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Abstract A history and summary of iridium-catalyzed hydrogen isotope exchange
(HIE) is described. Owing to the wide range of applications served by installation of
heavy and radioactive hydrogen isotopes, a wealth of synthetic labeling strategies
have been forthcoming. Principle among all HIE methods are those developed using
homogeneous iridium catalysts. This chapter covers major developments in (primar-
ily homogeneous) iridium-centered catalysts for HIE. Connections to the broader
fields of hydrogenation and C–H functionalization are also considered.
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1 Introduction

1.1 Isotopes and Isotopic Labeling

Isotopes of a particular element have an identical number of protons in their
respective nuclei but possess an unequal number of neutrons. Namely, they share
the same atomic number but have different mass numbers, as exemplified for
hydrogen (Scheme 1) [1]. The stability of an isotope is governed by the ratio of
neutrons to protons within the nucleus, thus giving rise to two possible circum-
stances. Firstly, a heavy isotope of an element, such as 2H or 13C, has a stable nucleus
and tends to be found in nature, albeit at lower abundances than their more common
counterparts, 1H and 12C, respectively. In the alternative case, radioisotopes, such as
3H or 14C, have an unstable neutron/proton ratio and decay, via emission of radiation
or particles, to form other elements, or different isotopes of the parent element.

The synthesis and supply of isotopically labeled molecules has a sustained
importance in the study of metabolic processes, among myriad other processes
[2]. It is therefore unsurprising that there is a large and growing body of research
dedicated to the synthesis of isotopically labeled compounds. The labeling of
molecules with 13C or 14C is most readily achieved through the use of commercially
available, isotopically enriched starting materials. While such a technique ensures a
regiospecific label will be present in the desired target molecule, it ultimately comes
at the price of unwanted additional steps in the synthesis [3].

Scheme 1 Simplified Bohr representations of the isotopes of hydrogen
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Research into deuterium (2H or D) and tritium (3H or T) labeling is more substantial
than that for other isotopes and has been developed on a number of fronts over the past
60 years [2–22]. Further to this, key developments in synthetic strategies and analyt-
ical techniques over the past three decades are gradually making tritium labeling the
preferred technique in many absorption, distribution, metabolism, excretion, and
toxicology (ADMET) studies [10]. In one particularly active branch of such research,
hydrogen isotope exchange (HIE) is commonly employed to deliver deuterium or
radioactive tritium to pharmaceutical drug candidates in one synthetic step.

1.2 Applications of Hydrogen Isotope Exchange

The importance of hydrogen isotope exchange (HIE), for iridium catalysts and
beyond, is manifest in the wealth of reviews published in the area [2–36]. As well
as circumventing the requirement for isotopically enriched starting materials in
synthesizing tritiated drug candidates [3, 10], HIE can also provide analogous
deuterated compounds for use as internal standards for mass spectrometry
[29, 37], for kinetic isotope studies, [21, 38, 39], and for the alteration of reaction
pathways in total syntheses [40]. Additionally, HIE is applied within almost every
sub-discipline in life science, in nuclear science, and beyond [2]. The ability for
precise measurement of isotope ratios promotes a dynamic view on biosynthetic
pathways, protein turnover, and systems-wide metabolic networks and, thus, has
paved the way for a number of scientific breakthroughs in biomedical research. In
assessing a drug candidate’s metabolic fate, the chemist must first have a flexible
technique with which to study it. Consequently, isotopic labeling is the gold
standard method by which early stage drug discovery processes are optimized.
The numerous application areas for HIE are summarized in Scheme 2.

1.3 Synthetic Methods in HIE

With a broad range of existing HIE applications, there exists a wide range of
synthetic methods to achieve hydrogen isotope incorporation in an ever-expanding
array of substrates. While the full gamut of chemistries developed for HIE is beyond
the primary focus of this chapter, it is worth covering these in brief. Firstly, the
source of deuterium and tritium has varied extensively from method to method;
however, some patterns exist. For deuteration, many methods have applied D2 gas,
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D2O (heavy water), DCl, benzene-d6, DMSO-d6, and numerous deuterated alcohols.
Of these isotope sources, and of direct relevance to the focus of this chapter, D2 gas
has been the preferred isotope source as it directly maps onto the preferred use of
tritium gas for radiolabeling protocols [5, 7, 10, 17].

Hand in hand with the range of hydrogen isotope sources is a wide range of metal-
mediated and other mediated processes for HIE (Scheme 3). Classically, these
include acid- and base-mediated reactions, as well as modern variations using
frustrated Lewis pairs (FLPs). Aryl labeling is most common, but many common
organic transformations have been pivoted into labeling protocols. Nonetheless,
metal-catalyzed HIE is dominant in HIE, covering heterogeneous and homogeneous
catalysis. Such methods have been more fully reviewed elsewhere [11, 12].

2 Ortho-Directed Iridium-Catalyzed HIE

Among all transition metals employed in homogeneous HIE methods, iridium is
arguably the most widely studied [2, 3, 5, 6, 11–13, 15, 17, 18, 20, 22, 26, 35, 36, 41,
42], which is, in part, due to the vast and ever-expanding literature precedent in
related hydrogenation reactions [31, 43–68]. Iridium was also present in some of the
earliest metal-centered catalysts applied to HIE chemistries [69]. In support of this
analysis of iridium’s popularity in HIE, Oro and co-workers estimated that iridium
accounted for 33% of all reported HIE methods, greater than for any other metal
[11]. While iridium catalysts have also been applied in heterogeneous catalysis

Scheme 3 Common synthetic transformations toward the installation of hydrogen isotopes in
organic substrates
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[70, 71], the focus of this chapter is on the far more expansive homogeneous iridium
catalysis developments.

2.1 Early Developments in Ortho-Directed HIE

There is a clear dominance of ortho-HIE in the homogeneous iridium catalyst
literature. In 1992, Heys demonstrated the successful ortho-directed deuteration of
several substituted aromatic compounds using the 18-electron Ir(III) bis-phosphine
dihydride complex 1 under very mild conditions (2 ! 3, Scheme 4) [72]. Crucially
for the time, Heys’ investigations marked a significant advancement from Lockley’s
ortho-labeling work (with rhodium and ruthenium catalysts) [73–75]: D2 gas
replaced D2O as the deuterium source (an advantage when considering the use of
tritium), reactions operated efficiently at room temperature, and, perhaps most
importantly, catalyst loadings were significantly reduced from 50 mol% to 2 mol
%. Interestingly, it was noted that labeling was significantly affected by steric or
electronic aspects of the substituents present on arene substrates. For example, meta-
substituted ethyl benzoates, such as 5, showed a consistent preference for labeling at
C-2 over the less hindered C-6 position, presumably due to additional coordination
assistance from meta-substituent lone pairs [76]. Steric hindrance from ortho-sub-
stitution reduced labeling efficiency (4 vs. 9); however, bulky α-substituted ketones
such as 6 were not so adversely affected. Further to this, where substrates possessed
more than one carbonyl directing group, the labeling site(s) changed according to
which substituent could coordinate to the catalyst to the greatest extent (e.g., 4 vs.
10).
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The mild labeling conditions pioneered by Heys and co-workers, coupled with
intriguing substrate-dependent regioselectivity, captured the combined interest of the
industrial and academic HIE communities, resulting in a large number of subsequent
studies aimed at understanding the catalytic properties of 1 and related Ir-based HIE
catalysts. Firstly, Heys followed up his initial study with a more in-depth assessment
of the aryl substituent effects in the labeling efficiency of ethyl benzoates and N,N-
dimethylbenzamide substrates (Scheme 5) [72]. In a rather unexpected outcome,
para-substitution improved the rate of labeling in both substrate types, irrespective
of substituent electronics (e.g., 11a vs. 11b and 11c). In an attempt to explain this
effect, Heys monitored the rate of labeling in both rings of several monosubstituted
benzophenones [72]. The substituted ring was labeled faster in every instance (12a–
12c). As both rings are connected to the same carbonyl functionality, it appeared that
the rate-limiting step of the overall reaction could not be ascribed to the initial
coordination of the substrate, nor hydride fluxionality [23]. Instead, Heys suspected
that some aspect of the C–H bond cleavage was rate-limiting, proposing key
intermediates 13 and 14 based on available literature. At this time, the formal
oxidation state of iridium intermediates involved in the C–H bond cleavage (IrI /
IrIII or IrIII/IrV) was not clear.

Inspired by Heys, Hesk and co-workers probed the efficacy of the commercially
available Crabtree hydrogenation catalyst, 15 [43], in labeling acetanilide deriva-
tives, the first such substrates to be effectively labeled via a 6- rather than a
5-membered metallocyclic intermediate (mmi) [77]. Consistent with Heys’ work,
Hesk reported that deuteration was directed ortho to the coordinating functionality.
Moreover, no clear relationship emerged regarding the electronics of para-substit-
uents and labeling efficacy. Ketones 17 and 18 were also compatible with this mild
labeling method; however, weakly coordinating benzenesulfonamide 19 and
benzoic acid 20 were not (Scheme 6).
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Since Heys’ and Hesk’s respective discoveries of iridium catalysts for ortho-
directed HIE, complexes 1 and 15 (and derivatives thereof, vide infra) have remained
topics of high interest in HIE research [26, 78–81]. In a further key development by
Heys, 21, a precatalytic Ir(I) variant of Ir(III) catalyst 1 was compared to related
bidentate pre-catalyst, 22 (Scheme 7) [82]. By the mid-1990s, it had already been
hypothesized by several researchers that both 5- and 6-mmis could be formed during
the C–H bond cleavage step in the ortho-deuteration process (23 vs. 24), depending
on the substrate being studied; this was to be the platform on which to compare
iridium catalysts 21 and 22.

Labeling a range of substrates enabled a comparison of the mono- and bidentate
phosphine complexes to be made, highlighting a preference for monodentate 21 to
react through a 5-mmi only, whereas bidentate 22 could react through both a 5- and a
6-mmi. This result was exemplified in the labeling of ethyl 1-naphthoate, 25
(Scheme 8, top). Of the two available labeling sites, the monodentate complex, 21,
labeled solely at C-2. Conversely, bidentate complex 22 demonstrated the capability
to direct labeling at both C-2 and C-8. When Crabtree’s catalyst, 15, was exposed to
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similar reaction conditions, the regioselectivity in labeling was similar to
monodentate complex 21, albeit with reduced labeling efficiency. Labeling through
a 6-mmi only was also investigated. Perhaps the most remarkable findings from this
study were those concerning the labeling of N-phenyl phenylacetamide, 26 (Scheme
8, bottom). Interestingly, the less active monodentate complex, 21, showed selec-
tivity for the aromatic ring adjacent to the nitrogen, 26a, an effect emulated more
efficiently by Crabtree’s catalyst in 26c. However, the bidentate catalyst 22 was able
to label both rings of 26 almost indiscriminately (see 26b). This served to show that
there was potential to distinguish not only between a 5- and 6-mmi, but also between
different types of 6-mmi, depending on the ancillary ligands employed.

On accumulation of these data, Heys proposed a catalytic cycle by which these
iridium complexes may be affecting the observed regioselective hydrogen isotope
exchange (Scheme 9) [82]. Upon treatment of the Ir(I) pre-catalyst, 27, with deute-
rium gas, hydrogenolysis of cyclooctadiene (COD) as d4-cyclooctane generates the
active Ir(III) catalyst, 28, where ligands (L) are assumed to be arranged trans to one
another when monodentate. Coordination of substrate displaces a solvent molecule
(S) and is thus accepted into the coordination sphere of the iridium catalyst to give
29. A second solvent molecule can then be displaced, allowing iridium to cleave the
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nearby ortho C–H bond of the aryl ring to yield 30. Transformation of species 31 to
32 is driven by a process known as hydride fluxionality and is central to the isotope
exchange process [23]. The overall effect brings a deuteride and the activated aryl
carbon into a cis arrangement. Subsequent C–D elimination furnishes 32, with a
deuterium atom now installed ortho to the directing group. Finally, the release of
deuterated substrate, 33, regenerates the resting catalytic intermediate, 28. This
mechanism invokes an all-Ir(III) catalytic cycle with C–H activation as the rate-
limiting step, supporting evidence for which would take another decade to accumu-
late. Said evidence involved isolation and crystallographic characterization of 34
(an acetonitrile-solvated analogue of 30) and spectroscopic studies on the evolving
nature of iridium hydride equilibria as a function of ancillary ligand electronics
(Scheme 9, inset) [20].

In an extension of the theory of ortho-directed HIE, Heys postulated that the
preference for the monodentate phosphine complex, 21, to react only via a 5-mmi,
38, as opposed to a 6-mmi, 37, was based on steric effects (Scheme 10) [82]. By
contrast, the bidentate complex, 22, is forced to arrange the phosphines cis to one
another. For substrates such as 25, this opens up a second face on the iridium
complex, offering greater spatial freedom for the formation of the less planar
6-mmi, 40, as well as the 5-mmi, 39. By the same thought, the monodentate
Crabtree’s catalyst, 15, can facilitate labeling through a 6-mmi as the pyridine and
tricyclohexylphosphine ligands present less steric bulk than the two
triphenylphosphine ligands of complex 21 and may thus exist in cis or trans form.
Herbert later capitalized on this rationale to further improve bidentate catalyst 22 in
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the labeling of 6-mmi substrates, changing the diphenylphosphinoethane (dppe)
ligand for the sterically less encumbered arsine analogue [81].

2.2 Contemporary Methods in Ortho-Directed HIE

Further synthetic developments by Herbert [28, 78, 83] and later Salter [26] showed
that bis-phosphine catalysts like 22 may be generated in situ from the appropriate
free phosphine and commercial iridium dimer, [Ir(COD)Cl]2, with comparable
activity to the isolated complexes. The same authors are also separately responsible
for detailed studies into alteration of the phosphine structure [26, 78, 81]. However,
both parties have remarked that strong correlations between ligand properties (such
as sterics or electronics) and catalyst activity are difficult to detect. The number of
such ligands applied to iridium-catalyzed HIE is now extensive and includes more
elaborate catalyst system like 41 (Scheme 11).

Parallel with studies into bis-phosphine systems, Crabtree’s catalyst 15 has also
been the subject of intense study in deuteration and tritiation, since Hesk’s discovery
[76, 84–89]. In one of the largest of any such study, Herbert explored an expansive
substrate scope, including ketones, amides, anilides, and various heterocycles
[83]. Despite the impressive array of examples reported, this study employed at
least stoichiometric quantities of 15 and a dual D2/D2O isotope source, making
comparisons to related ortho-labeling methods difficult.

In a notable crossover between bis-phosphine catalysts and Crabtree’s catalyst,
Hickey and co-workers developed a polymer-supported variant of Heys’
bis-phosphine catalyst, 42, which showed comparable ortho-HIE activity to 15
and 22, but with the practical benefit of simple catalyst filtration at the end of the
reaction (43 vs. 44 vs. 45; Scheme 12) [71]. Solid-supported iridium catalysts for
HIE have now been adapted to flow systems [80].
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Exploring an altogether different ligand architecture, Lockley reported the appli-
cation of hexafluoroacetylacetonate (hfacac)-ligated Ir(I) complex, 46, in ortho-HIE
(Scheme 13) [8, 10, 22, 90–92]. This catalyst has been successfully applied in the
labeling of benzylic amines, benzoic acids, and primary sulfonamides, where few
other Ir-based HIE catalysts have succeeded. The catalyst is one of the few iridium
HIE catalysts operational in highly polar solvents such as DMF (desirable for poorly
soluble drug molecules) and displays different labeling regioselectivities depending
on the choice of isotope source (D2 or D2O; see 47 ! 48 vs. 47 ! 49).

In the early 2000s, increasing interest in Crabtree’s catalyst, 15, in HIE was
paralleled with investigations by other researchers to improve efficiency and
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chemoselectivity in iridium-catalyzed olefin hydrogenation reactions [61]. Despite
its widely reported success, 15 is known to suffer from thermal deactivation via the
formation of inactive, hydride-bridged, iridium clusters (50, Scheme 14) [54]. Sim-
ilar effects have been documented for other iridium-based complexes [66, 93].

Separate investigations by Nolan [62] and Buriak [94] toward improved thermal
stability and predictable chemoselectivity of Crabtree-like hydrogenation catalysts
resulted in a plethora of highly promising electron-rich, N-heterocyclic carbene
(NHC)-ligated iridium catalysts (Scheme 15). Such species were first applied and
published in ortho-HIE processes by Powell and co-workers [95]. In Powell’s study,
complexes 51a and 52a–52c were employed under stoichiometric (industrial
“tritiation-like”) conditions, with the most active variant, 52c, shown to be superior
to Crabtree’s catalyst across the entire substrate range.

In a more interesting variant of this work, Kerr and co-workers studied the
catalytic activity of complexes 51b–51f, showing most active complex, 51e, to be
highly active over an appreciable substrate scope (5 mol% [Ir], 16 h, rt) and
displaying a higher turnover frequency (TOF) than Heys’ bis-phosphine catalyst,
22. Interestingly, the smaller complexes in the series studied by Kerr (51b and 51c)
were completely inactive as HIE catalysts [86]. Similar investigations by the same
group led to the discovery that small NHC/phosphine complexes such as 52c were
inactive as HIE catalysts, but larger variants 52d and 52ewere active across a limited
substrate scope [96].
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The exploration of NHC-ligated iridium HIE catalysts had revealed promising
(proof-of-concept) developments beyond the popular and established works of Hesk
and Heys. Kerr and co-workers later developed a synthesis of previously
unattainable complexes 53a–53c, bearing large phosphine and large NHC ligands
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(Scheme 16) [97]. These complexes have proven seminal within the ortho-HIE
domain and have among the highest activity [98], substrate/solvent scope
[99, 100], and tritiation reaction cleanliness of any such catalyst reported to date.
Additionally, ortho-HIE process with these complexes has been studied experimen-
tally and computationally, strengthening the case for a Ir(III)-based reaction mech-
anism akin to that proposed by Heys [98]. More specifically, kinetic isotope effect
(KIE) measurements [101] revealed that C–H bond cleavage was the rate-limiting
step of the reaction (54 ! 55), and detailed NMR studies revealed (via 2JP–C
coupling information) the trans-geometry of the ancillary ligands [98]. The same
study was also able to reveal the origins of the selective reactivity of such catalysts
for 5- over 6-mmi substrates, citing dual kinetic and thermodynamic favorability for
the 5-mmi. The calculated transition states 56 and 57 revealed, for the first time, the
sigma-bond-assisted metathesis (sigma-CAM) process at the heart of the all-Ir(III)
C–H activation step [98, 102].

While developing a rare method for labeling primary sulfonamides, Kerr and
co-workers considered directing group chemoselectivity in detail [102]. It was
observed that the sulfonamide vs. pyrazole selectivity in celecoxib 58 varied dra-
matically with catalyst choice (Scheme 17). Whereas encumbered and most-often
used NHC/phosphine catalysts facilitated labeling adjacent to the pyrazole moiety,
giving 58b, neutral NHC/Cl catalysts, such as 59, facilitated selective sulfonamide
labeling, delivering 58a, for the first time. Accompanying DFT studies revealed that
the substrate binding event was likely to be product-determining (60a vs. 60b), even
though C–H activation remained rate-limiting (Scheme 17). A similar rationale was
presented for multifunctional molecules containing esters as the targeted directing
group [103]. Following this, Derdau and co-workers significantly expanded on the
HIE studies of competing directing groups, showing once again that calculated
binding energies could serve as a semiquantitative and predictive tool for rational-
izing directing group chemoselectivity in HIE [42].

Building on Kerr’s work, Ir(III)-catalyzed ortho-HIE has continued to flourish
[3, 11, 13, 15, 35, 41, 42]. From the same group, and others applying the develop-
ments therefrom, the application of bulky NHC–phosphine systems in HIE has
steadily advanced in terms of the applicable substrate and solvent scope [42, 102,
104–108]. With regard to solvent scope, Kerr and Tamm have reported complemen-
tary strategies toward modifying the solubility profile of existing iridium HIE
catalysts. On the one hand, Kerr explored the use of the bulky tetrakis[3,5-bis
(trifluoromethyl)phenyl]borate (BArF) counterion in place of the standard
hexafluorophosphate (PF6) [104, 109], and on the other, Tamm integrated a related
borate anion into the backbone of an anionic carbene ligand (Scheme 18) [110]. The
wide range of solvents made applicable in extending the Kerr catalyst series through
61a–61d evidenced new opportunities to tune HIE regioselectivity through simple
solvent switching [104]. From Tamm’s most recent developments, catalysts 62a,
62b, and 62e have been identified as competent HIE catalysts in hexane and
cyclohexane for the first time [110].

A growing community of researchers have, in more recent times, contributed a
wider range of elaborated ligand spheres around tractable iridium(I) pre-catalysts. In
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turn, more iridium HIE catalysts have enabled applications using more challenging
directing groups. A recent contribution from Pfaltz and Muri showed the application
of P,N-derived bidentate ligands [111]. Most notably, these latest iridium-based HIE
catalysts have been developed to be able to label ortho to secondary
benzenesulfonamides for the first time, albeit using high temperatures and synthet-
ically intricate ligands [111]. Along similar lines, Tamm and Derdau have reported
complementary P,N- and C,N-ligated iridium catalysts able to further expand the
range of accessible directing groups applicable in ortho-directed HIE processes (63–
65, Scheme 19) [110, 112, 113].

3 Beyond Ortho-Directed HIE

Far from the humble beginnings of homogeneous iridium-catalyzed HIE [69],
labeling of organic molecules has continued to advance along complementary
lines to ortho-directed HIE. While some instances have been discovered as
unintended by-products of desired ortho-labeling, [111] or to assess non-innocent
ancillary ligand behaviors, [114–125] contributions have been made to labeling
global aromatic, sp3, vinyl, formyl, and heteroatom positions in a strategic manner
(cf. Scheme 3). In the application domain, such developments have given
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industrialists a more diverse palette of methods with which to incorporate hydrogen
isotopes into an increasingly elaborate array of drug candidates.

3.1 Directed sp3 C–H HIE Methods

Somewhat inspired by the deep understanding of iridium catalysts and compatible
directing groups for ortho-directed HIE protocols, significant contributions have
emerged toward labeling sp3 centers rather than aromatic sp2 centers [15, 111, 126,
127].

Using Kerr’s commercially available catalyst 53a and 61a, Derdau and Kerr have
developed expansions of the original ortho-labeling methodologies, showing that the
same catalyst systems can effectively label sp3 C–H positions in complex amides
and a range of drug molecules (Scheme 20).

In a new paradigm for the field, MacMillan and co-workers developed a
photoredox- and hydrogen atom transfer (HAT)-catalyzed method, employing an
iridium(III) photocatalyst Ir(F-Meppy)2 (dtbbpy)PF6 [F-Meppy, 2-(4-fluorophenyl)-
5-(methyl)pyridine; dtbbpy, 4,40-di-tert-butyl-2,20-bipyridine], 66 [128]. In combi-
nation with labeled water (D2O or T2O) as the isotope source, and a suitable
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hydrogen atom donor, this method selectively delivered isotope incorporation to the
sp3 a-amino sites in 18 drug molecules (Scheme 21).

The reaction is proposed to operate via coupled photoredox and hydrogen atom
transfer (HAT) cycles (Scheme 22). The photoredox catalyst 66 is excited by the
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blue light-emitting diode (LED) to generate a long-lived excited state triplet 67, a
strong single electron oxidant. The catalyst then generates an alpha-amino radical 70
from 69, and the reduced Ir(II) catalyst 68, which is now a strong reductant. Isotopic
scrambling between the labeled water source and added thiol delivers the on-cycle
labeled thiol 72 from 71, judiciously chosen due to the favorably weak S–H bond.
Labeled thiol 72 (polarity matched with the nucleophilic amino radical 69)
undergoes a HAT process to generate the alpha-labeled amine product 74 and
thiol radical 73. Thereafter, the photoredox and HAT catalytic cycles converge to
generate the thiolate anion 75 and regenerate the photoredox catalyst 66. Through
adjustments in the choice of photocatalyst and thiol source, this method was
applicable to both deuteration and tritiation processes.

3.2 Non-ortho-HIE on Aromatic Substrates

A range of cyclopentadienyl (Cp, and derivatives thereof)-ligated iridium complexes
have been shown to be active in HIE (76–84, Scheme 23). Principally, several
nondirected and global aromatic C–H deuteration strategies have been reported
and improved over several iterations of catalyst design [114, 129–136]. In 2001,
Bergman and co-workers showed that complexes of the type [(Cp*)Ir(PR3)(H)
(DCM)], such as 76, and, later, [(Cp*)Ir(PMe3)(H)3]OTf, were active in HIE across
a range of aromatic and aliphatic substrates [114, 129–131]. In further iterations,
Peris [132] and Ison [134, 135] reported a range of NHC-ligated complexes based on
the Cp-I core. In more practically facing contributions, Thieuleux and collaborators
divulged solid-supported variants of [(Cp*)Ir(NHC)] cores, 82–84 [133, 136]. Across
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this series of publications, mechanisms of HIE were hypothesized to vary with
deuterium source, solvent, and ancillary ligand combination (see Scheme 24 or
exemplar transformations).

3.3 Vinyl HIE Processes

Expanding sp2 labeling protocols beyond simple aromatic systems, a number of
recent reports have shown the possibility of selectively labeling vinyl groups.
Because many modern iridium HIE catalysts of the type [(COD)Ir(L1)(L2)]X
evolved from the hydrogenation literature [54, 62, 67], the labeling community
has been aware of (and exploited) the reductive power of these catalyst systems to
install isotopes across unsaturated moieties [10]. However, the dual HIE and hydro-
genation reactivity of these iridium systems presents a challenge if the same catalyst
is targeted for an HIE application, and not a hydrogenation. While designing HIE
methods for labeling α,β-unsaturated substrates, Kerr and co-workers hypothesized
that the competing reactivity could be rationalized by a equilibrating C–C bond
rotation 85 to 86 upon substrate coordination (Scheme 25). For larger ligand spheres
such as in catalyst 53a, intermediate 86 would be favored, driving HIE
(86! 87! 88! 89). For smaller ligand systems, as has been observed in attempts
to use Crabtree’s catalyst for similar transformations [137], intermediate 85 is
favored, driving hydrogenation over HIE (85 ! 90 ! 91 ! 92).

Beyond re-optimizing HIE the use of catalysts in which competing hydrogenation
is an issue, several methods for the chemoselective labeling of alkenes have also
appeared in the iridium literature. In 2008, Hartwig reported a method where pincer
complex 93 was shown to label vinyl C–H positions with selectivity largely
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dependent on the specific steric environment of the substrate, albeit under air and
moisture sensitive conditions (Scheme 26, left) [138]. Notably, this method was
applied to a series of both simple and complex organic molecules and included
global labeling of aromatic and heteroaromatic substrates. A more practical variant
of this method was divulged by Nishimura and co-workers [139]. Using an in situ-
derived Ir(III) monohydride, 94, and D2O as the isotope source, an attractive range of
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mono-substituted alkenes could selectively deuterated at the vinyl or methylidene
positions (Scheme 26, right).

In relation to vinyl HIE, formyl-selective methods of labeling benzaldehyde
derivatives has been of notable interest, due, in part, to the synthetic handle of
derivatization presented through the carbonyl functional group [140–145]. In 2010,
Chapelle and co-workers showed that Crabtree’s catalyst was able to deliver formyl-
labeled benzaldehyde derivatives, albeit with variable selectivity against competing
aryl ring labeling [142]. Kerr and co-workers used this work as inspiration to
compare Crabtree’s catalyst in formyl labeling vs. other competent ortho-HIE
catalysts. Comparing catalysts 15 vs. 53b vs. 95, it was shown that the NHC/Cl
system delivered superior formyl selectivity than either of the cationic iridium
centers bearing larger ligand spheres (Scheme 27). The group accounted for these
observations using a detailed mechanistic model centered around cis-trans isomer-
ization of the activated Ir(III) catalyst. While intermediate 97 bearing trans ancillary
ligands favors the approach trajectory of the aldehyde substrate that leads to aryl
HIE, isomer 96 of the same catalyst enables the aldehyde to approach along a
trajectory leading to formyl HIE [146].

3.4 Beyond C–H Labeling

Some of the most recent developments in isotopic labeling employing iridium
catalysis have been applied to X–H moieties. While comparatively rare when
compared to C–H HIE methods, heteroatom labeling can be insightful en route to
establishing new carbon–heteroatom bonding–forming processes. Specifically,
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Nolan and Grubbs have independently reported on silane labeling [147, 148]. Grubbs
studied catalyst 98, while Nolan investigated 99 and 100 in Si–H and B–H labeling,
respectively (Scheme 28) [149].

4 Concluding Remarks

Notwithstanding earlier pioneering developments in the field [69, 73–75, 150–152],
iridium-catalyzed HIE has undergone explosive growth since Heys’ use of
bis-phosphine systems in the early 1990s [153]. The main thrust of developments
in the field have been in ortho-directed HIE domain. Such is the maturity and
underlying mechanistic understanding of the ortho-labeling subfield, that it is now
influencing catalyst design strategies in the broader C–H functionalization field.
Considered alteration of the iridium ligand sphere – for both Ir(I) and Ir(III) systems –
has now expanded the field of HIE well beyond its ortho-labeling comfort zone.
Iridium-catalyzed methods to install heavy and radioactive hydrogen isotopes now
span global aromatic labeling, sp3 labeling, vinyl labeling, heteroatom labeling, and
combinations thereof.

Iridium-catalyzed HIE is evolving at a time when computationally supported
catalyst design is reaching unprecedented levels of sophistication [154–158]. It is
expected, therefore, that forthcoming developments in iridium-catalyzed HIE will be
enabled by deeper exploration of predictive methods of understanding substrate–
catalyst compatibility.
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