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Dinitrogen Fixation by Transition Metal

Hydride Complexes

Takanori Shima and Zhaomin Hou

Abstract This chapter describes the activation of dinitrogen by various transition

metal hydride complexes. A number of mononuclear transition metal hydride com-

plexes can incorporate dinitrogen, but they are usually difficult to induce N–N bond

cleavage. In contrast, multimetallic hydride complexes can split and hydrogenate di-

nitrogen through cooperation of the multiple metal hydrides. In this transformation,

the hydride ligands serve as the source of both electron and proton, thus enabling the

cleavage and hydrogenation of dinitrogen without extra reducing agents and proton

sources. Generally, the reactivity of the metal hydride complexes is significantly in-

fluenced by their composition (nuclearity) and metal/ligand combination.
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1 Introduction

Dinitrogen (N2) is an abundant and easily accessible resource, which occupies about

78% of Earth’s atmosphere. However, N2 molecule is chemically inert under ordi-

nary conditions due to its strong N–N triple bond (944.84 � 0.10 kJ/mol) [1], large

HOMO-LUMO energy gap (10.82 eV) [2], and nonpolarity. Certain microbial or-

ganisms can reduce N2 to NH3 by using nitrogenase enzymes at ambient temperature

and pressure. This process consumes eight protons (H+) and eight electrons (e�) to
convert one molecule of N2 to two molecules of NH3 with release of one molecule

of H2. Recent studies revealed that the multiple metal centers having two hydrides and

two sulfur-bound protons in the iron–molybdenum cofactor play a key role to promote

H2 release and N2 reduction (Scheme 1a) [3–6]. However, the biological ammonia

synthesis is not yet well understood and is difficult to mimic artificially. Industrially,

ammonia is produced from N2 and H2 by the Haber–Bosch process under relatively

harsh conditions (350~550�C, 150~350 atm) to activate N2 on the solid catalyst sur-

face. It was proposed that the reaction is initiated by dissociative absorption of N2

and H2 on low valent multiple iron metal sites to form metal hydrides and nitrides,

followed by reversible hydrogenation of the nitride species to provide NH3 (Scheme

1b) [7–11]. Both the biological and the Haber–Bosch processes are thought to take

place through the cooperation of multiple metal sites bearing hydride ligands.
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In order to further explore the mechanism of N2 reduction at the molecular level

and thereby develop milder chemical processes for ammonia synthesis, extensive

studies on the activation of N2 with organometallic complexes have been carried

out over the past decades [12]. As model reactions of the enzyme process, the use of

strong metal reducing agents as an electron source in combination with transition

metal complexes has been extensively studied, and the catalytic transformation of

N2 to ammonia has been achieved at ambient temperature and pressure by using

carefully designed proton sources [13–15]. An alternative approach is the activation

of N2 by transition metal hydrides without the use of extra reducing agents or proton

sources [16]. This approach is of particular interest, in view of the fact that both the

biological and the industrial Haber–Bosch processes may involve metal hydrides as

true active catalyst species. This chapter focuses on the activation and function-

alization of N2 by transition metal hydride complexes.

2 Dinitrogen Complexes Derived from Mononuclear

Transition Metal Hydride Complexes

2.1 Group 9 Transition Metal Hydrides

The first dinitrogen complex [(NH3)5Ru(N2)]
2+ was obtained serendipitously from

the reaction of a ruthenium trichloride with hydrazine hydrate in 1965 [17]. Shortly

after this discovery, the N2-derived end-on coordinated cobalt dinitrogen complex

[(Ph3P)3Co(N2)H] (1) was synthesized from the reaction of a cobalt acetylacetonate,

diethylaluminium monoethoxide, and triphenylphosphine ligands in the presence of

N2 gas (Scheme 2) [18].When 1was kept under an atmosphere of H2, the coordinated

N2 ligand was displaced by H2 to afford the cobalt hydride complex [(Ph3P)3CoH3]

(2) [19]. Complex 2 could also be prepared by the reaction of [CoX2(PPh3)2] (X¼ Cl,

Br, I) with borohydride in the presence of H2 and free PPh3, and the reaction of 2with

N2 easily took place to give 1 (Scheme 2) [20]. Thus, the hydrogenation/dinitrogen

coordination reactions are reversible.
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The reaction of 1 with MgEt2, BuLi, or Na metal afforded the N2-bridged hetero-

bimetallic complex, [{(Ph3P)3Co(μ-N2)}2Mg(THF)4], [(Ph3P)3Co(μ-N2)Li(Et2O)3] (3),

or [(Ph3P)3Co(μ-N2)Na(THF)3], respectively [21]. While the coordinated N2 ligand in

1 is unable to react with protic acids, the coordinated N2 ligand in the electron-rich

heterobimetallic complexes such as 3 gives 20–30% of hydrazine and ammonia by

addition of H2SO4 or HCl (Scheme 3). However, reaction of the Co-N2-Li complex

3 with H2 afforded an analogous hydrogen complex Co-H2-Li, with quantitative evo-

lution of N2. Upon exposure to an N2 atmosphere, the hydrogen complex Co-H2-Li

released H2, and regenerated 3, demonstrating the reversibility of the coordination of H2

and N2 to the Ph3P-Co-Li moiety.

With regard to other group 9 metals, the reduction of RhCl3�3H2O with Na/Hg in

the presence of sterically demanding phosphines and H2 afforded the hydride com-

plexes [(R3P)2RhH3] (4) (R¼ Cy, iPr), which upon reaction with N2 gave the end-on

coordinated dinitrogen/hydride complexes [(R3P)RhH(N2)] (5) (Scheme 4) [22, 23].

The dinitrogen ligands in these compounds were weakly activated and could readily be

released by gentle heating.

2.2 Group 8 Transition Metal Hydrides

The iron hydride complexes [FeH2(H2)(PR3)3] (6, PR3 ¼ PEtPh2, PBuPh2), which

were prepared by treating FeCl2 with PR3 and NaBH4 under an H2 atmosphere,

could incorporate atmospheric nitrogen to give the end-on coordinated dinitrogen

complexes [FeH2(N2)(PR3)3] (7) in an irreversible way (Scheme 5) [24–27]. Com-

plex 7 released N2 when heated under vacuum or upon addition of I2, HCl, or CO.
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The ruthenium dinitrogen compound [RuH2(N2)(PPh3)3] (8) was obtained from

the reaction of [RuHCl(PPh3)3] [28] with AlEt3 under an N2 atmosphere (Scheme 6)

[29]. Treatment of 8 with H2 gave the corresponding dihydride/dihydrogen complex

[RuH2(H2)(PPh3)3] (9). This conversion was readily reversed by exposing 9 to N2. It

is worth noting that the reactions of [RuH2(PPh3)4] with N2 and H2 did not afford

isolable 8 and 9 due to the presence of the dissociated free PPh3 ligand [30]. The

ruthenium dinitrogen complexes bearing sterically demanding phosphines [31], [PNP]

pincer ligand [32], and tris(pyrazolyl)borate ligand [33], were also synthesized from

the corresponding hydrogen complexes with N2.

The reaction of [FeCl2(dmpe)2] (10) bearing the bidentate dmpe (bis(dimethyl-

phosphino)ethane) ligand with sodium borohydride (NaBH4) afforded the hydride

complex [FeH(H2)(dmpe)2]
+ (11) in high yield (Scheme 7) [34]. Complex 11 reacted

with N2 to give an end-on coordinated dinitrogen complex [FeH(N2)(dmpe)2]
+ (12).

Deprotonation of 12 by KOtBu provided an unstable iron (0) complex [Fe(N2)(dmpe)2]

(13). Treatment of 13 with HCl yielded ammonia (12%) and the chloride complex 10

(80%) with release of N2 and H2 [35–37]. The dichloride complex 10 could serve as a

precursor to the hydride complex, and therefore, a synthetic cycle for the transforma-

tion of N2 to ammonia could be realized.

Hydrogenolysis of an iron chloride complex bearing the bidentate 1,2-bis(bis(meth-

oxypropyl)phosphino)ethane ligands with H2 gave the corresponding hydride/dihy-

drogen complex 14 (Scheme 8) [38]. The H2 ligand in 14 could be substituted by N2,

quantitatively affording the dinitrogen complex 15. The reaction with KOtBu yielded a

neutral Fe(0) complex 16. Protonation of 16with triflic acid produced NH4
+ (15%) and

trace N2H5
+ (2%), but did not give a characterizable iron complex [39].
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2.3 Group 7 Transition Metal Hydrides

Addition of LiAlH4 to a suspension of [MnBr2(dmpe)2] followed by hydrolysis with

water afforded the hydride complex [MnH(H2)(dmpe)2] (17) (Scheme 9) [40]. Com-

plex 17 readily reacted with N2 to give the corresponding end-on coordinated dini-

trogen complex [MnH(N2)(dmpe)2] (18) [41]. Half-sandwich manganase dihydride

complex [(C5H5)MnH2(dfepe)] (dfepe ¼ diperfluoroethylphosphinoethane) with N2

afforded a binuclear end-on coordinated dinitrogen complex [(C5H5)Mn(dfepe)]2(N2)

via the formation of a mononuclear dinitrogen complex [(C5H5)Mn(N2)(dfepe)] [42].

The rhenium dinitrogen complex [ReH(N2)(dmpe)2] (20) was obtained from the

reaction of the nonahydride complex [NEt4]2[ReH9] (19) [43] with dppe (dppe¼ 1,2-

bis(diphenylphosphino)ethane) under an N2 atmosphere (Scheme 10) [44]. In con-

trast, the reactions of monodentate tertiary phosphines with 19 in an N2 atmosphere

gave only the hydride complexes. The dinitrogen complex 20 was readily protonated

at the metal center by HBF4 to form the cationic dihydro dinitrogen rhenium com-

plex [ReH2(N2)(dmpe)2]BF4, while protonation at the N2 ligand was not observed.
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Synthesis of the dinitrogen complex 20 by photolysis of the trihydride complex

[ReH3(dmpe)2] (21) with UV light in an N2 atmosphere was also reported [45].

2.4 Group 6 Transition Metal Hydrides

The molybdenum and tungsten hydride complexes having bidentate phosphine li-

gands [MH4(dppe)2] (M ¼ Mo (22), W) were obtained from the reactions of the

chloride precursors [MCl4(dppe)] and excess of dppe ligandwithNaBH4 [46, 47]. Pho-

tolysis of [MoH4(dppe)2] (22) with UV light gave an end-on coordinated dinitrogen

complex [Mo(N2)2(dppe)2] (23) in high yield (Scheme 11) [48], while irradiation of

[MH4(dppe)2] (M¼Mo,W)with γ-ray gave the dinitrogen complexes [M(N2)2(dppe)2]

together with ammonia and hydrazine [49–51]. Hydrogenolysis of [Mo(N2)2(dppe)2]

(23) with H2 regenerated the tetrahydride complex [MoH4(dppe)2] (22) [52, 53]. The

reaction of a C6H6-coordinated half-sandwich molybdenum dihydride complex [(C6H6)

MoH2(PPh3)2] (24) with N2 afforded a binuclear end-on coordinated dinitrogen com-

plex [(C6H6)Mo(PPh3)2]2(N)2 (25) in quantitative yield with release of H2 in a reversible

fashion (Scheme 12) [54].

The reaction of the dinitrogen tungsten complex [W(N2)2(PMe2Ph)4] (26) with the

dihydrogen ruthenium complex [RuCl(H2)(dppp)2] (27) in the presence of H2 gen-

erated NH3 (55%) (Scheme 13) [55]. In this reaction, one H atom of the H2 unit in

27 worked as a proton source, which protonated the coordinated N2 in 26 to form

initially a hydrazido (W�N–NH2) species, and the other H atom remained at the Ru

atom as a hydride. Further protonation of the hydrazido units with 27 resulted in the

formation of NH3. Although the reaction allowed the formation of NH3 from N2 in
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the presence of H2, the electrons required for the cleavage of N�N bond were

provided by the tungsten species.

As to group 5 transition metals, solid surface-supported tantalum hydrides were

reported to cleave and hydrogenate N2 [56]. However, the activation of dinitrogen

by a well-defined mononuclear group 5 transition metal hydride complex remained

unknown.
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2.5 Group 4 Transition Metal Hydrides

The activation of dinitrogen by titanium metallocene hydride complexes bearing

different cyclopentadienyl ligands was investigated [57–59]. Acid hydrolysis of a

reaction mixture of (C5H5)2TiCl2 and ethylmagnesium halide in the presence of N2

was reported to yield NH3 [59]. It was thought that a titanium hydride species was

an active species for the reduction of N2 in this reaction, though no structural

evidence was available. Hydrogenolysis of [(C5Me5)(C5Me4CH2)TiCH3] with H2,

followed by introduction of N2 (1 atm), afforded an end-on coordinated N2-bridged

complex [(C5Me5)2Ti(μ-N2)Ti(C5Me5)2] [60, 61]. This reaction was proposed to

proceed through initial hydrogenolysis of the alkyl complex with H2 to a dihydride

species [(C5Me5)2TiH2], followed by releases of H2 and incorporation of N2 to the

resulting titanocene species [(C5Me5)2Ti]. Similarly, hydrogenolysis of the triva-

lent titanium complexes [(C5Me4H)2TiR] (28) (R ¼ Me, Ph) with H2 followed by

the reaction with N2 afforded the corresponding N2 complex [(C5Me4H)2Ti(μ-N2)

Ti(C5Me4H)2] (30) via the hydride complex [(C5Me4H)2TiH] (29) (Scheme 14) [62].

It was found that the Ti(III) metallocene hydride complex 29 could be dispropor-

tionated to the Ti(IV) dihydride 31 and the Ti(II) complex 32. The dihydride 31 could

lose H2 to give 32 in a reversible fashion. The Ti(II) metallocene 32 reacted with N2 to

form the dinuclear titanium N2 complex 30. The N2 ligand in 30 could be released

under vacuum to give 32.

Regarding the bonding mode of dinitrogen, the side-on (η2,η2) bridging form is

expected to enhance the reactivity of the dinitrogen ligand compared to the end-on
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H2 Ti H
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Scheme 14 Synthesis of the titanocene hydride complex 29 and the formation of an end-on bound

dinitrogen complex 30
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mode [63]. Metallocene complexes bearing less sterically demanding cyclopenta-

dienyl ligands could provide a more sterically accessible and electron-poor metal

center that potentially favors side-on η2,η2-N2 coordination [64]. Indeed, hydro-

genolysis of the 1,2,4-trimethylcyclopentadienyl-ligated titanocene dimethyl com-

plex [(C5Me3H2)2TiMe2] with H2 followed by reaction with N2 afforded the side-

on η2,η2-N2 complex [(C5Me3H2)2Ti]2(μ-η
2,η2-N2) (33) (Scheme 15) [65]. The

reaction of the dinitrogen complex 33 with H2 (1 atm) did take place, but a charac-

terizable product was not obtained.

The ansa-zirconocene dihydride complex 35, which was formed by hydrogen-

olysis of the dialkyl precursor 34, reacted with N2 reversibly to afford a side-on

coordinated dinitrogen complex 36 (Scheme 16) [66]. In contrast, the zirconium

metallocene dihydride complex bearing two C5Me5 ligands [(C5Me5)2ZrH2] did not

give an N2-incorporated complex under similar conditions [67], suggesting that the

ansa bridge structure of 35 should play an important role for the formation of the

dinitrogen complex 36.

3 Activation and Functionalization of Dinitrogen by

Binuclear Transition Metal Hydride Complexes

The reaction of a tris(pyrazolyl)borate (iPr2Tp)-ligated binuclear copper hydroxide

[iPr2TpCu]2(μ-OH)2 (37) with triphenylsilane under an N2 atmosphere afforded an

end-on bridged dinitrogen complex [iPr2TpCu]2(μ-N2) (41) (Scheme 17) [68]. A

mixed valence Cu(I)/Cu(II) binuclear copper monohydride complex [iPr2TpCu]2(μ-H)
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N
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n
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Scheme 15 Formation of the side-on bound dinitrogen complex 33 from the reaction of a less

sterically hindered titanocene hydride complex with N2
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Scheme 16 Reversible formation of the side-on bound dinitrogen complex 36 from the reaction

of the ansa-zirconocene hydride complex 35 with N2
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(40) was isolated as a key intermediate. Complex 40 could be formed via combination

of the highly reactive terminal Cu(II) hydride species [iPr2TpCu-H] (38), which was

produced by reaction between HSiPh3 and the hydroxide 37, with the unsaturated Cu

(I) species [iPr2TpCu] (39) generated by release of H2 from 38. Under an N2 atmo-

sphere, complex 40 changed to the dinitrogen complex 41 with release of H2. Alter-

natively, the reaction of 39 with N2 could also afford 41. The N2 ligand in 41 is quite

labile, which could be replaced by 15N2, MeCN, or O2.

The reaction of the sterically hindered β-diketiminate ligated iron chloride com-

plex with KBEt3H afforded the binuclear Fe(II) dihydride complex 42, which upon

UV irradiation under N2 resulted in loss of H2 and formation of the end-on dinitrogen

complex 43 (Scheme 18) [69, 70].

The β-diketiminate-ligated cobalt and nickel hydride complexes 44 were obtained

from the reaction of the chloride precursors with 1.0 equiv. of KBEt3H (Scheme 19)

[71, 72]. When 2.0 equiv. of KBEt3H were used to react with the cobalt chloride

complex, the potassium-bridged cobalt dihydride complex 45 was formed in high

yield [71]. These binuclear dihydride complexes 44 and 45 readily reacted with N2 at

room temperature to afford the end-on bridged dinitrogen complexes 46 and 47,

respectively (Scheme 19). Attempts to reduce the dinitrogen ligand in the nickel

dinitrogen complex with H2 led to loss of N2 [73].

The reaction of the PNP-ligated zirconium chloride complex [{P2N2}ZrCl2] with

KC8 under N2 yielded a side-on bound dinitrogen complex of zirconium, [{P2N2}

Zr]2(μ-η2,η2-N2) (48) (P2N2 ¼ PhP(CH2SiMe2NSiMe2CH2)2PPh) (Scheme 20) [74].
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Hydrogenolysis of 48 with H2 afforded [{P2N2}Zr]2(μ-η2,η2-N2H)(μ-H) (49) con-
taining both a bridging hydride and a bridging hydrazido unit through addition of one

molecule of H2 across to a Zr–N bond. Theoretical studies suggested that addition

of a second equivalent of H2 is feasible, but this reaction was not observed

experimentally [75].

The analogous side-on bound dinitrogen metallocene complex [(C5M4H)2Zr]2(μ-η2,η2-
N2) (50), which was formed by the reaction of the chloride precursor [(C5M4H)2ZrCl2]

with Na/Hg under N2, underwent the addition of 2 equiv. of H2 to furnish a dihydrido/

diazenido complex [(C5M4H)2ZrH]2(μ-η2,η2-N2H2) (51) (Scheme 21) [64, 76, 77]. The

reaction proceeded through a concerted, highly ordered transition state, in which the

H–H bond is simultaneously cleaved with Zr–H and N–H bond formation. Thermolysis

of the dihydrido/diazenido complex 51 caused H2 loss and N–N bond cleavage to give

the nitrido/amido complex [(C5M4H)2Zr]2(μ-N)(μ-NH2) (52). In this sequence of the

reaction, H2 worked as both proton and electron sources. It is also worth noting that

thermolysis of the dihydrido/diazenido complex under an H2 atmosphere yielded the

dihydride complex [(C5M4H)2ZrH2] with release of trace amount of ammonia [64].

A binuclear tantalum tetrahydride complex ([NPN]Ta)2(μ-H)4 (53) ([NPN]¼ PhP

(CH2SiMe2NPh)2), which was obtained from hydrogenolysis of the trimethyl pre-

cursor [NPN]TaMe3, reacted spontaneously with N2 to give a side-on, end-on bound

dinitrogen complex ([NPN]Ta)2(μ-η1,η2-N2)(μ-H)2 (54) with elimination of H2 (Scheme

22) [78, 79]. In this transformation, [N�N] was formally reduced to [N–N]4� by four

electrons generated by the reductive elimination of onemolecule of H2 and the oxidation

state change of the two Ta ions from Ta(IV) to Ta(V). The unique side-on end-on

coordination fashion of the bridging N2 resulted in substantial reactivity of the N2

fragment, leading to its cleavage and functionalization. While no apparent reaction of

54 with H2 was observed, complete cleavage of the N–N bond in 54 was achieved by
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reaction with a variety of hydride reagents (E-H¼ R2BH, R2AlH, RSiH3) (Scheme 22)

[80–82].

The anionic binuclear niobium tetrahydride complex 55 bearing triaryloxide

ligands readily reacted with N2 (1 atm) to afford the dinitrido complex 56 via N–N

bond cleavage without using external reducing agent (Scheme 23) [83, 84]. This

process corresponds to an overall six-electron reduction of N2, in which four elec-

trons are provided by formation of twomolecules of H2 from four hydride ligands and

two electrons generated by oxidation of the metal–metal bond. The methylation of

the nitride units in 56 by MeI proceeded in a stepwise fashion to give the bisimide

complex 57 (Scheme 23). A reaction of 56 with H2 did not take place.
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4 Activation and Functionalization of Dinitrogen

by Tri- and Tetranuclear Transition Metal

Hydride Complexes

Hydrogenolysis of the half-sandwich titanium trialkyl complex [Cp’Ti(CH2SiMe3)3]

(Cp’ ¼ C5Me4SiMe3) with H2 afforded the mixed valence Ti(III)/Ti(IV) heptahydride

complex [(Cp’Ti)3(μ3-H)(μ-H)6] (58) (Scheme 24) [85, 86]. This hydride cluster readily

reacted with atmospheric pressure of N2 at room temperature, giving an imido/nitrido

complex [(Cp’Ti)3(μ3-N)(μ-NH)(μ-H)2] (61) via N–N bond cleavage and N–H bond

formation without the need of extra reducing agent or proton source. Monitoring the

reaction by 1H and 15N NMR revealed the initial formation of a dinitrogen complex

[(Cp’Ti)3(μ3-η1, η2, η2-N2)(μ-H)3] (59) with release of two molecules of H2, followed

by N–N bond cleavage to give a dinitrido (N3�) complex [(Cp’Ti)3(μ3-N)(μ-N)(μ-H)3]
(60), and hydride migration from titanium to the μ2-nitrido unit to give the imido/nitrido

complex 61. The six electrons for the cleavage of the N–N bond were supplied by the

reductive elimination of two molecules of H2 and the oxidation of two Ti(III) species to

two Ti(IV) species. The proton (H+) for the formation of the N–H bond was generated

by oxidation of a bridging hydride (H�) by two Ti(IV) species which were both reduced
to Ti(III). Obviously, the hydride ligands in 58 served as the source of both electron and

proton for the dinitrogen cleavage and hydrogenation, resembling in part the industrial

Haber–Bosch process at the molecular level.

When the hydrogenolysis of the trialkyl titanium complex [Cp’Ti(CH2SiMe3)3]

with H2 was carried out in the presence of N2, a tetranuclear diimido/tetrahydrido

complex [(Cp’Ti)4(μ3-NH)2(μ-H)4] (62), instead of the trinuclear heptahydride com-

plex [(Cp’Ti)3(μ3-H)(μ-H)6] (58), was obtained in high yield (Scheme 25) [85]. The

formation of 62 could also be achieved by hydrogenolysis of [Cp’Ti(CH2SiMe3)3] in

the presence of 1 equiv. of the trinuclear imido/nitrido complex 61, suggesting that the

hydrogenation of 61 with a mononuclear titanium hydride species such as “Cp’TiH3”
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generated in situ by the hydrogenolysis of [Cp’Ti(CH2SiMe3)3] may take place. No

apparent reaction between 61 and H2 was observed at room or higher temperatures.

Complex 62 reacted with atmospheric pressure of N2 at 180
�C to afford a mixed

diimido/dinitrido complex [(Cp’Ti)4(μ3-N)2(μ3-NH)2] (63) with release of two mole-

cules of H2 (Scheme 25) [87]. When 62 was heated at 130�C, one molecule of H2 was

released to give the dinitrido/tetrahydrido complex [(Cp’Ti)4(μ3-N)2(μ-H)4] (64).

Exposure of 64 to H2 (1 atm) at 80�C regenerated 62 quantitatively, demonstrating

that 62 and 64 are facilely interconvertible through dehydrogenation and hydrogena-

tion of the imido/nitrido ligands. When the dinitrido/tetrahydrido complex 64 was

heated at 180�C in the presence of N2 (1 atm), the diimido/dinitrido complex 63 was

formed quantitatively. The hydrogenation of 63 with H2 to give the tetraimido com-

plex [(Cp’Ti)4(μ3-NH)4] (65) took place in a reversible way at 180�C (Scheme 25).

Remarkably, the imido and nitride species in 63 could be easily converted to

nitriles through reaction with acid chlorides at 60�C (Scheme 26) [87]. This
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transformation did not require any extra reagents (either reducing agents or bases) and

was compatible with functional groups such as aromatic C�X (X ¼ Cl, Br, I) bonds,

nitro group, aldehyde and chloromethyl moieties. 15N-isotope labeled nitriles could

also be efficiently prepared by using the 15N-enriched analogue [(Cp’Ti)4(μ3-
15N)2(μ3-

15NH)2] (63-
15N) derived from 15N2 gas.

5 Concluding Remarks and Outlook

It is clear from the results described above that molecular transition metal hydride

complexes can serve as a platform for dinitrogen activation. Mononuclear transition

metal hydride complexes can bind N2 to form end-on dinitrogen complexes with loss

of H2. This process is generally reversible and N–N bond cleavage is difficult. Bi-

nuclear transition metal hydride complexes can show higher reactivity and induce

N–N bond cleavage in some cases. A trinuclear titanium polyhydride complex has

demonstrated even higher activity for the activation of dinitrogen, which enabled

both N–N bond cleavage and N–H bond formation without the need of an external

reducing agent or proton source. Obviously, the hydride ligands can serve as the

source of both electron and proton for the reduction and hydrogenation of dinitrogen,

and the cooperation of multiple metal hydride sites may play an important role in this

process. A few functionalization reactions of the nitrogen species generated by the

activation of dinitrogen with transition metal hydrides have been reported, among

which the recent conversion of a tetranuclear titanium imido/nitrido complex to nitriles

is particularly noteworthy. Despite recent progress in this area, the study on the acti-

vation and functionalization of dinitrogen by molecular transition metal hydrides,

especially multimetallic polyhydride complexes, is still in infancy. The direct use of

dinitrogen as a feedstock for organic synthesis remains a challenge.
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11. Logadóttir Á, Nørskov JK (2003) Ammonia synthesis over a Ru(0001) surface studied by

density functional calculations. J Catal 220:273–779

12. Walter MD (2016) Recent advances in transition metal-catalyzed dinitrogen activation. Adv

Organomet Chem 65:261–377

13. Yandulov DV, Schrock RR (2003) Catalytic reduction of dinitrogen to ammonia at a single

molybdenum center. Science 301:76–78

14. Arashiba K, Miyake Y, Nishibayashi Y (2011) A molybdenum complex bearing PNP-type

pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat Chem 3:120–125

15. Anderson JS, Rittle J, Peters JC (2013) Catalytic conversion of nitrogen to ammonia by an iron

model complex. Nature 501:84–87
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50. Dzięgielewski JO, Małecki J, Grzybek R (1991) Radiation-catalytic reduction of molecular

nitrogen with application of the tungsten(IV) hydride complexes. Polyhedron 10:1007–1012
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