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Abstract  

The conceptual modeling of the Universe of Discourse (UoD) is an important 
phase for the development of information systems because the conceptual model is 
the basis for system development. Conceptual model specifications must be formal 
in order to be precise and unambiguous and to support consistency and completeness 
checks. The object-oriented paradigm is suitable for providing an integrated formal 
description of all relevant static and dynamic aspects of the UoD structured in 
objects. In this paper we introduce a formal concept of object suitable to represent 
the UoD by a collection of concurrent interacting objects. The Obtog+-tanguage 
for object-oriented UoD-specification based on this concept supports the integrated 
description of data about objects, the development of objects through time and 
of various relationships between objects taldng into account static and dynamic 
aspects of object interaction. 

1 I n t r o d u c t i o n  

Information systems are data-intensive software systems which are capable of storing, 
manipulating and producing information about a Universe of Discourse (UoD). Thus, the 
basis for information systems development is a representation of the UoD in terms of all 
relevant structural and behavioral aspects [vGr82, SFSE89, Wie90a] and therefore the 
conceptual modeling phase is a very important phase in the development of information 
systems. The result of the conceptual modeling phase is an abstract formal representa- 
tion of the relevant aspects of the UoD, which is called conceptual model specification 
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[BMS84, SS85, Wie90a, Wieg0b] or requirements specification [Zav79]. This issue has been 
examined from different points of view in the knowledge base community IBM86, ST89], 
the database community [UD86, HK87, PM88], and the software engineering community 
[CHJ86, Par90]. 

The demands upon conceptual model specifications are manyfold [YZS0, BMS84, 
Par90]: On the one hand, specifications should be readable and understandable by both 
domain specialists and system developers, on the other hand specifications must support 
abstractions and conceptual integrity by a precise formal framework and language. Only 
formal specifications are compact and unambiguous and support consistency and com- 
pleteness checks as well as systematic construction of prototypes and implementations. 
Furthermore, a conceptual specification framework must support modifiability of specifi- 
cations (in case of changing requirements) and liberality of specifications, i.e. specifications 
should not enforce a single solution [LF82]. 

Traditional formalisms for conceptual model specification treat data and functions on 
data separately. In the design of databases, semantical data models stress data model- 
ing [HK87, PM88], whereas in software engineering the emphasis seems to be more on 
functional models [DeM79, Jac83]. Some proposals allow separate description of static 
aspects and dynamic aspects in a uniform language framework (e.g. RML [GBM86], Taxis 
[MBW80]). In contrast, in the object-oriented approach data and functions local to an ob- 
ject are integrated in objects [Weg87, ABD+89]. Thus, the relevant aspects of the UoD axe 
structured in objects [KM90, Boo90]. An attempt is made to bridge the conceptual gap 
between specification and implementation since the artificial boundary between data and 
functions is overcome. Furthermore, the object-oriented paradigm seems to better reflect 
natural descriptions of UoD concepts because object descriptions may directly reflect UoD 
objects. In object systems, objects are encapsulated entities. Thus, the straightforward 
modeling of complex objects and complex relationships is supported. 

An object-oriented approach supports modifiability of specifications. Only objects as 
encapsulated entities are changed. Thus, changes are local to objects and do not affect 
other parts of the specification if object interfaces remain unchanged. 

Liberality in specifications can be achieved by declarative specification in which we 
only specify what has to be represented instead of how it should be represented. 

Currently, most approaches to object-oriented conceptual modeling are rather informal 
[Boog0]. The modeling concepts rely on object-oriented programming and are therefore 
oriented towards implementations rather than requirement models. Formal approaches 
we are aware of are e.g. FOOPS [GM87] (which evolved from abstract datatype specifi- 
cation), CMSL [Wie90a] (which like our approach strongly emphasizes object dynamics) 
and Object/Behavior Diagrams [KS90] (a graphical approach supporting the modeling of 
static and dynamic aspects). 

The approach described in this paper evolved from integrating work on formal program 
specification techniques like algebraic specification of abstract data types [BG77, EM85, 
FGJM85, ELG89], process modeling and process specification [Hoa85, BK86, Hen88, 
Mi189], abstract program specifications [Ba181, B+85, Par90] and on conceptual mod- 
eling approaches for databases and information systems [BMS84, BM86, UD86, HK87, 
PM88, ST89] (although we only present a language instead of a graphical notation). The 
concept of object presented herein has been developed in [SSE87, SFSE89, SE90] a c c o m -  
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panied by work on its semantics [ES89, EGS90]. The basic idea is to regard a UoD as a 
collection of interacting objects. In such objects, the description of structure (by means 
of properties) and dynamics (by means of processes over abstract events) is encapsulated. 
Collections of objects are structured using specialization, generalization, aggregation, and 
classification. System dynamics are described by interactions between dynamic objects. 
Based on the concept of object, work has been done concerning the semantics of object- 
oriented specifications [SS89, FSMS90, FM90]. We now present the Oblog+-language for 
object-oriented conceptual model specification. 

In the next section, we give a short introduction to the UoD at hand and try to point 
out the relevant static and dynamic aspects to be specified. In section 3, we formalize a 
simple model-theoretic concept of objects as observed processes and relationships between 
objects following lEGS90]. In sections 4 and 5 we introduce language constructs for the 
specification of simple objects and object societies, respectively. In these sections, we 
try to relate specification sections with object properties as described in section 3 since 
we specify the objects that represent relevant aspects of the UoD. We will close with a 
discussion of other approaches to conceptual modeling and some concluding remarks. 

2 D e s c r i p t i o n  of  t he  U o D  

Using a simple example, we now want to point out requirements for formalisms suitable to 
describe UoD concepts. The UoD, which in part will be modeled in the following sections, 
consists of books in a library. In the library, only copies of books are present, books itself 
are regarded to be abstract objects only. 

Each book is described by its title, the list of authors, the publisher, the edition, and 
the year of publication. Books are published and may then be acquired by the library. If 
a book is acquired, at least one copy is purchased. The book is entered into the library 
catalog. For each book, the copies are managed by the library. 

For each copy, the list of borrowers up to now shall be maintained. Each copy is 
indicated either to be on loan or not. Additionally, for each copy we want to know when 
it has to be returned. Thus, copies after having been acquired can be borrowed and 
returned. 

Users of the library are either students, who may borrow a book for at most 21 days 
or members of the university staff, who must return the book only if another request for 
the book is pending. For each user, the list of copies (s)he currently has borrowed is 
maintained. If a user wants to borrow a book, (s)he does not specify a particular copy 
but a particular book, of which (s)he wants to borrow a copy. If there are any copies 
available, (s)he borrows one. 

Even using this rather small UoD, it is evident that a formalism for modeling the UoD 
has to make the integrated description of all structural and dynamic aspects possible. 
This has been claimed already in the conceptualization principles formulated in [vGr82]. 

A natural description of the UoD contains the relevant objects and descriptions of their 
properties, their state, their behavior, their evolvement through time as well as descriptions 
of interactions between objects. In the UoD described above, special relationships between 
objects like specializations (staff members and students are specializations of users) or 
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roles (books in the role of books in the library) have to be modeled. Furthermore, one 
may easily find other concepts for relating objects like complex objects composed of several 
components (e.g. volumes of journals composed of numbers) or generalizations of objects 
(e.g. documents being either books or joul,nals). 

A major requirement for specifications of object systems is the possibility to describe 
the possible evolution of objects through time, i.e. the behavior of objects. In the usual 
definition of object-oriented data models [ABD+89] or object-oriented programming lan- 
guages [Weg87], this requirement is largely neglected because only explicit programming 
of methods to describe state transitions is possible. In most cases, it is not possible to 
describe the behavior through time. 

At an abstract level, the behavior of a system as a whole can hardly be described 
locally. Thus, another requirement for UoD specification formalisms is the possibility 
to specify global assertions and interactions. During refinement, global constraints and 
interactions will be localized in objects. 

3 A Concept  of  Object  

In this paper, we introduce a model-oriented view of objects. The concept of object 
evolved from evaluating several approaches to system development towards their use for 
an integrated description of all relevant static and dynamic aspects of the UoD. 

Arbitrarily structured values and type-specific operations have been investigated in the 
abstract data type approach (see e.g. [BG77, EM85, FGJM85]). However, the approach 
only describes values and thus does not include concepts of state, state transitions, tem- 
poral evolvement, and persistency. 

In process theory, descriptions and models for concurrent systems, their behavior and 
temporal evolution have been investigated (see e.g. [ISO84, Hoa85, BK86, Mi189]). Most 
of these approaches cover solely the dynamic aspects of systems. 

In contrast, semantic data models enable structured description of UoD entities and 
therefore only capture structural aspects of the UoD. Extensions of semantic data models 
allow the description of complex entities, abstractions, and structural relationships be- 
tween entities (cf. [UD86, HK87, PM88]). Many of them fail, however, to provide adequate 
means to include state transitions and temporal evolution. 

Proposals for object-oriented data models strive to overcome these deficiencies. They 
support object classification, the notion of state by providing immutable object identifiers, 
and they allow integrated description of local state information and operations on the state 
of an object (cf. [ABD+89]). Operations alone, however, are still not suitable to describe 
temporal evolution of objects. 

In object-oriented programming languages, some additional emphasis is put on com- 
munication between objects through message passing, encapsulation, and limited capa- 
bilities of representation of temporal evolution [Weg87, Mey88]. 

In our view, the most important benefit from the object-oriented approach is the 
encapsulated integration of local structure and behavior in objects. 

In a formal description of dynamic object systems, objects are identified by names 
which are immutable for the lifetime of an object. The life of an object is described by 
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a sequence of snapshots (the life cycle), where each snapshot is a set of events occurring 
simultaneously. Each life cycle starts with a snapshot including a speciM birth event 
describing the creation of the object and either ends with a death event in a snapshot 
or goes on forever. The overall behavior of an object is specified by a set of possible life 
cycles which iscalled a process. Properties of objects may be observed by typed attributes. 
The current attribute values depend on the internal state of an object, which itself may 
solely be changed by events local to the object. The sequence of snapshots executed by 
the object so far determines its local state and may depend on interactions with other 
objects. Interaction between objects is described by event occurrences which force a set of 
called events to occur simultaneously. Thus, objects in our view axe concurrent observable 
communicating processes. 

In the following definitions, our concept of object shall be formalized. Note that  
the presentation of the concept of object in this paper is simplified compared to the 
presentation in [EGS90, SE90]. 

We start  with the definition of a snapshot which is an element of the powerset p(X) 
of a set of events X. An empty snapshot is called a silent event. 

Def in i t i on  3.1 Let X be a set of events. A subset S 6 p ( X )  of X is called a SNAPSHOT 
over X .  The events in a snapshop occur simultaneously. [] 

Def in i t i on  3.2 Let X be a set of events. Then p(X)* denotes the set of finite sequences of 
snapshots over X ,  and p(X) ~ denotes the set of infinite countable sequences of snapshots 
over X .  [] 

For objects, the set of events has to include at least one birth event and may include 
death events. 

Def in i t i on  3.3 An OBJECT EVENT ALPHABET X is a set of events where B C X is a 
set of birth events such that B ~ ~, D C X is a set of death events such that D A B = O 
and V = X \ (B U D) is a set of update events. [] 

We adopt a simple model of processes not taldng into account non-deterministic behavior 
and parallel processes. Each non-empty life cycle is a sequence of snapshots starting with 
a snapshot that  includes at least one birth-event. It may end by a snapshot including a 
death-event or go on infinitely. 

De f in i t i on  3.4 A PROCESS 1D is a tuple (X,  A), where X is an object event alphabet and 
A is a non-empty set of life cycles over X such that 

A c_ 
{s1 s  l 

SIT I 

(Sbe B: b c sl A sl u u)), 
(Sd 6 D: d 6 sn A s~ e ~(U U D))}U 
(Sb 6 B: b 6 sl A sl 6 p ( B  U U)), T 6 ~(U) ~} 

and ~ 6 A. [] 

The empty life cycle c models an object which has not been created yet. 
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D e f i n i t i o n  3.5 The set of all finite prefixes of life cycles in A is denoted by II(A). [] 

Let us now turn to attr ibutes and at tr ibute values. First, we define the set of all possible 
values of attributes. 

D e f i n i t i o n  3.6 Let A be a set of attributes over data types t y p e ( a )  for a C A. Then 

obs(A) C_C_ {(a, d) I a E A, d C t y p e (a )}  

is the set of POSSIBLE OBSERVATIONS over A. [] 

Now we define how a process may be observed using attributes and possible at tr ibute 
values. 

D e f i n i t i o n  3.7 An OBSERVATION STRUCTURE V ~- (A, a) over a process P is defined 
by a set A of attributes and an observation map 

a :  H(A) --~ obs(A) 

such that a(c)  = O. [] 

Note that  observations may be non-deterministic, i.e. a is a relation rather than a function. 
This is useful e.g. for attributes that  have not been initialized when an object is created. 
We are not going to make any further investigations on non-deterministic observations. 

Now, we are ready to define objects as observable processes. 

D e f i n i t i o n  3.8 An OBJECT MODEL ob ~- (P ,  V) is composed of a process P and an 
Observation structure V over P.  [:] 

Usually, objects in a representation of the UoD are classified. For this purpose, we intro- 
duce the notion of an object type. 

D e f i n i t i o n  3.9 An OBJECT TYPE o t  = (~', OB) consists of a set I of object identifiers 
and a set O B  of object models. [] 

The set I is the carrier set of an arbitrary abstract data  type. Note that  the definition 
allows heterogeneous types, i.e. the intension of such a type consists of objects which not 
necessarily have the same model. 

Object classes in our setting are sets of objects of a certain type. Thus, with each 
object class we associate one corresponding object type. 

D e f i n i t i o n  3.10 An OBJECT CLASS OC = (o t ,  O )  consists of an object type ot and a set 
of instances 0 where 0 C (i.ob I i E or.I, ob C ot .OB}. [] 

Thus, an object class definition is extensional. Note that  we use the "dot notation" to 
refer to components of structures. 

For modeling an object society, the basic relationship of object inclusion has to be 
defined. For a more detailed description using a sheaf-theoretic approach see [EGS90]. 

First, we define the notions of restricted snapshots and life cycles. A snapshot over a 
set of events X restricted to a subset Y C X is obtained deleting all events not in Y from 
the snapshot. 
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D e f i n i t i o n  3.11 Let S be a snapshot over a set of events X and Y C X .  Then S ~ Y = 
S N Y is the SNAPSHOT RESTRICTION to Y .  []  

Note that  snapshot restrictions can be silent events. 
For life cycles, life cycle restriction only takes the non-empty snapshot restrictions into 

account, thus may not preserve the length of a life cycle. The life cycle restriction of a 
life cycle A to Y is defined recursively: 

D e f i n i t i o n  3.12 Let A be a life cycle over X and Y C X .  Then 

£ 

= .]. Y) o (A' ,[,,], Y) 
Y 

is the LIFE CYCLE RESTRICTION of )~ to Y .  

/ f A = c  
if ~ = slA' and (81 $ Y) ~ 0 
i f A =  slA' and (sl ~ Y )  = 

[] 

Please note that  for conveniance of notation we used the operator o denoting a snapshot 
being a prefix of a life cycle. 

Then, we introduce the notion of event calling. The cMling relation >> is regarded to 
be a binary relation on a set of events. If an event xl calls an event x2, then x= has to be 
in the same snapshot xl is in. 

D e f i n i t i o n  3.13 Let X be a set of events, S ( X )  C ~ ( X )  a set of snapshots over X and 
>> be a binary relation on X. Let xl  and x2 be events in X .  Then xl  >> x2 wrt s O ( )  iff  
the following condition hol&: 

VS e S ( X )  : x ,  ~ S =~ x2 ~ S 

[] 

Thus, event calling is an asymmetric synchronization on event occurrences. 
Now we define object inclusion, which is an encapsulated embedding of one object into 

another. 

D e f i n i t i o n  3.14 Let obl = (P1, 11"1) and oh2 = (P2, 1/2) be object models. 
embedded into oh1, oh2 '-~ oh1, iff 

X2 c_ X1 

VA1 C A13A2 C A2:A1 ~ X2 = A2 

A2 C_ A1 

Vrl e n ( h l ) :  a l ( r l )  1 As = a2(rl ~J~ X=) 

Then ob2 is 

[] 

That  is, obl is embedded within oh2, all properties of obl (in particular the set of life 
cycles of obl) are preserved and ob~ events do not affect obl attributes. This implies that  
the only way ob~ can influence the behavior of obl is by event calling as defined above. 
Note that  all birth- and death-events of oh1 are sent to update-events in oh2. 



67 

For symmetric communication, we may identify events by defining a calling relation 
in both directions which is called event sharing. 

Taking objects and object morphisms, a category of objects is established. We do not 
go into detail on that in this paper. For further details on its properties see [SE90, EGS90, 
FSMS90]. 

A category of objects represents the relevant aspects of the UoD. Since the relation- 
ships normally have an impact on the evolution of objects, we call a collection of inter- 
acting objects an object society (which is rather natural ...). In the next sections we will 
show how simple objects and object societies are specified using the Oblog+-language. 

4 Single Object Specification 
A formal specification of objects includes the specification of the data types for attributes, 
event parameters, and identifier sorts, of attributes and events (which make up the in- 
terface of an encapsulated object), of the possible observations, of the effects of event 
occurrences on attribute values and of the set of possible life cycles. An object specifica- 
tion is a theory of which an object model introduced in the previous section is a model. 
In this paper, we are introducing the Oblog + specification language rather informally 
using examples. A detailed investigation of specifications as theories in our setting can 
be found e.g. in [FSMS90, FM90] or [SS89]. 

A single object model is specified by an object name associated with a template. A 
template is structured as follows: 

t e m p l a t e  
da t a  t ypes  data types to be imported; 
a t t r i b u t e s  attribute names and types; 
events  events; 
cons t ra in t s  integrity constraints on states; 
valua t ion  effects of events on observations; 
process specification; 

In the data type section, the data types to be imported for the underlying data universe are 
indicated. The data types may either be chosen from a set of predefined types (like 'nat' 
or 'string') or from a set of user-defined types specified using a specification language for 
abstract data type specification (e.g. ACT ONE [EM85]). Note that we also may import 
sets of object identifiers (also called surrogate spaces) which are defined by an abstract 
data type. Surrogate spaces are denoted by 10el for an object class 0C. The known type 
constructors (list, set, record,  bag) may be applied to construct complex structured 
types. 

The attribute and event sections of templates make up the local signature of object 
specifications. The local signature includes all attributes and events which are not inher- 
ited from embedded objects due to inclusion or embedding morphisms. The signature of 
an object specification includes the inherited attributes and events. 

In the remaining part of a single template a set of logical formulae over the signature 
is given. A template then specifies a set of intended object models (as defined in defini- 
tion 3.8) which satisfy the formulae. The set of formulae consists of three sections. In 
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the process specification section, the set of possible life cycles A over the event signature 
is specified. The different ways to specify A will be explained in more detail later in this 
section. The set of possible observations (definition 3.6) as well as possible sequences of 
observations are specified in the const ra ints  section using static and dynamic integrity 
constraints. Note that constraints are basically not necessary since observations depend 
on the life cycles~ but they are desirable to support abstract descriptive specifications. 
Valuation rules specify the effect of event occurrences on attribute values, i.e. they link 
life cycles with observations and thus describe the observation map of an observation 
structure (definition 3.7), the second component of an object model (definition 3.8). 

Single objects have a proper name and an associated template: 

object  object  name 
t e m p l a t e  template; 

end object  object  name; 

Objects normally are classified using object classes, e.g. copies of books belong to the 
class COPY in our UoD. The intension of a class is described by an object type which 
includes the surrogate space for identifiers and a set of templates for potential object 
instances (3.9). For the sake of simplicity, in this paper we only deal with homogeneous 
types, i.e. types with a single template only. A specification of an object type has the 
following structure: 

object  t ype  type name 
da t a  types  data types for surrogate space construction; 
ident if icat ion surrogate space specification; 
t emp la t e  template; 

Surrogate spaces may be defined in the type specification as sets of (nested) records 
using a notation similar to the attribute specification and thus resemble primary keys 
in (nested) relational database schemas. Record selectors may be used like attributes in 
specifications. 

An object class specification consists of a class name and an associated object type 

object  class c lass  name 
type specification or t ype  is type name; 

end object class class name; 

It is perfectly possible to have several classes with the same type. In order to keep object 
identifiers unique, the surrogate space of a class is an isomorphic copy of the surrogate 
space of the corresponding type. 

Let us now consider an example. We specify the object class BOOK. The objects in 
this class describe the abstract properties of books without regarding "real'; copies of it. 
Books in our UoD are static in the sense that their properties do not change after creation. 

object class BOOK 



69 

d a t a  t y p e s  string; 
ident if icat ion 

t i t l e :  string; 
f i r s t_au thor :  string; 

t e m p l a t e  
d a t a  t y p e s  nat, string, [PERSONt; 
a t t r i b u t e s  

authors:  list ([PEI~SON[); 
publ isher :  string; 
edition: nat; 
year: nat; 
derived no_authors: nat; 

events 
birth published; 
acquire; 

cons t ra in t s  
s ta t ic  

first_author = authors [l].name; 
year  > 1500; 

der iva t ion  rules 
no_authors ---- length(authors); 

end  ob jec t  class BOOK; 

The data type associated to the surrogate space has a record structure: 

]BOOK[ := r e c o r d ( t i t l e :  string, f i r s t_an thor :  string). 

The codomain of the attribute authors is the type list([PERSON[), i.e. lists of identifiers 
for instances of type IPEKSON[. The attribute no_authors is a derived attribute, i.e. its 
value depends on the values of other attributes. The derivation rules for derived attributes 
are specified in the constraint section. 

The event publ ished is the birth event for books, i.e. an occurrence of publ ished 
brings a book object into existence. The event acquire  denotes the azquisition of a book 
for the library. It has, however, no impact on the observable properties of books. Note 
that the the specification is not complete because we did not specify the initial attribute 
values. The initialization will be made by supplying the values as parameters of the 
birth-event. 

As an example for specification of object dynamics consider the object class COPY 
which models the copies of books being in the library. Copies are identified by document 
numbers. Thus, the surrogate space consists of natural numbers. The constant of denotes 
the book of which a particular instance is a copy. Note that constants do not belong to the 
template since semantically they are part of the surrogate and thus may not be changed 
by attributes. 

ob j ec t  class COPY 
d a t a  t ypes  nat, IBOOK[; 
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ident if icat ion 
doc_no: nat; 

cons tan ts  
of: 1BooKI; 

template 
d a t a  types  bool, date, [USERI, list(IUSERl), nat; 
a t t r i b u t e s  

on_loan: bool; 
due: date; 
borrowers: list (IUSERI); 

events 
birth get_copy; 
death throw_away; 
check_out(IUSER h date, nat); 
return; 

valuat ion  
variables  U: IUSERh d: date, n: nat; 
[get_copy] on_loan = false; 
[get_copy] borrowers ---- ernptylistO; 
[check_out(U,d,n)] on_loan ---- t rue;  
[check_out(U,d,n)] due = add_days_to_d te(d,n); 
[check_out(V,d,n)] borrowers = append(V,borrowers);  
[return] on_loan = false; 

safety  
var iables  U: IUSERI, d: date, n: nat; 
{on_loan = false} check_out(U,d,n); 
{exists(U: IUSER], d: date, n: nat) 

sornetime(after(check_out(V,d,n))) since last a f ter ( re turn)}  return;  
obl igat ions  

{exists(U: IUSERI, d: date, n: nat) after(check_out(U,d,n)) } =~ return;  
end ob jec t  class COPY; 

The attributes of the object class COPY are the boolean attribute on_loan which indi- 
cates whether a copy has been borrowed, the return date due, and the list of borrowers 
up to now (borrowers). The events represent the acquisition of a copy (get_copy), the 
lending and returning of a copy (check_out and return, respectively) and the removal 
of copies from the library (throw_away). The check_out-event has parameters for the 
borrower, the date the lending takes place, and the number of days the user is allowed to 
keep the copy. Event parameters allow for data to be exchanged during communication 
between objects and to define the effects of events on attribute values. 

These effects are specified using valuation rules after the keyword valuation.  The rules 
are universally quantified implicitly and invariant. A valuation rule has the following form 
(here simplified): 

[event] attribute ---- data term; 
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Such a rule denotes that the attribute attribute after the occurrence of the event event 
will have the value of the term data term. The data term is evaluated in the state 
before the occurrence of the event and thus corresponds to an assignment in imperative 
programming languages. Note that we use an implicit frame rule stating that attribute 
values not being set by a valuation rule remain unchanged after an event has occurred. 
The following rule computes the return date after a book has been borrowed using a 
function of the data type 'date': 

v a l u a t i o n  
var iab les  U: IUSERI, d: date, n: nat; 
[check_out(U,d,n)] due ~- add_days_to_date(d,n); 

The set of possible life cycles A may be specified using several different formalisms. 
This is due to the fact that  objects may represent a wide variety of UoD concepts which 
include typical passive objects like books and active objects like a calendar as well as 
abstract user interface objects and even objects performing query evaluation [JSS90]. 

Currently, Oblog  + supports the following formalisms for process specification: 

• Safety  rules state preconditions for the occurrence of events. 

• Obligations state completeness conditions for life cycles, i.e. events which are obliged 
to occur if a certain condition holds. 

• A process can be specified explicitly using a CSP-like notation. We will not consider 
this further in this paper. 

In the COPY-template we state two safety rules. The first rule simply states that  a 
copy can only be borrowed if it is not on loan currently: 

s a fe ty  
var iab les  U: IUSERI, d: date, n: nat; 
{on_loan :-- false} check_out(U,d,n); 

The second rule states that a book can only be returned if it has been lend sometime 
in the past and has not been returned already: 

safety 
{exists(U: fUSERl, d: date, n: nat) 

somet ime(af ter(check_out(U,d,n)) )  s ince las t  ( a f te r ( re tu rn) )}  r e tu rn ;  

Note tha t  we refer to the history of an object. In safety rules, we thus may use a temporal 
logic in the past with operators like a l w a y s  in t h e  pas t  or s o m e t i m e  ... s ince las t  
..., which can be defined analogously to the known operators in temporal logics for the 
future (cf. [Ser80, Saa90]). The predicate a f t e r  holds in each state immediately after the 
occurrence of the particular event. 

In obligations, conditions for complete life cycles are stated. The conditions must 
hold before an object can be deleted. Simple obligations require events to occur, maybe 
depending on the current state. For copies of books we state that  they have to be returned 
sometime after having been checked out: 
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obligations 
{exists(U: IUSERI, d: date, n: nat) after(check_out(V,d,n))) } =~ return;  

After these considerations, let us take a brief took at the object model of the in- 
stances of class COPY. The event alphabet of the process component contains a family of 
check_out-events indexed by IUSERI x date × nat. The set of life cycles is specified by the 
rules in the safety- and obligations-sections. In possible life cycles, an element of the family 
of check_out-events is only allowed to occur if an event setting the value of the attribute 
on_loan to false has occurred before. Each check_out-event occurrence has to be followed 
by one and only one occurrence of the event return.  Associated with the prefix consisting 
only of the birth-event get_copy is the observation {(on_loan, false), (borrowers, N)}, 
where ~ denotes the empty list. Each prefix ending with an occurrence of r e tu rn  is 
mapped to an observation {(on_loan, false), (due, d), (borrowers, b)}, where d and b are 
the values of due and borrowers in the state before the return-occurrence. 

Due to the limited space s we are not able to go into more detail concerning object 
specifications. We now take the step from single isolated objects to object societies. 

5 Object Society Specifications 
Objects in a UoD may be related to each other in various ways - they may interact, they 
may be components of complex objects, and there may be generalization hierarchies of 
objects and object classes. The semantics of relationships between objects is defined using 
the object inclusion morphism introduced in section 3 (definition 3.14). Recall that this 
morphism preserves the properties of objects concerning locality of observation maps and 
possible life cycles. In this section, we show how relationships between objects may be 
specified. 

The first type of relationship we consider are roles of objects (see also [Wie90a, Wie90b] 
for further considerations of the role concept). If an object plays a role, it is regarded 
as a temporay specialization of the base object. As a specialized object, it may have 
additional properties and a restricted behavior. Since it conceptually is not a new object, 
the surrogate space remains unchanged. A role of an object is created by the occurrence 
of events in the base object which are considered to be birth-events of the role. 

Take for example the object class LIB~00K, which models books in the role of books 
being present in the library. The class is specified as follows: 

object class LIB_B00K 
view of  BOOK; 
t e m p l a t e  

data t ypes  nat; 
attributes 

no_available: nat; 
events 

birth acquire; 
dec_copies; 
inc_copies; ... 
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valua t ion  
{no_avai lable> 0} ==~ [dec_copies] no_available ~- no_avai lable - 1; 
[inc_copies] no_avai lable  = no_avai lable  -~ 1; 

end ob jec t  class LIB_B00K; 

A book starts to play the role of a library book by performing the event acquire  
which is the birth event of the role object. For each book in the library the number of 
copies currently not being on loan is noted in the attribute no_available,  which is an 
additional property of library books only. The value of this counter is changed by the 
events dec_copies and inc_copies. 

Formally, the signature of the B00K-template is included in the LIB_B00K-template, ob- 
ject instances of class BOOK are embedded in the corresponding instances of class LIB_B00K 
using an object embedding morphism (definition 3.14), and the set of current LIB_BOOK- 
identifiers is included in the class of current B00K-identifiers. 

For roles, one base object is included implicitely. We may, however, specify the inclu- 
sion of objects explicitly, too. With the inheriting-construct in Oblog + we may import 
single objects as well as (sub-)classes of objects. Consider e.g. copies of library books to 
be subobjects of the corresponding library book: 

ob jec t  class LIB_BOOK 
view of  BOOK; 
t e m p l a t e  

inher i t ing C in COPY where  C. of = SELF. id  as COPIES; 
. .  , 

Here, we include all those copies C of class COPY, whose constant of denotes the book 
itself. To support access to instances of the class of included copies, we may assign a 
name to it (COPIES). 

The complete specification of the class LIB_BOOK is the following: 

ob j ec t  class LIB_B00K 
view of  BOOK; 
t e m p l a t e  

da t a  t ypes  nat; 
inher i t ing C in COPY where  C. of = SELF. id  as COPIES; 
a t t r i b u t e s  

no_available: nat; 
events 

birth acquire; 
dec_copies; 
inc_copies; 
hand-out (IUSERI, IC0PYI); 
request (IUSERI); 
send_message (ISTAFF_USER I) ; 

valuation 
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{no_ava i l ab le>  0} =~ [dec_copies]no_avai lable ~- no_ava i lab le  -- 1; 
line_copies] no_available = no_available + 1; 
[aquire] no_available = O; 

sa fe ty  
var iab les  U: IUSERI, C, C1: tCOPIESt, SU: ISTAFF_USEK I 
{no_avai lable  > 0 a n d  some t ime(a f t e r ( r eques t (U) ) ) )  hand_out(U,C); 
{not(somet ime(af ter (hand_out(U,C)))  s ince las t  after(COPIES(C).return)))  

hand_out (U,C1); 
{no_available = 0 and 

sometime(after(request(U))) since last after(hand_out(U,C))} 
send_message(SU); 

interaction 
variables U: IUSERI, C: ICOPIESI, d: date, n: nat; 
calling 

COPIES(C).check_out(U,d,n) > >  dec_copies; 
COPIES(C).return >> inc_copies; 
COPIES(C).get_copy >> inc_copies; 
hand_out(U,C) > >  COPIES(C).check_out(U,d,n); 

e n d  ob j e c t  class LIB_B00K; 

The event hand_out models the delivery of a copy to a user, the event r e q u e s t  rep- 
resents a user request for a book. By the occurrence of the event send_message staff 
members are requested to return the copy they borrowed. The safety rules state that  a 
copy of the book can only be given out to the user U if at least one copy is available 
and U issued a request for the book. Furthermore, a user is only allowed to borrow one 
copy of a particular book at a time. Messages to borrowers can only be sent if there is a 
request but no copy currently is available. 

Note that  interactions between an instance of type LIB_B00K and the embedded in- 
stances of type COPY can only take place by event calling or event sharing. Here, we 
use event calling to update the no_avai lable-counter  everytime a copy is borrowed or 
returned: 

i n t e r a c t i o n  
var iab les  U: [USERI, C: ICOPIES[, d: date, n: nat; 
cal l ing 

COPIaS(C).check_out(U,d,n) >> dec_copies; 
COPIES(C).return >> inc_copies; 
COPIES(C).get_copy >> inc_copies; 

If a copy is checked out, the counter has to be decremented, if a copy is returned, the 
counter is incremented. Since locality has to be preserved, an event of an object of class 
COPY is not allowed to directly have an effect on attributes of a LIB_BOOK-instance. Note 
that if we defined interactions using event sharing (i.e. calling in both directions), each 
time an event dec_copies of a LIB_BOOK-instance occurred in each included instance of 
class COPY a corresponding check_out-event would have occurred (which not exactly is 
how it should work ...). 
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Formally, those instances of class COPY whose constant of is set to the identifier of an 
instance of class LIB_B00K are embedded in the corresponding LIB_BOOK-instance using 
object inclusion morphisms (definition 3.14). 

To complete the conceptual model of the UoD, we specify the object class USER: 

ob jec t  class USER 
d a t a  t ypes  string; 
ident if icat ion 

uid: string; 
cons tan t s  

copies_allowed: {3, I0}; 
template 

data types ICOPYI, date, nat, ILIB_BOOKI; 
attributes 

borrowed: set(IC0PYl); 
events  

b i r th  subscr ibe;  
dea th  unsubscribe;  
borrow(ICOPYI, date, nat); 
act ive return(]COPYD; 
act ive request(ILIB_BOOKD; 

valua t ion  
var iables  C: IcoPYI, d: date, n: nat; 
[borrow(C,d,n)] borrowed = insert(C, borrowed); 
[return(C)] borrowed = remove(C, borrowed); 

safety 
variables C: IcoPYh d: date, n: nat; 
{not(in(C, borrowed)) and card(borrowed) < copies_allowed} borrow(C,d,n); 
{sometime(after(borrow(C,d,n))) } return(C); 
{empty(borrowed)} =subscribe; 

ini t ia t ives  
var iables  C: ICOPYI, d: date, n: nat; 
{after(borrow(C,d,n))} ~ return(C);  

end ob jec t  class USER; 

Objects of class USER are active in the sense that they may perform events rather 
than only suffer events. The optional keyword act ive denotes that the occurrence of such 
events can be forced by the object itself. In the initiative-section, we may state goals 
which in contrast to liveness requirements are not obligatory to occur. Here, users may 
return copies on their own initiative once they borrowed that particular copy (which in 
reality is not a/ways the case, though ...). 

Depending on the constant copies_allowed we now define two specializations of user 
objects. In contrast to roles, specializations are a static concept, i.e. they depend on static 
properties of base objects. 

Students are those users who may borrow at most three copies at a time. Moreover, 
they have to return a copy after 21 days, which is specified using am additional safety 
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rule: 

ob jec t  class STUDENT_USER 
specializing f rom USER where  copies_allowed = 3; 
t e m p l a t e  

safety  
variables  C: ]COPY], d: date, n: nat; 
{ n < 21 } borrow(C,d,n); 

end ob jec t  class STUDENT_USER; 

Staff members do not have any time limit for returning book. They have, however, to 
return a copy on request (get_message): 

ob jec t  class STAFF_USER 
specializing f rom USER where  copies_allowed -- 10; 
t e m p l a t e  

da t a  types  ILIB_B00KI; 
events  

get_mess age (ILIB-B00KI); 
obl igat ions  

variables  LB: ]LIB_BOOK], C: ICOPYI; 
{ af ter  (get_mes s age (LB)) 

and in(C,borrowed) and C.of = LB } =k return(C); 
end object class STAFF_USER; 

Another relationship between object classes are generalizations of object classes. We 
observe that object instances with different models may belong to the generalized class. 
Thus, the associated type usually is a heterogeneous type with more than one element in 
the set of object models (definition 3.9). We do not consider generalizations further in 
this paper. 

Additionally, we may specify object interfaces to explicitly provide particular views on 
objects and object classes [SJ90]. 

An object society specification has the following structure: 

ob jec t  socie ty  SocietyName 
data type specification; 
[template and type specifications;] 
object and object class specifications; 
global in terac t ion  communication between autonomous objects; 
global  cons t ra in ts  global integrity constraints; 

end  ob jec t  soc ie ty  SocietyName. 

In the global part, we may state integrity constraints concerning several objects or 
object classes and communications between objects which axe not related. Although 
this may be regarded as violation of locality, we consider it to be essential for readable 
and understandable abstract specifications. During refinement of specifications, global 
communication and global constraints will be localized in objects. As an example for 
global communication, we model the request for a library book issued by a user, the 
lending of a copy, and the sending of messages to users: 
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global in te rac t ion  
variables C: [COPY[, d: date, n: nat, U: [USER[, SU: [STAFF_USERI; LB: [LIB_B00K[; 

USER(U).request(LB) >> LIB_B[3OK(LB).request(U); 
C0PY(C).check_out(U,d,n) >> USER(U).borrow(C,d,n); 
elB_B00K(LB).send_message(SU) >> STAFF_USER(SU).get_message(LB); 

The concept of object described in section 3 does not support global constraints and 
interactions. Therefore, these formulae describe properties of a complex object being the 
aggregation of the related objects. 

6 Di scuss ion  and Conc lus ions  

In this paper, we introduced a formal concept of object. Objects are regarded to be 
dynamic entities encapsulating structure and dynamics which are able to communicate, 
i.e. we put strong emphasis on the specification of dynamic evolvement of systems. As 
a semantical basis for relationships between objects, we introduced the notions of event 
calling and morphisms between objects. Based on this semantical model, we proposed 
a formal language Oblog + which supports the object-oriented specification of informa- 
tion systems. The language enables the integrated specification of object structure and 
behavior as well as the specification of object societies on an abstract level. 

A lot of work towards UoD-modeling has been done in the past. One thread is the 
knowledge-based approach discussed e.g. in IBM86, ST89]. The approach stresses the idea 
that UoD modeling is in fact modeling of knowledge about the UoD. The results produced 
in this branch are concerned with ontological (concepts for representing UoD aspects) and 
epistomological (building blocks and structuring mechanisms for UoD models) aspects. 
An example for such a language is RML [GBM86]. 

Another thread emerges from the database community. The languages proposed aim 
at designing the implementation of an information system as the result of a requirements 
analysis. Examples for such proposals are Taxis [MBW80, Nix84], SDM [HM81], IFO 
[AH87], and the (variants of) the ER-model [Che76, HG88] (for a survey see [UD86, 
HE87, PM88]). 

Characteristics of the two threads mentioned above are: 

Object/Entity descriptions are separated from dynamics descriptions (if dynamics 
can be described at all) and even constraints are separated from entity descrip- 
tions (in Taxis and RML). Thus, the view of objects being dynamic entities is not 
supported. 

The proposed formalisms cannot be applied to different levels of abstraction dur- 
ing the development process. This becomes evident e.g. in the DAIDA project 
[BJM+89]. 

The approaches do not support the explicit modeling of communication and coop- 
eration between concurrent objects. 
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A third thread is concerned with tailoring programming languages with concepts for 
semantic modeling. Examples are Galileo [ACO85] and ADAPLEX [SFL83]. Their re- 
liance on programming langugages makes them directed towards implementation and thus 
unsuitable for conceptual modeling. 

Among the object-oriented approaches, only a few suited for UoD-modeling exist. The 
language FOOPS [GM87] evolved from integration the specification of abstract data types 
with object-oriented concepts. Due to the lack of process and role concepts, the emphasis 
is more on the description of static structure and state transition. 

The language CMSL [Wie90a, Wie90b] is a language especially for formal specification 
of object-oriented conceptual models. In CMSL, objects are (like in Oblog +) dynamic 
entities whose life is described by a process. Similar to our approach, the UoD is repre- 
sented by a collection of interacting dynamic objects. The capabilities of Oblog + and 
CMSL are roughly the same. 

A graphical notation based on a semantic data model (for describing the static as- 
pects) and Petri Nets (for object dynamics) are Object/Behavior Diagrams [KS90]. In 
subsequent steps, the object types, the admitted life cycles for instances of object type- 
s and interactions between objects are modeled making the rationale of this approach 
similar to Oblog +. 

Further research issues on Oblog + concern the refinement and implementation of 
specifications. The idea is to define a set of transformations on theories to obtain an 
equivalent specification involving only simply structured objects. This specification may 
then be implemented using techniques for object reification as presented in [ES89, SE90]. 
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