
Knowledge and Probability in Distributed Systems: 
Abstract 

J o s e p h  Y. H a l p e r n  

I B M  A l m a d e n  R e s e a r c h  C e n t e r  

Sa n  Jose ,  C A  95120 

ema ih  h a l p e r n @ i b m . c o m  

Epistemology, the study of knowledge, has a long and honorable tradition in philosophy, starting 
with the Greeks on through the formal analysis of Hintikka [Hin62] and his successors in the 1960's 
and 70's. It will not come as a great surprise that epistemlogy has also been of interest to researchers 
in ArtificiM Intelligence. After all, being able to represent and reason about knowledge is a key 
attribute of an intelligent system. Perhaps it is more surprising that reasoning about knowledge 
should have relevance to distributed computing. The goals of my talk are (a) to convince you that 
it does indeed have great relevance, (b) to show how distributed systems can be analyzed in terms 
of knowledge, and (c) to show how our tools for analyzing protocols in terms of knowledge can be 
extended to handle probability. The talk is essentia~y a summary of material from two papers: 
[HMg0] and [HT89]. In this abstract, I will (very briefly!) sketch a few of the details, and provide 
references to other work in applying tools of epistemic logic to distributed computing. 

Philosophers have used the possible wbrlds framework to analyze knowledge, belief, and other 
modaliities. Roughly speaking, the idea is that each agent imagines a number of possible worlds, 
that is, ways the world could be. An agent knows a fact T if ~ is true in all the worlds an agent 
considers possible. This is formalized by means of a Kripke structure. (The reader unfamiliar with 
Kripke structures can consult references such as [CheS0, HC78, HM85] for details.) 

Work on applying epistemic logic to distributed computing started roughly seven years ago, with 
[HMg0]. In the context of distributed systems, what matters is not just the knowledge of one agent 
about the state of nature, but also the knowledge an agent has about other agents' knowledge, 
and the state of the group's knowledge. In particular, it was shown in [HM90] that the state of 
knowledge known as common knowledge (where ~ is said to be common knowledge if everyone 
knows ~, everyone knows that everyone knows ~, etc.) was critical for reaching agreement. It was 
also demonstrated that common knowledge was not attainable under some minimal assumptions, 
and attainable variants of common knowledge were identified. The themes of this paper have been 
pursued in numerous papers (for example, [CM86, DM90, FI86, Had87, HF89, HMW90, HZ87, 
Maz88, MT88, Nei88a, NT87, PT88, PR85]; see [Hal87] for an overview) and Ph.D. theses [Maz89, 
Mic89, MosS6, Nei88b, Tut89]. 

The model of knowledge used in most papers that consider formalizing knowledge in distributed 
systems [CM86, FI86, HF89, HM90, PR85] is quite straightforward. We assume that we have a 
system of n processes, communicating with each other. We further assume that if we look at the 
system at any point in time, each of the processes is in some local state. The tuple consisting of each 
process' local state at a given time is called the global state of the system. (Occasionally it is also 
useful to add a component describing the state of the environment, which includes all information 
about the system not contained in the state of the processes, such as information about messages 
in transit.) A run is a complete description of the system's behavior over time in one possible 
execution of the system. Formally, it is a function from time to global states. A system is defined 
to be a set of runs; intuitively, this set describes all the possible executions of the system. We call 



51 

a pair (r,m) consisting of a time r and a time m a point. Thus, at a point (r,m), the system is in 
global state r(m). We can view the points of the system as the possible worlds. At a point (world) 
(r,m), we say that process i considers the point (r',m') possible if process i is in the same local 
state at the global states r(m) and r'(m'). Intuitively, process i cannot distinguish the points (r, m) 
and (r', m') because it has the same information at both points. It is easy to see that process i's 
possibility relation as defined above is an equivalence relation. We can now apply the possible-worlds 
definition of knowledge in a straightforward way: a process i knows a fact ~ at a point (r, m) if ~0 
holds at all points (r', m ~) that i considers possible at (r, m), namely, all points where i has the same 
local state as at (r, m). This definition of knowledge in distributed systems can easily be shown to 
satisfy the axioms of the well-known modal logic $5 [CheS0]. More importantly, it corresponds to 
one important way that the word knowledge has been informally among systems designers. When 
a system designer says "we cannot terminate the protocol at this point because process 2 does not 
know that process 3 received the value of x", the word "know" is being used in a way completely 
consistent with this definition. 

We remark that although this definition seems geared to distributed systems, it easily translates 
to other contexts. The processes can be agents in a bargaining session, robots trying to carry out 
some task, or even the wires in a digital circuit; the definitions go through perfectly well. Perhaps not 
surprisingly, definitions related to the one above have appeared in other disciplines. Rosenschein and 
his collaborators [RosS5, RK86] adopted it for analyzing digital machines. In the context of game 
theory, knowledge of what other agents know is clearly crucial. Game trees [Ras89] can be viewed 
as essentially defining a system: each path in the game tree roughly corresponds to a run. Game 
theorists talk about information sets: these are precisely the sets of nodes in the game tree that a 
given agent cannot distinguish. They use these to define notions of knowledge that are essentially 
identical to those defined above. These notions of knowledge (including common knowledge) have 
been the subject of a great deal of research in the economics community, starting with the publication 
of Aumann's seminal paper [Aum76]. 

Philosophers have presented criticisms against $5 as an appropriate model for knowledge (see 
[Len78] for details and an overview of the philosophers' work in the 1960's and 70's). While these are 
legitimate criticisms, I would argue that the notion of knowledge being used in distributed systems 
is a useful one, and does reflect one way the word is in practice. Moreover, as the papers cited 
above show, it is a useful notion; it can be used to help us better understand, analyze, and design 
distributed algorithms. 

Nevertheless, it is clear that this notion of knowledge is not adequate for all applications. One 
extension that has been considered, which I shall not discuss further here, is trying to define a 
notion of computable knowledge, that takes the complexity of computing knowledge into account 
in a reasonable way; see [MosS8, HMT88] for further details along these lines. Another extension, 
which I shall briefly discuss below, is that of incorporating probability into the framework. 

Given the importance of randomized algorithms and, more generally, the need to reason about 
probability in many of the applications involving reasoning about knowledge, trying to combine 
reasoning about knowledge and about probability was an obvious step to take. It seems that it 
should be relatively straightforward to combine knowledge and probability in a possible-worlds 
framework. We simply view the set of worlds that an agent considers possible as a probability space. 
However, there are some subtleties, particularly those involving the interaction of probabilistic and 
non-probabilistic events. For example, when analyzing a randomized algorithm, the probabilistic 
events are the outcomes of the coin tosses. For these, it makes perfect sense to assign a probability 
(for example, if a fair coin is tossed, it seems reasonable to assign probability 1/2 to the set of 
worlds where the coin lands beads). Events such as input values, for which we are typically not 
given a probability, can be viewed as non-probabilistic. For such events it is inappropriate (at least, 
at this level of analysis) to assume probabilities. When proving that a randomized algorithm such 
as Rabin's primality-testing algorithm [RabS0] is correct, we do not want to assume that there is a 
probability that the input will be 127,531. We want to prove the algorithm gives the correct answer 
with high probability (taken over the coin tosses) independent of the probability on the inputs. 



52 

Arguments can be made that the best (and arguably most natural) way of doing this is to split 
up the state space (in this case, the set of points) into a number of separate probability spaces, 
essentially one corresponding to each possible input [FZ88, HT89]. While this approach may seem 
somewhat ad hoc, as shown in [HT89], it can be given a natural interpretation. It corresponds 
to playing different adversaries, with different knowledge. This point is perhaps best clarified by 
considering the following situation. Suppose agent 1 tosses a fair coin. He is observed by agents 2 
and 3, who do not know the outcome of the toss, but do know that the coin is fair. What probability 
should agent 2 assign to the event "heads" after the coin has landed? There are two standard answers 
to this question. One is that the probability is 1/2; after all, it was 1/2 before the coin was tossed, 
and agent 2 has not learned anything that would cause him to change his opinion regarding the 
probability. The other answer is that since the coin has landed, the event has already occurred. It 
doesn't make sense to say it has probability 1/2; the probability is either 0 or 1, but agent 2 does 
not know which. 

Another way of thinking about this is that the probability of heads is not well defined until 
we specify which adversary agent 2 is playing against. If agent 2 is playing against agent 3, since 
both 2 and 3 have no idea of the outcome of the coin toss, the appropriate probability for agent 2 
to assign is 1/2; on the other hand, when playing agent 1, who presumably knows the outcome of 
the coin toss, then the best agent 2 can say is that he knows the probability is either 0 or 1, but 
does not know which. The connection to splitting up a probability space into subspaces is relatively 
straightforward in this case. The answer 1/2 clearly comes from considering a probability space 
consisting of two points (one corresponding to the events heads and one corresponding to the event 
tails). If we split up this probability space into two subspaces, the event "heads" has probability 1 
in one of them (the one consisting of just the point corresponding to heads) and 0 in the other. All 
these points are formalized in [HT89]. 

The advantage of thinking in terms of adversaries is that it closely resembles the way researchers 
in cryptography, game theory, and distributed systems already analyze many situations. The analysis 
in [HT89] is only a first step; much more work remains to be done in terms of considering specific 
classes of adversaries. In addition, much more work needs to be done to apply these ideas to 
analyzing more protocols, both probabilistic and non-probabilistic. 

References  

[Aum76] R . J .  Aumann. Agreeing to disagree. Annals of Statistics, 4(6):1236-1239, 1976. 

[CheS0] B.F.  Chellas. Modal Logic. Cambridge University Press, 1980. 

[CM86] K.M.  Chandy and J. Misra. How processes learn. Distributed Computing, 1(1):40-52, 
1986. 

[DMg0] C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine environment: 
crash failures. Inforvnation and Computation, 88(2):156-186, 1990. 

[FH88] R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability: preliminary 
report. In M. Y. Vardi, editor, Proceedings of the Second Conference on TheoreLicaI Aspects 
of Reasoning about Knowledge, pages 277-293. Morgan Kanfmann, 1988. 

[FI86] M. J .  Fischer and N. Immerman. Foundations of knowledge for distributed systems. In 
J. Y. Halpern, editor, Theoretical Aspects of Reasoning about Knowledge: Proceedings of 
the 1986 Conference, pages 171-186. Morgan Kanfmann, 1986. 

[FZ88] M. 3. Fischer and L. D. Zuck. Reasoning about uncertainty in fault-tolerant distributed 
systems. Technical Report YALEU/DCS/TR-643, Yale University, 1988. 



53 

[GMR89] 

[H~87] 

[Hal87] 

[HC78] 

[HF89] 

[Hin62] 

[HM85] 

[HM90] 

[HMT88] 

[HMW90] 

[HT89] 

[HZ87] 

[Len78] 

[Maz88] 

[Maz89] 

[Mic891 

[Mo886] 

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof 
systems. SIAM Journal on Computing, 18(1):186-208, February 1989. 

V. Hadzilacos. A knowledge-theoretic analysis of atomic commitment protocols. In Proc. 
6th ACM Syrup. on Principles of Database Systems, pages 129-134, 1987. A revised 
version has been submitted for publication. 

J. Y. Halpern. Using reasoning about knowledge to analyze distributed systems. In 
J. Traub et al., editors, Annual Review of Computer Science, Vol. P, pages 37-68. Annual 
Reviews Inc, 1987. 

G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen, 1978. 

J. Y. Halpern and R.. Fagin. Modelling knowledge and actionin distributed systems. 
Distributed Computing, 3(4):159-179, 1989. 

J. Hintikka. Knowledge and Belief. Cornell University Press, 1962. 

J. Y. Halpern and Y. Moses. A guide to the modal logics of knowledge a~ad belief. In Ninth 
International Joint Conference on Artificial Intelligence (IJCAI-85), pages 480-490, 1985. 

J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed environ- 
ment. Journal of the A CM, 37(3):549-587, 1990. An early version appeared in Proceedings 
of the 3rd A CM Symposium on Principles of Distributed Computing, 1984. 

J. Y. Halpern, Y. Moses, and M. R. Tuttle. A knowledge-based analysis of zero knowledge. 
In Proc. POth ACM Symp. on Theory of Computing, pages 132-147, 1988. 

J. Y. Halpern, Y. Moses, and O. Waarts. A characterization of eventual Byzantine 
agreement. In Proc. #th A CM Symp. on Principles of Distributed Computing, pages 333- 
346, 1990. 

J. Y. Halpern and M. R. Tuttle. Knowledge, probability, and adversaries. In Proc. 8th 
ACM Symp. on Principles of Distributed Computing, pages 103-118, 1989. 

J. Y. Halpern and L. D. Zuck. A little knowledge goes a long way: Simple knowledge- 
based derivations and correctness proofs for a family of protocols. In Proc. 6th ACMSymp. 
on Principles of Distributed Computing, pages 269-280, 1987. A revised and expanded 
version appears as IBM Research Report RJ 5857, 1987 and will appear in Journal of the 
ACM. 

W. Lenzen. l~ecent work in epistemic logic. Acta Philosophica Fenniea, 30:1-219, 1978. 

M. S. Mazer. A knowledge theoretic account of recovery in distributed systems: the case 
of negotiated commitment. In M. Y. Vardi, editor, Proceedings of the Second Conference 
on Theoretical Aspects of Reasoning about Knowledge, pages 309-324. Morgan Kaufmann, 
1988. 

M. S. Mazer. A knowledge-theoretic account of negotiated commitment. PhD thesis, 
University of Toronto, 1989. 

R. Michel. Knowledge in distributed Byzantine environments. PhD thesis, Yale University, 
1989. 

Y. Moses. Knowledge in a distributed environment. PhD thesis, Stanford University, 1986. 



[Mos88] 

[MT88] 

[Nei88a] 

[Nei88b] 

[NT87] 

[PR85] 

[PT88] 

[I~b80] 

[Ras89] 

[RK86] 

[Ros85] 

[WutS9] 

54 

Y. Moses. Resource-bounded knowledge. In M. Y. Vardi, editor, Proceedings of the Second 
Conference on Theoretical Aspects of Reasoning about Knowledge, pages 261-276. Morgan 
Kaufmann, 1988. 

Y. Moses and M. R. Tuttle. Programming simultaneous actions using common knowledge. 
Algorithmica, 3:121-169, 1988. 

G. Neiger. Knowledge consistency: a useful suspension of disbelief. In M. Y. Vardi, 
editor, Proceedings of the Second Conference on Theoretical Aspects of Reasoning about 
Knowledge, pages 295-308. Morgan Kaufmann, 1988. 

Gil Neiger. Techniques for Simplifying the Design of Distributed Systems. PhD thesis, 
Cornell University, August 1988. Department of Computer Science Technical Report 88- 
933. 

G. Neiger and S. Toueg. Substituting for real time and common knowledge in asynchronous 
distributed systems. In Proc. 6th A CM Syrup. on Principles of Distributed Computing, 
pages 281-293, 1987. To appear, Journal of the ACM. 

R. Parikh and R. Ramanujam. Distributed processing and the logic of knowledge. In 
R. Parikh, editor, Proc. of the Workshop on Logics of Programs, pages 256-268, 1985. 

P. Panangaden and S. Taylor. Concurrent common knowledge: A new definition of agree- 
ment for asynchronous systems. In Proc. 7th ACM Syrup. on Principles of Distributed 
Computing, pages 197-209, 1988. 

M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 
12:128-138, 1980. 

E. Rasmusen. Games and Information" An Introduction to Game Theory. Basil Blackwell, 
1989. 

S. J. Rosenschein and L. P. Kaelbling. The synthesis of digital machines with provable 
epistemic properties. In J. Y. ttalpern, editor, Theoretical Aspects of Reasoning about 
Knowledge: Proceedings of the 1986 Conference, pages 83-97. Morgan Kaufmann, 1986. 

S. J. Rosenschdn. Formal theories of AI in knowledge and robotics. New Generation 
Computing, 3:345-357, 1985. 

M. R. Turtle. Knowledge and distributed computation. PhD thesis, MIT, 1989. 


