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1 Introduction

The major disadvantages of non-viral gene delivery systems are the low efficiency 
of transfection and transient expression of the transgene. These shortages can be
overcome, at least partly, by employing plasmid vectors with particular functional
sequences, such as Epstein-Barr virus (EBV)-derived genetic elements (EBNA1 gene
and oriP) and the sleeping beauty (SB) transposable element. Transfection experi-
ments with EBV-based plasmid vectors strongly suggest that the performance of non-
viral vectors (gene delivery methods/materials) per se is not as low as widely believed,
in terms of the rate of plasmid DNA trafficking from the extracellular space into the
cytoplasm. The inability of of plasmid DNA to be transported into the nucleus is the
critical hurdle in conventional non-viral transfection, but it may be cleared by using
an EBV-based plasmid vector albeit not only by modifying non-viral vectors. This
concept may have significant implications for development of novel non-viral gene
delivery systems that are applicable to a variety of purposes, including functional
genomics and molecular therapeutics.

2 Plasmid Vectors as an Important Component of 
Non-viral Gene Delivery Systems

Viral vectors consist of recombinant viral particles that are capable of infecting target
cells, while non-viral gene delivery systems do not make use of any genetically mod-
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ified infectious viruses. Being free from virus-associated undesired effects, e.g. poten-
tial generation of replication-competent retroviruses and a high immunogenicity due
to adenoviral proteins, non-viral gene delivery systems may offer promising measures
not only in genetically modifying cultured cells and animals but also in treating
patients (Niidome and Huang 2002; Mazda 2002). Another advantage of non-viral
systems is their large-scale, affordable manufacture. The major problem that needs to
be solved is the low efficiency of non-viral systems in transferring and expressing
exogenous genes in target cells, compared with the transduction efficiency obtained
using their viral counterparts. This is the reason why a technical breakthrough is
required in order to develop non-viral gene delivery systems that are feasible for
genetic engineering, functional genomics, and molecular therapeutics.

Generally, non-viral gene delivery systems consist of two components, both of
which should be taken into account in developing superior non-viral systems:(1)
nucleic acids carrying genetic information, most typically plasmid DNA (pDNA), and
(2) gene delivery methods/materials (non-viral vector). Therefore, both the pDNA and
the non-viral vectors (gene delivery methods/materials) must be improved to obtain
ideal non-viral vector systems.

A variety of non-viral vectors have been devised, based on a range of chemical com-
pounds and physical methods. Chemical compounds (carrier molecules) include 
synthetic and natural macromolecules, such as cationic lipids (Felgner and Ringold
1989; Rocha et al. 2002; Kumar et al. 2003) and cationic polymers (Tang et al. 1996;
Kukowska-Latallo et al. 1996; Lemkine and Demeneix 2001) that interact with nucleic
acid to form complexes (lipoplex, polyplex, etc.) to be endocytosed into cells. Physi-
cal methods, such as electroporation (Herweijer and Wolff 2003), particle bombard-
ment (gene gun) (Cui and Mumper 2003), and other procedures (Plank et al. 2003;
Hosseinkhani et al. 2003), promote transfer of nucleic acid into cells in an endosome-
pathway-independent manner. “Naked pDNA” methods are another means to trans-
fect exogenous genes into tissue/organs (Wolff et al. 1990).

However, the other component of the non-viral gene delivery systems, pDNA, has
not been very extensively studied, in an effort to improve non-viral gene delivery
systems. Indeed, nucleotide sequence drastically affects not only intensity but also
longevity of transgene expression. More importantly, the use of particular nucleotide
sequences drastically improves the efficacy of gene delivery, as will be discussed later.
If ideal sequence elements are devised, potentially every non-viral vector may be sig-
nificantly improved in terms of the transfection efficiency by combining them with
plasmid vectors containing such elements.

3 Plasmid Vector Sequence Crucially Affects the Efficacy
of Non-viral Gene Transfer

This section discusses the powerful impact of plasmid vector components on the effi-
ciency of non-viral gene delivery by providing evidence from a very simple, but pro-
found and evocative, experiment (Fig. 1).

pS.CD8a and pSES.CD8a are plasmid vectors harboring exactly the same ex-
pression cassette for murine CD8a cDNA as a reporter gene (Satoh et al. 1997).
The pSES.CD8a possesses EBV nuclear antigen 1 (EBNA1) gene and oriP sequence, I
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discussed later, while pS.CD8a is a conventional plasmid vector without the EBV
sequences. These plasmid vectors were transfected by electroporation into KE cells,
which are an EBNA1-expressing transformant derived from the K562 human leukemic
cell line (Mazda et al. 1997). Two days after cultivation without any drug selection,
cells were stained with a fluorochrome-conjugated anti-mouse CD8a antibody fol-
lowed by flow-cytometric analysis.

Figure 1 shows the histograms. The KE cells that had been transfected with
pS.CD8a expressed murine CD8a at a low level on the surface. This is not surprising
because electroporation-mediated transfection into a cell line does not achieve very
high efficiency without drug selection. In striking contrast, transfection with
pSES.CD8a resulted in tremendously strong expression of the marker gene on the cell
surfaces.

Comparing the two histograms in more detail, the results clearly reveal that the
pSES.CD8a transfection succeeded in both (1) a higher transfection efficiency, in
terms of the increase in percentage of CD8a-positive cells (87% (pSES.CD8a) vs.
25% (pS.CD8a)), and (2) a much stronger expression in each single CD8a-positive
cell, as demonstrated by a dramatic elevation in the fluorescent intensities (1690
(pSES.CD8a) vs. 22.5 (pS.CD8a)).

This simple experiment provides insights into non-viral transfection. The two cell
populations shown in Fig. 1 were transfected and cultured in exactly the same way,
while the plasmids shared a common expression cassette for the marker gene. The
only difference was the presence or absence of the EBV genomic elements (EBNA1

200 O. Mazda and T. Kishida

MFI: 22.5
Positive cells: 25.2%

MFI: 1692.5
Positive cells: 86.8%

pS.CD8a
(non-EBV plasmid)

pSES.CD8a
(EBV-based plasmid)

Marker gene expression in a
logarithmic scale

R
el

at
iv

e 
ce

ll
 c

o
u

n
t

Fig. 1. Plasmid vector composition critically affects the efficacy of non-viral gene transfer.
Transfection with an EBV-based plasmid vector resulted in an extremely high proportion of
marker-gene-positive cells as well as a tremendously high intensity of marker gene expression
on a single-cell basis (right). This indicates that a non-viral vector, in this case electroporation,
operates at a considerably high efficiency (both plasmids were transfected by the same proce-
dure), while the low efficiency of a conventional plasmid vector (left) can be attributed to 
the inability of the plasmid sequence to appropriately function inside the cells. See text for
details
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gene and oriP). It is quite unlikely that the electric pulse increased the permeability
of plasma membrane in such a manner that only pSES.CD8a was effectively pene-
trated into cells while pS.CD8a selectively remained impermeable. Instead, the 
experimental result that nearly 90% of the pSES.CD8a-transfected cells expressed the
transgene at a high level indicates that the electroporation procedure worked at an
extremely high efficiency in this experimental setting, and that pS.CD8a also should
have been transmitted from extracellular space into the cytoplasm at a comparable
efficiency. The failure of pS.CD8a to result in high CD8a expression can thus ascribed
to the different behaviors of the two plasmids after being introduced into the cells,
namely intracellular distribution.

Therefore, the experimental data strongly suggest that the major obstacle to non-
viral gene transfection, i.e., the failure of cytoplasmic pDNA to be transported into
the nucleus (see below), can be overcome by employing an EBV-based plasmid vector,
but not by improving the electroporation procedure, which already has reached
maximum efficacy. Similar results can be obtained by electro-transfecting various
types of cells with plasmid vectors with or without EBNA1 gene/oriP (Mazda et al.
1997; Hirai et al. 1997; Satoh et al. 1998; Tomiyasu et al. 1998).

Interestingly, non-viral vectors other than electroporation also give similar out-
comes. Indeed, it has frequently been shown that differences of several-fold to several-
thousand-fold between the transfection efficiencies of EBV-based and conventional
(non-EBV-based) plasmid vectors are obtained when they were transfected into
various cells in culture by means of cationic lipids (Satoh et al. 1997; Harada et al.
2000; Asada et al. 2002) or cationic polymers (Tomiyasu et al. 1998; Harada et al. 2000;
Maruyama-Tabata et al. 2000; Tanaka et al. 2000; Ohashi et al. 2001; Iwai et al. 2002;
Nakanishi et al. 2003). Significant difference in transfection rates were also obtained
by transfection in vivo into various tissues or tumors by means of cationic polymers
(Maruyama-Tabata et al. 2000; Iwai et al. 2002; Nakanishi et al. 2003), electroporation
(Kishida et al. 2001; Ohashi et al. 2002), and naked DNA methods (Tomiyasu et al.
1998; Cui et al. 2001).

The experimental evidence indicates that the efficacies of non-viral vectors are not
as poor as widely believed. Successful transfection with EBV-based plasmid vectors
strongly suggest that non-viral delivery systems enables transfer of pDNA into cyto-
plasm at a considerable rate, although the efficiencies vary according to the types of
delivery systems, target cells, etc.

This notion raises a fundamental question as to whether or not “transfection effi-
ciency” can accurately be assessed using the widely accepted experimental systems,
which are typically as follows: (1) appropriate target cells are transfected with pDNA
carrying a marker gene by means of a delivery system to be examined, (2) cultivation
of the cells for an appropriate period, (3) the cells, cell extracts, or culture supernatants
are collected and the expression level of the marker gene is measured. The procedures
are modified depending on the purpose of the study, e.g. to examine transfection effi-
ciency in vivo, appropriate organs/tissues are substituted for cells in step (1), and
instead of (3), the organs/tissues are collected to evaluate marker gene product. Apart
from such variations, the efficiencies of non-viral gene transfer systems are assessed
by performing experiments that are based on the same concept as described above.

However, interpreting the data obtained from such experiments requires consider-
ation of the following: Several independent steps are critically involved in marker 
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gene expression after transfection (Fig. 2). These include: (1) transfer of pDNA from
the extracellular space to the cytoplasm through the plasma membrane, (2) transfer
of pDNA from the cytoplasm to the nucleus through the nuclear pore complex (NPC),
(3) maintenance of pDNA in the nucleus, (4) transcription, (5) maturation of mRNA
and its transfer from the nucleus to the cytoplasm, and (6) translation and post-
translational modification of the protein. When polyplexes or lipoplexes are used as
the non-viral vectors, additional steps are usually required instead of (1), i.e., (1a)
transfer of pDNA from the extracellular space to the endosome/lysosome compart-
ment by endocytosis, (1b) maintenance of pDNA in the compartment, (1c) release of
pDNA from the endosome/lysosome compartment to the cytoplasm.

Although the efficiency of step (1) may reflect the capability of the non-viral vector
of interest, the efficiencies of the other steps depend on different factors. For example,
the rate of step (4) has been attributed mainly to the transcriptional activity of the
promoter/enhancer element contained in the plasmid. Therefore, the expression level
of a marker gene is proportional to the product of the efficiencies of all these steps,
but not simply to the performance of the non-viral vector tested.

Actually, step (2) is the most critical process, in which efficiency crucially deter-
mines marker gene expression in many non-viral gene delivery systems (Lechardeur
and Lukacs 2002; Hebert 2003)(see below). Without ameliorating this step, non-viral
gene delivery cannot be improved, because transfer of pDNA from the extracellular
space to the cytoplasm has succeeded at a considerably high rate as demonstrated in
Fig. 1 and by other, similar experimental evidence for a variety of non-viral vectors,
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Fig. 2. Multiple steps are involved in successful non-viral gene transfection.
The performance of a non-viral vector cannot be simply evaluated by the magnitude of marker
gene expression, which depends on efficiencies of multiple steps. Indeed, intra-nuclear delivery
of pDNA (step 2) is the most critical step that determines the rate of non-viral transfection. Use
of the EBV-based plasmid vector may elevate the transfection rate by accelerating this step. See
text for details
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as discussed above. Basically, non-viral vectors are not capable of promoting step (2),
which is the reason why plasmid vector sequences are extremely important.

From another point of view, in order to devise or modify non-viral vectors, use of
EBV-based plasmid vectors instead of conventional plasmid vectors may greatly help
in assessing the capability of novel non-viral vectors, because the efficiency of step
(2) should be sufficiently high so that the efficiency of step (1) is measured at high
sensitivity and accuracy.

4 Epstein-Barr Virus-Based Plasmid Vectors

The rationale for EBV-based plasmid vectors, as well as concrete examples of their use
in non-viral gene delivery systems, has been reviewed elsewhere (Mazda 2000, 2002).
Here, the EBV system is briefly explained in order to support the concepts presented
above. The EBV-based plasmid vector contains the EBV nuclear antigen 1 (EBNA1)
gene and oriP sequence, which were originally described as elements to support repli-
cation of the EBV genome (double-stranded circular DNA of approximately 172 kb)
in latently infected human cells (Adams 1987; Haase and Calos 1991; Yates and Guan
1991). EBNA1 is a nuclear phosphoprotein that binds specific motifs in the oriP
sequence, conducting DNA replication in concert with cellular cofactors. Therefore,
EBV-based plasmid vectors are maintained in transfected cells as an extrachromoso-
mal circular DNA (episome). Some groups have developed autonomously replicative
artificial chromosomes, so that transgene expression persists for a sufficiently long
period of time (Sun et al. 1994; Westphal et al. 1998; Kelleher et al. 1998; Black and Vos
2002; Stoll et al. 2001; Stoll and Calos 2002; Sclimenti et al. 2003). The episomal main-
tenance is particularly important when target cells proliferate after transfection.

EBNA1 also facilitates trafficking of oriP-bearing plasmid DNA from the cytosol to
the nucleus (Ambinder et al. 1991; Fischer et al. 1997) and its maintenance in the
nucleus (Jankelevich et al. 1992). Another function of EBNA1 is the activation of tran-
scription through binding to oriP (Gahn and Sugden 1995; Puglielli et al. 1996;
Reisman and Sugden 1986; Sugden and Warren 1989; Wysokenski and Yates 1989). We
hypothesized that these characteristics explain why plasmid vectors with EBNA1 gene
and oriP enable high-level gene transfer and expression.

We then estimated the contribution of each activity of the multifunctional viral ele-
ments to the high efficiency of transfection. We determined that transfer of pDNA
from the cytoplasm into the nucleus is actually the most critical step, and that the 
efficacies are quite different between conventional and EBV-based plasmid vectors
(Kishida et al., in preparation). This is consistent with previous reports indicating that
most pDNA molecules introduced into a cell are entrapped and degraded in the cyto-
plasmic and endo-lysosomal compartments without successful transport into the
nucleus, and this barrier is the critical obstacle of conventional non-viral gene deliv-
ery strategies (reviewed in Lechardeur and Lukacs 2002). We also found that replica-
tion of pDNA does not contribute to the high rate of transfection of EBV-plasmids,
although this function plays key roles in prolonged transgene expression in cultured
human cells.

Taking advantage of the high transfection efficiency, preclinical gene therapy
studies were carried out with EBV-based plasmid vectors in a variety of animal model
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systems. Briefly, subcutaneous tumor transplants such as melanoma (Asada et al. 2002;
Kishida et al. 2001), hepatocellular carcinoma (Iwai et al. 2002), prostate cancer
(Nakanishi et al. 2003), and Ewing’s sarcoma (Maruyama-Tabata et al. 2000) were
treated with cytokine-gene-transfected tumor vaccine (Asada et al. 2002) or intratu-
moral delivery of cytokine genes (Kishida et al. 2001), a suicide gene (Maruyama-
Tabata et al. 2000; Iwai et al. 2002), or an apoptosis-inducing gene (Nakanishi et al.
2003). Metastatic malignancies were also attempted, including hepatic metastasis of
melanoma (Asada et al. 2002; Kishida et al. 2003a), lung metastasis of lymphoma
(Kishida et al. 2003b), and hepatic metastasis and peritoneal carcinomatosis of retic-
ulum cell sarcoma (Itokawa et al. 2004). Therapeutic/prophylactic experiments were
also performed against nonmalignant disorders including cardiomyopathy (genetic
transfer of the b2-adrenergic receptor into failing cardiomyocytes) (Tomiyasu et al.
2000), diabetes mellitus (intrahepatic delivery of the insulin gene under the control
of a glucose-responsive promoter) (Yasutomi et al. 2003), and acute herpes simplex
virus type 1 (HSV1) infection (DNA vaccination using a viral antigen gene with/
without cytokine genes as adjuvants) (Cui, et al. 2003, 2005). Significant therapeutic
outcomes were obtained from all these trials due to the high efficacy of the non-viral
delivery systems employing the EBV-based plasmid vectors.

5 The Sleeping Beauty Transposable Element

In the folllowing, DNA transposons, and especially the sleeping beauty (SB) element,
are discussed as another example of using a plasmid vector with particular nucleotide
sequences as a component of non-viral gene delivery systems. Although EBV-based
plasmid vectors are maintained as episomes in target cells, resulting in prolonged
expression of the transgene, employment of a transposable element enables chromo-
somal integration of the transgene, providing an alternative strategy to prolonging
the expression period obtained after non-viral gene delivery.

Unlike retrotransposons, which replicate and jump in a copy-and-paste manner,
DNA transposons are excised from their original genomic location and subsequently
reinserted elsewhere in the genome (a cut-and-paste process). DNA transposons have
been utilized for insertional mutagenesis as well as germline transgenesis in inverte-
brate organisms including Drosophila and C. elegans, but similar systems were not
available in vertebrates until recently. While some DNA transposons in invertebrates,
such as the Tc3 element in nematode (Raz et al. 1998) and Minos in fly (Zagoraiou et
al. 2001), were shown to function in cells of vertebrate species, a more efficient DNA
transposon for vertebrates was developed by “awakening” a salmonid fish transposon
belonging to the Tc1/mariner superfamily, which are molecular fossils inactivated
millions of years ago by the accumulation of mutations (Ivics et al. 1997). Ivics et al.
constructed a synthetic transposon based on phylogenetic data so that inactivating
mutations were eliminated. The reconstructed element, the SB transposon, precisely
worked in fish as well as in mouse and human cells (Ivics et al. 1997).

The structure of SB and the mechanisms of transposition have been described else-
where in detail (Izsvak and Ivics 2004; Ivics and Izsvak 2004). Briefly, natural SB con-
sists of a single open reading frame encoding an enzymatic polypeptide (transposase),
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which is flanked by two terminal inverted repeats (IRs) at both ends. The transposase
binds the recognition sequences in the IRs in a highly sequence-specific fashion,
leading to mobilization of the transposon. SB was engineered to transpose a gene of
interest, by inserting the transgene segment between the IRs while supplying the
transposase either in trans (Izsvak et al. 2000; Dupuy et al. 2002) or in cis (Mikkelsen
et al. 2003). In the original SB, the gene to be mobilized should be less than several
kilo base pairs in size, since the efficiency of transposition declines with increasing
the length (Izsvak et al. 2000).

More recently, the SB transposon was further improved through a mutagenesis
approach so that the modified version is capable of transposing DNA segments more
than 10 kilo base pairs in size (Zayed et al. 2004). The transposable activity was also
augmented, particularly when combined with the DNA-bending, high-mobility-group
protein, HMGB1, which is a host-encoded cofactor of SB transposition (Zayed et al.
2003).

Plasmid vectors harboring the SB transposon can be combined with variety of non-
viral vectors, including cationic lipid (Liu, L. et al. 2004b), cationic polymer (Belur et
al. 2003) and other carrier molecules (Harris et al. 2002; Zayed et al. 2003, 2004), while
microinjection (Fischer et al. 2001; Dupuy et al. 2002; Horie et al. 2003), polybrane
shock (Ortiz-Urda et al. 2003) and naked DNA (Yant et al. 2000; Montini et al. 2002;
Belur et al. 2003) procedures have also been used. SB transposes not only in vertebrate
cells in culture, but also in somatic (Yant et al. 2000; Montini et al. 2002; Belur et al.
2003; Liu et al. 2004a, Liu, 2004b) and germline (Fischer, S. E. et al. 2001; Dupuy et al.
2002; Horie et al. 2003) tissues of mice in vivo. The major advantage of using SB is the
prolonged expression of the transgene in transfected cells and tissues due to chro-
mosomal integration of the recombinant transposon, while the integration sites in
host chromosomes are almost random (Vigdal et al. 2002; Roberg-Perez et al. 2003).

Some studies have suggested the feasibility of the SB system for gene therapy, based
on therapeutic experiments in which SB-bearing plasmid vectors were administered
to model animals (reviewed in Izsvak and Ivics 2004; Ivics and Izsvak 2004). Yant et
al. treated hemophilic mice with a rapid intravenous administration of a SB construct
carrying the a1-antitrypsin gene together with a transposase construct, partially
ameliorating the bleeding phenotype for more than 5 months (Yant et al. 2000).
Montini et al. transfected fumarylacetoacetate hydrolase (FAH) gene knockout mice
with a mixture of a FAH gene-containing transposon construct and a transposase
expression plasmid, as a therapeutic model against hereditary tyrosinemia type I,
resulting in long-lasting expression of the therapeutic gene in the liver (Montini et al.
2002). Ortiz-Urda et al. performed ex vivo transfection experiments in which a SB
vector encoding both laminin 5 and a selectable antibiotic marker was delivered into
keratinocytes obtained from patients with junctional epidermolysis bullosa (JEB), a
lethal hereditary skin disorder (Ortiz-Urda et al. 2003). After drug selection, the
genetically modified cells were transplanted into immune-deficient mice, so that the
skin tissue regenerated. Long-term expression of laminin 5 at a therapeutic level and
phenotypic correction of the skin (hemidesmosome formation and blistering) were
obtained, strongly suggesting that SB-mediated genetic engineering of self-renewing
cells results in stable maintenance of transgene expression in the progeny cells 
(Ortiz-Urda et al. 2003).
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6 Conclusions

Currently, significant advances in the development of non-viral vectors are being
made by means of recent technological innovations, including nanotechnology
(Vijayanathan et al. 2002). Employment of functional genetic elements, such as
EBNA1/oriP and the SB transposon, may further improve their efficacy, compensat-
ing for the shortcomings of non-viral systems. EBV-based plasmid vectors are 
transported into and maintained in the nucleus as well as replicated as episomes, over-
coming the problems of the low transfection rate and the transience of transgene
expression. The SB transposon enables chromosomal integration of a transgene in
transfected cells, potentially enabling its permanent expression, although random
integration into the host genome may cause aberrant expression and/or silencing of
cellular genes that locate close to the integration site. Both the EBV-based plasmid
vector and SB have been shown to work not only in vitro but also in vivo. Plasmid
vector sequences should be focused on as an important component of non-viral gene
delivery systems, while their combination with other devises, such as polypeptides
containing a nuclear localization signal (reviewed in Hebert 2003), may also be useful
in developing promising strategies.
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