
Refining Interfaces of Communicating Systems *

Ed Brinksma

Dept. of Informatics, University of Twente t

Bengt ffonsson
Swedish Institute of Computer Science and Dept. of Computer Systems, Uppsala University

Fredrik Orava
+

Swedish Institute of Computer Science ÷

Abs t r ac t

There are now several theories for describing and reasoning about the behavior of
communicating systems, where the behavior of a communicating system is described
in terms of its capabilities to perform communication actions in cooperation with its
environment. In such theories, preorders or equivalences are defined as criteria for
when one system is an acceptable substitute or implementation of another. Existing
theories of communicating systems define preorders or equivalence relations only
between systems with identical sets of communication actions. In many practical
design situations, however, it may be desirable to refine a system by changing its
set of communication actions. We present a simple method for carrying out such
refinements. The method is first formulated in a general setting, and then elaborated
in more detail in the trace model and a simple version of the failure model. We
illustrate the usefulness of our method by an application to 1.451, an ISDN access
protocol.

1 I n t r o d u c t i o n

A commonly used idealization of the program development process is tha t from an ini-
tial high-level specification one performs a sequence of refinement steps, at each of which
details are added, until the specification attains a form which can be realized in software
and/or hardware. A theory which supports such a stepwise refinement process should
provide a correctness criterion for refinements and methods for verifying them. For com-
municating systems, there are several theories which define preorders that can be used
as criteria for refinement. Examples are the testing preorders of Hennessy and de Nicola

*This work was partially supported by the Swedish Board for Technical Development (ESPRIT/BRA
project 3096 SPEC)

tAddress: P.O. Box 217, 7500 AE Enschede, The Netherlands. E-maih brinksma@cs.utwente.nl
:Address: P.O. Box 1263, S-164 28 Kista, Sweden. E-maih bengt@sics.se, fredrik@sics.se

298

[dNH84], the failure model [BHR84], the readiness model [OH86], and refinements be-
tween I/O-automata [LT87, Jon87]. Common to these preorders is that they compare
two systems only if both systems communicate with their environment over the same set
of communication actions.

The ability to compare only systems with the same set of communication actions can
in some situations be too restrictive. Assume for instance that during the development
of a particular program the specification has been divided into a paa't which contains
a database and a part which uses this database. Furthermore, the division has been
made at a high level of abstraction, where it makes most sense to describe the interaction
between the database and its user by a single action, called update. The database can
perform many other actions, that e.g. query the database. After severM refinement steps
of the database it may become sensible to replace the single action update by the two
actions update.req and update.conf. It is then necessary to use a criterion for correctness
of refinements which can compare two systems that communicate over different sets of
actions. The standard refinement notions, e.g. trace or failure containment, are no longer
adequate.

In this paper, we consider the problem of refining communicating systems by changing
their sets of communication actions. Our approach is partly motivated by the design
scenario outlined in the preceding paragraph. We will limit ourselves to the case where
the replaced set of actions is used by only two of the components in a system. This implies
that the refinement should be carried out simultaneously in the two components that are
concerned. Furthermore, the joint behavior of the two systems after the refinement should
be a correct refinement of the two systems before the refinement. This last observation
enables us to relate our approach to existing preorders between communicating systems.

We will define a simple way of describing certain types of refinement that change the set
of actions, and prove that it is correct in the sense of the preceding paragraph. The main
idea is that the refinement is described by a shift, or displacement, of the interface. This
is a simple idea which is independent of the particular model of communicating systems
(trace model, failure model, bisimulation semantics, etc.) that one starts with. We wilt
thereafter discuss various aspects of this idea in more specific contexts, such as the trace
model and the failure model. For the failure model, we will define a specific extension in
which shifts of interfaces can be described.

We intend to show the usefulness of our ideas through applicatio.ns to nontrivial examples.
In this paper we include an application to 1.451, which is a layer three protocol used by
an ISDN-terminal to access the ISDN network.

In summary, the main contributions of this paper are the following:

1. We define a notion of interface refinement where the refinement concerns both the
process and its environment. This is in contrast to [AH88, GW89, GMM88] whexe
actions of a process are refined without taking the environment into account.

2. We define a simple method for describing this kind of interface refinement together
with a simple rule for proving the refinement correct.

299

3. We define an extension of the failure model for describing shifts of interfaces.

4. As a case study we provide an application of the method to a nontrivial example.

The paper is organized as follows: In the next section, we present the framework of
communicating systems and the operations that we assume. Section 3 describes the
method of refining an interface by displacing it, and illustrates it by a simple example.
The method is specialized to the trace model in Section 4, and to an extended version of
the failure model in Section 5. In Section 6 we apply the method described in Section 3
to the 1.451 protocol. Finally, Section 7 contains conclusions and some comparisons with
related work.

2 Communicating systems

Our method for refining interfaces of communicating systems will first be formulated in a
general setting. The method assumes a certain structure on the theory of communicating
systems, which is met by most existing theories. In this section, we present the general
operations and assumptions on communicating systems that will subsequently be needed.

We assume a set of actions, which does not include the silent action T. We assume a set
of processes. With each process P is associated a set aP of actions, called the sort of
P. We assume that there is a refinement relation between processes, denoted <1, which
for each set L of actions is a preorder on the set of processes with sort L. The relation
<1 could for instance be trace inclusion, the ordering in the failure model, or observation
equivalence. We define P ~ Q to denote P <1 Q <1 P.

We assume the following operations on processes:

If P and Q are processes and L is a set of actions such that both L C ~P and L C
c~Q, there is an operation, called the parallel composition of P and Q synchronizing
over L, which is denoted PIILQ. This operation is used e.g. in LOTOS [vEVD89],
and can also be defined in CSP [Hoa85]. Intuitively, the process PIILQ denotes the
result of putting P and Q in parallel and synchronizing over the actions in L.

If P is a processes such that L C_ aP, then the hiding of L in P, denoted P \ L,
intuitively makes the actions in the set L invisible.

As a shorthand, we will use PILQ to denote (PHLQ) \ L.

The operations can be defined for various semantic models of processes. For the moment,
we will not be specific about the model used. However, we need to assume certain basic
properties of the operations, which will be satisfied by most "reasonable" models in the
literature. The properties in question are:

(A1) All operations are assumed to be monotonic with respect to the refinement rela-
tion <1

300

(A2) For arbitrary sets L1, L~ of actions (P \ L1) \ L2 - (P \ L~) \ L1

(A3) IfL~ is disjoint from both L2 and the sort of Q, then (P\L1)IIL~Q ~- (PilL2Q)\L1

(A4) If L1 f7 L2 = ~, and L1 N aR = ~, and L2 N a P = 0, then

(PllL~Q)IIL2R '~ PHL~(QHL2R)

(AJ) PtlLQ ~-- QllLP

From the above axioms we can infer that the combination of parallel composition and
hiding is associative in the following sense.

(A6) If L1 N L: = 0, and L1 N aR = 0, and L2 N a P = 0, then

(P]L~Q)IL~R ~-- PIL,(QIL:R)

The proof of (A6) is a simple application of the definition of [L and of the properties (A1)
-(A5),

~- (PllL,(Q]IL~R)) \ L: \ L~ ~_ (PHL~((QIIL~R) \ Z:)) \ L~ ~_ P]L,(QIL~R)

3 In ter face R e f i n e m e n t

In this subsection, we describe a method for refining the interface between two processes
within the general framework outlined in Section 2. As indicated in the introduction, the
scenario is that we are given two processes P and Q that both communicate over a given
set of abstract actions, LA. It is required to refine P into P' and Q into Q' such that
both P' and QI communicate over a new set of concrete actions, Lv, and not over L A.
In order for this refinement to make sense when the two processes are put together, the
joint behavior of P' and Q' should refine the joint behavior of P and Q, i.e.,

P'ILcQ' <~ PILAQ

In general, there may be many ways of carrying out such a refinement. If we want to
cover all possible ways of refining a pair P, Q into P', Qi we cannot be more specific
about the refinement than to state the above crite1~on. However, our goal is to present a
more specific method in which we only refine a part of P (Q), namely the part which is
close to the interface LA. In such a method, we should be able to describe the relationship
between P and P~ (and analogously between Q and Q') by some relation between their
behaviors with respect to the actions L A and Lc. In the following, we describe one way
of carrying out such a refinement. We first define notation for describing the interface
change, and thereafter describe the method.

For any process t and set L of actions with L _C aI , define the mapping IL from the
set of processes whose sort contains L by IL(P) = I]LP, i.e., ~?L changes P by adding I,

301

Old New
interface interface

Figure h Simple interface refinement

with which it communicates via the synchronous interface L. The interface L thereafter
becomes hidden. The idea of defining this notation, is that we can then define the inverse
mapping (IL) -1 on the set of processes whose sort is disjoint from L. If I[LR ~ Q then
we put (IL)-I(O) = R. In general, (IL)-I(O) need not exist, and if it exists it need not
be a unique process. If (IL)-I(0) exists, then we have

Q' ~ (IL)-I(Q) ~ IL(Q) ~ Q

by the monotonicity of <1. We remark that when the preorder <1 has certain nice proper-
ties, which is the case in for example the failure model, then there is a unique "maximal"
process Q' which satisfies the above definition.

We can now present our method for refinement of interfaces.

Defini t ion 3.1 Let P and Q be processes both of whose sorts contain LA and are disjoint
from Lc. Let I be a process whose sort is LA U Lc. A simple interface refinement which
adds I to P and subtracts I from (2 results in processes P ' and Q' such that

1. iLa(P), and

2. Q'< (TLc)-'(0).

and LA A aQ' = 0. []

Intuitively, the operation in the previous definition adds the process I to P and cuts
the process t out of Q. It can be illustrated graphically as in Figure 1. Intuitively,
the refinement has been caxried out by a displacement of the interface. The process I
describes the "area" over which the displacement is performed. The soundness of the
method follows from the following proposition.

Propos i t ion 3.2 If P, Q, LA, Lc, I, P', and Q' satisfy the conditions of Det~nition 3.1,
then

P'ILcQ' ~ PIL, Q

E1

302

Proof: The proof is a sequence of simple applications of the definition of simple interface
refinement and the property (A6).

P'IzoQ' < (PIsAI)IsoQ' < PIsa(IILoQ') < PIL,~Q

[]

4 Ref inement in the Trace M o d e l

In this section, we indicate how the method of Section 3 could appear in a simple trace
model. The trace model is very simple and cannot represent deadlock or livenessproperties
of systems.

In the trace model, we associate (in addition to aP) with each process P a set tP of
traces. The set tP is a prefixed-closed subset of (aP)*. i.e., a prefixed-closed subset of
sequences of actions in a P . Intuitively, a trace of P is a sequence of actions that may
occur up to some point in a computation. As an example, a one-place buffer can be
represented as the process P , where aP is the set of actions {in, out}, and tP is the set
(in out)* U (in out)* in (where we borrow the notation for regular expressions).

For a sequence ~ and set of actions L, let a [L denote the projection of the sequence a
onto the communication events of L, i.e., the subsequence of a consisting of the actions ifi
L. For a set of actions L, let ~r \ L denote a with all occurrences of actions in L removed.

In this paper we shall for simplicity consider the parallel composition PI[LQ only in the
case that L = aP fq aQ. The operations in the trace model can then be defined as follows:

,, The process PIILQ is defined by

a(PIk, Q) = aP u aQ
t(PIIDQ) = {o- e (,~P u aQ)* I ,:,-ro~e and cr[.QE tQ}

• The process P \ L is defined by

. (P \ L) = . P \ L
t (P \ L) = { a \ L [ac tP}

• The refinement relation <~ is defined as

P <~ Q = aP = aQ and tP C_ tQ

E x a m p l e 4.1 As an example we shall carry out the refinement alluded to in the intro-
duction of the paper, where an action update is refined by the two actions update.req
and update.con. Let LA be {update}, and let Lc be {update.req, update.con]}. The
process I is defined by aI = Lo U LA, and t I is the set of prefixes of sequences in
(update.req update update.con])*.

303

congtK~C

P: Q:

q u e r y ~ update update

I : '

update

p , :

Q' : ~ e

Figure 2: Abstract specifications of the data base P (upper left), and the user Q (upper
middle). Specification of I (upper right). Concrete specifications of the data base P~
(lower left) and the user Q' (lower right).

We next describe how a refinement is carried out for two particular processes P and Q.
Intuitively, P is a database, and Q is some process that uses the database. The process P
can perform the actions query and update in any order. The process P', defined by]LA (P),
contains all traces in which each update.confis preceded by a corresponding update.req. If
the process Q is a user that alternates the actions consume and update, then QI, defined
by (ILc)-I(Q), must perform the actions consume, update.tea, and update.confstrictly
cyclically in this order. The processes can be described by the transition diagrams in
Figure 2 that generate the traces of each process.

[]

5 R e f i n e m e n t in the Failure M o d e l

In this section, we indicate how the method of Section 3 could appear in a simple variant
of the failure model that does not consider divergence. The particular form of the failure
model is a simplification of the model in [BHR84], in that the hiding operation does not
add divergence. This simplification is mainly for purposes of presentation. There are also
other versions of the failure model with an improved treatment of divergence [BR85], but
we will not consider them in this paper.

In the failure model, we associate with each process P a set f P of failures (in addition
to aP). A failure in f P is a pair (a, X}, where a E (aP)* and X CC_ aP. Intuitively, a
failure (g, X t is in f P if P can perform the sequence ~r of actions and thereafter refuse to
perform any of the actions in X, i.e., the process may deadlock if only the actions in X
are offered for communication. The first component a of a failure is often referred to as
a trace and the second component X as a refusal. We require that the set f P satisfy the
following closure properties:

i) Y C X A (a ,X) e f P ~ (a,Y) E f P

304

ii) (a,X) E f P A (a(c),O) ~ f P ==~ (a, X U {c}) e f P

Intuitively, requirement i) says that if a process can refuse the actions in X, then it can
refuse any smaller set of actions. Requirement ii) says that the impossible actions can
always be refused.

The operations in the failure model are defined as follows:

* The process PtlLQ is defined by

~(PIILQ) = ~P u ~Q
f(PIILQ) = {(cr, XpUXQ) I (a[~p,Xp) e fP and (cr[.Q,XQ) e fQ}

* The process P \ L is defined by

a(P \ L) = a P \ L
f (P \ L) = { (a \ L , X) I (a, X U L) E f P }

• The refinement relation <1 is defined as

P <I Q = aP = c~Q and f P C fQ

As an illustration, we could carry out Example 4.1 using the failure model, and the result
would be analogous. The transition diagrams in Figure 2 can be interpreted as denotations
in the failure model: (a, X) is a failure if after the trace a there are no transitions in the
diagram labeled with elements from X. Definition 3.1 works nicely also in the failure
model.

However, assume P is the process STOP which never performs any action (we can e.g.
think of STOP as a dead-locked database). The process ILA(STOP) will then be able
to perform the action update.req although STOP will never perform the action update
and ILA(STOP) will never perform update.conf. Thus, performing update.req serves no
real purpose, and it would be more sensible to refuse to perform the action update.req
in the first place. However, in the current setting, ILA(P) never refuses update.req for
any process P, since the process I cannot use information about future refusals of P to
produce refusals of Pq However, since I will never appear as a process by itself, we can
develop a theory of processes that can indeed transfer information about refusals about
other processes, and apply this theory when defining the interface changes of our method.
In the rest of this section, we shall briefly develop such a theory.

In the conditional failure model, we associate with each processes P a set cP of conditional
failures. A conditional failure in cP is a triple (a, X, C), where cr E (aP)* and X and C
are subsets of aP. Intuitively, a conditional failure (cr, X, C) is in cP if P can perform
the sequence a of actions and thereafter refuse to perform any of the actions in X in a
situation where the environment refuses to perform the actions in C. The first component
a of a failure is often referred to as a trace and the pair (X, C) as a conditional refusal.
We require that the set cP in addition to properties corresponding to i) and ii) above also
satisfy the additional closure properties

305

iii) C C_ D A (or, X, C} E cP =:ez (a, X, D} E cP

iv) <a, X, C) E cP ~ (or, X, C \ X} E cP.

Intuitively, requirement iii) says that if P can refuse the actions in X under the condition
that the environment refuses the actions in C, then P refuses the actions in X also if the
environment refuses any larger set. Requirement iv) says that the totM refusal X U C can
always be factored into disjoint contributions X of the process and C of the environment.

The operations in the conditional failure model are defined as follows:

* The process PIILQ is defined by

a(PIILQ) - a P u aQ

c(PIILQ) = {<c~,Xp tJ XQ, C) (GF~p, X p , (C u x Q) n ~ P) E cP A
<~[.Q,XQ,(CUXp) n~O> E~Q }

* The process P \ L is defined by

a(P \ L) = o~P \ L
c (P \ L) = { (a \ L , X , C) [(~r, X U L , C>EcP}

* The refinement relation <I is defined as

P <1Q = aP = aQ and cP C_ cQ

When we apply the conditional failure model in the simple method of Definition 3.1, we
will require that P, Q, pt and QI are processes in the failure model. A process in the
failure model can be identified with a process in the conditional failure model by the
identification

cP={ ia , X,C) I (a , X > E f P A CC_aP}

i.e. X does not depend at all on C, in particular ((r,X,~) E cP, fl'om which cP can be
obtained via iii) above. The process I can be a process in the conditional failure model.

6 Example

In this section we present an application of the method proposed in Section 3. As an
example we have chosen a layer 3 access protocol of ISDN, as specified in CCITT's recom-
mendation 1.451 [CCI85]. This protocol specifies procedures for establishing, maintaining
and clearing of network connections at the ISDN user-network interface. ISDN provides a
number of services on top of a digital telephone network, ranging from digital telephony
to a variety of data services e.g. file transfer. The user-network interface comprises the

306

Interface

pick up ~ ~ set up req
ring-back - ' ~ ,~er) [(~ccess ~ co~me~ ind
r, ns_back_stop ~ " ~ close_req

Figure 3: The architecture of the user-network interface

three lower layers of the OSI model: the network, link, and physical layers. The CCITT
recommendation 1.451 consists of the access protocol for layer 3.

The architecture of the ISDN user-network interface is shown in Figure 3. The entities
which interact via the interface are: at the user side a user-terminal, and at the network
side an access-node. We have chosen to specify a subset of the 1.451 protocol, where a call
establishment can only be requested by the user and a call release can only be requested
by the called user or the ISDN network.

In this section we will present specifications of the 1.451 protocol at two levels of detail.
First we give abstract specifications of the user-terminal and the access-node entities.
We thereafter refine the interface between the entities using the method described in
Section 3. The purpose is that the abstract specification should be easily understandable,
whereas the refined specifications should correspond to the 1.451 protocol. We will in
this example use the trace model of Section 4 and indicate how the refinement can be
performed in the conditional failure model of Section 5. As in Example 4.1, processes
will be given as transition diagrams, which can be regarded as generators of sets of traces
(failures/conditional failures).

6.1 Abstract Specification

The abstract specifications of the user-terminal and the access-node are given in Fig-
ure 4. As indicated in Figure 3 the user-terminal communicates with a user (a telephone
subscriber) via the actions pick_up, ring_back and ring_back_stop. The abstract inter-
face between the user-terminal and the access-node, corresponding to LA, consists of
{start_estab, end_estab, close}. The access-node communicates with the rest of the ISDN
network via actions set_up_req, connect_ind and close_req. These actions may or may not
be present in a real implementation, since the 1.451 recommendation does not specify the
communication between the access-node and the rest of the ISDN network.

We first describe the operation of the user-terminal. A pick_up-action is interpreted as
the user picking up the handset and dialing a subscriber number. The user-terminal then
requests a connection to the called end-user by the action start_estab, after which the user
is notified, by a ring_back-action, that the ISDN network is trying to establish a connection.
When the connection is established the user-terminal receives an end_estab-action from
the access-node and the user is notified that a connection exists by a ring_back_stop-action.
Finally, at any point after the occurrence of the start_estab-action, the access-node may
issue a close-action to the user-terminal, indicating that the connection has been dosed.
Observe that, according to [CCI85], the user is not explicitly notified that the connection

307

close ~a~_estab

~ t o p ~ nd-estab

)
start_eslab

set_upjeq

connect ind

Figure 4: Abstract specifications of the user-terminal (left) and the access-node (right)

has been closed.

The access-node awaits a start_estab-action fl'om the user-terminal. Thereafter a set_up_req-
action is transmitted to the rest of the ISDN network indicating that a connection should
be established to the called end-user. The reception of a connect_ind-action signals that
the requested connection has been established. The access-node then notifies the user-
terminal that a connection exists by initiating an end_estab-action. At any point after
the seLup_req-action the access-node may receive a close_req-action indicating that ISDN
network or the called end-user wants to close the connection. The access-node then closes
the connection to the user-terminal by using a close-action.

6.2 Specif ication of the Refined Interface

We now use the method of Definition 3.1 to refine the interface between the user-terminal
and access-node in Figure 4. The change of interface is described by the process I in
Figure 5, where the actions of the abstract interface, LA, are capitalized. The refinement
will be carried out by adding I to the access-node and subtracting it from the user-
terminal. We first describe the operation of the concrete interface, and then how it is
related to the abstract interface. The connection is initiated by the user-terminal sending
a set_up-action. The access-node responds with a seLup_ack-action. We assume that
the whole subscriber number cannot be transmitted in one action, but is transmitted
transmitted digit by digit in info-actions. When the access-node recognizes a complete
subscriber number, a call_proc-action is transmitted to the user-terminal. Thereafter the
access-node informs the user-terminal when the connection has reached the called user
by an alerting-action. When the connection is established, the user-terminal is informed
by the access-node sending a connect-action. This action may transfer information about
the connection (e.g., quality of service). If the connection is acceptable, the user-terminal
responds with a connect_ack-action. We have only considered the case when the connection
is acceptable. The access-node initiates the closing of the connection by sending a disc-
action. If the connection should be completely released, the user-terminal responds by
sending a tel-action (we have only considered this case, another possibility is to keep the

308

sctu a~sT^~T ca _ u p a ~ k S T A ~ W c a l l _

n n e c t _ a c k

Figure 5: A process describing the change of interface

connection for future use). The closing is completed by the access-node releasing the
connection and sending a rel.compl-action to the user-terminal.

The relation between the concrete and the abstract interface is as follows. We consider
the abstract action start_estab to take place when the access-node has all information
necessary to reach the called user, since the access-node then can initiate the call in the
rest of the ISDN network. The end_estab is considered to take place when the connection
is established, i.e. when the access-node has informed the user-terminal of the existence
of the connection. Finally, the close is considered to take place when the connection is
actually closed down, i.e. after the access-node has received the tel-action.

6.3 Refined Specification

In this subsection we present the refined specifications UserTerm' and AccessNodd. These
processes should satisfy the following properties:

AccessNodd <J ILA(AccessNode) and UserTerra' <1 (ILc)-l(UserTe,'ra)

The process AccessNodd is shown in Figure 6. It is equal to I~,a (AccessNode) with the
exception that all traces where disc occurs before the corresponding close_req have been
removed. The motivation behind this simplification is the following. In ILa (AccessNode) a
disc-action can occur without any preceding close_req, i.e. the access-node may initiate the
closing of the connection without the called user or the ISDN network requesting it. This
violates our informal assumption about the protocol that the access-node should never
spontaneously close the connection. In the trace model, we are free to refine processes by
removing traces, so the removal is correct. Note however that even without tlle removal,
the parallel composition of ILa(AccessNode) and UserTerm' (defined below) is a correct
refinement of (AccessNode]La UserTerm).

309

~-info set u conncct._ind

\rd..c~mpl ~ s c ~ J cau-pt°c

\ ~ close!feq ~ c o r m ~ t

CIISC~

Figure 6: The refined access-node

In the failure model, the above removal is not correct, but can be made correct by con-
sidering the conditional failure model. The reason why the removal is not correct is that
a~ter the initial actions of the protocol, ILA(AccessNode) may not refuse a disc-action,
whereas AccessNodd may refuse a disc-action if no close_req-action has previously oc-
curred. Clearly, AccessNodd does not refine ILA(AccessNode) in the failure model. This
situation is analogous with the situation explained in the example in Section 5. To use
the conditional failure model we interpret I as a denotation in the failure model as ex-
plained in Section 5. Then we identify this process with a process in the conditional
failure model using the identification defined in Section 5. Finally, we add the conditional
failure (a, {disc}, {close}} to cI if (a, X, C) E cI and disc ~ X. With this addition, the
removal above is correct also in the conditional failure model.

The refined user-terminai, UserTerm' is shown in Figure 7. The behavior of this pro-
cess defines a strict cyclic order between the actions in Lc, with the exception that disc
(followed by tel and rel_compl) can occur at any time after a set_up_ack-action is re-
ceived. This process satisfies the requirement ILc(UserTerm') ~ UserTerm and thus by
the definition of the inverse mapping, (~?L) -1, in Section 3 we can choose UserTerm' =
(ho)- l (Vse ,T~rm).

We have now motivated that UserTe~n, AccessNode, LA, UserTerrn', AccessNodd, Lc
and I satisfy the conditions in Definition 3.1. From Proposition 3.2 we conclude that

(UserTerm' iL c AccessNodd) <l (UserTermlL A AccessNode)

7 Conc lus ions and R e l a t ed Work

We have presented a method for refining communicating systems by changing their sort.
The method was first presented in a general setting, and then elaborated in the trace

310

••.••c•rmect_ack
Figure 7: The refined user-terminal

model and a simple variant of the failure model. To show the usefulness of the method,
we applied it to an existing access protocol in an ISDN network. In the example, we first
presented a simple and abstract version of the protocol, and then used our method to
refine the protocol into a less abstract protocol.

Our method could be said to serve two purposes. It enables a designer to use an abstract
version of an interface between two processes during the design process, thus alleviating
him from the burden of representing all existing interfaces in complete detail. It also
gives a way of assigning precise meanings to abstract descriptions of interfaces. The idea
behind a design can then be described abstractly at a level of detail appropriate to the
situation at hand, and still retain preciseness.

In our work, we have also considered more general methods which are also based on the
idea of displacing the interface, but where the displacement is done symmetrically, in
both directions at the same time. However, this paper suggests that the simple method
of Section 3 is adequate in many practical situations.

A problem related to refinement of interfaces is action refinement. Action refinement is
usually understood as the replacement of a single action by some behavior with several
actions. The problem of finding equivalences between communicating systems which are
preserved under action refinement has been studied by Aceto and Hennessy [AH88] and
by van Glabbeek and Weijland [GW89]. In contrast to our work, these works consider
refinements that are performed without any assumptions about the environment of the
process. Back [Bac89] and Lamport [Lamg0] propose methods for verifying that the
refinement of an action preserves correctness properties of a system. The main issue
involved is that the replacing actions are not atomic in the same way as the replaced
actions. In [Lam86], Lamport considers refinement of atomic actions in a partial order
setting.

Another approach to describing protocols abstractly is to divide them into phases. Stomp
and de Roever [SdR.89] present a design principle where a distributed algorithm is first
decomposed into phases, whereafter each phase is refined separately. It is then important
to control the interaction between phases. In our example in Section 6 it might be

311

possible to identify three phases corresponding to the three abstract actions start_estab,
end_estab, close, instead of considering them together in the more abstract specification.
Chow, Gouda and Lam [CGL85] propose a methodology for constructing multiphase
communication protocols from a set of single phase protocols. If each phase possesses
certain nice properties, such as deadlock freedom and proper termination, then the whole
protocol possesses these properties.

Acknowledgment

We wish to thank members of the ESPRIT/BRA project SPEC for comments on this
work.

References

[AH88] L. Aceto and M. Hennessy. Towards action-refinement in process algebraz. Tech-
nicai Report 3/88, Department of Computer Science, University of Sussex, 1988.

[Bac89] R.J.R. Back. A method for refining atomicity in parallel algorithms. In Proc.
PARLE 89, volume 365 of Lecture Notes in Computer Science, pages 199-216.
Springer Verlag, 1989.

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of cmmnunicuting
sequential processes. Journal of the ACM, 31(3):560-599, 1984.

[BR85] S.D. Brookes and A.W. Roscoe. An improved failures model for communicating
processes. In Brookes, Roscoe, and Winskel, editors, Proc. Seminar on Concur-
rency, 1984, volume 197 of Lecture Notes in Computer Science, pages 268-280.
Springer Verlag, 1985.

[CCI85] CCITT. CCITT Recomendation L/tSI:ISDN user-network interface layer 3 spec-
ification, 1985.

[CGL85] C.-H. Chow, M. Gouda, and S. Lain. A discipline for constructing multiphase
communication protocols. A CA4 Transactions on Computer Systems, 3(4):315-
343, 1985.

[dNH84] R. de Nicola and M. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83-133, 1984.

[GMM88] R. Gorrieri, S. Marchetti, and U. Montanari. AzCCS: A simple extension of
CCS for handling atomic actions. In CAAP '88, volume 299 of Lecture Notes in
Computer Science, pages 258-270. Springer Verlag, 1988.

[GW89] R.J. Glabbeek and W.P. Weijland. Refinement in branching time semantics.
Technical Report CS-R8922, CWI, 1989.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

312

[Jon87] B. Jonsson. Compositional Verification of Distributed Systems. PhD thesis,
Dept. of Computer Systems, Uppsala University, Sweden, Uppsala, Sweden,
1987. Available as report DoCS 87/09.

[Lam86] L. Lamport. On interprocess communication Part I: Basic formalism. Distributed
Computing, 1 (2):77-85, 1986.

[Larn90] L. Lamport. A theorem on atomicity in distributed algorithms. Distributed
Computing, 4(2):59-68, 1990.

[LT87] N.A. Lynch and M.R. Turtle. Hierarchical correctness proofs for distributed
algorithms. In Proc. 6:th ACM Syrup. on Principles of Distributed Computing,
Vancouver, Canada, pages 137-151, 1987.

[OH86] E.I~. Olderog and C.A.R. Hoare. Specification-oriented semantics for communi-
cating processes. Acta Informatica, 23(1):9-66, 1986.

[Sd 89] F.A. Stomp and W.P de Roever. Designing distributed algorithms by means of
sequentially phased reasoning. Technical Report 89-8, University of Nijmegen,
1989.

[vEVD89] P.H.J. van Eijk, C.A. Vissers, and M. Diaz, editors. The Fo~rtal Specification
Language LOTOS. North-Holland, 1989.

