-tolerant multi-robot cooperation.
IEEE Transactions on Robotics and Automation, 14(2):220–240, 1998.

System Identification of Self-Organizing

Robotic Swarms

Nikolaus Correll and Alcherio Martinoli

Swarm-Intelligent Systems Group, École Polytechnique Fédérale Lausanne
firstname.lastname@epfl.ch

We discuss system identification of self-organizing, swarm robotic systems us-
ing a “gray-box” approach, based on probabilistic macroscopic models. Using
a well known case study concerned with the autonomous inspection of a regu-
lar structure by a swarm of miniature robots, we show how to achieve highly
accurate predictive models by combining previously developed probabilistic
modeling and calibration methods, with parameter optimization based on ex-
perimental data (80 experiments involving 5-20 real robots).
Key properties of the optimization process are outlined with the help of a sim-
ple scenario and a model that can be solved analytically. Concepts are then
validated numerically for the more complex, non-linear inspection scenario.

1 Introduction

Self-organization emerges from the interplay of four ingredients. Positive feed-
back (e.g., amplification) and negative feedback (e.g., saturation, resource ex-
haustion), randomness, and multiple interactions between individuals [2]. Al-
though self-organization might achieve less efficient coordination than other
distributed control schemes, it can provide extremely high levels of robustness
and can be applied to miniature robotic platforms such as those mentioned
in this paper.
For designing and formally analyzing self-organized robotic systems, appropri-
ate models are necessary. Modeling allows us to focus on key design parame-
ters, and costly, time-consuming experiments can be reduced to a minimum.
As randomness and fully distributed control are at the core of self-organized
swarm coordination, we make use of probabilistic macroscopic models to sta-
tistically capture the average dynamics and performances of a self-organized
robotic swarm.
System modeling and identification [6, 8] is the process of deriving a mathe-
matical model for a metric of interest from observed data. For swarm-robotic
systems, probabilistic models have been successfully applied to several case

32 Nikolaus Correll and Alcherio Martinoli

studies (see for instance [9] or [7, 11]), and lead to good quantitative agree-
ment between reality and the prediction of the model. In this contribution, we
take a step forwards and show how the identification process can be comple-
mented by optimization procedures for improving the quantitative agreement
between model prediction and experimental data. Such improved models can
then serve as a baseline for exploring other aspects of the system without
performing additional experiments.
As a case study we consider a homogeneous swarm engaged in the inspection
of a regular structure [5], where modeling assumptions (homogeneous distrib-
ution of robots and objects, see [9] for more details) are only partially fulfilled.
In this case, optimization of model parameters allows us not only to achieve
accurate prediction in the model, but also yields valuable insight into improv-
ing the structure of the model. Although results are validated on a particular
case study, the proposed method is generally applicable for system identifi-
cation of self-organized robotic systems whose dynamics can be captured by
probabilistic models.

2 Probabilistic Modeling of Swarm-Robotic Systems

As more extensively detailed in [9] we abstract the robots’ behavior as an ar-
bitrary Probabilistic Finite State Machine (PFSM), whose states are chosen
according to the metric of interest. Interactions among the robots or with the
environment are represented by state transitions and abstracted to encounter-
ing probabilities, whereas the time spent in a certain state is captured by the
average interaction time. We hereby assume that the robots and objects are
uniformly distributed in the environment, that the system is markovian (i.e.
the system’s state depends only on its previous state), and that the encoun-
tering probabilities scale linearly with the number of objects (i.e. the chance
to encounter an object is ten times as high when there are ten objects than
when there is only one), which is reasonable when the ratio of free-space to
space occupied by robots and objects is large.

Calibration of Model Parameters: Following [4, 9], we calculate the geometric
probability of encountering an object from the ratio of the object’s detection
area (the area in that it can be detected by another robot), and the total area
of the arena. The (unit less) geometric probability can then be converted into
the object’s encountering probability per time-step, using a simple heuristic
based on the area that a robot sweeps with its sensors in this period (based
on the characteristics of its sensors and its speed).
The interaction time—if not directly specified within the robot’s controller—
cannot be calibrated as easily, but needs to be measured using systematic
experiments with two robots, or one robot and one object [5].
We validated this approach systematically for simple scenarios in [4], and
it showed quantitatively correct predictions for various swarm-robotic case

System Identification of Self-Organizing Robotic Swarms 33

studies [9]. Nevertheless, the calibration methodology reaches its limitations
in overcrowded scenarios, and for nonuniform spatial distributions of robots
(as in [5], for instance).

3 Identification of a Linear Swarm-Robotic System

For introducing the concepts applied in this paper more formally, we consider
a simple case study first. A swarm of robots is moving on a bounded arena,
performing collision avoidance with other robots and the boundary walls using
a reactive controller [1]. We are now interested in finding a model for the
average number of robots in the search and collision avoidance states from
experimental data. Finding a model involves three basic steps [8]:

1. Performing a set of experiments measuring the metric of interest for dif-
ferent parameter choices;

2. Deriving a candidate model;
3. Finding optimal parameters that minimize the mismatch between candi-

date model and experimental data.

Note, that we consider the system in discrete time, as the observed data for
system identification is collected by sampling.

An Identification Experiment: For simplicity, we consider a system without
time varying inputs, where an experiment is characterized over a time interval
0 ≤ k ≤ n by its state vector N(k) and parameters that are set by the experi-
menter (e.g., the number of robots N0). The state variables are measurements
of an arbitrary metric of interest, for instance, the average number of robots
searching at time k, Ns(k).

A Candidate Model: Following the methodology outlined in section 2, we
model the system by a PFSM with three states: search, avoidance of walls,
and avoidance of robots. Our approach involves the following assumptions.
Every time step, one of N0 robots can encounter another robot with probabil-
ity pr (and any other robot with probability pR = pr(N0−1)), and a wall with
probability pw. We further assume that a collision can be sufficiently charac-
terized by its mean duration (Tr and Tw). We can then write the following
set of difference equations:

Nar(k + 1)
Naw(k + 1)
Ns(k + 1)

N(k)

=

1 − 1

Tr
0 pR

0 1 − 1

Tw
pw

1

Tr

1

Tw
1 − pr − pw

θ

Nar(k)
Naw(k)
Ns(k)

, (1)

and the initial conditions

Nar(0) Naw(0) Ns(0)
T

= (0 0 N0)
T (2)

with Ns(k) being the number of robots searching at time k, Nar(k) the number
of robots avoiding a robot, Naw(k) the number of robots avoiding a wall, and

34 Nikolaus Correll and Alcherio Martinoli

N0 the total number of robots. We can interpret the first row of (1) as follows.
The number of robots avoiding another robot is decreased by those that return
from a collision (1

Tr

Nar(k)), and increased by searching robots colliding with
another robot (pRNs(k)). The other rows of (1) can be interpreted in a similar
fashion. Equation (1) can be reformulated as

N̂(k + 1)T = N(k)T θT , (3)

where N̂(k +1) is the estimate based on the measurements of the real system
N(k) and the parameters θ.

Analytical Optimization: Provided the state vector measurements N(k) =
(Nar(k) Naw(k) Ns(k))T in the interval 0 ≤ k ≤ n, we can now calculate

the prediction error of the model estimate N̂(k). Optimal parameters (θ) can
then be found using the least-squares method that can be formulated as

min
θ

1

n

n

k=1

(N(k)T − N̂(k)T)2 = min
θ

1

n

n

k=1

(N(k)T − N(k − 1)T θT)2 (4)

We denote the matrix θ that minimizes (4) by θ̂n:

θ̂n = arg min
θ

1

n

N

k=1

(N(k)T − N(k − 1)T θT)2 (5)

Since (4) is quadratic in θ, we can find the minimum value easily by setting
the derivative of (4) to zero:

0 =
2

n

n

k=1

N(k − 1)(N(k)T − N(k − 1)T θ̂T

n), (6)

yielding

θ̂n =

n

k=1

N(k − 1)N(k − 1)T

−1 n

k=1

N(k − 1)N(k)T , (7)

which is straightforward to compute given the availability of the measured
state variables N(k).

Initial Parameter Estimation: In the above experiment, measurements for
all state variables (Nar, Naw, and Ns) are available. Imagine now that it is
not possible to measure Nar and Naw independently from each other (this
is reasonable for collisions with robots close to the wall for instance). Then,
pR and pw cannot be estimated (1), but only 1 − pR − pw (using numerical
methods). As a work-around, additional experimental data need to be gath-
ered by varying other parameters, for instance changing the number of robots.
Such a procedure leads to an identification problem with a smaller number
of degrees of freedom, but it might not be feasible to conduct it for every
single parameter; in particular for systems where the ratio of parameters to
the number of observed state variables is high. Then, an initial estimate using
the calibration heuristic from [9] is extremely helpful, as shown below.

36 Nikolaus Correll and Alcherio Martinoli

Candidate Model: The model for the inspection case study is extensively de-
tailed in [4, 5], and will only briefly be summarized here. Following our mod-
eling methodology [9], we sketch a PFSM of the system dynamics according
to our metric of interest (the number of blades inspected), based on an indi-
vidual robot’s FSM (compare Figure 1, middle and right). Initially, a robot is
in search mode. At every time-step, a robot may encounter the outer wall, an
other robot, or a blade with probabilities pw, pR, and pb, respectively, causing
it to enter an avoidance or inspection state. Every state is associated with an
interaction time (Tw, Tr, and Tb); the average time the robot spends in this
state. In the probabilistic model, this is equivalent to leaving the state with
probability 1

Tw

, 1

Tr

, and 1

Tb

.
In our PFSM we also keep track of whether the robot is inspecting a “virgin”
blade or a previously inspected blade. With N0 being the number of robots,
and M0 the number of blades, we can hence derive the following difference
equations for the robotic states:

N̂ar(k + 1) = N̂ar(k) + prN̂s(k)(N0 − 1) −
1

Tr

N̂ar(k) (8)

N̂aw(k + 1) = N̂aw(k) + pwN̂s(k) −
1

Tw

N̂aw(k) (9)

N̂v(k + 1) = N̂v(k) + pbM̂v(k)N̂s(k) −
1

Tb

N̂v(k) (10)

N̂i(k + 1) = N̂i(k) + pbM̂i(k)N̂s(k) −
1

Tb

N̂i(k) (11)

N̂s(k + 1) = N0 − N̂ar(k + 1) − N̂aw(k + 1) − N̂v(k + 1) − N̂i(k + 1) (12)

and for the environmental states:

M̂v(k + 1) = M̂v(k) −
1

Tb

N̂v(k) (13)

M̂i(k + 1) = M0 − M̂v(k + 1) (14)

with initial conditions Ns(0) = N0 and Mv(0) = M0, and all other states
zero. Note, that the system described above is non-linear and thus cannot be
written in matrix notation as the simple model in section 3.

Initial Calibration of Model Parameters: During the experiments we recorded
only the inspection progress itself (Mi(k)), whereas the number of unknown
parameters is 6 (encountering probabilities and interaction times for blades,
robots, and walls). Although the problem of an under-determined system as
outlined in section 3 is mitigated by performing experiments with different
numbers of robots, there is still an infinite number of possible combinations
for encountering probabilities and interaction times. For example, inspection
of one blade could be very fast, whereas collisions take very long, or the
other way around; both leading to the same measured inspection time. As
this is acceptable so long as the system dynamics are reproduced faithfully,
the resulting models might perform poorly when used as predictors for other
parameters or modified robot controllers.

System Identification of Self-Organizing Robotic Swarms 37

In order to improve the potential predictive quality of the model after identi-
fication, we provide the identification process with an initial guess using the
calibration heuristic from [9], which we have good reason to believe [4] yields
values that come close to the parameters of the “real” system. Initial guesses
for the parameters of the experiment are picked up from [5], and are summa-
rized in Table 1.

Parameter Optimization: We are interested in finding the optimal parame-
ter set θN that minimizes the difference between the model’s prediction
M̂v(k, θ, N0) and measurements of the real system Mv(k, N0). At the same
time, we want to minimize the difference between the optimal parameters and
the initial guess θ0 = (pr pw pb Tr Tw Tb) (compare Table 1). We thus
formulate the following optimization problem

θn = arg min
θ

N0εR

n

k=0

(M̂v(k, θ, N0) − Mv(k, N0))
2 + (θ − θ0)

2 (15)

With R = {5, 10, 16, 20} the number of robots in an experiment (N0), and
n the duration of the longest experiment in the set. Obtaining an analytical
solution to (15) is unfeasible. Nevertheless, as it is quadratic in θ, we can at-
tempt to solve it using a convex optimization algorithm (for instance fmincon
in MatlabTM). Here, the optimization routine integrates (14) numerically un-
til M̂v(k) = 0.01 (M̂v(k) converges to zero asymptotically) to find an optimal
solution for θ.

Table 1. Initial guesses for model parameters (heuristic calibration/measurements
of the real system), time discretization of the model T=1s

Wall Blade Robot

Encountering probability pw = 0.045 pb = 0.0106 pr = 0.0015
Interaction time Tw = 10.00s Thb = 10.00s Tr = 4.00s

5 Results

The numerical optimization routine finds an optimal parameter set for min-
imizing model prediction error with respect to experimental measurements
after 300 to 600 function evaluations (each involving the calculation of model
prediction for four different team sizes). We used values from Table 1 as
initial guess for θ, and provided upper and lower bounds on θ (all encoun-
tering probabilities are forced to be in the interval between 0.00001 and 1,
whereas the interaction times are bounded by 8 ≤ Tb ≤ 12, 2 ≤ Tr ≤ 20,
and 2 ≤ Tw ≤ 30). Optimal parameters (θn) are given in Table 2. Inspection

38 Nikolaus Correll and Alcherio Martinoli

0 500 1000 1500 2000
0

5

10

15

time [s]

In
sp

ec
te

d
bl

ad
es

5 robots

0 500 1000 1500 2000
0

5

10

15

time [s]

In
sp

ec
te

d
bl

ad
es

10 robots

0 500 1000 1500
0

5

10

15

time [s]

In
sp

ec
te

d
bl

ad
es

16 robots

0 200 400 600 800 1000
0

5

10

15

time [s]

In
sp

ec
te

d
bl

ad
es

20 robots

Fig. 2. Average inspection progress for different team sizes and model predictions
before (dashed curve) and after optimization (continuous curve) when compared to
experimental data (continuous curve with error bars). Error bars show the standard
deviation of the measurements.

progress Mv(k) (mean and standard deviation), as well as the model estimates
before (M̂v(k, N0, θ0)) and after optimization (M̂v(k, N0, θn) for different team
sizes (N0 = 5, 10, 16, 20) are given in Figure 2.

Table 2. Model parameters after optimization, time discretization of the model
T=1s

Wall Blade Robot

Encountering probability pw = 0.18899 pb = 0.001543 pr = 0.009363
Interaction time Tw = 11.16556s Thb = 8.0666s Tr = 3.829s

System Identification of Self-Organizing Robotic Swarms 39

6 Discussion

Model prediction based on the initial estimate θ0, predicted the inspection to
be roughly twice as fast as reality [5]. Using optimization procedures to com-
plement the system identification process allowed for a good match between
prediction and experimental data, for the inspection time metric as well as for
the inspection progress. As a consistent pattern over all runs (with different
initial conditions and parameter bounds), one observes that the encountering
probability for detecting a blade is estimated to be an order of magnitude
lower than the resulting probability after calibration. This result matches our
expectations from [5] where we observed a nonuniform distribution of the ro-
bots over the arena (induced by the geometry of the blades and the robots’s
controllers), which yields a blade encountering probability that is dependent
on the location in the arena.
This case study is an example where optimization averages out more complex
effects, such as the drift phenomenon, and allows us to capture them with a
relatively simple model. In order to reach this level of accuracy in a different
way, the level of detail in our model would need to be increased at the cost of
analytical tractability.
As formally shown in section 3, a system where not all of the state variables are
measured is likely to be under-determined if the number of degrees of freedom
are not varied separately. Indeed, although the predictions for the robot-to-
robot encountering probability are consistent over all runs (the system was run
with different numbers of robots), it is unclear how the optimization procedure
should distribute robots between the wall avoidance state, and the inspection
state in order to achieve the desired inspection delay. This is reasonable, as
the differences between model prediction and real experiments can not only
be explained by the robots’ spatial distribution, but also by the fact that the
robots may get stuck on a wall or prematurely leave blades. These artifacts are
not explicitly captured by the model considered here, and therefore need to be
accounted elsewhere in the model’s structure. In order to reduce the number
of degrees of freedom in the system and increase identifiability [6], one could
either measure more state variables, or perform other sets of experiments (in
our case, possibly an experiment in a larger arena or with more blades).

7 Conclusion

We have shown how our methodology for system identification of swarm ro-
botic systems, consisting of deriving the system dynamics from the controller
of the individual robot, and calibration of model parameters using simple
heuristics, can be complemented by macroscopic data-fitting with parameter
constraints. We have also shown how this additional step can not only lead
to quantitatively correct models for systems that do not comply with the as-
sumptions of our calibration procedure, but also give additional insight into

40 Nikolaus Correll and Alcherio Martinoli

the whole system. We note that the proposed methodology is suitable for a
wide range of swarm robotic scenarios, in which dynamics can be captured by
probabilistic models.
Concerning our case study swarm robotic inspection, optimization results
show that the structure of the model is sufficient to accurately reproduce the
system dynamics, and indicates critical points where the model reaches its
limitations. Indeed, the probability of encountering a blade, which is an order
of magnitude lower than the calibration estimate, suggests further research
into capturing the spatio-temporal distribution of the robots, potentially by
using diffusion models borrowed from statistical physics [10].

Acknowledgments

Both authors are sponsored by a Swiss NSF grant (contract Nr. PP002-
68647).

References

1. R. Arkin. Behavior-Based Robotics. The MIT press, Cambridge, MA, USA,
2000.

2. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Nat-
ural to Artificial Systems. SFI Studies in the Science of Complexity, Oxford
University Press, New York, NY, USA, 1999.

3. G. Caprari and R. Siegwart. Mobile micro-robots ready to use: Alice. In Proceed-
ings of IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3295–3300, 2005.

4. N. Correll and A. Martinoli. Modeling and optimization of a swarm-intelligent
inspection system. In Proceedings of the 7th Symposium on Distributed Au-
tonomous Robotic System (DARS). To appear in Springer Distributed Au-
tonomous Systems VII, 2004.

5. N. Correll and A. Martinoli. Collective inspection of regular structures using a
swarm of miniature robots. In Proceedings of the 9th International Symposium
of Experimental Robotics (ISER), pages 375–385. Springer Tracts for Advanced
Robotics (STAR), Vol. 21., 2006.

6. Rolf Johansson. System Modeling and Identification. Prentice Hall, 1993.
7. K. Lerman and A. Galstyan. Mathematical model of foraging in a group of

robots: Effect of interference. Autonomous Robots, 2(13):127–141, 2002.
8. Lennart Ljung. System Identification — Theory for the User. Prentice Hall,

1999.
9. A. Martinoli, K. Easton, and W. Agassounon. Modeling of swarm robotic sys-

tems: A case study in collaborative distributed manipulation. Int. Journal of
Robotics Research, 23(4):415–436, 2004.

10. A. Prorok. Multi-level modeling of swarm robotic inspection. Master’s thesis,
SWIS-MP1, École Polytechnique Fédérale Lausanne, 2006.

11. K. Sugawara, M. Sano, I. Yoshihara, and K. Abe. Cooperative behavior of
interacting robots. Artificial Life and Robotics, 2:62–67.

Synchronization Control by Structural

Modification of Nonlinear Oscillator Network

Tetsuro Funato, Daisuke Kurabayashi, and Masahito Nara

Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552,
Japan, {funato,dkura,m-nara}@irs.ctrl.titech.ac.jp

Summary. The structural features of a system significantly affect the attributes
and functions of the system. The effect of this phenomenon can be widely observed,
from areas such as the WWW to the brains of animals. In the present paper, a
method for controlling the behavior of a system by manipulating the structure is
examined using a coupled nonlinear oscillator model. We first describe a property
of the eigenfrequencies of coupled oscillators and show that convergent transition is
possible by connecting oscillators with significantly different eigenfrequencies. More-
over, using the eigenvalues of a graph matrix, we reveal that a combination of distant
oscillators can shift the converged state independent of the eigenfrequencies.

Key words: Network Structure, Nonlinear Oscillator, Synchronization

1 Introduction

Morphological approaches to biological motion represented by a passive dy-
namic walker[1] are attracting attention particularly with regard to the re-
lationship between morphological properties and functional creation. Facul-
ties derived from topology as such are not restricted only to motion. In the
field of networks, The small world (SW) structure[2, 3] has a high trans-
ferring efficiency, and networks with an approximately power-law vertex de-
gree distribution, such as the Internet, strongly resist the random removal
of nodes[4]. These types of generation phenomena can also be seen in the
brain. Synapses, the connections between neurons, are classified into electri-
cal and chemical types according to their transmission mechanisms. Chemical
transmission synapses are mediated by message-carrying chemicals, and the
combination of chemicals can be changed by the amount of message-carrying
chemicals. This transformation is used for memory and learning abilities. For
instance, the tendency of crickets to change their behavior based on past ex-
perience is caused by the variation of message-carrying chemicals influenced
by nitric oxide (NO)[5].

42 Tetsuro Funato, Daisuke Kurabayashi, and Masahito Nara

In order to understand the relationship between structure and function, an
appropriate model is necessary. Nonlinear oscillators can serve this purpose
because they can generate the forces for synchronization. Research regarding
the nonlinear oscillator has been carried out for a long period. For example,
Linkens[6, 7] analyzed a coupled van der Pol (VDP) oscillator system, particu-
larly with respect to its convergence. Among recent studies, Kuramoto[8] pro-
posed a model that has a phase as only one free parameter and indicated that
synchronization is affected by the connection coefficient. Jadbabaie et al.[9]
and Earl et al.[10] investigated the relationship between network structure
and convergence by introducing geometric factors to the Kuramoto model.

Current oscillator models can be effectively used as a brain model; this is
based on some biochemistry reports, such as one indicating that the synchro-
nization of neurons is essential in the visual information processing of a cat[11].
In particular, oscillatory neural networks (ONNs) proposed by employing the
oscillatory feature to a neural network (NN), the most popular information
processing model of the brain, has attracted considerable attention. As an
example, Hoppensteadt[12] realized associative memory with synchronization
by introducing a Hebbian learning rule to the Kuramoto model.

Using ONNs, research on the structural features of the oscillator network
may facilitate a discussion on the morphology of the brain. However, in or-
der to consider the changes in synapses, the examination of a change in the
synapse structure cannot be avoided. Nonetheless, there is little research on
convergence in this regard, and current research mainly considers mainly the
static properties. The purpose of this research is to elucidate the dynamic phe-
nomenon of structural change and to control convergence by the manipulation
of only the transition of structure.

We first understand a property of the phase gap of coupled oscillators us-
ing the Kuramoto model and propose a control method for the convergence
state. Next, we confirm this method via simulation. Then, by using the eigen-
values of a graph matrix, we describe a geometric manipulation that enables
a converged transition independent of the eigenfrequencies.

2 Models and Characteristics of Oscillators

2.1 Nonlinear oscillator

In order to consider the relationship between the system and structure, an
appropriate model is required. In this study, we constructed a model by con-
sidering the characteristics of nonlinear oscillators as follows:

1. Connected nonlinear oscillators can cause the forces required for synchro-
nization.

2. The converged states can be changed by these forces.

Sync. Control by Structural Modification of Nonlinear Osci. Net. 43

-3 -2 -1

x

0 1 2 3
-3

-2
-1

0

1
2

3
ẋ

Fig. 1. Limit Cycle

3

2
1

0
-1

-1-2-3

x

0 1 2 3

ẋ

-2

-3

Fig. 2. Quasi-Periodic

The transition of converged states considered in this study is shown by the
apparent change from the cyclic state (limit cycle) shown in Fig. 1 to the
non-cyclic state (quasi-periodic oscillation) shown in Fig. 2.

By using nonlinear oscillators as models, a structural change produces
forces between the oscillators in the system(property 1), and this effect can
change the state of the oscillators, i.e., the state of the system (property 2).

2.2 Kuramoto model

We used the Kuramoto model[8] as nonlinear oscillators for this model. In
this model, the phase of the ith oscillator θi is as follows:

θ̇i = ωi +
K

N

N∑
j=1

Γ (θj − θi). (1)

Here, K is the connection coefficient; ωi, the eigenfrequency, Γ , the interaction
function; and N , the total number of oscillators. We suppose that Γ is odd-
symmetric (Γ (θ) = −Γ (−θ)) and Γ (0) = 0.

3 Convergent Transition via Properties of Eigenfrequency

3.1 Characteristics of coupled oscillators

We express a group of oscillators connected to the ith oscillator as Oi and that
connected to the jth oscillator as Oj . When we consider further connections
between the ith and jth oscillators, the transition can be represented by a
change in γ (0→1); the equations of motion regarding these oscillators then
become

θ̇i = ωi +
K

N + γ

{∑
s∈Oi

Γ (θs − θi) + γΓ (θj − θi)

}
(2)

θ̇j = ωj +
K

N + γ

⎧⎨⎩∑
t∈Oj

Γ (θt − θj) + γΓ (θi − θj)

⎫⎬⎭ . (3)

44 Tetsuro Funato, Daisuke Kurabayashi, and Masahito Nara

In this case, a phase gap between the ith and jth oscillators φ(= θi − θj)
is expressed as

φ̇ = θ̇i − θ̇j = ωi − ωj +
K

N + γ
s∈Oi

Γ (θs − θi) −
t∈Oj

Γ (θt − θj) − 2Kγ

N + γ
Γ (φ)

(4)

∂φ(t, γ)

∂t
= δω +

K

N + γ
s∈Oi

Γ (θs − θi) −
t∈Oj

Γ (θt − θj) − 2Kγ

N + γ
Γ (φ(t, γ)) .

(5)

In the case widthout any connection,

∂φ(t, 0)

∂t
= δω +

K

N

⎧⎨⎩∑
s∈Oi

Γ (θs − θi) −
∑
t∈Oj

Γ (θt − θj)

⎫⎬⎭ . (6)

When N is sufficiently large, by the approximation of K
N+γ � K

N

(
1 − γ

N

)
=

K
N − γ

N2 � K
N ,

∂φ(t, γ)

∂t
� δω +

K

N

⎧⎨⎩∑
s∈Oi

Γ (θs − θi) −
∑
t∈Oj

Γ (θt − θj)

⎫⎬⎭− 2Kγ

N
Γ (φ(t, γ))

=
∂φ(t, 0)

∂t
− 2Kγ

N
Γ (φ(t, γ)) . (7)

This equation indicates that the addition of new combinations produces an
effect of adding (or substituting) an integer multiple of the interaction func-
tion.

If the interaction function Γ (φ(t, γ)) = sinφ(t, γ),

∂φ(t, γ)

∂t
= −2Kγ

N
sin (φ(t, γ)) +

∂φ(t, 0)

∂t
, (8)

which denotes a sine function with center ∂φ(t, 0)
∂t and amplitude 2Kγ

N .
From eq.8, following properties can be determined:

1. If
∣∣∣∂φ(t, 0)

∂t

∣∣∣ < 2Kγ
N , there exists a certain φ that satisfies

∣∣∣∂φ(t, 0)
∂t

∣∣∣ = 0.

2. If
∣∣∣∂φ(t, 0)

∂t

∣∣∣ > 2Kγ
N , no φ satisfies

∣∣∣∂φ(t, 0)
∂t

∣∣∣ = 0.

Similar to the concept of frequency locking[13], converged states become a
limit cycle in case 1 because of the existence of an equivalent point and become
a quasi-periodic oscillation in case 2. Figs. 3 and 4 display the graphs of eq.8

under the condition that ∂φ(t, 0)
∂t is constant.

As a result, we can control the converged states from the limit cycle to the

quasi-periodic oscillation by coupling oscillators whose
∣∣∣∂φ(t, 0)

∂t

∣∣∣ is large, i.e.,

the gap in eigenfrequencies is large.

Sync. Control by Structural Modification of Nonlinear Osci. Net. 45

0 φ(t, γ)

∂φ(t, 0)
∂t

2Kγ
N

∂φ(t, γ)
∂t

Fig. 3. |∂φ(t, 0)
∂t

| < 2Kγ
N

0

∂φ(t, γ)
∂t

∂φ(t, 0)
∂t

φ(t, γ)

2Kγ
N

Fig. 4. |∂φ(t, 0)
∂t

| > 2Kγ
N

1.0

1.0

1.0

1.0

1.05

1.05 0.95

0.95

⇒ 1.0

1.0

1.0

1.0

1.05 0.95

0.951.05

Fig. 5a. Structural transition

1

-1

3
2

0

-2
-3

ẋ

2 -1 2
x

10

⇒
-2
-1
0
1
2
3

ẋ

-3
-2 -1 0 1 2

x

Fig. 5b. Convergent shift by structural transition

3.2 Simulation

We simulated the state of the oscillators by altering the connection structure
based on the eigenfrequencies (Fig. 5a and 5b). We used VDP oscillators in this
simulation. The equation of a VDP oscillator is ẍi − εi(1 − x2

i)ẋi + ω2

i xi = 0,
and the interaction forces for synchronization is expressed as xi(t + 1) =

xi(t)+K
{

1

Ni(t)

∑Ni(t)
j=1

xj(t) − xi(t)
}

. Here, xj(t) is the state of an oscillator

that is connected to the ith oscillator and Ni(t) is the total number of the
connected oscillators.

In Fig. 5a, the vertices of the graph represent the oscillators, the edges
express the relationship of the connections and the values of the vertices rep-
resent the eigenfrequencies.

We change the structure by creating a new connection between oscilla-
tors whose eigenfrequencies are significantly different. Through the simula-
tion, converged states shift from the limit cycle to quasi-periodic oscillations;
this is confirmed by Fig. 5b.

46 Tetsuro Funato, Daisuke Kurabayashi, and Masahito Nara

4 Convergent Transition via only Geometric Properties

4.1 Kuramoto model considering structural disposition

Jadbabaie et al.[9] proposed an oscillator model that builds on the Kuramoto
model and includes connection relationship between oscillators.

θ̇ = ω − K

N
B sin (BT θ) (9)

The N × e matrix B represents an oriented graph that has N vertices and e
edges, and the following conditions hold:

• If edge j incoming to vertex i, Bij = 1.
• If edge j outcoming from vertex i, Bij = −1.
• If edge j and i are not connected, Bij = 0.

In eq.9, θ and ω are N vectors expressing the phase and eigenfrequency, re-
spectively.

4.2 Convergent condition via eigenfrequency

In addition, Jadbabaie showed that there is at least one convergent oscillator
if the connection coefficient K satisfies

K >
(π

2

)2 Nλmax(L)

λmin(L)2
‖ω‖2. (10)

Here, L = BBT is a matrix called the Laplacian and λ(L) is the eigenvalue of
L. λmax and λmin are the maximum and minimum eigenvalues, respectively.

In eq.10, the geometric property is expressed only by

λmax(L)

λmin(L)2
, (11)

therefore, convergent control is possible by considering the eigenvalues of the
Laplacian.

Moreover, a similar conclusion can be gathered from the theses of Pecora
et al.[14] and Barahona et al.[15]. They also modeled oscillator states using
a geometric matrix and showed that oscillators can converge when the differ-
ence between the maximum eigenvalue and minimum eigenvalue goes below
a certain constant value.

Sync. Control by Structural Modification of Nonlinear Osci. Net. 47

4.3 Eigenvalues of the Laplacian

In order to investigate the elemental property of structural transition, we con-
sider connecting a pair of oscillators to a simple cycle-graph-shaped oscillator
network.

B =

−1 0 · · · 0 1
1 −1 0 · · · 0 0

1 −1

. . .
. . .

...

0 1 −1 0
1 −1

, L = BBT =

2 −1 0 · · · 0 −1
−1 2 −1 0

0 −1 2
. . .

...
...

. . .
. . . 0

0 2 −1
−1 0 · · · 0 −1 2

(12)

We express the matrix of a graph that has an additional combination as B′ =

[B|x] by using N vector x; x =
[
0 · · · 0 −1

m︷ ︸︸ ︷
0 · · · 0 1 · · · 0

]T
. In this vector,

m denotes the interval of the coupling oscillators. Because the current graph
is ring-shaped, the variation in the starting point of the connection makes

no difference. Therefore, x can be written as x =
[
0 − 1

m︷ ︸︸ ︷
0 · · · 0 1 · · · 0

]T
without a lack of generality. Then, the Laplacian of B′ becomes

L′ = BBT + xxT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 ··· 0 0 ··· 0 −1

−1 3 −1

... −1 0

0 −1 2

. .. 0

...
...

. ..
. .. 0

...−1 0 0

0 ··· 0 −1 2 −1 0 ··· 0

0 −1 0 ··· 0 −1 3 −1

...
... 0 −1 2

.. .
. ..

.. . 0

0

... −1 2 −1

−1 0 ··· 0 0 ··· 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

|L′ − λI| =

1 2 3 1 +1 1

−1 0 ··· 0 −1 2−λ
2−λ −1 0 ··· 0 0 ··· 0 −1

−1 3−λ −1

... −1 0

0 −1 2−λ
. . . 0

...
...

. . .
. . . 0

...
−1 0 0

0 ··· p 0 −1 2−λ −1 0 ··· 0

0 −1 0 ··· 0 −1 3−λ −1

...
... 0 −1 2−λ

. . .
. . .

. . . 0

0 ··· 0 −1 2−λ −1

. (14)

48 Tetsuro Funato, Daisuke Kurabayashi, and Masahito Nara

We set (m + 1) × (m + 1) matrix S, (m + 1) × (N − m − 1) matrix T ,
(N − m − 1) × (m + 1) matrix U and (N − m − 1) × (N − m − 1) matrix V
as follows:

S =

1 2 3 1 +1

−1 0 ··· 0 0

2−λ −1 0 0

−1 3−λ −1 0 ··· 0 −1

...

0 −1 2−λ
. . . 0

...
. . .

. . .
...

−1 0

0 ··· 0 −1 2−λ −1 0

0 −1 0 ··· 0 −1 3−λ −1

, T =

0 ··· 0 −1 2−λ
−1

. . . 0

0
...
0

,

U =

0 ··· 0 −1 2−λ
−1

. . . 0

0
...
0

V =

−1

2−λ −1 0

−1

. . .
. . .

0

...
0 ··· 0 −1 2−λ −1

.

Based on these matrices, eq.14 becomes |L′−λI| = | S T
U V | = |V | |S−TV −1U |.

Because |V | = 1, |L′ − λI| = 0 ↔ |S − TV −1U | = 0.
If we set V −1 = {vij} (i, j indicates row and column number respectively),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[TV −1U]1(N−1) = v(N−1)1 − (2 − λ)vN1

[TV −1U]1N = −(2 − λ)v(N−1)1 + (2 − λ)2vN1

+v(N−1)2 − (2 − λ)vN2

[TV −1U]2N−1 = vN1

[TV −1U]2N = −(2 − λ)vN1 + vN2

[TV −1U]other = 0

. (15)

Further, [−1 0
2 − λ −1

]−1

=

[−1 0
−(2 − λ) −1

]
⎡⎣ −1 0 0

2 − λ −1 0
−1 2 − λ −1

⎤⎦−1

=

⎡⎣ −1 0 0
2 − λ −1 0

−(2 − λ)2 + 1 −(2 − λ) −1

⎤⎦
...

indicates the following about V −1:[
v1(N−1) v2(N−1) · · · vN(N−1)

]T
=
[
0 · · · 0 −1 −(2 − λ)

]T
(16)[

v1N v2N · · · vNN

]T
=
[
0 · · · 0 −1

]T
, (17)

therefore,

Sync. Control by Structural Modification of Nonlinear Osci. Net. 49

TV −1U = 0. (18)

As a result, |L′ − λI| = 0 ↔ |S| = 0.

|S| =

1 2 3 1 +1

−1 0 ··· 0 0

2−λ −1 0 0

−1 3−λ −1 0 ··· 0 −1

...

0 −1 2−λ
. . . 0

...
. . .

. . .
...

−1 0

0 ··· 0 −1 2−λ −1 0

0 −1 0 ··· 0 −1 3−λ −1

= 0 (19)

∣∣∣∣∣∣∣∣∣∣∣∣

1 2 ··· m−3

2−λ −1 0

−1 2−λ
. ..

.. .
. .. −1

0 −1 2−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)m. (20)

The size of this determinant is decided by the interval of the coupling
oscillators. This result suggests that an even more distant connection induces

a larger variation of the eigenvalues. Therefore, λmax(L)

λmin(L)2
increases due to the

remote oscillator connection, which breaks the condition of eq.10, and the
oscillators become quasi-periodic.

Moreover, the right-hand side of eq.20 is −1 to the power of m. Therefore,
the sign changes depending on whether the distance of the oscillators is an
even or odd number; this causes a non-trivial difference in the convergent
condition.

5 Conclusion

In this study, we examined the effect of structural transition on the behavior
of systems and investigated a method whereby convergence can be controlled
only by structural manipulation, using an oscillator network as the system
model.

We first analyzed the behavior of a network from the viewpoint of phase
gap and showed that it is possible to control the converged state by connecting
oscillators with significantly different frequencies. In addition, we confirmed
this phenomenon by simulation.

We then calculated the rate of maximum and minimum eigenvalues of a
graph matrix to find a control method mainly via the structural properties
based on the thesis by Jadbabie. Assuming that the oscillator network is
constructed on a circular graph, we showed that the variation of eigenvalues
depended on the distance of the additional coupled oscillators, i.e., a remote
connection can induce convergent transition.

50 Tetsuro Funato, Daisuke Kurabayashi, and Masahito Nara

Acknowlegedment

This research was supported in part by a grant-in-aid for scientific research
on priority areas from the Japanese Ministry of Education, Culture, Sports,
Science and Technology (17075007).

References

1. T.McGeer. Passive dynamic walking. The International Journal of Robotics
Research, Vol. 9, No. 2, pp. 62–82, 1990.

2. D.J.Watts and S.H.Strogatz. Collective dynamics of ’small-world’ networks.
nature, Vol. 393, pp. 440–442, 1998.

3. S.H.Strogatz. Exploring complex networks. nature, Vol. 410, pp. 268–276, 2001.
4. D.S.Callaway, M.E.J.Newman, S.H.Strogatz, and D.J.Watts. Network robust-

ness and fragility: Percolation on random graphs. Physical Review Letters,
Vol. 85, No. 25, pp. 5468–5471, 2000.

5. H.Aonuma, M.Iwasaki, and K.Niwa. Role of no signaling in switching mecha-
nisms in the nervous system of insect. SICE Proc. 2004, pp. 2477–2482, 2004.

6. D.A.Linkens. Analytical solution of large numbers of mutually coupled nearly
sinusoidal oscillators. IEEE Trans. on Circuits and Systems, Vol. CAS-21, No. 2,
pp. 294–300, 1974.

7. D.A.Linkens. Stability of entrainment conditions for a particular form of mutu-
ally coupled van der pol oscillators. IEEE Trans. on Circuits and Systems, Vol.
CAS-23, No. 2, pp. 113–121, 1976.

8. Y.Kuramoto. Chemical Oscillations, waves, and Turbulence. Springer, 1984.
9. A.Jadbabaie, N.Motee, and M.Barahona. On the stability of the kuramoto

model of coupled nonlinear oscillators. In the American Control Conference,
2004.

10. M.G.Earl and S.H.Strogatz. Synchronization in oscillator networks with delayed
coupling: A stability criterion. Physical Review E, Vol. 67, p. 036204, 2003.

11. C.M.Gray, P.Konig, A.K.Engel, and W.Singer. Oscillatory responses in cat vi-
sual cortex exhibit inter-columnar synchronization which reflects global stimulus
properties. nature, Vol. 338, pp. 334–337, 1989.

12. F.C.Hoppensteadt and E.M.Izhikevich. Oscillatory neurocomputers with dy-
namic connectivity. Physical Review Letters, Vol. 82, No. 14, pp. 2383–2386,
1999.

13. H.Haken. Advanced Synergetics. Springer, 1983.
14. L.M.Pecora and T.L.Carroll. Master stability functions for synchronized coupled

systems. Physical Review Letters, Vol. 80, No. 10, p. 2109, 1998.
15. M.Barahona and L.M.Pecora. Synchronization in small-world systems. Physical

Review Letters, Vol. 89, No. 5, pp. 054101–1 – 054101–4, 2002.

Frontier-Graph Exploration for Multi-robot
Systems in an Unknown Indoor Environment

Mark Gossage, Ai Peng New and Chee Kong Cheng

Cooperative Systems and Machine Intelligence Lab, DSO National Labo-
ratories, Singapore {gmark, naipeng, ccheekon}@dso.org.sg

We present a new method for single/multiple robot indoor exploration and
mapping. The algorithm combines local Frontier-based exploration tech-
nique and global graph-based representation of the environment to produce
a robust autonomous exploration strategy. This graph is used and shared
to allow cooperative exploration. Our implementation is fully decentral-
ised and has no central control to organise the robots, it is also robust to
failures both in communications and robot attrition. Our approach has
been demonstrated to work on a team of two Pioneer 3AT robots in an area
of 50m2. In the simulator it has been successfully scaled to a team of five
robots in a map of over a hundred rooms and an area of 5000m2.

1 Introduction

The aim of this research work is to develop a robust exploration technique
for single and multi-robot system in an unknown indoor environment. For
the case where multiple robots are employed, the system must be scalable,
decentralised, tolerant to temporary lost of communication between some
robots and able to handle robot attrition.

Our approach uses concepts from the Frontier-based exploration and
graph-based representation of the environment. Instead of using a global
occupancy grid (OG), our method uses a fixed size local OG centred on
each robot. As the robot explores, the frontiers located in the OG are used
as graph nodes on a global graph. The robot uses this global graph for
high-level planning and navigation. For multi-robot system, the graph is

regularly synchronised between robots to ensure a consistent map. Coop-
erative exploration is performed through tasks negotiated between robots.

Section 2 discusses other related work in single robot indoor exploration
and multi-robot systems. Section 3 describes our Frontier-Graph Explora-
tion algorithm (FGE) in detail. In section 4, the simulation and hardware
testing results are presented and discussed. Finally in section 5, further
work is considered.

2 Related Work

Exploration of an environment is a complicated problem for robots to
solve. It consists of many sub-problems, many of which are non-trivial to
solve. Problems such as Simultaneous Localisation and Mapping (SLAM),
determining where to explore next, deciding how best to organise multiple
platforms have all enjoyed substantial attention over the years. From our
survey of exploration algorithms, there are only a few map representation
methods. The majority are based upon grid based map representation
(Burgard et al. 2002; Zlot et al. 2002, Simmons et al. 2000, Yamauchi
1998) with a few others looking at topological map representations
(Choset and Burdick 1995a, 1995b).

By far the most common method for multi robot exploration is to use an
occupancy grid (Moravec 1998) with a frontier based exploration algo-
rithm (Yamauchi 1996). It is a simple and proven method of exploration
and mapping. But the grid based map has a fundamental flaw associated
with it, its size. Grid maps (especially those of high resolution) require
large amounts of memory (usually in the order of megabytes). With the
growth rate of computer memory, this does not necessarily present a prob-
lem. However in a multi-robot context, such maps must be shared regu-
larly. Bandwidth consumption becomes very high as the entire map is
needed for exploration and path planning.

The other method of map representation is topological (graph based)
such as the Generalised Voronoi Graph (GVG) (Choset and Burdick
1995a, 1995b). Though the graph representation is simple and compact,
the GVG is a technique primarily for exploring tunnel-like environments
or corridors. In a cluttered environment (such as an office), it becomes dif-
ficult to create the graph, and the graph complexity increases greatly.

This paper presents a hybrid exploration and mapping algorithm, called
‘Frontier-Graph Exploration’ (FGE). It attempts to use the best parts of
both grid based maps and topological maps while mitigating the various
limitations of each representation.

52 Mark Gossage, Ai Peng New and Chee Kong Cheng

The idea of developing a hybrid grid-topological representation is not
new. Thrun and Bücken (Thrun and Bücken 1996) showed a method con-
verting a grid based map into a region based (topological) map. More re-
cently the Centibot project (Konolige et al. 2004) used such a map in its
Spatial Reasoning component. After the initial mapping (using an occu-
pancy grid), an offline process was applied to turn this into a Voronoi dia-
gram, and to the final graph. The graph was then used by the robots for
sharing and navigation about the map.

Our method distinguishes itself from these past works in that it is gener-
ated online as the robot explores, not as a post-processing step after the
exploration is performed. It also does not require the global occupancy
grid that the other methods require, but uses a local grid only. This sub-
stantially reduced bandwidth usage, as no grid information is ever shared,
only the graph information. It is also a decentralized approach with robots
individually creating and sharing graphs as they explore.

3 Frontier-Graph Exploration

3.1 Single Robot Frontier-Graph Exploration

The FGE algorithm assumes a 2D environment, a robot mounted with an
accurate sensor (such as a Laser Range Finder), and good localisation.

The main perception component of the FGE is the ‘Circular Perception’;
a small fixed size local OG (Elfes 1990) formed by accumulating sensor
data as the robot moves in the environment. It is used to determine obsta-
cles, configuration space and frontiers for exploration. Unlike a normal
occupancy grid, which will continually expand as the robot moves, the
Circular Perception is a fixed size grid that scrolls about with the robot,
always keeping the robot in the middle of the grid. This perception pro-
vides sufficient information for local sensing and navigation, but consumes
a fixed amount of memory.

The basic FGE algorithm can be summarised as: find the frontiers on the
local OG, add them to the graph, select a frontier (using a simple cost
function) and move to it, repeat until no frontiers exist. A step by step dia-
gram of the exploration can be seen in figs. 1a-c.

Frontier-Graph Exploration for Multi-robot Systems 53

(a) (b) (c)
Fig. 1a-c. Step by step frontier-graph exploration. The triangle represents the ro-
bot, dashed lines are the circular perception, squares are unexplored nodes, circles
are explored nodes

The first problem with this approach was how to determine when the
robot moves into space that has already been explored. In Frontier explo-
ration, this is taken care of by the global OG. But a local OG does not
hold this history. Therefore when the robot returns to an explored space, it
may add new frontiers in the explored area. For example in the fig. 1b, the
robot has clearly completed the exploration. However without the global
knowledge, it might continue adding new nodes to the graph and would
continue to explore indefinitely.

In order to overcome this problem, the FGE algorithm stores and makes
use of the clear space region information. The clear space region is de-
fined as a polygon approximating the clear (non-configuration space) area
that is around the robot. Each explored node in the graph includes the
clear space region information.

(a) (b)
Fig. 2a-b. FGE with added region information (dotted line, not all regions are
added for clarity). The diamond represents a possible frontier that will not be
added into the graph as it falls within an existing region

In figs. 2a & b above, the robot has performed FGE and added region
information into the graph. As it nears the completion of the exploration,
it reaches back to an explored area (fig. 2b). The Circular Perception re-
ports a frontier at the point marked with a diamond. However this point is
within an existing clear space region (the region attached to the first node),
therefore the frontier should not be added to the graph.

54 Mark Gossage, Ai Peng New and Chee Kong Cheng

The second problem was that of creating too many frontier nodes. As
the robot finds frontiers, they are added to the graph. In normal frontier
exploration, as the robot moves to a frontier, other nearby frontiers will be
removed. However within FGE, graph nodes must still be explored to en-
sure completeness. This causes the robot to perform useless work, explor-
ing nodes that will not yield new information.

Using the region information, it is possible to identify these ‘extra work’
nodes. Upon arriving at a node, all the unexplored nodes, which are in the
current clear space region, but not near to a frontier, can be considered 'un-
necessary to explore’. In fig. 2b when the robot reaches the final node, the
current region information, overlaps the last remaining unexplored node
(the square). Since it is clear that the node is in the explored space and not
near any frontiers, it can be marked as ‘unnecessary to explore’.

To summarise, the full Frontier-Graph Exploration Algorithm is as fol-
lows:

1. Move forward a distance to perform initial population of circular per-
ception.

2. Add a graph node (type: explored) at the robot’s current location as
the starting point, with the clear space region attached.

3. For each node within the current clear space region:
- Add link between the node and the current node (unless present).
- If the node is an unexplored node and is not within a certain dis-

tance of a frontier, mark the node as unnecessary to explore.
4. For each of the frontiers found within the circular perception:

- If the frontier is within an existing region (excluding the current re-
gion) do not add this.

- Else add this frontier as an unexplored node and add an edge link-
ing the current node to this unexplored node.

5. If there are unexplored nodes, select an unexplored node (according
to the cost function) and move the robot to the node. Otherwise end.

6. Upon arriving at the node, change that node's type from unexplored to
explored.

7. Goto Step 3.

3.2 Multi-Robot Frontier-Graph Exploration

Building on the foundation of single robot FGE, we extended the algo-
rithm to multiple robots. The two main features to enable multi-robot ex-
ploration are graph merging, to maintain a consistent global graph, and
node ownership/negotiation mechanism.

Frontier-Graph Exploration for Multi-robot Systems 55

In Multi-Robot FGE, we assumed the robots have good localisation and
a common frame of reference, but not necessarily the same start position.
We also assumed that both robots and communication could fail. Within
the simulator, the localisation assumption is acceptable. Within the hard-
ware however, this is not so easy to achieve.

In order for each robot to maintain a consistent global graph, the graph
was regularly broadcast to all other robots. As the global graph is quite
compact (even with the region information), it is feasible to send the entire
graph in one go. Because of this, robots could maintain a consistent graph
unless they were out of communication range for some time.

The individual robots do not attempt to maintain a common numbering
scheme for its nodes and edges, but instead use the location of the nodes to
merge the graph. This requires the common frame of reference, but is rela-
tively simple to do. When a robot received a graph update, it would match
each node in turn with its existing nodes using the nodes location (with a
small distance tolerance), and then add any new nodes to its graph. At the
same time, it would build a temporary mapping between the received
graph node ids and its own graph node ids. Then the edges would be
added, using the mapping to determine which nodes should be linked. In
practice this was found be acceptable, and performed well in simulation
and hardware, provided the localisation was consistent.

The node ownership/negotiation mechanism is used to help the robots
coordinate among themselves. Each node is assigned an owner (the robot
who discovers the node). When a robot needs a task to do, it takes all un-
explored nodes in the graph and sorts them into a list using a cost function
based upon the distance between the robot and the node (using Dijkstra’s
shortest path).

If the lowest cost node is owned by the robot, it performs exploration as
normal. If it does not own the node, it must contact the owner and negoti-
ate with them for node ownership. If a robot is unable to obtain the node,
it will then consider its second choice and so on. Should no nodes be
available, the robot will wait for new ones to appear.

When a robot is contacted with a negotiation request it will agree to
transfer the node if the robot is not planning to do it. If it is moving to the
node, then it would compare its distance to node with the requesting robot,
and agree if the requester is nearer the node.

If the requesting robot could not contact the node owner, it would as-
sume that the owner has either failed, or is too far away from the node to
explore it. In which case, it would ‘steal’ node ownership. Though this
assumption is not always correct, it allow the overall algorithm to be ro-
bust to communication/platform failures.

56 Mark Gossage, Ai Peng New and Chee Kong Cheng

4 Results and Discussion

We performed both single robot and multiple robot exploration (only mul-
ti-robot results presented) in both the Player/Stage simulation and on our
Pioneer 3AT hardware.

4.1 Multiple Robot Simulation

Multi-robot simulation was conducted in the hospital environment as
shown in fig. 3. The hospital map is the largest map available with
Player/Stage simulator. Measuring around 120m x 50m, and with over a
hundred rooms, it is a formidable test for robotic exploration. A team of
five simulated robots managed to explore the map in around forty five
minutes, generating a graph of several hundred nodes in the process. Dur-
ing our tests, one of the robots failed. However the remaining robots were
able to cope with this loss and complete the task without issue.

Fig. 3. Multi-Robot FGE in a simulated environment of 120m x 50m, showing the
graph nodes and the regions.

4.2 Multiple Robot Hardware

The FGE algorithm was tested in hardware using two Pioneer 3AT’s in our
company’s lobby area. It is consists of a relatively open area, and is about
50m2 in size.

One of the biggest issues during hardware testing was localisation. We
used a decentralised EKF based SLAM algorithm to provide localisation.
It was mentioned earlier that FGE required a common frame of reference
for graph sharing and merging. However errors in the localisation often

Frontier-Graph Exploration for Multi-robot Systems 57

caused the robots graphs to become misaligned with each other. This
would cause robots to be unable to navigate to the tasks that they negoti-
ated from other robots.

(a) (b)
Fig. 4a-b. Multi-robot FGE in a 50m2 lobby area, showing the graph and regions
(a), and the point cloud map (b)

Fig. 4a-b shows the results from two robots performing FGE. Looking
at Fig. 4b, it is clear that some localisation drift has occurred which caused
the echoing effect in the point cloud.

Attempts to expand beyond two robots proved impossible as the local-
isation errors became worse when tests were run with more robots. More
work is needed in the localisation area to rectify this problem. However the
result here serves to demonstrate that the FGE can be realised in the hard-
ware.

4.3 Issues

Besides localisation, there are two other issues observed: inefficiency in
the cooperation and occasional missed frontiers. Often robots stopped to
wait for new node to appear or crowded together ‘fighting’ for nodes. This
is generally caused by the simple greedy heuristic used. This could be
overcome by using a better cooperation strategy.

The missing frontiers issue is shown in Fig. 5. Here a frontier is on the
right of the perception, but due to the narrowness of the configuration
space obstacle, the FGE is unable to place a node near to the frontier and it
is missed. This limitation causes some frontiers which are beyond narrow
openings to be missed. A possible solution to this might be to use some
kind of local path planner, though how best to represent this on the graph
is still not clear.

58 Mark Gossage, Ai Peng New and Chee Kong Cheng

Fig. 5. Due to narrow opening to the right of the robot, it misses the frontier to the
right of the robot

5 Further work

The FGE algorithm has several area’s for future work. One area is to use
an alternative method for task selection and cooperation methods, using
ideas from some of earlier mentioned papers (Burgard et al 2002, Sim-
mons et al 2000, Zlot et al 2002).

Localisation is a key area for improvement upon. Several authors (Lu
and Milios 1998, Gutman and Konolige 1999) consider a map to be a
graph like structure with laser range finder scans attached to each node.
This is similar in structure to the FGE, though the purpose is for map-
ping/localisation. Producing an integrated exploration, mapping and local-
isation algorithm looks to being a very promising area forward.

The final area for exploration is that of node placement. The current
FGE algorithm places its nodes at the limits of its perception, making it a
non-repeatable method. An alternative would be to consider using a
method closer to the Voronoi Diagram, such as in (Konolige et al. 2004).
This would provide a more repeatable method for placement of nodes. A
comparison of these methods is an area for future research.

References

Burgard W, Moors M, Schneider F (2002) Collaborative Exploration of Unknown
Environment with Teams of Mobile Robots. Lecture notes in Computer Sci-
ence, volume 2466 pp 52-70

Frontier-Graph Exploration for Multi-robot Systems 59

Choset H, Burdick J (1995) Sensor based planning, Part I: The Generalized Vo-
ronoi Graph. In Proc. IEEE Int. Conf. on Robotics and Automation

Choset H, Burdick J (1995) Sensor based planning, Part II: Incremental Construc-
tion of the Generalized Voronoi Graph. In Proc. IEEE Int. Conf. on Robotics
and Automation

Elfes A (1990) Occupancy grids: A stochastic spatial representation for active ro-
bot perception. In Proceedings of the Sixth Conference on Uncertainty in AI.
Morgan Kaufmann Publishers inc.

Gutman J, Konolige K (1999) Incremental Mapping of Large Cyclic Environ-
ments. Proceeding of Conference on Intelligent Robots and Applications

Konolige K, Fox D, Ortiz C, Agno A, Eriksen M, Limketkai B, Ko J, Morisset B,
Schulz D, Stewart B, Vincent R (2004) Centibots: very large scale distributed
robotic teams. In Proceedings of the International Symposium on Experimen-
tal Robotics

Lu F, Milios E (1998) Robot pose estimation in unknown environments by match-
ing 2d range scans. Journal of Intelligent and Robotic Systems

Moravec H (1998) Sensor fusion in certainty grids for mobile robots. AI maga-
zine, pp 61-74

Simmons R, Apfelbaum D, Burgard W, Fox D, Thrun S, Younes H (2000) Coor-
dination for multi-robot exploration and mapping. In Proceedings of the Na-
tional Conference on Artificial Intelligence. AAAI

Thrun S, Bücken A (1996) Integrating Grid-Based and Topological Maps for Mo-
bile Robot Navigation. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence

Yamauchi B (1996) A frontier-based approach for autonomous exploration. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence

Yamauchi B (1998) Frontier-based exploration using multiple robots. In Second
International Conference on Autonomous Agents, pp 47-53

Zlot R, Stentz A, Dias M B, Thayer S (2002) Multi-Robot Exploration Controlled
By A Market Economy. Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA)

Player/Stage website http://playerstage.sourceforge.net/

60 Mark Gossage, Ai Peng New and Chee Kong Cheng

Distributed Robotic: a Language Approach

Claude Guéganno1 and Dominique Duhaut2

1 University of South Britanny – France claude.gueganno@univ-ubs.fr
2 University of South Britanny – France Dominique.Duhaut@univ-ubs.fr

Summary.

In this paper we present a powerful and versatile architecture dedicated for
robotic and mechatronic systems. The originalities of our study are, (i) that
we consider a robot with a dynamic and explicit language approach and (ii)
that the communication aspects are abstracted and take place as a natu-
ral part in the language. This approach allows easy transfers towards other
fields of research like network of sensors, ambient intelligence and ubiquitous
robotic. These works concern low-cost micro-system easy to embed in little
mechatronic devices. For demonstration of the effectiveness of our architec-
ture and developing tools, we have implemented it in the maam robot which
is a reconfigurable robot composed of several modules autonomous for CPU,
energy and motion. Some results can be found in the last part.

1 Introduction

Distributed architecture for control are widely studied ([1],[2],[3]) but gener-
ally address system fitted with operating system and network functionalities.
The promising field of ambient intelligence with its variation in ambient and
ubiquitous robotic has similar requirements but with reduced capacities. In
the field of collective robotic, swarms or teams of robots or even in recon-
figurable robotic with autonomous units, some of these requirements are: to
distribute the roles for a mission, to take unforeseen events into account, to
localize neighbors, to report status to the host. The behavior of the group
must be reactive inside a planification itself function of time. Two examples
of collaboration are shown in figure 1. In the first one, the robots are associ-
ating to make a chain in order to move together, in the second one, the chain
is moving, but some agents are left as radio-relays in order to keep a data
link with the host. So, the agents must be able to collaborate autonomously
to achieve the mission or a part of it. In some cases, the robots must work

62 Claude Guéganno and Dominique Duhaut

without any external help (host unreachable). Obviously, the communication
aspect is very important in such systems. To take full requirements into ac-
count we generally need line in sight communication for solving localization
and docking problems and, on an upper layer a network communication for
full control purpose including request of reachable robots, broadcast of new
plans, control/command of subsets of robots . . .

Fig. 1. Two kinds of collaboration. (a)The agents are building a chain. (b)They
scatter some of them to ensure a communication between the host and all of them.

So we propose an architecture which gives answers to the following con-
straints:

• taking into account a centralized control system;
• distributing the intelligence between agents;
• giving possible autonomy for each agent, or subsets of agents;
• allowing collaboration between agents (autonomous group);
• reacting at events by possibly broadcasting new plans towards agents or

subset of agents;
• each agent may control a group and in the same time be controlled by

another entity.

Moreover, this architecture must not decide of the kind of control which will
be apply to the society of agent. It could be deliberative or reactive, or one
after the other.

Our proposition is that each agent is likened to a local language, so, con-
trolling it involves (i) to request its own language (or, at least, its set of
instructions) (ii) to generate and upload programs according to its particular
capacities, and/or to remote-control it directly.

The next section presents the embedded part of this architecture.

Distributed Robotic: a Language Approach 63

2 An architecture for ambient and distributed robotic

2.1 External overview

As we have seen, managing a team of robots with effectiveness suppose to
guess the actual robots reachable in the area, to learn the capabilities of each
one, to be able to distribute an application between them, and, possibly to
remote-control any of them.

The figure 2 summarizes the functionalities of our architecture, and show
how we can use it from a control point of view. The first important aspect
is that the control system is not supposed to know who are the robots in its
environment. It has to inquire for them, an to achieve a mission, to compose
with the robots which are actually presents and ready to use (Fig 2-a). Since
robots could be different (family, or version in a family) the host requests
for the identity of each of them (Fig 2-b). This is done by downloading an
XML description from the robots. After a parsing stage, the host can generate
dedicated user-friendly tools for each agent for remote control (Fig 2-c) and
also programming tools (Fig 2-d). Indeed, the XML file permits to reconstitute
the particular language of the robots, and also gives informations about remote
invocations allowed towards the robot. So new programs can be uploaded in
the agents (Fig 2-e). A new program replaces the current one instantaneously.
All the previous operation from inquiry to uploading can be chained in a
standalone program (Fig 2-f).

2.2 Internal overview

Embedded architecture

The embedded architecture is built around a configurable system on chip in-
cluding a FPGA based hardware easy to adapt for many mechatronic and
robotic applications and a micro-controller. It communicates with an indus-
trial bluetooth module driven at the Host Control Interface level. More infor-
mations about the hardware can be found in [4].

The software include (i) a communication manager made of two finite
state automates, one dedicated for permanent inquiry of neighbors, and the
other for general communication purpose (remote control, up/download of
files); (ii) an event scheduler that can launch some particular instructions of
the main program; (iii) an interpreter which runs the main program of the
agent (figure 3-left). The IO functionalities of the robot are directly accessed
trough the communication interface as well as from the interpreted program
(figure 3-right).

64 Claude Guéganno and Dominique Duhaut

Fig. 2. Ambient behavior. (a) The host inquires for robots in its area. (b) The
XML description of each robot is requested by the host. all the robots send their
own XML files. With these informations the host (c) will be able to generate direct
command on one robot or programs over a set of robots. (d) While the XML de-
scription contains elements of the local language of the robots, programming tools
can be build. (e) New programs in local language are upload in the robots. (f) All
these operations can be centralized in a global multi-agent program.

Distributed Robotic: a Language Approach 65

Fig. 3. BIOS. Data flow view (left) and layered view of the embedded software.

2.3 The highest layer: an interpreter

General structure of a program

A program is composed with a list of event, a list of variables and a list of
instructions. Some of the instructions are specific to the agent and coincide
with the embedded XML description. The control structures are the same.

Example

{K=0}

<SUP(can6,10):On2(1);>

<SUP(can3,20):On2(2);>

SET(K,-50);

EVT();

*[TRUE](WAIT(50); INC(K);

[EQU(K,50)]((SET(K,-50)!(PwmA(1,K);));

);

In this example, two events are considered. can6 and can3 are internal regis-
ters implemented in the language. In this case they are the values of analog
inputs, so these events aim at controlling the threshold of two sensors. The
instruction EVT() starts the event scheduler.

Overview of the language

The syntax for instructions is the same as in many languages. All parameters
and return values are integers. All basic operators are provided: arithmetic
(ADD, SUB, INC, DEC, MUL, DIV); relational (INF, SUP, EQU, NEQ, LEQ, GEQ); logic
(AND, OR, NOT) and affectation SET.

Control structures

The following examples gives three usual situations:
{X=255, K=0} var: X ← 255 and K ← 0

100*(PwmA(1,X); WAIT(10); DEC(X);); repeat 100 times

*[LEQ(K,127)](SET(K,Analog(1));); while K(analog input)≤127 do ()

*[TRUE](On(1); Off(1);); while (true) do ()

66 Claude Guéganno and Dominique Duhaut

The instruction BREAK can end a loop, and the CONT (for continue) redirect
the execution to the previous test.

The conditional instruction has the usual structure, as shown in the fol-
lowing example:

[EQU(X,0)]((On(1);WAIT(10);) // executed if X==0

!(Off(1);WAIT(20);) // else ...

);

2.4 Instruction for communication

The major originality of this local language is to incorporate special native
instructions for communication. They can be divided in four groups:

1. Control of local unit:
RSTBT(); → resets the bluetooth module;
ST("name/message"); → changes the user-friendly name of the blue-
tooth module; since this string can be read without opening a link be-
tween agents, we use it as a mail-box. An example of name should be
"a1/2,6,7,9" meaning (i) that the name of this robot is "a1", and (ii)
that from "a1", the four robots "a2", "a6", "a7" and "a9" are reachable.
So the host can initiate an ad-hoc graph without any connexion at the
application level.

2. Link management:
SET(Id,OPEN(address));→ opens a data link between the local module
and the given address. The link number is stored in the variable Id.
WCX(); → waits for a connection, this agent has nothing else to do.

3. Signals management:
SYN(K); → waits for the signal K, incoming from any agent;
SIG(Id,K); → sends the signal K towards the opened data–link Id.

4. Remote invocations: assume that the set of IO instructions of the agent is

E = {INSk}k∈[0,N]

then, this agent can apply all these instructions to a remote identical
agent, after a successful connection. So the instructions of the set

(r ◦ E) = {rINSk}k∈[0,N]

are implicitly integrate part of the language. They take as first parameter
the identification of the target. The figure 4 shows an example of dis-
tributed action where a robot controlled by the host (planification level)
is ordered to control three other robots. We can note the local instruction
PwmA(x,y) and the remote invocation rPwmA(Id,x,y), where Id identifies
an opened data–link.

Distributed Robotic: a Language Approach 67

Fig. 4. Communication between agents. The host uploads a program in the
agent a0 and launches it. Then, a0 take control of a1,a2 and a3.

2.5 Inner XML card

A DTD for mechatronical systems

The DTD is a set of grammar rules specifying the document generic logical
structure. Thus in the DTD we enumerate all generic operations that concern
the robots. Because we want easy transfers of this technology, we impose that
(i) the number of kind of operation must be limited, and; (ii) the descrip-
tion can induce an object vision of the robot (a robot can be composed of
subsystems themselves decomposable . . .).

According to the first constraint, we propose only four kinds of functions:⎧⎪⎪⎨⎪⎪⎩
binary outputs
outputs in a range ∈ [min, · · · , max]
inputs
general procedures and functions

A response for the second constraint is to add a concept of entity in the DTD
and provide links between entities. So we can associate an operation with
one of its subsystem. Because robots are often composed of many identical
subsystems an entity can be link to n sub-systems (ex: hexapode, composed
of 6 legs) Here is an extract of this DTD.

<?xml version=’1.0’ encoding=’utf-8’?>

<!-- interfaceRobot.dtd -->

<!ELEMENT Robot (Link*,BOutput*,Output*,Input*,

Function*, Load?)>

<!ATTLIST Robot name CDATA #REQUIRED>

<!ATTLIST Robot BT CDATA #IMPLIED>

<!-- Logical link between objects -->

68 Claude Guéganno and Dominique Duhaut

<!ELEMENT Link EMPTY>

<!ATTLIST Link name CDATA #REQUIRED>

<!ATTLIST Link parent CDATA #REQUIRED>

<!ATTLIST Link nb CDATA #REQUIRED>

<!ELEMENT Output EMPTY>

<!ATTLIST Output name CDATA #REQUIRED>

<!ATTLIST Output min CDATA #REQUIRED>

<!ATTLIST Output max CDATA #REQUIRED>

<!ATTLIST Output prot CDATA #REQUIRED>

<!ATTLIST Output parent CDATA #IMPLIED>

...

The name attribute concerns all the operations and entities of the robot.
The Link element relies one system to n subsystems. When an operation
addresses a subsystem, it fills the parent field.

The prot field appears for each operation element. Since we want to pro-
vide remote control tools and allow execution of distributed algorithms in a
team of robots, we must access to all the internal basic functions of each robot.
So this required field is necessary for defining the protocol of communication
between the host and the robot.

XML example

The following code is an example of XML description using the previous DTD:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Robot SYSTEM ’interfaceRobot.dtd’>

<Robot name="H2" BT="07003F273A">

<Link name="leg" parent="H2" nb="6"/>

<Output name="PwmA" parent="leg" min="-115" max="115" prot="A"/>

<Output name="PwmB" parent="leg" min="-115" max="115" prot="B"/>

...

The control system of the team of robots requests for all the XML files of the
detected robots, and parse them in order to generate instructions for them.
By reading this file, we guess that the robot H2 is composed of 6 legs, each
of them is powered by two PWM commands. The next section shows the use of
these informations.

Distributed Robotic: a Language Approach 69

3 Implementation in maam robot

3.1 Overview maam project

The maam 3 project is a self-reconfigurable robotic architecture where each
module is autonomous for energy and CPU. The basic unit (called atom) is
composed of six legs which are directed towards the six orthogonal directions
of space. They allow the atom move itself and/or couple to another one. The
first walking prototypes of atom appears on the figure 5.

Fig. 5. The first prototypes of maam robot walking (right). These prototype embeds
all the electronic and software functions described in this paper. They do not include
the pincers.

The twelve PWM signals, and the command for the analog converter
(driven in pipeline mode) are built in the FPGA. Some internal signals of the
servo are processed in order to identify the legs in contact with the ground.
Each leg is fitted with an IR transmitter/receiver for perception and docking.
All the features described in this paper (XML inside, local language, wireless
properties) are implemented and tested.

Because this robot do not take any inspiration from human or animal world
a realistic simulator is written to study their behavior. The virtual robots have
the same properties than the real robots and, moreover, are also driven by
identical interpreted programs. The figure 6 reports a simulation were eight
robots are searching for an attractor.

4 Conclusion

In this paper we presented an architecture for distributed robotic, completely
abstracted by a language approach. Moreover, we proposed that every agent is
fitted with an inside XML card, and that tools for control/command (includ-
ing the dedicated local language) can be guessed thanks to this description.

3 Molecule = Atom | (Atom+Molecule)

70 Claude Guéganno and Dominique Duhaut

Fig. 6. Simulator. Like in the real context, the agents are independent and their
own thread runs a program written in the interpreted local language.

The usual requirements in synchronization an remote invocation from one
agent to another appear as a natural part in the language, since the middle-
ware in charge of communication acts as a background task. The efficiency of
this approach has been proved during its implementation in the maam robot
which is a complex mechatronic system.

Acknowledgment

The maam project is supported by the Robea project of the CNRS. All refer-
ences to people participating to this work can be found in [5].

References

1. Raja Chatila, ”Control Architecture for Automous Mobile Robots”,From Per-
ception to Action Conference (PERAC’94), Lausanne , 1994, pp.254-265.

2. Medeiros, Adelardo A. D. ”A survey of control architectures for autonomous
mobile robots.” J. Braz. Comp. Soc., Apr. 1998, vol.4, no.3. ISSN 0104-6500.

3. Dominik Henrich, Thomas Höniger, ”Parallel Processing Approaches in
Robotic”, ISIE (1997)

4. Claude Guéganno and Dominique Duhaut , ”A Hardware/Software Architec-
ture for the Control of Self-Reconfigurable Robots”, DARS 2004, Toulouse
(France).

5. http://www.univ-ubs.fr/valoria/duhaut/maam

A Particle Swarm-based Mobile Sensor Network for
Odor Source Localization in a Dynamic Environment

Wisnu Jatmiko*, Kosuke Sekiyama** and Toshio Fukuda*

*Department of Micro-Nano Systems Engineering, Nagoya University, 464-8603,
Japan.
**Department of Human and Artificial Intelligence Systems, Fukui University 3-
9-1 Bunkyo Fukui, 910-850, Japan.

Abstract. This paper addresses the problem of odor source localization in a dynamic en-
vironment, which means the odor distribution is changing over time. Modification Particle
Swarm Optimization is a well-known algorithm, which can continuously track a changing
optimum over time. PSO can be improved or adapted by incorporating the change detec-
tion and responding mechanisms for solving dynamic problems. Charge PSO, which is an-
other extension of the PSO has also been applied to solve dynamic problem. Odor source
localization is an interesting application in dynamic problem. We will adopt two types of
PSO modification concepts to develop a new algorithm in order to control autonomous ve-
hicles. Before applying the algorithm in a real implementation, some important hardware
parameters must be considered. Firstly, to reduce the possibility of robots leaving the
search space it is needed to limit the value of vector velocity. The value of vector velocity
can be clamped to the range [-Vmax, Vmax]; in our case for the MK-01 Robot, the maximum
velocity is 0.05 m/s. Secondly, in PSO algorithm standard there is no collision avoidance
mechanism. To avoid the collision among robot we add some collision avoidance functions.
Finally, we also add some sensor noise, delay and threshold value to model the sensor re-
sponse. Then we develop odor localization algorithm, and simulations to show that the new
approach can solve such a kind of dynamic environment problem.

Keywords. Particle Swarm Optimization, Odor Source Localization, Dynamic
Environment

1. Introduction

The amount of research in the field of robotics application for odor-sensing technology has
grown substantially. This work can be broadly categorized into two groups namely artificial
odor discrimination system [1,2], and odor source localization by autonomous mobile sens-
ing systems [3]. The artificial odor discrimination system has been developed for auto-
mated detection and classification of aromas, vapors and gases. The second prime area of
robotics applications for odor-sensing technology is odor source localization. Odor source
localization can be used for various attractive applications, including the search for detec-
tion of toxic gas leak and the fire origin at its initial stage, etc. This paper will address the
second area of applications.

There have been several reported implementations of odor source localization by
autonomous mobile sensing system. Most work on chemical sensing with mobile robots as-
sume an experimental setup that minimizes the influence of turbulent transport by either

minimizing the source-to-sensor distance in trail following [4,5] or by assuming a strong
unidirectional air stream in the environment [6-9], including our previous work [10]. How-
ever, not much attention has been paid to the natural environment problem.

There has been no real implementation on a mobile robot that works in the natural envi-
ronment to the best of our knowledge. The main problem in implementing odor source
localization using a gas sensor in real world environments is that the distribution of the
odorant molecules is usually dominated by turbulence rather than diffusion, the latter of
which is known to be a considerably slower transport mechanism for gases in general. The
other problem is the influence of unstable wind. When odor distribution is very complex
and the wind direction is not stable, the robot will be haphazard and desultory [3].

This paper focuses on our new approach that exploits particle swarm optimization with
multiple robots to solve odor source localization in natural environment where the odor dis-
tribution will change over time. Particle Swarm Optimization (PSO) simulates behaviors of
bird flocking. Suppose the following scenario: a group of birds is randomly searching food
in an area. There is only one piece of food in the area being searched. Not all of the birds
know where the food is. However, they know how far the food in each iteration. So what is
the best strategy to find the food? The effective approach is to follow the bird, which is
nearest to the food. PSO learned from the scenario and applied it to solve the optimization
problems [9]. However, the main problem with standard PSO used for dynamic optimiza-
tion problems appears to be that PSO eventually will converge to an optimum and thereby
looses the diversity necessary for efficiently exploring the search space and consequently
the ability to adapt to a change in the environment when such a change occurs.

Two ways of improving PSO to solve this problem will be developed. Firstly, PSO is run
in standard fashion, but when change in the environment has been detected, explicit actions
are taken to increase diversity and thus to facilitate the shift to the new optimum. Therefore,
PSO can be improved or adapted by incorporating change detecting and responding mecha-
nisms for solving dynamic problems [12,13]. Secondly, multiple populations are used,
some to track known local optima, some to search for a new optima. Two types of robot
swarms, neutral and charged robots, will be used for solving the dynamic problem [14].
Odor source localization is an interesting dynamic problem application. We will adopt
these two types of PSO modification concepts as described above to develop a new algo-
rithm to control autonomous vehicles. These two types of PSO then will be compared for
solving odor source localization in a dynamic environment.

2. Motivation

From early 1990 we developed real single mobile robot for solving odor source localization
in natural environment. And also we developed simulation tool to implement several of so-
phisticated algorithm which we adopt from biological inspiration. In fact our system
only can solve odor source localization with many simplicity parameters, like, stable wind
and indoor environment [3, 10].

In the case of using mobile robots and multiple sensory modalities (e.g., odometry,
anemometry, olfaction), we should carefully consider the feasibility of the hardware [15].
PSO, which incorporates change detecting and responding mechanisms, can be imple-
mented with a simple algorithm in actual hardware.

Charged PSO, which employs two types of robots, neutral and charged robots, can also
be implemented with a simple algorithm. With multiple populations, we can maintain the
diversity of swarm particles. Applying a notion of electric potential field, charged swarm
particle is introduced to make a balance of diversity. The potential field method is widely
used in autonomous mobile robot path planning due to its elegant mathematical analysis

72 Wisnu Jatmiko, Kosuke Sekiyama and Toshio Fukuda

and simplicity. The goal of this model is to have a number of sub-populations explore the
best local optima. For this purpose, a part of the population is split off when a local opti-
mum is discovered, and remains close to the optimum for further exploration. The remain-
der of the population continues to search for new local optima, and the process is repeated
until better solutions are found. While the neutral swarm particles continue to optimize, the
surrounding charged swarm particles maintain enough diversity to cope with dynamic
changes in location of the covered peaks.

Evaluation on solving odor source localization problem in dynamic environment re-
quires hardware and software platforms [16]. During the initial design stages, software
evaluation is preferred, since such tools allow competing strategies to be evaluated under
identical conditions for various environmental scenario. This paper presents a simulation
implementation that addresses the tradeoffs between computational efficiency and inclusion
of realistic hardware parameters.

3. Particle Swarm Optimization Frame Work

Recently, evolutionary techniques such as PSO have been applied to dynamic problem [11-
14]. PSO can be improved or adapted by incorporating change detecting and responding
mechanisms [12,13] for solving dynamic problem. CPSO, which is another extension of
PSO, has also been applied to solve dynamic problem [14]. We will adopt concepts from
modification two type of PSO as described above to develop a new algorithm to control
autonomous vehicles.

3.1 Particle Swarm and Robot Interactions

A more detailed interaction of robot with Particle Swarm Optimization algorithm will be
described as follows. A population of robots is initialized with certain positions and veloci-
ties and a function (plume distribution) is evaluated, using the robot’s positional coordi-
nates as input values. Positions and velocities are adjusted and the function evaluated with
the new coordinates at each time step. When a robot discovers a pattern that is better than
any it has found previously, it stores the coordinates in a vector Pi. The difference between
Pi (the best point found by i so far) and the individual’s current position is stochastically
added to the current velocity, causing the trajectory to oscillate around that point. The sto-
chastically weighted differences among the population’s best position Pg and the individ-
ual’s current position are also added to its velocity, adjusting it for the next time step. These
adjustments to the robot’s movement through the space cause it to search around the two
best positions.

The values of element in Pg (concentration gas and position of robot) are determined by
comparing the best performances of all the members of population, defined by indexes of
other population members and assigning the best performer’s index to the variable g. Thus,
Pg represents the best position found by all member of population. Ad-hoc wireless network
and Global Position System are assumed to be equipped among all robots. Via the ad-hoc
network, each robot can collect the gas concentration data and choose the best one. Then
the position of the robot can be determined by GPS system.

The PSO model is described as following:

 (1)

 (2) 11 n
i

n
i

n
i Vxx

)().(.)().(. 21
1 n

i
n
g

n
i

n
i

n
i

n
i xpRandcxprandcVV

A Particle Swarm-based Mobile Sensor Network 73

After finding the two best values, the particle updates its velocity and positions with eq.
(1) and (2). Let Xi and Vi denote position and velocity vector of the i-th particle at the itera-
tion time n (n=1,2...). Also pi and pg are defined as the local best and the global best respec-
tively as stated above. Rand () and rand () are the random functions returning a value be-
tween (0,1). Coefficient is constriction factor, which is supposed to take less than 1. Also
coefficient c1 and c2 are learning parameters, which are supposed to be c1 = c2 = 2. All of
the parameters are referred to [11, 12, 13], which was the best of PSO parameters in com-
mon optimization problem.

In the dynamic environment the standard PSO cannot solve the problem [11]. In order
to solve the dynamic problem, PSO has to be improved or adapted by incorporating change
detecting and responding mechanisms [12, 13]. Detection function is used for monitoring
the global best information. If it has not changed for certain number of iterations, there
supposed to be a possible optimum change. After the detection of environment changes,
there must be an effective strategy to respond to a wide variety of changes. However, if the
whole population of robot has already converged to a small area, it might not be easy to
jump out to follow the changes. Therefore, we investigate the spreading response when a
change is detected. All robots will spread at a certain step to jump out to follow the
changes, for simplicity reason [12, 13].

3.2 Multi Swarm Robot Interaction

With the charged swarm robots we add repulsion function to make balancing diversity (like
potential field idea). This keeps robots from gathering at a small area. The charged swarm
robot will enable to explore different regions of the search space by different swarm.
Charged swarm robots are adopted from the concept of Coulomb’s law.

Figure 1 shows the repulsion function for charged swarm robots. Additional avoidance
is only between pairs of robots that have non-zero charge Q (charged robot), and the radius
of the avoidance was adopted from Coulomb’s law, like in the shell rcore r rperc. At sepa-
rations less than the core radius rcore, the repulsion is fixed at the value at the core radius,
and there is no avoidance for separations beyond the perception limit of each robot rperc.

 Summation of repulsive force

 (3)

Two types of robot swarm can be defined as neutral and charged robots. The neutral
swarm robots have no charged function and identical with the standard PSO, as described
in eq. (1) and (2). However, in charged swarm robot, there is an additional term to facilitate
collision avoidance.

The charge swarm robot is described in eq. (4) and (5).

 (4)

 (5)

"3Region"..0

"1Region".................
)(.

"2Region")...(
.

2

3

,

percpi

corepi
picore

pipi

percpicorepi
pi

pi

pi

rxx

rxx
xxr

xxQQ

rxxrxx
xx

QQ

a

pii aa ,

11 n
i

n
i

n
i Vxx

i
n
i

n
g

n
i

n
i

n
i

n
i axpRandcxprandcVV)().(.)().(. 21

1

74 Wisnu Jatmiko, Kosuke Sekiyama and Toshio Fukuda

Figure 1 Charged Swarm Robot Interaction

3.3 Algorithm Implementation
The problem of gas source localization in an enclosed 2D area can be decomposed into
three subtasks: plume finding (coming into contact with the plume), plume traversal (fol-
lowing the plume to its source) and source declaration (determining the source is in the
immediate vicinity).

We used a random search until one robot getting into contact with the plume. After
getting into contact with the plume, the second task is plume traversal. Particle Swarm con-
cept will be applied for following the cues determined from the sensed gas distribution to-
ward to the source. The last task is source declaration, determining certainty that the gas
source has been found. We also used Particle Swarm Optimization convergence parameter,
which is to find global maximum, which value is known.

4. Simulation Experiment

4.1 Environment

The Gaussian plume model was adopted from J. O. Hinze [17] and Ishida [18]. The Gaus-
sian gas distribution is expressed by:

 (6)

where,

 (7)

 (8)

C is concentration of plume (ppm), q is emitted rate of the gas (mL/s), U is wind speed
(m/s), K is turbulent diffusion coefficient in m2/s, is the angle from the x-axis to the up-
wind direction.

4.2 Robot Behavior

When applying the algorithm in a real implementation, some important parameters should
be considered. Firstly, in order to reduce the possibility of robots leaving the search space it

22)()(yyxxd sss

sin)(cos)(yyxxx ss

)(
2

exp
..2

),(xd
K
U

dK
qyxC s

s

A Particle Swarm-based Mobile Sensor Network 75

is needed to limit the value of velocity vector. The value of velocity vector can be re-
stricted to the range [-Vmax, Vmax]; in our case for the MK-01 Robot, the maximum velocity
is 0.05 m/s. Secondly, in PSO algorithm standard there is no collision avoidance mecha-
nism. To avoid the collision among robots we add some collision avoidance functions. Fi-
nally, we also add some sensor noise and threshold value to model the sensor response.

 (9)

Where S(x,y) is the sensor’s response, C(x,y) is gas concentration, e(x,y) is the sensor
noise with e(x,y) << C(x,y) and is 1 ppm.

4.3 Typical Approach

Firstly we apply the PSO approach in static environment (the plume is very stable), to show
the robot interaction. The parameter settings for PSO algorithm were fixed at standard
value [12,13] and we will use ten robots for all the experiments. As shown in Fig. 2, three
sub-tasks of algorithm will be applied to solve the static environment and we can see the
approach can easily find the odor source.

4.4 Experiment Result in Dynamic Environment

In reality many real-world problems are dynamic, like odor localization in natural situation
is also dynamic. The next experiment we apply the PSO approach in dynamic environment
(the plume is not stable). The plume changes randomly according to the wind speed and
wind direction.

In our simulation the wind speed changed randomly from 0.5 m/s to 1 m/s and the wind
direction changed randomly from 1600 to 2000. The timer for make random changing is
from 20 s until 50 s. Two types of modified PSO are used to solve the problem. Firstly,
PSO incorporating change detecting and responding mechanisms and secondly Charge
PSO.

In dynamic environment the standard PSO can not solve the problem. As we can show in
figure 3, the robot was trapped in local maximum area. Experimental result of detect and
respond PSO is shown in Fig. 4. Detection function use for monitoring the global best in-
formation, if it has not changed for 20 iterations, there is a possible optimum change and
the value of global best will be restarted at the initial value (global best=0). After the detec-

),(),(),(yxeyxCyxS

otherwise
yxCifyxS

yxS
0

),(...),(
),(

Figure 2 Visualization of proposed approach with three sub-tasks: Plume Finding, Plume Traversal
and Source Declaration

t = 10 t = 50 t = 100

Finding the Plume Tracing the Plume Tracing the Plume

t= 213

Source Declaration

76 Wisnu Jatmiko, Kosuke Sekiyama and Toshio Fukuda

tion of environment changes, we investigated the spreading response when a change is de-
tected. All robots will spread at 5 steps to jump out to follow the changes.

The effect of restarting the global best and spreading implies loss of information gath-
ered during the search so far. As an alternative adaptation, Charge PSO approach is investi-
gated. Experiment result of Charge PSO is shown in Fig. 5. The parameters for charge ro-
bot used in the experiment are charge value Q=1, rcore =1 meter and rperc=2 meter.

4.5 Analysis

It is important to analyze the results from several repeated runs by statistical methods, in
order to obtain empirical evidence of the capabilities of proposed method. We analyze the
efficiency of the proposed method which expressed as the number of iterations to find the
solution. Then with MEAN statistical analysis, we measure the performance.

Figure 6 shows the compared results among PSO algorithms modification for solving
odor source localization in dynamic environments. The PSO standard can not solve the
problem until the last iterations. The Detect and Respond PSO can solve the odor source lo-

Figure 3 The propose approach with standard PSO can not follow the changing of environment,
trap in local maximum.

Figure.5 The proposed approach with Charged PSO can follow the changing of environment.

t= 10 t= 50 t= 100 t=246

Figure 4 The proposed approach with Detect and respond PSO can follow the changing of environment.

t= 10 t= 50 t= 100 t=312

t= 10 t= 100 t= 200 t=1000

Trap in local maximum Trap in local maximum Trap in local maximum

A Particle Swarm-based Mobile Sensor Network 77

calization problems however the drawback is with the arbitrary nature of the detection and
response algorithms. Particle Swarm with charge need no further adaptation to cope with
dynamic scenario due to the extended swarm shape. The next experiment we just concern
with the Charged PSO algorithm. Figure 7 shows the results the time development of global
best coping with dynamical change of environment when delay and noise sensor was em-
ployed.

Figure 6 Time development of global best coping with dynamical change of environment with various PSO
algorithms. (Taking by 25 times)

(a)

(b)

Figure 7 Time development of global best coping with dynamical change of environment used Charged PSO algorithm with
employed uncertain sensor parameters (a). with delay 10 s and various error, i.e., 0.1, 0.2 and 0.5 (b). with error 0.5 and vari-

ous time delay, i.e., 0 s, 5 s, 10 s, 20 s and 30 s. (Taking by 25 Times)

78 Wisnu Jatmiko, Kosuke Sekiyama and Toshio Fukuda

We also used another advanced turbulence model by Farrell et al [16], chosen because
of its efficiency, realism (i.e., its instantaneous and time-averaged results much measure-
ment of actual plume), and multi-scale properties – including chemical diffusion and advec-
tive transportation. Figure 8 shows our approach can solve the advanced turbulence model.

5. Conclusions and Future Work

In this paper, we have presented two types of Particle Swarm Optimization modification approaches to
control autonomous vehicle robots to search for odor source in dynamic environment. The Detect and
Respond PSO can solve the odor source localization problems however the drawback is with the arbi-
trary nature of the detection and response algorithms. Particle Swarm with charge need no further ad-
aptation to cope with dynamic scenario due to the extended swarm shape.

Although odor source localization can be used for various attractive and promising applications, so
far there have been few applications on odor source localization by autonomous mobile sensing system
in real world environment. The main problem to implement odor source localization with using gas
sensor in real world environments is that the distribution of odorant molecules is dominated usually by
turbulence rather than diffusion, which is known to be considerably slower transport mechanism for
gases in general. The other problem is unstable wind in real world environment. Beside that, our un-
derstanding of the solving odor source localization, particularly in dynamic environment, is still in its
infancy. In real natural environment the robot will find variety of situation which related multi study
from biology, physic-chemistry, engineering and robotic. Unresolved problem still find in implementa-
tion phase. Most of those could be grouped into one of the following categories:
1. Environment:

Environment with various obstacles, as a result, the environment become more realistic and com-
plicated. And also the changing of wind direction, yet, the changes in wind’s direction are very are
very limited (only 40 degrees) in comparison to the changes possible in natural environment (up to
180 degree).

2. Algorithm optimization:
The common problem using PSO is a tuning parameter for find the optimal solution. Most of the
researcher use, a cross validation or try and error tuning parameter. Further algorithm development
in simulation will include online learning (parameter) which system can learn from environment.
As our experience used EA in another problem of odor-sensing implementation, that is artificial
odor discrimination system [1, 2].
Considering an application to robots, a decision making architecture, which synthesizes interac-
tions for odor source detection and cooperative mobile behavior under constraints (i.e. error model
for GPS sensors), has to be present. Another important factor in PSO is neighborhood topology. In
our approach we used fully connected neighborhood topology. In the paper by Kennedy [11],
other topologies are described as: 1) Circle Topology and 2) Wheel Topology. We also try to ana-
lyze the feasibility conjectures referred to above, in future work.

3. Real Hardware Implementation:
An important near-term focus will be on porting the simulation to actual robots (MK-01) in a labo-
ratory experiment. Multiple autonomous mobile robots developed by Fuji Heavy Industries Ltd.

Figure 8 The proposed approach with Charged PSO can follow the changing of environment
in advance turbulence environment.

t= 10 t= 50 t= 100 t=265

A Particle Swarm-based Mobile Sensor Network 79

will use for actual robot experiment. This robot can move autonomously, that has 16 middle range
infrared sensors, eight close range infra red sensor, two actuators, a microcontroller. Additionally,
a robot can communicate each other by wireless LAN. Our robot used TGS-822 gas sensor for al-
cohol and volatile vapor detection from Figaro Inc. The sensing element of TGS-822 gas sensors is
a tin dioxide (SnO2) semiconductor that has low conductivity in clean air. In the presence of a de-
tectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A
simple electrical circuit can convert the change in conductivity to an output signal which corre-
sponds to the gas concentration. The TGS-822 has high sensitivity to the vapors of organic sol-
vents as well as other volatile vapors. It also has sensitivity to a variety of combustible gases such
as carbon monoxide, making it a good general purpose sensor. Via the ad-hoc wireless LAN, each
robot can collect the gas concentration value and choose the best one. Then the position of the ro-
bot can be determined covering camera.

Acknowledgments
The authors are grateful to Prof. J. A. Farrell from University of California, Riverside, U.S.A., for

his support advance turbulence environment source-code.

References

[1] B. Kusumoputro, H. Budiarto and W. Jatmiko,” Fuzzy-Neural LVQ and Its Comparison with Fuzzy Algorithm
LVQ in artificial odor discrimination system ,” ISA Trans. Sci. Eng. Meas. Autom, Elsevier, vol. 31, pp.395-
407, October 2002.

[2] W. Jatmiko, T. Fukuda, F. Arai and B. Kusumoputro, “Artificial Odor Discrimination System Using Multiple
Quartz Resonator Sensor and Various Neural Networks for Recognizing Fragrance Mixtures, IEEE Sensors
Journal., vol. 6. no.1, pp.223-233, Feb. 2006.

[3] W. Jatmiko, T. Fukuda, T. Matsuno, F. Arai and B. Kusumoputro,” Robotic Applications for Odor-Sensing
Technology: Progress and Challenge, WSEAS Transaction on System Issue 7, Volume 4, July 2005

[4] M. Wandel, A. Lilienthal, T. Duckett, U. Weimar, and A. Zell. Gas distribution in unventilated indoor
environments inspected by a mobile robot. In Proceedings of the IEEE International Conference on Advanced
Robotics (ICAR’03), 2003.

[5] X. Cui, C. T. Hardin, R. K. Ragade, and A. S. Elmaghraby. A swarm-based fuzzy logic control mobile
sensor network for hazardous contaminants localization. In Proceedings of the IEEE International
Conference on Mobile Ad-hoc and Sensor Systems (MASS’04), 2004.

[6] Ishida, H. Nakayama, G. Nakamoto and T. Moriizumi, T. Controlling a gas/odor plume-tracking robot
based on transient responses of gas sensors”, IEEE Sensors Journal, Vol. 5. No.3. June 2005.

[7] Adam T. Hayes, A. Martinoli and R. M. Goodman, “Distributed Odor Source Localization,” IEEE Sensors
Journal, Vol. 2. No.3. June 2002.

[8] D. Zarzhitsky, D. Spears, and W. Spears. Distributed Robotics Approach to Chemical Plume Tracing.
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'05), 2005.

[9] R. A. Russell and A. H. Purnamadjaja. Odor and airflow: Complementary senses for a humanoid robot. In
Proceedings of the 2002 IEEE International Conference on Robotics and Automation, 2002.

[10] W. Jatmiko, B. Kusumoputro, and Yuniarto, “Improving the Artificial Odor and Gas Source Localization
System Using the Semiconductor Gas Sensor Based on RF Communication”, Proc. of IEEE APCASS, October
2002.

[11] Russell C. Eberhart, and James Kennedy, Swarm Intelligence, The Morgan Kaufmann Series in Artificial
Intelligence,2001.

[12] Eberhart, R. C. and Shi, Y. "Tracking and optimizing dynamic systems with particle swarms." Proceedings of
the IEEE Congress on Evolutionary Computation (CEC 2001), Seoul, Korea. pp. 94-97, 2001.

[13] X. Hu, and R. Eberhart. “Adaptive particle swarm optimization: detection and response to dynamic systems”.
Proceedings of Congress on Evolutionary Computation, 2002. pp. 1666-1670. Hawaii, USA.

[14] T. Blackwell and J. Branke. "Multi-swarm optimization in dynamic environments." In G. R. Raidl, editor,
Applications of Evolutionary Computing, volume 3005 of LNCS, pages 489-500. Springer, 2004.

[15] Asama, H. Arai, T. Fukuda and Hasegawa T, editors. 2002, Distributed Autonomous Robotics Systems (DARS
5) Springer-Verlag, Berlin.

[16] Jay A. Farrel et all , "Filament-based atmospheric dispersion model to achieve short time-scale structure of
odor plumes," Environment Fluid Mechanics , vol. 2, pp. 143-169, 2002.

[17] J.O. Hinze, Turbulance, McGraw-Hill, New York, 1995..
[18] H. Ishida, T. Nakamoto and T. Mpriizumi,”Remote Sensing of Gas/Odor Source Localization and

Concentartion Using Mobile System”, Sensors and Actuators B 49 (1998) 52-57.

80 Wisnu Jatmiko, Kosuke Sekiyama and Toshio Fukuda

Cooperative Multi-robot Target Tracking

Boyoon Jung1 and Gaurav S. Sukhatme2

1 NavCom Technology, Inc., 20780 Madrona Avenue, Torrance, CA 90503, USA

bjung@navcomtech.com
2 University of Southern California, Los Angeles, CA 90089, USA

gaurav@robotics.usc.edu

Summary. Target tracking performance can be improved by using multiple robot trackers,

but this requires a coordinated motion strategy among the robots. We propose an algorithm

based on treating the densities of robots and targets as properties of the environment in which

they are embedded. By suitably manipulating these densities a control law for each robot is

proposed. The proposed algorithm has been tested through intensive simulations and a real-

robot experiment. First, two different versions of the approach were evaluated by studying

the performance change as the communication range among robots varies. The results showed

that our treatment of the coordination problem is effective and efficient. Second, the developed

system was tested on two Segway RMP robots, and the behaviors of the robots in a coopera-

tive tracking experiment provide evidence that the proposed method controls multiple robots

appropriately according to the target distribution change.

Key words: mobile robot, multi-robot system, cooperative target tracking.

1 Introduction

Using a mobile robot as a tracking device is beneficial because (1) a mobile robot can
cover a wide area over time, which means the number of sensors required for tracking
can be kept small, and (2) a mobile robot can re-position itself in response to the
movement of the targets for efficient tracking. In cases where the number of targets is
much larger than the number of sensors available or when sensors cannot be deployed
in advance at the correct locations, mobility is indispensable. Tracking performance
can be improved by using multiple robots, and this requires a coordinated motion
strategy among robots for cooperative target tracking.

The multiple target tracking problem using multiple mobile robots is defined as
follows:

Input Estimated poses of M robots and estimated positions of n tracked targets (out
of total N targets) in a bounded environment E (M � N)

Output Motion commands for M robots

Goal Maximize the number of tracked targets n over time T

Observation =

T∑
t=0

n(t)

N
×

1

T
× 100 (1)

Restriction No prior knowledge of the number of robots or targets, and no target
motion model.

The problem seems well-suited to a POMDP optimization framework, and an opti-
mal solution is guaranteed by solving the POMDP problem. However, this approach
is not directly applicable to a real world system. The most critical limitation is that
the size of the state space (|E|M+N) increases exponentially as the number of robots
or targets increases. Since the evaluation time of the POMDP problem is exponential
in the size of the state space, the problem becomes intractable quickly. Therefore, for
scalability, a distributed solution is preferable to the centralized, optimal solution.
Another limitation is that the optimal policy needs to be re-computed whenever the
system configuration changes (examples include adding or removing robots at run
time, or adding/removing targets at run time) which implies that the policy compu-
tation should be done in real-time. However, most optimization techniques require
a significant amount of computation and memory, and they are not suitable to real-
time application. Therefore, an on-line algorithm is preferable to the off-line, optimal
solution.

We propose a Region-based Approach as an efficient coordination method, which
distributes robots according to the target distribution. In our approach, each robot
broadcasts its location and the locations of currently tracked targets. Based on this
information and similar information gathered from other robots, each robot indepen-
dently maintains an estimate of two density distributions - the robot density and the
target density. A control law for each robot is generated by using these density esti-
mates. Communication among robots is the key enabler for multi-robot coordination,
so the effect of communication range was analyzed; we observed the performance
change as the communication range varies. The simulation results show that the pro-
posed algorithm is efficient and robust. The proposed method is also implemented
and tested using real robots to validate its applicability to a real-world, resource-
constrained system.

The paper is organized as follows. Section 2 summarizes the related work on
this topic, and the Region-based Approach algorithm is described conceptually in
Section 3. Section 4 reports the experimental results and analyzes the performance of
the proposed algorithm. The current status and possible improvements are discussed
in Section 5.

2 Related Work

Various distributed algorithms have been proposed for multi-robot coordination
with applications to multi-target tracking. The ALLIANCE architecture [8] achieves
target-assignment by the interaction of motivational behaviors. If a target was not
tracked for a while, the robot which was supposed to track the target would give up

82 Boyoon Jung and Gaurav S. Sukhatme

and another robot in a better position would take up the target. In the BLE archi-
tecture [12], if a particular robot thinks it is best suited to track a specified target, it
stops other robots from tracking the target by broadcasting inhibition signals over the
network. The Murdoch architecture [1] showed that target-assignment problem can
be solved using a principled publish/subscribe messaging model; the best capable
robot is assigned to each tracking task using a one-round auction.

There have been other approaches that control robot position without explicit tar-
get assignment, especially when the ratio of the number of robots to the number of
targets is close to 1.0. In [9,10], the configuration of a team of mobile robots was ac-
tively controlled by minimizing the expected error in tracking target positions, and a
decentralised system architecture maximizing local information gains was presented
in [2]. A reactive motion planner was reported in [7] that maximizes the shortest
distance that a target needs to move in order to escape an observer’s visibility region.

The Pursuit-Evasion problem introduced in [13] is a formally simplified tracking
problem. The goal is to find continuously-moving intruders using a single or multiple
searchers with flashlights that emit a single ray of light. [13] presents upper and
lower bounds of the number of necessary searchers in a given environment (a simple
polygon) and four measures of shape complexity of the environment (the number of
edges, the number of reflex vertices, the bushiness, and the size of a minimum guard
set). [3] extend the problem to exploit a visible area instead of a single ray of light.
Several bounds on the number of pursuers are defined and the complete algorithm
for a single pursuer case is presented.

3 Region-based Approach

The Region-based Approach is based on the following fundamental assumption:

For two comparably sized regions, more robots should be deployed in the
one with the higher number of targets.

Instead of allocating targets to each robot, robots are allocated to each region based
on the target distribution and robot distribution. The robot density and the target
density are defined for each position in an environment, and a robot is attracted to
(or repulsed from) the position based on those density estimates. For example, the
less targets a region has, the less robots the region requires, and the more robots the
current region has, the more robots in that region are free to move to other regions.
Our approach assumes the following:

Global Localization All robots share a global coordinate system so that the positions
of targets detected by different robots can be translated into a single coordinates.

Robust Tracker The cooperative tracking algorithm is decoupled from the low-level
target tracker; such a single-robot tracker is described in [5].

Bounded Environment The size of an environment is bounded by the communication
range among robots or memory constraints, not by the intrinsic limitation of our
algorithm.

Cooperative Multi-robot Target Tracking 83

3.1 Relative Density Estimates as Attributes of Space

In order to compute robot and target density values at each position, models for robot
position, target position, and region boundary are required. Based on the output of the
localization algorithm, the position of a robot can be modeled by a delta function or
a Gaussian function. When the localization algorithm returns an exact position (xi)
as the best estimate, the robot position is modeled using a delta function (Eqn. 2).
When the localization algorithm returns a center position (μi) as the best estimate
and a covariance matrix (Σi) as uncertainty estimate, a bi-variate Gaussian model
(Eqn. 3) is adequate. The robot distribution r over an environment is computed by
summing the individual models, which are collected through communication among
robots at run-time.

r =
∑

i

δ(xi) (2)

r =
∑

i

N(μi, Σi) (3)

In similar way, the target distribution can be computed. Based on the output for-
mat of an underlying target tracker, a delta function model or a bi-variate Gaussian
model can be used. The target distribution t over an environment is computed as fol-
lows:

t =
∑

i

δ(xi) (4)

t =
∑

i

N(μi, Σi) (5)

To define the density estimates, a region boundary R of a unit space must be
defined. We consider two possibilities: a binary model and a Gaussian model. The
binary model (Eqn. 6) defines a region boundary with radius r, which is conceptually
simple and computationally cheap. A Gaussian model (Eqn. 7) can be used to define
a region boundary when a differentiable output is preferred. The Gaussian distribu-
tion is zero-centered and the boundary is determined by a covariance matrix Σ.

R(x) =

{
1.0 if |x| < r

0.0 otherwise
(6)

R(x) = N(0, Σ) (7)

The final density distribution of robots (Dr) or targets (Dt) is computed using a
convolution of the robot location and region extent:

Dr(x, y) = r ⊗ R =

∞∫
−∞

∞∫
−∞

r(τ, ρ)R(x − τ, y − ρ)dτdρ (8)

Dt(x, y) = t ⊗ R =

∞∫
−∞

∞∫
−∞

t(τ, ρ)R(x − τ, y − ρ)dτdρ (9)

84 Boyoon Jung and Gaurav S. Sukhatme

20 40 60 80 100

20

40

60

80

100

robot
target

(a) object positions (b) robot density distribution (c) target density distribution

Fig. 1. Density distributions

(a) urgency distribution (b) cost function (c) utility distribution

Fig. 2. Utility distribution

Figure 1 (b) and Figure 1 (c) show the final density distribution examples with Gaus-
sian models (Eqn. 3, 5, and 7) when the positions of robots and targets are as shown
in Figure 1 (a).

3.2 Urgency Distribution and Utility

Given the distribution of robots Dr and the distribution of targets Dt in a bounded
environment, we define the urgency distribution u:

u(x, y) =
Dt(x, y)

Dr(x, y)
(10)

Figure 2 (a) shows the urgency distribution calculated using Gaussian models. As
shown in Figure 1 (a), there are three groups of targets: six targets around the co-
ordinate (30, 30), two targets around (80, 80), and a single target at (75, 35). The
first two groups are being observed by robots, and those regions have relatively low
urgency values as shown in Figure 2 (a). However, the last group is not being tracked
by any robot, so the urgency value of the region is very high, which means the region
’requires’ a robot to migrate towards it.

A cost function cr for each robot can be combined to compute the final utility
function for robot control instead of simply using the urgency distribution as an util-
ity function. For example, the cost of motion can be factored in by multiplying a
function which is inverse-proportional to the travel distance. Figure 2 (b) shows an

Cooperative Multi-robot Target Tracking 85

example; the inverse cost function for the robot at (20, 80) has a peak at the current
position of the robot since the cost of traverse is zero, and it decreases as it moves
further from the current position because the cost of traverse increases. The final util-
ity distribution function is defined as:

U(x, y) = u(x, y) ×
1

cr(x, y)
(11)

It is worth noting that each robot maintains a utility distribution independently, and
thus each robot would have a different utility distribution from others because of the
cost function term cr. Since the urgency distribution u is calculated using the position
information of robots and targets, every robot would maintain the same u distribution
when global communication is available. However, the different positions of robots
cause different costs for a region, and eventually diverse behaviors for robots are
generated.

The final utility distribution for the robot at the coordinate (20, 80) is shown in
Figure 2. Intuitively, the region at the coordinate (75, 35) would attract the robot
since it has the highest utility value.

3.3 Distributed Motion Strategy

Given the utility distribution, we define two motion strategies. If only local planning
is desired, then one possible motor command is a gradient descent method on the
utility function as follows:

ẋ = −∇U (12)

If global planning is preferred, then the peak position of the utility distribution can
be a goal position:

x′ = arg max
x

U(x) (13)

Each robot plans its motion and executes it independently in a distributed manner,
and there is no explicit negotiation between robots. However, by sharing the position
information of robots and targets, these motion plans are coupled.

4 Experimental Results and Discussion

4.1 Effect of Communication Range

The most critical factor in the performance of the Region-based Approach is the
communication range among robots. Since each robot estimates the robot and the
target densities through communication and the control law is computed based on
the estimates, the effectiveness of its motion depends critically on the accuracy of
the estimates. Therefore, we studied how the performance of the proposed algorithm
degrades as the communication range shrinks through intensive simulations.

The environment was a 50×50 meter sized empty space, and the grid size for the
utility function representation was fixed to one meter. The number of robots and tar-
gets were fixed to three and twelve respectively, and the target motions were random.

86 Boyoon Jung and Gaurav S. Sukhatme

Inf 48 40 32 24 16 8
30

32

34

36

38

40

42

44

46

48

50

52

Communication Range (meter)

O
bs

er
va

tio
n

(%
)

Global Maximum
Local Gradient
COG Following

Fig. 3. Performance comparison of three coordination methods

In order to remove the effect of the underlying low-level tracker, an omni-directional,
perfect sensor with 8-meter sensing range was assumed. The communication range
varied from infinity to 8 meters in steps of the sensor range. Each configuration ran
for 10 minutes a total of 10 times, and the average performance was taken as the final
result.

Three different coordination methods were compared. The COG Following method
controls a robot to be positioned at the center of a tracked target group so that the
number of tracked targets is maximized locally. There is no communication among
robots in this method. The Local Gradient method adopts the Region-based Ap-
proach with the motion strategy in Eqn. 12, which performs hill-climbing on the
utility distribution function. Similarly, the Global Max method generates a control
law based on the Eqn. 13, which controls a robot to move toward the most urgent
region constantly.

The experimental results are shown in Figure 3. The Global Max method showed
the best performance for all configurations; it was clearly shown that its performance
degrades in inverse proportion to the communication range as expected. When the
communication range was short, there was no significant performance difference be-
tween the Global Max and Local Gradient methods. In contrast, the effect of the
communication range on the performance of the Local Gradient method was not
noticeable except when the communication range was 8 meters. It can be under-
stood that the Local Gradient method focuses more on the targets in the vicinity
of a robot than those further away. Both methods outperformed the COG Following
method, which provides evidence that coordination helps, and that the Region-based
Approach is effective and efficient. It is also notable that the standard deviation of
the COG Following method is larger than the other methods. This means that it is
sensitive to the initial condition and the target motions. The Region-based Approach
showed more stable performance.

Cooperative Multi-robot Target Tracking 87

(a) (b) (c)

(d) (e) (f)

 5

 10

 15

 20

 25

 10 15 20 25 30

N
or

th
in

g
[m

et
er

s]

Easting [meters]

"Segway-RMP-1"

"Segway-RMP-2"

(g) (h) (i)

Fig. 4. Snapshots of two Segway RMP robots tracking people cooperatively

4.2 Real-Robot Experiment

The proposed algorithm was implemented and tested using real robots. The system
consists of four components: target tracking, localization, cooperative motion plan-
ning, and navigation. The target trackers described in [5] were adopted for multiple
target tracking. For robot localization, the data from a differential GPS and an IMU
were combined using an Extended Kalman Filter. The tracking results (the target
positions in a local coordinate system) and the tracker information (the robot pose
in the global coordinate system) were broadcast for cooperation over a wireless net-
work. The Region-based Approach described in Section 3 was utilized for coopera-
tive motion planning. Due to limited computational power, the delta function models
(Eqn. 2 and 4) and the binary model (Eqn. 6) were used to compute the utility dis-
tribution. Given its current pose (from the Localizer module) and the goal position
(selected by the Region-based Approach), each robot was programmed to perform
point-to-point, safe navigation using VFH+ (Vector Field Histogram +) [11].

The implemented system was tested using two Segway RMP robots. The envi-
ronment was an open space (30x30 meters). The targets were three pedestrians, and
they moved at regular walking speeds in the open area. The grid size of the urgency

88 Boyoon Jung and Gaurav S. Sukhatme

function representation was fixed to one meter. The behaviors of two robots were
inspected while the number of targets changed dynamically.

The snapshots of the two Segway RMP robots tracking people cooperatively are
shown in Figure 4. The robots started from the same position, and there were three
people walking in front as shown Figure 4 (a). The people split into two groups as
shown in Figure 4 (b): two people walking together on the left, and a single person
walking in the opposite direction. As a result, two robots also split, and started to
track each group respectively. Each robot broadcast its own pose and the position of
tracked targets. When the single person stopped moving (Figure 4 (e)), the robot that
was tracking the person lost the target and stopped. At this point, the utility value
of the robot’s position become low, and the robot decided to help the other robot as
shown in Figure 4 (f). Finally, the robot arrived in the area whose utility value was
the maximum, and helped the other robot track the targets as shown in Figure 4 (h).

The trajectory of the two robots during the experiment is shown in Figure 4 (i).
The robots started from the position (28, 17). The first robot tracked the group of
two people and moved to the position (11, 24). The second robot tracked the single
person and moved to the position (18, 5). When the single person stopped moving,
one of the peaks of the utility distribution disappeared, and the second robot moved
to the position (10, 22) as a result.

5 Conclusion

In this paper, we proposed an algorithm for multi-robot coordination with applica-
tions to multiple target tracking. The proposed algorithm treats the densities of robots
and targets as properties of the environment in which they are embedded, and a con-
trol law for each robot is generated by suitably manipulating these densities. Since
the proposed mechanism is on-line, distributed and expandable, it can be applied
for various sensor configurations. For example, a heterogenous sensor network can
adopt the mechanism with minimal modification, and sensors can be added to (or
subtracted from) a tracking network on the fly without stopping operation.

Two experiments has been performed to evaluate the proposed algorithm. First,
two different versions of the Region-based Approach were compared using various
configurations. Since the communication range is the most critical factor for multi-
robot coordination, we varied the communication range and investigated the overall
performance change. The experimental results showed that both methods outper-
formed the ‘naive’ local-following method, and it was clearly shown that our treat-
ment of the coordination problem is effective and efficient. The developed system
was also tested on two Segway RMP robots, and the behaviors of the robots in the
cooperative tracking scenario provide evidence that the Region-based Approach con-
trols multiple robots appropriately according to the target distribution change.

As an implementation issue, the Region-based Approach described in this paper
can be specialized by exploiting the characteristics of an environment. For example,
when the topology of the structured environment is known in advance, the represen-
tation of a utility distribution can become discrete and sparse as described in [4].

Cooperative Multi-robot Target Tracking 89

When the environment is unstructured, the grid-based representation can be adopted
as described in [6].

Acknowledgment

This work is supported in part by DARPA grants DABT63-99-1-0015, and 5-39509-
A (via UPenn) under the Mobile Autonomous Robot Software (MARS) program,
and NSF CAREER grant IIS-0133947.

References

1. Brian Gerkey and Maja J Matarić. Principled communication for dynamic multi-robot

task allocation. In D. Rus and S. Singh, editors, Experimental Robotics, volume LNCIS

271 of VII, pages 353–362, Springer-Verlag Berlin Heidelberg, 2001.
2. Ben Grocholsky, Alexei Makarenko, Tobias Kaupp, and Hugh F. Durrant-Whyte. Scalable

control of decentralized sensor platforms. In International Workshop on Information
Processing in Sensor Networks, pages 96–112, Palo Alto, CA, 2003.

3. Leonidas J. Guibas, Jean-Claude Latombe, Steven M. LaValle, David Lin, and Rajeev

Motwani. A visibility-based pursuit-evasion problem. International Journal of Compu-
tational Geometry and Applications, 9(5):471–494, October 1997.

4. Boyoon Jung and Gaurav S. Sukhatme. Tracking targets using multiple robots: The effect

of environment occlusion. Autonomous Robots, 13(3):191–205, 2002.
5. Boyoon Jung and Gaurav S. Sukhatme. Detecting moving objects using a single camera

on a mobile robot in an outdoor environment. In International Conference on Intelligent
Autonomous Systems, pages 980–987, The Netherlands, March 2004.

6. Boyoon Jung and Gaurav S. Sukhatme. A generalized region-based approach for multi-

target tracking in outdoor environments. In IEEE International Conference on Robotics
and Automation, pages 2189–2195, New Orleans, LA, April 2004.

7. Rafael Murrieta-Cid, Héctor González-Baños, and Benjamı́n Tovar. A reactive motion

planner to maintain visibility of unpredictable targets. In the Proceeding of IEEE Inter-
national Conference on Robotics and Automation, pages 4242–4247, May 2002.

8. Lynne E. Parker. Cooperative robotics for multi-target observation. Intelligent Automation
and Soft Computing, special issue on Robotics Research at Oak Ridge National Labora-
tory, 5(1):5–19, 1999.

9. John Spletzer and Camillo Taylor. Dynamic sensor planning and control for optimally

tracking targets. International Journal of Robotics Research, 22(1):7–20, January 2003.
10. Ashley Stroupe and Tucker Balch. Value-based observation with robot teams (VBORT)

using probabilistic techniques. In Proceedings of the International Conference on Ad-
vanced Robotics, Coimbra, Portugal, June 2003.

11. Iwan Ulrich and Johann Borenstein. VFH+: Reliable obstacle avoidance for fast mobile

robots. In Proceeding of the IEEE International Conference on Robotics and Automation,

pages 1572–1577, Leuven, Belgium, May 16–21 1998.
12. Barry B. Werger and Maja J. Matarić. Broadcast of local eligibility for multi-target ob-

servation. In Proceedings of Distributed Autonomous Robotic Systems, pages 347–356,

2000.
13. Masfumi Yamashita, Hideki Umemoto, Ichiro Suzuki, and Tsunehiko Kameda. Searching

for mobile intruders in a polygonal region by a group of mobile searchers. In Symposium
on Computational Geometry, pages 448–450, 1997.

90 Boyoon Jung and Gaurav S. Sukhatme

A Comparative Study of Market-Based and

Threshold-Based Task Allocation

Nidhi Kalra1 and Alcherio Martinoli2

1 Robotics Institute, Carnegie Mellon University nkalra@cmu.edu
2 Swarm-Intelligent Systems Group, École Polytechnique Fédérale de Lausanne
alcherio.martinoli@epfl.ch

In this paper we compare the costs and benefits of market-based and threshold-
based approaches to task allocation in real world conditions, where informa-
tion and communication may be limited or inaccurate. We have performed
extensive comparative experiments in an event-handling domain. Our results
indicate that when information is accurate, market-based approaches are more
efficient; when it is not, threshold-based approaches offer the same quality of
allocation at a fraction of the expense. Additionally, both approaches are ro-
bust to low communication and task perception ranges in our experimental
domain.

1 Introduction

Multirobot coordination has become a popular area of research and advanced
significantly in recent years. Researchers have developed a wide range of co-
ordination approaches to harness the many benefits of robot teams (including
speed, robustness, flexibility, and the ability to complete a wider range of
tasks) in a variety of challenging real-world application domains. Neverthe-
less, before multirobot systems can be used extensively, it is imperative to
understand the tradeoffs between the numerous coordination schemes.

We are interested in particular in understanding the tradeoffs between
self-organized approaches and intentional approaches to multirobot task al-
location in real-world conditions. Self-organized approaches are fully decen-
tralized and achieve complex collective behavior from the local interactions of
many simple individuals. Robots choose their actions independently and asyn-
chronously using positive and negative feedback mechanisms and randomness.
Additionally, interactions between agents are often modulated by signs left in
the environment or by local, broadcast communication. Threshold-based ap-
proaches, in particular, are popular self-organized solutions to multirobot task
allocation; in such approaches, a robot’s choice of activity is modulated by
a perception of stimulus or demand for a task and its response threshold

92 Nidhi Kalra and Alcherio Martinoli

for that task. Alternatively, in intentional approaches, robots are typically
complex and coordinate with the explicit intent of achieving a team goal.
Market-based approaches, are popular intentional approaches to multirobot
task allocation. In such systems, robots act as self-interested agents participat-
ing in a virtual market economy and allocate tasks by buying and selling them
over the market. These approaches exploit points of centralization in the form
of auctions to produce allocations. In general, self-organized approaches such
as threshold-based algorithms consume fewer communication and computa-
tion resources to create a division of labor, while intentional approaches such
as market-based systems consume more resources but also tend to produce
more efficient allocations.

Little work has been done to truly understand the costs and benefits of
exploiting communication and points of centralization for real-world task allo-
cation. In this paper, we highlight concepts and results from our comparative
study of the performances of market-based and threshold-based task alloca-
tion schemes under realistic conditions with limited communication, noisy
state and task estimation, and limited task perception. We show how such
conditions affect each approach and make to recommendations for using these
allocation methods. Our full study is published in a technical report [1].

2 Threshold- and Market-Based Task Allocation

Given a team of robots with a common goal and a finite set of resources,
the challenge of task allocation is to determine how the team’s global goal
be divided up and assigned to individual team members so that some global
objective is met.

In threshold-based approaches, each robot has an activation threshold for
each task that needs to be performed. It continuously perceives the stimulus
for each task; this stimulus reflects the urgency or importance of perform-
ing that task. When a robot perceives that the stimulus for a particular task
exceeds its threshold, it begins completing the task. When the stimulus falls
below this threshold (e.g., when the task is completed), the agent stops ex-
ecuting those behaviors. This response can be deterministic or probabilistic.
Threshold-based task allocation has been demonstrated in a number of do-
mains such as foraging [2] and aggregation [3].

Alternatively, in market-based systems, robots act as self-interested agents
in pursuit of individual profit. They are paid in virtual money for tasks they
complete and must pay in virtual money the value of the resources they con-
sume. Tasks typically are distributed through auctions held by an auctioneer;
this auctioneer is either a supervisor agent or one of the robots. Robots com-
pete through bidding to win those tasks that they can complete inexpensively
and thus maximize their profit. This price-driven redistribution simultane-
ously results in better team solutions. Market-based task allocation has also

Market-Based and Threshold-Based Task Allocation 93

been proven on a number of domains including as exploration [4] and object
manipulation [5].

Prior comparisons of these approaches include work by Gerkey and Matarić
[6] in which they discuss the theoretical aspects of these approaches but not
their performance in realistic conditions. Campos et. al. [7] and Cicirello and
Smith [8] compare the two on the problem of allocating trucks to paint booths;
however, they investigate the benefits of encoding the problem as a market-
based approach or a threshold-based approach, but not the costs and benefits
of centralization and communication. We believe that no prior work compares
these approaches along the dimensions in which we are interested.

3 Formulation of Study

In this section we describe several key components of our study, including
the domain, axes and metrics for evaluation, and our implementation of the
algorithms.

3.1 Event-Handling Domain

We use the event-handling domain as the framework for our study. In this
domain, events occur at unpredictable times and locations throughout the
environment and must be handled by the robots. In real-world scenarios,
these events might correspond to machine malfunctions in a factory or re-
quests for package pick-up in a delivery service. Respectively, handling could
involve robots fixing broken machines and making deliveries. Event-handling
can also be mapped onto domains that are currently solved by market-based
approaches (e.g., exploration [4]) and threshold-based approaches (e.g., for-
aging [2]).

Because market-based approaches are primarily useful when task and
robot state knowledge is available [1], we define event-handling precisely:
robots can sense the locations of individual tasks and can estimate their own
positions. The resulting task allocation problem is to assign particular events
to individual robots. In some market-based approaches, a single robot may
be allocated multiple tasks and keeps a schedule of these tasks. However, in
threshold-based approaches, robots are almost always limited to one-task-per-
robot (OTPR) allocation because there is no clear way to enable scheduling
with response thresholds (this would be an interesting area of future work).
Thus, in fairness, we must use OTPR allocation in the market-based ap-
proach as well. Indeed, this formulation is frequently used for simplicity in
many market-based approaches (see Dias et. al. [9] for examples).

3.2 Axes, Metrics, and Experiment Parameters

We are interested in comparing the two candidate approaches under a variety
of real-world conditions. Specifically, we consider the effect of poor accuracy

94 Nidhi Kalra and Alcherio Martinoli

in state estimation, poor accuracy in task localization, reduced perception
range, and reduced communication range. Our goal is to compare both the
quality of allocations produced and the cost of producing those allocations.
We measure quality in terms of the number of events handled and the total
distance traveled by the team over a fixed time window. We measure cost in
terms of the computation requirements (i.e. algorithm complexity and empir-
ical running time) and communication requirements (i.e. number of messages
and the size of messages).

In all of our experiments, we use a 100 × 100 unit environment and run
each trial to 100 iterations. There are a fixed number of robots that must
handle a constant number of events; whenever an event is handled, a new one
randomly appears to replace it. All our experiments were conducted using
a point simulator in which robots are represented by their current locations
and were run on a Linux machine with a 2.4 GHz processor and 512 Mb of
memory.

3.3 Algorithms

Both market-based and threshold-based approaches have a number of param-
eters that can affect performance. We conducted numerous experiments to
find the best formulation for each approach. Due to space considerations, we
limit our discussion to resulting algorithms; full experiments can be found in
our tech report [1].

In the market-based approach, our goal is to allocate an event to the robot
that is closest to it. We compared two auction/bidding strategies. In the first,
called M1, we auctioned events in random order and robots bid their distances
to the event being auctioned. In the second, called M2, events were auctioned
in order of increasing distance to their nearest robot. The corresponding bid-
ding function is straightforward: a robot r without an assigned event bids a
pair {e, d}, where e is r’s closest unassigned event and d is its distance to
e. The robot that submit the bid with minimum distance d is assigned the
corresponding event. In both approaches, only robots without assignments
and with information about the event being auctioned place bids, rounds of
auctions are held until all events are allocated or until no bids are received,
and a new round of auctions is held whenever one event is completed (this
provides a reallocation method). Furthermore, robots move with perfect actu-
ation directly to the allocated event; if no event is allocated to a robot, it does
nothing until the next auction round. Our results showed that ordered auc-
tions improve performance significantly but also consume more computation
resources. In the remainder of our experiments, we use M2 as our represen-
tative market-based algorithm. We also explored the use of a reserve price,
i.e. the maximum value for d at which the auctioneer will award an event.
This reserve keeps events from being allocated to very far away robots when
all nearby robots are assigned to other events; the idea is that this event
will be handled sooner if we simply wait for a nearby robot to finish with its

Market-Based and Threshold-Based Task Allocation 95

0 10 20 30 40 50
0

50

100

150

200

250

300

0 10 20 30 40 50
400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of Robots Number of Robots

E
v
e
n
ts

H
a
n
d
le

d

D
is

ta
n
c
e

Fig. 1. Baseline comparison of the number of events handled vs. number of robots
(left) and distance traveled vs. number of robots (right). We use a 100×100 environ-
ment with 20 events and compare over 100 trials with 100 iterations each. Robots
have perfect task information, perfect actuation, and infinite communication range.
Error bars here and throughout this paper represent one standard deviation.

current event. We found that a reserve price equal to the expected distance
between robots results in the best performance.

In the threshold-based approach, our goal is for each robot to handle the
event that it is closest to, without duplicating another robot’s work. Thus, we
formulated the stimulus σ(r, e) produced by an event e for robot r as in Eq.
1.a, where d(r, e) is the distance between the robot and the event.

(1.a) σ(r, e) =
1

d(r, e)
(1.b) θe =

1
〈Dr〉 (1.c) pe =

σ(r, e)n

σ(r, e)n + θn
e

We also explored the use of different thresholds and found that the best per-
formance was achieved when the threshold θe for every event e was equal to
the inverse of expected distance 〈Dr〉 between robots (Eq. 1.b). This thresh-
old value is consistent with the best reserve price for the market. We then
explored the use of deterministic versus probabilistic response. In the deter-
ministic response, robots respond deterministically to the event e that has
the largest stimulus above the threshold. In probabilistic response, they re-
spond with probability pe as in Eq. 1.c, where θe is the threshold and n is
the nonlinearity of the response. We found that deterministic response out-
performed all probabilistic response methods (i.e. for all finite values of n).
We also experimented with deterministic versus random movement. We found
that deterministic movement is always preferable, except when a robot is very
close to its teammate and chances are high that they are handling the same
event. Then, random movement for a short period of time reintroduces ran-
domness into the system and produces better results.

To summarize, the best market-based approach uses ordered auctions and
a non-zero reserve price; the best threshold-based approach uses a non-zero

96 Nidhi Kalra and Alcherio Martinoli

Table 1. Comparing the computational and communication complexity. Commu-
nication complexity refers to the number of packets of information that must be
exchanged between teammates. The size of each packet is constant. Here, r is the
number of robots and e is the number of events.

Algorithm Computational Complexity Communication Complexity

Threshold O(re) –
Market O(relog(e)) O(re)

threshold, deterministic response, and a mixed actuation strategy. Figure 1
presents a baseline comparison of our final threshold-based and market-based
algorithm in terms of the number of events handled, the total distance traveled
by the team, and the computation time required. The market-based approach
always handles more events while consuming less energy traveling than the
threshold-based approach; this benefit comes at the cost of significantly more
computation time.

Table 1 summarizes the algorithm and communication complexity for these
approaches. In the threshold-based approach, each robot computes its distance
to each event once per allocation, so the complexity is O(re) per allocation
round, where r is the number of robots and e is the number of events. The
same is true for the market-based approach; however, robots must also sort
the events in order of increasing distance so they always bid on the closest
event. Since most sorting algorithms run in logarithmic time of the number
of items to sort, the total complexity is O(relog(e)), and we expect that the
linear components overshadow the logarithmic component. This is supported
by our empirical results as well. In terms of communication requirements, the
complexity (e.g. the number of packets that must be sent) for the market-
based approach is O(re) because each robot sends one bid per event and the
auction sends one award announcement to each robot per event. Additionally,
the size of the messages sent between robots is constant. The threshold-based
approach as we are currently using it has no communication requirements.

4 Comparative Results and Discussion

In this section, we explore the effects of imperfect state and task estimation,
reduced communication range, and reduced perception range on market-based
and threshold-based algorithms.

4.1 Imperfect State and Task Estimation

Local state estimation is imperfect in all real-world domains and usually af-
fects the quality of allocations. To quantify the effects of poor state estimation
in the event handling domain, we add Gaussian noise to each robot’s posi-
tion estimate during allocation. We still allow perfect actuation and perfect

Market-Based and Threshold-Based Task Allocation 97

−5 0 5 10 15 20 25 30
0

50

100

150

200

250

300

−5 0 5 10 15 20 25 30
600

800

1000

1200

1400

1600

1800

2000

2200

2400

Gaussian Noise Gaussian Noise

E
v
e
n
ts

H
a
n
d
le

d

D
is

ta
n
c
e

Fig. 2. Comparison of the number of events handled (left) and total distance trav-
eled (right) vs. the standard deviation of Gaussian noise added to the robots’ local
position estimation. These results are almost identical to those obtained when adding
the same noise to task position estimation (not shown). We use a 100 × 100 envi-
ronment with 20 events and 10, 20, and 40 robots and compare over 100 trials with
100 iterations each.

task information to ensure that results are purely a product of localization
error. This scenario is feasible if there is an overseeing agent that has access
to task information and communicates that information to the robots; the
robots themselves may have very poor perception.

Figure 2 plots the number of events handled by each approach (left)
and the total distance traveled (right) against the standard deviation of the
Gaussian noise. Qualitatively, the allocations of both algorithms degrade in
the same way. Quantitatively, we see that the threshold-based approach and
market-based approach have the same performance in terms of the number
of events handled once the standard deviation of the error exceeds approxi-
mately 8. This ten percent error is a reality for many mobile robotic platforms,
particularly smaller platforms without accurate proprioceptive sensors. The
market-based approach is consistently less-costly in terms of distance when
there are equally many or more robots than events. When there are fewer,
the two approaches perform similarly because all robots are almost always
moving to handling events.

Robots may also not have perfect task information, for instance when the
supervisor or user does not have accurate information about the location of
tasks but the tasks must still be allocated. In another set of experiments, we
allow robots to have perfect actuation and perfect localization. This scenario
is feasible if robots have poor or no task perception and the supervisor’s
task perception is also not perfect. However, the robots do have accurate
proprioceptive sensors that provide accurate localization. Both qualitatively
and quantitatively, the results (not shown) are nearly identical to the results
when we compared the effect of localization error. That the effect of poor
position estimation is the same regardless of whether it is the robots’ or tasks’
positions highlights the symmetry of our problem. That is, allocating robots
to events (as the market-based approach does) or events to robots (as the
threshold-based approach does) results in almost the same allocation problem.

98 Nidhi Kalra and Alcherio Martinoli

−10 0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

−10 0 10 20 30 40 50 60 70
500

1000

1500

2000

2500

3000

Communication Range Communication Range

E
v
e
n
ts

H
a
n
d
le

d

D
is

ta
n
c
e

Fig. 3. Comparison of the number of events handled (left) and the total distance
traveled (right),vs. the radius of the communication range. We use a 100 × 100
environment with 20 events and 10, 20, and 40 robots and compare over 100 trials
with 100 iterations each.

Finally, when we consider these results and the cost of market-based al-
locations, its clear that market-based allocations are usually not worth the
computation and communication cost unless accurate local state and task
information is available.

4.2 Communication

Communication is essential for market-based approaches to perform auctions.
However, in the real world, market-based approaches must be robust to re-
duced communication. Indeed, it is likely that not every member of a team
will be able to communicate with every other member or with a central super-
visor, if there is one. We experiment with the communication range to test the
robustness of the market-based approach in this respect. Specifically, we allow
auctions among only a connected set of robots. Within a connected set, we
simulate a leader holding auctions for all the tasks for which it is aware. This is
analogous to robots having perfect, long-range perception of the events in the
environment (and no supervisor) but having limited communication range.

Figure 3 compares the performances of the market-based and threshold-
based approaches with respect to the number of events handled (left) and the
total distance traveled (right) by the team. First notice that the market-based
approach quickly reaches its best performance in terms of events with a fairly
short communication range. For 40 robots and 20 events, a range of 10-15
units suffices to produce the best results. Markets also reach their minimum
total distance traveled with a fairly short communication range (about 20
units for 40 robots). The best communication range for a scenario depends
on the robot and event densities. By comparing the minimum communication

Market-Based and Threshold-Based Task Allocation 99

range required to achieve the maximum performance (in terms of events) and
the size of the auctions at that range (not shown for space considerations), we
found that maximum performance can be achieved with less than a third of the
total number of robots participating on average in each auction. Specifically,
a team of 10, 20, and 40 robots achieved maximum performance when the
average auction size was about 2, 6, and, 15. This highlights that this market-
based approach is fairly robust to short communication ranges.

Notice that, in this domain, the strongest candidates for a particular event
are likely to be in close proximity to each other and to that event. Therefore,
these candidate robots are also likely to be able to communicate with each
other and thus perform an allocation of the task even when the overall com-
munication range is low. This suggests that the robustness demonstrated here
may be somewhat specific to spatial domains such as this in which spatial
proximity to a teammate correlates highly with the likelihood of competing
with that teammate for tasks. This important property is common to many
domains including exploration, mapping, and aggregation.

Thirdly, when market-based approaches have no communication, their per-
formance degrades significantly. When a robot cannot communicate with any
teammates, it will be the only member of the communicating set and thus
will hold its own auctions. However, the only bid in the auction will be its
own. In effect, the robot will be moving towards its closest event, provided
that closest event is within the reserve price. Without communication, the
market essentially becomes the threshold-based approach, but with the added
expense of internal auctions to achieve the same result.

4.3 Task Perception

Often, it is not possible for a supervising agent to be aware of the tasks
in the environment, for instance in exploration or search and rescue. Thus,
it is important for multirobot task allocation schemes to be able to function
without a priori task knowledge and exploit task perception during execution.

We experimented with low task perception by varying the range at which
robots can detect events. Figure 4 plots the quality of allocation versus the
radius of perception. Here, we compare the threshold-based approach against
three market-based approaches that assume different communication scenar-
ios. Firstly, we assume very poor communication (range of 5), but allow robots
to share perceived event information. Secondly, we allow infinite communica-
tion and again allow robots to share event information. Thirdly, we allow
infinite communication but only allow robots to bid on events that they per-
ceive on their own. These three scenarios highlight how poor perception might
be improved by better communication and information sharing.

Notice that again the minimum perception range required to achieve maxi-
mum performance is quite short, a range of 20 suffices for all approaches under
all conditions. We believe this robustness is also somewhat specific to spatial
domains such as this. In the threshold-based approach, as long as a robot

100 Nidhi Kalra and Alcherio Martinoli

0 10 20 30 40 50
0

50

100

150

200

250

300

0 10 20 30 40 50
0

500

1000

1500

2000

2500

Perception Range Perception Range

E
v
e
n
ts

H
a
n
d
le

d

D
is

ta
n
c
e

Fig. 4. Comparison of the number of events handled (left) and the total distance
traveled (right) vs. the radius of the perception range, for the threshold based ap-
proach and three variants of the market based approach: one with poor communica-
tion and local bidding, one with infinite communication and local bidding, and one
with infinite communication and global bidding.

can perceive its single closest event, it can begin handling that event. For the
market, there is additional benefit in perceiving other nearby events in case
a robot does not win the auction for its single closest event. In these exper-
iments, a robot’s expected distance to its closest event is approximately 12.
Thus, significantly greater perception range is not required for sufficient per-
formance. This conclusion is further supported by the fact that performance
is not improved in the market-based approach by robots sharing information
about perceived tasks and bidding on all events rather than just bidding on
locally perceived events. The idea is that if a robot did not perceive an event,
it is probably not the best candidate to handle that event. Instead, we at-
tribute the difference between the market-based approaches seen here to the
increased communication range.

5 Conclusions

In this paper we have compared the performances of a self-organized and an
intentional approach to multi-robot task allocation. Specifically, we compare
the costs and benefits of exploiting points of centralization as done in market-
based approaches to fully distributed threshold-based approaches in real world
conditions. We evaluate how accuracy in local state and task estimation, com-
munication range, and task perception range affect the quality of allocations
on an event handling domain.

Our results indicate that when information is accurate, market-based ap-
proaches are more efficient (though threshold-based approaches with commu-
nication must still be considered). When information about tasks and local
state is not accurate, market-based approaches may not be worth the added
expense; rather, threshold-based approaches offer the same quality of alloca-
tion at a fraction of the expense. Additionally, both approaches are robust
to low communication and task perception ranges. We hypothesize that this

Market-Based and Threshold-Based Task Allocation 101

is in part due to the spatiality of our experimental domain, a property that
is common to a number of real-world domains. Furthermore, although our
experiments use specific instances of these algorithms, we believe the results
can be generalized to other variations since many of those we explored (e.g.
probabilistic response thresholds) [1] follow similar trends.

In the near future, we hope to verify the results of our microscopic sim-
ulations with a realistic simulator. In the longer term, we hope to perform
experiments with real robots.

Acknowledgments
This work was carried out at EPFL where Nidhi Kalra was sponsored by an
EPFL graduate student fellowship. Alcherio Martinoli is funded by a Swiss
National Science Foundation Grant, contract No. PP002-68647.

References

1. N. Kalra and A. Martinoli, “A comparative study of market-based and threshold-
based multirobot task allocation,” EPFL, Lausanne, Switzerland, Tech. Rep.
SWIS-IP1, February 2006.

2. M. J. B. Krieger and J.-B. Billeter, “The call of duty: Self-organized task alloca-
tion in a population of up to twelve mobile robots,” Robotics and Autonomous
Systems, vol. 30, no. 1-2, pp. 65–84, 2000.

3. W. Agassounon and A. Martinoli, “Efficiency and robustness of threshold-based
distributed allocation algorithms in multi-agent systems,” in Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent Systems,
2002, pp. 1090–1097.

4. R. M. Zlot, A. Stentz, M. B. Dias, and S. Thayer, “Market-driven multi-robot
exploration,” Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
Tech. Rep. CMU-RI-TR-02-02, January 2002.

5. B. P. Gerkey and M. J. Matarić, “Sold!: Auction methods for multi-robot coor-
dination,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp.
758–768, Oct. 2002.

6. B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy of task alloca-
tion in multi-robot systems,” International Journal of Robotics Research, vol. 23,
no. 9, pp. 939–954, 2004.

7. M. Campos, E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg, “Dynamic
scheduling and division of labor in social insects,” Adaptive Behavior, vol. 8,
no. 2, pp. 83–94, 2001.

8. V. Cicirello and S. Smith, “Wasp-like agents for distributed factory coordination,”
Journal of Autonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 237–
266, 2005.

9. M. B. Dias, N. Kalra, R. Zlot, and A. Stentz, “Market-based multirobot coordi-
nation: A survey and analysis,” IEEE Special Issue on Multirobot Systems, 2006
(forthcoming).

Single Operator, Multiple Robots:
Call-Request Handling in Tight-Coordination Tasks

Gal A. Kaminka and Yehuda Elmaliach

The MAVERICK Group, Computer Science Department
Bar Ilan University, Israel
{galk,elmaley}@cs.biu.ac.il

Summary. Many applications of robots require a human operator to supervise and operate
multiple robots. In particular, the operator may be required to resolve call requests when robots
require assistance. Previous investigations assume that robots are independent of each other,
and allow the operator to resolve one request at a time. However, key challenges and opportu-
nities arise when robots work in tightly-coordinating teams. Robots depend on each other, and
thus a single failing robot may cause multiple call requests to be issued (by different robots).
Moreover, when the operator switches control to a robot, its teammates must often wait idly
until the call request is resolved. We contrast previous approaches with two novel distributed
methods, where the call-request resolution is itself considered a collaborative problem-solving
activity, and non-failing robots use their knowledge of the coordination to assist the operator.
We empirically compare the different approaches in several scenarios involving tight coordi-
nation, where an operator seeks a dead robot in order to assist it. Extensive experiments with
25 human operators show that this new technique is superior to existing methods, in terms of
reducing the time to locate the dead robot. We also show that the new method has much more
consistent performance across different operators.

1 Introduction
There is need for human intervention in applications of robot teams. Teams of multi-
ple robots can carry out mundane or dangerous tasks. However, many applications re-
quire occasional human intervention, either for safety reasons, or because the robots
suffer from some failure that requires resolution by the operator. Examples of such
applications include search and rescue operations [7], multi-rover planetary explo-
ration, and multi-vehicle operations [4].

Previous work has examined centralized methods in which a single operator in-
teracts with multiple robots, both for monitoring their activity, as well as for resolv-
ing contingencies [1, 3, 4, 8, 11]. Here, robots are assumed to operate autonomously,
as direct teleoperation of all robots in parallel is impractical. Robots that require
the operator’s assistance initiate or are issued call-requests, which are queued for
the operator. The operator switches control between robots, and uses single-robot
teleoperation with individual robots to resolve the call requests in some (prioritized)

This research was supported in part by BSF Grant #2002401 and by the Israel Ministry of
Science and Technology (MOST).

104 Gal A. Kaminka and Yehuda Elmaliach

sequence. This method works well in settings where the task of each robot is inde-
pendent of its peers, and thus the resolution of call requests can be done in sequence,
independently of other call-requests.

Unfortunately, these centralized methods face difficulties in coordinated tasks—
tasks that require tight, continuous, coordination between the robots, i.e., robot teams
where robots are highly inter-dependent. First, due to the coordinated nature of the
task, robots depend on each other’s execution of subtasks; thus a single point of
failure (e.g., a stuck robot) will quickly lead to multiple call requests. Second, when
the operator switches control to a robot, the other robots must wait for the resolution
of the call-request, because their own decision-making depends on the results of
the operator’s intervention. As a result, robots wait idly while the call request is
resolved. While monitoring and diagnosis techniques can help localize call-requests
to the relevant robot [5], minimizing the duration of call-request resolution remains
a key challenge.

Operating a team of coordinated robots raises the opportunity for novel reso-
lution methods, in which the responsibility for the resolution of the call request is
distributed. Rather than having the operator centrally take all actions to resolve a
failure, the otherwise-idle robot teammates can offer assistance, e.g., in providing
useful information or in carrying out sub-tasks associated with the resolution pro-
cess.

For example, consider the task of controlling three robots moving in formation
(a task requiring tight continuous coordination between robots). Suppose one of the
robots gets stuck, and is unable to move. A call request is issued to the operator,
which must identify the failure and attempt to resolve it in some fashion. Previous
approaches would have the operator attempt to teleoperate the robot in an attempt to
dislodge it, while the other robots are idle [1, 4].

However, the operator could take advantage of the other robots to resolve the
failure. First, the other robots could be used to provide video imagery of the stuck
robot from various angles. Second, the robots may assist the operator to determine
the location of the robots—since they can calculate its expected position with respect
to their own position—based on its position within the formation.

This paper takes first steps towards allowing robots to use their knowledge of the
coordination to autonomously assist the operator. We examine several variations of
a distributed control methodology in which functioning members of the team, rather
than switching to an idle mode of operation, actively seek to assist the operator in
determining the failure. The key idea is that the responsibility for resolving the call-
request is distributed among the team-members in addition to the operator.

We empirically evaluate these variations (and contrast them with previous ap-
proaches) in extensive experiments with 25 human operators, operating a team of 3
Sony AIBO robots. The experiments evaluate several concrete call-request scenar-
ios, in which a stuck robot must be located by the operator. The results show that
distributed call-request resolution leads to shorter failure-recovery times. Moreover,
the results show that a key factor in the success of the distributed method lies in the
robots’ use of organizational knowledge (i.e., their knowledge of the coordination).
However, even in cases where this organizational knowledge fails, the operator is

Single Operator, Multiple Robots 105

able to compensate. Thus the use of our distributed approach is always better than
either the operator or the robots resolving the call request by themselves. A final
promising result is that the distributed methods lead to improved operator consis-
tency, reducing the variance in performance between operators.

2 Background and Motivation
The bulk of existing work on controlling multiple robots put the operator in a central-
ized role in attending to robots, and do not often distinguish between different task
types on the basis of the coordination involved. Indeed, many existing approaches
implicitly assume that robots are relatively independent in their execution of sub-
tasks. As a result, a centralized control scheme does not interfere with task execution.
Fields [3] discusses unplanned interactions between a human and multiple robots in
battlefield settings, where otherwise-autonomous robots send call requests to the hu-
man operator to ask for assistance. These call requests are queued, and the operator
resolves the problems one by one. Fong et al. [4] propose a collaborative control sys-
tem that allows robots to individually initiate and engage in dialog with the human
operators. The call requests are queued based on priority, and resolved serially.

Myers and Morely [8] discusses an architecture called TIGER that uses a coor-
dinating agent that mediates between the operator and autonomous software agents.
This agent centralizes the information from all agents, and can present it to the oper-
ator (or provide it to other agents). The agent is also responsible for translating oper-
ators instructions to the team. This approach thus assumes that call requests may be
resolved autonomously by the robots, given appropriate high-level commands to the
team. In contrast to this approach, we believe that often, the operator must directly
interact with a failing robot or its teammates to resolve a call request. We thus allow
the operator to directly interact with any single robot, while others assist.

ACTRESS (Actor-based Robots and Equipment Synthesis System) [10] is a
multi-agent robot architecture which incorporates an interface for monitoring and
controlling robots. The operator may issue commands that affect groups or individ-
ual robots. However, ACTRESS does not utilize collaboration between the operator
and robots in resolving call requests. The operator may issue commands to robots
that assist in such resolution, but the robots are otherwise idle.

In contrast to the above centralized approaches, we believe that resolving call-
requests is in the interests of all robots currently coordinating with the robot requiring
assistance—and thus they should actively collaborate with the operator to resolve the
call request. Other work has also examined distributed paradigms for human/robot
interaction. Tews et al. [11] describe a scalable client/server architecture that allows
multiple robots and humans to queue service requests for one another. Scerri et al.
[9] describe an architecture facilitating teamwork of humans, agents and robots, by
providing each member of the team with a proxy and have the proxies act together as
a team. Our work differs from both of these investigations in that we do not attempt
to put humans and robots on equal ground. In our current work, only the human can
initiate the distribution of a task to resolve a call-request. However, once initiated,
the task is carried out by all members of the robotic team and the operator.

106 Gal A. Kaminka and Yehuda Elmaliach

Ali [2] compares different classes of human-robot team interaction (Direct man-
ual control, supervisor control, individual and group control). The parameters mea-
sured are effectiveness (in term of task completion and speed of completion), safety
(both for the robots and their environment), and ease of use. While we similarly
evaluate different interaction methods, we focus only on the case of one operator
and multiple robots. However, within those, we distinguish several different types.
Moreover, we provide new distributed resolution types.

3 Distributed Call-Request Resolution
As previously discussed, centralized resolution of call requests, by the operator, may
work well when robots’ tasks are independent of each other. However, in coordi-
nated tasks, many robots may have to stop their task execution until a call request is
resolved, because their own task execution depends on that of the robot that requires
the resolution. In such cases, it is critical to minimize the time it takes to resolve a
call request.

We thus focus on a distributed control approach, whereby the robots who depend
on the resolution of the call-request take active steps to resolve it, in collaboration
with the operator. This approach takes advantage of the robot teamwork, by turning
the resolution of the call-request into a distributed collaborative task for all involved.
Moreover, the active robots (that do not require assistance) are involved in a coordi-
nated effort with the robot requiring assistance, and thus may be in a better position
to assist it.

The key idea behind this approach is that call-request resolution is best viewed
as an instance of cooperative problem-solving. During task execution, robots col-
laborate to achieve the operator goal. If task execution is halted due to a failure, a
new collaboration problem instance is generated (resolving the call-request), which
should then be addressed by the team-members that are affected by the failure, since
they have knowledge which they can bring to bear on the problem.

Concretely, we investigate distributed resolution in repairing broken formations
of Sony AIBO 4-legged robots. Formation-maintenance tasks require tight, continu-
ous coordination between robots [6]. When a robot fails and is unable to move, the
formation cannot proceed until the failure is resolved in some fashion: Either the
robot becomes unstuck, or it is declared dead and the formation proceeds without it.
A stuck robot often cannot report on why it is stuck, due to sensory range limitations.
For instance, in the AIBO robots, the camera (mounted in the head) cannot pan and
tilt to cover the rear legs. Thus if one of them is caught by something, the robots own
sensors cannot identify it. The robot must then issue a call-request for assistance. The
operator, in turn, must use one of the other robots to locate the stuck robot and get
video imagery of its state. This act of locating the other robot and getting sufficiently
close to it is a key factor in the resolution of the call request in this case.

We contrast different resolution schemes. The first, teleoperated scheme corre-
sponds to the centralized control used in previous approaches (e.g., [1, 4]). In this
scheme, the operator would switch control from one active robot to the next, as
deemed necessary, and manually teleoperated controlled robots (one at a time) un-
til the disabled robot was found. When one robot is controlled, the others remain

Single Operator, Multiple Robots 107

idle. Another previously-investigated approach is the fully autonomous scheme, that
lets the active robots (but not the operator) search for the failing robot. This scheme
corresponds roughly to the method described in [8], where the robots receive general
instructions (here, "search!") by the operator, but are left to translate and follow these
commands autonomously, without direct manipulation.

We compare these previous approaches to two variations of distributed call-
request resolution. In the first (semi-distributed), the robots assist the operator by
autonomously beginning to search for the failing robot as soon as the call request is
received. The operator views a split-screen view of their video imagery, and as soon
as it identifies the stuck robot in one of the displays, can switch control to the robot
associated with the display. Once a robot is taken over by the operator, the others
become idle. The operator may still switch control to these other robots, but they no
longer work in an autonomous fashion.

The fully-distributed scheme mixes teleoperation and autonomous search all
through the call resolution process. The operator may teleoperate any robot at any
time, and may switch between controlled robots as needed. When not operator-
controlled, the robots first head towards the expected position of their stuck peer.
This position is estimated based on their knowledge of the formation (organizational
knowledge), under the assumption that the robot became stuck in its previous loca-
tion within the formation. If they fail to find it there, they begin a spiral search pattern
that is likely to find the robot, but may take relatively long time. Thus the operator
and the other robots work in parallel: The search ends when either an autonomous
robot or a teleoperated robot are sufficiently near the stuck robot.

The motivation for the distributed scheme is that the robots may be able to use
their knowledge of the robot’s role in the formation to attempt to locate it. The robots
that maintain the formation have improved chances to localize themselves with re-
spect to the formation, then an operator which takes control of a robot in the forma-
tion, without the situational awareness of the robots. On the other hand, the operator
has superior inference and vision, and may be able to locate the stuck robot in the
video imagery, even in cases where the robots would be unable to do it.

4 Experimental Evaluation of Call-Request Resolution Methods
We now turn to empirically evaluate these call-request resolution schemes with hu-
man operators. We use all schemes in failure scenarios in the context of a triangular
formation of three robots. In each of the failure cases, we disable one of the robots
to simulate a catastrophic failure, not letting it move or communicate. In accordance
with previous approaches, a call-request is then issued to determine the whereabouts
of the failing robot. The robots and operator then begin the search process as de-
scribed above. The search stops when any robot is within a predetermined distance
of its failing teammate.

We examine three scenarios. In all, the right follower robot was disabled, and
color marked to allow its detection by the other robots (called active robots) and the
operator. A potential advantage of the distributed and autonomous schemes is that
they can utilize the robots’ own knowledge of the coordination to locate the stuck

108 Gal A. Kaminka and Yehuda Elmaliach

robot. In particular, because the robots have moved in formation prior to the call-
request, they may have an easier time guessing their peer’s location than the operator
(who needs to orient herself in space via the teleoperated camera).

To evaluate the importance of this advantage, we varied the position of the dis-
abled robot (Figures 1, 2): The easy setup placed the disabled robot at approximately
where it would be had it just stopped in its tracks prior to the team getting notifi-
cation of the call request, i.e., a bit farther behind its location within the formation
(Figures 1-a, 2-a). The medium setup placed the robot behind the left follower robot
(1-b, 2-b). The difficult setup placed the robot to the left of the left follower robot,
and behind it, i.e., completely out of place compared to the formation (1-c, 2-c). Thus
the locations progress from a location easily predictable by the robots, to a location
unpredictable to them.

Robot A

Robot B

Stuck
Robot

30 cm

75 cm

(a) Easy

Robot A

Robot B

Stuck
Robot

30 cm

40 cm

(b) Medium

Robot A

Robot B

Stuck
Robot

30 cm

52 cm

(c) Diffi cult

Fig. 1. The three experimental setups, distinguishing predictable, semi-predictable, and un-
predictable locations of the stuck robot.

(a) Easy (b) Medium (c) Diffi cult

Fig. 2. AIBO robots in initial places for the three experimental setups.

We tested 25 human operators with each of the failure scenarios (22 male, 2
female; 22 of these—including the two females—were graduate or undergraduate
students). All operators were novices; none had previous experience controlling mul-
tiple robots. Each operator tried all the the resolution schemes previously described,

Single Operator, Multiple Robots 109

in each of the three scenarios. The ordering of the scenarios was randomized between
operators to prevent biasing the results.

We distinguished two phases: The first phase of the resolution involved recogni-
tion of the disabled failure from any distance. The second phase involved its local-
ization by another robot reaching within 35 centimeters of it. Each scenario began
with the simulated disabling of the robot (and issuing of the call request), and ended
with its localization by at least one robot—teleoperated or autonomous.

For each of the failure scenarios and for each method, we measure the duration
of the two phases. This is an objective performance measure because the initial lo-
cations of the robots are fixed, the searching speed is constant for non-teleoperated
robots, and the termination condition for the search are fixed (robots within specific
distance of the failing robot). Thus other than the typical robot sensor uncertainty,
performance variance is introduced solely by operator intervention. The first mea-
sured duration is that of the time that it took the operator to recognize the disabled
robot in any one of the cameras (the operator uses the split-view interface in this
task), i.e., the duration of the first phase. In all but the teleoperated scheme, the oper-
ator is completely passive during this interval. We then measure the time that it takes
for an active robot—autonomous or teleoperated—to reach the disabled robot, i.e.,
the duration of the second phase. Since the motivation behind the distributed con-
trol scheme is to reduce the time spent awaiting resolution, we prefer shorter overall
durations.

We begin by examining the bottom line—the total time it takes to identify the
location of the disabled robot. Figure 3 shows the average total duration for the 25
operators. The vertical axis measures the time in seconds, while the horizontal axis
shows the three experiment setups. In each, four bars are shown corresponding to
the different resolution schemes (left-to-right: Autonomous, semi-distributed, dis-
tributed, and teleoperated).

0

20

40

60

80

100

120

easy medi um di fficult

T
im

e[
se

c]Autonomous
semi
Distributed
Tele

Fig. 3. Total Time to Resolution (in seconds).

The results show that in all easy, medium and difficult locations, the distributed
approach is preferable to the both centralized teleoperation approaches, and the fully
autonomous approach. Full distributed search does better than the semi-distributed
approach in all locations, and better or same than the autonomous approach or same.

110 Gal A. Kaminka and Yehuda Elmaliach

Overall, the distributed collaboration between the operator and active robots in the
distributed approach proves to be a powerful technique for significantly reducing the
time to complete the task of locating the disabled robot.

The results have been tested using a one-tailed t-test assuming unequal vari-
ances. In the easy setup, the distributed scheme is not significantly different than
the autonomous scheme, and only moderately different () than the semi-
distributed and teleoperated schemes. However, as we move to the medium and dif-
ficult setups, the situation changes. The total time for the distributed scheme is sig-
nificantly lower than the total time for the autonomous scheme in the latter setups
(and , resp.). The distributed scheme does better than the
teleoperated scheme in the difficult setup (), and is moderately better in the
medium setup ().

The figure also carries other lessons. First, the ability of the robots to use orga-
nizational knowledge of the formation can be very useful in reducing the resolution
time, and thus in assisting the operator. When the stuck robot was located approx-
imately where it was predicted to be in terms of its position in the formations, the
robots were able to quickly locate it, in fact beating the operator in terms of total
time (see more on this below). However, the distributed scheme was superior even
in these cases, because even in where the robots were not as successful, the operator
(working in collaboration with the robots) was able to compensate. This is particu-
larly evident as the difficulty of the different setups increased, and the location of the
stuck robot was unpredictable to the robots.

To better understand these results, we should consider separately the results for
the first phase of the search (when an remote identification of the stuck robot was
made by the operator), from the second phase, in which an active robot was to ap-
proach the stuck robot to localize it. Figure 4 shows the results of the different control
schemes for the first phase, averaged across operators. The figure measures the aver-
age time (in seconds) it took the operator to recognize the disabled robot from afar,
in the split-view camera display. In the autonomous approach, the operator did not
intervene in the operation of the robots, only indicated that the stuck robot was rec-
ognized. In the teleoperated scheme, the operator manually turned a robot around
until a heading to the remote robot was recognized.

0

1

2

3

4

5

6

7

8

easy medi um di fficult

T
im

e[
se

c]Autonomous
semi
Distributed
Tele

Fig. 4. Phase 1 Time until initial (remote) identifi cation (in seconds).

Single Operator, Multiple Robots 111

Clearly, all approaches in which robots attempt to orient themselves towards the
predicted location of the disabled are superior to a teleoperated (centralized) ap-
proach. Note that in all approaches, the operator recognizes the robot from afar.
The active robots do not necessarily recognize the other robot from afar, and as we
will see below, may end up searching for it in the wrong location. This significantly
shorter initial recognition is a beneficial side-effect of the distributed approaches.
However, the initial benefits of the robots to orient themselves towards the stuck
robot is lost in more difficult settings.

Figure 4 also shows an important property of the usefulness of human opera-
tors: Human ability to recognize the robot from afar is virtually identical in all three
difficulty settings. Thus humans bring to bear consistent robust (if slow) capabili-
ties. These can be useful in real applications, where the stuck robot may be partially
hidden behind obstacles or otherwise not visible at all to the robots.

An examination of the second phase of the search (once an approximate heading
towards the stuck robot is determined) is also telling with respect to this issue. Fig-
ure 5 shows the results for this phase, where the task is to arrive within the proximity
of the disabled robot. Despite its poor performance in phase 1, the teleoperated ap-
proach does quite well in phase 2. This is easily explained—here the disabled robot
is already recognized, and the teleoperated approach simply allows the operator to
now drive the teleoperated robot as quickly as possible, outrunning automatic ap-
proaches that move in constant (and typically conservative) speed. Thus again, the
operator brings to bear capabilities that cannot be duplicated by the robots.

0

20

40

60

80

100

120

easy medi um di fficult

T
im

e[
se

c]Autonomous
semi
Distributed
Tele

Fig. 5. Phase 2 From initial identifi cation to localization of the stuck robot (in seconds).

However, the best performances was by the distributed approach, because it es-
sentially turns this phase into a race between a teleoperated robot and an autonomous
robot, as to who gets to the disabled robot first. Moreover, unlike the semi-distributed
approach, where there’s an overhead of a few seconds while the operator takes over
control (see the results for the easy/medium location), here the transition from phase
1 to phase 2 is fairly smooth, because one active robot continues to search even while
the operator is taking over control of the other. Thus there is here a composition be-
tween the Autonomous approach and the Teleoperated approach.

112 Gal A. Kaminka and Yehuda Elmaliach

Indeed, contrasting the results of the Autonomous and Distributed approaches is
telling. As we move from the easy location to medium to difficult, the gap between
the methods is grows in favor to the Distributed approach. That happens as a result of
the inability of the Autonomous approach, to locate the stuck robot in unpredictable
places. The collaboration between the human operator and the robot team is superior
to either, alone.

An final lesson is revealed by examination of the standard deviation of the results
for total task-completion time. Table 1 shows the standard deviation for the differ-
ent approaches, in the three experiment setups. Each row corresponds to a different
method, and each column to different setup. We can see that in the easy setup, the
autonomous, semi-distributed, and distributed schemes all have essentially the same
standard deviation, indicating similar performance. However, the standard deviation
for the autonomous scheme in the medium setup is much higher than for the other
approaches. In the hard setup, both the autonomous and teleoperated approaches suf-
fer from greater standard deviation in performance than the two distributed schemes.
This shows an additional benefit of the distributed methods: A more consistent per-
formance of operators in the distributed and semi-distributed cases.

Easy Medium Diffi cult
Autonomous 11.21 34.64 23.82
Semi-Dist. 11.30 5.07 7.78
Distributed 11.29 5.16 7.90

Teleoperated 7.68 5.96 15.87
Table 1. Standard deviation of call-resolution times (in seconds).

5 Summary and Future Work
This paper explores novel first steps towards distributed call-request resolution
schemes, in which the operator and robots collaborate to resolve failures. This
scheme is particularly suited to situations where robots are tightly coordinated, and
thus are able to use their knowledge of the coordination to effectively assist the oper-
ator. The technique builds on a key idea, that the resolution of failures in cooperative
tasks should be viewed as a cooperative task in itself. Previous techniques (teleop-
eration of one robot at a time, autonomous operation of the robots) were meant for
tasks that do not require tight coordination between the robots.

We empirically evaluate this new technique and compare it to previous work, in
extensive experiments with 25 human operators. The results show that the distributed
control scheme, exploiting teamwork between the operator and all robots, reduces the
time of resolving failures (compared to the centralized and autonomous approaches),
and was superior in all cases. Moreover, the technique leads to reduced variance
between operators. However, its overall improvements with respect to the centralized
teleoperated approach was only significant in a subset of the experimental conditions.

The promising results presented in the paper also raise important questions for fu-
ture work. We are particularly interested in integrating the new technique with com-
plete human-robot interaction systems, in order to evaluate its effectiveness not only

Single Operator, Multiple Robots 113

within call-request resolution, but in more general settings of operating the robots
even in non-failures cases.

Acknowledgments

We thank the anonymous reviewers and Avi Rosenfeld for their helpful comments.
Thanks to K. Ushi.

References

1. J. A. Adams. Human Management of a Hierarchical System for the Control of Multiple
Mobile Robots. PhD thesis, University of Pennsylvania, 1995.

2. K. S. Ali. Multiagent telerobotics: Matching systems to tasks. PhD thesis, Georgia Insti-
tute of Technology, 1999.

3. M. Fields. Modeling the human/robot interaction in onesaf. In Proceedings of the 23rd
Army Science Conference, 2002. (Poster).

4. T. Fong, C. Thorpe, and C. Baur. Multi-robot remote driving with collaborative control.
IEEE Transactions on Industrial Electronics, 50(4):699–704, August 2003.

5. G. A. Kaminka and Y. Elmaliach. Experiments with an ecological interface for monitoring
tightly-coordinated robot teams. In Proceedings of IEEE International Conference on
Robotics and Automation (ICRA-06), 2006.

6. G. A. Kaminka and R. Glick. Towards robust multi-robot formations. In Proceedings of
IEEE International Conference on Robotics and Automation (ICRA-06), 2006.

7. R. Murphy, J. Casper, M. J. Micire, and J. Hyams. Mixed-initiative control of multiple
hetrogeneous robots for urban search and rescue. Technical Report CRASAR-TR2000-
11, Center for Robot-Assisted Search & Rescue, University of Southern Florida, 2000.

8. K. L. Myers and D. N. Morely. Human directability of agents. In Proceedings of the First
International Conference on Knowledge Capture, K-CAP 2001, Canada, 2001.

9. P. Scerri, L. Johnson, D. Pynadath, P. Rosenbloom, M. Si, N. Schurr, and M. Tambe. A
prototype infrastructure for distributed robot, agent, person teams. In AAMAS-03, 2003.

10. T. Suzuki, K. Yokota, H. Asama, H. Kaetsu, and I. Endo. Cooperation between the human
operator and the multi-agent robotic system: Evaluation of agent monitoring methods for
the human interface system. In Proc. of the 1995 IEEE/RSJ International conference on
intelligent robots and systems, pages 206–211, 1995.

11. A. D. Tews, M. J. Mataric, and G. S. Sukhatme. A scalable approach to human-robot
interaction. In ICRA-03, 2003.

Distributed Metamorphosis Control of a

Modular Robotic System M-TRAN

Haruhisa Kurokawa1, Kohji Tomita1, Akiya Kamimura1, Satoshi Murata2,
Yuzuru Terada2, and Shigeru Kokaji1

1 National Institute of Advanced Industrial Science and Technology (AIST)
{kurokawa-h,k.tomita,kamimura.a,s.kokaji}@aist.go.jp

2 Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of
Technology
murata@dis.titech.ac.jp, string@mrt.dis.titech.ac.jp

Abstract. Metamorphosis by a self-reconfigurable modular robot is presented in
this report. We have developed a new prototype, “M-TRAN III”, which is im-
proved in its high speed and rigid connection mechanism. Using its integrated
design of a multi-CPU controller with various programming tools, experiments of
self-reconfiguration were successfully carried out through single master synchronous
control. Based on the obtained results, decentralized and locally synchronous control
was accomplished, which controlled self-reconfiguration of up to 20 modules using
the same program.

1 Introduction

A modular robot contains numerous autonomous modules, each of which has
actuators, sensors, and processors. Modules are able to connect mechanically
with each other and communicate and cooperate with others. Even with few
degrees of freedom in connection and motion of a single module, the total sys-
tem can form various structures and make flexible motions. Self-reconfigurable
modular robots can control mechanical connections among modules by them-
selves and perform reconfiguration.

A modular robot, as a distributed autonomous system, is expected to be
flexible, robust, fault-tolerant, and adaptive, as in the case of living creatures,
if various functions of the total system, such as morphology and motion, are
produced through self-organization from a homogeneous entirety. By using
modular robots, coevolution/adaptation of morphology and motion, both at
the same time, can be studied. To date, hardware studies of modular robots
are dealing with two subjects, locomotion and self-reconfiguration. This paper
specifically addresses self-reconfiguration through distributed control, as an
attempt toward a distributed autonomous system.

116 Kurokawa H, Tomita K, Kamimura A, Murata S, Terada Y, Kokaji S

After pioneering studies of CEBOT [1], two-dimensional systems “Fracta”
[2] and “Metamorphic Robot” [3], were developed. In both studies, meta-
morphoses from an arbitrary configuration to a target configuration were at-
tempted through distributed control. Subsequently, several three-dimensional
robotic modules [4–8] and various algorithms [9–11] were proposed.

Development of a three-dimensional system remains challenging. Hard-
ware performance is largely dependent on mechanical design. Although vari-
ous robots of different geometry and mechanisms have been developed, most
have realized only small-scale self-reconfiguration. Algorithms of large-scale
self-reconfiguration have been verified only by simulation. Difficulties of ex-
perimental verification have been attributed to these limitations: 1) few mod-
ules were produced, 2) modules lacked sufficient strength to manipulate or
hold the structure, and 3) connections were less reliable, too slow, or too
power-consuming.

We have continued development of systems called Modular Transformers
(M-TRANs) [12]. Using two prototypes, M-TRAN I & II, various 3-D self-
reconfigurations and distributed control of locomotion were achieved [12–14].
However, the modules in the experiments remained numerically limited; com-
plicated reconfiguration was not possible mostly because of the third reason
explained above.

To overcome the problems described above, we developed a third proto-
type, whose connection mechanism is faster and less power consuming. We
developed an onboard distributed controller, designed geometric sequences
of metamorphoses, and verified the performance of the system through vari-
ous experiments of self-reconfiguration. In all experiments, the modules were
set the same: the total system was homogeneous. After verification of hard-
ware and controller systems, experiments using decentralized and locally syn-
chronous control progressed.

In the following section, the basic design of the M-TRAN module and
sequences of metamorphosis are described to define the research objectives.
Hardware and software development are detailed in Sections 3 and 4. Exper-
imental results are described in Section 5. Section 6 concludes the paper and
suggests subjects for future studies.

2 M-TRAN Module Design and Self-Reconfiguration

2.1 Basic Design

An M-TRAN module comprises two blocks and a link (Fig. 1 (a))[12]. Both
blocks are identically shaped; they are made of a half-cube and a half-cylinder
with no protrusions. Two blocks can rotate independently about their axes
by ±90 degrees. At any angle, two half-cylindrical parts always contact with
each other.

Distributed Metamorphosis Control of a Modular Robotic System M-TRAN 117

Active
Passive

180 Rotation

Connection surface

Link

(a) M-TRAN module (b) M-TRAN in connection

65mm

Fig. 1. Basic design of M-TRAN module.

Each block has three connection surfaces. Although all three are not of
the same shape – one is square and two are half-rounded – they all have the
same connection function. The two blocks differ in gender and a connection
surface of an active (male) block can connect mechanically with a passive (fe-
male) surface of another module among four possible orientations. Using that
connection mechanism, modules can be assembled to form various configura-
tions. Moreover, each module can control its connection and change its total
configuration. Self-reconfiguration is conducted mainly by controlling angles
of all modules in 0 or ±90 degrees. In this case, all modules’ blocks align
with a cubic lattice, all neighboring with opposite gender blocks (Fig. 1(b)).
In addition, surface-to-surface contacts are maintained automatically, thereby
ensuring easy connection control. On the other hand, a problem of collision
among modules must be avoided through the appropriate design of a recon-
figuration sequence.

2.2 Self-Reconfiguration

Distributed algorithms and representation of configuration were investigated
in various studies of self-reconfiguration. Aside from general problems of total
connection and collision, the M-TRAN system has its own difficulties because
of its actuation degrees of freedom and surface-to-surface connections [12]. We
conducted two approaches: design by humans and introduction of regularity
in structure. As the first approach, several examples of reconfiguration were
undertaken manually using the software tools described in Section 4.

The second approach is to introduce macro-scale regularity in structure.
Similarly, with a “meta-module” idea, we designed several regular structures
and motions (Fig. 2) [11]. A regular structure is assembled mostly using iden-
tical building blocks. Each building block can change its position while main-
taining the total regularity after each predefined sequence of motions. As such,
motions of building blocks can be made in parallel: parallel control is suitable.
Therefore, one of our research objectives using M-TRAN is experimental ver-
ification of these motions using decentralized (autonomous) control.

118 Kurokawa H, Tomita K, Kamimura A, Murata S, Terada Y, Kokaji S

(1)
(2)

(3)

(a) (b) (c)

Fig. 2. One-dimensional to three-dimensional regular structures and motion se-
quences.

3 Hardware

We have developed 50 M-TRAN III modules (Fig. 1). Its size and weight (65
× 65 × 130 mm, 420 g) are similar to those of the former prototypes. The
greatest improvement is in its faster and stronger connection mechanisms.

Instead of permanent magnets, which were used in former prototypes [12,
13], a new mechanical connector was designed based on the latch connector
in [15]. Four hooks extend from the surface and hold another module at its
passive surface. The active block has three such mechanisms, each driven by
a DC motor. This mechanism is faster (about 5 s) and less power-consuming
(1 W for 5 s) than the former (about 1 min and 4 W for 1 min, respectively).

A battery and a power supply circuit are in the passive block of the module
to allow stand-alone operation. The link part contains two geared motors to
rotate two blocks, potentiometers to measure those angles and a driver circuit
including a microprocessor, which controls two motors using PID control.

The module has four microprocessors: one main CPU (SH-II; Renesas
Technology Corp.) and three slaves (H8; Renesas Technology Corp.). Each
slave CPU is placed in each of the three mechanical parts: passive and active
blocks and a link. This design reduces mutual wiring among these parts. Most
mechanical control and sensing processes are executed using slave CPUs under
supervision of the main CPU.

The main CPUs of all the connected modules mutually communicate via a
Controller Area Network (CAN) bus. This type of global communication bus
is adopted because its implementation is easier than neighbor-to-neighbor
communication. A network bus connection is maintained through electrodes
on the connection surfaces (Fig. 1 (a)). In addition, a wireless modem based
on Bluetooth technology is used to send commands from the host PC.

Aside from two electrodes for the CAN bus, two electrodes are used on
each connection surface, by which neighboring modules exchange one-bit in-
formation. Ten pairs of infrared transmitters and detectors, used as proximity
sensors, are placed on both blocks’ surfaces. A three-axis acceleration sensor
in the passive block measures the direction of gravity.

Distributed Metamorphosis Control of a Modular Robotic System M-TRAN 119

4 Controller and Programming Tools

The control of self-reconfiguration using the former prototype was distributed,
but globally synchronous. Using M-TRAN III, we intend to try various con-
trols from a single master and globally synchronous one to a parallel asyn-
chronous one. In addition, we intend to construct a homogeneous system.
Therefore, we designed an onboard controller by which various types of con-
trol can be realized within the same framework. In addition, we have developed
various tools to design sequences for self-reconfiguration.

4.1 Distributed Controller by Virtual CPU

The basic idea of the controller is producing a virtual CPU with a communica-
tion channel. Two important functions are remote control of another module
and shared memory, by which even one module can control everything of all
the modules as a master.

The virtual CPU was designed as an 8-bit CPU, having 32 KB program
memory, 128 byte data memory, peripheral devices (joint motors, connection
mechanism and sensors), and a communication channel (Fig. 3). The com-
mand interpreter is its core, which executes incoming commands either from
the program memory, from another module (via the network), or from the host
PC (via the network or the Bluetooth modem), in almost the same format.
Remote execution and shared memory are provided by this mechanism.

Command
interpreter

Peripherals

Network bus

Program memory

Data memory
(Register)

Host PC

Bluetooth
modem

Virtual CPU

Command
interpreter

Peripherals

Program memory

Data memory
(Register)

Virtual CPU

Module

(1)

(2)

(3)

(1) Shared memory
(2) Remote control
(3) Message for synchronization

Motors
Connectors
Sensors

Fig. 3. Controller block diagram.

A self-reconfiguration sequence is stored as a program for this virtual CPU.
Hereafter, such a program is called an SR program. An example of an SR
program command is a three byte command, {‘m’,a,b}, in which the first
byte, ‘m’, indicates rotation of two joints. The remaining two bytes are for
angle values. A similar command, {‘n’,id,a,b}, is used for remote control. This
command works similarly as the previous command if the second byte, the id,
equals its own ID. Otherwise, the command interpreter sends a message (up to

120 Kurokawa H, Tomita K, Kamimura A, Murata S, Terada Y, Kokaji S

eight bytes) to the network as {sid,id,‘r’,‘m’,a,b}, in which the first and second
bytes are ID numbers of the sender and destination modules (Fig. 3 (2)). The
module specified by the second byte receives the message, interprets from
the third byte, and executes the remote command ({‘m’,a,b}), which achieves
joint control. For motion synchronization, a special message is returned when
such joint control is completed within a preset margin (Fig. 3 (3)). Shared
memory is implemented using a similar mechanism (Fig. 3 (1)).

4.2 Programming and Emulation

An SR program is made in two ways: manual programming using command
mnemonics and assembly using a programming tool, or automatic conversion
using a kinematics simulator. The kinematics simulator previously developed
[12, 14] is used to design a module configuration, design a sequence of recon-
figuration, store the sequence in a script form (called an SR script hereafter),
and verify it by kinematics and dynamics simulations. Conversion from an SR
script to an SR program is made using an additional tool.

The format of an SR program differs from that of an SR script. There-
fore, conversion is made as follows. While the kinematics simulator simulates
motions according to the SR script, it records step-by-step changes in joint
angles and connections in the form of an SR program. Consequently, the con-
verted program is a series of remote controls that is globally synchronous and
executed directly by a single master.

A program for decentralized and parallel control is made currently only
manually. We have developed an emulator to verify the program before exper-
imentation. The emulator is based on the kinematics simulator and emulates
multi-virtual CPUs and network communications.

This emulator is also useful for development of the onboard program. Aside
from kinematics simulation and network emulation, the virtual CPU program
in the emulator is source-code compatible in C-language with the onboard
one. Therefore, the same code is used in both the emulator and the onboard
controller.

4.3 Initialization

Each module has a unique ID number by which one-to-one communication
is made as described above. For all experiments, the same SR program was
loaded into all modules from the host PC via the network bus. For each module
to work appropriately, information regarding configuration is obtained using
the startup program.

At startup, all modules start the same process, by which one module is
selected as a master. Then under supervision by the master, each module
identifies its neighbors using a one-bit channel described in Section 3, and the
modules are counted. In addition, each module obtains its orientation using
an acceleration sensor.

Distributed Metamorphosis Control of a Modular Robotic System M-TRAN 121

Through the exchange of neighbors’ IDs and orientation, the total con-
figuration and position and orientation of each module in the configuration
is identified. A single master conducts this startup process, but some parallel
processes exist for identification. After this process, the same master conducts
all the controls, or parallel processes start in all the modules.

5 Experiments

Several experiments were carried out and performance of the system was ver-
ified. Experiments by a single master control include metamorphosis from a
four legged walker to a linear form in Fig. 4, and repetitive self-reconfiguration
of a linear structure in Fig. 5. Although a master module that was selected
using the startup process conducted all the motions in these experiments, the
same reconfiguration was realized by any master, even when the structure
was assembled using different modules (different ID numbers) and in different
local orientations.

Fig. 4. Metamorphosis from a four-legged walker to a linear form.

Fig. 5. Climbing a step using repetitive self-reconfiguration.

Figure 6 shows a simple experiment using decentralized and homogeneous
control. Two modules execute the same SR program. They repeat joint control
twice and connection and disconnection once for each cycle. Synchronization
via message exchange is conducted. Thereby, connection (c) follows completion
of joint control (b) and disconnection (d) follows connection of the other
surface (c). The program is 33 command lines in mnemonic and 93 bytes.

Similarly, repetitive self-reconfiguration, like that shown in Fig. 7, was
designed. A linear structure moves forward through repetition of local self-
reconfiguration. The main idea of control is: (1) two modules, b and d in
Fig. 7 for example, move cooperatively; (2) f and h start motion by a message
from the former modules; (3) four modules (a, c, e, g) on the other side wait
for completion of the pairwise motions to keep total connection; then, (4)

122 Kurokawa H, Tomita K, Kamimura A, Murata S, Terada Y, Kokaji S

(a) Release (A) (d) Release (B)

(c) Connect (A)

(b) Rotate (A,B)
(e) Rotate (A,B)

A

B

Connect

Fig. 6. Parallel control.

after completion, modules on the left and right sides change their roles locally
and begin the process from (1). Although all modules are identical, there are
initially only two modules (Fig. 7 a, h) which have the fewest neighbors. Those
two are distinguishable by their block type (color in Fig. 7) on the end. The
direction of the motion is therefore determined. They initiate the process after
the startup process.

ab

c

d

e

f

g

h

(1)
(2)

(3)

(4)

(1)

(2)

Fig. 7. Locally synchronous repetitive metamorphosis.

Experiments were carried out using from 4 to 20 modules (Fig. 8), all by
the same program (231 command lines in mnemonic and 610 bytes). In each
cycle, each module controls connection 10 times and the structure moves two
module length. The controller in each module uses only local information (four
neighbors’ IDs) and local synchronization with neighbors.

Another decentralized self-reconfiguration similar to Fig. 2 (b) was tried.
Two modules (a,b in Fig. 9 (1)) on the edge ascend, move on the plane made of
other modules (Fig. 9 (2), (3)), and reach the other edge ((4)). Then other two
(c,d) follows ((5)–(7)). The SR program is 394 command lines in mnemonic
and 963 bytes.

There still remain problems. Some trials of experiments in Fig. 8 (d) and
Fig. 9 failed either by a communication failure or by misalignment caused by
gravitational force. The latter problem is not simple, as alignment accuracy
depends on mechanical rigidity, joint control performance, and sequences of
reconfiguration. However, most of the problems will be solved by improvement
of software and sequence design.

Distributed Metamorphosis Control of a Modular Robotic System M-TRAN 123

(a)

(b)

(c)

(d)

Fig. 8. Experiments of distributed metamorphosis (linear).

(1) (2) (3) (4)

(5) (6) (7) (8)

a

b

b

a

c d c

de

f

Fig. 9. Experiment of distributed metamorphosis (planar).

6 Conclusion

We developed a new M-TRAN system, an integrated distributed controller,
and programming tools. Experiments were carried out, which include self-
reconfiguration of up to 20 modules requiring more than 50 motion steps and
100 disconnections and reconnections. In all experiments, homogeneity of the
total system was maintained: all modules were the same in programs and data.
In addition to experiments by centralized and globally synchronous control,
decentralized and locally synchronous control was tested. The results verified
the performance of our modular robot M-TRAN and the control software.

Currently, the reconfiguration sequence is designed manually. For future re-
search, we will explore various means of automatic programming. Autonomous
reconfiguration using sensor information is another subject. Though the struc-
tures in Fig. 8 and in Fig. 9 only move straight in the experiments, they have
the ability to change its direction as in Fig. 5 and Fig. 2 (b). Using proxim-
ity sensors, we will attempt to let the modules determine their direction of
motion individually.

124 Kurokawa H, Tomita K, Kamimura A, Murata S, Terada Y, Kokaji S

Acknowledgements

This study was supported by Grants-In-Aid for Scientific Research (No.
16300063) from the Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT) of Japan. We thank Mr. T. Hasuo of Tsukuba University for
development of hardware and controller programs.

References

1. Fukuda T and Nakagawa S (1988) Dynamically Reconfigurable Robotic System,
Proc. ICRA’88.

2. Murata S, Kurokawa H, Kokaji S (1994) Self-Assembling Machine, Proc. IEEE
Intl. Conf. Robotics and Automation (ICRA), pp 441-448.

3. Chirikjian G (1994) Kinematics of a Metamorphic Robotic System, Proc. IEEE
Intl. Conf. Robotics and Automation (ICRA), pp 449-455.

4. Ünsal C, Kiliççöte H, Khosla PK (2001) A Modular Self-Reconfigurable Bi-
partite Robotic System: Implementation and Motion Planning, Autonomous
Robots 10:23-40.

5. Rus D, Butler Z, Kotay K, Vona M (2002) Self-Reconfiguring Robots, Commun.
ACM, 45-3:39-45.

6. Jørgensen MW, Østergaard EH, Lund HH (2004) Modular ATRON: Modules
for a self-reconfigurable robot, Proc. IROS04, pp 2068-2073.

7. Yim M, Duff D, Roufas K (2000) Polybot: A Modular Reconfigurable Robot,
Proc. ICRA 2000, pp 514-520.

8. Castano A, Behar A, Will PM (2002) The Conro Modules for Reconfigurable
Robots, IEEE/ASME Trans. Mech. 7-4:403-409.

9. Butler Z, Kotay K, Rus D, Tomita K (2004) Generic Decentralized Control for
Lattice-Based Self-Reconfigurable Robots, Intl. J. Robotics Research, 23-9:919-
937.

10. Østergaard EH, Lund HH (2004) Distributed Cluster Walk for the ATRON
Self-Reconfigurable Robot, IAS-8 pp 291-298.

11. Østergaard EH, Tomita K, Kurokawa H (2004) Distributed Metamorphosis of
Regular M-TRAN Structures, Proc. DARS2004, pp 161-170.

12. Murata S, Yoshida E, Kamimura A, Kurokawa H, Tomita K, Kokaji S (2002)
M-TRAN: Self-Reconfigurable Modular Robotic System, IEEE/ASME Trans.
Mech. 7-4:431-441.

13. Kurokawa H, Kamimura A, Yoshida E, Tomita K, Murata S, Kokaji S (2003)
M-TRAN II: Metamorphosis from a Four-Legged Walker to a Caterpillar, Proc.
IROS03, pp 2452-2459.

14. Kamimura A, Kurokawa H, Yoshida E, Murata S, Tomita K, Kokaji S (2005)
Automatic Locomotion Design and Experiments for a Modular Robotic System,
IEEE/ASME Trans. Mech, 10-3:314-325.

15. Terada Y, Murata S (2004) Automatic Assembly System for a Large-Scale
Modular Structure, Proc. IROS04, pp 2349-2355.

Preliminary Results in Tracking Mobile

Targets Using Range Sensors from Multiple

Robots

Elizabeth Liao, Geoffrey Hollinger, Joseph Djugash, and Sanjiv Singh

Carnegie Mellon University {eliao@andrew.cmu.edu, gholling@andrew.cmu.edu,

robojoe@cmu.edu, ssingh@ri.cmu.edu}

Summary. In urban search and rescue scenarios, human first responders risk
their lives as they routinely encounter hazardous environments. A team of robots,
equipped with various sensors, deployed in such an environment can be used to track
emergency personnel such as firefighters, reducing the risk to human life. This paper
explores techniques for tracking a mobile target and coordinating a team of robots,
equipped with range-only sensors, through smoke-filled, high-temperature environ-
ments. The particular strengths of our tracking and cooperative control algorithms
are identified through a set of simulated examples.

1 Introduction

Smoke, darkness, and clutter handicap first responders during time critical
emergency situations. Robot teams can help by providing feedback on envi-
ronmental hazards and tracking human agents in the environment. Creating
and maintaining a communications network and tracking the location of emer-
gency response personnel are examples of some of the tasks that the robot
teams can perform.

Tracking a moving target using a single robot in a near-ideal, clutter-free
environment is a solved problem. Environments with dense obstacle configu-
rations, however, can enforce constraints that limit the robot’s tracking capa-
bilities. Since speed and efficiency are critical, the use of multiple robots also
becomes desirable. Although the applications for a robot team’s assistance
are numerous, a necessary functionality of a robot team in this scenario is
the ability to reliably and accurately track a human over time. In order to
achieve this higher tracking accuracy, the proper coordination of the robot
team is important and mandatory. In this paper we explore these two sepa-
rate yet inter-related problems, tracking a mobile target and coordinating a
robot team to further improve the achieved tracking accuracy.

At a high level, the job of a robot team is to track a human while he/she
is within range of the robot team. In order to perform such a task, the robot
team requires sensors that can provide sufficient information to help localize
the human. Cameras, sonar and other commonly used sensors fail to provide

126 Elizabeth Liao, Geoffrey Hollinger, Joseph Djugash, and Sanjiv Singh

the necessary robustness and accuracy in the presence of smoke, darkness, and
debris. Radio then becomes the obvious choice for our particular problem. Ra-
dio based sensors provide a unique advantage over the more commonly used
sensors by delivering reliable measurements even under the presence of heavy
smoke and debris. For these reasons, the results in this paper focus on the use
of radio ranging sensors for tracking mobile targets.

The tracking and coordination algorithms presented in this paper are
backed by a set of experiments conducted in simulation. Experiments in team
coordination are performed with a four member robot team. Given only a
floor map and an estimate of the robot positions, the robot team achieves
reliable tracking of the mobile target.

2 Related Work

Robotics researchers have examined the potential for multiple robot assis-
tance in urban search and rescue environments [9], and previous research has
explored the use of multiple robots in indoor environments for mapping and
intruder detection [6].

Recent advances in radio technology allow for range-only measurements
between inexpensive transponders and receivers. These sensors can provide
information in dynamic, noisy environments without the necessity of line-of-
sight. To take advantage of these sensors, algorithms must be developed for
range-only localization and tracking. Kantor and Singh present preliminary
work in localizing robots using range-only measurements using an extended
Kalman filter (EKF) and a particle filter in [7]. Djugash et al. give further
research and testing of range-only localization and mapping in [2].

Other researchers have examined the potential for using prior knowledge
from the map during tracking and localization. Liao et al. presents a system
for limiting particle paths to the voronoi diagram of the map space in [12].
Additionally, Min Oh et al. have described a system for tracking humans in
outdoor environments using GPS and map-based priors [14]. These papers use
sensors that provide both range and bearing information, and they explore
map environments with limited complexity.

Tracking using formation control of a multi-robot team can be adapted for
the human tracking scenario. The system described by Saber et al. [15] tracks
in formation by generating cost functions based on formation control, collision
avoidance, and tracking. Fierro et al. present a framework for the cooperative
control of a robot that is broken up into two major parts: control law selec-
tion and trajectory generation [3]. Naffin and Sukhatme present a method to
dynamically grow and maintain formations through negotiations [13]. While
these approaches address maintaining formations in free space with relatively
few obstacles, they do not explicitly mention how they handle cluttered envi-
ronments.

Tracking Mobile Targets with Range from Multiple Robots 127

3 Tracking with Range-Only Data

The task of tracking humans with range-only data introduces severe non-
linearities into any tracking algorithm. In addition, the lack of human odom-
etry and motion constraints further complicate the problem. This section
presents two algorithms for tracking humans using range-only data. The first
is a simple particle filter, while the second incorporates the knowledge of a
map to improve the accuracy of the tracker.

3.1 Particle Filter Tracking

One technique for tracking using range-only sensor data can be derived using
Monte Carlo methods. Our algorithm (a modified version of the one pre-
sented for localization by Kantor and Singh [7]) uses many particle estimates
of the first responder’s position, propagates these particles randomly, and
then moves them towards the high probability regions provided by the range
measurements. This calculates the maximum a posteriori estimate of the first
responder’s position.

Letting xp(k), p ∈ {1, 2, . . . , Np}, be a distribution of particles at time k,
where Np is the number of particles in that distribution, the algorithm for
updating the particle filter proceeds as follows:

1. Propagate the state of each particle by computing x̃p(k) = xp(k) + ωp(k)
where ωp is generated as zero-mean Gaussian noise with covariance R.

2. Assuming that each measurement is independent, compute the weight of
each particle from the product of the Gaussian PDFs associated with
current range measurements (mr(k)) from each robot

wp =
∏
r

p(rp|mr(k)) (1)

where rp is the distance between xr(k) and x̃p(k).
3. Normalize the weights so that

∑Np

p=1 wp = 1.
4. Resample the particles such that each xp(k + 1) particle is selected from

x̃i(k), and the probability of selecting each particle is wi. The resulting
distribution moves towards areas of high probability based on measure-
ments from all robots.

The particle filter provides a method for tracking humans without the
use of odometry data. Additionally, it avoids any linearization of the range
measurement probability distribution function.

3.2 Using Prior Knowledge from the Map

To fully utilize the benefits of operating in an indoor environment, we extend
our particle filter implementation to incorporate prior knowledge of the map.
Given an estimate of the firefighter’s position, the uncertainty of subsequent
measurements is bounded by obstacles on the map. For instance, if we know

128 Elizabeth Liao, Geoffrey Hollinger, Joseph Djugash, and Sanjiv Singh

that a firefighter is traveling in a hallway, subsequent estimates should remain
in that hallway. To take advantage of this insight, we make two modifications
to the particle filter.

1. Particles are restricted from moving through walls. When calculating par-
ticle weights in Step 2, particles that have moved through walls are dis-
counted by ten orders of magnitude.

2. Under the assumption that firefighters generally move in the center of
corridors, the weights of particles are adjusted such that they equalize
their distance to walls. This is accomplished by viewing the map as an
additional 2D Gaussian measurement. The mean of this Gaussian is given
by the center of the current corridor, and the standard deviation is deter-
mined by the square of the width and length of the corridor. The use of
a Gaussian provides a principled method for integrating the information
from the map into the particle filter while still maintaining the assump-
tion that firefighters tend to remain in the center of hallways. The use of
a uniform probability distribution function, for instance, would not take
this assumption into account. This changes the weight update step (Step
2) to the following:

wp = p(x̃p(k)|M)
∏
r

p(rp|mr(k)) (2)

where p(x̃p(k)|M) is the probability of the particle’s position given the
Gaussian measurement from the map.

4 Multi-Robot Coordination

One method for increasing the accuracy of firefighter tracking with range-only
sensors is through cooperative control of a multi-robot team. The goal of a
cooperative control algorithm is to assist in tracking by producing desirable
team configurations to reduce the uncertainty of the firefighter’s position.

Before trying to position robots into configurations, a metric is needed
to identify good configurations. Preferable configurations will magnify sen-
sor error less, assuming that ranging devices are inherently noisy. We use a
metric called the Geometric Dilution of Precision (GDOP), which relates the
configuration of ranging devices to location error. Kelly uses Dilution of Pre-
cision by evaluating a robot’s position error using landmark configuration for
localization purposes [8]. We are in essence using a similar technique in re-
verse by having robots be the “landmarks”. A two dimensional version of the
GDOP formulation [1] was used such that only longitude and latitude were
incorporated into the calculations. Since the problem domain is only in two
dimensions, we refer to 2D GDOP as GDOP for the remainder of this paper.

Fig. 1 shows example robot team configurations and the corresponding
GDOP values. The firefighter is located in the center while the angles be-
tween the four team members are varied to form different configurations.

Tracking Mobile Targets with Range from Multiple Robots 129

(a) GDOP=1.000 (b) GDOP=1.134 (c) GDOP=3.724

Fig. 1. Example four-robot configurations and their corresponding GDOP values.
The values range from the best(left-most) to least desirable(right-most)

4.1 Cooperative Control Algorithm

In the cooperative control algorithm, each robot considers its teammates as
part of the environment (stationary) and creates a plan to position itself with
that belief. Here, a plan is defined as a path consisting of a series of waypoints
ending with a desired goal. The only information available to create the plan
are the positions of other team members and the firefighter. Key decisions of
the algorithm are summarized below and are detailed by Liao [11].

4.2 Cost Map

A discretized cost map is used to decouple global planning from local navi-
gation. Once a plan is produced, it can be passed off to another algorithm
for local obstacle avoidance and waypoint following. Each robot initializes its
cost map using an occupancy grid representing the floor plan. Every grid cell
represents a possible goal location and is assigned a cost based on configu-
ration of the team and distance from the firefighter assuming that the robot
was located in that cell. The most desirable location of the robot corresponds
to the cell with the lowest cost, while the best path to the goal is generated
using a wavefront propagation path planner [10].

A weighted distance from the robots to the firefighter needs to be incor-
porated with the configuration cost into an overall cost so that robots are
not too close to obstruct the human’s movement but not so far so that they
are out of sensor range. This weighted wavefront distance function assigns the
lowest value to an ideal distance and then increases in value as robots get
farther from the ideal distance.

For the configuration policy, we developed the Mean Angle policy, which
produces a score according to how much the configuration deviates from an
equal angle spacing between robots. Mean angle can be calculated using the
following equation:

n∑
i=1

exp

∣∣∣∣∣360o

n
− � i, mod(i + 1, n)

∣∣∣∣∣− 1

130 Elizabeth Liao, Geoffrey Hollinger, Joseph Djugash, and Sanjiv Singh

Fig. 2. Cost Contour map using weighted wavefront and mean angle policies. The
light regions are the most favorable for the robot represented by the white cross.

This equation calculates a score by looking at the angles between adjacent
robots with the firefighter as the vertex. Larger differences between an angle
and the ideal angle will contribute to a higher score.

After integrating the Mean angle configuration cost with the weighted
wavefront distance, the overall cost map is produced. Fig. 2 shows an overall
cost contour map from the perspective of the white robot (far right cross).
The light regions symbolize lower (better) cost, and dark regions symbolize
higher (worse) cost. The black crosses represent other members of the robot
team, and the circle represents the firefighter.

5 Simulation Results

Our cooperative control algorithm was implemented using software from the
Player/Stage Project, an open source project that supports research in robots
and sensors [4, 5]. Each robot executes the cooperative control algorithm by
having an individualized version of the cost map. Initially the cost map is
populated with obstacles contained in the provided floor plan. The distance
and angle based costs are then filled into the remainder of the grid cells.

At every planning iteration, after obtaining the new positions of team
members and the firefighter, the robot updates its cost map. The wavefront
planner then generates a new path, which is passed off to the built-in Vec-
tor Field Histogram (VFH) [17] driver in Player/Stage for waypoint following
and local obstacle avoidance. Since the algorithm implementation relies on
frequent replanning, robots almost never reach their current goal and will
typically choose different goals at every iteration.

The runtime of this implementation is highly dependent on how fine the
floor plan is discretized in the cost map. The size of the cost map is an impor-
tant factor to consider because every cell in the cost map is updated at the
beginning of every iteration. Then, an exhaustive search over the cost map is
used to locate the best position for a robot. Finally, the cost map is used again
with wavefront planner to find the lowest cost path to the lowest cost cell.

This cooperative control algorithm is similar to Stroupe’s Move Value Esti-
mation for Robot Teams (MVERT) architecture for action selection in multi-
robot teams [16]. While a robot running MVERT tries to predict the actions
of its teammates to plan for the next step, our cooperative control algorithm
treats teammates as stationary objects and makes an entire plan to the goal.

Tracking Mobile Targets with Range from Multiple Robots 131

Fig. 3. Floor plan with initial robot positions and firefighter path. Initial position
of the firefighter is the topmost point of the path.

5.1 Experiments in Player/Stage

Currently, many real-world applications use sonar based line-of-sight (LOS)
range sensors, but we would also like to investigate the added benefits of
sensors that can range through walls (non-LOS ability). To quantify the dif-
ference between LOS and non-LOS ranging performance, experiments were
performed using GDOP as the evaluation metric. Only robots with LOS to
the firefighter contributed to GDOP in the appropriate experiments.

For each experiment, a robot representing the firefighter traveled on a pre-
determined path while a team of four robots continually positioned themselves
according to the commands generated by the cooperative control algorithm.
During each iteration, GDOP was calculated using only the firefighter position
and robot positions within sensor range of the firefighter. Since the algorithm
ideally performs better without obstacles, experiments were run comparing
the original floor plan (Fig. 3) to ones run using an “empty” floor plan (the
original floor plan without interior walls).

Histograms of the experiments (Fig. 4) show bins of GDOP values recorded
during the entire firefighter path. The x-axis shows GDOP bin values while the
y-axis shows the normalized histogram counts. Normalization was needed to
compare experiments with different length data sets. The percent valid shown
on each graph is the amount of time a valid GDOP value was obtained(i.e.
when 2 or more robots are in range). Although histograms 4(a) and 4(b)
should intuitively be identical, the discrepancy arises by having outside build-
ing walls remain in the ”empty” floor plan. In the LOS case on an empty floor
plan, it is possible that the exterior building walls block LOS to firefighter.
This may in turn lead to configurations that evaluate to higher GDOP values.

5.2 Simulated Tracking Results

We ran simulated tests at various noise levels to determine the performance of
the particle filter tracking with and without the map. Table 1 gives the charac-
teristics of the three noise levels. During the runs, a simulated first responder
moves throughout the entire map including both open and cluttered spaces (a
total space of about 50x30 meters). Four robots move around the map using
the coordination strategy described in Sect. 4 and attempt to localize the fire-
fighter using simulated ranging measurements. Since the measurements are
meant to model ranging radio, line-of-sight is not taken into account. The
positions of the robots are assumed to be known for these tests. We set the
particle filter to use 100 particles, which provides a reasonable loop speed.

132 Elizabeth Liao, Geoffrey Hollinger, Joseph Djugash, and Sanjiv Singh

1 1.5 2
0

0.2

0.4

0.6

0.8

GDOP value

n
o
rm

a
liz

e
d
 c

o
u
n
t Percent Valid: 99.6487%

(a) Line-of-sight ranging on an
“empty” floorplan

1 1.5 2
0

0.2

0.4

0.6

0.8

GDOP value

n
o
rm

a
liz

e
d
 c

o
u
n
t Percent Valid: 100%

(b) non Line-of-sight ranging on
an “empty” floorplan

1 1.5 2
0

0.2

0.4

0.6

0.8

GDOP value

n
o
rm

a
liz

e
d
 c

o
u
n
t Percent Valid: 95.5137%

(c) Line-of-sight ranging on the
original floorplan

1 1.5 2
0

0.2

0.4

0.6

0.8

GDOP value

n
o
rm

a
liz

e
d
 c

o
u
n
t Percent Valid: 100%

(d) non Line-of-sight ranging on
the original floorplan

Fig. 4. Histogram representing GDOP values of a single experiment run. The x-axis
shows the GDOP bin values and y-axis shows the normalized bin counts.

Table 1. Characteristics of three simulated noise levels and the average Euclidean
errors for various simulated tracking algorithms

Simulated sensor Dropped Avg PF Avg map PF
variance (m2) meas. (%) error (m) error (m)

Low noise 0.5 25 0.2429 0.2295
Moderate noise 1.0 50 0.4163 0.3982
High noise 1.5 75 0.7461 0.6720

In addition, Table 1 also gives the average Euclidean error over the entire
run (approximately 10,000 estimates) for all runs. Using prior knowledge from
the map improved the results, and this improvement was more pronounced at
higher noise levels. Fig. 5 gives sample histograms of the Euclidean error for
the tracking runs.

Additional tests (not presented) were performed using a Pioneer robot and
sonar sensors to verify the range-only tracking algorithms on actual hardware.
These experiments confirmed the simulated results.

Tracking Mobile Targets with Range from Multiple Robots 133

0 1 2 3 4
0

1000

2000

3000

4000

Euclidean error (m)

N
u

m
b

e
r

o
f

e
s
ti
m

a
te

s

0 1 2 3 4
0

1000

2000

3000

4000

Euclidean error (m)

N
u

m
b

e
r

o
f

e
s
ti
m

a
te

s

Fig. 5. Sample histograms of Euclidean error at high noise level for simulated
tracking using particle filter without map (left), and particle filter augmented with
the map (right)

6 Conclusion/Future Work

Our results show that a particle filter provides feasible tracking using noisy,
range-only sensor data. The filter is robust enough to avoid divergence due to
high sensor variances, dropped measurements, and sensor silences. It has been
revealed that using prior knowledge from the map has the potential to further
increase the tracking accuracy of the particle filter. However, if robots are op-
erating in scenarios in which the map is not known (or only partially known),
the particle filter without the map provides acceptable tracking performance.

To improve tracking accuracy, a cooperative control algorithm was devel-
oped for a robot team to minimize the position uncertainty of the target.
Using a decentralized cost map approach, the cooperative control algorithm
locates the lowest cost position for the robot and then finds the lowest cost
path to reach that position. Configurations were evaluated using the GDOP
metric, a measure of how team configuration will magnify sensor error. Using
experiments running the cooperative control algorithm in the Player/Stage
simulation environment, the effect of LOS vs. non-LOS sensors on team per-
formance were compared. In a cluttered environment, the use of non-LOS
sensors improved performance by giving the robot team the ability to form
preferred configurations.

For future research, we plan to examine alternative methods for utilizing
prior knowledge from the map. Algorithms like Hidden Markov Models have
the potential to more accurately model the tendencies of human first respon-
ders in environments with maps. Such an approach would also allow robots
to learn motion patterns from human movement data.

To deal with real scenarios, robot failure detection could improve the coop-
erative control algorithm’s robustness and flexibility. Robot failures are impor-
tant to detect because in hazardous environments, malfunctions are common.
For robustness, a team should be able to detect if a robot has stopped or is
out of range and compensate for the loss in its behavior.

Acknowledgements

We thank Bradley Hamner for sharing his hardware and software optimization
expertise.

134 Elizabeth Liao, Geoffrey Hollinger, Joseph Djugash, and Sanjiv Singh

References

1. P. Dana. Global Positioning System Overview, The Geographer’s Craft
Project, Department of Geography, The University of Colorado at Boulder,
http://www.colorado.edu/geography/gcraft/notes/gps/gps.html.

2. J. Djugash, S. Singh, and G. Kantor. Range-only slam for robots operating coop-
eratively with sensor networks. In Proceedings, IEEE International Conference
on Robotics and Automation, 2006.

3. R. Fierro, P. Song, A. Das, and V. Kumar. Cooperative Control and Optimiza-
tion, volume 66, chapter Cooperative control of robot formations, pages 73–93.
Kluwer Academic Press, 2002.

4. B. Gerkey, R. Vaughan, and A. Howard. The Player/Stage project: Tools for
multi-robot and distributed sensor systems. In Proceedings of the International
Conference on Advanced Robotics (ICAR 2003), Coimbra, Portugal, June 30 -
July 3, 2003, pages 317–323, 2003.

5. B. Gerkey, R. Vaughan, A. Howard, and N.Koenig. The Player/Stage Project,
http://playerstage.sourceforge.net/.

6. A. Howard, L. Parker, and G. Sukatme. Experiments with a large heterogeneous
mobile robot team. Intl. Journal of Robotics Research., 2005.

7. G. Kantor and S. Singh. Preliminary results in range-only localization and
mapping. In Proc. of IEEE Conf. on Robotics and Automation., 2002.

8. A. Kelly. Precision dilution in triangulation based mobile robot position esti-
mation. In Intelligent Autonomous Systems, 2003.

9. V Kumar, D. Rus, and S. Singh. Robot and sensor networks for first responders.
Pervasive Computing, pages 24–33, 2004.

10. S. M. LaValle. Planning Algorithms. Cambridge University Press (also available
at http://msl.cs.uiuc.edu/planning/). To be published in 2006.

11. E. Liao. Cooperative control of a multi-robot team in a firefighting scenario.
Technical Report CMU-RI-TR-05-50, Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA, in progress.

12. L. Liao, D. Fox, J. Hightower, H. Kautz, and D. Schulz. Voronoi tracking:
Location estimation using sparse and noisy sensor data. In Proc. Intl. Conf. on
Intelligent Robots and Systems, 2003.

13. D. Naffin and G. Sukhatme. Negotiated formations. In Proceedings of the Eighth
Conference on Intelligent Autonomous Systems, pages 181–190, 2004.

14. S Min Oh, S. Tariq, S. Walker, and F. Dellaert. Map-based priors for localization.
In Proc. Intl. Conf. on Intelligent Robots and Systems., 2004.

15. R. Saber, W. Dunbar, and R. Murray. Cooperative control of multi-vehicle
systems using cost graphs and optimization. In Proc of the American Control
Conference, June 2003., 2003.

16. A. Stroupe. Collaborative Execution of Exploration and Tracking Using Move
Value Estimation for Robot Teams (MVERT). PhD thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, September 2003.

17. I. Ulrich and J.Borenstein. VFH+: Reliable obstacle avoidance for fast mobile
robots. In Proceedings of the 1998 IEEE International Conference on Robotics
and Automation., pages 1572–1577, 1998.

Robotic Swarm Dispersion Using Wireless

Intensity Signals

Luke Ludwig1,2 and Maria Gini1

1 Dept of Computer Science and Engineering, University of Minnesota
(ludwig,gini)@cs.umn.edu

2 BAESystems Fridley, MN

Summary. Dispersing swarms of robots to cover an unknown, potentially hostile
area is useful to setup a sensor network for surveillance. Previous research assumes
relative locations (distance and bearing) of neighboring robots are available to each
robot through sensors. Many robots are too small to carry sensors capable of pro-
viding this information. We use wireless signal intensity as a rough approximation
of distance to assist a large swarm of small robots in dispersion. Simulation exper-
iments indicate that a swarm can effectively disperse through the use of wireless
signal intensities without knowing the relative locations of neighboring robots.

1 Introduction

Deploying large numbers of small simple robots in a decentralized swarm-
like fashion is gaining recognition and popularity in many problem domains.
One of the primary issues is how the swarm of robots will move. A common
task is to spread out and cover an unknown area as thoroughly and quickly
as possible in order to setup a sensor network for surveillance. This may be
useful in areas hostile to humans such as disaster or military zones, or even
planetary exploration.

In a swarm approach each robot is small, simple, and executes the same
software program. Swarm methods bring many advantages. Since they are
decentralized there is no single point of failure that can bring the entire system
down. In fact many of the robots can fail and the swarm system will still
function. Due to the simplicity of the robots they will be cheap to manufacture,
another reason they are expendable. The designer of a swarm hopes that
through individual actions based on local decisions the swarm as a whole will
produce the intended emergent behavior. As in the natural world, unexpected
emergent behavior may even occur.

A common theme in robot dispersion research is a connection to behavior
in the natural world, whether it be of a biological, chemical, social, or physics
based behavior. In particular there are many approaches that draw on the

136 Luke Ludwig and Maria Gini

general concept of repulsive and attractive forces between robots [13, 2, 9].
There are subtle differences between these approaches, but the general concept
is the same; move away from neighboring robots, but not too far away. All of
these approaches assume that the relative locations (distance and bearing) of
neighboring robots is available to the robot through its sensors. This can be
obtained using a 360o laser range finder or an omnidirectional camera. Size
is the limiting factor. The robots must be large enough to carry the laser
range finder or have enough processing power to analyze the images from the
camera which is inherently processor intensive. A common laser range finder,
the SICK LMS 200, has dimensions of 15 cm x 18 cm x 15 cm. This is a
rather large payload for a robot such as the University of Minnesota’s Scout,
which is only 11 cm long by 4 cm wide [12]. Small robots have the advantage
of being cheaper, simpler, and less noticeable. Bob Grabowski from Carnegie
Mellon has classified existing small robots by size in his Small Robot Survey,
and at least half of the robots in this survey would be incapable of sporting
either a 360o laser range finder or an omni camera [6].

The question we attempt to answer is whether or not a swarm of small
robots can be dispersed effectively without knowing the relative locations
of neighboring robots. In particular, we use wireless signal intensity as an
approximation of distance to assist in the dispersion. This requires a wireless
802.11 card on the robots, which is considerably smaller than the 360o laser
range finder.

Theoretically, signal intensity varies according to the law of inverse signal
propagation, which simply means the signal intensity is proportional to the
inverse square of the distance it travels. In a practical setting, the environ-
ment plays a huge role by providing obstacles that cause noise in this signal.
However, it is unnecessary for the signal intensity to be very accurate in order
to provide some indication to a robot for which way it should travel. The
primary property needed is for the signal intensity to decrease over time as
the distance between robots increases, and vice-versa.

2 Related Work

In 1992 Gage was the first to consider the problem of area coverage by a team
of robots [4]. He categorized the problem into three types: blanket coverage,
barrier coverage, and sweep coverage. Blanket coverage, the most similar to
our research, has the objective of maximizing the total area covered by a static
arrangement.

A promising experiment by Howard, Mataric, and Sukhatme considers how
to deploy a mobile sensor network in an unknown hostile environment [9].
They use robots equipped with a 360o laser range finder (4 meter range). No
wireless communication is done. The dispersion is based on potential fields.
Basically robots are repulsed by other robots and walls. They showed how a

Robotic Swarm Dispersion Using Wireless Intensity Signals 137

mobile sensor network can be deployed without centralized control, localiza-
tion, or communication, using only local rules based on potential fields. Their
results are impressive, but this approach is not possible for very small robots
due to the large sensors required.

Hsiang et. al [10] use a leader-follower approach based on local rules where
the robots form chains emanating from a single source of robots. The robots
attempt to follow walls by keeping the walls on their left. Their simulation
experiment was ran in a discrete grid world and assumes “local sensors.” It
would be interesting to see if this algorithm could operate well in a more
realistic simulation environment, such as provided by Player/Stage [5], while
using only small proximity sensors (ex infrared) for following robots.

Batalin and Sukhatme [1] rely on the deployment of beacons into the
environment to help coordinate a decentralized algorithm that uses only local
interactions between the robots and beacons to cover an unknown area. To use
this approach robots must be large enough and capable of carrying the static
beacons. It is more flexible to mobilize and miniaturize everything. Any small
robot can accomplish the same task as a static beacon by simply remaining
stationary. One of the key aspects of the algorithm presented in this paper is
deciding when a robot in motion should stop and become a stationary beacon.

Research has been done on utilizing wireless signal intensity to approxi-
mate distance for localization of sensor networks. Haeberlen et. al [7] show
how accurate localization at the room-level can be obtained in an office set-
ting in which signal intensity data has been predetermined. Tian He et. al. [8]
examines the limitations of range based localization and proposes a novel
range-free localization scheme.

3 Clique-Intensity Algorithm

We assume the robots have a few small and simple proximity sensors that
extend at least a meter (ex. infrared) that allow the robot to avoid most col-
lisions with walls and other robots. We also assume that the robots have a
wireless 802.11 card and are capable of obtaining signal intensity measure-
ments with incoming packets. This is a standard requirement of the 802.11
interface. No other sensors are needed during dispersion, although most likely
robots will be carrying some form of a camera or other sensor which is meant
to be utilized once the sensor network is in place. The processing power on
small robots is limited, which makes analyzing images from a camera during
real-time motion difficult. For many applications, it is likely the camera exists
solely as a means of communicating images back to some central node for
further processing or even human-in-the-loop analysis.

There are many ways to use wireless signal intensity to aid a swarm in
dispersing throughout an unknown environment. In comparison to all of the
repulsive/attractive dispersion research in which relative distance and bearing
of neighboring robots is known [13, 2, 9], signal intensity gives only a rough

138 Luke Ludwig and Maria Gini

approximation of distance and no bearing information. This signal intensity
must be tracked over time to determine which direction the robot should
move. In a swarm of robots, each one may be in contact with many neighbors
at a time. If it is known that one of the neighbors was stationary, then a
robot could specifically reference the stationary robot’s intensity and attempt
to move in a direction of decreasing signal intensity until some threshold is
reached. This is a key concept in the algorithm we developed.

The Clique Intensity Algorithm3 is designed for a distributed homoge-
neous swarm, therefore the algorithm operates and runs from the perspective
of a single robot in the swarm. The knowledge of each robot is a graph with
robots as nodes and signal intensities between robots as weights. This graph
is referred to as the connectivity graph. Robots share portions of their connec-
tivity graphs with their neighbors such that each robot has the knowledge it
needs to execute the algorithm. A clique is a graph or subgraph in which every
node is connected to every other node. A maximal clique is not a subgraph
of another clique. For each maximal clique in the connectivity graph a single
robot is chosen to be the sentry for the clique, meaning it remains stationary.
The other robots in the clique attempt to move away from the sentry, which
is done by monitoring the change in the signal intensity over time. Each robot
behaves in such a way that causes the entire swarm to disperse in an attempt
to create cliques in the connectivity graph of size three or two. This is an
attempt to triangulate the map which is known to be the most effective static
configuration for the area coverage problem [11]. The algorithm is roughly
composed of five basic steps (Figure 1).

Each robot in motion needs a sentry from which it monitors the signal
intensity over time to determine which way to move. The primary decision to
make is whether or not the robot is a sentry, and if not then the robot must
decide which neighbor will be its sentry. This decision is made individually
by each robot examining its connectivity graph and following a set of rules.
The rules are structured such that each robot will arrive at the same decision
as to which are sentries and which are in motion. Communication between
robots of a bartering nature could be used to resolve the decision of which
ones are sentries. This was not done since an attempt was made to avoid
communication overhead and to keep the algorithm as simple as possible.
The only communication between robots is the sharing of knowledge described
above. See Figure 2 for a detailed description of the algorithm.

Considering the five steps in Figure 1, steps 1 and 3 dominate the time
complexity. Step 3 is the Maximal Clique Enumeration Problem which is NP-
Hard. One of the most common algorithms for this problem is the Improved
BK by Bron and Kerbosch [3], whose worst-case time complexity has recently
been proved to be O(3n/3) [14]. We use a variant of this algorithm with similar
exponential complexity. To allow the algorithm to scale to a large number
of robots, a quick calculation is done whenever the number of neighboring

3 The idea behind the Clique Intensity Algorithm was proposed by Steven Damer.

Robotic Swarm Dispersion Using Wireless Intensity Signals 139

Loop:
1. Update connectivity graph from neighbors’ shared knowledge.
2. Share edges incident on me with neighbors.
3. Find all maximal cliques that I am in.
4. Determine the sentry for each maximal clique.
5. Choose and apply behavior based on sentries, cliques, and connectivity graph.

Behaviors:
1. Avoid Collisions Behavior:

Utilize proximity sensors to avoid collisions
2. Seek Connection Behavior:

Go in reverse for a bit and if this doesn’t work pivot and move forward
3. Disperse Behavior:

if my sentry intensity is decreasing over time then go straight
otherwise pivot for a bit and then move forward, and
check for decreasing sentry intensity again

4. Guard Behavior: Don’t move.

Fig. 1. The high-level steps that roughly describes the Clique Intensity Algorithm.
One of the four behaviors is applied each time through the loop.

robots exceeds a threshold. This quick calculation skips steps 1, 3, and 4, and
instead each robot executes the disperse behavior and uses the neighbor with
the lowest id as its sentry (Step 2 of Figure 2). See the discussion section for
further explanation of this approach.

Step 1 of Figure 1, updating the connectivity graph, is the other dominant
factor in the time complexity of this algorithm. Sharing the entire connectivity
graph would provide the nice property that each robot has full knowledge of
the connectivity graph across the swarm. Consider a scenario in which n robots
begin close together such that the connectivity graph is fully connected, in
which case the number of edges in the graph is n∗(n−1)/2. Each robot would
receive n−1 graphs from their neighbors, and must process each one to update
its own knowledge. For this worst case scenario, the complexity in terms of
the number of robots in the swarm becomes O((n − 1) ∗ (n − 1) ∗ n/2) =
O(n3). In practice, when sharing the entire connectivity graph it becomes
computationally difficult to have more than 20 robots in the swarm.

However, a robot does not need full knowledge of the connectivity graph
for the Clique Intensity Algorithm to operate. There are two types of edges
that are used by the algorithm. The first type are those that are incident on
the robot, which are automatically given from the robot’s wireless card. The
second type are those that connect two robots which are both adjacent to
the robot. These edges must be shared between robots. This is accomplished
by each robot sharing only those edges incident on them to their adjacent
neighbors. With a fully connected graph with n nodes, each robot receives

140 Luke Ludwig and Maria Gini

Loop:
1. If I am within proximity of a wall then apply Avoid Collisions Behavior
2. If number of neighbors is greater than neighbor threshold then apply

Disperse Behavior while using the neighbor with lowest id as my sentry.
3. Update connectivity graph from neighbors’ shared knowledge
4. Share edges incident on me with neighbors.
5. If completely disconnected from all robots then apply Seek Neighbor Behavior
6. Find all maximal cliques that I am in.

Two robots are connected if signal intensity > 1
clique distance2

7. For each maximal clique, choose a sentry
A robot is a sentry at time i for clique j if:

It is a sentry for another clique OR
of all robots in clique j, it is in the most cliques OR
if it is tied for being in the most cliques and has the lowest id in clique j

8. If I am a sentry then apply Guard Behavior
9. If I am an explorer, apply Disperse Behavior

I am an explorer if:
I am not a sentry AND
my id is higher than at least 3 other robots in each of my cliques AND
I am connected to more than 1 other robot.

10. Choose the sentry with the greatest intensity to be my sentry. Set sentry
intensity to be equal to the signal intensity between me and my sentry.

11. If sentry intensity > 1
(clique distance−1)2

then apply Disperse Behavior

12. Else apply Guard Behavior

Fig. 2. The detailed Clique Intensity Algorithm, from the perspective of a single
robot in the swarm, hence the use of “I”. Each time through the loop one of the
four behaviors from Figure 1 is chosen and applied.

n− 1 edges from n− 1 adjacent neighbors, or a worst-case time complexity of
O(n2). In practice this approach allows the algorithm to operate fluidly with
100 robots in the swarm.

A crucial aspect of the Clique Intensity Algorithm is how sentries are
chosen. We would like as few robots as necessary to be sentries, so if a robot
is a sentry for one clique, then it is considered a sentry for all of its cliques. If
a robot on the perimeter becomes a sentry, then this will cause other robots to
turn around and head back towards what is likely a more densely populated
area. Therefore we want to encourage robots on the perimeter of the dispersion
effort to continue dispersing. This is done by choosing the robot in a clique
which is in the most cliques to be the sentry. This follows the idea that robots
on the perimeter will be in fewer cliques. The tie-breaker for this situation is
to simply choose the robot with the lowest id.

Creating cliques in the connectivity graph of size three or two is accom-
plished by designating certain robots as explorers. Given that they are still
within range of at least one other robot, explorers will continue on out of range

Robotic Swarm Dispersion Using Wireless Intensity Signals 141

of their sentries. Any robot that is not an explorer or sentry will continue
moving in direction of decreasing sentry intensity until a certain threshold is
reached and will then stop.

The desired clique distance is an important parameter that can be sup-
plied as input to the algorithm. The algorithm tries to create cliques in which
the robots are separated by a distance approximated by the clique distance.
Depending on the problem at hand, it may be desirable to set the clique
distance as high as the expected wireless connectivity range. In other situa-
tions, such as a map with small rooms, we may want the clique distance to
be considerably smaller than the wireless connectivity range.

4 Simulation Experiments

Simulations were ran using the Player/Stage robot server and two- dimen-
sional simulation environment [5]. Player/Stage is probably the highest fi-
delity, most realistic, robot simulation software in the world. Robot clients
written for the Player server originally for simulation are often easily trans-
ferred to a real robot with little or no modification necessary. Player/Stage
does not facilitate simulation of wireless message passing. The additional sim-
ulation infrastructure built for this experiment includes simulating wireless
connectivity and message passing amongst robots via TCP/IP sockets, an au-
tomatic launching system to facilitate running the simulation in a distributed
manner, and an embedded web server in each robot to track the state of
the simulation. The wireless signal intensity was simulated by a direct cal-
culation of the distance between each robot, using the inverse square law of
signal propagation (Intensity = 1

(distance traveled by signal)2). The effect of the
environment, walls in particular, was not taken into consideration.

The metrics tracked during each experiment include initial area coverage,
final area coverage, and total running time. Each robot is considered to cover
an area within a specified radius of the robot. The area coverage is computed
in a post-processing step using a script that takes as input the number of
meters per pixel, radius, and an image of the final dispersion map. The number
of pixels within the radius of each robot, taking walls into consideration, is
counted and then multiplied by the resolution of a single pixel to produce
as output the area coverage in square meters and an image depicting the
coverage. The maximum velocity allowed was 0.3 meters per second.

4.1 Experiment A

A simple experiment with 12 robots was performed on a cave-like map. The
clique distance was set at 5, and it was assumed the robots covered an area
within a radius of 2.5 meters. The robots disperse from the starting configu-
ration shown in Figure 3 until the algorithm reaches an equilibrium in which
the entire swarm is stationary. The initial area coverage is 25 square meters.

142 Luke Ludwig and Maria Gini

This experiment was ran 10 times and resulted in a mean area coverage of
128 square meters with a standard deviation of 6.27 square meters. It took
between 60 and 100 seconds for the algorithm to reach an equilibrium. Notice
there are no disconnections in the area coverage.

Fig. 3. Experiment A. Left: Starting configuration of experiment with 12 robots
in a cave-like setting. A total of 25 square meters is covered at the start. Lines
emanating from the robots indicate the range of the proximity sensors. Right: The
output of the post-processing area coverage step for one run. Each robot covers an
area within a 2.5 meter radius. This run resulted in an area coverage of 141 square
meters in 80 seconds.

4.2 Experiment B

In this experiment, 100 robots started densely packed in the middle of a
complicated floor of a hospital. The starting location is indicated by the light
gray circle in Figure 4. The robots dispersed for 5 minutes and the clique
distance was set at 5. It was assumed the robots covered an area within a
radius of 4.5 meters. The algorithm was terminated after 5 minutes, even
though an equilibrium was not achieved. The initial area coverage was 118
square meters. This experiment was ran 10 times and the mean area coverage
was 1023 square meters with a standard deviation of 48 square meters. The
is an improvement on average by a factor of 8.7.

5 Discussion

When a large number of robots are densely packed in a small area it is compu-
tationally too demanding for each robot to calculate cliques and share knowl-
edge with its neighbors. The quick calculation done in step 2 of Figure 2 avoids
this problem when the number of neighbors is above a threshold. Although

Robotic Swarm Dispersion Using Wireless Intensity Signals 143

Fig. 4. Experiment B. 100 robots started in the light gray circle in the middle of
the hospital map and dispersed outwards for 5 minutes. Each robot covers an area
within a 4.5 meter radius. The total area covered for this particular run is 1063
square meters. The initial area coverage was 118 square meters.

this is necessary for a large number of robots, this causes inconsistencies that
would not exist otherwise. As the swarm spreads out, some robots will switch
modes to calculating cliques, while some will still be following the simpler
approach. This means it is possible to have a situation in which one robot’s
sentry is moving (ex. 1 is connected to 2 and 2 is connected to 3). A way
to avoid this problem would be to allow a robot to tell its sentry that it is
using it as a sentry, in which case the sentry would know to stay put. Further
experimentation is needed to verify this idea.

6 Conclusions and Future Work

The results obtained from both experiments indicate that a swarm of small
robots can be dispersed effectively through the use of wireless signal inten-
sities, without knowing the relative locations of neighboring robots. Using
small robots instead of larger ones capable of carrying a laser range finder
means that many more robots can be deployed for the same cost. It would be
interesting to analyze how swarms with limited sensing abilities compare to
swarms a fraction of their size with more powerful sensing abilities.

There is more work to be done on this topic. Variations in signal inten-
sity should be modeled in a more realistic manner, by taking wall affects
into consideration and applying gaussian noise. Eventually, experiments with
real robots must be done to fully verify the potential of using wireless signal
intensity in robot dispersion.

Acknowledgments

Partial funding provided by the National Science Foundation Industry/University
Safety, Security, and Rescue Research Center, and by the Air Force under
Contract No. FA8651-04-C-0191 to Architecture Technology Corporation.

144 Luke Ludwig and Maria Gini

References

1. M. Batalin and G. S. Sukhatme. Coverage, exploration and deployment by a
mobile robot and communication network. Telecommunication Systems Journal,
Special Issue on Wireless Sensor Networks, 26(2):181–196, 2004.

2. M. A. Batalin and G. S. Sukhatme. Spreading out: A local approach to multi-
robot coverage. In Proc. Int’l Symp. on Distributed Autonomous Robotic Sys-
tems”, Fukuoka, Japan, 2002.

3. C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected
graph. In Proc. of the ACM, 1973.

4. D. W. Gage. Command control for many-robot systems. In 19th Annual AUVS
Technical Symposium, pages 22–24, Huntsville, Alabama, June 1992.

5. B. P. Gerkey, R. T. Vaughan, K. Stöy, A. Howard, G. S. Sukhatme, and M. J.
Matarić. Most valuable player: A robot device server for distributed control.
In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, pages 1226–
1231, Oct. 2001.

6. B. Grabowski. Small robot survey. Carnegie Mellon University,
http://www.andrew.cmu.edu/user/rjg/webrobots/small robots metric.html,
2003.

7. A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach, and L. E.
Kavraki. Practical robust localization over large-scale 802.11 wireless networks.
In Int’l Conf. on Mobile Computing and Networking (MOBICOM), pages 70–84,
Philadelphia, PA, 2004.

8. T. He, C. Huang, B. M. Blumi, J. A. Stankovic, and T. Abdelzaher. Range-free
localization schemes for large scale sensor networks. In Int’l Conf. on Mobile
Computing and Networking (MOBICOM). ACM, 2003.

9. A. Howard, M. J. Mataric, and G. S. Sukhatme. Mobile sensor network deploy-
ment using potential fields: A distributed, scalable solution to the area coverage
problem. In Proc. Int’l Symp. on Distributed Autonomous Robotic Systems”,
2002.

10. T.-R. Hsiang, E. Arkin, M. A. Bender, S. Fekete, and J. Mitchell. Algorithms
for rapidly dispersing robot swarms in unknown environments. In Proc. 5th
Workshop on Algorithmic Foundations of Robotics (WAFR), 2002.

11. B. Kadrovach and G. Lamont. Design and analysis of swarm-based sensor sys-
tems. In Proc. of the Midwest Symposium on Circuits and Systems, Aug. 2001.

12. P. E. Rybski, S. A. Stoeter, M. Gini, D. F. Hougen, and N. Papanikolopou-
los. Performance of a distributed robotic system using shared communications
channels. IEEE Trans. on Robotics and Automation, 22(5):713–727, Oct. 2002.

13. W. M. Spears, R. Heil, D. F. Spears, and D. Zarzhitsky. Physicomimetics for
mobile robot formations. In Autonomous Agents and Multi-Agent Systems, 2004.

14. E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity
for generating all maximal cliques. In Proc. of Computing and Combinatorics
Conference, 2004.

Distributed, Play-Based Role Assignment for

Robot Teams in Dynamic Environments

Colin McMillen and Manuela Veloso

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, U.S.A.
{mcmillen,veloso}@cs.cmu.edu

Summary. The design of a coordination strategy for a distributed robotic team is
challenging in domains with high uncertainty and dynamic environments. We present
a distributed, play-based role assignment algorithm that has been implemented on
real robots in the RoboCup four-legged league. The algorithm allows the robots to
adapt their strategy based on the current state of the environment, the game, and
the behavior of opponents. The distributed play-based approach also enables the
robots to reason about task-based temporal constraints and has been designed to
be resistant to the problem of role oscillation.

1 Introduction

A common goal of distributed autonomous robotic systems is the develop-
ment of teamwork and coordination strategies. The benefits of adding mul-
tiple robots to a system, such as increased performance and reliability, have
been demonstrated in many different situations. However, depending on the
domain and the task, different sorts of approaches might be needed. We are
interested in the implementation of multi-robot coordination in domains with
high uncertainty and dynamic environments.

In this paper, we present our approach to role assignment in the RoboCup
four-legged league [2], in which two teams of four Sony AIBO robots compete
in a robot soccer game. Figure 1 shows a snapshot of a recent AIBO game.
This domain presents many challenges, including: full robot autonomy, dis-
tributed robot team control, limited individual robot perception, the presence
of robot adversaries, task-dependent temporal constraints, and high commu-
nication latency. In this paper, we contribute a new distributed play-based
system that equips the robots with plays – alternative teamwork strategies.
This method was developed to overcome limitations of previous approaches.
In particular, it assigns roles to robots in a fault-tolerant manner that min-
imizes role switching and synchronization problems. Our approach has been
fully implemented within robot soccer, but is designed to be relevant to gen-

146 Colin McMillen and Manuela Veloso

eral multi-robot domains that share some of the challenging features of robot
soccer, as identified in this paper.

Fig. 1. A RoboCup four-legged league soccer match.

We discuss the RoboCup legged league in section 2, identifying the tech-
nical features that we address as especially challenging for multi-robot coor-
dination. Section 3 introduces our approach to teamwork. Section 4 presents
experimental results that highlight some of the advantages of our approach.
We present our conclusions in section 5. Related work is discussed throughout
the paper as needed.

2 Challenges of the RoboCup Legged League

In the RoboCup four-legged league, two teams of four Sony AIBO robots play
each other in a time-limited and space-limited setting (currently two game
halves of ten minutes each and a field of 6m×4m). The settings and the rules
of the game change every year to create new research challenges. The current
complete rules of the domain are available at [2]. We focus on the discussion
of the general features of the game that are of relevance to team coordination.
These features include:

1. Full autonomy: each team of robots operates completely without human
supervision. However, teams are allowed to change the robots’ program-
ming at halftime or during a timeout. Each team is granted one timeout
per game.

2. Distributed teams: all perception, computation, and action is done on-
board the robots. The robots are equipped with 802.11b wireless net-
working, which enables communication among team members; however,
the robots are not allowed to communicate with any off-board computers.

Distributed, Play-Based Role Assignment 147

3. Limited perception: each robot’s primary sensor is a low-resolution
camera with a very narrow field of view (under 60 degrees). A single
robot therefore has a very limited view of the world, so teams can benefit
greatly from communication strategies that build a shared world model.

4. Dynamic, adversarial environment: the presence of adversaries in the
environment is a significant challenge. Opponents ensure that the environ-
ment is extremely dynamic: within a few seconds, the state of the world
may change significantly.

5. Temporal constraints: there are two temporal constraints that arise
due to the presence of adversaries. First, all team decisions must occur in
real time. A team that takes too long to coordinate will have robots that
display hesitation in carrying out their tasks, which gives the opponents
a significant advantage. Second, soccer is a finite-horizon zero-sum game.
A game of soccer has a winning team, a losing team, and a defined end-
ing point. Playing a conservative strategy – which might work well over
a long period of time – is of no use to a team that is losing and only
has a few seconds remaining in the game. A team in this situation must
choose a strategy that can score a goal quickly, even if such a strategy has
other weaknesses. Multiple team coordination strategies are needed. The
selection algorithm faces complex multi-objective optimization criteria.

6. High network latency: the presence of dozens of robots in the com-
petition environment leads to very unpredictable quality of the robots’
wireless network. Teams may experience periods of high network latency
and collisions; latencies of over a second have been observed. To achieve
consistent performance, a team needs to ensure that the coordination
strategies employed are robust to disruptions in communication.

The issues of limited perception in the four-legged league have already
been addressed in previous work. Our specific implementation of a shared
world model [7] is not discussed at length here, but it is important to note that
some of the decisions made by individual robots on our team are influenced
by information that has been communicated by teammates.

In this paper, we focus on the challenges of role assignment (also known
as task allocation) in the RoboCup legged league. Due to the constraints of
our domain, it is a requirement that the solution be implemented on fully
autonomous, distributed robots. The work presented in this paper specifically
addresses the issues of adversarial environments, temporal constraints, and
robustness under high network latency.

Gerkey and Mataric [4] discuss role assignment in RoboCup, giving an
overview of the strategies used by teams in each of the RoboCup leagues. In the
four-legged league, the predominant approach involves allocating three roles:
an attacker, a defender, and some sort of supporter. According to Gerkey’s
survey, nearly all RoboCup teams assign roles to robots in a greedy fashion.
For example, in previous years, our own team (CMPack) assigned the roles in
a fixed order using a well-defined objective function, namely first the attacker

148 Colin McMillen and Manuela Veloso

role to the robot that could reach the ball most quickly, then the defender role
to whichever of the other two robots was closest to our own goal, and finally
the supporter role to the remaining robot [8]. To prevent robots from inter-
fering with one another, the attacker was the only robot allowed to actually
approach the ball for a kick; the other robots would position themselves in
useful supporting locations. If the ball came near to another robot, the team
members would negotiate a role switch. After the role switch, the closest robot
to the ball would become the new attacker, and the attack would continue.
This was a very effective strategy that contributed strongly to our world cham-
pionship in 2002. However, this strategy has some limitations, particularly in
terms of role switching and oscillation. Two robots that are equally suited to
the attacker role might fight over it. The potential outcome is an undesirable
role oscillation between the robots – a period of hesitation where neither robot
makes significant progress toward completing the task. A standard solution
to this problem, which has previously been implemented in our own team and
other RoboCup teams, is to add some hysteresis to the role assignment: ei-
ther allowing role assignments to occur infrequently (e.g., every few seconds)
or ensuring that a role switch will not occur unless one robot is significantly
more suited to the task than another. However, adding hysteresis to a system
can be difficult: if too much hysteresis is added, the robots will miss out on op-
portunities because they are no longer reacting as quickly to changes in their
dynamic environment. In practice, finding a solution that balances these two
constraints (lack of role oscillation and immediate response to environmental
changes) can be difficult. This problem is exacerbated under the presence of
communication failures or high network latency, where the negotiation of a
role switch may take several seconds to complete. Another limitation of this
design is that there can be a significant cost to role switching, as the robots
reconfigure themselves for their new roles. The work presented in this paper
attempts to minimize the effect of these limitations.

Dylla et al. [3] propose a soccer strategy language that formalizes the
strategies and tactics used by human soccer teams. Their goal is to be able to
specify soccer strategies in an abstract way that does not depend strongly on
the specific robot hardware used in the competition. However, to our knowl-
edge, the authors do not yet plan to use this language in the implementation
of any real robot soccer team. In this paper, we present a strategy language
that could be used in any multi-robot system and that has been implemented
in the four-legged league of the 2005 RoboCup competition.

3 Distributed Play-Based Role Assignment

We can say that teamwork in general consists of a team control policy, i.e., a
selection of a joint action by teammates given a perceived state of the environ-
ment [6]. It is our experience that it is rather challenging to generate or learn
a team control policy in complex, highly dynamic (in particular adversarial),

Distributed, Play-Based Role Assignment 149

multi-robot domains. Therefore, instead of approaching teamwork in terms of
a mapping between state and joint actions, we follow a play-based approach,
as introduced by Bowling et al. [1]. We introduce a distributed play-based
approach to teamwork, which allows us to handle the domain challenges in-
troduced in section 2. A play specifies a plan for the team; i.e., under some
applicability conditions, a play provides a sequence of steps for the team to
execute. Multiple plays can capture different teamwork strategies, as explicit
responses to different types of opponents. Bowling showed that play selection
weights could be adapted to match an opponent. Plays also allow the team to
reason about the zero-sum, finite-horizon aspects of a game-playing domain:
the team can change plays as a function of the score and time left in the
game. Our play-based teamwork approach ensures that robots do not suffer
from hesitation nor oscillation, and that team performance is not significantly
degraded by possible periods of high network latency. We believe that ours is
the first implemented distributed play-based teamwork approach, at least in
the context of the RoboCup four-legged league.

3.1 Plays

A play is a team plan that provides a set of roles, which are assigned to
the robots upon initiation of the play. Bowling [1] introduced a play-based
method for team coordination in the RoboCup small-size league. However, the
small-size league has centralized control of the robots. One of the significant
contributions of our work is the development of a play system that works in a
distributed team. The play language described by Bowling assumes that the
number of robots is fixed, and therefore always provides exactly four different
roles for the robots. In another extension to Bowling’s work, our plays also
specify which roles are to be used if the team loses some number of robots
due to penalties or crashes. This extension to the role-assignment aspects
of Bowling’s play language allows the team to robustly adapt to the loss
of team members without the need for additional communication. This is a
particularly important extension for domains where limited or high-latency
communication is the norm.

Our play language itself is also strongly inspired by the work of Bowling.
Our language allows us to define applicability conditions, which denote when
a play is suitable for execution; what roles should be assigned when we have
a specific number of active robots on the team; and a weight, which is used to
decide which play to run when multiple plays are applicable.

Applicability. An applicability condition denotes when a play is suitable for
execution. Each applicability condition is a conjunction of binary predi-
cates. A play may specify multiple applicability conditions; in this case,
the play is considered executable if any of the separate applicability con-
ditions are satisfied.

150 Colin McMillen and Manuela Veloso

Roles. Each play specifies which roles should be assigned to a team with a
variable number of robots by defining different ROLES directives. A direc-
tive applies when a team has k active robots, and specifies the correspond-
ing k roles to be assigned. If a robot team has n members, each play has
a maximum of n ROLES directives. Since our AIBO teams are composed
of four robots, our plays have four ROLES directives.

Weight. Weight is used to decide which play to run when multiple plays are
applicable. In our current implementation, the play selector always chooses
the applicable play with greatest weight. Future work could include choos-
ing plays probabilistically based on the weight values or updating the
weights at execution time to automatically improve team performance.
Playbook adaptation of this sort has been implemented by Bowling for the
small-size league [1]. In the work presented in this paper, adaptation was
not used – the weights were set manually.

Unlike the work of Bowling, we do not have DONE or TIMEOUT keywords that
specify when a play is complete. Rather, a play is considered to be complete as
soon as the play selector chooses a different play, which may happen because
the current play is no longer applicable or because another play with greater
weight has recently become applicable. Each predicate used in an applicability
condition is designed with some hysteresis, such that it is not possible for the
predicate to rapidly oscillate between true and false. The predicates used in
our approach depend on features of the environment – such as the time left
in game, the number of goals scored by each team, and the number of robots
available to each team – that by their nature cannot rapidly oscillate. This
ensures that the play choice also cannot rapidly oscillate.

Figure 2 shows an example of a defensive play. Its applicability conditions
specify that this play is applicable 1) when our team has fewer active players
than the opponents or 2) when the game is in the second half and our team is
winning by at least two points. If we have only one active robot on our team,
we will assign it the Goalkeeper role; if we have two robots, one is assigned
the Goalkeeper role and the other is assigned the Defender role; and so on.

PLAY StrongDefense

APPLICABLE fewerPlayers

APPLICABLE secondHalf winningBy2OrMoreGoals

ROLES 1 Goalkeeper

ROLES 2 Goalkeeper Defender

ROLES 3 Goalkeeper Defender Independent

ROLES 4 Goalkeeper Defender Midfielder Independent

WEIGHT 3

Fig. 2. An example play with multiple applicability conditions.

Distributed, Play-Based Role Assignment 151

3.2 Play Selector

The play selector runs continuously, on one robot that is arbitrarily chosen
to be the leader. The play selector chooses which play the team should be
running. The leader periodically broadcasts the current play (and role as-
signments) to its teammates. Distributed play-based coordination is achieved
through a predefined agreement among the team members to resort to a de-
fault play if a robot doesn’t hear a play broadcast within a communication
time limit. A failure of the leader or a network problem may trigger this de-
fault coordination plan. The algorithm used by the play selector is presented
in Figure 3.

SELECT_PLAY(S: world state, P: playbook, D: default play):

BEST_PLAY <- D

BEST_WEIGHT <- WEIGHT(D)

for each PLAY in P:

if WEIGHT(PLAY) > BEST_WEIGHT:

for each CONDITIONS in APPLICABLE(PLAY):

if all CONDITIONS are satisfied in STATE:

BEST_PLAY <- PLAY

BEST_WEIGHT <- WEIGHT(PLAY)

return BEST_PLAY

Fig. 3. Algorithm used by the play selector.

3.3 Roles

The role assigned to each robot determines what behaviors the robot actually
runs. Our approach, used in RoboCup 2005, is unique in that it is region-
based : each robot is assigned to a region of the field. A robot is primarily
responsible for going after the ball whenever the ball is in that robot’s region.
When the ball is not in its region, the robot will position itself at a good posi-
tion within its region (defined by a role-dependent objective function). Unlike
previous approaches, robots no longer need to negotiate with one another in
order to gain the attacker role that allows them to approach the ball. In this
way, the performance of the team does not degrade significantly under high
network latency. To ensure that one or more robots are always chasing after
the ball, these regions typically overlap significantly. We have developed algo-
rithms that prevent the robots from interfering with one another even when
they are playing in overlapping regions. To provide robustness against com-
munication failure, these algorithms are designed to operate without the need
for communication, using local information such as a robot’s vision of its own
teammates. However, if communication is available, we can use additional fea-
tures (such as reported teammate positions and ball positions) that provide
additional confidence that our robots will not interfere with one another.

152 Colin McMillen and Manuela Veloso

3.4 Role Allocation

The selection of a play determines which roles need to be allocated to the
robots. However, it does not specify which robots should be assigned to each
role. Therefore, a role allocation algorithm is still needed to assign the roles.
This algorithm also runs on the leader robot, which broadcasts the assignment
along with the selected play. Our role allocator has two features that differ-
entiate it from those used by most other RoboCup legged-league teams [4].
First, it only runs when a play is initially selected, as opposed to continu-
ously. Second, it allocates roles in a role-preserving manner – minimizing role
switching. Formally, if a new play Pt is selected at time t, and Pt specifies n
roles {R1..n} for the n robots r1..n, and ri was already assigned to Rj in Pt−1,
ri is guaranteed to still be assigned to Rj in Pt. (Any remaining roles can be
allocated in a greedy fashion.) The region-based nature of our plays enables
this feature, as ri is already guaranteed to be in the region for Rj since it was
already in that role’s region in the previous play. Therefore, it can assume
the new role without any transitional cost. These features provide additional
resistance to oscillation in cases in which two plays share common roles.

4 Experimental Results

We have previously presented empirical results that support the feasibility
and effectiveness of multiple plays in the RoboCup four-legged league [5]. In
this paper, we contribute a role allocation strategy, claiming that it addresses
hesitation due to role oscillation by preserving a robot’s role when possible.
We show experimental evidence that supports this particular claim.

In each experimental trial, three robots work together in a robot soccer
task, namely ball advancement – moving the ball towards the opposing goal
as quickly as possible. Figure 4 shows the initial position of the robots, from
which the team advances the ball down the field towards the goal. A trial is
considered complete when either a goal is scored, the ball advances past the
opponents’ back line, or the ball hits one of the goal posts. The time of each
completed trial is measured.

We test the robots’ teamwork in three different team play configura-
tions: (i) a single Defender-Striker-Independent play; (ii) a single Defender-
Midfielder-Independent play; and (iii) switching every five seconds between
the two plays in (i) and (ii). Since these two plays share two roles (defender
and independent), we expect that, even with frequent play switching, our role
assignment algorithm will not adversely affect the performance of the team.

Each configuration was tested for 40 completed trials, for a total of 120
experiments. Figure 5 summarizes the results. The fastest and slowest times
achieved in any trial were 17.18 and 70.15 seconds, respectively. The Defender-
Striker-Independent play performs best at this task, completing each trial
in a mean time of 31.06 seconds. The Defender-Midfielder-Independent play

Distributed, Play-Based Role Assignment 153

Fig. 4. Initial position for each experimental trial. The three robots are placed
in three positions on the field, with the ball in the defense area. The experiment
proceeds until the robots advance the ball past the end line of the opposite half of
the field.

performs more slowly, completing each trial in a mean time of 35.05 seconds.
The difference between these times is significant (determined by Student’s two-
tailed t-test, with p = 0.048). When the robots oscillate between these two
plays, their performance remains good, with the mean time of the switching
case (33.29 seconds) between the mean times of the other two cases. Since the
play-switching case still performs better than the worse of the two plays, we
note that there is no significant detrimental effect on performance.

5 Conclusion

In this paper, we have presented the details of a distributed play-based role
assignment algorithm, which has been implemented on a distributed team
of robots for the RoboCup four-legged league. The algorithm aims to solve
several important general distributed multi-robot challenges, including the
presence of adversaries, task-based temporal constraints, and robustness to
network failure. We have presented experimental results that show that our
role-preserving assignment algorithm allows a team to perform well even when
plays are rapidly changed.

The presented role-assignment algorithm and plays have been tested in
the RoboCup 2005 competition. Our team came in fourth place in a challeng-
ing competition of twenty-four teams. Our team typically rotated through
three well-balanced plays in the first minutes of each game, which allowed
us to see the performance of each play against the specific opponent. As a
form of adjustable autonomy, we could manually change the team’s strategy
at halftime or during a timeout. Our future work includes the investigation

154 Colin McMillen and Manuela Veloso

Def-Str-Ind Def-Mid-Ind Oscillating
25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

T
a
sk

 c
o
m

p
le

ti
o
n
 t

im
e
 (

se
co

n
d
s)

Fig. 5. Experimental results for the Defender-Striker-Independent play, Defender-
Midfielder-Independent play, and switching between the two plays. The figure shows
the means and 90% confidence intervals for each case.

of automatic play adaptation in distributed domains and recognition of the
opponents’ state and strategy.

References

1. M. Bowling, B. Browning, A. Chang, and M. Veloso. Plays as team plans for coor-
dination and adaptation. In D. Polani, B. Browning, A. Bonarini, and K. Yoshida,
editors, RoboCup 2003: Robot Soccer World Cup VII. 2004.

2. RoboCup Tech. Committee. Four legged robot football league rule book, 2006.
3. F. Dylla, A. Ferrein, G. Lakemeyer, J. Murray, O. Obst, T. Röfer, F. Stolzen-

burg, U. Visser, and T. Wagner. Towards a league-independent qualitative soccer
theory for RoboCup. In RoboCup 2004: Robot Soccer World Cup VIII. 2005.

4. B. Gerkey and M. Mataric. On role allocation in RoboCup. In D. Polani,
B. Browning, A. Bonarini, and K. Yoshida, editors, RoboCup 2003: Robot Soccer
World Cup VII. 2004.

5. C. McMillen, P. Rybski, and M. Veloso. Levels of multi-robot coordination for
dynamic environments. In Multi-Robot Systems: From Swarms to Intelligent
Automata, Volume III. 2005.

6. D. Pynadath and M. Tambe. The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models. Journal of AI Research, 2002.

7. M. Roth, D. Vail, and M. Veloso. A real-time world model for multi-robot teams
with high-latency communication. In Proc. IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2003.

8. D. Vail and M. Veloso. Dynamic multi-robot coordination. In Multi-Robot Sys-
tems: From Swarms to Intelligent Automata, Volume II. 2003.

Simultaneous Planning, Localization, and

Mapping in a Camera Sensor Network

David Meger1, Ioannis Rekleitis2, and Gregory Dudek1

1 McGill University, Montreal, Canada [dmeger,dudek]@cim.mcgill.ca
2 Canadian Space Agency, Longueuil, Canada Ioannis.Rekleitis@space.gc.ca

Summary. In this paper we examine issues of localization, exploration, and plan-
ning in the context of a hybrid robot/camera-network system. We exploit the ubiq-
uity of camera networks to use them as a source of localization data. Since the Carte-
sian position of the cameras in most networks is not known accurately, we consider
the issue of how to localize such cameras. To solve this hybrid localization problem,
we subdivide it into a local problem of camera-parameter estimation combined with
a global planning and navigation problem. We solve the local camera-calibration
problem by using fiducial markers embedded in the robot and by selecting robot
trajectories in front of each camera that provide good calibration and field-of-view
accuracy. We propagate information among the cameras and the successive positions
of the robot using an Extended Kalman filter. The paper includes experimental data
from an indoor office environment as well as tests on simulated data sets.

1 Introduction

In this paper we consider interactions between a mobile robot and an emplaced
camera network. In particular, we would like to use the camera network to ob-
serve and localize the robot, while simultaneously using the robot to estimate
the positions of the cameras (see Fig. 1a). Notably, networks of surveillance
cameras have become very commonplace in most urban environments. Unfor-
tunately, the actual positions of the cameras are often known only in the most
qualitative manner. Furthermore, geometrically accurate initial placement of
cameras appears to be inconvenient and costly. To solve this hybrid localiza-
tion problem, we will divide it into two interconnected sub-problems. The first
is a local problem of camera-parameter estimation which we solve by using
fiducial markers embedded in the robot and by selecting robot trajectories
before each camera that provide good calibration and field-of-view accuracy.
The second problem is to move the robot over large regions of space (between
cameras) to visit the locations of many cameras (without a priori knowledge
of how those locations are connected). That, in turn, entails uncertainty prop-
agation and planning.

In order for the camera network and the robot to effectively collaborate,
we must confront several core sub-problems:

1. Estimation - detecting the robot within the image, determining the
camera parameters, and producing a metric measurement of the robot
position in the local reference frame of the camera.

156 David Meger, Ioannis Rekleitis, and Gregory Dudek

(a) (b) (c)
Fig. 1. (a) The robot with calibration patterns on the target in front of a camera.
(b) An example ARTag marker. (c) A calibration target formed from ARTag markers

2. Local planned behavior - planning the behavior of the robot within
the field of view of a single camera, the robot needs to facilitate its ob-
servability and, ideally, maximize the accuracy of the camera calibration.

3. Data fusion - combining local measurements from different sources in
order to place the cameras and the robot in a common global frame.

The task of computing camera parameters and obtaining metric measure-
ments is referred to as camera calibration and is well-studied in both pho-
togrammetry and computer vision [6, 1]. Typically camera calibration is a
human intensive task. Section 3.1 will detail an automated version where the
robot replaces the human operator in moving the calibration pattern. A sys-
tem of bar-code-like markers (see Fig. 1) is used along with a detection library
[7] so that the calibration points are detected robustly, with high accuracy,
and without operator interaction.

Measurements from the calibration process can be used to localize the
robot and place each camera within a common reference frame. This process
can be formulated as an instance of Simultaneous Localization and Mapping
(SLAM). Typically the robot uses its sensors to measure the relative locations
of landmarks in the world as it moves. Since the measurements of the robot
motion as well as those of the pose of landmarks are imperfect, estimating the
true locations becomes a filtering problem, which is often solved by using an
Extended Kalman filter (EKF). Our situation differs from standard SLAM in
that our sensors are not pre-calibrated to provide metric information. That
is, camera calibration must be performed as a sub-step of mapping.

The path that the robot follows in front of a single camera during cali-
bration will allow a variety of images of the target to be taken. During this
local exploration problem, the set of captured images must provide enough
information to recover camera parameters. The calibration literature [22] de-
tails several cases where a set of images of a planar target does not provide
sufficient information to perform the calibration. The robot must clearly avoid
any such situation, but we can hope for more than just this simple guarantee.
Through analysis of the calibration equations, and the use of the robot odom-
etry, the system discussed here has the potential to perform the calibration
optimally and verify the results.

SPLAM in a Camera Sensor Network 157

The following section discusses related research. Section 3 details camera
calibration using marker detection and a 6 degree of freedom (DOF) EKF for
mapping in our context. Section 4 continues the discussion of local calibration
paths. Section 5 provides experimental results to examine the effect of different
local paths and shows the system operating in an office environment of 50 m
in diameter. We finish this paper with concluding remarks.

2 Related Work

Previous work on the use of camera networks for the detection of moving
objects has often focused on person tracking in which case the detection and
tracking problem is much more difficult than that of our scenario (due to lack
of cooperative targets and a controllable robot) [9, 4, 5]. Inference of camera
network topology from moving targets has been considered [4, 13]. Ellis et al.
depend on cameras with overlapping fields of view. Marinakis et al. deal with
non-overlapping cameras, but only topological information is inferred here
while we are interested in producing a metric map of the cameras. Batalin
and Sukhatme [2] used the radio signals from nodes in a sensor network only
for the localization of the robot. Cooperative localization among robots has
been considered [11, 15, 17, 10], where instead of camera nodes a robot is
observed by other robots.

Camera calibration is a well studied problem; a good summary paper by
Tsai [19] outlines much of the previous work, and [22] presents improvements
made more recently. A series of papers by Tsai et al. [21, 20] use a 3-D target
and a camera mounted on the end of a manipulator to calibrate the manipula-
tor as well as the camera. Heuristics are provided in [21] to guide the selection
of calibration images that minimizes that error. However, these methods only
deal with a single camera and use manipulators with accurate joint encoders,
i.e., odometry error is not a factor.

One important step in the automation of camera calibration is the accurate
detection of the calibration pattern in a larger scene. Fiducial markers are
engineered targets that can be detected easily by a computer vision algorithm.
ARToolkit [14] and ARTag [7] are two examples. ARTag markers are square
black and white patches with a relatively thick solid outer boundary and
an internal 6 by 6 grid (see Fig. 1b,c). The advantages of this system are
reliable marker detection with low rates of false positive detection and marker
confusion. ARTag markers have been previously used for robot localization
in [8] where a camera from above viewed robots, each of which had a marker
attached on top.

The EKF is used for mapping in the presence of odometry error, a method
that was detailed by [18],[12] and others to form the now very mature SLAM
field. An example of previous use of camera networks for localization and map-
ping is [16]. Our work extends this previous method by using ARTag markers
for much more automated detection of calibration target points, performing
SLAM with 3-D position and orientation for cameras and examining the effect
of local planning. This gives our system a higher level of autonomy and allows
mapping of much larger environments.

158 David Meger, Ioannis Rekleitis, and Gregory Dudek

3 Mapping and Calibration Methods

Our approach to the general problem of mapping a camera sensor network is
divided into two sub-problems: acting locally to enhance the intrinsic param-
eter estimation; and moving globally to ensure coverage of the network while
maintaining good accuracy. As it visits each location for the first time, the
robot is detected by a camera. Thus, it can exploit its model of its own pose,
and the relative position of the camera to the robot to estimate the camera
position. In order to recover the coordinate system transformation between
the robot and the camera, it is necessary to recover the intrinsic parameters
of the camera through a calibration procedure. This process can be facilitated
by appropriate local actions of the robot. Finally, over the camera network as
a whole, the robot pose and the camera pose estimates are propagated and
maintained using a Kalman filter.

A target constructed from 6 grids of AR-Tag markers is used for automated
detection and calibration. When the robot moves in front of a camera, the
markers are detected, and the corner positions of the markers are determined.
A set of images is collected for each camera, and the corner information is
used to calibrate the camera. Once a camera is calibrated, each subsequent
detection of the robot results in a relative camera pose measurement. The
following sub sections provide details about the steps of this process.
3.1 Automated Camera Calibration

A fully automated system is presented for the three tasks involved in camera
calibration: collecting a set of images of a calibration target; detecting points
in the images which correspond to known 3-D locations in the target reference
frame; and performing calibration, which solves for the camera parameters
through non-linear optimization. The key to this process is the calibration
target mounted atop a mobile robot as shown in Fig. 1a. The marker locations
can be detected and the robot can then move slightly, so that different views
of the calibration targets are obtained until a sufficient number is available
for calibration. Six panels, each with 9 markers, are mounted on three vertical
metal planes. The 3-D locations of each marker corner in the robot frame can
be determined through simple measurements.

The ARTag detection algorithm relies on identification of the fine internal
details of the markers. This requires the marker to occupy a large portion of
the image and limits the maximum detection distance to about 2 m in our
setup. Of course higher-resolution camera hardware and larger calibration
patterns will increase this distance.

The non-linear optimization procedure used for camera calibration [22]
warrants a brief discussion. A camera is a projective device, mapping infor-
mation about the 3-D world onto a 2-D image plane. A point in the world
M = [X, Y, Z]T is mapped to pixel m = [u, v, 1]T in the image, under the
following equation:

SPLAM in a Camera Sensor Network 159

s

⎡⎣u
v
1

⎤⎦
︸ ︷︷ ︸

m

=

⎡⎣ fx α ux

0 fy uy

0 0 1

⎤⎦
︸ ︷︷ ︸

A

[
R t

]︸ ︷︷ ︸
T

⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦
︸ ︷︷ ︸

M

(1)

In matrix A, fx and fy represent the focal lengths in pixel related coordi-
nates, α is a skew parameter and ux and uy are the coordinates of the center
of the image. Collectively, these are referred to as intrinsic camera parameters.
s is a projective scale parameter. The T matrix is a homogeneous transfor-
mation made up of rotation R and translation t, and it expresses the position
and the orientation of the camera with respect to the calibration-target coor-
dinate frame. The elements of T are referred to as extrinsic parameters and
change every time the camera or the calibration target moves to describe the
position of the target relative to the camera. We will use the T matrix as a
measurement in the global mapping process described in detail in Section 3.2.

The calibration images give a number of correspondences (u, v) → (X, Y, Z),
which are related by (1). This relation allows the intrinsic camera parameters
and the extrinsic parameters of each image to be jointly estimated using a
two-step process. The first step is a linear solution to find the most likely
intrinsic parameters. The second step is a non-linear optimization which in-
cludes polynomial distortion parameters. Zhang [22] mentions “degenerate
configurations” where a set of calibration points do not provide enough infor-
mation to solve for A and T . This occurs when all of the points lie in a lower
dimensional linear subspace of R3. To avoid this situation, several different
local motion strategies are discussed in Section 4.

In conclusion, from a set of images of the robot-mounted target, the camera
intrinsic and extrinsic parameters are estimated. The next section will discuss
the use of an Extended Kalman filter to combine these estimates with robot
odometry in order to build a map of camera positions.
3.2 Six-DOF EKF

The measurements of the extrinsic camera parameters can be used to build
a consistent global map by adding the camera position to the map when ini-
tial calibration finishes and by improving the estimate each time the robot
returns to the camera. To maintain consistent estimates in this global map-
ping problem, an Extended Kalman filter is used to combine noisy camera
measurements and odometry in a principled fashion. The robot pose is mod-
eled as position and orientation on the plane: (x, y, θ). However, the cameras
may be positioned arbitrarily; so, their 3-D position and orientation must be
estimated. Roll, pitch, and yaw angles are used to describe orientation, thus
the state of each camera pose is a vector Xc = [x, y, z, α, β, γ]T (for more
information, see [3]).

The EKF tracks the states of the robot and the cameras in two steps: the
propagation step tracks the robot pose during motion, and the update step

160 David Meger, Ioannis Rekleitis, and Gregory Dudek

(a) (b)
Fig. 2. (a) Measurement Coordinate Frame Transformations. (b) The world (at
[0,0,0]), robot (denoted by a circle and a line for the orientation), target grid (dashed
lines G1,G2) and camera (solid lines C1,C2) coordinate frames. The trajectory of
the robot is marked by a dotted line.

corrects the robot and the camera poses based on the measurements from
the calibration process. For the propagation phase, the state vector and the
covariance matrix are updated as in [18].

X̂k|k−1 = FX̂k−1|k−1 (2)

Pk|k−1 = FPk−1|k−1F
T + Cv (3)

where F is obtained by linearizing the non-linear propagation function f(X, u)
at state X and control actions u, and Cv is a matrix representing odometry
error. For the update phase, the measurement equation is a non-linear expres-
sion of the state variables so we must again linearize before using the Kalman
filter update equations. The measurement equation relates two coordinate
frames, so that the language of homogeneous coordinates transformations is
used in order to express the relation [3].

The calibration process estimates the calibration panel in the camera
frame, that is C

P T . Using P
RT which is measured initially this can be trans-

formed into a relation between the camera and robot: C
RT =C

P TP
R T . This

is the measurement z. Next, the measurement is expressed in terms of the
EKF states Xr and Xcthrough which we obtain the transformations for the
robot and the camera in world coordinates: W

R T and W
C T . Fig. 2 shows the

relationships between the EKF state variables and the information obtained
from camera calibration which jointly form the measurement equation:

zmeasured = C
RT = C

W TW
R T = W

C T−1W
R T =

[
W
C RT −W

C RT W
C P

0 1

] [
W
R R W

R P
0 1

]
=

[
W
C RT W

R R W
C RT (W

R P −W
C P)

0 1

]
(4)

Equation 4 provides the measurement equation ẑ = h(X̂). To use this in a
Kalman filter, we must differentiate h with respect to each parameter to obtain
a first-order linear approximation z = h(X̂)+HX̃ where H is the Jacobian of
vector function h. Measurement noise Cω expresses the uncertainty of trans-
formation parameters from camera calibration. The EKF update equations
can be applied as usual:

SPLAM in a Camera Sensor Network 161

X̂k|k = X̂k|k−1 + K(z − h(X̂k|k−1)) (5)

Pk|k =
[
I − KHT

]
Pk|k−1 (6)

K = Pk|k−1H(HPk|k−1H
T + Cω)−1 (7)

4 Local Calibration Procedures

Using a robot-mounted target provides a unique opportunity to collect cali-
bration images in an intelligent fashion by controlling the robot motion. How-
ever, it is not immediately clear what the best motion strategy will be. There
are numerous sources of error including detecting the original pixels, approxi-
mating the linear parameters, and convergence of the non-linear optimization
all of which should be minimized if possible. As mentioned previously, [22]
showed that it is essential to avoid having only parallel planes. [21] discussed
heuristics for obtaining images to calibrate a manipulator system. Also, the
accumulated odometric error is an important factor for the overall accuracy
of the system.

As an initial investigation into this problem, five motion strategies were
examined. These were chosen to cover the full spectrum of expected calibration
accuracy and odometry buildup:
• Stationary - the robot moves in the camera field of view (FOV) and stays

in one spot. Due to the target geometry, this allows for two non-parallel
panels to be observed by the camera, which provides the minimal amount
of information necessary for calibration.

• One Panel Translation-only - the robot translates across the camera
FOV with only a single calibration panel visible always at the same angle.
This is a degenerate case and produces inconsistent results.

• Multi-Panel Translation-only - the robot translates across the camera
FOV with two panels visible. This provides numerous non-parallel planes
for calibration and accumulates minimal odometry error.

• Rotation-only - the robot rotates in place in the center of the camera
FOV allowing the panels to be detected at different angles.

• Square Pattern - the robot follows a square-shaped path in front of
the camera. Since there is variation in the detected panel orientation and
in depth, this method achieves good calibration accuracy. However, the
combination of rotation and translation accumulates large odometry error.

5 Experimental Results

Two separate sets of experiments were conducted using the camera sensor
network (see [16] for a detailed description of the experimental setup) which
dealt with the mapping and the calibration aspects of our system. First, the
five different local motion strategies were examined with respect to the result-
ing intrinsic parameters and position accuracy. Second, to show that mapping
is feasible in a real-world environment, a robot equipped with the calibration
target moved through one floor of an office building which was over 50 m in
diameter. We show that the robot path estimate is improved through the use
of position measurements from a set of cameras present in the environment.

162 David Meger, Ioannis Rekleitis, and Gregory Dudek

5.1 Local Calibration Paths
A set of experiments was performed to test the effects of the local calibration
paths suggested in Section 4. The goal was to study the motion strategies
in terms of reliable camera calibration as well as magnitude of odometry
error. This test was done inside our laboratory with a Nomadics Scout robot
mounted with a target with six calibration patterns. The 5 strategies were
performed for 10 trials, with 30 calibration panels detected per trial. The
automated detection and calibration system allowed for these 50 trials and
1500 pattern detections to occur in under 3 hours (using a Pentium IV 3.2
GHz CPU running linux for both image and data processing).

Table 1. Mean Value and percentage of Standard Deviation of the Intrinsic Param-
eters for each strategy over 10 trials. Deviations are with respect to the mean.

Path Mean Values Std. Deviation (% of mean value)

fx fy ux uy fx fy ux uy

Stationary 903.2 856.0 233.5 190.6 6.3 5.6 30.9 17.1
2 Panel Translation 785.8 784.3 358.0 206.4 2.7 2.3 3.6 5.0
Rotation 787.7 792.0 324.1 236.6 1.6 1.6 3.9 10.3
Square 781.2 793.1 321.4 274.2 1.2 2.0 2.4 13.9

(a) (b)
Fig. 3. (a) Sample Images from Square Pattern. (b) Odometry Error Accumulation
for 3 Local Calibration Paths

Table 1 summarizes the intrinsic parameters obtained for each method.
The lack of data for the One Panel Translation-only path is due to that, as
expected, calibration diverged quite badly in all trials with this method. Other
than the stationary method, statistically, the mean parameter estimates are
not significantly different between methods.

To examine the difference between odometry buildup among the different
paths, each of the three paths which involved motion was simulated. To ensure
a fair comparison, path parameters (distance and rotation angles) were scaled
accordingly for each trajectory. Fig. 3(b) shows the trace of the covariance
matrix as each method progresses. The square pattern accumulates much
more odometry error than the other two methods, as expected.
5.2 Mapping an Office Building

To demonstrate the effectiveness of the system when mapping a large space, we
instrumented an office environment with 7 camera nodes. The environment

SPLAM in a Camera Sensor Network 163

(a) (b)
Fig. 4. (a) Odometry Readings for Hallway Path. (b) EKF Estimate of the Hallway
Path. Estimated camera positions with uncertainty ellipses (in red)

consisted of a rectangular loop and a triangular loop connected by a long
hallway with length approximately 50 m. The same robot as the previous
experiment was used to perform the full calibration and mapping procedure
described in Section 3. The robot traversed the environment 3 times and trav-
eled in excess of 360 m in total. The Rotation-only local calibration strategy
described in Section 4 was used for simplicity.

From Figs. 4a and b, it is visually clear that the use of camera measure-
ments was able to correct for the buildup of odometry error. However, there
are some regions where the filtered path is still a rough approximation since
the regions between cameras are traveled without correction of the odometry
error. This is most obvious on the far right of the image where there is a
very noticeable discontinuity in the filtered path. Since the system does not
provide a means for odometry correction between the camera fields of view,
this type of behavior is unavoidable without additional sensing.

6 Conclusion

We have outlined an automated method for calibrating and mapping a sen-
sor network of cameras such that the system can be used for accurate robot
navigation. The experimental methods show that a system with a very simple
level of autonomy can succeed in mapping the environment relatively accu-
rately. A preliminary study was done on local calibration trajectories, which
can have a profound effect on the accuracy of the mapping system. Further
work in planning and autonomy will likely be the key enhancement in further
iterations of this system. The reliance on detection of the calibration target
means the robot must move intelligently in order to produce a map of the
environment and localize itself within that map.

In this work, we propose the use of a 6-DOF EKF for global mapping.
While this approach worked quite well even in a large experiment, it assumes
that the system is linear and Gaussian which is a poor approximation in some
cases. In particular, the robot builds large odometry errors between cameras
and the linearization procedure is only a good approximation when errors are
small. A probabilistic method such as Particle Filtering might give improved
results in this context, since linearization is not necessary for such a technique.

164 David Meger, Ioannis Rekleitis, and Gregory Dudek

References

1. Manual of Photogrammetry. Am. Soc. of Photogrammetry, 2004.
2. M. Batalin, G. Sukhatme, and M. Mattig. Mobile robot navigation using a

sensor network. International Confernce on Robotics and Automation, 2003.
3. J. J. Craig. Introduction to Robotics, Mechanics and Control. 1986.
4. T.J. Ellis, D. Makris, and J. Black. Learning a multicamera topology. In IEEE

Int. Workshop on Visual Surveillance & Performance Evaluation of Tracking &
Surveillance, pages 165–171, 2003.

5. D. Estrin, D. Culler, K. Pister, and G. Sukatme. Connecting the physical world
with pervasive networks. IEEE Pervasive Computing, 1(1):59–69, 2002.

6. O. D. Faugeras. Three-Dimensional Computer Vision. MIT Press, 1993.
7. M. Fiala. Artag revision 1, a fiducial marker system using digital techniques.

In National Research Council Publication 47419/ERB-1117, November 2004.
8. M. Fiala. Vision guided robots. In Proc. of CRV’04 (Canadian Confernence on

Computer and Robot Vision, pages 241–246, May 2004.
9. W. E. L. Grimson, C. Stauer, R. Romano, and L. Lee. Using adaptive tracking

to classify and monitor activities in a site. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition, pages 22–29, 1998.

10. Andrew Howard, Maja J Mataric, and Gaurav S. Sukhatme. Localization for
mobile robot teams using maximum likelihood estimation. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
434–459, EPFL Switzerland, 2002.

11. R. Kurazume and S. Hirose. An experimental study of a cooperative positioning
system. Autonomous Robots, 8(1):43–52, Jan. 2000.

12. J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by tracking
geometric beacons. IEEE Trans. on Robotics & Automation, 7(3):376–382, 1991.

13. Dimitris Marinakis, Gregory Dudek, and David Fleet. Learning sensor network
topology through monte carlo expectation maximization. In Proc. of the IEEE
International Conference on Robotics & Automation, Spain, 2005.

14. I. Poupyrev, H. Kato, and M. Billinghurst. Artoolkit user manual, version 2.33.
Human Interface Technology Lab, University of Washington, 2000.

15. Ioannis M. Rekleitis, Gregory Dudek, and Evangelos E. Milios. On the positional
uncertainty of multi-robot cooperative localization. Multi-Robot Systems Work-
shop, Naval Research Laboratory, Washington, DC, USA, March 18-20 2002.

16. I. Rekletis and G. Dudek. Automated calibration of a camera sensor network.
In IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pages 401–406, 2005.

17. Stergios I. Roumeliotis and George A. Bekey. Distributed multirobot localiza-
tion. IEEE Transactions on Robotics and Automation, 18(5):781–795, 2002.

18. R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships
in robotics. Autonomous Robot Vehicles, pages 167 – 193, 1990.

19. R. Y. Tsai. Synopsis of recent progress on camera calibration for 3-d machine
vision. The Robotics Review, pages 147–159, 1989.

20. R. Y. Tsai and R. K. Lenz. A versatile camera calibration technique for high-
accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses.
IEEE Journal of Robotics and Automation, pages 323–344, 1987.

21. R. Y. Tsai and R. K. Lenz. Real time versatile robotics hand/eye calibration
using 3d machine vision. IEEE Int. Conf. on Robotics & Automation, 1988.

22. Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

Adaptive Robotic Communication Using Coordination
Costs∗

Avi Rosenfeld, Gal A Kaminka, and Sarit Kraus

Bar Ilan University, Ramat Gan, Israel

{rosenfa, galk, sarit}@cs.biu.ac.il

Summary. Designers of robotic groups are faced with the formidable task of creating effec-

tive coordination architectures that can deal with changing environment conditions and hard-

ware failures. Communication between robots is one mechanism that can at times be helpful

in such systems, but can also create a time and energy overhead that reduces performance.

In dealing with this issue, various communication schemes have been proposed ranging from

centralized and localized algorithms, to non-communicative methods. In this paper we argue

that using a coordination cost measure can be useful for selecting the appropriate level of

communication within such groups. We show that this measure can be used to create adaptive

communication methods that switch between various communication schemes. In extensive

experiments in the foraging domain, multi-robot teams that used these adaptive methods were

able to significantly increase their productivity, compared to teams that used only one type of

communication scheme.

1 Introduction

Groups of robots are likely to accomplish certain tasks more quickly and robustly
than single robots [3, 5, 7]. Many robotic domains such as robotic search and res-
cue, demining, vacuuming, and waste cleanup are characterized by limited operating
spaces where robots are likely to collide. In order to maintain group cohesion under
such conditions, some type of information transfer is likely to be helpful in facil-
itating coherent behavior in robotic group tasks and thus better achieve their task.
This is especially true as robotic domains are typically fraught with dynamics and
uncertainty such as hardware failures, changing environmental conditions, and noisy
sensors.

Questions such as what to communicate and to whom have been the subject of re-
cent study [7, 11, 12]. In theory, communication should always be advantageous–the
more information a robot has, the better. However, assuming communication has a
cost, one must also consider the resources consumed in communication, and whether
the cost of communication appropriately matches the needs of the domain. We be-
lieve that different communication schemes are best suited for different environmen-
tal conditions. Because no one communication method is always most effective, one

∗ This work was partially supported by the Israeli Ministry of Science and Technology.

way to improve the use of communications in coordination is to find a mechanism
for switching between different communication protocols so as to match the given
environment.

This paper provides such an adaptive communications framework using a coordi-
nation cost measure that quantifies all resources spent on coordination activities. Our
model explicitly includes resources such as the time and energy spent communicat-
ing. In situations where conflicts between group members are common, more robust
means of communication, such as centralized models, are most effective. When col-
lisions are rare, coordination methods that do not communicate and thus have the
lowest overhead, work best.

We present two novel domain-independent adaptive communication methods that
use communication cost estimates to alter their communication approach based on
domain conditions. In our first approach, robots uniformly switch their communi-
cation scheme between differing communication approaches. In this method, robots
contain full implementations of several communication methods, and switch between
them as needed. In contrast, our second approach represents a generalized commu-
nication scheme, that allows each robot to adapt independently to its domain con-
ditions. Each robot creates its own communication range radius (which we refer to
as its neighborhood of communication), to create a sliding scale of communication
between localized to centralized methods. Each robot uses its coordination cost esti-
mate to determine how large its neighborhood should be.

To evaluate these adaptive methods, we performed thousands of trials using an es-
tablished robotic simulator, in a multi-robot foraging task. We tested groups of vary-
ing sizes and communication methods. We found that groups that used the adaptive
methods often significantly exceeded the best productivity levels of the non-adaptive
algorithms they were based on.

2 Related Work

A major challenge to designers of robotic groups exists in choosing an optimal com-
munication method. Many practical frameworks have been presented for use within
robotic teams [3–9, 12] and can generally be assigned to categories of no communi-
cation, localized, and centralized approaches.

It is possible to create effective group behavior without any communication [2].
For example, the Stigmergy concept [6] involves group members basing their ac-
tions by observing how other group members previously modified their environ-
ment. This approach has been shown to be effective in several animal and robotic
domains [6] without using any explicit communication. Coordination without com-
munication can potentially facilitate better adaptability, robustness and scalability
qualities over methods using communication [11]. Additionally, the lack of commu-
nication also allows such methods to be implemented on simpler robots. However,
such algorithms often require powerful and accurate sensing capabilities [9]. Also,
our results demonstrate that groups implementing these methods did not always pro-
vide the highest levels of productivity, especially within dynamic domains where
frequent coordination conflicts exist.

166 Avi Rosenfeld, Gal A Kaminka, and Sarit Kraus

A second set of approaches attempt to improve group performance by having ro-
bots locally communicate information [7, 9]. For example, work of Jäger and Nebel
[7] present a method whereby robots nearing a collision stopped to exchange trajec-
tory information. They then successfully detect and resolve deadlock conditions of
two or more robots mutually blocking. However, their trajectory planning method
was not able to perform well in groups of over five robots. In contrast, Mataric [9]
reported that a local communication scheme scaled well with group size. One key
difference seems to lie within the local communication implementations. In Jäger’s
algorithm, one or more robots must stop moving during trajectory replanning. We
believe this led to a breakdown in the system once the group size grew. Mataric’s
locally communicating robots broadcast information while continuing their foraging
task. This allowed for better scalability qualities.

A third type of approach involves the use of some type of central repository of
information [12]. This centralized body, which could also be implemented as one
"expert" teammate, would then be able to easily share its store of pooled information
with other teammates. While this approach allows for free information sharing and
can thus improve performance, several drawbacks are evident. First, the centralized
mechanism creates a single point of failure. The cost of communication is also likely
to be large, and requires hardware and bandwidth suitable for simultaneous commu-
nication with the centralized body. While these drawbacks are at times significant,
they may be justified given the needs of the domain.

In this work, we assume that representative communication methods from these
categories are predefined, and have been implemented with optimal values for their
exact parameters given domain conditions. Several approaches exist for finding these
parameters within a given coordination method. For example, work by Yoshida et
al. [4] presented a framework to derive an optimal localized communication area
betweens within groups of robots to share information in a minimum of time. This
approach assumes domain conditions such as spatial distributions and the probabil-
ity of information transmission can be readily calculated. Previously, Goldberg and
Mataric [5] focused on interference (which they defined as the time robots spent
colliding) as a basis for measuring a coordination method’s effectiveness. However,
they did not address how to create adaptive methods based on interference. Our pre-
vious work [10] built upon this interference definition to include all resources spent
resolving coordination conflicts including the time spent before and after collisions.
We then demonstrated that parameter tweaking is possible through this measure. The
advantage to this approach over the work of Yoshida et al. [4] is its ability to allow
robots to autonomously adapt, even in dynamic environments. However, in contrast
to their work, our previous work [10] did not study communication issues.

In this work, we use coordination cost measures to compare a given set of com-
munication methods and to create adaptive methods based on these existing meth-
ods. We explicitly model all resources spent on coordination activities including the
resources spent on communication even if they do not detract from the time to com-
plete the task. Our goal was to properly match communication methods to domain
conditions, while considering their relative costs. Furthermore, adaptation between
communication schemes presents new challenges, since many protocols require stan-

Adaptive Robotic Communication Using Coordination Costs 167

dardized communication between all team members. These challenges are addressed
in this paper.

3 Using Coordination Costs to Adapt Communications
Our coordination cost measure facilitates identifying which communication method
is most suitable given the environment. We model every robot’s coordination cost
Ci, as a factor that impacts the entire group’s productivity. We analyze two cost cate-
gories: (i) costs relating to communication and (ii) proactive and/or reactive collision
resolution behaviors. We focus on the time and energy spent communicating and in
the consequent resolutions behaviors (see Implementation Section for full details).
We then combine these factors to create a multi-attribute cost function based on
the Simple Additive Weighting (SAW) method [14] often used for multi-attribute
utility functions. While methods with no communication have no Ci for communi-
cation, this method could not always successfully resolve collisions and then spent
more resources on collision resolution behaviors, or another Ci. Conversely, central-
ized methods incurred a communication cost Ci that often eclipsed the needs of the
domain and weighed heavily on productivity. Other communication issues, such as
bandwidth limitations, can similarly be categorized as additional cost factors as they
impact any specific robot. For example, if a robot needed to retransmit a message
due to limited shared bandwidth, costs in terms of additional time latency and en-
ergy used in retransmission are likely to result.

Using this measure we can compare communication methods, but in this paper
we focus on using it for online adaptation between communication schemes. In this
section we present two types of adaptive methods: (i) uniform communication adap-
tation (ii) adaptive neighborhoods of communication. Both methods led to significant
increases in productivity over static approaches (see Experiments section).

3.1 Uniform Switching Between Methods

In our first method, all robots simultaneously switch between mutually exclusive
communication methods as needed. In order to facilitate this form of adaptation,
each robot autonomously maintains a cost estimate, V used to decide which com-
munication method to use. As a robot detects no resource conflicts, it decreases an
estimate of this cost, V , by an amount Wdown. When a robot senses a conflict is
occurring, the value of V is increased by an amount Wup. The values for V are
then mapped to a set of communication schemes methods ranging from those with
little cost overhead such as those with no communication, to more robust methods
with higher overheads such as the localized and centralized methods. As the level
of projected conflicts rises (as becomes more likely in larger group sizes) the value
of V rises in turn, and the robots use progressively more aggressive communica-
tion methods to more effectively resolve projected collisions. While these activities
themselves constitute a cost that detracts from the group’s productivity, they are nec-
essary as more simple behaviors did not suffice. As different coordination methods
often have different costs, Ci for a given domain, we believed this approach could be
used to significantly improve the productivity of the group.

168 Avi Rosenfeld, Gal A Kaminka, and Sarit Kraus

Several key issues needed to be addressed in implementing this method with
groups of robots. First, we assumed that all group members are aware of the over-
heads associated with various coordination methods, and can order them based on
their relative complexities. This ordering can be derived from theoretical analysis
or through observation (as we do in later in this paper). Second, an approach to
quickly set the weights, Wup, and Wdown used within our algorithms is needed.
While traditional learning methods, such as Q-learning [13] may converge on an op-
timal policy, this approach is difficult to implement because of two major reasons.
First, Q-learning is based on a a concept of "state" that is not readily definable during
task execution. As opposed to clearly defined discrete domains, there is no reward for
any given cycle of activity in the robotic domains we studied. Even assuming an op-
timal policy could be learned, a second, more fundamental problem exists. Robotic
domains often contain dynamics that render a learned policy obsolete very quickly.
Thus, our approach is to sacrifice finding a globally optimal policy in exchange for
finding a locally optimal policy after a much shorter training period for our weights.
We used a gradient learning procedure to achieve this result.

Next, it must be noted that uniform adaptation requires all robots to change com-
munication in sync because of the mutual exclusivity of the methods used. For exam-
ple, it is impossible for one robot to use a centralized method, with others using one
without communication, as the centralized approach is based on information from all
team members. As a result, once any one robot in the group autonomously decided
it needed to switch communication schemes, a communication change must also oc-
cur within all other team members. This could force certain members to use a more
expensive communication method than it locally found necessary. We relaxed these
requirements in the second adaptive method, presented in the next section.

Finally, care must be taken to prevent the robots from quickly oscillating between
methods based on their localized conditions. In our implementation, communication
adaptation was triggered once one robot’s value for V exceeded a certain threshold.
After this point, that robot broadcasted which method it was switching to and all
group members would change in kind and reinitialize their cost estimates V to this
new value. Furthermore, we also used domain specific information, such as priori-
tizing collisions closer to the home base within our foraging domain. In this fashion,
we partially limited the types of triggers to those of importance to the entire group.
Once again, our second type of communication adaptation relaxes this requirement
and is effective without any such heuristics.

3.2 Adaptive Neighborhoods of Communication

The advantage in our first adaptive approach lies in its simplicity. Our uniform adap-
tive approach switches between existing coordination methods based on estimated
coordination cost. Assuming one analyzes a new domain with completely different
communication methods, and can order the communication methods based on their
communication costs, this approach will be equally valid as it implements existing
methods and reaches the highest levels of productivity from among those methods–
whatever they may be.

Adaptive Robotic Communication Using Coordination Costs 169

In contrast, our second adaptation method is a parameterized generalization of
the three specific categories of communication methods (No-Communication, Local-
ized, and Centralized). As many robotic domains use elements of these same meth-
ods [3, 4, 6–8, 12], we reason that a similar approach is likely to work in these and
other domains as well.

The basis of this approach is introducing a parameter to control how large a ra-
dius of communication is used by each robot. This method uses a distance d inside
which robots exchange information, which we term its communication neighbor-
hood. Formally, this radius of communication could be considered a neighborhood
Γ of size d, created from robot v and includes all teammates, u, inside this radius.
As such, we represent the neighborhood as Γd(v) = {u| u robot, dist(u, v) ≤ d}.

Adjusting the value of d in Γd can be used to approximate the previously studied
communication categories. Assuming d is set to zero, no communication will ever be
exchanged and this method is trivially equivalent to the No-Communication method.
Assuming d is set to some small amount, ε, this method will become similar to the
Localized method and information will be exchanged only with the robot it is about
to collide with. If d is set to the radius of the domain, the neighborhood of commu-
nication encompasses all teammates this method becomes similar to the Centralized
method. Thus, the degree of centralization exclusively depends on the value of d.

4 Implementation Details
We used the Teambots [1] simulator to implement communication schemes involv-
ing no communication, localized and centralized approaches within groups of No-
mad N150 foraging robots. The foraging domain is defined as locating target items
from a search region S, and delivering them to a goal region G [5]. Foraging robots
often collide as they approach the home base(s) within their area of operation. In our
domain there was only one goal region, G, which was located in the center of the
operating area. In our implementation, there were a total of 60 target pucks spread
throughout an operating area of approximately 10 by 10 meters. We measured how
many pucks were delivered to the goal region within 9 minutes by groups of 2–30
robots using each communication type. We averaged the results of 100 trials for each
group size with the robots being placed at random initial positions for each run. The
number of trials performed and the relatively large group sizes would have been dif-
ficult to implement on physical robots.

We created experiment sets measuring the time and energy spent in two coordi-
nation categories–communication and collision resolution. The coordination costs in
our first set of experiments involved the time spent in communication and collision
resolution behaviors out of each trial’s total time of 9 minutes. In our second set of
experiments, we allocated each robot 500 units of fuel. We assumed most of the fuel
was used by the robots to move, with a smaller amount (1 unit per 100 seconds)
used to maintain basic sensors and processing. For the time based experiments, we
assumed robots pairs stopped for 1/5 of a second to communicate, representing some
methods [7] where robots stop to exchange information. In the energy based local-
ized experiments, we assumed robots did not stop to communicate, as is the case

170 Avi Rosenfeld, Gal A Kaminka, and Sarit Kraus

with other methods [9], but each robot still spent 0.3 units of fuel per communica-
tion exchange. Our coordination cost involved the amount of fuel that was used in
communication and repulsion behaviors.

All three communication schemes were similar in that they resolved collisions
by mutually repelling once they sensed a teammate within a certain safe distance
ε, which we set to 1.5 robot radii. Once within this distance, robots acted as they
were in danger of colliding and used repulsions schemes to resolve their collision(s).
The No-Communication method was unique in that robots never used time or fuel
to communicate, and thus only had costs relating to the repulsion behaviors robots
engaged in. However, this method assumed domain specific information, namely
it used the robot’s autonomously computed scalar distance, S, from its location to
the home base in the domain. Robots used a function of this distance, which we
implemented to be 5 times S and rounded to the closest second, as the time to repel
from its teammate(s) after a projected collision.

Our localized method used less domain specific information and is similar to the
localized methods previously proposed [7, 9]. Communication between robots was
initiated once it was in danger of colliding–a teammate came within the ε distance.
After this event, these group members would exchange information above their tra-
jectories (here their relative distances from their typical target, their home base). The
closer robot then moved forward, while the other robot repelled for a fixed period of
20 seconds.

Our final method, Centralized, used a centralized server with a database of the lo-
cation of all the robots similar to other centralized methods [12]. Within this method,
one of two events triggered communication. First, as with the localized method, ro-
bots dropping within the ε distance initiated communication by reporting its posi-
tion, done here with the centralized server. The server then reported back a repel
value based on its relative position to all other teammates. However, in order for the
server to store a good estimate of the positions of all robots, a second, often more
frequent type of communication was needed where each robot reported its position
to the server with frequency L. If this communication occurred too frequently, this
central database would have the best estimate of positions, but the time or energy
spent on communication would spike, and productivity would plummet. If commu-
nication was infrequent, the latency of the information stored on the server would
create outdated data. This in turn would reduce the effectiveness of this method, and
result in more collisions. We found that a latency time of 1 second yielded the highest
productivity in the time based experiments, and a latency value of 5 seconds yielding
the highest productivity within the energy based experiments.

It is important to stress that the focus of our work is switching between categories
of communication methods, and not to find optimal parameters within any one given
communication method. We refer the reader to previous work [4, 10] on how to the-
oretically or empirically derive parameters within one communication method. Our
work is based on the understanding that a high negative correlation exists between
each groups’ productivity and our coordination cost, regardless of the exact imple-
mentation for the parameters used in the No-Communication, Localized and Central-
ized methods. For example, we studied 7 latency variations within the Centralized

Adaptive Robotic Communication Using Coordination Costs 171

method in both experiment sets. Our groups enforced maximal latency periods of
L set to 0.1, 0.3, 1, 5, 10, 30 and 60 seconds. While the optimal latency value was
different across experiment sets, in both cases the productivity of these variations
was highly negatively correlated with their relative coordination costs. In the first
case, we found a correlation of -0.95 between these latency variations and the corre-
sponding coordination cost based on time. In the trials based on fuel, this value was
-0.97. Similarly, factors such as the exact energy spent on communication exchanges
(0.3 units of fuel per exchange) or the time spent on communication (1/5 seconds
per exchange) could vary across domains, or the distance between communication
partners. However, we consistently found that the resources spent on these communi-
cation exchanges was strongly negatively correlated with those groups’ productivity.

While we consider the neighborhood communication approach to be a parameter-
ized generalization of the three previously described categories, some implementa-
tion details differ in this method over the static ones it emulates. Within this method,
once any robot A, detects another robot within the ε distance, it initiates communi-
cation with all robots found within the Γd(A) area. All robots in Γd(A) must then
report back to Robot A with their projected trajectories. Robot A then sorts all ro-
bots’ trajectories by their relative distances from the home base in the domain. This
robot then reports back to every robot within Γd(A) a repel value based on that ro-
bot’s relative position in the neighborhood. All robots, including the initiating robot
(robot A), then accept this value and immediately engage in repel behaviors for the
dictated length of time. It is possible that a robot may be a member of more than one
neighborhood. In such cases, robots accept the larger repel value regardless of the
sender.

While the repel amounts of the robot initiating communication (Robot A) are
calculated in a similar fashion to the previously described centralized method, here
these values are calculated by members of the team, instead of one centralized server.
The radius of communication in the centralized approach is the full width of the do-
main, while the Γd radius is typically much smaller. However, the biggest difference
in implementing this approach is how repel values are obtained. Robots in previous
methods only repelled based on communication received after dropping within the
ε distance. In this method, robots may repel if they enter the Γd radius even if they
are not in immediate danger of colliding. The reason for this is as follows. As robots
within the Γd radius are typically close to each other, we found that these robots of-
ten would soon initiate their own radii of communication. In other methods this was
not a concern, as other teammates were not effected by this phenomenon. However,
here this would create multiple neighborhoods involving the same teammates. Thus,
proactively assigning repel values was crucial for containing communication costs
as Γd grew.

5 Experimental Results
The first set of experiments attempts to first lend support to the underlying hypoth-
esis, that the combined coordination cost measure is in fact correlated to the pro-
ductivity of the different groups. Our results from experiments involving time and

172 Avi Rosenfeld, Gal A Kaminka, and Sarit Kraus

energy costs support the claim that the best method of communication does change
with domain conditions (see figure 1). In the time experiments, we found an aver-
age correlation of -0.96 between the average productivity found in groups of 2–30
robots and the group’s corresponding average cost. In the equivalent energy based
experiments, we found a value of -0.95.

Fig. 1. Comparing the productivity levels of three communication types with the coordination

costs based on the time spent on communication relative to different group sizes. Results

averaged from 100 trials per datapoint.

Similarly, we found that no one neighborhood size always fared best. We com-
pared the productivity levels of foraging groups where d was set to 1, 2, 3, 5 and 50
robot lengths. Recall that ε is approximately 1 robot length (1.5 radii). Thus Γ1 repre-
sents the nearly localized variation with Γ50 corresponding to the nearly centralized
version of this method.

Figure 2 represents the relative productivity levels for these static neighborhood
groups relative to the energy costs levels measured in these groups. Notice how in
small groups, Γ1 yielded the highest average productivity. As we have seen, when
possible, resources spent on coordination, here by creating large communication
neighborhoods, should be avoided when possible. As small areas of communication
sufficed in small groups, this approach had the highest productivity. As the group
size grew, additional communication was necessary to maintain high productivity
levels. As a result, larger neighborhoods were necessary and groups with Γ5 resulted
in the highest productivity. However, forcing too much communication when not
necessary created communication costs that reduced productivity to levels found in
methods that spend too few resources on communication. In this method, the produc-
tivity level of the Γ50 method, which created too large a neighborhood, approached
those of Γ1, which did not create a large enough one. We again found a strong corre-
lation between the various Γd variations and the groups’ corresponding coordination
costs and productivity with an average negative correlation of −0.96.

Based on the confirmed hypothesis, that the cost measure is indeed correlated
(negatively) with performance, the next set of experiments evaluated the performance
of the two adaptive methods compared to the static methods on which they were
based. Figure 3 shows the results from these experiments. Notice that both adaptive
approaches approximated or significantly exceeded the highest productivity levels

Adaptive Robotic Communication Using Coordination Costs 173

Fig. 2. The impact of varying neighborhood sizes (d) on productivity levels and costs in energy

experiments. Results averaged from 100 trials per datapoint.

of the static methods (No Communication, Local, and Centralized methods) they
were based on, especially in medium to large groups. We attribute the success of
both methods to their ability to change communication methods to the needs of the
domain. We believe that the neighborhood method outperformed the uniform one
as it was allowed to create locally different neighborhood sizes, something none
of the static neighborhood methods were capable of. This in turn facilitated better
adaptation and higher productivity.

Fig. 3. Comparing adaptive communication methods based on time and energy costs to static

methods. Results averaged from 100 trials per datapoint.

To evaluate the statistical significance of these results, we conducted the two
tailed t-test and a 1-factor ANOVA test comparing our adaptive groups and the three
static groups they were based on. In all cases, in both time and energy categories, the
null hypothesis p values were below 0.001. This confirms our hypothesis that we can
improve productivity through creating adaptive methods based on communication
costs.

6 Conclusion
This work demonstrates how coordination costs can account for the relative effec-
tiveness of robotic communication methods. Our measure focuses on the time and

174 Avi Rosenfeld, Gal A Kaminka, and Sarit Kraus

energy spent communicating and resolving collisions. We demonstrate the effective-
ness of our methods in comparing between very different communication methods
falling within categories of no communication, localized and centralized communi-
cation methods. By using this information we are able to match the most effective
communication scheme to a given robotic domain. We present two general adap-
tive communication algorithms, uniform and neighborhood methods. We show, in
thousands of foraging experiments, that coordination cost is indeed negatively corre-
lated with productivity, and that the use of our adaptive methods leads to significant
performance boosts. While we find the neighborhood adaptive method to be more
effective in the robotic foraging domain we studied, both approaches are likely to be
applicable to many other domains [3, 7, 8, 12]. It is possible that the uniform method
is easier to implement or will yield better adaptive qualities in other domains.

References

1. T. Balch. www.teambots.org, 2000.

2. T. Balch and R. Arkin. Behavior-based formation control for multirobot teams. IEEE
Transactions on Robotics and Automation, 14(6):926–939, December 1998.

3. G. Dudek, M. Jenkin, and E. Milios. A taxonomy for multi-agent robotics. Robot Teams:
From Diversity to Polymorphism, Balch, T. and Parker, L.E., eds., Natick, MA: A K Peters,

3:3–22, 2002.

4. M. Y. J. O. Eiichi Yoshida, Tamio Arai. Local communication of multiple mobile robots:

Design of optimal communication area for cooperative tasks. Journal of Robotic Systems,

15(7):407–427, 1998.

5. D. Goldberg and M. Matarić. Design and evaluation of robust behavior-based controllers

for distributed multi-robot collection tasks. In Robot Teams: From Diversity to Polymor-
phism, pages 315–344, 2001.

6. O. Holland and C. Melhuish. Stigmergy, self-organization, and sorting in collective ro-

botics. Artif. Life, 5(2):173–202, 1999.

7. M. Jager and B. Nebel. Decentralized collision avoidance, deadlock detection, and dead-

lock resolution for multiple mobile robots. In IROS, pages 1213–1219, 2001.

8. G. A. Kaminka and R. Glick. Towards robust multi-robot formations. In ICRA-06, 2006.

9. M. J. Matarić. Using communication to reduce locality in multi-robot learning. In

AAAI/IAAI, pages 643–648, 1997.

10. A. Rosenfeld, G. Kaminka, and S. Kraus. Adaptive robot coordination using interference

metrics. In The Sixteenth European Conference on Artificial Intelligence, pages 910–916,

August 2004.

11. S. Sen, M. Sekaran, and J. Hale. Learning to coordinate without sharing information. In

Proceedings of the Twelfth National Conference on Artificial Intelligence, pages 426–431,

Seattle, WA, 1994.

12. A. Tews. Adaptive multi-robot coordination for highly dynamic environments. In CIMCA,

2001.

13. C. J. C. H. Watkins. Learning from delayed rewards. Ph.D. Dissertation, Kings College,

1989.

14. K. Yoon and C. Hwang. Multiple attribute decision making: an introduction. Prentice

Hall, Thousand Oaks: Sage, 1995.

Adaptive Robotic Communication Using Coordination Costs 175

What to Communicate? Execution-Time

Decision in Multi-agent POMDPs

Maayan Roth1, Reid Simmons2, and Manuela Veloso3

1 Robotics Institute, Carnegie Mellon University mroth@andrew.cmu.edu
2 Robotics Institute, Carnegie Mellon University reids@cs.cmu.edu
3 Computer Science Department, Carnegie Mellon University veloso@cs.cmu.edu

Summary. In recent years, multi-agent Partially Observable Markov Decision Pro-
cesses (POMDP) have emerged as a popular decision-theoretic framework for model-
ing and generating policies for the control of multi-agent teams. Teams controlled by
multi-agent POMDPs can use communication to share observations and coordinate.
Therefore, policies are needed to enable these teams to reason about communica-
tion. Previous work on generating communication policies for multi-agent POMDPs
has focused on the question of when to communicate. In this paper, we address
the question of what to communicate. We describe two paradigms for representing
limitations on communication and present an algorithm that enables multi-agent
teams to make execution-time decisions on how to effectively utilize available com-
munication resources.

1 Introduction

The problem of generating optimal policies for multi-agent POMDPs is known
to be NEXP-complete [1], making optimal policy-generation intractable.
Therefore, the bulk of recent work in this area has focused on finding heuristic
algorithms that can generate high-quality policies for multi-agent teams in a
reasonable amount of time. Team members can improve their ability and the
abilities of their teammates to reason about their environment by communi-
cating their local observations. We are interested in studying heuristics for
making execution-time communication decisions [5]. By assuming free com-
munication at policy-generation time, we can generate centralized policies for
multi-agent teams using a single-agent POMDP solver. We then reason about
communication at execution time to enable decentralized execution of these
policies.

In situations where teams have the capability to perform free and un-
limited communication, the best strategy is for each agent to broadcast all
of its observations to its teammates [4]. However, in general, communication
is not free. To use communication effectively, multi-agent teams must trade
off the benefit that can be achieved through communication with the cost of
communicating. We consider two communication paradigms:

178 Maayan Roth, Reid Simmons, and Manuela Veloso

Fixed cost per communication instance - Every time the agents decide
to communicate, they incur a known fixed cost [4, 6, 7]. The question that
must be answered by a communication heuristic is, in essence, when to
communicate. In some previous approaches, the use of this paradigm to
focus on the question of when to communicate has justified algorithms
in which agents are required to communicate their entire observation his-
tories if they determine that communication is beneficial [8, 5]. In this
paper, we extend this paradigm to include the case in which cost scales
with the amount of information to be communicated. We model this by
assuming a fixed cost per observation transmitted.

Limited communication bandwidth - Often, communication among agents
has a strict limit on available bandwidth. For example, in robot soccer, an
attempt to communicate the complete and frequent sensory data would
easily overload the available communication resources [11]. In planetary
exploration, communication bandwidth is limited, and in a proposed com-
munication architecture, agents need to share a limited number of commu-
nication relays in order to stay in contact with their teammates [12]. Other
domains include distributed surveillance, in which the observations them-
selves are very large [13]. In general, it is possible to quantify the amount
of bandwidth available for communication between teammate agents. The
challenge, then, is to determine what to communicate so as to best use
the available bandwidth, an issue that has received little attention in the
current multi-agent POMDP literature.

Our previous work presented an algorithm for making execution-time deci-
sions about when to communicate that allows agents to successfully execute
centralized policies in a decentralized fashion [5]. In this paper, we introduce
an algorithm that builds on our previous work to address the question of what

to communicate. We show the applicability of this algorithm to both commu-
nication paradigms presented above, and verify the success of our algorithm
through experimental results. When there is a fixed communication cost per
observation, our algorithm allows agents to identify only those observations
that are relevant to team performance. In the case of bandwidth limitation,
where each agent is allowed to communicate a fixed number of observations
per unit time, our algorithm enables agents to choose those observations that
will most improve expected team reward.

Given the complexity of generating policies for multi-agent POMDPs, it is
not surprising that approaches have so far been validated on very small test
problems. The multi-agent tiger domain , introduced by Nair et al. [2], has
emerged as a commonly-used benchmark case [9, 5, 10]. It has the significant
advantage of being small enough for easy use in explanatory examples, while
still containing a challenging coordination problem. In this paper, we intro-
duce a new domain, called the Colorado/Wyoming problem. This new domain
contributes several key attributes that make it useful for evaluating communi-
cation heuristics, such as the presence of multiple different observations that

What to Communicate? 179

provide varying qualities of information. Together with the multi-agent tiger
domain, it is a step toward the compilation of a comprehensive suite of bench-
mark domains for multi-agent POMDPs.

2 Multi-agent POMDPs

Several representations (e.g. DEC-POMDP [1], MTDP [4], POIPSG [3],
IPOMDP [10]) can be used to model cooperative teams of agents operat-
ing under partial observability. In this paper, we use the notation introduced
in [1], which defines a DEC-POMDP as a tuple 〈α,S,A, T , Ω,O,R〉 where α
is the number of agents in the team, S is the set of n world states, and A is
the set of m possible joint actions of the team, where each joint action, ai, is
composed of α individual actions. T , the transition function, depends on joint
actions and gives the probability associated with starting in a particular state
si and ending in a state sj after the team has executed the joint action ak.
Ω is the set of possible joint observations, where each joint observation, ωi,
is composed of α individual observations. The observation function, O, gives
the probability of observing the joint observation ωi after taking action ak

and ending in state sj. R indicates the reward that is received when the team
starts in a state si and takes the joint action ak. In this paper, we present
example domains in which the agents are identical. However, this is not a
necessary property of multi-agent POMDPs and our algorithms are equally
applicable to heterogeneous teams.

It is important to note that, although the observation function is given in
terms of joint observations, each agent observes only its own individual obser-
vations. Additionally, when executing a policy, the individual agents receive
no explicit notification of the actions that were taken by their teammates.
Multi-agent POMDPs are challenging to solve because, to accurately model
the state and choose a policy, each agent must reason not only over uncertainty
in the environment, but also about the possible behaviors of its teammates.

There are several classes of observability possible in cooperative multi-
agent teams. In this paper, we examine domains with collective partial ob-
servability, meaning that even if every agent on the team had access to the
local observations of all of its teammates, this union of team information
may still be insufficient to uniquely identify the world state. The algorithms
that we discuss in this work are equally applicable to domains with collective
observability, sometimes called DEC-MDP, in which the union of individual
observations is sufficient to uniquely determine the team’s state.

3 DEC-COMM: Deciding When to Communicate

The problem of generating optimal policies for multi-agent POMDPs is known
to be NEXP-complete [1], making exact solutions unfeasible and necessitating
the use of heuristics. Our previous work [5] developed an approach that ex-
ploits a known property of multi-agent POMDPs, namely that the presence of

180 Maayan Roth, Reid Simmons, and Manuela Veloso

free and unrestricted communication can be used to transform a multi-agent
POMDP into a centralized, or single-agent, POMDP [4], a problem that has
a smaller complexity of PSPACE [14]. The approach of our previous work
is to assume, at policy-generation time, that communication is free, allowing
agents to know the local observations of their teammates at every timestep.
This enables us to write the multi-agent POMDP as a single-agent POMDP.
We are then able to use any single-agent POMDP solver (e.g. [15]) to generate
a centralized policy for the team.

The challenge, then, is to enable agents to execute the centralized policy
in a decentralized manner despite the fact that, in general, communication
is not free. Because the transition and observation functions of a multi-agent
POMDP depend on the joint action, an individual member of the team cannot
compute belief independently. To correctly execute a centralized policy, the
agents must form the same approximation of joint belief, and each agent must
ensure that it is selecting the same joint action as its teammates. This requires
agents to model joint belief based only on information that is globally available
to all of the teammates.

Our approach is to have each agent calculate Lt, the distribution of possi-
ble joint beliefs of the team. Each element, Lt

i
, is a possible joint observation

history. Lt

i
is defined as the tuple 〈bt, pt, ωt〉, where ω

t is the joint observation
history leading to Lt

i
, bt is the joint belief given that history, and pt is the prob-

ability of the team observing that history. [5] provides a detailed algorithm,
growTree, that describes how this tree is calculated. The important detail is
that the contents of this tree do not depend on any agent’s local observations.
Therefore, all the agents can compute identical trees independently.

Agents can calculate a joint action over the distribution of possible joint
beliefs and be assured that the joint action selected is identical across team-
mates. This action selection can by done by means of any function that op-
erates over the leaves in Lt. We introduced one possible Evaluate function,
Q-POMDP, in [5]. However, since agents do not use their local observations
to refine their beliefs about the state of the world, the selected action is unaf-
fected by the agents’ true experiences. Communication provides a means for
agents to share their local observations with their teammates, enabling the
team to use those observations when making decisions.

Since communication is not free, we want to reason about when to commu-
nicate. The Dec-Comm algorithm, presented in detail in [5], enables agents to
make execution-time decisions about when to communicate their observations
to teammates. An agent can hypothesize about the joint action that would
be selected by the team if it chose to communicate by pruning Lt of all of the
observation histories that are inconsistent with its own local observations. It
compares the expected reward of this new joint action, aC , with the expected
reward of the joint action that would be chosen if it does not communicate,
aNC . If the change in expected reward is above some threshold ε (the cost
of communication), the agent broadcasts its observation history to its team-

What to Communicate? 181

mates, who then prune their own Lt to be consistent with the communicated
observations.

4 Choosing What to Communicate

The Dec-Comm algorithm described above answers the question of when

to communicate, making run-time communication decisions in the context of
decentralized execution of a centralized policy. However, it does not address
the question of what to communicate. Each time an agent communicates, the
algorithm requires it to broadcast all of the observations received since the last
time that it communicated. There are several shortcomings to this approach.
First, it is unnecessarily wasteful, forcing agents to broadcast observations
that do not serve to improve team performance. Second, it can deal only
with communication limitations that are represented through a fixed cost of
communication. The algorithm in its original form does not enable agents to
make efficient use of limited communication bandwidth.

Given a limited bandwidth availability of k observations, the goal is to find
those k observations that would most increase the expected team reward if
communicated. While this can be done exhaustively by calculating the value
of information of each subset of size k of an agent’s observation history, it is
intractable for run-time decision making.

Instead, we introduce the BuildMessage heuristic. The intuition is as
follows: The agent can calculate aC , the joint action that the team would
perform if the agent could broadcast its entire observation history. From this
agent’s perspective, aC is the best possible action that the team could take,
given all of the available information. If aC is the same as the action that would
be performed without communication, it is clear that the agent cannot ex-
pect that communicating only a subset of observations will improve expected
reward. If, however, communication could potentially improve the team’s se-
lection of a joint action, then it seems logical to select those observations that
most increase the desirability of choosing aC . In essence, BuildMessage is
a hill-climbing heuristic that greedily selects those observations that, when
integrated into the joint belief, result in the highest expected reward for the
action aC .

While BuildMessage is not optimal, its run time is only polynomial in
the length of the observation history. The parameters of the heuristic make it
applicable to both paradigms of communication that were discussed earlier. If
communication has a fixed cost and the goal is simply to minimize the number
of observations communicated, k can be set to t, the number of observations
in the agent’s observation history. This enables BuildMessage to select as
many observations as needed to change the joint action to aC , but no others.
If there is a bandwidth limitation of k observations, ε should be close to 0,
indicating that communication of up to k messages is allowed as long as there is
even a marginal improvement in expected reward. Table 2 shows the new Dec-

Comm-Selective algorithm, which utilizes the BuildMessage heuristic to

182 Maayan Roth, Reid Simmons, and Manuela Veloso

BuildMessage(L,ωj , ε, k)
aNC ← arg maxaEvaluate(a, L)
L′ ← prune(ωj , L)
aC ← arg maxaEvaluate(a, L′)
if Evaluate(aC , L′) - Evaluate(aNC , L′) ≤ ε

return ∅
else

ωC ← ∅
while (|ωC | ≤ k) ∧ (aNC �= aC)

vMAX ← −∞
for each ω ∈ ωj

L′ ← prune(ω,L)
v ← Evaluate(aC ,L′)
if v > vMAX

vMAX ← v
ωMAX ← ω

ωC ← ωC ◦ 〈ωMAX〉
L ← prune(ωMAX ,L)
ωj ← ωj − ωMAX

aNC ← arg maxaEvaluate(a, L)
return ωC

Table 1. The BuildMessage heuristic greedily selects the observations that lead to
the greatest increase in expected reward for aC , the action that would be executed
if the agent communicated its entire observation history.

choose when and what to communicate. It is invoked in any timestep when a
particular agent is allowed to communicate (i.e. there is bandwidth available
for it to use in this timestep).

Dec-Comm-Selective(Lt, ωt

j , ε, k)
ωC ← BuildMessage(Lt, ωt

j , ε, k)
if |ωC | > 0

communicate ωC to teammates
Lt ← prune(ωC , Lt)
ω

t

j ← ω
t

j − ωC

if message ω
t

i was received from teammate i
Lt ← prune(ωt

i, L
t)

a ← arg maxaEvaluate(a, Lt)
take action a
receive observation ωt+1

j

ω
t+1
j

← ω
t

j ◦ 〈ωt+1
j

〉

Lt+1 ← ∅
for each Lt

i ∈ Lt

Lt+1 ← Lt+1 ∪ growTree(Lt

i, a)
return [Lt+1, ωt+1

j
]

Table 2. One time step of the Dec-Comm-Selective algorithm for an agent j

What to Communicate? 183

5 Experimental Results

5.1 Multi-agent Tiger Domain

The multi-agent tiger problem [2] is a two-agent extension to the classical
tiger problem [17]. This domain is comprised of a room with two doors. Behind
one door is a tiger, and behind the other is a treasure. Each agent may either
choose to open a door or to perform Listen, an information-gathering action
that provides a noisy observation about the position of the tiger. The goal
of the problem is to avoid the tiger and instead to open the door hiding the
treasure.

To make this an interesting benchmark for multi-agent systems, an ex-
plicit coordination problem is built into the domain. The maximum reward is
obtained when both agents simultaneously open the door with the treasure. A
penalty is incurred when both agents open the door with the tiger. However,
the worst penalty occurs when each agent opens a different door. This coordi-
nation problem requires the agents to consider the actions of their teammates
when making their own decisions.

Our experimental results demonstrate that the Dec-Comm-Selective

algorithm enables a team of agents to make execution-time communication
decisions not only about when to communicate, but also about what to com-
municate, ensuring that they do not send unnecessary information. Table 3
summarizes the results of the experiment. We generated centralized a policy
for the team using the Cassandra POMDP solver [15]. We then ran 1000 tri-
als each of the Dec-Comm and Dec-Comm-Selective algorithms, allowing
the team to execute for 6 timesteps in each trial. The Dec-Comm-Selective

algorithm enables agents to broadcast almost 30% less observations with only
a small reduction in performance.

Average Average #
Reward Communications

Free Communication 11.95 10.0

Dec-Comm 9.35 5.14

Dec-Comm-Selective 8.41 3.68

Table 3. Results for the tiger problem.

5.2 Colorado/Wyoming Domain

While the tiger domain is useful for evaluating communication strategies, in
that it encodes a non-transition independent coordination problem in which
agents must act jointly to maximize expected reward, it is missing other char-
acteristics that are necessary to illustrate the full range of communication
decisions. In particular, the tiger domain has only two possible individual ob-
servations. In this paper, we introduce the Colorado/Wyoming domain that,
in addition to sharing the useful characteristics of the tiger domain, also has

184 Maayan Roth, Reid Simmons, and Manuela Veloso

many possible observations, and those observations have different utilities with
respect to team performance.

In this domain, two agents start one of two possible 5x5 grid worlds, Col-
orado or Wyoming, and must meet in a predetermined location. If they are
in Colorado, their goal is to meet up in Denver, at grid position (2,4). If the
agents are in Wyoming, they must rendezvous in Cheyenne, located at grid
position (5,5) (see Figure 1). Each agent can move North, South, East, or
West, with each move succeeding with probability p = 0.95 and incurring
a cost of -1. An agent can also Stop or send up a Signal. Similarly to the
multi-agent tiger domain, the Colorado domain contains an explicit coordi-
nation problem. If both agents are at the correct goal location when they
simultaneously send up a Signal, they receive a joint reward of +20. If they
send up simultaneous Signals from an incorrect location, they receive a re-
ward of -50. However, if only one agent Signals, or if they signal in different
locations, the team incurs a penalty of -100.

(a) (b)

Fig. 1. Figure (a) is one possible configuration of the two agents in Colorado, with
the goal, Denver, at (2,4). Figure (b) is one possible configuration of the two agents
in Wyoming, with Cheyenne located at (5,5).

In order to progress toward the correct goal location, the agents must ob-
serve their environment. Both Colorado and Wyoming contain flat and moun-
tainous regions. However, the probability that an agent will observe Moun-

tain in Colorado is slightly higher than observing it in Wyoming. Likewise,
the observation Plain is more probable in Wyoming. Colorado and Wyoming
also contain distinctive tourist attractions. It is somewhat likely that an agent
will see a sign for PikesPeak in Colorado or a sign for OldFaithful in
Wyoming, but very unlikely that these would be observed in the opposite
state. Because an agent is much more likely to observe PikesPeak in Col-
orado than in Wyoming, but only slightly more likely to see a Mountain, it is
clear that a PikesPeak observation would be more valuable to communicate
to a teammate.

In our experiment, we demonstrate that the BuildMessage heuristic is
able to identify and choose to communicate important observations. We com-
pared its performance to the performance achieved by choosing random ob-
servations. A centralized policy for the team was generated using the Q-MDP
heuristic [16]. We ran 1000 trials of each heuristic, with 10 timesteps per trial.
The bandwidth limitation that we applied allowed agents to communicate one
observation every two timesteps. Table 4 shows the results of the experiment.
The BuildMessage heuristic clearly outperforms a random selection of ob-

What to Communicate? 185

servations, demonstrating that it successfully identifies observations that have
high value of information.

Average Average #
Reward Communications

Heuristic 4.70 4.29

Random 0.94 4.56

Table 4. Results for the Colorado/Wyoming problem.

We alse performed an experiment to demonstrate the utility of our ap-
proach even in domains in which agents can operate independently. In this
experiment, we added an absorbing state to the domain. Each agent transi-
tions to that state when it Signals. Reward is additive, with no requirement
that agents Signal simultaneously. This is a problem that can be solved with
independent single-agent POMDPs. However, as the results in Table 5 show,
the team still benefits from communication. When agents communicate their
observations to each other, they are able to solve the problem more efficiently,
accruing greater reward. Our algorithm enables the team to communicate
those observations that will improve team performance.

Average Reward

Independent POMDPs 3.78

Dec-Comm-Selective 4.23

Free Communication 5.27

Table 5. Mean discounted reward for the modified Colorado/Wyoming problem.

6 Conclusions and Future Work

This paper discusses the need to reason about what to communicate when co-
ordinating a multi-agent team. We identify two paradigms of communication,
and show that it is insufficient, particularly in the case where the communica-
tion paradigm is limited bandwidth availability, to reason only about when

to communicate. We provide a polynomial-time heuristic for selecting those
observations that are, within the parameters of limited communication, most
valuable for team performance and demonstrate the success of this algorithm
experimentally.

In this work, we make decisions about which observations to communicate.
There are domains in which a finer granularity would be beneficial, where the
question to be answered is which features of the state are most relevant to
team performance. Factored representations operate over these state and ob-
servation features, and we intend to investigate their applicability to our work.
We also intend to apply our approach to domains in which observation prob-
abilities vary more from state to state. We believe that these domains pose an
interesting challenge to the problem of reasoning about value of information.

186 Maayan Roth, Reid Simmons, and Manuela Veloso

References

1. Bernstein D S, Zilberstein S, Immerman N (2000) The complexity of decentral-
ized control of Markov decision processes. In: Uncertainty in Artificial Intelli-
gence

2. Nair R, Pynadath D, Yokoo M, Tambe M, Marsella S (2003) Taming decentral-
ized POMDPs: Towards efficient policy computation for multiagent settings. In:
International Joint Conference on Artificial Intelligence

3. Peshkin L, Kim K-E, Meuleau N, Kaelbling L P (2000) Learning to cooperate
via policy search. In: Uncertainty in Artificial Intelligence

4. Pynadath D V and Tambe M (2002) The communicative multiagent team de-
cision problem: Analyzing teamwork theories and models. In: Journal of AI
Research

5. Roth M, Simmons R, Veloso M (2005) Reasoning about joint beliefs for
execution-time communication decisions. In: International Joint Conference on
Autonomous Agents and Multi Agent Systems

6. Xuan P, Lesser V, Zilberstein S (2000) Formal modeling of communication
decisions in cooperative multiagent systems. In: Workshop on Game-Theoretic
and Decision-Theoretic Agents

7. Goldman C V and Zilberstein S (2003) Optimizing information exchange in
cooperative multi-agent systems. In: International Joint Conference on Au-
tonomous Agents and Multi Agent Systems

8. Nair R, Roth M, Yokoo M, Tambe M (2004) Communication for improving
policy computation in distributed POMDPs. In: International Joint Conference
on Autonomous Agents and Multi Agent Systems

9. Emery-Montemerlo R, Gordon G, Schneider J, Thrun S (2004) Approximate
solutions for partially observable stochastic games with common payoffs. In: In-
ternational Joint Conference on Autonomous Agents and Multi Agent Systems

10. Doshi P and Gmytrasiewicz P J (2005) Approximating state estimation in
multiagent settings using particle filters. In: International Joint Conference on
Autonomous Agents and Multi Agent Systems

11. Roth M, Vail D, Veloso M (2003) A real-time world model for multi-robot
teams with high-latency communication. In: International Joint Conference on
Intelligent Robots and Systems

12. Bhasin K, Hayden J, Agre J R, Clare L P, Yan T Y (2001) Advanced com-
munication and networking technologies for Mars exploration. In: International
Communications Satellite Systems Conference and Exhibit

13. Rosencrantz M, Gordon G, Thrun S (2003) Decentralized sensor fusion with
distributed particle filters. In: Uncertainty in Artificial Intelligence

14. Papadimitriou C H and Tsitsiklis J N (1987) The complexity of Markov decision
processes. In: Mathematics of Operations Research

15. Cassandra, A R (2005) Tony’s POMDP page.
At: http://www.cassandra.org/pomdp/code/index.shtml

16. Littman M L, Cassandra A R, Kaelbling L P (1995) Learning policies for par-
tially observable environments: Scaling up. In: International Conference on Ma-
chine Learning

17. Kaelbling L P, Littman M L, Cassandra A R (1998) Planning and acting in
partially observable domains In: Artificial Intelligence

A Distributed Multi-robot Cooperation

Framework for Real Time Task Achievement

Sanem Sariel1� and Tucker Balch2

1 Istanbul Technical University, Department of Computer Engineering, Istanbul,
34496, TURKEY sariel@cs.itu.edu.tr

2 Georgia Institute of Technology, College of Computing Department, Atlanta,
GA, 30332, USA tucker.balch@cc.gatech.edu

Summary. In this paper, we propose a general framework, DEMiR-CF, for
a multi-robot team to achieve a complex mission including inter-related tasks
that require diverse capabilities and/or simultaneous executions. Our frame-
work integrates a distributed task allocation scheme, cooperation mechanisms
and precaution routines for multi-robot team execution. Its performance has
been demonstrated in Naval Mine Countermeasures, Multi-robot Multi-Target
Exploration and Object Construction domains. The framework not only en-
sures near-optimal solutions for task achievement but also efficiently responds
to real time contingencies.

1 Introduction

In this paper, we present a generic framework, Distributed and Efficient Multi
Robot - Cooperation Framework (DEMiR-CF), designed for efficient mission
achievement of a multi-robot team for inter-related tasks that require diverse
capabilities and simultaneous executions. Since real world applications present
additional challenges than software platforms, robustness is a key issue of a
multi-robot cooperation/coordination framework. DEMiR-CF with its inte-
grated structure can respond to several real time contingencies efficiently while
dynamically maintaining high solution quality in a fully distributed fashion.
In this paper, we present the generic architecture of our framework even suit-
able for complex mission execution in environments with failure potentialities
and limited communication features (such as bandwidth limitations, limited
ranges, or unexpected delays). We report the experimental results and several
scenarios in the context of Naval Mine Countermeasures mission for multi-
AUV coordination in [12]; an extended technical report for the framework
and evaluations is provided in [13].

� Sanem Sariel is also affiliated with Georgia Institute of Technology

188 Sanem Sariel and Tucker Balch

2 Background and Related Work

Multi-robot coordination has been an active and attractive field during the
last decade because of the demand for multiple robot, UAV, UGV or rover
missions, especially in military and space applications. Among different ap-
proaches, the centralized approach is not robust especially when communica-
tion is limited between operator and individual robots, and failures are highly
probable. Therefore our focus is on distributed coordination frameworks in
this work, and we will review literature on this subject. Parker presents one of
the earlier works for distributed multi-robot task allocation, ALLIANCE, with
a behavior based framework [9] for instantaneous task assignment. M+ [1] is
a distributed task allocation and achievement scheme for multi-robot coop-
eration addressing many real time issues including plan merging paradigms.
MURDOCH [4] is a framework achieving publisher/subscriber type alloca-
tion for instantaneous assignment. Dias et al. proposes a combinatorial auc-
tion based task allocation scheme: TraderBots [2]. Lemarie et al. proposes a
task allocation scheme for multi-UAV cooperation with balanced workloads of
robots [8]. According to [3], existing market mechanisms are not fully capable
of re-planning task distributions, re-decomposing tasks, re-scheduling commit-
ments, and re-planning coordination during execution. We would like to fill
these gaps by our integrated cooperation framework. Our primary contribu-
tion in this work is the presentation of an integrated cooperation framework
for a multi-robot team and the extensive design of precaution routines and so-
lution quality maintenance schemes for single-item auctions in real time task
execution. DEMiR-CF can address different types of domains, and can gener-
ate near optimal solutions even for NP-Hard problems [11] with efficient bid
evaluation methods. From our point of view, task allocation, execution and
contingency handling should be integrated into the cooperation framework
without assuming they are achieved separately, if globally optimal solutions
are desired. This is the main rationale behind our framework.

3 Distributed and Efficient Multi Robot - Cooperation
Framework

DEMiR-CF is designed for complex missions including inter-related tasks
that require diverse (heterogeneous) capabilities and simultaneous execution.
The framework combines distributed task allocation and coalition formation
schemes and dynamic task selection scheme as cooperation components and
Plan B precaution routines some of which are implemented by coalition main-
tenance/dynamic task switching scheme. These components are integrated
into one framework to provide an overall system that finds near-optimal solu-
tions for real time task execution.

The overall objective of the robot team (rj ∈ R, 0 < j ≤ ||R||) equipped
with our framework is to achieve a mission (M) consisting of interrelated tasks

A Distributed Multi-robot Cooperation Framework 189

Ti (0 < i ≤ ||M ||), by incremental assignment of all Ti ∈ M to rj ∈ R while
optimizing the specified objective function. Coalitions (Ci) [6] are formed to
meet requirements of simultaneous executions of tasks (Ti) synchronously by
a group of robots. Sizes of coalitions vary according to the required minimum
number of robots (reqnoi) to execute the tasks.

Definition 1. (executable task): Ti is an executable task, if at least reqnoi

number of robots can be assigned for execution.

An example of such a task may be pushing a heavy object requiring more
than one robot. Tasks are preemptive: the activity of task execution can be
split during runtime if another advantageous situation arises or environmental
conditions impel.

Definition 2. (candidate task and suitable robot) Ti is a candidate task for
the robot rj if the reqcapi is a subset of the capj and the precedence constraints
of the task are satisfied; rj is a suitable robot for the task Ti.

Coalitions are formed by suitable robots. For the robots to be prepared for
the contingencies, models of the system tasks and other robots are kept in
each robot’s world knowledge as corresponding FSMs. Task states are: free,
auctioned, being executed, achieved, uncertain (interpreted as state free) and
invalid. Robot states are: idle, executing, failed and auctioneer. The state
transitions of FSMs are activated by either own motivations or incoming in-
formation from other robots. Model Update Module is responsible for checking
and updating robot’s own models. All modules in the framework and informa-
tion flow among them are given in Figure 1. Model Update, (System) Consis-
tency Checking and Dynamic Task Selector modules perform Plan B precau-
tion routines. Allocation scheme ensures distributed task allocation. Coalition
scheme implements synchronized task execution and coalition maintenance
procedures. A sample flow of the operations in the framework is summarized
as:

1. Mission task definitions are given to the robots (time-extended represen-
tation of tasks with precedence constrains to achieve overall mission).

2. Each robot selects the most suitable candidate task to execute by global
cost consideration among mission tasks (dynamic task selection/switching).

3. Corresponding robots offer auctions for the selected tasks. In auctions,
inconsistencies and conflicts are resolved.

4. Coalitions are formed for the announced tasks making sure that each robot
is in the most suitable coalition from global solution quality point of view.

5. During task execution, simultaneously, dynamic task selecting/switching
mechanism ensures to switch between tasks, if it is profitable; real time
contingencies are handled. Then corresponding auction and coalition for-
mation procedures (2-4) are applied continually.

Real time situations in which task switching is necessary are given in the next
section.

190 Sanem Sariel and Tucker Balch

Model
Update
Module

Robot
Descriptions

FSM

Task
Descriptions

FSM

Consistency
Checking
Module

Dynamic
Task

Selector

Allocation
Scheme

Coalition
Scheme

Outgoing
Messages

Incoming
Messages

Perception Actuators

MODEL

Fig. 1. DEMiR-CF Modules

3.1 Real Time Issues and Requirements

Since the world is beyond the control of the robots and change continuously
in real world applications, the difficulty of multi-robot task execution problem
goes beyond the task allocation problem. In particular, multi-robot systems
deal with difficulties arising from noisy sensor information, unexpected out-
comes of actions, environmental limitations (especially in communication) and
presence of failures of hardware. All these factors may affect the overall solu-
tion. We list evolving circumstances that may change the solution as:

1. Own failure detection: Robots detect their own failure.
2. Failure detection of another robot: Robots detect another robot’s failure.
3. Change in the estimated task execution cost/time: Environmental dynam-

ics, uncertain knowledge, or hardware problems may cause delays on task
execution or early achievements of tasks. Uncertain sensor and/or local-
ization information may also result in incorrect estimations.

4. Change in the task definitions: Task dependencies, priorities, or the objec-
tive (goal) may change. Some tasks may become invalid during runtime.

5. New online tasks may be given by human operators or discovered by robots
themselves.

6. New robots may be released, or some failed robots may be repaired or
may recover from trap like threats.

7. Intervention and manual changes on assignments by external agents.

Some of these situations may arise after either internal or external events.
Given these contingencies, even solution of an approach capable of finding
optimal solutions may become sub-optimal under uncertainties of real world
applications. Verification of the solution optimality is a difficult issue for real
world applications. Therefore in the last decade researchers proposed effective
approaches, opportunistic methods without giving boundaries on the overall

A Distributed Multi-robot Cooperation Framework 191

solution quality except [7]. However, their work assumes perfect communica-
tion and contingencies are not considered in the boundaries. For now, these
boundaries are given for the complete information cases.

DEMiR-CF is designed as being capable of dealing with the situations
presented above. The framework can efficiently respond to these events and
solution quality is maintained simultaneously with real time task execution.

3.2 Task Representation

Tasks are represented by a data structure containing information regarding
the task execution requirements and the task status. Tasks are represented as
septuples < id, type, reqcap, deplist, reqno, relinfo, precinfo >. System gen-
erated task ids are generated initially before mission execution and common
for all robots. However online task ids may be different for each robot. Robots
have initial knowledge about task types (type) and corresponding execution
methods before mission execution. Requirements (reqcap) define special sen-
sors and capabilities required to execute the task. Dependencies (deplist) are
represented with hard and soft dependent task ids. We define two types of
dependencies for representing precedence relations. Hard dependency implies
sequential execution while soft dependency allows parallel execution [10]. Min-
imum number of robots to execute the task (reqno) is determined. Related
information (relinfo) represents information regarding the type such as lat-
est location, target location, etc. Precaution information (precinfo) is used
for contingency handling: task state, estimated task achievement time and
current execution cost.

The mission is defined as an acyclic graph (not necessarily a connected
graph) of inter-related tasks connected by arcs representing dependencies.
An example graph representation for the object construction mission can be
found in [10]. Task definitions can be changed during execution. In particular,
relinfo, precinfo and reqno are subject to change during execution.

3.3 Distributed Task Allocation Scheme

Task allocation and initial assignments may be carried out by using operations
research methods. However, our research addresses issues of real time execu-
tion when managing the overall team by a central authority is not possible
due to several real world limitations. Auction based task allocation approach
is suitable to provide a scalable and efficient way of distributing tasks. Con-
tract Net Protocol (CNP) [14] is used to select task executers. Although CNP
presents the formalism on relationships between managers and contractors,
it does not present details for the following questions: When should task an-
nouncements be made? How should bid values be evaluated to get globally
optimal solutions? Which subset (or all) of the already allocated tasks should
be re-auctioned to maintain solution quality? When should reallocations be
implemented and who decides on them? Most auction based task allocation

192 Sanem Sariel and Tucker Balch

schemes offer solutions for allocating one/subset of tasks of the overall mission.
However there is usually little information about when task announcements
and reassignments are made. In our framework, any robot becomes an auc-
tioneer when it intends to execute a task. Each robot selects best suitable
candidate task among mission tasks by the dynamic task selection scheme.
Basically, auction announcements are ways to illustrate intentions to execute
tasks for which reqno = 1 or to select members of coalitions to execute tasks
for which reqno > 1. Therefore, if more than one robot intends to execute the
same task, more suitable one(s) is selected in the auction by considering cost
values. Single items are auctioned and allocated in auctions. Auction nego-
tiation implemented in the framework consists of standard steps to clear an
auction. Robots can get the necessary task details from the auction offers, and
then check the validity of the auction. If the auction is invalid, related pre-
caution routines are activated. Otherwise, the candidate robot sends its cost
value as a bid. The other candidate robots behave simultaneously as well. If
the auctioneer cannot get the required number (reqno) of bids (also counting
in own bid) from the other robots until the predefined deadline, it cancels
the auction. Otherwise it ranks all bids and assigns the best suitable robot
with the lowest cost value to the executable task (if reqno = 1), or suitable
coalition members (if reqno > 1). The framework allows multiple auctions
and winners for different tasks at the same time.

3.4 Dynamic Task Selection Scheme and Online Scheduling

Dynamic task selection is implemented by forming a priority queue of un-
achieved candidate tasks and selecting the task with the lowest cost. Priority
queue is formed either by costs for executing these tasks or by considering
rough schedules depending on the selected domain. If costs are the same, the
priorities are considered in the given order: Robot’s current task (if any), tasks
already being executed, tasks awarded in auctions, and free tasks. Dynamic
task switching mechanism is used by robots to switch between tasks if up-
dates in the world knowledge compel. Therefore issues related to both online
scheduling and scheduling under uncertainty are addressed.

3.4.1 Coalition Maintenance/Dynamic Task Switching Scheme

In the framework, instead of using complicated re-allocation procedures, we
propose incremental selection and task switching schemes for behaving myopi-
cally while thinking globally using bid evaluation heuristics. Provided with an
efficient bid evaluation heuristic, dynamic task selection scheme ensures task
switching whenever it is profitable. Each robot, independent from executing
a task or not, can offer another auction or select to execute a task already
being executed by another robot with a worse cost value than that it will cost
for itself. If task switching occurs with a coalition member, the corresponding
coalition member is released from the coalition becoming a suitable robot for

A Distributed Multi-robot Cooperation Framework 193

other tasks. When robots participate in coalitions, they are only allowed to
select other tasks, when they are released from these coalitions controlled by
a robot in the coalition.

3.5 Bid/Cost Evaluation

The impact of bid (cost) evaluation on the solution quality is inevitable for
auction based systems, and research in this area desires more investigation.
According to the taxonomy given in [5], multi-robot task allocation prob-
lems are divided into two classes based on the mission description: instan-
taneous vs. time-extended. Most multi-robot architectures offer solutions for
instantaneous assignments. DEMiR-CF can address both types of classes by
implementing incremental allocation of tasks with efficient bidding strategies.
Therefore global solution quality is maintained for the mission tasks from time-
extended view of the problem by means of the bid considerations. However,
the approach is capable itself to offer solutions for instantaneous changes on
the task description. Therefore we classify our framework capable of address-
ing both types of problem classes. Unless efficient bid evaluation strategies are
designed, it is not possible to observe globally optimal solutions for NP-Hard
problems, and additional adjustments are required to change allocations with
an additional cost of communication as in combinatorial auctions. In our ear-
lier work, we have shown that by efficient bid evaluation approach, globally
near optimal solutions can be observed for auction based approach. In that
work, we analyze performance of different heuristic cost functions combined
with our framework for multi-robot multi-target exploration domain [11]. In-
cremental assignments eliminate redundant considerations for environments
in which the best solution is highly probable to change, and efficient bidding
strategies ensure solutions to be close to optimal with a time-extended view
of the problem. Although we have shown that our approach can find near-
optimal solutions for multi-robot multi-target exploration problem, we still
need further investigation on bidding strategies for different domains.

3.6 Models for Contingency Handling and Plan B Precautions

In DEMiR-CF, information is not assumed to be complete. Therefore Plan
B Precaution routines are embedded in the framework to enable the sys-
tem to dynamically respond to various failure modes and recover from them.
These precautions are taken by each robot in a distributed fashion. Current
implementation use explicit communication to detect conflicts and contingen-
cies. However failures in communication can also be handled by precaution
routines. (If robots can observe each other implicitly, model updates can be
implemented in a similar manner.) Related to the contingent situations, ap-
propriate precaution routines are activated to either correct the models, or
initiate a recovery. Recovery operations may include warning other robots
about the problem or changing the model accordingly. These inconsistencies

194 Sanem Sariel and Tucker Balch

usually arise when robots are not informed about tasks that are achieved, un-
der execution or under auction. To keep system consistency, robots broadcast:

• known achieved tasks in predefined time periods to prevent redundant
executions. (This feature provides a bucket-brigade type of information
sharing handling communication range limitations.)

• new discovered online tasks which are unachieved yet.
• task execution messages containing the updated cost value and estimated

task achievement deadline information in predefined time periods as clues
for the executer robot is still alive and the task is under execution.

• task achievement message when the task is achieved.
• cancellation message if task execution is cancelled.
• task invalidation message when invalidities are detected.

Precaution routines are given in Table 1. Most of the contingencies are de-
tected by checking models, and model updates are implemented (Table 2-3).
One standard way of detection of robot failures is sending heart-beat signals.
However in our framework, incoming messages from other robots are taken as
clues for running properly. More complicated prediction models may be used
for more accurate failure prediction. Some misleading beliefs such as setting
state of a robot as failed although it is running properly may cause parallel
executions. This is a desired feature for the mission completion point of view.
Designed precautions resolve these kinds of inconsistencies if communication
resources permit in later steps. In the design of precautions, it is assumed that
robots are trusted and benevolent.

Table 1. Precautions for Contingencies and Conflicts

Contingency or Con ict by inconsistencies Precaution

Any message from an unrecognized system robot

is received.

Robot model is created with the corresponding

state derived from the message.

Any message related to an unrecognized task is

received.

Task is added to the task list with the corre-

sponding state.

An already achieved task is announced as a new

task/being executed/cancelled/auctioned.
Warning message is sent to the sender.

A task being executed/auctioned is announced

as being executed/auctioned.

Only the robot with the minimum cost continues

to the operation.

Cancellation message is received for a task al-

ready being executed by own.
Robot state is set “idle”.

A cancellation is message is received for a task

being executed by the sender robot.

Task and robot states are set as “free”and “idle”,

respectively.

A Distributed Multi-robot Cooperation Framework 195

Table 2. Model Checking for Tasks and System Robots

Status Action

The time duration from the latest communica-

tion with a robot is longer than the threshold.

Robot state is set as “failed”. Related task state

is set as “uncertain”.

Task in execution is not achieved although the

estimated deadline is reached.
Task state is set as “uncertain”.

Task state is “auctioned” for longer than prede-

fined time period.
The task state is set as “uncertain”.

Table 3. Model Updates Related to The Messages

Message Type Action

Any type
Current time is registered as the latest comm. time with the robot and for the

task.

“achieved” - valid
The robot and task states are set as “idle” and “achieved”, respectively. If the

task is in consideration (in schedule or in execution), it is cancelled.

“execution” - valid
If there are other tasks with state “being executed by this robot”, states are

changed as “uncertain”.

4 Evaluation of DEMiR-CF

Our framework is evaluated in three different domains: Object construction
[10], Multi-robot multi-target exploration [11] and Multi-AUV Naval Mine
Countermeasures domains [12]. First two evaluations are implemented on an
abstract simulator, while the third one is on the realistic US NAVY simulator.
Readers are referred to the corresponding papers and to the extended technical
report [13] for the performance evaluations of the framework. From general
point of view, there is a tradeoff between maintaining high solution quality and
the increasing communication and continuous bid evaluation requirements.
According to the metric defined in [5], computational requirements per task is
O(1)/bidder and O(m)/auctioneer, when the number of robots is m. Before
selecting the best bidder, each robot selects the best suitable task for itself
and offers an auction for the task from time-extended point of view of the
mission. Therefore among n tasks, assuming bid evaluation complexity is O(l)
for each task, the selection is implemented in O(nl). If nl � m, this bound is
given as O(nl)/task. To ensure system solution quality, robots continuously
evaluate bids for the unachieved tasks and dynamically switch among tasks,
if it is profitable, one of the differences of our framework from others, in
each time step (the worst case). For standard task allocation, communication
complexity is O(nm) under normal circumstances. To maintain high solution
quality, precaution messages are sent. However, still the complexity is given
with the same bound (multiplied by an additional scalar). The performance
of DEMiR-CF is shown to be bounded by 2*OPT for the Multi-robot multi-
target exploration domain [11].

196 Sanem Sariel and Tucker Balch

5 Conclusions

In this work, we present our generic cooperation framework, DEMiR-CF, for
multi-robot teams. The framework combines a distributed auction based al-
location method and several precaution routines to handle contingencies and
communication limitations of real world domains and to maintain high so-
lution quality with available resources. DEMiR-CF is evaluated for different
domains. Near future work include further evaluations of the framework for
different complex domains and specifying design issues for these domains.

References

1. Botelho SC and Alami R (1999) M+: a scheme for multi-robot coopera-
tion through negotiated task allocation and achievement. IEEE Intl. Conf. on
Robotics and Automation

2. Dias MB, and Stentz A (2002) Opportunistic Optimization for Market-Based
Multirobot Control. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems

3. Dias MB, Zlot RM, Kalra N, and Stentz A (2005) Market-Based Multirobot
Coordination: A Survey and Analysis, Robotics Institute. Carnegie Mellon Uni-
versity, Tech Report, CMU-RI-TR-05-13

4. Gerkey G and Matric MJ (2002) Sold!: Auction Methods for Multirobot Coor-
dination. IEEE Trans. on Robotics and Automation, vol. 18 no.5, pp. 758-768

5. Gerkey B and Mataric MJ (2004) A Formal Analysis and Taxonomy of Task
Allocation. Intl. Journal of Robotic Research, 23(9): 939-954

6. Horling B and Lesser V (2005) A Survey of Multi-Agent Organizational
Paradigms. The Knowledge Engineering Review, 19(4):281-316

7. Lagoudakis MG, Berhault M, Koenig S, Keskinocak P and Kleywegt AJ (2004)
Simple Auctions with Performance Guarantees for Multi-Robot Task Allocation.
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems

8. Lemarie T, Alami R, and Lacroix S (2004) A Distributed Task Allocation
Scheme in Multi-UAV Context. IEEE Intl. Conf. on Robotics and Automation

9. Parker LE (1998) ALLIANCE: An Architecture for Fault Tolerant Multi-Robot
Cooperation. IEEE Trans. on Robotics and Automation, 14(2): 220-240

10. Sariel S and Balch T (2005) Robust Multi-Robot Coordination in Noisy and
Dangerous Environments. Georgia Institute of Technology, College of Comput-
ing, GVU, Tech Report GIT-GVU-05-17

11. Sariel S and Balch T (2006) Efficient Bids on Task Allocation for Multi-Robot
Exploration Problem. The Nineteenth International FLAIRS Conference

12. Sariel S, Balch T and Stack JR (2006) Empirical Evaluation of Auction-Based
Coordination of AUVs in a Realistic Simulated Mine Countermeasure Task. The
8th Intl. Symposium on Distributed Autonomous Robotic Systems (DARS)

13. Sariel S, Balch T and Stack JR (2006) Distributed Multi-AUV Coordination in
Naval Mine Countermeasure Missions. Georgia Institute of Technology, College
of Computing, GVU, Tech Report GIT-GVU-06-04

14. Smith RG (1980) The Contract Net Protocol: High level communication and
control in a distributed problem solver. IEEE Trans. on Computers, C-29(12):
1104-1113

Empirical Evaluation of Auction-Based

Coordination of AUVs in a Realistic Simulated

Mine Countermeasure Task

Sanem Sariel1�, Tucker Balch2, and Jason Stack3

1 Istanbul Technical University, Department of Computer Engineering, Istanbul,
34496, TURKEY sariel@cs.itu.edu.tr

2 Georgia Institute of Technology, College of Computing Department, Atlanta,
GA, 30332, USA tucker.balch@cc.gatech.edu

3 Naval Surface Warfare Center, Panama City, FL, 32407 USA
Jason.stack@navy.mil

Summary. In this work, we evaluate performance of our distributed coopera-
tion framework, DEMiR-CF, for Naval Mine Countermeasure missions on the
US NAVY’s ALWSE-MC simulator against different contingencies that may
arise run time. Our cooperation framework integrates a distributed task al-
location scheme, coordination mechanisms and precaution routines for multi-
robot team execution. Its performance has been demonstrated in Multi-robot
Multi-target exploration and Object Construction domains. Marine applica-
tions provide additional challenges such as noisy communication, position un-
certainty and the likelihood of robot failures. There is a high probability that
the initial assignments are subject to change during run time, in these kinds of
environments. Our framework ensures robust execution and efficient comple-
tion of missions against several different types of failures. Preliminary results
for MCM missions are promising in the sense of mission completion, and AUV
paths are close to optimal in the presence of uncertainties.

1 Introduction

Undersea operations using AUVs (Autonomous Underwater Vehicle) provide
a different and in some ways a more challenging problem than tasks for UAVs
and UGVs. In particular, communication windows are restricted and band-
width is limited. Coordination among agents is correspondingly more difficult.
In traditional approaches, a central planner initially assigns subtasks for a set
of AUVs to be performed in achieving the team goal. However, initial assign-
ments of tasks may become inefficient during real time execution due to the

� Sanem Sariel is also affiliated with Georgia Institute of Technology

198 Sanem Sariel, Tucker Balch, and Jason Stack

real world issues (e.g. failures), and these allocations are subject to change
if efficiency is a high concern. Therefore reallocations are needed and should
be performed in a distributed fashion. To facilitate this flexibility, we offer a
distributed auction based cooperation framework, Distributed and Efficient
Multi Robot-Cooperation Framework (DEMiR-CF) [8], an online dynamic
task allocation (reallocation) system to achieve a team goal while using re-
sources effectively with integrated task scheduling and execution capabilities,
that can also respond to and recover from real time contingencies such as com-
munication failures, delays, range limitations and robot failures. DEMiR-CF
has been implemented and tested extensively in the multi-robot multi-target
exploration domain [7]. In this paper, we report performance of our framework
against realistic difficulties in multi-AUV coordination for Naval Mine Coun-
termeasure (MCM) mission on the US Navy’s Autonomous Littoral Warfare
Systems Evaluator- Monte Carlo (ALWSE-MC) simulator [1].

2 Background and Related Work

DEMiR-CF is a distributed mechanism for real time task execution and de-
signed to use advantages of auction based approaches and to integrate addi-
tional routines for solution quality. Other efficient works in auction based co-
ordination research are: M+ [2], MURDOCH [5], TraderBots [3] and Lemarie’s
allocation scheme [6]. According to the review given in [4], existing auc-
tion based systems are not fully capable of re-planning task distributions,
re-decomposing tasks, re-scheduling commitments, and re-planning coordina-
tion during execution. Our approach aims at filling these gaps. We propose an
integrated cooperation framework for multi-robot task execution, and here in
this paper, we analyze performance of precaution routines and solution qual-
ity maintenance schemes for single-item auctions in a multi-AUV coordina-
tion context. Experiments are performed in a realistic simulation environment
with real time constraints and events such as AUV failures, communication
range limitations, failures and delays. Precaution routines embedded in the
framework not only recover from failures but also maintain the high solution
quality. With an efficient bid evaluation approach, the framework provides
near optimal solutions [7]. Our experiments show that communication delays
significantly impact the solution quality and should be analyzed in multi-robot
systems especially working in harsh environments. As experiments and sce-
narios demonstrate, online task handling performance of the framework with
task switching mechanism is promising.

Naval mine countermeasures (MCM) are actions taken to counter the ef-
fectiveness of underwater mines. MCM operations include finding and seizing
mine stockpiles before they are deployed, sweeping desired operational areas,
identifying mined areas to be avoided, and locating and neutralizing individ-
ual mines [10]. Our research is focused on the subset of MCM that involves
locating and mapping all individual mines in an operational area. In general,

Emp. Eval. of Auction-Based Coordination of AUVs in MCT 199

recognizing proud mines on the seafloor is not overly difficult; the difficulty
arises with the abundance of non-mine objects on the seafloor that possess
mine-like characteristics (e.g., geologic outcroppings, coral, manmade debris,
etc.). This ample supply of false alarms has necessitated the following strat-
egy typically employed by the Navy: detect and classify the mine-like objects
(MLOs) with high-coverage rate sensors (e.g., sidelooking sonar), employ ad-
vanced signal processing techniques for maximal false alarm reduction, then
revisit the remaining MLOs with identification-quality assets (e.g., electro-
optic sensors) to confirm them as mines or dismiss them as false alarms. It is
this strategy which the research proposed herein attempts to implement in a
distributed, near optimal fashion. Achieving this mission with an AUV team
requires effective task allocation mechanisms and several precautions.

3 The DEMiR-CF Framework for Naval MCM Missions

DEMiR-CF is designed for complex missions including inter-related tasks
(with precedence constraints) that require diverse agent capabilities and si-
multaneous execution. The framework combines distributed task allocation and
coalition formation schemes, and dynamic task selection scheme as coopera-
tion components, and Plan B precaution routines some of which are imple-
mented by dynamic task switching scheme. These components are integrated
into one framework to provide an overall system that finds near optimal so-
lutions for real time task execution. The overall objective of the robot team
(rj ∈ R, 0 < j ≤ ||R||) equipped with our framework is to achieve a mission
(M) consisting of interrelated tasks Ti (0 < i ≤ ||M ||), by incremental assign-
ment of all Ti ∈ M to rj ∈ R while optimizing the specified objective function.
Details of DEMiR-CF are provided in [8], and an extended version of the over-
all framework and the implementation details given in this paper is provided
as a technical report [9]. In this paper, we report experimental evaluations of
our framework and details about application of the framework for a real mis-
sion execution. The reference mission in this research is to detect, classify, and
identify underwater mines in a given operational area simulated in a PC-based
software, ALWSE-MC [1], analysis package designed to simulate multiple au-
tonomous vehicles performing missions in the littoral regions including mine
reconnaissance, mapping, surveillance, and clearance. This mission employs
two types of vehicles: unmanned underwater vehicles (UUVs) which are free
swimming AUVs and possess large-footprint sensors (e.g., side-scan sonar)
for detection and classification (D/C) of mines and seafloor crawlers equipped
with short-range, identification-quality sensors (e.g., camera). The crawlers
have the ability to stop at an object and take a picture with a camera.

Our general task representation is designed as being capable of represent-
ing complex tasks with inter-dependencies. In particular, in this case study,
tasks do not have interdependencies. Two types of tasks are defined for vehi-
cles: “visit waypoint” (w) and “identify MLO” (t). In the task representation,

200 Sanem Sariel, Tucker Balch, and Jason Stack

required capabilities are represented for each type of task: reqcapw contains
side-scan sonar and reqcapt contains cameras besides the standard capabili-
ties of AUVs common in both types of vehicles. The coverage mission (MC)
contains predefined number of waypoints (wi ∈ MC , 0 < i ≤ ||MC ||) to be
visited by all UUVs (RUUV ⊂ R). One way of task representation is to directly
assign tasks for each waypoint. However this representation has a drawback of
high communication requirements for efficient completion of the mission. In-
stead, we represent waypoint tasks as interest points of regions/search areas
(Wk = ∪wi, ∀wi is unvisited, and Wk ⊆ MC). These regions (and corre-
sponding centers) are determined by robots during runtime dynamically. The
advantage of this representation is that the only information necessary to
negotiate over tasks contains the interest point information, providing data
compression. Regions determined by different UUVs may vary during run-
time and sometimes overlap. However, the uncertainty related to the tasks is
within an acceptable degree compared to the requirements of complete knowl-
edge sharing. Before defining regions, relative distance values, reldist(rj , wi),
are determined for each unvisited waypoint wi as in Eq. 1, where dist function
returns the Euclidian distance between points. rk locations are the latest up-
dated locations of the robots. If there is no known active robot, reldist(rj , wi)
value is taken as only the own distance.

reldist(rj , wi) = dist(rj , wi) − min∀k �=j(dist(rk, wi)), rk is active (1)

Each robot defines its regions (Wjk, 1 ≤ k ≤ ||RUUV ||) number of which
equals to the number of UUVs believed to be running properly. After sorting
reldist(rj , wi) values of unvisited waypoints, the regions are determined on
the sorted list, containing approximately same number of waypoints. The first
region is the region that the robot has the highest interest (but negotiations
are needed to resolve conflicts if there is another UUV with a similar interest).
The identification mission (MI) contains unknown number of tasks for MLO
locations (ti ∈ MI , 0 < i ≤ ||MI ||) to be visited by crawlers. Therefore the
tasks in MI are generated online during runtime. For bid evaluations, we use
heuristic functions proved to provide close to optimal results for multi-robot
multi-target domain [7]. These cost functions, explained in the next section,
provide time extended consideration of tasks for instantaneous assignment
with a tractable and efficient way. A conceptual flowchart summarizing op-
erations of UUVs and crawlers, and the general operations implemented by
both types of AUVs is given in Fig. 1.

3.1 Exploration for Detection and Classification of MLO Locations

To begin the mission, the UUVs survey the operational area following way-
points determined a priori ; however, corresponding regions containing way-
points may be reassigned by negotiations among UUVs autonomously. After
determining regions, each UUV offers an auction for the highest interested re-
gion for itself and offers its selected interest point information as an auction.
After negotiations on several auctions, each UUV is assigned to the closest

Emp. Eval. of Auction-Based Coordination of AUVs in MCT 201

Define Regions
Select the most suitable

region

Offer auction
for the selected region

Visit waypoints in
the

assigned region

MLO
Detection

Broadcast
known unachieved MLO locations
visited waypoints
execution message for the next
waypoint in the schedule

New Messages are
received

Resolve inconsistencies

Warn
others

Update
Models

Reply for
auctions

Select the most suitable
MLO location

Offer auction
for the best MLO location

Award
another

UUV
Visit MLO location

Award
another
crawler

no change

Broadcast
known unachieved MLO locations
achieved waypoints
execution message if executing
MLO task

Dynamic Task Selecting/Switching

Distributed Task Allocation

Plan B Precautions

UUV Operations Crawler OperationsGeneric Operations

System Model is updated / Mission
Execution Begins

failures , recoveries , own
inconsistencies , new MLO tasks

System Model is updated/ Mission
Execution Begins

failures , recoveries , own
inconsistencies , new tasks

no change

Fig. 1. Conceptual Flowchart related to the AUV Operations

region (interest point). If more than one robot is at the same distance to the
interest point, the one with the minimum id is assigned. The other UUVs
continue to offer auctions for the remaining regions. Allocations of the re-
gions may also change during run time to maintain solution quality. Whenever
UUVs detect UUV failures or recoveries from failures they change their region
definitions accordingly and offer new auctions. After region assignments are
implemented, each robot visits waypoints in the corresponding region (Wj)
by ordering them descendingly according to their cost values as in Eq. 2.

c(rj , wi) = α ∗ dist(rj , wi) + (1 − α) ∗ [dist(wf1, wf2)
−max(dist(wi, wf1), dist(wi, wf2))]

{dist(wf1, wf2) = max(dist(wk, wl)), wi,k,l,f1,f2 ∈ Wj}
(2)

This heuristic function considers boundary targets, wf1 and wf2 in Wj

which are the targets having the maximum distance value. The basic idea of
this function is that these targets determine the diameter of the region (Wj)
and both of them should be visited. This heuristic method forwards robots
to these farthest targets within their area to some degree. By introducing a
constant (α), this degree can be adjusted and it is taken as 2/3. This heuristic
function produces close to optimal results for multi-robot multi-target domain
[7]. If there are more than one pair of boundary targets, the pair of which has
a member with the smallest distance to the UUV is selected.

As UUVs detect the MLOs on their way, they broadcast these estimated
target positions to all AUVs (i.e., tasks for crawlers are generated online).

202 Sanem Sariel, Tucker Balch, and Jason Stack

Then MLO information can propagate (in bucket-brigade fashion) to all other
AUVs in the group that can possibly be reached. Periodic broadcasting of
important information (coming from either own sensors or external agents) is
a way to handle communication range limitations.

3.2 Identification of MLOs

When crawlers are informed about MLO locations, they update their world
knowledge and dynamically select the best MLO target to visit and offer auc-
tions. Therefore they can switch among tasks when new tasks appear, if it
is profitable. It is also possible that a crawler may inadvertently discover a
mine without being informed of its position by a UUV. In this case, the crawler
identifies the target, adds it to its task list as an achieved task, and broadcasts
achievement information for maintaining system consistency. Crawlers deter-
mine their bid values by Eq. 3, where tk is the closest unvisited MLO target
to ti. This cost function provides a greedy look ahead for visiting MLO tar-
gets rather than only considering the distances between target and the AUV.
An additional penalty is applied to the cost, if there is another profitable
alternative way of visiting tasks.

c(rj , ti) =
dist(rj , ti) + dist(ti, tk) − dist(rj , tk) , if (dist(ti, tk) > dist(rj , tk))

dist(rj , ti) otherwise
(3)

In the identification task, when crawlers are within an area close to a
MLO location, they begin keeping time while surveying the MLO location.
Whenever the time limit is reached, they set the task status as achieved and
broadcast this information. If there is detection during this time period, MLO
location is considered as an actual mine and task achievement is directly
applied, otherwise it is determined as a false alarm after deadline. In either
case, the task is achieved.

4 Experimental Results

Performance of our framework and precaution routines is evaluated in ALWSE-
MC. Three sample scenarios in the simulation are given to illustrate perfor-
mance of our framework for Naval MCM missions. UUVs are equipped with
sensors capable of detecting mines within 30 feet from skin of target. How-
ever they are not able to correctly identify them. Crawlers are equipped with
cameras which can both detect and identify mines within 20 feet. None of
the AUVs have certain search patterns. UUVs have internal navigation errors
therefore their estimated location values are different from actual locations
in most cases. Two AUVs can communicate each other whenever the receiver
AUV is in the sender AUV’s transmitter range, within its transmitter beam
width, and sender AUV is within transmitter AUV’s receiver beam width.

Emp. Eval. of Auction-Based Coordination of AUVs in MCT 203

All UUVs and crawlers begin execution from a deployment area. There is
no a priori information about mine locations. 121 waypoint locations (envi-
ronment size: 200x200) are known but are not assigned initially. UUVs begin
negotiations and divide the overall mission area into three (known number
of UUVs) regions. Since they are within line of sight, they can communicate
their location information. Therefore initially defined regions are nearly the
same for all UUVs. Fig. 2 illustrates a successful mission scenario with three
UUVs and two crawlers. Allocations of waypoints after negotiations can be
seen in Fig. 2(b). Since there are no failures, waypoint assignments do not
change during run time. However crawlers sometimes switch among tasks if
they are not informed about tasks that are being executed. And sometimes
parallel executions occur. Whenever they are in communication range, they
can resolve the conflicts efficiently by means of the precaution routines. As in
Fig. 2(a), crawlers can also detect mines without being informed. Routes of
the crawlers may seem somewhat random. However it should be noted that
tasks related to the MLO locations appear online during run time when they
are discovered, and communication ranges are limited.

UUV1
UUV2
UUV3
UUV4
Crawler1
Crawler2
Mines
Detection by crawlers
UUV 1 Search Area
UUV 2 Search Area
UUV 3 Search Area
UUV 4 Search Area

(a) (b)

Fig. 2. Scenario 1. (a) UUVs cover the area by visiting waypoints. Crawlers visit
MLO locations as they are informed. Deployment area is circled. (b) Each AUV is
assigned to a region after auction based allocation of interest points.

In the second scenario, one of the UUVs fails on the same setting of scenario
1 (Fig. 3). Initial regions for all UUVs change after UUV3 fails (Fig.3 (b)).
Other UUVs change region definitions and, after negotiations, they share the
full area as indicated in the figure. Visited waypoints are not in their region
coverage. Because of the uncertainties, some waypoints are left uncovered in
schedules. However this uncertainty related problem is resolved by UUV2 and
the mission is completed.

In the third scenario (Fig. 4), UUV3 fails and other UUVs detect the failure
and they negotiate over the remaining unvisited waypoints and new schedules
are determined as in Fig. 4(b). While these UUVs execute their tasks, another
UUV (4) is released from the deployment area. Detecting a new UUV arrival,
other UUVs change their region definitions accordingly (Fig. 4(d)) and offer
auctions for these areas. UUV4 initially is not informed about the visited

204 Sanem Sariel, Tucker Balch, and Jason Stack

(a) (b)

(c)

Fig. 3. Scenario 2. (a) Initially all UUVs begin execution. UUV3 fails, other UUVs
take responsibility of all unvisited waypoints. (b) Region assignments are changed
for UUV1-2 after detecting failure. Because of an uncertainty, one waypoint is left
uncovered. (c) UUV2 completes its region coverage task, and adds the waypoint
missing in (b) to its schedule after detecting that it is not visited.

waypoints and it defines its regions with this knowledge. After negotiations,
the regions are assigned and schedules are formed. UUV4 redefines its regions
by considering incoming information for visited waypoints.

On the same settings, experiments are conducted to evaluate message
loss rate effects on mission completion success. Table 1 illustrates the results
(μ | σ) averaged over 10 runs. When message loss rate is different from 0, as
expected, performance is degraded but linearly. It should be noted that even
for rate 0.75, the overall mission (MC and MI) by final identification of mines
is completed. Number of waypoint (w) visits increase for high message loss
rates. When message loss rate is 1 there is no communication among AUVs
and they cannot correctly reason about region portions. Therefore each UUV
searches the full area completely. Crawlers detect and identify 12.8% of mines
by their local detection in a small area (MLO target information can not be
communicated in this case). Since identification is not complete, overall mis-
sion is not completed. This table illustrates performance of our framework
against message losses. As a final remark, auction generation and clearing in
an environment with communication delays desires special attention. Espe-
cially auction deadlines should be determined by considering communication
delays which may vary during run. Plan B precautions could resolve these
kinds of problems. Precautions for delayed messages on out-of-date situations
prevent the system from getting into stuck into further inconsistencies and
deadlocks.

Emp. Eval. of Auction-Based Coordination of AUVs in MCT 205

(a) (b)

(c) (d)

(e)

Fig. 4. Scenario 3. (a) UUV3 fails, other UUVs take responsibility of the waypoints
initially assigned to UUV3. (b) Region assignments are changed for UUV1-2 after
detecting failure. (c) Another UUV(4) is released from the deployment area. (d)
Schedules are changed accordingly after negotiations. However UUV4 is not informed
about visited waypoints and form regions by considering all waypoints. (e) After
being informed about visited waypoints, UUV4 only visits unvisited waypoints in
its schedule.

Table 1. Performance Results (μ | σ) for Different Message Loss Rates

Mssg Loss Rate 0 0.25 0.5 0.75 1

MC Comp. (%) 100.0 | 0.0 100.0 | 0.0 100.0 | 0.0 100.0 | 0.0 100.0 | 0.0

MI Comp. (%) 100.0 | 0.0 100.0 | 0.0 100.0 | 0.0 100.0 | 0.0 12.8 | 4.1

MC Comp. time 3349.4 | 60.5 3683.2 | 167.1 4909.0 | 430.1 5141.2 | 938.1 6304.2 | 139.0

MI Comp. time 2852.8 | 35.3 3227.6 | 205.3 4205.0 | 836.9 5021.2 | 692.7 N/A

(w) first visit 1380.1 | 6.1 1390.0 | 16.3 1922.0 | 92.8 2256.6 | 334.5 2936.0 | 104.5

(w) #of visits 1.0 | 0.0 1.0 | 0.0 1.01 | 0.01 1.09 | 0.04 3.0 | 0.0

206 Sanem Sariel, Tucker Balch, and Jason Stack

5 Conclusions

In this work, we present performance of DEMiR-CF in the context of a
Naval Mine Countermeasure mission in the realistic simulator, ALWSE-MC.
DEMiR-CF is a distributed framework for multi-robot teams that integrates
an auction based dynamic task allocation scheme and several precaution rou-
tines to handle failures and limitations of real world task execution, and main-
tains high solution quality with available resources. Precaution routines can
respond to several failures some of which are illustrated in the scenarios shown
in this paper. Evaluations also reveal high performance of DEMiR-CF on on-
line task and situation handling. Since the framework is a single item auction
method it can be used for the environments with limited, delayed or unreli-
able communication. In general, the framework is designed for more complex
missions of interrelated tasks. Near future work consists of more complex mis-
sions with more limitations for AUVs and task execution. It should be noted
that the selected application domain, objectives and limitations are similar
to the Search and Rescue (SR) domain. Therefore we believe research in this
work can also be useful for different kinds of domains such as SR.

References

1. ALWSE: http://www.ncsc.navy.mil/Capabilities and Facilities/Capabilities/
Littoral Warfare Modeling and Simulation.htm

2. Botelho SC and Alami R (1999) M+: a scheme for multi-robot coopera-
tion through negotiated task allocation and achievement. IEEE Intl. Conf. on
Robotics and Automation

3. Dias MB, Zinck MB, Zlot RM, and Stentz A (2004) Robust Multirobot Coordi-
nation in Dynamic Environments. IEEE Intl. Conf. on Robotics and Automation

4. Dias MB, Zlot RM, Kalra N, and Stentz A (2005) Market-Based Multirobot
Coordination: A Survey and Analysis, Robotics Institute. Carnegie Mellon Uni-
versity, Tech Report, CMU-RI-TR-05-13

5. Gerkey G and Matric MJ (2002) Sold!: Auction Methods for Multirobot Coor-
dination. IEEE Trans. on Robotics and Automation, vol. 18 no.5, pp. 758-768

6. Lemarie T, Alami R, and Lacroix S (2004) A Distributed Task Allocation
Scheme in Multi-UAV Context. IEEE Intl. Conf. on Robotics and Automation

7. Sariel S and Balch T (2006) Efficient Bids on Task Allocation for Multi-Robot
Exploration Problem. The Nineteenth International FLAIRS Conference

8. Sariel S and Balch T (2006) A Distributed Multi-Robot Cooperation Frame-
work for Real Time Task Achievement. The 8th International Symposium on
Distributed Autonomous Robotic Systems (DARS)

9. Sariel S, Balch T, and Stack JR (2006) Distributed Multi-AUV Coordination in
Naval Mine Countermeasure Missions. Georgia Institute of Technology, College
of Computing, GVU, Tech Report GIT-GVU-06-04

10. Stack JR and Manning RC (2004) Increased autonomy and Cooperation in
Multi-AUV Naval Mine Countermeasures. Proceedings of Undersea Defence
Technology

Principled Synthesis for Large-Scale Systems:Task
Sequencing

Dylan A. Shell and Maja J Matarić

University of Southern California shell|mataric@usc.edu

Summary. This paper describes ongoing work toward a principled controller synthesis
methodology for large-scale, minimalist multi-robot systems. The work’s key objectives is
to establish a set of programming primitives (processes) for which macroscopic behavior can
be formally predicted. Such prediction is made possible by statistical physics techniques that
use properties of time-invariant processes while exploiting the system’s large size. This paper’s
focus is on the use of numerical and simulation methods during construction of the primitive
process set. A computational method, developed by physicists, is used as a high-level simu-
lation to characterize individual process behavior. The output, when interpreted qualitatively,
guides distributed system design. In order to validate the approach, we consider a sequen-
tial inspection domain with a swarm of 400+ simulated robots. Synchronization is achieved
through processes analyzed with the methods described, and predictions are compared with
behavior exhibited in a traditional multi-robot simulation. The two simulation tools play differ-
ent roles in characterizing collective behavior; the differences shed new light on the problem
of multi-robot controller synthesis.

1 Introduction
Robot swarms consist of many simple, small, and inexpensive units that exploit syn-
ergistic interactions to perform tasks and achieve robustness through massive redun-
dancy. We consider the synthesis problem, which requires derivation of local rules
(robot control-laws and communication protocols) that enable the performance of a
pre-specified global task. A method based on composition of elementary processes
is proposed that yields controllers for large-scale systems. Most current methods are
task specific, and finding a general solution to the problem remains a major chal-
lenge. This paper describes the use of simulation at different levels of detail aimed
at addressing this challenge.

Researchers have begun seeking principled methods for design of minimalist
systems. One approach is analysis of existing implementations (e.g., [5, 6]). Iterative
improvements are offered for subsequent implementations and the overall-design
process. Other work has focused on compilation of task-oriented rules [4], or au-
tomating the distribution of sensory information [7], to provide an automated syn-
thesis methodology. Such approaches are necessarily restricted to particular tasks
or automating specific capabilities, since the general problem is formidable. Anal-
ysis methods have been extrapolated to large systems (e.g., [6, pp. 12]) but formal
synthesis methods have, thus far, only considered small groups.

208 Dylan A. Shell and Maja J Matarić

Our proposed synthesis method not only scales to hundreds of robots, but actually
exploits large system size. Although not an automated procedure, the method makes
use of predictive tools for guiding design, producing coarse descriptions of behavior
for a particular class of processes. Controller design then requires processes to be
combined so as to achieve task-oriented behavior at the collective level. Many theo-
retical questions arise when considering synthesis based on composition. Most im-
portant is the robustness of predictions of the constituent processes, because models
must–of necessity–ignore some details. Together with a description of the synthesis
method itself (§2) and descriptions of the simulation techniques used (§4), this paper
addresses the robustness issue in experiments with a simulated swarm applied to a
sequential inspection task (§3).

Our broader research deals with two key questions: 1) How feasible (and tractable)
is prediction of constituent processes as a guide for system design? and 2) Given that
we concentrate on a special class of computational processes, what are the computa-
tional capabilities of this class? We focus on the first question in this paper, specif-
ically showing that the tools described are applicable to multi-robot system design
for simple tasks. The second question is touched on empirically. Non-trivial capa-
bilities are realizable with our method, as shown by considering synchronization, a
canonical problem for groups of loosely-coupled asynchronous agents.

2 Analysis of individual processes
The collective behavior of a multi-robot system is difficult to predict since, in ad-
dition traditional distributed computing issues, robots have noisy sensors, imperfect
actuators, and physical dynamics that constrain actions. Despite the many sources
of complexity, formal synthesis and analysis methods are necessary. An important
question to ask is: what information is needed from prediction? The level of detail
required for a formal model is critically affected by the answer to this question. We
accept sparse, qualitative predictions of collective behavior that ignore many low-
level details. Most important from our perspective is the distinction between individ-
ual robot (microscopic) and group (macroscopic) descriptions. Explicitly modelling
the system at these two levels becomes increasingly important as ever larger numbers
of robots are considered.

Statistical mechanics is concerned with the derivation of bulk material properties
from molecular models. The theory typically considers systems with infinitely many
constituents and equilibrium methods also include other assumptions (e.g., slow
changes). Simulation tools are necessary because, even with these assumptions, few
models have analytical solutions. This paper is part of an ongoing research agenda to
explore the limits of such assumptions, range of applicability, and appropriate gen-
eralizations for multi-robot (and multi-agent) systems. These methods require that a
non-traditional view of distributed computation be considered.

A process describes a time-extended series of actions or events. The processes we
consider result from the execution simple, local, computational rules. Each process
is described by listing a range of possible states, and a (possibly non-deterministic)
transition function on those states. Execution of a process is the repeated application
of the transition function. In this paper, states are values of internal variables on each

robot. Only homogeneous systems are considered. At some frequency the transition
function maps from an existing state to a new state, based on the process state and the
state of others within the communication distance. The sequence of state values gen-
erated by each robot is the microstate evolution; it gives the microscopic details for
a process. A lower-level controller for obstacle avoidance, smoothing sensor read-
ings, etc., has access to the robot’s state variables. We are only concerned with the
higher-level coordination and cooperative aspects for our processes.

We restrict the processes (and hence transition functions) to those that are er-
godic. This implies the existence of a time-invariant probability measure on the state-
space [8], since the process dynamics have a weak temporal structure. Operationally,
the ergodic property allows for the time average of some quantity to be calculated by
averaging over the state space.

To synthesize controllers for new problems, we envision a library of ergodic
processes, each with a macroscopic description. This description is the mean of
a (process-dependent) characteristic function calculated over all possible system
states; it need only be calculated once for each process. Multiple processes can be
combined so that, provided time-scales are chosen appropriately, the resulting behav-
ior can be inferred from the macroscopic descriptions of the constituent processes.
Function values are simply calculated over the product of the two constituent state
spaces.

Ergodicity is valuable for synthesis because well-defined parts of the controller
can be independently considered and each can have the ergodic property by construc-
tion. Using the property for system analysis requires that the overall system behavior
be ergodic. Such a claim is difficult to make. (Analysis that assumes the plausibility
of a “stochastic series of events” interpretation, as in [6], is far less restrictive.) Exist-
ing work that exploits ergodic dynamics does so only for part of the overall system.
For example, Jones and Matarić [4] consider controllers which perform an ergodic
exploration of the environment, and implicitly use this fact in predicting system per-
formance. White et al. [9] make an assumption about the nature of the environmental
dynamics that amounts to ergodicity. No work so far, however, has explicitly recog-
nized the connection with ergodic theory.

Without inherent temporal structure, ergodic processes appear inadequate for
robot controller design. Restricting design to ergodic processes certainly represents
a significant shift in perspective. Typically, programming (of computers or robots)
involves a decomposition of the task specification into a sequence of steps. The val-
idation task domain explored in this paper is a sequential inspection task, and the
presented controller shows that ergodicity can impose temporal ordering. The pro-
cesses achieve this at a strictly macroscopic level.

3 Sequential inspection task
Given a large bounded environment with multiple sites of interest, consider the prob-
lem of having a robot swarm (in its entirety) visit these sites in a predetermined se-
quence. This situation arises when a mobile robot system supplements a network of
static sensor nodes in order to provide higher-resolution sampling when some phe-

Principled Synthesis for Large-Scale Systems: Task Sequencing 209

210 Dylan A. Shell and Maja J Matarić

nomenon is sensed or anticipated. We consider the case in which the entire swarm is
tasked as a unit to perform the inspection of sites of interest in a specified order.

Collective decision making is non-trivial without a centralized leader. Synchro-
nization of state across robots is necessary for sequential inspection because the
group must collectively decide that the next site should be visited. This form of syn-
chronization was first defined by Jennings and Kirkwood-Watts [3] in a multi-robot
context. We consider individual robots that are extremely limited and show that two
simple ergodic processes are sufficient for this cooperative decision making.

3.1 Process definition
The simulated robots have limited capabilities with noisy sensing and unreliable lo-
cal communication. The sequential inspection controller consists of a low-level con-
troller coupled to two ergodic processes. The processes are responsible for the deci-
sion of which site of interest to visit. The processes execute in a distributed fashion,
sharing information with neighboring robots through a local-broadcast communica-
tion network (further details in §4.2).

Fig. 1. Vertices represent robots and edges
communication links. Numbers depict Pro-
cess 1 state. A random value (12 here) is ex-
changed. No state information in gray is nec-
essary, it is a strictly local interaction.

Fig. 2. A Process 2 transition. Filled ver-
tices represent state +1, empty ones -1; solid
edges depict alignment, broken edges mis-
alignment. The number of solid (4) and bro-
ken (5) edges is conserved.

Process 1 The state of Process 1 (on each robot) is described by a positive integer.
Force the following constraint to hold: the sum of the state values over all robots
must equal K1. Then the state-space for the entire swarm consists of every possible
permutation of K1 over the n robots. Although the summation constraint describes
a global property, it is locally enforceable. Robot x in state xi can transition to state
xi+1 and maintain constraint by reaching an agreement with another robot, say y.
Robot y must to transition from yi to yi+1 so that yi+1 + xi+1 = xi + yi.

The dynamics function makes a transition from state xi to xi+1 by setting apart a
random portion of xi and transmitting it to a randomly selected robot within commu-
nication range. The value of xi+1 is obtained by adding any portions received from
neighbors. (The portion is only removed by the sender with confirmation of receipt.)
Thus, the sum of state values remains K1. Fig. 1 shows the result of this transition.

Process 2 The second process is based on the ferromagnetic Ising model [1]. Each
robot’s process can be in one of two states: {−1, 1}. Two values on neighboring
robots are aligned if they have the same state values, and misaligned otherwise. The
total number of aligned and misaligned edges are written as Naligned and Nmisaligned
respectively. We write K2 = −Naligned + Nmisaligned.

The transition rules conserveK2. Two neighboring robots can calculate the effect
of flipping local state (i.e., changing to the other state) by examining their immediate

neighbors. This constraint can also be locally enforced. As before, the decision as to
which neighbor, and whether to flip or not, is randomly selected. Process 1 is clear in
terms of vertex states, Process 2 is more intuitive as operating on edges. See Fig. 2.

3.2 Process analysis

Next, consider the behavior of the processes over a range of K1 and K2 values.

Process 1 The transition function for Process 1 is a random walk of K1 units on the
robot communication graph. If robots maintain loose connectivity (i.e., disconnected
subgraphs rejoin periodically) then symmetry suggest equal probabilities over each
of the robots. Thus mean and variance of expected states can be calculated. Both are
trivial, with analytical solutions for any values of K1 and n. Figs. 3 and 4 compare
those predictions to simulation data.

0 2000 4000 6000 8000 10000
States

0.0000

0.0005

0.0010

Pr
ob

ab
ili

ty
of

st
at

e

97%

0 20000 40000 60000 80000 100000

Complete set of states

Fig. 3. The density function describing the
probability of Process 1 being in a particular
state at a random time. The plot of the full do-
main along the top and the broken line that de-
lineates 97% of the probability mass, showing
sharp peak in the distribution.

0 10 20 30
Time (seconds)

0

2000

4000

6000
St

at
es

Experimental data
Theoretical mean state = 1000
Theoretical standard deviation = 990.6

︷ ︸︸ ︷Initial transient behavior

100000

Fig. 4. Plots from ten experimental runs
showing the state of a single robot (n = 100
and K1 = 100000) over time. In all cases,
the plotted robot moved quickly into states
well characterized by the theoretical mean and
standard deviation.

Process 2 The symmetry in Process 2 is far less obvious than in the previous case.
The implementation does not bias one configuration over another. Given enough
time, we can expect any two configurations with the equal K2 to be equally likely if
we assume that average network connectivity is stable (or slow changing compared
with execution of Process 2 itself).

We simplify the problem by considering a model of robots placed on a 21 ×

21 square lattice with each of the 441 robots placed on the grid and connected to
nearest neighbours. To calculate the probability of an ergodic process occurring in a
particular state one must construct a measure over all possible states. For n robots this
means integrating over the 2n states. Process 2’s transition function was simulated
using MMMC (see §4.1 for details). The mean state value M is calculated for each
configuration and must lie on [−1, 1]. The two extremal values are given for ordered
states, those midway (M ∼ 0) are disordered. The result is a characterization of
the number of given states for a given K2. The logarithm of this number gives S the
Boltzmann entropy of the configuration (in natural units). Fig. 5 shows a construction
of the entropy surface for different values of M and E. The E axis is K2 normalized
to fall between −1 for minimum alignment and +1 for complete alignment. The
figure shows the log conditional probability (S) of an M state given an E value.

Principled Synthesis for Large-Scale Systems: Task Sequencing 211

212 Dylan A. Shell and Maja J Matarić

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

EM

S

Fig. 5. The entropy S as a function of
M for a given E. Since S is a logarithm
of the number of states, the function is
sharply peaked. This implies a high de-
gree of certainty of the process state for
extremum values of E.

For values of E ∼ +1 there is one clear peak: the system can be expected to
exhibit behavior with M → 0, or an equal number of −1 and +1 spin values. When
E ∼ −1 the system occurs in one of two states, either many +1 or many −1 values.
If the system is moved from a state of high E to toward low E, then it will exhibit a
spontaneous symmetry-breaking phase-transition.

Coupling the two processes

Thus far, only constant K1 and K2 conditions have been considered. Now we couple
the processes by allowing Process 1 to slowly increase (decrease) K1 provided that
K2 decreases (increases) by the same amount. This is the same type of conservation
used in defining the processes, but now applied to process parameters. Such a cou-
pling can be modelled as a transition function operating on process parameters while
maintaining K1 + K2 = C. It is essentially a composite process with a combined
state-space. We term this a macroscopic degree-of-freedom.

The entropy (and hence probability distribution) of the composite process can be
calculated by considering the entropy function of each individual process. The exact
method depends on the relative “size” of the entropy function, but a full discussion is
beyond the scope of this paper. For Process 1 we can see that the first process results
in a mean value of K1

n
per robot. If we permit free exchange of one unit of K1 for

one unit of K2, then a decrease in K1 results in an increase in K2. With appropriate
values, the decrease in K1 can result in a rapid transition from M ∼ 0 to M = −1
or M = +1. This transition is the result of the average behavior of the system. We
describe how this is used for the sequential inspection task below.

4 Simulation tools
Trade-offs in run-time, space, and fidelity require the careful choice of simulation
software. We used two software tools, one to characterize a process’s behavior, the
other to simulate the robots executing the appropriate composite controllers. The
first simulates pseudo-dynamics during controller construction, while the second is
a traditional sensor-based simulator used for testing and validation.

4.1 Microcanonical Metropolis Monte-Carlo (MMMC)

Microcanonical Metropolis Monte-Carlo (MMMC) is a numerical method described
by Gross [2] as a variation of the Metropolis-Hastings algorithm. Both methods
approximate a probability distribution by drawing a sequence of random samples.

Numerical methods are particularly useful when considering the thermodynamics
of finite systems. The need for MMMC arose in nuclear physics because distribu-
tions over unconventional thermodynamic variables (conserved extensive variables)
were considered. The resulting distributions are extremely peaked, with values rang-
ing many orders of magnitude. Naı̈ve sampling fails to obtain sufficient data for the
lower probability states because they arise so infrequently. The MMMC algorithm
decomposes the distribution surface into local patches called knots. Sampling then
proceeds locally for each knot. Partial derivatives of the surface are calculated at each
knot, and the function is then constructed through integration of those values.

Values at each knot are calculated by collecting statistics by a pseudo-dynamics
simulation of the model from given initial value within the knot. The emphasis is
on collecting numerical data based transitions within the knot itself. The simulation
does not attempt to construct long temporal explorations of the states like a typical
simulation would do. We believe that this approach, rather than simulation for plau-
sible runs, is important for characterising the processes. From the perspective of the
entropy surface, such an approach allows far more information to captured, which is
necessary of a complete characterization of process behavior.

We used MMMC to construct the entropy surface for a finite Ising model. Even
with 100 robots it is infeasible to explore all available states so a randomized al-
gorithm must be used. Fig. 5 shows the logarithm of the probability normalized for
each E value as calculated by MMMC. This function shows the extreme range of
probabilities that can arise.

4.2 Microscopic simulation

Our sensor-based microscopic simulation uses an environment model in order to
produce artificial readings for virtual sensors. We use an efficient Delaunay trian-
gulation datastructure for representing positions of the robots as well as obstacles
within the environment. Sensor readings are generated from this data structure rather
than ray-casting in a bitmapped rendering. Robots are updated asynchronously.

The experiments used simulated robots with a velocity control interface. Lin-
ear and angular velocities were corrupted by three noise terms: multiplicative, addi-
tive and additive biased. The first two were drawn from normal distributions at each
timestep, the last term represented a systematic bias and was drawn once at initializa-
tion. These values were different for each robot. The three terms for linear velocity
were drawn from N(0, 0.012), N(0, 0.032), and N(0, 0.0022); similarly for angular ve-
locities N(0, 0.012), N(0, 2.52), N(0, 0.152); units are meters and degrees respectively.

The robots used three sensors: 1) a distance sensor with 12 radial rays, each
with a range of 0.5 meters, with multiplicative N(0, 0.022), additive N(0, 0.052), and
a additive bias for each ray N(0, 0.052); 2) a compass with four bits of information,
and added noise N(0, 15.02) and added bias N(0, 2.02); 3) a single-bit sensor that re-
sponded to the sites of interest, that returned false-negatives with probability 0.15 and
false-positives with probability 0.08. Only the compass provided global information.
Distance readings returned from other robots and obstacles were indistinguishable.

The simulator included a model of local-broadcast communication. Each robot
could send messages that may be heard within a disk of radius 2m centered at the

Principled Synthesis for Large-Scale Systems: Task Sequencing 213

214 Dylan A. Shell and Maja J Matarić

sender. Messages arrived at a robot distance d from the sender with a probability
given by 0.02d2 − 0.18d + 1.0. We also provided a local point-to-point network:
robots could provide an intended recipient. These packets were locally broadcast
within the same 2m disk, but automatically discarded by non-matching recipients.
The sender was notified of a successful transmission.

4.3 Comparison of methods

Each run of the microscopic simulation produces a single temporal evolution of the
robot system. It allows for comparison of task performance over time, with each in-
dependent execution offering new evidence. If the simulation is sufficiently realistic,
it offers a forecast of performance with physical robots, and is thus important for
validation purposes.

In contrast, MMMC does not simulate a single plausible trajectory. Instead, for
each knot it simulates a brief temporal sequence and reinitializes to a value within
the knot’s parameter space. That brief temporal sequence may fail to follow the same
strict dynamics rules as the robot system might. In the case of the Ising model, ran-
dom flips are permitted, even if they are not neighboring. The key aspect is that the
method provides a high-level characterization of the statistical aspects of the system.

Microscopic simulation is often used for iterative system design: insights from
simulation (often supplemented by analysis) provide incremental improvements.
Such methods operate in an end-to-end manner. The probabilistic characterization,
like MMMC, provides a complementary approach.

5 Results
Experiments were performed in a 50m×50m arena with two disks of radius 3m
placed at the North-East (NE) and South-West (SW) corners, 2m from the sides.
The disks represent the sites of interest and can be sensed by robots that are posi-
tioned over them. Without localization information and equipped with a noisy 4-bit
compass, many robots reach the arena corner having missed or failed to sense the
disk. Independent sensing by the many robots within the swarm lessens the effects
of the position and sensor uncertainty. Robots were initially placed in the arena cen-
ter and were tasked with visiting first the NE site, then the SW site. The critical issue
is in synchronization of the decision to advance from one site to the next.

Synchronization is achieved by coupling Processes 1 and 2 together as described
above. On each robot the low-level controller (for obstacle avoidance, navigation,
sensor processing, etc.) uses a variable to track task state. The value of this vari-
able affects the interpretation of the compass readings and steering. The low-level
controller is coupled to the two synchronization processes in two ways:
1. Input through gradual perturbation of the Process 1’s state space. A robot detecting

that it is over a site will increase the value of its Process 1 state (by 200 units).
Observation of thrashing or lack of progress (by measuring odometry movement
of less that 0.25m in 5s) results in the Process 1’s state being reset to zero.

2. Output produced by monitoring average values of Process 2’s the slow changing
state variables. Values are averaged over a 12 second window. When the value is

within a threshold of zero (we used 0.02) a flag was set indicating that the task-
state variable would soon change. When the mean approaches either −1 or 1 (we
used 0.98), the task-state variable is altered to show the beginning of the next task
(on −1) or return to the previous task (on 1).

Fig. 6. Screen-shots of a simulation with 441 robots running for ∼ 520 seconds.

Fig. 6 shows simulation snap-shots of robots moving from the arena center to the
first and second inspection sites. Fig. 7 gives connectivity information for the same
run. The increasing density at each inspection location had a marked effect on the
number of neighbors each robot had. Fig. 8 gives a plot of K1 and the average M
value for three experimental runs. The figure shows Process 2’s state being switched
from −1 to +1 throughout the system. These three runs show similar behavior be-
cause the symmetry was broken in identical ways for each case. In 10 total runs, 4
cases transitioned back to −1 and the robots stayed at the NE site. This is expected as
symmetry breaking occurred in an unbiased fashion; adding a bias would stop such
cases from having to undergo the phase transition multiple times in order to reach
the decision to explore the next site.

6 Discussion and Conclusion
The experiments show that the gross simplifications made in modelling the indi-
vidual processes (especially Process 2) do not invalidate the general features of the
processes behavior. For example, the mean connectivity is shown to be significantly
higher than the value of 4 used in MMMC simulations. Also, the linearization ar-
guments based on global constraints (e.g., in assuming fixed K1), statements about
“slow” couplings, and ignorance of sparse node or network failures, are all only plau-
sible to a limited extent. The experiments suggest that such assumptions are valid
provided only very coarse features of the process behaviors are considered.

The predictions of process behavior, even with major modelling simplifications,
can be useful provided the designer seeks a qualitative understanding of the behav-
ior. The model of the synchronisation processes presented here is robust because it
is based on the topological properties of the entropy surface. Our ongoing work is
considering other processes that result in particular properties of the entropy surface.

Fig. 7 suggests that a smaller communication disk may suffice for the sequential
inspection in the environment we considered. An alternative approach (perhaps with-
out ergodic processes) could use the number of robots within communication range
in order to switch behavior directly. An interesting question is whether such a switch
would occur as abruptly as in our approach.

In conclusion, we have demonstrated that the composition of ergodic processes is
a feasible approach for tackling the synthesis problem, at least in the case of simple

Principled Synthesis for Large-Scale Systems: Task Sequencing 215

216 Dylan A. Shell and Maja J Matarić

0 100 200 300 400 500
Time (s)

0

20

40

60

80

N
um

be
ro

fn
ei

gh
bo

rs 441 robots flocking North-East then South-West,
communications disk radius = 2m

Fig. 7. The number of neighbouring robots
within communication range for 441 robots.
The average over all robots plus/minus one
standard deviation.

0 100 200 300 400
Time (s)

-1

0

1

Va
lu

e
of

M

Trial 1
Trial 2
Trial 3

0

5000

10000

15000

20000

To
ta

lK
1

Fig. 8. Plot of synchronisation processes in-
ternal state for the first 400 seconds of a run
with 441 robots. The transition of M values is
clearly visible.

tasks. Synchronization, as a basis for sequencing, can be achieved by such processes.
Composition of processes is useful because each can be independently analyzed in
a manner that remains valid for combinations of ergodic processes. The analysis
attempts to understand the processes’ macroscopic behavior by considering the en-
tropy surface. Numerical tools are useful for expanding the set of processes which are
amenable to analysis, and, in particular, for dealing with issues that arise within finite
systems. We view analysis of composable processes as complementary to traditional
methods that iterate controller design at the complete system level. This approach
appears relatively robust to modelling errors, provided the description is used for
qualitative understanding of system behavior.

Acknowledgements This work was partially funded by National Science Foun-
dation Grant No. IIS-0413321. We thank E. Mower for comments on an early draft.

References
1. M. E. Fisher. The theory of equilibrium critical phenomena. Reports on Progress in

Physics, 30:615–730, 1967.
2. D.H.E. Gross. Microcanonical thermodynamics and statistical fragmentation of dissipative

systems – the topological structure of the n-body phase space. Physics Reports, 279:119–
202, 1997.

3. J. Jennings and C. Kirkwood-Watts. Distributed mobile robotics by the method of dynamic
teams. In DARS, pages 46–56, Karlsruhe, Germany, May 1998.

4. C. V. Jones and M. J. Matarić. Automatic Synthesis of Communication-Based Coordinated
Multi-Robot Systems. In IEEE/RSJ IROS, pages 381–387, Sendai, Japan, September 2004.

5. K. Lerman and A. Galstyan. Mathematical Model of Foraging in a Group of Robots: Effect
of Interference. Autonomous Robots, 13(2):127–141, 2002.

6. A. Martinoli, K. Easton, and W. Agassounon. Modeling of Swarm Robotic Systems: A
Case Study in Collaborative Distributed Manipulation. IJRR, 23(4):415–436, 2004.

7. L. E. Parker, M. Chandra, and F. Tang. Enabling Autonomous Sensor-Sharing for Tightly-
Coupled Cooperative Tasks. In Proceedings of the NRL Workshop on Multi-Robot Systems,
pages 119–230, Washington, DC, USA, March 2005.

8. K. Petersen. Ergodic Theory. Cambridge University Press, Cambridge, England, 1983.
9. P. White, V. Zykov, J. Bongard, and H. Lipson. Three dimensional stochastic reconfigura-

tion of modular robots. In Proceedings of Robotics: Science and Systems, pages 161–168,
Cambridge, MA, USA, June 2005.

A Study on Proportion Regulation Model for

Multi-Robot System

Ken Sugawara1 and Tsuyoshi Mizuguchi2

1 Tohoku Gakuin University, 2-1-1, Tenjinzawa, Izumi, Sendai, 981-3193, Japan
sugawara@cs.tohoku-gakuin.ac.jp

2 Osaka Prefecture University, 1-1, Gakuen-cho, Sakai, 599-8531, Japan
gutchi@ms.osakafu-u.ac.jp

Division of labor performed by social insects is one of the most advanced func-
tions that they have evolved. For effective performance, the groups exhibit
proportional regulation of population, which implies the proportion of each
group is regulated against external disturbances without aid from a special in-
dividual. This paper addresses a variable probability model fot the proportion
regulation of population in a homogenous multi-robot system, in which the
state transition rate is combined with the external materials produced by cor-
responding task execution. Performance of the proposed model is confirmed
by numerical simulations and experiments of simple multi-robot system.

1 Introduction

Cooperative multi-robot system is one of the most attractive topics in robotics,
and many researchers have investigated multi-robot systems[1]. Some of them
were inspired by biological systems and analyzed their performance using real
robot systems[2, 3, 4, 5]. Actually, animals living in groups often show ad-
vanced functions or performances which exceed the simple sum of individual
abilities. Especially, social insects like ants, bees, and termites exhibit some
remarkable behaviors, such as colony formation, age polyethism, group forag-
ing, etc[6, 7, 8]. The important point of their behavior is that their collective
behaviors do not require a special individual which controls the behavior of the
entire group. In spite of the lack of the special, behavior of the group is adapt-
able, flexible and robust against environmental disturbances. In their groups,
hereditarily homogeneous individuals achieve these collective behaviors by
interacting with each other through direct visual informations or chemical
materials, such as pheromones.

Our interest in their characteristics is division of labor and proportion reg-
ulation of population. In their society, division of labor plays an important

218 Ken Sugawara and Tsuyoshi Mizuguchi

role, and it is known that proportion regulation of population are observed in
division of labor for effective working. Fig.1 is a schematic figure of the ”divi-
sion of labor” and ”proportion regulation of population” in the homogeneous
multi-robot system that is treated here.

Fig. 1. A schematic figure of ”division of labor” and ”proportion regulation of
population” in homogeneous multi-robot system.

Division of labor is also one of the most attractive topics in the study of
multi-robot system[9, 10]. It will be important to consider division of labor
and proportion regulation when the system needs to execute complex tasks
autonomously and cooperatively. This paper addresses simple model of the
proportion regulation of population in a homogenous multi-robot system, in
which the state transition rate is combined with the external materials pro-
duced by corresponding task execution.

2 Model for division of labor and proportion regulation

As described above, division of labor can be widely observed in social insects.
Many researchers, including biologists and theoretical scientists, have been
interested in this phenomenon, and several mathematical models have been
investigated.

Response threshold model

Bonabeau et al.[11] have developed a simple mathematical model based on
response threshold. In this model, each individual has a response threshold
for every task. They engage in a task when the internal stimuli exceeds the
threshold of the task.

A Study on Proportion Regulation Model for Multi-Robot System 219

Based on this model, some experimental studies have been reported[4], in
which the homogeneous group of robots divide into foraging robots and inac-
tive robots effectively. This model functions well, if the threshold is scattered
depending on the individual differences. However, it may cause ”oscillatory”
phenomena, when the scatter is small.

Non-linear dynamical model

A non-linear dynamical model[12] was proposed, especially focusing on the
cell differentiation of Dictyostelium slug, in which all cells are divided into two
types of cells, prestalk and prespore cells. The differentiation is flexible and it is
known the ratio between them is almost constant. In this model, each element
has two internal variables, - activator and inhibitor -, and they are coupled
globally using their average quantities. The population ”differentiates” into
two states, and the system maintains the ratio against large disturbances by
changing the state of the individuals.

Dynamic potential model

In a colony of social insects, we can observe ”age polyethism,” a division
of labor based on individual age. In an insect colony, it is known that in-
dividuals change their tasks depending on their age. A dynamic potential
model[13] consists of N indentical individuals, M tasks, M external materials
and one-dimensional internal reference potential with m valleys. Each indi-
vidual has an internal variable whose dynamics obey the effective potential.
In this model, each individual detects the concentration of the external ma-
terials, and changes its internal variable depending on the effective potential
derived from the concentration of the materials and the reference potential.
Here, the proportion of population in each task can be controlled by the depth
of the valleys in the potential. Since the reference potential is expressed by
the valleys of the one-dimensional function, each individual changes its task
sequentially. Hence, this model is suitable for expressing age polyethism.

Proposal

In this paper, we propose a variable probability model. Let us assume all
the robots are homogeneous and each robot has some states and correspond-
ing tasks. For simplicity, this paper treats the case that the robots have three
states and three corresponding tasks. For the proportion regulation of pop-
ulation, each robot needs to determine its state appropriately. The simplest
method to determine the proportion of the number of robots in state 1, 2, and
3 is to control the transition rates among them. Here the proportion can be
expressed by the relative ratio of the transition rates. Let’s denote the transi-
tion rates between the states as α1, α2, and α3(Fig2(a)). If we set α1, α2, and
α3 as 0.1, 0.2, and 0.3, respectively, the proportion of the number of robots in
each state becomes 1 : 2 : 3.

It should be mentioned that the proportion depends on the relative ratio
at the equilibrium state and that the time to reach the equilibrium state

220 Ken Sugawara and Tsuyoshi Mizuguchi

depends on the transition rate itself. For example, if we compare the transition
rate set (α1, α2, α3) = (0.1, 0.2, 0.3) and = (0.01, 0.02, 0.03), the proportion
of population becomes 1:2:3 in both cases at the equilibrium state, but the
balancing time of the former set is ten times faster than the latter one. It
means that the balancing time can be independently controlled by wj when
we describe the transition rate as αj/wj instead of αj . Fig.2(b) shows the
schematic of the proposed model.

We also mentioned that we can generalize this model as shown in fig.2(c). It
enables us to make an asymmetric transition flow,by describing the transition
rate asymmetrically. It means that this model can also treat one-way transition
such as age polyethism.

Fig. 2. State transition diagram. (a) Simple probability model. (b) Extended prob-
ability model. (c) Generalized transition model.

Next, we describe how to control the balancing time. When the system
reaches the desired proportion, it is preferable that each robot does not change
its state. It means wj should be relatively large. On the contrary, when the
balance of the proportion becomes worse, it is desirable to raise the transition
rate in order to reach the desired proportion in a short time. It means wj

should be relatively small. Hence, it is necessary to introduce a dynamics to
change the value of wj flexibly depending on the balancing condition. In this
paper, we realize the dynamics by combining the transition rates and the
concentration of volatile external materials. Here we call this material as ”a
stock material”, which is inspired by the chemical signals of social insects.
As known well, social insects communicate by chemical signals and establish
well-ordered society.
The quantity of the stock materials Pj is assumed to obey the following equa-
tion.

Ṗj = −τjPj + c · nj ,

where the first term on the right hand side represents the decay of the material,
and the second represents the production of the materials by nj robots which
engage in task j. τj is a decay time of jth stock material. Here τj and c

A Study on Proportion Regulation Model for Multi-Robot System 221

is a constant. The value wj , which regulates the transition rate, obeys the
following equation.

wj =
k

1 + exp(−β(Pj − L · αj ·
∑

Pm))
,

where β, k, L are constant.

3 Simulation

In this section, we discuss the performance of the proposed model by numerical
simulation. The simulation condition is as follows:
n = 500, α1 = 0.5, α2 = 0.3, α3 = 0.2, τ = 40.0, k = 20.0, L = 0.8 and
β = 10.0,
where the desirable ratio of the states 1, 2, and 3 is 5:3:2. As an initial con-
dition, all the robots are assigned state 1 and the stock materials wj |t=0 are
all set as zero.

Fig.3 shows a typical example of the time evolution of the simple probabil-
ity model(a) and that of the proposed model(b). Responses to the disturbance
applied to the proposed model are also shown in this figure, in which all robots
in state 3 are forced to be state 1 (Fig.3(c)) and all robots in state 3 are re-
moved (Fig.3(d)) at t = 30000.

Fig.3(a)(b) shows the average ratio between state 1, 2 and 3 is almost
maintained as we designed in both models, but the fluctuation observed in
the simple probability model is larger than that of the proposed model. Fig.4
shows the histogram of the number of robots in each state for a constant
duration. As shown here, the variance of the proposed model is smaller than
that of simple probability model.

In division of labor, it is desirable that the robot engages in the same task
as long as possible. It is because task change often leads to the loss of cost,
time, and so on. Adam Smith (1776) claimed that one of the most important
points of the division of labor is ”better organization of work, which saves
time in changing task.” Fig.5 shows the time evolution of the state in 100
robots which are selected randomly.

As shown here, the robots based on simple probability model change the
task frequently, but the robots based on the proposed model tend to engage
in the same task longer. Fig.6(a) is the time evolution of the total amount of
task changes, and fig.6(b) is the frequency how long each robot engages We
measured how often the robots changes the tasks and how long each robot
engages in the same task (Fig.6).

222 Ken Sugawara and Tsuyoshi Mizuguchi

Fig. 3. The time evolution of the number of robots in each state. (a) Simple prob-
ability model. (b) Proposed model. (c) Response to the disturbance that all robots
in state 3 is forced to be state 1. (d) Response to the disturbance that all robots in
state 3 is removed.

Fig. 4. Histogram of the number of robots in each state for constant duration.
(a)Simple Probability Model. (b)Proposed model.

As you can see, the performance of the proposed method is much better
than that of the simple probability model from the viewpoint of the task
changes.

We also confirmed that the system shows same equivalent performance
even if the transition rate is asymmetric. We set α31 = 0.5, α12 = 0.3, α23 =
0.2 and the others are set as zero. One typical example is shown in Fig.7.

A Study on Proportion Regulation Model for Multi-Robot System 223

Fig. 5. Time evolution of the state in 100 robots. (a)Simple Probability Model.
(b)Proposed model.

Fig. 6. (a) Total amount of the robots which change the task. (b) Frequency how
long each robot engages in the same task.

In this figure, we confirmed the stability of the system. A ll robots in state
3 is forced to be in state 1 at t = 30000 as a large disturbance. As shown here,
the system maintains the desired proportion even when large disturbance is
added.

Fig. 7. Performance of the system which has an asymmetric state transition prob-
abilities. All robots in state 3 is forced to be in state 1 at t=30000 as a large
disturbance. (a) Time evolution of the number of robots in each task. (b) Total
number of robots which change the task in each direction.

224 Ken Sugawara and Tsuyoshi Mizuguchi

4 Experiment

4.1 Experimental equipment

First, we explain the overview of the experimental equipment. In the exper-
iment, it is necessary to express volatile materials which can be detected
by the robots. In this paper, we utilized ”Virtual Dynamic Environment for
Autonomous Robots (V-DEAR)[14]” for the robot experiment, in which the
volatile materials are virtually expressed by light information (Fig.8(a)). This
equipment comprises a LC projector to project the Computer Graphics, CCD
camera to trace the position of the robots, and a PC to control them. Since the
robots in the field have some light sensors on the top, they can measure the
color and the brightness, as the field condition. Here we realize the dynamic
interaction between the environment and robots.

In this experiment, we use a miniature robot ”Khepera” (Fig.8(b)), which
has a full-color LED and three color sensors on the top. Each robot indicates
its condition by the LED, and acquires the light information using the sen-
sors. The experimental field(Fig.8(c)) has three paths, which are assumed to
be ”task.” Fig.8(d) is the schematic of the experiment. The robot in the nest
measures the quantities of volatile materials, i.e. measures the color and the
brightness of the light, and decides the task it should engage in. The field
has three paths which represent ”the tasks”, and the robot passes the corre-
sponding path. When it passes the path, the robot turns on the corresponding
colored LED. V-DEAR detects the color of the LED on the top of the robot
at the entrance and updates the quantity of the corresponding volatile mate-
rial. Here the quantity of the materials is expressed by the brightness of the
projected CG. Fig.8(e) is a snapshot during the experiment. Here the stock
material 1, 2 and 3 are expressed by blue, red and green, respectively, and the
quantities of the material are expressed by the brightness of each color.

4.2 Experimental result

We reveal the typical behavior of this system. Fig.9 is the time evolution of
the number of robots in each state. Fig.9(a) and (b) are the time evolution
of the number of robots in each state based on the simple probability model
and on the proposed model. Here the desired ratio is 1:2:3. As the size of the
group is small, fluctuation of the simple probability model seems to be large,
but the proposed model maintains the desired ratio for long time. Fig.9(c)
shows the response to large perturbation. Initial number of robots is 9, and
initial population in each state is 3:3:3. Here the desired ratio is 1:1:1. We
eliminated all the robots in state 1 at 120 s. As shown in this figure, the ratio
converges to 1:1:1 rapidly by reallocation.

A Study on Proportion Regulation Model for Multi-Robot System 225

Fig. 8. (a) The schematic of V-DEAR. (b) Khepera robot for this experiment.
Color sensors and a full-color LED are attached on the top. (c) The field for the
experiment. (d) The schematic of the experimental field. (e) A snapshot during the
experiment.

5 Conclusion

This paper addressed the proportion regulation of population in a homoge-
nous multi-robot system. This was inspired by the task allocation of social
insects. We focused on the proportion regulation of population and proposed
the extended probability model. First, its performance was confirmed by nu-
merical simulations. Second, we applied this model to a real robot system.
Using V-DEAR and Khepera robots with extended sensors and indicators, we
confirmed its effectiveness, especially by comparing it with the simple proba-
bility model.

Fig. 9. Time evolution of the number of robots in each state. The total number
of robots is six. The initial ratio is 0:1:1 and the target ratio is 1:2:3. (a) Simple
probability model. As each robot frequently changes its task, the number of robots in
each state fluctuates considerably. (b) Proposed model. The ratio rapidly converges
to 1:2:3. (c) Response to large perturbation. In spite that all robots in state 1 are
eliminated at 120s, the ratio converges to 1:1:1 rapidly by reallocation.

226 Ken Sugawara and Tsuyoshi Mizuguchi

This work is partially supported by a Japanese Grand-in-Aid for Encour-
agement of Young Scientists from the Ministry of Education, Science and
Culture (No.15760291.)

References

1. Y.U.Cao, A.S.Fukunaga and A.B.Kahng, ”Cooperative Mobile
Robotics:Antecedents and Directions,” Autonomous Robots, 4, (1997)
pp.7-27.

2. R. Beckers, O.E. Holland and J.L. Deneubourg, ”From Local Actions To Global
Tasks: Stigmergy and Collective Robotics,” Artificial Life IV, MIT Press,
(1994), pp. 181.

3. C. R. Kube and H. Zhang, ”Collective Robotics: FromSocial Insects to Robots.”
Adaptive Behavior 2 (1994) pp.189-218.

4. M.J.B. Krieger, J.B. Billeter, ”The call of duty: Self-organized task allocation in
a population of up to twelve mobile robots”, Robotics and Autonomous Systems,
Vol.30 (2000) pp.65-84.

5. R. Beckers, O.E. Holland and J.L. Deneubourg, ”From Local Actions To Global
Tasks: Stigmergy and Collective Robotics,” Artificial Life IV, MIT Press,
(1994) pp. 181-189.

6. B. Hölldobler and E. O. Wilson, JOURNEY TO THE ANTS, Harvard Univer-
sity Press, (1994).

7. T. D. Seeley, THE WISDOM OF THE HIVE, Harvard University Press, (1995).
8. D. M. Gordon and M. Schwengel, Ants at Work: How an Insect Society Is

Organized, Simon & Schuster, (1999).
9. C. Jones and M.J.Mataric, ”Adaptive Division of Labor in Large-Scale Mini-

malist Multi-Robot Systems”, Proc. 2003 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS-03), (2003) pp.1969-1974.

10. T.Balch and L.E.Parker ed. Robot Teams: From Diversity to Polymorphism, A
K Peters, (2002).

11. E.Bonabeau, G.Theraulaz, and J.-L.Deneubourg, ”Quantitative Study of the
Fixed Threshold Model for the Regulation of Division of Labour in Insect So-
cieties,” Proc. Roy. Soc. London B 3 (1997) pp.191-209.

12. T. Mizuguchi, M. Sano, ”Proportion Regulation of Biological Cells in Globally
Coupled Nonlinear Systems”,Phys. Rev. Lett., Vol.75, No.5, (1995) pp.966-969.

13. K.Sugawara, T.Mizuguchi, H.Nishimori, ”Collective Dynamics of Active Ele-
ments: group motions, task allocation and pheromone trailing, Proc. Int. Symp.
on Dynamical Systems Theory and Its Applications to Biology and Environmen-
tal Sciences, (2003).

14. K. Sugawara, T. Kazama and T. Watanabe: ”Foraging Behavior of Interacting
Robots with Virtual Pheromone”, Proc. 2004 IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems, (2004) pp. 3074-3079.

Market-Based Multi-robot Coalition Formation

Lovekesh Vig and Julie A. Adams

Vanderbilt University, Nashville TN 37212
{lovekesh.vig, julie.a.adams}@vanderbilt.edu

Summary. Task allocation is an issue that every multi-robot system must address.
Recent task allocation solutions propose an auction based approach wherein robots
bid for tasks based on cost functions for performing a task. This paper presents
RACHNA, a novel architecture for multi-robot task allocation based on a modified
algorithm for the winner determination problem in multi-unit combinatorial auc-
tions. A more generic utility based framework is proposed to accommodate different
types of tasks and task environments. Preliminary experiments yield promising re-
sults demonstrating the system’s superiority over simple task allocation techniques.

1 Introduction and Motivation

Task allocation is a challenging problem due to the unpredictable nature of
robot environments, sensor failure, robot failure, and dynamically changing
task requirements. While market-based task allocation systems have tradi-
tionally found favor with the software-agent research community ([1], [2] and
[3]), market-based control architectures are proving to be an effective distrib-
uted mechanism for multi-robot task allocation as well. Stentz and Dias [4]
utilized a market-based scheme to coordinate multiple robots for cooperative
task completion that introduced the application of market mechanisms to
intra-team robot coordination. The common feature in market-based alloca-
tion mechanisms is an auction protocol to coordinate tasks between different
robots [5], [6], [7] or between different components of the same robot [8], [9].
When an auction is announced, robots compute bids based on their expected
profit for the tasks and the robots with the lowest cost bid are awarded con-
tracts.

A number of elegant non market-based solutions to the task allocation
problem have been proposed. The ALLIANCE [10] architecture uses motiva-
tional behaviors to monitor task progress and dynamically reallocate tasks.
Recently Low et al. [11] proposed a swarm based approach for the cooperative
observation of multiple moving targets (CMOMMT). Dahl et al. [12] present a

228 Lovekesh Vig and Julie A. Adams

task allocation scheme based on “Vacancy Chains,” a social structure modeled
on the creation and filling of vacancies in an organization. The Broadcast of
Local Eligibility system (BLE) [13] system uses a Publish/Subscribe method
to allocate tasks that are hierarchically distributed.

The common underlying factor in the above systems is the single robot-
single task (SR-ST) assumption which entails that tasks are indivisible and
may be performed by a single robot. As multi-robot tasks become more com-
plex, this assumption is proving to be an oversimplification. Many task do-
mains contain multiple tasks requiring a team of robots to work on them
simultaneously, thus further complicating task allocation.

A relatively unexplored problem is the allocation of multi-robot teams to
different tasks (the ST-MR problem), commonly known as the Multi-Robot
Coalition Formation (MRCF) problem. Many coalition formation techniques
within Distributed Artificial Intelligence (DAI) have been proposed for this
provably hard problem [14], [15], [16]. Multi-robot coalition formation adds
further complexity due to additional real world constraints [17] (fault toler-
ance, sensor location, communication costs, etc.). Recently a variety of market
based solutions to the ST-MR task allocation problem have been proposed,
[18], [19]. This paper proposes RACHNA1, a novel market-based solution to
the MRCF problem that leverages the inherent redundancy in sensor/actuator
capabilities of robots to enable a more tractable, utility-based formulation of
the MRCF problem.

This paper is organized as follows; Section 2 details the RACHNA ar-
chitecture, the negotiation protocol, and the task environments. Section 3
provides the experimental details and results. Section 4 provides conclusions
and outlines potential avenues for future work.

2 The RACHNA system

A common feature of the market based systems discussed in Section 1 is that
they require the robots to bid on the tasks. The bidding process is central to
determining the auction outcome. Therefore when dealing with complex tasks,
the bidder should have a global view of the available resources. The RACHNA
system reverses the bidding process. The auction is performed by the tasks
for the individual robot services, thus allowing the bidding to be performed
with a semi-global view of the resources necessary for coalition formation.

One of the most prominent differences between multi-agent and multi-
robot domains is the level of redundancy in multi-robot and software-agent
capabilities. Robots are manufactured on a large scale and are more likely
to have greater redundancy in their sensor/actuator capabilities. RACHNA
leverages this redundancy to enable a more tractable formulation of the MRCF

1 Robot Allocation through Coalitions using Heterogeneous Non-Cooperative
Agents

problem. RACHNA achieves this through the formulation of the MRCF as a
multi-unit combinatorial auction. While single item auctions allow the bidders
to bid on only one item, combinatorial auctions permit bidding on combina-
tions of items.

Definition: The auctioneer has a set of items, M = 1, 2,..., m to sell. The
auctioneer has some number of each item available: U = {u1, u2, ..., um}, ui ε Z+.
The buyers submit a set of bids, B = {B1, B2, ..., Bn}. A bid is a tuple
Bj = < (γ1

j , ...,mj), pj >, where γk
j ≥ 0 is the number of units of item k

that the bid requests, and pj is the price. The Binary Multi-Unit Combinato-
rial Auction Winner Determination Problem (BMUCAWDP) is to label the
bids as winning or losing so as to maximize the auctioneers revenue under the
constraint that each unit of an item can be allocated to at most one bidder:

max
∑

pjxj s.t.
n∑

j=1

γi
jxj ≤ ui, i = 1, 2, . . . , m (1)

The MRCF problem can be cast as a combinatorial auction with the bid-
ders represented by the tasks, the items as the different types of robots, and
the price as the utility that each task has to offer. Unfortunately, the BMU-
CAWDP problem is inapproximable [20] however some empirically strong al-
gorithms exist [21], [20].

2.1 The Architecture

Two types of software agents are involved in the task allocation process:

1. Service Agents are the mediator agents through which the tasks must
bid for a service. RACHNA requires that each robot have a set of services
or roles it can perform. The roles are determined by the individual sen-
sor and behavioral capabilities resident on each robot. One service agent
exists for each service type that a robot can provide. A service agent
may communicate with any robot that provides the particular service to
which the agent corresponds. Service agents reside on any robot capable
of providing the service. Thus, the global task information is acquired in
a decentralized manner via service agents.

2. Task agents place offers on behalf of the tasks so as to acquire the
necessary services. The task agents only communicate with the service
agents during negotiations. Once the task is allocated, the task agent
may communicate directly with the robots allocated to the task. Task
agents may reside on a workstation or a robot and communicate with the
necessary service agents.

An economy is proposed where the tasks are represented by task-agents
that are bidding for the services of the individual robots. The economy has a

Market-Based Multi-robot Coalition Formation 229

230 Lovekesh Vig and Julie A. Adams

Fig. 1. An example RACHNA Implementation

set of robots R1, R2, ..., RN where each robot is equipped with sensor capa-
bilities that enable it to perform various services such as pushing, watching,
foraging, etc. The tasks are assumed to be decomposable into the sub-task
behaviors. For example, a box-pushing task may require two pusher sub-task
roles and one watcher sub-task role as shown in Figure 1. Each role is repre-
sented by a service agent that is responsible for negotiating with the robots
that have the desired capability. The bids are relatively sparse compared to
the overall space of coalitions and will yield a more tractable formulation of
the MRCF. Unlike other heuristic based algorithms coalition formation [15],
no restriction is placed on the coalition size.

2.2 The Allocation Environments

Three task types were permitted in the presented experiments:

1. Urgent tasks can pre-empt an ongoing standard task and generally have
a higher average reward per robot. These tasks are emergency tasks that
require immediate attention, such as fire extinguishing or rescue tasks.

2. Standard tasks are allocated only when sufficient free resources exist and
when the task utility is sufficient to merit allocation. These tasks may be
pre-empted by urgent tasks. Loosely coupled tasks (i.e. foraging) or tasks
that may easily be resumed comprise this category.

3. Non preemptable tasks are allocated similar to standard tasks but can-
not be pre-empted. Tightly coupled tasks fall into this category because,
preemption would completely debilitate task performance.

Two different types of allocation are considered:

1. Instantaneous Allocation: A number of tasks are introduced into the envi-
ronment and the algorithm allocates resources to the optimal set of tasks.

2. Pre-emptive Allocation: Involves introduction of a single urgent task that
requires immediate attention. The urgent task offers higher rewards in an
attempt to obtain bids from the robots.

Instantaneous Assignment

Instantaneous assignment requires multiple auctions while the system’s objec-
tive is to allocate resources to tasks while maximizing overall utility. Services
correspond to items, robots correspond to units of a particular item (service),
and task offers correspond to bids. This work distributes this solution in order
to leverage the inherent redundancy in robot capabilities, thereby obtaining
a more tractable formulation of the MRCF problem.

The auction begins with each task agent sending request messages to the
individual service agents. The service agents attempt to obtain the minimum
possible price for the requested services. The robot’s current minimum salaries
are evaluated and a minimum increment is added in order to lure the robots
to the new task. The service agents then forward this information to the task
agents. The task agents determine if sufficient utility exists to purchase the
required services. If this is the case, then the services are temporarily awarded
the task. This offer-counteroffer process proceeds in a round robin fashion with
the robots’ salaries increasing at every step until there is a round where no
service (robot) changes hands. At this point, a final stable solution is attained.

Random Assignment

Urgent tasks are randomly introduced and are allocated robot services accord-
ing to a negotiation process between tasks. The negotiation begins when the
new task submits a request to the required service agents for a certain num-
ber of services of that type. The service agents take into account the current
robots’ salaries and a bargaining process ensues with tasks increasing robot
salaries until either the new task successfully purchases the resources or waits
for additional free resources.

2.3 Utility vs. Cost

A difficulty with the employed market based approach is that the resulting
teams are highly dependent on the initial utilities assigned to various tasks.
However, this may not be an entirely undesirable property. While the system
is sensitive to initial utilities, it also empowers the user to prioritize tasks by
varying the task utilities. Most definitions of utility incorporate some notion of
balance between quality and cost ([22], [23]). Cost quantification is relatively
straightforward, however quantifying quality task execution prior to coalition
formation for a new task can be difficult. Independent of the utility measure
employed, what matters is that a mapping exists between coalition task pairs
to scalar values permitting comparisons between coalitions for performing a
task.

Market-Based Multi-robot Coalition Formation 231

232 Lovekesh Vig and Julie A. Adams

2.4 Multiple decompositions

Many scenarios involve more than one potential decomposition for a particu-
lar complex task and many possible decompositions may be considered when
evaluating the potential coalitions. It may be possible to permit multiple de-
compositions via a task decomposition system [23] and introducing ‘dummy’
items to incorporate these, as described in [21].

3 Experiments

Preliminary experiments were conducted by simulating the RACHNA system
on a single computer. The experiments recorded the variation in robot salaries
and overall utility with bid numbers. A set of real world tasks were simulated
in the Player/Stage environment to demonstrate task preemption.

3.1 Wage increase

The first set of experiments simulated a set of 68 robots and ten services such
that each service had exactly ten possible robots capable of providing that
particular service. 100 tasks were generated with each task requiring a random
vector of resources. The variation in the average salary for each service type
was recorded as the bids increased. Fig 2 shows the average, maximum, and
minimum salary curves for all services. The results depict how the increasing
competition (more tasks) increased the salaries as robots received better offers
when demand increases. Initially the salaries are low (Number of tasks ≤
20), the salaries rise at different rates depending on demand for a particular
service (20 ≤ Number of tasks ≤ 40), and eventually if the demand for each
service increases sufficiently, the salaries for all service agents approach high
values (Number of tasks = 100). The robots in RACHNA that are capable
of performing services that are in high demand have a high likelihood of
participating in the final allocation.

3.2 Effect of diversity

RACHNA leverages the redundant sensory capabilities in a set of robots
in order to group robots and make the allocation problem more tractable.
RACHNA does make any assumptions about the diversity of the result-
ing teams, only the diversity of the entire collection of robots. Fig 3 shows
RACHNA’s performance deteriorates as the number of services is increased
and the number of robots remains constant. The higher the number of ser-
vices, the lower the redundancy, and hence the higher the execution time of
the algorithm. If there was only one service agent, all robots would be iden-
tical and task allocation is the least expensive. However, if each robot was
different, task allocation would be more expensive. Thus the execution time
increases with the increased diversity of the set of robots.

Fig. 2. Average salary across all robots vs. Tasks (bids).

Fig. 3. Execution time vs. Number of Ser-
vices.

Fig. 4. Comparison of global greedy, ran-
dom a allocations to RACHNA.

3.3 Utility Comparision

RACHNA’s solution quality was compared to that obtained by two simple
task allocation schemes. Fig 4 provides comparison for the average solution
quality between solutions produced by RACHNA to those produced by the
global greedy (best task first) and random allocation algorithms as the num-
ber of tasks varied. Each data point represents the mean performance from ten
trials. A random task was generated for each trial and each algorithm’s per-
formance was recorded. RACHNA outperforms both the greedy and random
allocation algorithms (as shown in Fig 4) because unlike greedy or random
search, RACHNA refines the solution in each auction round to include better
tasks (bids) and remove less profitable tasks.

3.4 Preemption Simulations

The preemption experiments involve a set of five services, ten robots, (see
Table 1) and four heterogeneous tasks as described in Table 2. The first three

Market-Based Multi-robot Coalition Formation 233

234 Lovekesh Vig and Julie A. Adams

tasks are introduced using the procedure described in Section 2. Fig 5(a)
shows the initial task allocation. There are sufficient resources to satisfy all
three tasks and all robots, except for Robot 7, are allocated with a minimum
wage of 5 units. Introduction of Task 4 initiates a bargaining process where
Task 4 attempts to acquire the idle Robot 7 for the minimum wage (5) and
acquire Robots 6 and 8 from Task 3 by offering a higher salary. Since, Task 3
cannot match Task 4’s best offer, Task 3 relinquishes Robots 6 and 8. At the
end of this bargaining process the demand increase for robots of type 6 and 8
results in their salaries being increased to 10 and 20 respectively and Task 3
is preempted.

Table 1. Services

Services Capabilities Robots
LRF Camera Bumper Gripper Sonar

Foraging 0 1 0 1 1 R1, R2

Pushing 1 0 1 0 0 R3, R4, R6, R7

Object Tracking 0 1 0 0 1 R1, R2, R5, R8

Sentry-Duty 1 0 0 0 0 R3, R4, R6, R7, R9, R10

Table 2. Tasks

Tasks Services Priority Utility
Foraging Pushing Object-Tracking Sentry-Duty

1 2 0 0 1 Standard 70
2 0 2 0 1 Non-premptible 40
3 0 1 2 0 Standard 45
4 0 2 1 0 Urgent 50

The results reported in this section demonstrate the potential applicabil-
ity of the system to different types of tasks and environments. RACHNA also
allows for a more generic, task-independent system. It is important to note
the favorable comparison of the suggested allocation to simple techniques like
global greedy and random allocation. The fact that the algorithm leverages
sensor redundancy makes the coalition formation tractable and the experi-
ments demonstrate the improved performance.

4 Conclusions and future work

This paper presents RACHNA, a market-based distributed task allocation
scheme based on the multi-unit combinatorial auction problem. RACHNA

(a) The initial allocation of tasks 1,2
and 3.

(b) Allocation of task 4 and pre-
emption of task 3.

Fig. 5. The pre-emption of the standard task 3 by the urgent task 4

reverses the auction scheme found in other market-based coordination schemes
by allowing tasks to bid on robot services rather than the other way around.
RACHNA is a utility based system, allowing the user to specify the task
priority. Finally the system produces higher quality solutions than simple
greedy or random task allocation strategies and enables a more tractable
formulation of the coalition formation problem by leveraging the redundancy
in robot sensor capabilities. Future work involves real robot experiments to
demonstrate allocation and dynamic task preemption.

References

1. Sandholm, T.: An implementation of the contract net protocol based on mar-
ginal cost calculations. In: Proceedings of the Eleventh National Conference on
Artificial Intelligence. (1993) 256–262

2. Collins, J., Jamison, S., Mobasher, B., Gini, M.: A market architecture for multi-
agent contracting. Technical Report 97-15, University of Minnesota, Dept. of
Computer Science (1997)

3. Sycara, K., Zeng, D.: Coordination of multiple intelligent software agents. Inter-
national Journal of Intelligent and Cooperative Information Systems 5 (1996)
181–211

4. Stentz, A., Dias, M.B.: A free market architecture for coordinating multiple ro-
bots. Technical Report CMU-RI-TR-01-26, Robotics Institute, Carnegie Mellon
University (1999)

5. Gerkey, B.P., Matarić, M.J.: Murdoch: Publish/subscribe task allocation for
heterogeneous agents. In: Proceedings of Autonomous Agents. (2000) 203 – 204

6. Botelho, S.C., Alami, R.: M+: A scheme for multi-robot cooperation through
negotiated task allocation and achievement. In: Proceedings of IEEE Interna-
tional Conference on Robotics and Automation. (1999) 1234 – 1238

Market-Based Multi-robot Coalition Formation 235

236 Lovekesh Vig and Julie A. Adams

7. Dias, M.B.: TraderBots: A New Paradigm for Robust and Efficient Multiro-
bot Coordination in Dynamic Environments. PhD thesis, Robotics Institute,
Carnegie Mellon University (2004)

8. Laengle, T., Lueth, T.C., Rembold, U., Woern, H.: A distributed control archi-
tecture for autonomous mobile robots. Advanced Robotics 12 (1998) 411–431

9. Caloud, P., Choi, W., Latombe, J.C., Pape, C.L., Yim, M.: Indoor automa-
tion with many mobile robots. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. (1990) 67–72

10. Parker, L.E.: ALLIANCE: An architecture for fault tolerant multi-robot coop-
eration. IEEE Transactions on Robotics and Automation 14 (1998) 220–240

11. Low, K.H., Leow, W.K., M. H. Ang, J.: Task allocation via self-organizing
swarm coalitions in distributed mobile sensor network. In: Proceedings of the
American Association of Artificial Intelligence. (2004) 28–33

12. Dahl, T.S., Matarić, M.J., Sukhatme, G.S.: Multi-robot task-allocation through
vacancy chains. In: Proceedings of IEEE International Conference on Robotics
and Automation. (2003) 14–19

13. Werger, B., Matarić, M.J.: Broadcast of local eligibility: Behavior based control
for strongly cooperative multi-robot teams. In: Proceedings of Autonomous
Agents. (2000) 21–22

14. Sandholm, T.W., Larson, K., Andersson, M., Shehory, O., Tomhe, F.: Coalition
structure generation with worst case guarantees. Artificial Intelligence 111

(1999) 209–238
15. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition forma-

tion. Artificial Intelligence Journal 101 (1998) 165–200
16. Abdallah, S., Lesser, V.: Organization-Based Cooperative Coalition Formation.

In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent
Agent Techonology. (2004) 162–168

17. Vig, L., Adams, J.A.: Issues in multi-robot coalition formation. In: Proceed-
ings of Multi-Robot Systems. From Swarms to Intelligent Automata. Volume 3.
(2005) 15–26

18. Zlot, R., Stentz, A.: Complex task allocation for multiple robots. In: Proceedings
of the IEEE Conference on Robotics and Automation. (2005) 67–72

19. Lin, L., Zheng, Z.: Combinatorial bids based multi-robot task allocation. In: Pro-
ceedings of the International Conference on Robotics and Automation. (2005)
1145–1150

20. Sandholm, T.: Algorithm for optimal winner determination algorithm. Artificial
Intelligence 135 (1998) 1–54

21. Leyton-Brown, K., Y. Shoham, M.T.: An algorithm for multi-unit combina-
torial auctions. In: Proceedings of the 17th National Conference on Artificial
Intelligence. (2000) 56–61

22. Gerkey, B., Matarić, M.J.: A framework for studying multi-robot task alloca-
tion. In: Proceedings of the Multi-Robot Systems Workshop: From Swarms to
Intelligent Automata. Volume 2. (2003) 15–26

23. Tang, F., Parker, L.E.: ASyMTRe: Automated synthesis of multi-robot task
solutions through software reconfiguration. In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation. (2005) 1501–1508

Multi-robot User Interface Modeling

Alan R. Wagner, Yoichiro Endo, Patrick Ulam, Ronald C. Arkin

Mobile Robot Lab
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0250
{alan.wagner, endo, pulam, arkin}@cc.gatech.edu

Abstract. This paper investigates the problem of user interface design and
evaluation for autonomous teams of heterogeneous mobile robots. We explore
an operator modeling approach to multi-robot user interface evaluation.
Specifically the authors generated GOMS models, a type of user model, to
investigate potential interface problems and to guide the interface
development process. Results indicate that our interface design changes
improve the usability of multi-robot mission generation substantially. We
conclude that modeling techniques such as GOMS can play an important role
in robotic interface development. Moreover, this research indicates that these
techniques can be performed in an inexpensive and timely manner, potentially
reducing the need for costly and demanding usability studies.

Keywords. User interface design, Goals Operators Methods Selection Rules
(GOMS), Contract Network Protocol (CNP), Case-Based Reasoning (CBR)

1 Introduction

This paper investigates the problem of user interface design and evaluation for
teams of heterogeneous, cooperative, and (generally) autonomous mobile
robots. As part of NAVAIR’s Intelligent Autonomy program, the purpose of
this research is to reduce the burden of deploying teams of heterogeneous
robots and conducting multi-robot missions. The methods we detail, however,
are general purpose and applicable to virtually any software interface.
Moreover, we contend that these methods hold special promise for developers
of multi-robot systems.

Our approach is motivated by the notable challenges multi-robot systems
present to user interface designers. Currently, as the size of the multi-robot
team increases, so do the startup, running, and maintenance demands placed
on the user [1]. Users can become overwhelmed with situation awareness
information in high workload environments. Moreover, because multi-robot

applications tend towards mission critical domains, such as search and rescue
and military domains, users must be capable of quickly and easily assessing
important situation information while also being shielded from insignificant
or redundant information.

This paper details a modeling approach to multi-robot user interface
evaluation. This approach is used to assess the effectiveness of novel interface
and algorithmic changes made to an existing multi-robot software toolset.
Roboticists have traditionally conducted usability experiments to gauge the
state of their interface designs [2]. Usability experiments, however, are
expensive, time-consuming, and too cumbersome for effective interface
development [3]. Moreover, for specialized software, such as multi-robot
mission specification systems, usability testing typically requires difficult to
find domain experts to assess the interface design. Alternatively, random or
semi-random subject populations are used. These populations, however, tend
to have little or no experience with the application in question, whereas, in
reality, the target population may have significant experience with either
previous versions or similar types of software. These reasons serve as a
motivation to explore alternatives to formal usability studies such as GOMS
(Goals, Operators, Methods and Selection rules) modeling [4].

2 Related Work

At least two aspects of user interface design differentiate existing evaluations
in robotics from those in software engineering and HCI. First, within robotics
researchers typically evaluate user interface designs at the system architecture
level (e.g., [5]), rather than at the level of particular algorithms and features.
Some exceptions exist [2]. Software engineering practices and Human
Computer Interaction (HCI) researchers, on the other hand, routinely examine
the user interface implications of specific changes to existing software
packages (e.g., [6]) as well as conducting system level evaluations. Second,
usability studies represent the majority of formal user interface evaluations
within robotics [2]. The software engineering and HCI disciplines, on the
other hand, employ a wider array of user interface techniques including
heuristics and user modeling [5]. A GOMS model is a type of user model that
describes the knowledge a user must posses in order to perform tasks with the
system [3]. Research by Yanco et al. represents the only example of GOMS
based user interface design evaluation within robotics located to date [7].
Yanco et al. focus on the challenge of a specific robotics domain and a
usability coding scheme inspired by GOMS. Our intention, rather, is to
explore the use of GOMS as a primary means of evaluating incremental
additions to a multi-robot user interface.

238 Alan R. Wagner, Yoichiro Endo, Patrick Ulam, Ronald C. Arkin

3 User Interface Modeling

A GOMS model explicitly represents the knowledge that a user must have in
order to accomplish goals using an interface [3]. Natural GOMS Language
(NGOMSL) is one method for explicitly representing GOMS models [8].
NGOMSL is a structured language notation in program form (see examples
below). As a knowledge representation, a GOMS model can also serve to
characterize ongoing user decisions or as a description of what a user must
learn. Moreover, because user goals tend to be constrained by interface
design, GOMS models can quantitatively predict aspects of usability such as
the efficiency and simplicity of procedures.
 A user interface analyst conducts a GOMS analysis by a describing in
detail the goals, operators, methods, and selection rules a user must follow for
a set of tasks. A goal is something that a user tries to accomplish. For
example, one goal resulting from our GOMS analysis is to edit the parameters
of a robot behavior. An operator is an action that a user executes. An example
of an operator is moving the cursor to a screen location. A method is a
sequence of operators for accomplishing a goal. The following example
method (in NGOMSL) accomplishes the goal of adding a mission behavior:
Method for goal: add behavior KLM op Time(s)
Step 1: Locate add behavior icon M 1.2
Step 2: Move cursor to add behavior icon P 1.1

 Step 3: Click mouse button BB 0.2
 Step 4: Think-of new icon location M 1.2
 Step 5: Move cursor to new location P 1.1
 Step 6: Click mouse button BB 0.2
 Step 7: Return with goal accomplished Total 3.0

Finally, a selection rule (also in NGOMSL) routes control to the correct
method for accomplishing a goal when many possible methods are possible.
 A GOMS analysis begins by first describing a top-level goal and its
associated high-level operators and by then iteratively replacing these
operators in a breadth-first manner with methods and selection rules that
accomplish each goal until all of the operators are primitive and cannot be
further analyzed. The analyst may choose his or her own primitive operators,
but typically, standard primitive operators from the Keystroke-Level Model
(KLM) are used [3]. These primitives offer a well-documented mean time of
operation and in some cases functional estimates.
 Once the GOMS analysis is complete, the analyst can perform a
qualitative evaluation of the interface to examine the efficiency, consistency,
and cleanliness of the design. The analyst can also use the GOMS model to
estimate the execution time of specific user tasks and the amount of effort that
it will take users to learn procedures represented in the model.

Multi-robot User Interface Modeling 239

 GOMS modeling, however, is not without limitations. The execution and
efficiency predictions generated from a GOMS model assume error-free
performance. A GOMS model therefore represents a best-case evaluation of
an interface. Still, GOMS models provide a valuable baseline for comparison
of interface changes. GOMS modeling can also require subjective decisions
and judgment calls. In spite of these subjective decisions, the analyst
objectively constructs the majority of the model based on the actual state of
the interface design. Overall, GOMS modeling serves more to guide interface
development than to completely replace usability testing [6].

4 A Case Study in Multi-robot User Interface Modeling

GOMS modeling has been successfully employed within HCI and software
engineering [7, 9], but is relatively unknown within robotics [7]. It is our
contention that GOMS assessments of multi-robot user interface designs
could play a vital role in the generation and rapid prototyping of future multi-
robot system interfaces. To explore this hypothesis we conducted a detailed
GOMS analysis of features recently added to the MissionLab toolset [9].

MissionLab allows users to generate multi-robot missions in the form of a
FSA (Finite State Acceptor) in which nodes representing the robot’s
behaviors are connected via directed edges representing the robot’s perceptual
trigger schemas. The FSA serves as a flexible robot mission and can be
stored, copied, or edited as needed to generate novel missions. This software
system also features a Case-Based Reasoning (CBR) wizard that abstracts
entire multi-robot missions as cases to be matched to the user’s needs (Figure
1 left) [2]. The CBR wizard can also use cases as high-level drag-and-drop
robot tasks, hence simplifying the mission creation procedure.
 Our current investigation considers a scenario where multiple,
heterogeneous robots are available for tasking. With respect to mission
generation, multi-robot tasking presents additional challenges to the user. In a
system of many robots, or when each robot affords unique capabilities, the
user may have to assign each task to a robot. The generation of a multi-robot
mission, in this case, demands (1) the user delineate the tasks necessary for
the mission, and (2) the user assign each of these tasks to a specific robot or
robots. The CBR wizard eases the first challenge but does not assist with the
second.
 To manage these challenges we have developed a novel method for
generating multi-robot missions which employs a Contract Net Protocol
(CNP) working in conjunction with the CBR Wizard to reduce the burdens
placed on the user (see [10] for a review of multi-robot CNP). In its most
general form, CNP is an auction-style algorithm in which the robots of a
multi-robot system produce bids based on their estimate of their ability to
perform the auctioned task. Typically, when the auction closes CNP assigns

240 Alan R. Wagner, Yoichiro Endo, Patrick Ulam, Ronald C. Arkin

the highest bidder the task. Our system uses CNP as a method to aid the user
by assigning robots to specific tasks prior to the start of the mission. In this
role, the goal of the pre-mission CNP system is thus to generate an a priori
mapping of robots to available pre-mission tasks.

User Interface

CNP
Task Allocation

CBR
Adaptation

CBR Memory

MissionRequirements
Preferences

Task-based
Constraints

Sub-Missions

1

2 3

3 4

Fig. 1. Integrated CBR-CNP system for multi-robot mission generation

This system operates by first relaying a set of robot requirements and task
requirements to a CNP task allocation component (Figure 1 right). The CNP
component then conducts an auction resulting in a robot-to-task mapping. The
system then uses this mapping to retrieve a sub-mission from CBR memory
for each robot. Using additional user task preferences, these sub-missions are
adapted into a single full mission. Finally, the system presents the complete
mission with robot-to-task assignments to the user for acceptance, alteration,
or rejection.

To assess the usability of the new features the authors created two GOMS
models, one for the base system (no CBR or CNP) and one for the integrated
CBR-CNP system. Both models evaluate the general methods available to
users for creating multi-robot multi-task missions, beginning with the decision
to build a new mission and ending with a complete mission. In some cases,
the analyst made judgment calls concerning which GOMS operator to use or
execution time estimates. As much as possible the analyst strived to maintain
consistency across both models. Each model required approximately 20-30
hours to construct and was created by the lead author using guidelines

Multi-robot User Interface Modeling 241

available from [3]. Additional supplementary data and both complete models
are available at www.cc.gatech.edu/ai/robot-lab/onraofnc/data/goms-2005/.

5 Results

5.1 Mission Generation Time Predictions

The time required to generate a mission is determined from the method
and operator execution times in the GOMS model [3]. The base system
GOMS model predicts the generation time of a multi-robot multi-task
mission to be a function of both the number of robots in the mission and
the complexity of the tasks each robot is to perform. The mission
generation time of the base system in seconds,

gbt , is predicted to be:

ChnCgnBnAhgnt gb +++=),,((1)
where n is the number of robots, g is the average number of behaviors per
task, and h is the average number of triggers per task. Table 1 lists model
coefficients. Thus, 78.3 seconds are required to generate any mission without
regard to the number of robots or the complexity of the mission. The mission
generation time incurs a further cost of 26.7 seconds for each additional robot
represented by the second term. The number of behaviors and triggers
composing a task is also expected to have large impact on the mission
generation time. As shown by equation (1) 34.8 seconds are necessary per
robot and per behavior or trigger. Alternatively, one can estimate the mission
generation cost as:

ττ CnBnAnt gb 2),(++= (2)

where τ is the number of tasks. Equation (2) assumes that all tasks require the
same number of behaviors and triggers (hg +=τ2) and that a single task
is equivalent to a single behavior and a trigger. This, however, is generally not
the case and equation (2) is offered solely for comparison to the integrated
CBR-CNP GOMS model.

Table 1. Model coefficient values.

 Initial Model Coefficient Values Refined Model Coefficient Values
A 78.30 74.22
B 26.70 18.28
C 34.80 32.08
D 85.30 77.92
E 24.30 19.56

 The integrated CBR-CNP GOMS model, on the other hand, predicts the
generation time of a multi-robot multi-task mission will only be a function of

242 Alan R. Wagner, Yoichiro Endo, Patrick Ulam, Ronald C. Arkin

the number of tasks. In this case, the mission generation time in seconds,
git ,

is governed by:
ττ EDt gi +=)((3)

where τ is the number of tasks. The integrated CBR-CNP model incurs a 7.0
seconds greater startup cost (AD −). This cost is primarily due to the need
to select the option for CBR-CNP. Users incur a further cost for each task.
Because the integrated system abstracts from the user the assignment of each
robot to a task, mission generation is independent of the number of robots.
Moreover, comparing equations (2) and (3), we note that the models predict
that the integrated CBR-CNP system requires approximately 44.3 seconds
less per task (EC −2 ; assumes a single robot) than the base system given
that the assumptions mentioned above hold.

5.2 Learning Effort Predictions

The effort required to learn how to generate a mission is determined from
the number and length of the methods in the GOMS model [3]. User
learning effort is estimated from the number of NGOMSL statements in
each model. The total number of NGOMSL statements in the model
describes the amount of procedural knowledge a user must have in order
to use all aspects of the software system. User training describes the
process of learning this procedural knowledge. Hence, models with fewer
individual statements require less effort to learn.
 The GOMS model of the base system (no CBR or CNP) included 187
individual statements that encompassed the procedures necessary for
creating a multi-robot multi-task mission. The GOMS model of the
integrated CBR-CNP system, in contrast, included 147 operators. We,
therefore, expect the base system to require approximately 21.3 % more
procedural knowledge.
 We did not conduct experiments to confirm this result. However, if
one assumes that additional procedural knowledge results in less accuracy,
then this result corroborates related prior usability studies conducted by
our lab [2]. This earlier work examined the use of the CBR wizard for a
variety of mission generation tasks and found that it improved the
accuracy of mission generation on tasks requiring two robots by
approximately 33%. Our GOMS models indicate that this increase in
accuracy may partially result from the reduced workload on the user. Our
models also predict that less accuracy will be gained when generating a
single robot mission compared to a multi-robot mission. This was also
found to be the case in [2].

Multi-robot User Interface Modeling 243

5.3 Comparison of Model Estimations to Actual Expert Performance

The results from the previous two sections clearly and quantitatively indicate
the value of the CBR-CNP. As far as the case study is concerned, these results
are sufficient. We decided, however, to also investigate the methodology itself
by examining the accuracy of the predicted execution times for both GOMS
models. In particular, we hoped to determine (1) if the primitive KLM
operators used for the models accurately reflected experimental values for
expert users and (2) if these primitive operators are immune to experimenter
bias. To accomplish this, we conducted an experiment involving system
experts. These experiments attempted to gauge the accuracy of both the
overall models and of several GOMS methods that could then use to refine the
models. The experiment required the expert to create multi-robot multi-task
missions 20 times using both the base system and the integrated CBR-CNP
system. During data collection, time data was recorded related to all of the
users’ actions. The experts used for the study consisted of six members of the
same research lab including three authors of this paper. We hypothesized that
because GOMS operators consist of low-level primitives such as individual
key strokes that experimenter bias would be minimal. Moreover, the authors
decided which GOMS methods to compare after experimentation but before
analyzing the data. Thus, no subject knew which part of the experiment would
be used.

Table 2. Predicted and actual execution times.

 Predicted Exec.
Time (s)

Empirical Exec.
Time (s)

Refined Exec.
Time (s)

Base System 1662.9 187.80 ± 20.02 1522.3
CBR-CNP 133.9 53.96 ± 7.75 117.04

 Table 2 lists the mean execution times for both the integrated and base
systems. The models predict that the execution time for approximately the
same mission (2,11,11,2 ==== τhgn) will require about 12.4 times
the execution time on the base system than on the integrated CBR-CNP
system. Empirical results indicate that the actual execution times are less for
both systems (based on five of six subjects). These experiments reveal that the
execution time on the base system requires approximately 3.5 times the
execution time compared to the integrated CBR-CNP system.
 There are several possible reasons for the discrepancy between the
predicted and empirical results. First, some primitive operator execution times
may not be correct for this particular experiment. Gong and Kieras found that
mouse movements are more accurately estimated from Fitts’ Law than by the
Keystroke-Level Model (KLM) time of 1.2 sec used here [11]. Second, the

244 Alan R. Wagner, Yoichiro Endo, Patrick Ulam, Ronald C. Arkin

base system model does not assume that the user will use shortcuts although
some subjects did. Third, neither model factors in the performance gains
associated with repeatedly constructing the same missions. Regardless of the
precise gains in performance realized by one system over the other, the most
important point is that the GOMS models accurately indicate the utility of the
CBR-CNP interface changes.

Subject Execution Time on GOMS Methods

-1

0

1

2

3

4

5

6

7

8

GOMS Methods

E
xe

cu
ti
o
n
 T

im
e

(s
ec

)

Model S1 S2 S3 S4 S5 S6

Yes/No/OK
Method

Place Task
Method

Select Overlay
Method

Add Behavior
Method

Add Trigger
Method

Fig. 2. A scatter diagram of the experimental execution time for expert users on five
GOMS methods is depicted. Error bars represent 95% CI. The two rightmost methods
are from the base model. The next two methods are from the CBR-CNP model and the
leftmost method occurred in both models. The blue diamond on the dashed line depicts
the execution time for each method predicted by the GOMS models. The left of each
dashed line depicts the actual time for three experimenters. The right of each dashed
line depicts the time for experimentally naïve expert users.

Figure 2 depicts the predicted execution times and actual execution times for
several arbitrarily selected methods in the GOMS models. The independent
variable represents the GOMS method selected and the dependent variable
describes the subject’s execution time. The Yes/No/OK Method (see
appendix for GOMS methods) occurs in both GOMS models and
experimental conditions. The Place Task Method and the Select
Overlay Method occur in only the CBR-CNP model and experimental
condition. Finally, the Add Behavior Method (presented in section 3)
and the Add Trigger Method occur in the base system model and
experimental condition. The dashed line denotes the execution time predicted
by the models. The subjects to the left of each dashed line are also the

Multi-robot User Interface Modeling 245

experimenters. The subjects to the right of the dashed line are naïve subjects.
The figure shows that the execution time predictions from our initial model
are significantly greater then the actual expert execution times. As a result, we
can now revisit the model and update the execution times for greater
accuracy. Table 1 compares the initial model coefficients to refined model
coefficients. Table 2 presents execution times based on these refined models.
The predicted execution times for both refined models are closer to the actual
execution times.
 Several other points are also of interest. First, as indicated by figure 2, no
experimenter bias is apparent. This is important because it increases the
subject pool for potential user interface experiments. Hence, it appears that
expert subjects can be drawn from the authors of the study itself, given the
restrictions outlined above; possibly further reducing the challenge of user
interface evaluation. Second, GOMS experiments are robust to experimental
error. A data collection error occurred for one subject (S4) and another subject
misunderstood the directions (S3). The data collection error (S4) resulted in
elimination of this subject’s mission execution time results (in Table 2) but
did not affect the subject’s data collected while completing the GOMS
methods (data in Fig. 2). Subject 4’s misunderstanding of the directions
resulted in fewer data points for the Add Behavior Method (~150 versus
~220 normal). In spite of this experimental error, enough data was collected to
produce statistically significant conclusions. Usability studies often face
similar challenges and must completely exclude data from some subjects due
to errors such as these. Nevertheless, because GOMS models are constructed
from low-level user interface primitives, data from these subjects could still
be salvaged.
 Overall, both GOMS models and our experimental results indicate the
value of the CBR-CNP user interface. Moreover, our modeling results and
empirical results can be used for additional future interface design evaluations
of this system.

6 Conclusions

This paper has investigated user interface modeling as a method for
evaluating multi-robot interface design. We compared two GOMS models,
one representing the base system with additional features for multi-robot
multi-task mission generation and the other without. Our results indicate that
these new multi-robot mission generation features substantially improve the
usability of the MissionLab software. We intend to evaluate future interface
designs using the same techniques, which may include the construction of a
GOMS library of expert operator execution times. This should aid in the
construction of more accurate future models.

246 Alan R. Wagner, Yoichiro Endo, Patrick Ulam, Ronald C. Arkin

 We believe, and our case study has shown, that modeling techniques such
as GOMS can play an important role in robotic interface development.
Moreover, our work indicates that researchers can perform these techniques in
a relatively inexpensive and timely manner. It is our sincere hope that other
robotics researchers will consider the lessons described here, and in detail by
HCI specialists [3], when designing user interfaces for critical robot
applications operating in hazardous environments.

Acknowledgements

This research is funded as part of Navair’s Intelligent Autonomy program. We
would like to thank Ed Clarkson for lending his HCI expertise and Zsolt Kira,
Lilia Moshkina, and Eric Martinson for assisting with this research.

References

1. J.A. Adams. (2002) Critical Considerations for Human Robot Interface
Development, Proceedings of 2002 AAAI Fall Symposium, 1-8.

2. Y. Endo, D.C. MacKenzie, and R.C. Arkin. (2004) Usability Evaluation of High-
Level User Assistance for Robot Mission Specification, IEEE Transactions on
Systems, Man, and Cybernetics, 34, 168-180.

3. D. Kieras (1994). A guide to GOMS model usability evaluation using NGOMSL, In
M. Helander & T. Landauer (Eds.), The handbook of human-computer interaction.
(Second Edition), North-Holland Amsterdam.

4. S.K. Card T.P. Moran, and A.P. Newell (1983) The Psychology of Human-
Computer Interaction, Lawrence Erlbaum, Hillsdale, N.J.

5. D.C. MacKenzie and R.C. Arkin. (1998) Evaluating the Usability of Robot
Programming Toolsets, International Journal of Robotics Research, 17(4), 381-401.

6. B.E. John and D.E. Kieras. (1996) Using GOMS for User Interface Design and
Evaluation: Which Technique?, ACM Transactions on Computer-Human Interaction,
3(4), 287-319.

7. H. A. Yanco, J. L. Drury, and J. Scholtz. (2004) Beyond usability evaluation:
Analysis of human-robot interaction at a major robotics competition, Journal of
Human-Computer Interaction, 19, 117-149.

8. B.E. John and D.E. Kieras. (1996) The GOMS Family of User Interface Analysis
Techniques: Comparison and Contrast, ACM Transactions on Computer-Human
Interaction, 3(4), 320-351.

Multi-robot User Interface Modeling 247

9. D.C. MacKenzie, R.C. Arkin, and J.M. Cameron. (1997) Multiagent Mission
Specification and Execution, Autonomous Robots, 4, 29-52.

10. M.B. Dias, R.M. Zlot, N. Kalra and A. Stentz. (2005) Market-Based Multirobot
Coordination: A Survey and Analysis, Carnegie Mellon University Tech Report CMU-
RI-TR-05-13.

11. Gong, R., and Kieras, D. (1994) A Validation of the GOMS Model Methodology
in the Development of a Specialized, Commercial Software Application. In
Proceedings of CHI, Boston, MA, USA, pp. 351-357.

Appendix

Method for goal: select yes-no-ok KLM op Time(s)
 Step 1: Locate yes-no-ok button M 1.2
 Step 2: Move cursor to yes-no-ok button P 1.1
 Step 3: Click mouse button BB 0.2
 Step 4: Return with goal accomplished Total 2.5

Refined Total 1.14
Method for goal: place task KLM op Time(s)
 Step 1: Think-of placement point M 1.2
 Step 2: Move cursor to placement point P 1.1
 Step 3: Click mouse button BB 0.2
 Step 4: Verify that placement point is correct M 1.2
 Step 5: Return with goal accomplished Total 3.7
 Refined Total 0.91
Method for goal: select overlay KLM op Time(s)
 Step 1: Locate name in the file list box M 1.2
 Step 2: Move cursor to the file name location P 1.1
 Step 3: Click mouse button BB 0.2
 Step 4: Locate ok button M 1.2
 Step 5: Move cursor to ok button P 1.1
 Step 6: Click mouse button BB 0.2
 Step 7: Forget overlay name and return Total 5.0

Refined Total 1.82
Method for goal: add trigger KLM op Time(s)
 Step 1: Locate trigger icon M 1.2
 Step 2: Move cursor to trigger icon location P 1.1
 Step 3: Click mouse button BB 0.2
 Step 4: Locate trigger tail behavior location M 1.2
 Step 5: Move cursor to trigger tail behavior P 1.1
 Step 6: Press mouse button down B 0.1
 Step 7: Locate trigger tip behavior M 1.2
 Step 8: Move cursor to tip behavior P 1.1
 Step 9: Release mouse button B 0.1
 Step 10: Return with goal accomplished Total 7.3

Refined Total 0.87

248 Alan R. Wagner, Yoichiro Endo, Patrick Ulam, Ronald C. Arkin

Index

Adams, J. 227
Ahmadi, M. 1
Amigoni, F. 11
Arkin, R. 237

Balch, T. 187, 197
Busquets, D. 21

Cheng, C. K. 51
Correll, N. 31

Djugash, J. 125
Dudek, G. 155
Duhaut, D. 61

Elmaliach, Y. 103
Endo, Y. 237

Fontana, G. 11
Fukuda, T. 71
Funato, T. 41

Garigiola, F. 11
Gini, M. 135
Gossage, M. 51
Gueganno, C. 61

Hollinger, G. 125

Jatmiko, W. 71
Jung, B. 81

Kalra, N. 91
Kamimura, A. 115
Kaminka, G. 103
Kokaji, S. 115
Kurabayashi, D. 41

Kurokawa, H. 115

Liao, E. 125
Ludwig, L. 135

Martinoli, A. 31, 91
Matarić, M. 207
McMillen, C. 145
Meger, D. 155
Mizuguchi, T. 217
Murata, S. 115

Nara, M. 41
New, A. P. 51

Rekleitis, I. 155
Roth, M. 177

Sariel, S. 187, 197
Sekiyama, K. 71
Shell, D. 207
Simmons, R. 21, 177
Singh, S. 125
Stack, J. 197
Stone, P. 1
Sugawara, K. 217
Sukhatme, G. 81

Terada, Y. 115
Tomita, K. 115

Ulam, P. 237

Veloso, M. 145, 177
Vig, L. 227

Wagner, A. 237

