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Abstract The knowledge of the potential of transition metal-based complexes as
catalysts for the reduction of CO2 has grown significantly over the last few decades.
This chapter focuses on the progress made during recent years in the field of
homogeneous iridium-catalyzed reduction of CO2 by using hydrogen and/or silicon
hydrides as reducing agents, comparing them with homogeneous catalysts based on
other transition metals.

The reported studies on iridium-catalyzed CO2 reduction processes show that an
important point to keep in mind when designing a catalyst is the nature of the
reducing agent (hydrogen, hydrosilanes, and/or hydrosiloxanes). Thus, iridium(III)
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half-sandwich complexes with 4,40-dihydroxy-bipyridine (DHBP) or 4,7-dihydroxy-
1,10-phenanthroline (DHPT) ligands, and iridium(III)-PNP pincer complexes have
proven to be excellent catalysts for the hydrogenation of CO2 to formic acid.
However, Ir(III)-NSiNMe (NSiN ¼ fac-bis-(4-methylpyridine-2-yloxy)methylsilyl)
and Ir(III)-NSiMe (NSiMe ¼ 4-methylpyridine-2-yloxydimethylsilyl) species are not
stable under hydrogen atmosphere but are effective catalysts for the reduction of
CO2 with hydrosiloxanes to silylformate under solvent-free conditions and moderate
CO2 pressures and temperatures. Moreover, while using iridium(III)-DHBP half-
sandwich complexes, high CO2 and H2 pressures are required to achieve the catalytic
CO2 hydrogenation to methanol; Ir-NSiMe species catalyze the reduction of CO2 to
methoxysilane with hydrosiloxanes under low CO2 pressure.

Keywords CO2 hydrogenation · CO2 hydrosilylation · CO2 reduction ·
Homogenous catalysis · Iridium

1 Introduction

Carbon dioxide is an abundant, easily available, cheap, and low toxic chemical. On the
other hand, during the last decades, the concentration of CO2 in the earth’s atmosphere
has reached historical values, which is generally considered one of the main reasons
for the global warming. Therefore, both for economic and environmental reasons the
development of sustainable processes that allow the transformation of CO2 on an
industrial scale into valuable chemicals could be considered one of the most important
tasks for the sustainability of the modern chemical industry [1–5]. In this context, to
achieve the goal of using CO2 as raw material of the chemical industry there are
several difficulties to face, among which its great thermodynamic stability stands out.

Catalysis has proven to be essential to overcome the challenge of CO2 stability.
Thus, in recent decades, great advances have been made in the field of catalytic CO2

transformation into value added chemicals [6–16]. Particularly, catalytic hydroge-
nation [6, 9, 10, 17–21] and/or hydrosilylation [22–25] of CO2 have proven to be
efficient methodologies for its reduction to formate, formaldehyde, methanol, or
methane level (Scheme 1). In this regard, it is remarkable that several homogeneous

Scheme 1 Possible products from the catalytic reduction of CO2 with hydrogen and/or silicon
hydrides
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catalytic systems based on iridium complexes have shown high catalytic perfor-
mance as CO2 reduction catalysts [18, 26–28]. This chapter will focus on the
progress made during recent years in the field of iridium-catalyzed reduction of
CO2 by using hydrogen and/or hydrosilanes as reducing agents.

2 Recent Advances on Iridium-Catalyzed CO2

Hydrogenation

During last decades, several examples of homogeneous catalysts effective for the
hydrogenation of CO2 have been reported, most of them are based on ruthenium
(II) complexes but some examples of highly active iridium(III) catalysts have
also been described. Among them are iridium(III) half-sandwich complexes with
4,40-dihydroxy-bipyridine (DHBP) or 4,7-dihydroxy-1,10-phenanthroline (DHPT)
ligands, which are excellent catalysts for the hydrogenation of CO2 to formic acid
and also have been used as catalysts for the direct hydrogenation of CO2 to
methanol. Moreover, iridium(III)-PNP pincer complexes have also been used as
effective catalysts for the hydrogenation of CO2 to formic acid. Conversely, the
potential of iridium complexes as catalysts for the hydrogenation of CO2 to formal-
dehyde, methyl carbonate, and/or methyl formate remains a challenge.

2.1 Iridium-Catalyzed Formic Acid or Formate Preparation
from CO2 and H2

Catalytic hydrogenation of CO2 to formic acid (FA) has been a research subject of
great interest over the last decades [6, 9, 10, 18, 20, 21, 28]. The hydrogenation of
CO2 is endergonic in the gas phase (ΔG�

298 ¼ 32.9 kJ mol�1), however, in water
solution and in presence of a base (NH3), this reaction becomes thermodynamically
favored (ΔG�

298 ¼ �35.4 kJ mol�1) [29].
The first studies of the potential of transition metal complexes as homogenous

catalysts for the hydrogenation of CO2 to FA were reported by Inoue et al. in 1976
[30]. These studies revealed that using NEt3 water solutions under 50 atm of
mixtures of CO2 and H2 (1:1) at r.t. the complex [IrH3(PPh3)3] catalyzes this
transformation, however, its catalytic activity is low. Under the same conditions
species [RuH2(PPh3)4] was found to be the most active of the studied catalyst
precursors [30]. Some years later, Leitner et al. reported very efficient rhodium
phosphane water soluble catalysts, which were able to promote the formation of
FA in relatively high yields [31, 32]. After that, Noyori et al. described that the
effectivity of ruthenium phosphane complexes as CO2 hydrogenation catalysts
improves when using supercritical carbon dioxide [33, 34]. Few years after that,
Joó, Laurenczy et al. reported that the performance of catalytic systems based on
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water soluble Ir, Rh, Ru, and Pd phosphane complexes as CO2 hydrogenation
catalyst is strongly pH dependent [35]. In this regard, Jessop et al. found that
using the complex [RuCl(O2CMe)(PMe3)4], which is soluble in supercritical CO2,
as catalysts for the hydrogenation of CO2 to FA in presence of the appropriate amine
and one alcohol that has an aqueous scale pKa below that of the protonated amine, it
was possible to achieve an initial turnover frequency (TOF) for FA production of
95,000 h�1 [36]. Since then till the development of the highly active Himeda’s
catalysts [37], based on half-sandwich bipyridine iridium complexes, most of the
homogeneous catalysts effective for the hydrogenation of CO2 to FA were based on
Ru- and Rh-phosphane complexes.

Early examples of highly active iridium CO2 hydrogenation catalysts were based
on iridium half-sandwich complexes with 4,40-dihydroxy-bipyridine (DHBP) or
4,7-dihydroxy-1,10-phenanthroline (DHPT) ligands (Scheme 2) [38]. These cata-
lysts are highly efficient for the hydrogenation of carbonate, in situ generated from
CO2 in basic KOH aqueous solutions, to formate. The oxyanions generated from the
hydroxy group along the catalytic process play a key role on both the catalytic
activity and water solubility of these catalysts (Scheme 2).

Initial turnover frequencies (TOF) of 42,000 and 35,000 h�1 were obtained for
the Ir-DHPB and Ir-DHPT (Scheme 2) catalyzed reactions, respectively. The best
performance was achieved heating at 120�C aqueous KOH (1.0 M) solutions of the
corresponding iridium catalysts under 6 MPa of CO2/H2 (1:1). Moreover, these
iridium catalysts could be reused for four cycles maintaining high catalytic
performance [38].

Himeda et al. have extended their studies to iridium half-sandwich complexes
with N,N-bidentate ligands different from bipyridine such as picolinamide- [39, 40],

Scheme 2 Examples of Ir-DHBP and Ir-DHPT CO2 hydrogenation catalyst precursors
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azole- [41] and pyridyl-pyrazole derivatives [42]. Mechanistic studies have found
that these catalysts promote the activation of CO2 via an outer-sphere mechanism
[41]. Interestingly, it has been found that using this type of iridium catalysts it is
possible to achieve the pH-controlled reversible hydrogen storage [40, 42, 43].

Further support to the relevant role of oxyanions in these type of catalysts comes
from the studies reported from Peris et al. [44], which showed that using half-
sandwich iridium(III) complexes with strong donor NHC ligands (Fig. 1) or
bipyridine derivatives without hydroxy substituents, as catalysts precursors for the
hydrogenation of CO2 lower activities (TOF ¼ 1,600 h�1) were observed.

Iridium-pincer complexes have also found to be active catalysts for the homoge-
neous hydrogenation of CO2 to FA. The iridium(III)trihydride-PNP complex shown
in Scheme 3 reached a TOF of 150,000 h�1 for the hydrogenation of CO2 to FA in
basic medium. The performance of this catalytic system is strongly influenced by the
nature of the base, the temperature and the presence of THF in the reaction medium.
Thus, the best results were obtained at 200�C, using 1.0 M KOH aqueous solution
and adding 0.1 mL of THF [45]. Mechanistic studies showed that two reactions
pathways are possible, one of them involving a deprotonative dearomatization of the
pyridinic ring and other a hydroxy-assisted hydrogenolysis as the rate determining
step, respectively. Moreover, an outer-sphere mechanism has been found for the
CO2 activation step (Scheme 3) [46].

Iridium-PNP catalysts showed the best performance in KOH aqueous solutions,
however, under these conditions, the corresponding formate salt, not FA, is obtained
as reaction product. Therefore, a neutralization step of the formate with a strong acid
is required to obtain FA. Interestingly, when using amine derivatives as bases a
simple distillation of the resulting ammonium formate allows separation of pure FA
from the starting base. In this regard, Nozaki’s group has studied the effect of both
using triethanolamine aqueous solution as base and having different substituents at
the pyridinic ring on the activity of Ir-PNP catalysts (Fig. 2). They have found that
under these conditions the dichlorohydride derivative with a p-MeO substituent is
the most active catalyst, indeed, using this species as catalyst precursor in a 1.0 M
triethanolamine aqueous solution, in presence of THF and heating at 150�C, a TON
for the conversion of CO2 to FA of 160,000 (TOF ¼ 12,000 h�1) was obtained [47].

On the other hand, Hazari and coworkers have studied the activity of Ir-PNHP
(PNHP ¼ bis{(2-diisopropylphosphanyl)ethyl}amine) pincer species as CO2

Fig. 1 CO2 hydrogenation catalysts based on half-sandwich iridium(III) complexes with NHC
ligands
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hydrogenation catalysts. They have shown that the insertion of CO2 into one of the
Ir-H bonds of the trihydride derivative [Ir(PNHP)H3] gives the corresponding [Ir
(PNHP)(HCO2)H2] species, which is stabilized by an intramolecular NH-OCO
hydrogen bond (Scheme 4) [48]. This iridium-formate derivative catalyzes the
hydrogenation of CO2, in 1 M aqueous KOH solution at 185�C, with a TON and
TOF values of 348,000 and 18,780 h�1, respectively. DFT calculations show that the
Ir-PNHP-catalyzed CO2 hydrogenation takes place through an outer-sphere
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Scheme 3 Mechanism proposed for Ir(III)-PNP catalyzed CO2 hydrogenation

Fig. 2 Examples of Ir-PNP CO2 hydrogenation catalysts. The species with E ¼ COMe was found
to be the most active catalyst
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mechanism (Scheme 4). The rate determining step of the overall catalytic process
corresponds to the NH-assisted CO2 activation step [48].

2.2 Iridium-Catalyzed Methanol Preparation from Direct
Hydrogenation of CO2

Methanol is commonly produced on an industrial scale using fossil fuel-based
syngas as the principal feedstock. The annual demand for methanol has grown
steadily over the last decade, consequently the CO2 emissions related to the indus-
trial production of methanol have also grown [49, 50]. Therefore, the development
of catalysts effective for the synthesis of methanol from renewable sources is
attracting the interest of several research groups [50, 51]. In this regard, the produc-
tion of methanol through carbon dioxide capture and recycling is one of the keys of
the “Methanol Economy” concept [52]. The early example of a homogeneous
catalyst effective for the direct hydrogenation of CO2 to methanol was reported by
Tominaga et al. in 1993 [53, 54]. They used [Ru3(CO)12] as catalyst precursor, KI as
additive to prevent the formation of metallic nanoparticles, and N-methylpyrrolidone
as solvent at 240�C under 80 bar of a 1:3 mixture of CO2 and H2. In this regard, it

Scheme 4 Mechanism proposal for Ir-PNHP catalyzed CO2 hydrogenation
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should be mentioned that it is of great importance to avoid the decomposition of the
homogeneous catalysts to colloidal or nanosized metallic particles, which may have
different catalytic behavior than the parent homogeneous catalysts. Since then only
few examples of catalytic systems effective for the direct hydrogenation of CO2 to
methanol have been reported. The reason is that the direct conversion of CO2 to
methanol is thermodynamically hampered at high temperatures due to the negative
ΔH and ΔS values of this process.

The first examples of iridium homogeneous catalysts effective for the direct
hydrogenation of CO2 to methanol were reported by Himeda, Laurenczy et al. in
2016. They found that the sulfate salt of the iridium half-sandwich cationic complex
[IrCp*(DHBP)(OH2)][SO4] (DHBP ¼ 4,40-dihydroxy-2,20-bypyridine) catalyzes
the one pot hydrogenation of CO2 to methanol. This Ir-DHBP species catalyzes
the quantitative hydrogenation of CO2 to formic acid in acidic media without any
additives, and the subsequent disproportionation of the in situ generated formic acid
to give methanol (96% selectivity; 47% yield; TON ¼ 1,314), CO2 and H2O [55]. In
this regard, it is important to be aware that whenever the hydrogenation of CO2 takes
place in basic solution, the question arises whether the actual reactive partner of the
catalysts is carbonate, bicarbonate, or (hydrated) CO2.

The activity of this iridium catalyst is higher than that reported for the Ru-(Triphos)
(Triphos ¼ 1,1,1-tris(diphenylphosphinomethyl)ethane) species (TON ¼ 221)
[56, 57], the ruthenium(II) species [Ru(PNP)(H)(H-BH3)(CO)] (PNP ¼ {Bis
[2-(diphenylphosphino)ethyl]amine}) [58, 59], Co-(Triphos) (TON ¼ 50) [60] and
Mn-(PNP) (TON ¼ 36) [61]. Being surpassed by that of the complex Fe-(κ3-HTpm)
(HTpm ¼ tris(pyrazolyl)methane; 44% yield; TON ¼ 2,283) [62].

2.3 Miscellaneous

Examples of homogenous catalysts effective for the hydrogenation of CO2 to other
products, different of formic acid and/or methanol, are scarce. Indeed, to the best of
our knowledge only few examples of ruthenium catalysts effective for the hydroge-
nation of CO2 to dimethyl ether [63], formaldehyde [64, 65], or methyl formate [66]
have been reported. Therefore, the potential of iridium complexes as catalysts for
these types of processes remains unexplored.

3 Recent Advances on Iridium-Catalyzed CO2

Hydrosilylation

The catalytic hydrogenation of CO2 with H2 requires high H2 and CO2 pressures and
temperatures, as well as the addition of bases or other additives. Contrariwise, the
catalytic reduction of CO2 with hydrosilanes features several advantages such as
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being a thermodynamically favored process and the fact that silanes are easier and
safer to handle and to store than molecular hydrogen [22, 23, 25, 26, 67]. However,
the utilization of silicon hydrides as reductants for large-scale reduction of CO2 faces
some difficulties. One of them is the high price of hydrosilanes, which could be
solved by using cheap hydrosiloxanes instead of hydrosilanes, another is the stoi-
chiometric generation of siloxanes, which is unsustainable due to the challenge of
Si-H regeneration from Si-O-Si bonds [24, 68]. Furthermore, differently to hydro-
genation processes, the catalytic hydrosilylation cannot be performed in aqueous or
alcoholic solutions since homogeneous hydrosilylation catalysts usually catalyzed
the dehydrogenative hydrolysis and/or alcoholysis of silicon hydrides [69, 70].

The catalytic reaction of CO2 with silicon hydrides allows its selective reduction
to the corresponding silylformate, bis(silyl)acetal or methoxysilane, and to methane
[22, 23, 25, 26] (Scheme 5). In addition, the formation of methyl carbonates from the
iridium-catalyzed reduction of CO2 with silicon hydrides has been recently reported
(Scheme 5) [71].

The first examples of homogeneous catalytic reduction of CO2 using hydrosilanes
as reductants were reported in the 1980s [72–74]. However, it was during the year
2012 that the breakthrough of this chemistry took place. Since then until today, the
number of catalytic systems effective for the reduction of CO2 with hydrosilanes
based on transition metal complexes as well as on metal-free catalysts or main
elements derivatives that have proven to be effective in CO2 hydrosilylation pro-
cesses has considerably grow up [8, 22–25, 67, 75]. Among them, catalysts based on
iridium complexes stand out not only for their activity but also for their versatility
that allows selectivity control by choosing proper ligands and/or tuning the reaction
conditions. Furthermore, some examples of iridium-based CO2 hydrosilylation
catalysts have proven to be effective under solvent-free conditions and using
hydrosiloxanes as reductants.

Scheme 5 Reported products from the catalytic reduction of CO2 with silicon hydrides
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3.1 Iridium-Catalyzed CO2 Hydrosilylation to Silylformate

The iridium complex [Ir(CN)(CO)(dppe)] (dppe ¼ 1,2-bis(diphenylphosphino)eth-
ane), reported in 1989 by Eisenschmid and Eisenberg, is the first example of a
homogeneous iridium-based catalyst effective for the hydrosilylation of CO2. How-
ever, the catalytic activity and the selectivity of this iridium catalyst were low [74]. It
was not until 2012 that an example of iridium catalyst, complex [Ir(CF3SO3)(NSiN)
(SiR3)(NCMe3)] (NSiN ¼ fac-bis-(pyridine-2-yloxy)methylsilyl; SiR3 ¼ SiMe
(OSiMe3)2), efficient for the hydrosilylation of CO2 to selectively give the
corresponding silylformate was reported [76]. This catalytic system allows the
solvent-free and gram-scale formation of silylformates under mild reaction condi-
tions (3 bar, 298 K, TON ¼ 97.5) but is slow (TON ¼ 0.7 h�1) [76]. Interestingly,
using species [Ir(CF3SO3)(NSiN)(H)(coe)] (coe ¼ cis-cyclooctene, Scheme 6),
which is easier to prepare than the abovementioned Ir-NSiN-acetonitrile derivative,
under the same reaction conditions (3 bar, 298 K) produces an increase of the
reaction rate (TOF ¼ 1.2 h�1) [77, 78]. Further studies on the influence of reaction
temperature [77] and CO2 pressure [78] on the catalytic performance of this catalytic
system showed that the activity is directly proportional to the temperature; however,
increasing the temperature reduces the selectivity to silylformate [77]. On the other
hand, it is more difficult to generalize the CO2-pressure effect on the activity of the
reaction. It is remarkable, that from the point of view of selectivity the CO2- pressure
has proven to be a parameter to consider. Indeed, for each temperature an enhance-
ment of the CO2-pressure results in increased the selectivity of the process
[78]. Thus, using species [Ir(CF3SO3)(NSiN)(H)(coe)] as catalyst precursor the
best reaction performance was achieved at 344 K and under 8 bar of CO2 (99.9%
conversion, 89.7% purity (GC-MS), TOF¼ 138 h�1; TON¼ 87.5) (Scheme 6) [78].

The iridium(III) complex [Ir(H)(CF3CO2)(NSiN
Me)(coe)] (NSiNMe ¼ fac-bis-

(4-methylpyridine-2-yloxy)methylsilyl), which contains a trifluoroacetate instead
of a triflate ligand and a NSiNMe ligand with 4-methylated pyridinic rings (Fig. 3),
has proven to be a highly effective CO2 hydrosilylation catalyst [79]. Using this
Ir-trifluoroacetate-NSiNMe species as catalyst precursor for the hydrosilylation of
CO2 to silylformate with HSiMe(OSiMe3)2 the best results were achieved at 328 K

Scheme 6 Iridium-NSiN catalyzed solvent-free CO2-hydrosilylation with HSiMe(OSiMe3)2
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and under 8 bar of CO2 (100% conversion; 98.9% yield to SF by GC-MS;
TOF ¼ 99.3 h�1), at temperatures above 328 K a decrease in catalytic selectivity
and activity was observed [79].

Mechanistic studies based on theoretical calculations at DFT level showed that
while Ir-trifluoroacetate-NSiNMe species catalyzes the CO2 activation via an inner-
sphere mechanism, an outer-sphere mechanism is favored for Ir-triflate-NSiNMe

derivatives (Fig. 4) [80].
The presence of the Ir-silyl group of the NSiNR (R¼ H, Me) ligand trans-located

to the trifluoroacetate (or triflate) ligand plays a key role on the catalytic activity of
Ir-NSiNR catalysts. Based on this knowledge the catalyst precursor [Ir(CF3CO2)(κ2-
NSiMe)2] (NSi

Me ¼ 4-methylpyridine-2-yloxydimethylsilyl), containing two Ir-Si
bonds trans-located to the catalyst active positions was designed (Fig. 5) [81]. 1H
NMR studies on the activity of [Ir(CF3CO2)(κ2-NSiMe)2] as CO2 hydrosilylation
catalyst using HSiMe(OSiMe3)2 show that at 298 K under 4 bar of CO2 this catalyst
is more active (TOF ¼ 28.6 h�1) [81] than the previously reported Ir-NSiN species,
which at 298 K independently of the CO2-pressure are low active with TOF values in
the rage of 1.2–1.6 h�1 [78]. The higher activity of [Ir(CF3CO2)(κ2-NSiMe)2] allows
the selective formation methoxysilane from CO2 and HSiMe(OSiMe3)2 as it is
shown below [81].

Other iridium complex which have proven to be an active catalyst for the
selective hydrosilylation of CO2 (3 bar) to silylformates is the zwitterionic iridium
(III) half-sandwich species [IrClCp*{(MeIm)2CHCOO}] ((MeIm ¼ 3-

Fig. 3 Iridium(III) complex
[Ir(H)(CF3CO2)(NSiN

Me)
(coe)]

Fig. 4 Outer- and inner-
sphere transition state
(TS) found for Ir-triflate-
NSiNMe and
Ir-trifluoroacetate-NSiNMe

catalysts precursors,
respectively
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methylimidazol-2-yliden-1-yl; Cp* ¼ pentamethylcyclopentadienyl) (Scheme 7)
[82]. However, this catalytic system requires the use of acetonitrile as reaction
solvent. It is relatively high active for the hydrosilylation of CO2 with HSiMe2Ph
(TOF ¼ 51 h�1), but under the same reaction conditions is not active when the
hydrosiloxane HSiMe(OSiMe3)2 is used as reductant instead of HSiMe2Ph [82].

Other transition metal-based catalysts including Ru [83, 84], Co [85], Rh [86], Pd
[87], Pt [88], Cu [89, 90], and Zn [91, 92] complexes effective for the selective
hydrosilylation of CO2 to the formate level have been reported. Among them, the
catalytic system based on the Pd-PAlP complex shown in Scheme 8 has proven to be
the most active catalyst for CO2-hydrosilylation reported so far [87]. Indeed, using
this Pd-PAlP catalyst in DMF as solvent in presence of CstBuCO2 (1.0 mol%) at
298 K, the selective reaction of CO2 with HSiMe2Ph to give HCO2SiMe2Ph (92%,
TOF ¼ 19,300 h�1) was achieved in 1 h (Scheme 8) [87].

Ir-NSiN and Ir-NSiMe species are comparatively less active than some of the
abovementioned catalysts; however, they have the advantage of being active under
solvent-free conditions and are highly effective when using hydrosiloxanes, instead

Fig. 5 Iridium(III) complex
[Ir(CF3CO2)(κ2-NSiMe)2]

Scheme 7 CO2 hydrosilylation catalyzed by the zwitterionic iridium species [Cp*IrCl
{(MeIm)2CHCO2)}]
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of hydroorganosilanes, as reductants. Therefore, from the point of view of sustain-
ability iridium species based on Ir-NSiN and Ir-NSiMe species could be considered
promising for future applications of the catalytic reduction of CO2 with silicon
hydrides.

3.2 Iridium-Catalyzed Reduction of CO2 to Methoxysilanes
with Silicon-Hydrides

Only few examples of homogeneous catalysts effective for the reduction of CO2 to
methanol level using silicon hydrides as reducing agents have been published to
date. The first one was the abovementioned iridium complex [Ir(CN)(CO)(dppe)]
(dppe ¼ 1,2-bis(diphenylphosphino)ethane) [74]. This catalyst promotes the reduc-
tion of CO2 with HSiMe3 in C6D6 at 313 K to the corresponding methoxysilane,
CH3OSiMe3. This reaction is slow, and 2 weeks are required to achieve the conver-
sion of the starting hydrosilane into CH3OSiMe3.

13C NMR studies of this process
using 13CO2 confirm that it entails in a stepwise progression with the initial forma-
tion of the corresponding silylformate HCO2SiMe3, which is further reduce to bis
(silyl)acetal CH2(OSiMe3)2, the later finally reacts with one equivalent of HSiMe3 to
give CH3OSiMe3 and O(SiMe3)2 (Scheme 9) [74].

The iridium(III) complex [Ir(CF3CO2)(κ2-NSiMe)2] (Fig. 5) has proven to be an
effective catalyst for the reduction of CO2 with HSiMe(OSiMe3)2 to the
methoxysilane CH3OSiMe(OSiMe3)2 under mild reaction conditions. 1H NMR
studies of the reaction of CO2 (1 bar) with HSiMe(OSiMe3)2 in C6D6 at 298 K
evidenced the selective formation of the corresponding methoxysilane after 16 h
(99.0%; TON ¼ 33.6; TOF ¼ 2.1 h�1) [81]. Interestingly, increasing the CO2

pressure to 4 bar the reaction stops in the corresponding silylformate, which under
4 bar is the major reaction product (93%; TON¼ 93; TOF¼ 2.9 h�1) together with a
7% of CH3OSiMe(OSiMe3)2 after 3.5 h. 1H and 13C NMR studies and theoretical

Scheme 8 Palladium-PAlP catalyzed CO2-hydrosilylation with HSiMe2Ph
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calculations at the DFT level on the Ir-NSiMe catalyzed CO2 reduction to
methoxysilane with silicon hydrides, agree with an stepwise mechanism similar to
that shown in Scheme 9.

The related complex [Ir(μ-CF3SO3)(κ2-NSiMe)2]2, which is a rare example of an
iridium dinuclear species with triflate groups acting as bridges, catalyzed the reaction
of CO2 (3 bar) with HSiMe(OSiMe3)2 in C6D6 at 323 K to afford, after 3 h, a mixture
of the corresponding silylformate (65.2%), methoxysilane (8.1%) and
methylsilylcarbonate (26.7%) (Scheme 10) [71].

1H and 13C NMR studies of the reaction shown in Scheme 10 evidenced that at
323 K, once all the starting hydrosilane is consumed; the methylsilylcarbonate is
slowly transformed into the corresponding methoxysilane. These outcomes prove
that the formation of methoxysilanes during the catalytic reduction of CO2 with
silicon hydrides, which traditionally has been explained by the stepwise process
shown in Scheme 9, could also be consequence of thermal decomposition of the
corresponding methylsilylcarbonate (Scheme 11) [71].

Few examples of other homogeneous catalysts effective for the reduction of CO2

to methanol level using silicon hydrides as reductants have been described, which
include the anionic rhenium complex [N(hexyl)4][ReO4] [93], the cationic zinc
derivative [Zn(Me)(IDipp)][C6F5)3] (IDipp ¼ 1,3-bis(2,6-diisopropylphenyl)
imidazolin-2-ylidene) [94] and metal-free NHC-catalysts [95]. In this context, it is
noteworthy that the activity of the Ir-trifluoroacetate-NSiMe catalyst is similar to that
reported for these Re-, Zn-, and NHC-based catalytic systems.

Scheme 9 Iridium-
catalyzed reduction of CO2

to the methoxysilane level
with HSiR3
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3.3 Iridium-Catalyzed Reduction of CO2 to Methane
with Silicon-Hydrides

The catalytic reduction of CO2 to methane using hydrosilanes as reducing agents
remains a challenge. Examples of transition metal catalysts based on Zr [96, 97], Hf
[97], Ir [98], Pd [99] and Pt [99] complexes as well as transition metal-free catalysts
such as the frustrated Lewis pair B(C6F5)3/TMP (TMP ¼ 2,2,6,6-
tetramethylpyperidine) [100] and other Lewis acids and ionic pairs [101–
104]. Among them stands out the iridium(III) cationic species [Ir(H)(η1-HSiR3)
(POCOP)][B(C6F5)4] (POCOP ¼ 2,6-bis((di-tert-butylphosphanyl)oxy)benzen-1-
yl) reported by Brookhart et al. in 2012 [98], which has proven to be effective for
the reduction of CO2 (1 bar, 296 K) to methane with different hydrosilanes (HSiEt3,
HSiPh3, HSiMe2Et, HSiMe2Ph, and HSiEt2Me) using C6H5Cl as solvent. This
catalytic system works reasonably well with HSiMe2Ph at 296 K (TOF ¼ 115 h�1),
moreover, increasing the temperature to 333 K produces a positive effect of the
catalytic activity (TOF ¼ 661 h�1) (Scheme 12) [98].

Scheme 10 Iridium-catalyzed reduction of CO2 to the methoxysilane level with HSiR3

Scheme 11 Thermal decomposition of methylsilylcarbonates to give methoxysilanes and CO2
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4 Concluding Remarks

This chapter illustrates the progress made during recent years in the field of iridium-
catalyzed reduction of CO2 with hydrogen and/or silicon hydrides as reductants. It is
difficult to draw general conclusions since not only the characteristics of the ligands
but also the nature of the reducing agent (hydrogen, hydrosilanes, and/or
hydrosiloxanes) strongly influences the reaction conditions and the mechanism. It
has been observed that most of the iridium CO2 hydrogenation and hydrosilylation
catalysts are based on Ir(III) species. The selectivity is one of the challenges of
homogeneous catalytic CO2 reduction with hydrogen and silicon hydrides, this is
because mixtures of different reduction products are frequently obtained. In this
regard, it is worth mentioning that iridium(III) half-sandwich-DHBP species and
iridium(III)-PNP pincer complexes have found to be highly efficient and selective
CO2 hydrogenation catalysts and that Ir(III)-NSiN and Ir(III)-NSiMe species have
proven to be highly selective CO2 hydrosilylation catalysts. From the point of view
of the mechanism, it is difficult to establish a general behavior trend. Thus, although
most of the reported homogeneous Ir(III) catalysts follow an outer-sphere CO2

activation mechanism, when using Ir-NSiN and Ir-NSiMe trifluoroacetate derivatives
as CO2 hydrosilation catalysts, an inner-sphere CO2 activation mechanism is pre-
ferred. Therefore, it could be concluded that iridium(III) complexes have great
potential as homogeneous CO2 reduction catalysts; however, there are still many
mechanistic questions to answer and future applications to unveil.
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