Top Organomet Chem (2017) 60: 23–44 DOI: 10.1007/3418_2016_3 \circ Springer International Publishing AG 2017 Published online: 12 January 2017

Dinitrogen Fixation by Transition Metal Hydride Complexes

Takanori Shima and Zhaomin Hou

Abstract This chapter describes the activation of dinitrogen by various transition metal hydride complexes. A number of mononuclear transition metal hydride complexes can incorporate dinitrogen, but they are usually difficult to induce N–N bond cleavage. In contrast, multimetallic hydride complexes can split and hydrogenate dinitrogen through cooperation of the multiple metal hydrides. In this transformation, the hydride ligands serve as the source of both electron and proton, thus enabling the cleavage and hydrogenation of dinitrogen without extra reducing agents and proton sources. Generally, the reactivity of the metal hydride complexes is significantly influenced by their composition (nuclearity) and metal/ligand combination.

Keywords Dinitrogen cleavage • Hydride • Hydrogenation • Multimetallic • Nitride

Contents

T. Shima and Z. Hou (\boxtimes)

Organometallic Chemistry Laboratory and RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan e-mail: houz@riken.jp

1 Introduction

Dinitrogen $(N₂)$ is an abundant and easily accessible resource, which occupies about 78% of Earth's atmosphere. However, N_2 molecule is chemically inert under ordinary conditions due to its strong N–N triple bond (944.84 \pm 0.[1](#page-16-0)0 kJ/mol) [1], large HOMO-LUMO energy gap (10.82 eV) [[2\]](#page-16-0), and nonpolarity. Certain microbial organisms can reduce N_2 to NH_3 by using nitrogenase enzymes at ambient temperature and pressure. This process consumes eight protons $(H⁺)$ and eight electrons $(e⁻)$ to convert one molecule of N_2 to two molecules of NH_3 with release of one molecule of H2. Recent studies revealed that the multiple metal centers having two hydrides and two sulfur-bound protons in the iron–molybdenum cofactor play a key role to promote H_2 release and N_2 reduction (Scheme 1a) [\[3–6](#page-16-0)]. However, the biological ammonia synthesis is not yet well understood and is difficult to mimic artificially. Industrially, ammonia is produced from N_2 and H_2 by the Haber–Bosch process under relatively harsh conditions (350~550°C, 150~350 atm) to activate N_2 on the solid catalyst surface. It was proposed that the reaction is initiated by dissociative absorption of N_2 and H_2 on low valent multiple iron metal sites to form metal hydrides and nitrides, followed by reversible hydrogenation of the nitride species to provide NH₃ (Scheme 1b) [\[7–11\]](#page-17-0). Both the biological and the Haber–Bosch processes are thought to take place through the cooperation of multiple metal sites bearing hydride ligands.

Scheme 1 Proposed pathways for catalytic ammonia formation by (a) nitrogenase enzyme (only the core structure is shown) and (b) the Haber–Bosch process (only part of the catalyst surface is shown)

In order to further explore the mechanism of N_2 reduction at the molecular level and thereby develop milder chemical processes for ammonia synthesis, extensive studies on the activation of $N₂$ with organometallic complexes have been carried out over the past decades [\[12](#page-17-0)]. As model reactions of the enzyme process, the use of strong metal reducing agents as an electron source in combination with transition metal complexes has been extensively studied, and the catalytic transformation of $N₂$ to ammonia has been achieved at ambient temperature and pressure by using carefully designed proton sources $[13-15]$. An alternative approach is the activation of N_2 by transition metal hydrides without the use of extra reducing agents or proton sources [\[16](#page-17-0)]. This approach is of particular interest, in view of the fact that both the biological and the industrial Haber–Bosch processes may involve metal hydrides as true active catalyst species. This chapter focuses on the activation and functionalization of N_2 by transition metal hydride complexes.

2 Dinitrogen Complexes Derived from Mononuclear Transition Metal Hydride Complexes

2.1 Group 9 Transition Metal Hydrides

The first dinitrogen complex $[(NH_3)_5Ru(N_2)]^{2+}$ was obtained serendipitously from the reaction of a ruthenium trichloride with hydrazine hydrate in 1965 [\[17](#page-17-0)]. Shortly after this discovery, the $N₂$ -derived end-on coordinated cobalt dinitrogen complex $[(Ph_3P)_3Co(N_2)H]$ (1) was synthesized from the reaction of a cobalt acetylacetonate, diethylaluminium monoethoxide, and triphenylphosphine ligands in the presence of N_2 gas (Scheme 2) [\[18](#page-17-0)]. When 1 was kept under an atmosphere of H_2 , the coordinated N_2 ligand was displaced by H₂ to afford the cobalt hydride complex $[(Ph_3P)_3COH_3]$ (2) [\[19](#page-17-0)]. Complex 2 could also be prepared by the reaction of $[COX_2(PPh_3)_2]$ (X = Cl, Br, I) with borohydride in the presence of H_2 and free PPh₃, and the reaction of 2 with N_2 easily took place to give 1 (Scheme 2) [[20](#page-17-0)]. Thus, the hydrogenation/dinitrogen coordination reactions are reversible.

Scheme 2 Synthesis and reversible hydrogenation of the cobalt dinitrogen complex 1

Co H N PPh_3 $\mathsf{Ph}_3\mathsf{P}$ PPh3 N **1** BuLi Co—N $\mathsf{Ph_3P}$ $\mathsf{Ph_3P_1}$ Ph_3P N —Li $(Et_2O)_3$ H^* $NH₂$ **3**

Scheme 3 Protonation of the cobalt dinitrogen complex 1

$$
RhCl_{3} \cdot 3H_{2}O + Na/Hg + PR_{3} \xrightarrow{H_{2}} H \xrightarrow{PR_{3}} H \xrightarrow{NP_{1} \text{ with } P_{1} \text{ with } P_{2} \text{ with } P_{3} \text{ with } P_{4} \text{ with } P_{5} \text{ with } P_{6} \text{ with } P_{7} \text{ with } P_{8} \text{ with } P_{9} \text{ with } P_{1} \text{ with } P_{
$$

The reaction of 1 with MgEt₂, BuLi, or Na metal afforded the N₂-bridged heterobimetallic complex, $[{(Ph_3P)_3Co(\mu-N_2)}_2Mg(THF)_4]$, $[(Ph_3P)_3Co(\mu-N_2)Li(Et_2O)_3]$ (3), or $[(Ph_3P)_3Co(\mu-N_2)Na(THF)_3]$, respectively [\[21](#page-17-0)]. While the coordinated N₂ ligand in 1 is unable to react with protic acids, the coordinated $N₂$ ligand in the electron-rich heterobimetallic complexes such as 3 gives 20–30% of hydrazine and ammonia by addition of H_2SO_4 or HCl (Scheme 3). However, reaction of the Co-N₂-Li complex 3 with H_2 afforded an analogous hydrogen complex Co- H_2 -Li, with quantitative evolution of N_2 . Upon exposure to an N_2 atmosphere, the hydrogen complex Co-H₂-Li released H_2 , and regenerated 3, demonstrating the reversibility of the coordination of H_2 and N_2 to the Ph₃P-Co-Li moiety.

With regard to other group 9 metals, the reduction of $RhCl₃·3H₂O$ with Na/Hg in the presence of sterically demanding phosphines and H_2 afforded the hydride complexes $[(R_3P)_2RhH_3]$ (4) $(R = Cy, 'Pr)$, which upon reaction with N₂ gave the end-on coordinated dinitrogen/hydride complexes $[(R_3P)RhH(N_2)]$ (5) (Scheme 4) [[22](#page-17-0), [23\]](#page-17-0). The dinitrogen ligands in these compounds were weakly activated and could readily be released by gentle heating.

2.2 Group 8 Transition Metal Hydrides

The iron hydride complexes $[FeH₂(H₂)(PR₃)₃]$ (6, PR₃ = PEtPh₂, PBuPh₂), which were prepared by treating $FeCl₂$ with PR₃ and NaBH₄ under an H₂ atmosphere, could incorporate atmospheric nitrogen to give the end-on coordinated dinitrogen complexes $[FeH₂(N₂)(PR₃)₃]$ (7) in an irreversible way (Scheme [5](#page-4-0)) [\[24–27](#page-17-0)]. Complex 7 released N_2 when heated under vacuum or upon addition of I_2 , HCl, or CO.

Scheme 5 Synthesis and dinitrogen coordination of the iron hydride complex 6

Scheme 6 Synthesis and hydrogenation of the ruthenium dinitrogen complex 8

The ruthenium dinitrogen compound $\text{RuH}_2(N_2)(\text{PPh}_3)_3$ (8) was obtained from the reaction of [RuHCl(PPh₃)₃] [28] [28] [28] with AlEt₃ under an N₂ atmosphere (Scheme 6) [\[29\]](#page-17-0). Treatment of 8 with H_2 gave the corresponding dihydride/dihydrogen complex $[RuH₂(H₂)(PPh₃)₃]$ (9). This conversion was readily reversed by exposing 9 to N₂. It is worth noting that the reactions of $\text{[RuH}_2(\text{PPh}_3)_4\text{]}$ with N₂ and H₂ did not afford isolable 8 and 9 due to the presence of the dissociated free PPh₃ ligand $[30]$. The ruthenium dinitrogen complexes bearing sterically demanding phosphines [\[31\]](#page-18-0), [PNP] pincer ligand [[32](#page-18-0)], and tris(pyrazolyl)borate ligand [[33](#page-18-0)], were also synthesized from the corresponding hydrogen complexes with $N₂$.

The reaction of $[FeCl₂(dmpe)₂]$ (10) bearing the bidentate dmpe (bis(dimethylphosphino)ethane) ligand with sodium borohydride (NaBH4) afforded the hydride complex $[FeH(H₂)(dmpe)₂]$ ⁺ (11) in high yield (Scheme [7](#page-5-0)) [\[34\]](#page-18-0). Complex 11 reacted with N_2 to give an end-on coordinated dinitrogen complex $[FeH(N_2)(dmpe)_2]^+$ (12). Deprotonation of 12 by KO'Bu provided an unstable iron (0) complex $[Fe(N_2)(dmpe)_2]$ (13). Treatment of 13 with HCl yielded ammonia (12%) and the chloride complex 10 (80%) with release of N_2 and H_2 [\[35–37](#page-18-0)]. The dichloride complex 10 could serve as a precursor to the hydride complex, and therefore, a synthetic cycle for the transformation of N_2 to ammonia could be realized.

Hydrogenolysis of an iron chloride complex bearing the bidentate 1,2-bis(bis(meth $oxypropy]phosphino)$ ethane ligands with $H₂$ gave the corresponding hydride/dihy-drogen complex 14 (Scheme [8\)](#page-5-0) [\[38\]](#page-18-0). The H_2 ligand in 14 could be substituted by N_2 , quantitatively affording the dinitrogen complex 15. The reaction with KO'Bu yielded a neutral Fe(0) complex 16. Protonation of 16 with triflic acid produced NH₄⁺ (15%) and trace $N_2H_5^+(2\%)$, but did not give a characterizable iron complex [\[39](#page-18-0)].

Scheme 7 A synthetic cycle for transformation of dinitrogen to ammonia by the iron complexes 10–13

Scheme 8 Dinitrogen activation by the iron hydride complex 14

2.3 Group 7 Transition Metal Hydrides

Addition of LiAlH₄ to a suspension of $[MnBr_2(dmpe)_2]$ followed by hydrolysis with water afforded the hydride complex $[MnH(H₂)(dmpe)₂]$ (17) (Scheme [9](#page-6-0)) [\[40\]](#page-18-0). Complex 17 readily reacted with N_2 to give the corresponding end-on coordinated dinitrogen complex $\text{[MnH(N_2)(dmpe)_2]}$ (18) [\[41\]](#page-18-0). Half-sandwich manganase dihydride complex $[(C_5H_5)MnH_2(dfepe)]$ (dfepe = diperfluoroethylphosphinoethane) with N₂ afforded a binuclear end-on coordinated dinitrogen complex $[(C_5H_5)Mn(dfepe)]_2(N_2)$ via the formation of a mononuclear dinitrogen complex $[(C_5H_5)Mn(N_2)(dfepe)]$ [\[42](#page-18-0)].

The rhenium dinitrogen complex $[ReH(N_2)(dmpe)_2]$ (20) was obtained from the reaction of the nonahydride complex $[NEt_4]_2[Ref_9]$ (19) [\[43\]](#page-18-0) with dppe (dppe = 1,2bis(diphenylphosphino)ethane) under an N_2 atmosphere (Scheme [10\)](#page-6-0) [[44](#page-18-0)]. In contrast, the reactions of monodentate tertiary phosphines with 19 in an $N₂$ atmosphere gave only the hydride complexes. The dinitrogen complex 20 was readily protonated at the metal center by HBF_4 to form the cationic dihydro dinitrogen rhenium complex $[ReH₂(N₂)(dmpe)₂]BF₄$, while protonation at the N₂ ligand was not observed.

Scheme 9 Synthesis of the manganese hydride complex 17 and its reaction with N_2

Scheme 10 Synthesis of the rhenium dinitrogen complex 19 from the reactions of rhenium hydride complexes with $N₂$

Synthesis of the dinitrogen complex 20 by photolysis of the trihydride complex $[ReH_3(dmpe)_2]$ (21) with UV light in an N₂ atmosphere was also reported [\[45\]](#page-18-0).

2.4 Group 6 Transition Metal Hydrides

The molybdenum and tungsten hydride complexes having bidentate phosphine ligands $[MH_4(dppe)_2]$ (M = Mo (22), W) were obtained from the reactions of the chloride precursors [MCl₄(dppe)] and excess of dppe ligand with NaBH₄ [\[46,](#page-18-0) [47\]](#page-18-0). Photolysis of $[MoH_4(dppe)_2]$ (22) with UV light gave an end-on coordinated dinitrogen complex $[Mo(N₂)₂(dppe)₂]$ (23) in high yield (Scheme [11\)](#page-7-0) [\[48\]](#page-18-0), while irradiation of [MH₄(dppe)₂] (M = Mo, W) with γ-ray gave the dinitrogen complexes [M(N₂)₂(dppe)₂] together with ammonia and hydrazine [[49–51](#page-18-0)]. Hydrogenolysis of $[Mo(N₂)₂(dppe)₂]$ (23) with H_2 regenerated the tetrahydride complex $[MoH_4(dppe)_2]$ (22) [\[52,](#page-18-0) [53\]](#page-19-0). The reaction of a C_6H_6 -coordinated half-sandwich molybdenum dihydride complex $[(C_6H_6)$ $MOH₂(PPh₃)₂$ (24) with N₂ afforded a binuclear end-on coordinated dinitrogen complex $[(C_6H_6)Mo(PPh_3)_2]_2(N)_2$ (25) in quantitative yield with release of H_2 in a reversible fashion (Scheme [12](#page-7-0)) [\[54\]](#page-19-0).

The reaction of the dinitrogen tungsten complex $[W(N_2)_2(PMe_2Ph)_4]$ (26) with the dihydrogen ruthenium complex $[RuCl(H_2)(dppp)_2]$ (27) in the presence of H_2 gen-erated NH₃ (55%) (Scheme [13](#page-7-0)) [[55\]](#page-19-0). In this reaction, one H atom of the H₂ unit in 27 worked as a proton source, which protonated the coordinated N_2 in 26 to form initially a hydrazido ($W \equiv N-NH_2$) species, and the other H atom remained at the Ru atom as a hydride. Further protonation of the hydrazido units with 27 resulted in the formation of NH₃. Although the reaction allowed the formation of NH₃ from N₂ in

Scheme 11 Synthesis of the molybdenum hydride complex 22 and its reaction with N_2 under UV irradiation

Scheme 12 Formation of a binuclear molybdenum dinitrogen complex 25

Scheme 13 Formation of ammonia from the reaction of the tungsten dinitrogen complex 26 with the ruthenium dihydrogen complex 27

the presence of H_2 , the electrons required for the cleavage of N \equiv N bond were provided by the tungsten species.

As to group 5 transition metals, solid surface-supported tantalum hydrides were reported to cleave and hydrogenate N_2 [\[56](#page-19-0)]. However, the activation of dinitrogen by a well-defined mononuclear group 5 transition metal hydride complex remained unknown.

Scheme 14 Synthesis of the titanocene hydride complex 29 and the formation of an end-on bound dinitrogen complex 30

2.5 Group 4 Transition Metal Hydrides

The activation of dinitrogen by titanium metallocene hydride complexes bearing different cyclopentadienyl ligands was investigated [[57–59](#page-19-0)]. Acid hydrolysis of a reaction mixture of $(C_5H_5)_2TiCl_2$ and ethylmagnesium halide in the presence of N_2 was reported to yield $NH₃$ [\[59](#page-19-0)]. It was thought that a titanium hydride species was an active species for the reduction of N_2 in this reaction, though no structural evidence was available. Hydrogenolysis of $[(C_5Me_5)(C_5Me_4CH_2)TiCH_3]$ with H_2 , followed by introduction of N_2 (1 atm), afforded an end-on coordinated N_2 -bridged complex $[(C_5Me_5)_2Ti(\mu-N_2)Ti(C_5Me_5)_2]$ [\[60](#page-19-0), [61](#page-19-0)]. This reaction was proposed to proceed through initial hydrogenolysis of the alkyl complex with H_2 to a dihydride species $[(C_5Me_5)_2TH_2]$, followed by releases of H_2 and incorporation of N_2 to the resulting titanocene species $[(C_5Me_5)_2Ti]$. Similarly, hydrogenolysis of the trivalent titanium complexes $[(C_5Me_4H)_2TiR]$ (28) (R = Me, Ph) with H₂ followed by the reaction with N₂ afforded the corresponding N₂ complex $[(C_5Me_4H)_2Ti(\mu-N_2)$ $Ti(C_5Me₄H)₂$] (30) via the hydride complex $[(C_5Me₄H)₂TH]$ (29) (Scheme 14) [\[62\]](#page-19-0). It was found that the Ti(III) metallocene hydride complex 29 could be disproportionated to the Ti(IV) dihydride 31 and the Ti(II) complex 32. The dihydride 31 could lose H₂ to give 32 in a reversible fashion. The Ti(II) metallocene 32 reacted with N₂ to form the dinuclear titanium N_2 complex 30. The N_2 ligand in 30 could be released under vacuum to give 32.

Regarding the bonding mode of dinitrogen, the side-on (η^2, η^2) bridging form is expected to enhance the reactivity of the dinitrogen ligand compared to the end-on

Scheme 15 Formation of the side-on bound dinitrogen complex 33 from the reaction of a less sterically hindered titanocene hydride complex with $N₂$

Scheme 16 Reversible formation of the side-on bound dinitrogen complex 36 from the reaction of the *ansa*-zirconocene hydride complex 35 with N_2

mode [[63\]](#page-19-0). Metallocene complexes bearing less sterically demanding cyclopentadienyl ligands could provide a more sterically accessible and electron-poor metal center that potentially favors side-on η^2 , η^2 -N₂ coordination [[64\]](#page-19-0). Indeed, hydrogenolysis of the 1,2,4-trimethylcyclopentadienyl-ligated titanocene dimethyl complex $[(C_5Me_3H_2)_2TiMe_2]$ with H₂ followed by reaction with N₂ afforded the sideon η^2 , η^2 -N₂ complex $[(C_5Me_3H_2)_2Ti]_2(\mu-\eta^2,\eta^2-N_2)$ (33) (Scheme 15) [\[65](#page-19-0)]. The reaction of the dinitrogen complex 33 with H_2 (1 atm) did take place, but a characterizable product was not obtained.

The *ansa*-zirconocene dihydride complex 35, which was formed by hydrogenolysis of the dialkyl precursor 34, reacted with N_2 reversibly to afford a side-on coordinated dinitrogen complex 36 (Scheme 16) [[66\]](#page-19-0). In contrast, the zirconium metallocene dihydride complex bearing two C_5Me_5 ligands $[(C_5Me_5)_2ZrH_2]$ did not give an N_2 -incorporated complex under similar conditions [\[67](#page-19-0)], suggesting that the ansa bridge structure of 35 should play an important role for the formation of the dinitrogen complex 36.

3 Activation and Functionalization of Dinitrogen by Binuclear Transition Metal Hydride Complexes

The reaction of a tris(pyrazolyl)borate $($ ^{iPr2}Tp)-ligated binuclear copper hydroxide $\int_0^{\text{IPr2}} \text{TpCu} \cdot \text{QH} \cdot \text{d} \cdot \text{$ end-on bridged dinitrogen complex $\left[\right]$ ^{Pr2}TpCu]₂(μ -N₂) (41) (Scheme [17\)](#page-10-0) [[68\]](#page-19-0). A mixed valence Cu(I)/Cu(II) binuclear copper monohydride complex $\binom{iPr}{2}TpCu$ $\frac{1}{2}(\mu-H)$

(40) was isolated as a key intermediate. Complex 40 could be formed via combination of the highly reactive terminal Cu(II) hydride species $\int_0^{\text{iPr2}} \text{Tr}$ Cu-H] (38), which was produced by reaction between $H\sin Ph_3$ and the hydroxide 37, with the unsaturated Cu (I) species $\int_{0}^{\text{iPr2}} \text{Tr} \text{Cu} \cdot \text$ sphere, complex 40 changed to the dinitrogen complex 41 with release of $H₂$. Alternatively, the reaction of 39 with N_2 could also afford 41. The N_2 ligand in 41 is quite labile, which could be replaced by ${}^{15}N_2$, MeCN, or O₂.

The reaction of the sterically hindered β-diketiminate ligated iron chloride complex with KBEt₃H afforded the binuclear Fe(II) dihydride complex 42, which upon UV irradiation under N_2 resulted in loss of H_2 and formation of the end-on dinitrogen complex 43 (Scheme 18) [\[69](#page-19-0), [70\]](#page-19-0).

The β-diketiminate-ligated cobalt and nickel hydride complexes 44 were obtained from the reaction of the chloride precursors with 1.0 equiv. of $KBEt₃H$ (Scheme [19](#page-11-0)) [\[71,](#page-19-0) [72\]](#page-19-0). When 2.0 equiv. of $KBEt₃H$ were used to react with the cobalt chloride complex, the potassium-bridged cobalt dihydride complex 45 was formed in high yield [\[71\]](#page-19-0). These binuclear dihydride complexes 44 and 45 readily reacted with N_2 at room temperature to afford the end-on bridged dinitrogen complexes 46 and 47, respectively (Scheme [19](#page-11-0)). Attempts to reduce the dinitrogen ligand in the nickel dinitrogen complex with H_2 led to loss of N_2 [[73\]](#page-19-0).

The reaction of the PNP-ligated zirconium chloride complex $[{P_2N_2}ZrCl_2]$ with KC_8 under N₂ yielded a side-on bound dinitrogen complex of zirconium, [$\{P_2N_2\}$] $Zr]_2(\mu-\eta^2,\eta^2-N_2)$ (48) $(P_2N_2 = PhP(CH_2SiMe_2NSiMe_2CH_2)_2PPh)$ (Scheme [20\)](#page-12-0) [\[74\]](#page-19-0).

Scheme 17 Formation of a binuclear copper dinitrogen complex 41

Scheme 18 Synthesis of the binuclear iron hydride complex 42 and its reaction with N_2 to generate the end-on dinitrogen complex 43

Scheme 19 Synthesis of binuclear cobalt and nickel hydride complexes 44 and 45 and their reactions with N_2 to generate the end-on dinitrogen complexes 46 and 47

Hydrogenolysis of 48 with H₂ afforded $[{P_2N_2}Zr]_2(\mu-\eta^2,\eta^2-N_2H)(\mu-H)$ (49) containing both a bridging hydride and a bridging hydrazido unit through addition of one molecule of H_2 across to a Zr–N bond. Theoretical studies suggested that addition of a second equivalent of H_2 is feasible, but this reaction was not observed experimentally [[75](#page-19-0)].

The analogous side-on bound dinitrogen metallocene complex $[(C_5M_4H)_2Zr]_2(\mu-\eta^2,\eta^2-\eta^2)$ N_2) (50), which was formed by the reaction of the chloride precursor $[(C_5M_4H)_2ZrCl_2]$ with Na/Hg under N₂, underwent the addition of 2 equiv. of H₂ to furnish a dihydrido/ diazenido complex $[(C_5M_4H)_2ZrH]_2(\mu-\eta^2,\eta^2-N_2H_2)$ (51) (Scheme [21](#page-12-0)) [\[64,](#page-19-0) [76,](#page-19-0) [77\]](#page-20-0). The reaction proceeded through a concerted, highly ordered transition state, in which the H–H bond is simultaneously cleaved with Zr–H and N–H bond formation. Thermolysis of the dihydrido/diazenido complex 51 caused H_2 loss and N–N bond cleavage to give the nitrido/amido complex $[(C_5M_4H)_2Zr]_2(\mu-N)(\mu-NH_2)$ (52). In this sequence of the reaction, $H₂$ worked as both proton and electron sources. It is also worth noting that thermolysis of the dihydrido/diazenido complex under an $H₂$ atmosphere yielded the dihydride complex $[(C_5M_4H)_2ZrH_2]$ with release of trace amount of ammonia [[64](#page-19-0)].

A binuclear tantalum tetrahydride complex ([NPN]Ta)₂(μ -H)₄ (53) ([NPN] = PhP $(CH_2SiMe_2NPh)_2$, which was obtained from hydrogenolysis of the trimethyl precursor [NPN]TaMe₃, reacted spontaneously with N_2 to give a side-on, end-on bound dinitrogen complex $([NPN]Ta)_2(\mu-\eta^1,\eta^2-N_2)(\mu-H)_2$ (54) with elimination of H_2 (Scheme [22](#page-13-0)) [[78,](#page-20-0) [79\]](#page-20-0). In this transformation, [N \equiv N] was formally reduced to [N–N]^{4–} by four electrons generated by the reductive elimination of one molecule of H_2 and the oxidation state change of the two Ta ions from $Ta(V)$ to $Ta(V)$. The unique side-on end-on coordination fashion of the bridging N_2 resulted in substantial reactivity of the N_2 fragment, leading to its cleavage and functionalization. While no apparent reaction of 54 with H_2 was observed, complete cleavage of the N–N bond in 54 was achieved by

Scheme 20 Hydrogenation of the binuclear zirconium dinitrogen complex 48 with H_2

Scheme 21 Cleavage and hydrogenation of the side-on bound dinitrogen ligand in complex 50 by $H₂$

reaction with a variety of hydride reagents (E-H = R_2BH , R_2AH , RSiH₃) (Scheme [22](#page-13-0)) [\[80–82\]](#page-20-0).

The anionic binuclear niobium tetrahydride complex 55 bearing triaryloxide ligands readily reacted with N_2 (1 atm) to afford the dinitrido complex 56 via N–N bond cleavage without using external reducing agent (Scheme [23\)](#page-13-0) [\[83](#page-20-0), [84](#page-20-0)]. This process corresponds to an overall six-electron reduction of N_2 , in which four electrons are provided by formation of two molecules of H_2 from four hydride ligands and two electrons generated by oxidation of the metal–metal bond. The methylation of the nitride units in 56 by MeI proceeded in a stepwise fashion to give the bisimide complex 57 (Scheme 23). A reaction of 56 with H_2 did not take place.

Scheme 22 Reaction of a binuclear tantalum tetrahydride complex 53 with N_2 to give a side-on, end-on dinitrogen complex 54 whose N–N bond could be cleaved upon reaction with hydride reagents

Scheme 23 Dinitrogen cleavage by a binuclear niobium tetrahydride complex

4 Activation and Functionalization of Dinitrogen by Tri- and Tetranuclear Transition Metal Hydride Complexes

Hydrogenolysis of the half-sandwich titanium trialkyl complex $[Cp'Ti(CH_2SiMe_3)_3]$ $(Cp' = C₅Me₄SiMe₃)$ with H₂ afforded the mixed valence Ti(III)/Ti(IV) heptahydride complex $[(Cp'Ti)_{3}(\mu_{3}-H)(\mu-H)_{6}]$ (58) (Scheme 24) [\[85](#page-20-0), [86](#page-20-0)]. This hydride cluster readily reacted with atmospheric pressure of N_2 at room temperature, giving an imido/nitrido complex $[(Cp'Ti)_{3}(\mu_{3}-N)(\mu-NH)(\mu-H)_{2}]$ (61) via N–N bond cleavage and N–H bond formation without the need of extra reducing agent or proton source. Monitoring the reaction by ${}^{1}H$ and ${}^{15}N$ NMR revealed the initial formation of a dinitrogen complex [$(Cp'Ti)_{3}(\mu_3-\eta^1, \eta^2, \eta^2-N_2)(\mu-H)_{3}$] (59) with release of two molecules of H₂, followed by N–N bond cleavage to give a dinitrido (N^{3-}) complex $[(Cp'Ti)_{3}(\mu_{3}-N)(\mu-N)(\mu-H)_{3}]$ (60), and hydride migration from titanium to the μ_2 -nitrido unit to give the imido/nitrido complex 61. The six electrons for the cleavage of the N–N bond were supplied by the reductive elimination of two molecules of H_2 and the oxidation of two Ti(III) species to two $Ti(IV)$ species. The proton $(H⁺)$ for the formation of the N–H bond was generated by oxidation of a bridging hydride (H^-) by two Ti(IV) species which were both reduced to Ti(III). Obviously, the hydride ligands in 58 served as the source of both electron and proton for the dinitrogen cleavage and hydrogenation, resembling in part the industrial Haber–Bosch process at the molecular level.

When the hydrogenolysis of the trialkyl titanium complex $[Cp'Ti(CH_2SiMe_3)_3]$ with H_2 was carried out in the presence of N_2 , a tetranuclear diimido/tetrahydrido complex $[(Cp'Ti)_{4}(\mu_{3}-NH)_{2}(\mu-H)_{4}]$ (62), instead of the trinuclear heptahydride complex $[(Cp'Ti)_{3}(\mu_{3}-H)(\mu-H)_{6}]$ (58), was obtained in high yield (Scheme [25\)](#page-15-0) [\[85\]](#page-20-0). The formation of 62 could also be achieved by hydrogenolysis of $[CP^{\prime}Ti(CH_2SiMe_3)]$ in the presence of 1 equiv. of the trinuclear imido/nitrido complex 61, suggesting that the hydrogenation of 61 with a mononuclear titanium hydride species such as "Cp'TiH₃"

Scheme 24 Dinitrogen cleavage and hydrogenation by a trinuclear titanium heptahydride complex 58

Scheme 25 Dinitrogen activation and hydrogenation by a tetranuclear titanium diimido/tetrahydrido complex 62

Scheme 26 Transformation to nitriles by reaction of 63 with acid chlorides

generated in situ by the hydrogenolysis of $[Cp'Ti(CH_2SiMe_3)_3]$ may take place. No apparent reaction between 61 and H_2 was observed at room or higher temperatures.

Complex 62 reacted with atmospheric pressure of N_2 at 180°C to afford a mixed diimido/dinitrido complex $[(Cp'Ti)_{4}(\mu_{3}-N)_{2}(\mu_{3}-NH)_{2}]$ (63) with release of two mole-cules of H₂ (Scheme 25) [\[87\]](#page-20-0). When 62 was heated at 130°C, one molecule of H₂ was released to give the dinitrido/tetrahydrido complex $[(Cp'Ti)_{4}(\mu_{3}-N)_{2}(\mu_{4}-H)_{4}]$ (64). Exposure of 64 to H_2 (1 atm) at 80°C regenerated 62 quantitatively, demonstrating that 62 and 64 are facilely interconvertible through dehydrogenation and hydrogenation of the imido/nitrido ligands. When the dinitrido/tetrahydrido complex 64 was heated at 180°C in the presence of N_2 (1 atm), the diimido/dinitrido complex 63 was formed quantitatively. The hydrogenation of 63 with H_2 to give the tetraimido complex $[(Cp'Ti)₄(\mu_3-NH)₄]$ (65) took place in a reversible way at 180°C (Scheme 25).

Remarkably, the imido and nitride species in 63 could be easily converted to nitriles through reaction with acid chlorides at 60° C (Scheme 26) [\[87\]](#page-20-0). This transformation did not require any extra reagents (either reducing agents or bases) and was compatible with functional groups such as aromatic $C-X$ ($X = Cl$, Br, I) bonds, nitro group, aldehyde and chloromethyl moieties. ¹⁵N-isotope labeled nitriles could also be efficiently prepared by using the ¹⁵N-enriched analogue $[(Cp'Ti)₄(\mu₃-¹⁵N)₂(\mu₃-¹⁵NH)₂]$ (63-¹⁵N) derived from ¹⁵N₂ gas.

5 Concluding Remarks and Outlook

It is clear from the results described above that molecular transition metal hydride complexes can serve as a platform for dinitrogen activation. Mononuclear transition metal hydride complexes can bind N_2 to form end-on dinitrogen complexes with loss of $H₂$. This process is generally reversible and N–N bond cleavage is difficult. Binuclear transition metal hydride complexes can show higher reactivity and induce N–N bond cleavage in some cases. A trinuclear titanium polyhydride complex has demonstrated even higher activity for the activation of dinitrogen, which enabled both N–N bond cleavage and N–H bond formation without the need of an external reducing agent or proton source. Obviously, the hydride ligands can serve as the source of both electron and proton for the reduction and hydrogenation of dinitrogen, and the cooperation of multiple metal hydride sites may play an important role in this process. A few functionalization reactions of the nitrogen species generated by the activation of dinitrogen with transition metal hydrides have been reported, among which the recent conversion of a tetranuclear titanium imido/nitrido complex to nitriles is particularly noteworthy. Despite recent progress in this area, the study on the activation and functionalization of dinitrogen by molecular transition metal hydrides, especially multimetallic polyhydride complexes, is still in infancy. The direct use of dinitrogen as a feedstock for organic synthesis remains a challenge.

References

- 1. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton, FL
- 2. Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107:4184–4195
- 3. Hoffman BM et al (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062
- 4. Hoffman BM et al (2013) Nitrogenase: a draft mechanism. Acc Chem Res 46:587–595
- 5. Lukoyanov D et al (2015) Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N_2 for H_2 . J Am Chem Soc 137:3610–3615
- 6. Yang ZY et al (2013) On reversible H_2 loss upon N_2 binding to FeMo-cofactor of nitrogenase. Proc Natl Acad Sci U S A 110:16327–16332
- 7. Ertl G (2008) Reactions at surfaces: from atoms to complexity (nobel lecture). Angew Chem Int Ed Engl 47:3524–3535
- 8. Honkala K et al (2005) Ammonia synthesis from first-principles calculations. Science 307:555–558
- 9. Ertl G (1980) Surface science and catalysis studies on the mechanism of ammonia synthesis: the P.H. Emmett award address. Catal Rev Sci Eng 21:201–223
- 10. Rodriguez MM et al (2011) N₂ reduction and hydrogenation to ammonia by a molecular ironpotassium complex. Science 334:780–783
- 11. Logadóttir Á, Nørskov JK (2003) Ammonia synthesis over a $Ru(0001)$ surface studied by density functional calculations. J Catal 220:273–779
- 12. Walter MD (2016) Recent advances in transition metal-catalyzed dinitrogen activation. Adv Organomet Chem 65:261–377
- 13. Yandulov DV, Schrock RR (2003) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301:76–78
- 14. Arashiba K, Miyake Y, Nishibayashi Y (2011) A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat Chem 3:120–125
- 15. Anderson JS, Rittle J, Peters JC (2013) Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501:84–87
- 16. Ballmann J, Munhá RF, Fryzuk MD (2010) The hydride route to the preparation of dinitrogen complexes. Chem Commun 46:1013–1025
- 17. Allen AD, Senoff CV (1965) Nitrogenopentammineruthenium(II) complexes. Chem Commun (London) 621–622
- 18. Yamamoto A et al (1967) Study of the fixation of nitrogen. Isolation of tris(triphenylphosphine) cobalt complex co-ordinated with molecular nitrogen. Chem Commun (London) 79–80
- 19. Yamamoto A et al (1967) Reversible combination of molecular nitrogen with a cobalt complex. Exchange reactions of nitrogen–tris(tripheny1phosphine)cobalt with hydrogen, ethylene, and ammonia. J Am Chem Soc 89:3071
- 20. Sacco A, Rossi M (1967) Hydride and nitrogen complexes of cobalt. Chem Commun (London) 316
- 21. Yamamoto A et al (1983) Preparation, X-ray molecular structure determination, and chemical properties of dinitrogen-coordinated cobalt complexes containing triphenylphosphine ligands and alkali metal or magnesium. Protonation of the coordinated dinitrogen to ammonia and hydrazine. Organometallics 2:1429–1436
- 22. Yoshida T et al (1979) Preparations and reactions of some hydridodinitrogentrialkylphosphine complexes of rhodium(I). The structure of a dinitrogen-bridged rhodium(I) dimer, [RhH(P $(i-Pr)_{3}$ ₂]₂(μ -N₂). J Organomet Chem 181:183–201
- 23. Yoshida T, Okano T, Otsuka S (1978) Novel three-co-ordinate rhodium(I) hydrido-compounds, $[RhH(PBu^t₃)₂]$ and $[RhH{P(cyclohexyl)₃}₂$. J Chem Soc Chem Commun 855–856
- 24. Sacco A, Aresta M (1968) Nitrogen fixation: hydrido- and hydrido-nitrogen-complexes of iron(II). Chem Commun (London) 1223–1224
- 25. Aresta M et al (1971) Hydrido-complexes of iron(IV) and iron(II). Inorg Chim Acta 5:115–118
- 26. Aresta M et al (1971) Nitrogen fixation. II. Dinitrogen-complexes of iron. Inorg Chim Acta 5:203–206
- 27. Van Der Sluys LS et al (1990) An attractive "cis-effect" of hydride on neighbor ligands: experimental and theoretical studies on the structure and intramolecular rearrangements of Fe(H)₂(η^2 -H2)(PEtPh2)3. J Am Chem Soc 112:4831–4841
- 28. Hallman PS, McGarvey BR, Wilkinson G (1968) The preparation and reactions of hydridochlorotris(triphenylphosphine)ruthenium(II) including homogeneous catalytic hydrogenation of alk-1-enes. J Chem Soc A 3143–3150
- 29. Knoth WH (1972) Dihydrido(dinitrogen)tris(triphenylphosphine)ruthenium. Dinitrogen bridging ruthenium and boron. J Am Chem Soc 94:104–109
- 30. Yamamoto A, Kitazume S, Ikeda S (1968) Triphenylphosphine complexes of ruthenium and rhodium. Reversible combinations of molecular nitrogen and hydrogen with the ruthenium complex. J Am Chem Soc 90:1089–1090
- 31. Abdur-Rashid K et al (2000) Synthesis and characterization of $RuH_2(H_2)_2(P^i Pr_3)_2$ and related chemistry. Evidence for a bis(dihydrogen) structure. Organometallics 19:1652–1660
- 32. Prechtl MHG et al (2007) Synthesis and characterisation of nonclassical ruthenium hydride complexes containing chelating bidentate and tridentate phosphine ligands. Chem A Eur J 13:1539–1546
- 33. Tenorio MJ et al (1997) Hydride, dihydrogen, dinitrogen and related complexes of ruthenium containing the ligand hydrotris(pyrazolyl)borate. X-ray crystal structure of $[{HB(pz)_3}Ru(n^2 H_2$)(dippe)][BPh₄] (dippe = 1,2-bis(diisopropylphosphino)ethane). Inorg Chim Acta 259:77–84
- 34. Hills A et al (1990) Complexes of tertiary phosphines with iron(II) and dinitrogen, dihydrogen, and other small molecules. J Organomet Chem 391:C41–C44
- 35. Leigh GJ, Jimenez-Tenorio M (1991) Exchange of dinitrogen between iron and molybdenum centers and the reduction of dinitrogen bound to iron: implications for the chemistry of nitrogenases. J Am Chem Soc 113:5862–5863
- 36. Hills A et al (1993) Bis[1,2-bis(dimethylphosphino)ethane]dihydrogenhydridoiron(II) tetraphenylborate as a model for the function of nitrogenases. J Chem Soc Dalton Trans 3041–3049
- 37. Hall DA, Leigh GJ (1996) Reduction of dinitrogen bound at an iron(0) centre. J Chem Soc Dalton Trans 3539–3541
- 38. Gilbertson JD, Szymczak NK, Tyler DR (2004) H₂ activation in aqueous solution: formation of *trans*-[Fe(DMeOPrPE)₂H(H₂)]⁺ via the heterolysis of H₂ in water. Inorg Chem 43:3341–3343
- 39. Gilbertson JD, Szymczak NK, Tyler DR (2005) Reduction of N_2 to ammonia and hydrazine utilizing H_2 as the reductant. J Am Chem Soc 127:10184–10185
- 40. Girolami GS et al (1985) Alkyl, hydrido, and tetrahydroaluminato complexes of manganese with 1,2-bis(dimethylphosphino)ethane (dmpe). X-ray crystal structures of $Mn_2(\mu-C_6H_{11})_2(C_6H_{11})_2(\mu$ dmpe), $(dmpe)_{2}Mn(\mu-H)_{2}AlH(\mu-H)_{2}AlH(\mu-H)_{2}Mn(dmpe)_{2}$, and Li₄{MnH(C₂H₄)[CH₂(Me) $PCH_2CH_2PMe_2$]₂}₂.2Et₂O. J Chem Soc Dalton Trans 921–929
- 41. Perthuisot C, Fan M, Jones WD (1992) Catalytic thermal C–H activation with manganese complexes: evidence for η^2 -H₂ coordination in a neutral manganese complex and its role in C–H activation. Organometallics 11:3622–3629
- 42. Merwin RK et al (2004) Synthesis and characterization of $CpMn(dfepe)(L)$ complexes (dfepe = $(C_2F_5)_2PCH_2CH_2P(C_2F_5)_2$; L = CO, H₂, N₂): an unusual example of a dihydride to dihydrogen photochemical conversion. Polyhedron 23:2873–2878
- 43. Ginsberg AP (1968) Nine-co-ordinate octahydrido(tertiary phosphine)rhenate complex anions. Chem Commun (London) 857–858
- 44. Tully ME, Ginsberg AP (1973) trans-Hydridodinitrogenbis-[1,2-bis(diphenylphosphino)ethane]rhenium(I). J Am Chem Soc 95:2042–2044
- 45. Bradley MG, Roberts DA, Geoffrey GL (1981) Photogeneration of reactive [ReH(diphos)₂]. Its reversible coordination of $CO₂$ and activation of aromatic C-H bonds. J Am Chem Soc 103:379–384
- 46. Pennella F (1971) Tetrahydrido-complexes of molybdenum. Chem Commun 158
- 47. Bell B et al (1972) Group VI tetrahydrides and stereochemical non-rigidity. J Chem Soc Chem Commun 34–35
- 48. Pierantozzi R, Geoffrey GL (1980) Photoinduced elimination of H_2 from [MoH₄(diphos)₂] and [MoH4(PPh2Me)4]. Inorg Chem 19:1821–1822
- 49. Dzięgielewski JO, Grzybek R (1990) Application of the molybdenum(IV) hydride complexes in cyclohexane solutions to the radiation-catalytic reduction of molecular nitrogen. Polyhedron 9:645–651
- 50. Dzie˛gielewski JO, Małecki J, Grzybek R (1991) Radiation-catalytic reduction of molecular nitrogen with application of the tungsten(IV) hydride complexes. Polyhedron 10:1007–1012
- 51. Dzie˛gielewski JO, Małecki J (1991) The cyclic fixation and reduction of molecular nitrogen with $[WH_4(Ph_2PCH_2CH_2PPh_2)_2]$ in γ-irradiated solutions. Polyhedron 10:2827–2832
- 52. Hidai M, Tominari K, Uchida Y (1972) Preparation and properties of dinitrogen–molybdenum complexes. J Am Chem Soc 94:110–114
- 53. Archer LJ, George TA (1979) Reactions of coordinated dinitrogen. 6. Displacement of coordinated dinitrogen by dihydrogen in low-valent molybdenum complexes. Inorg Chem 18:2079–2082
- 54. Green MLH, Silverthorn WE (1971) Arene molybdenum chemistry: some π-allyl, hydrido, and dinitrogen derivatives. Chem Commun 557–558
- 55. Nishibayashi Y, Iwai S, Hidai M (1998) Bimetallic system for nitrogen fixation: rutheniumassisted protonation of coordinated N_2 on tungsten with H_2 . Science 279:540–542
- 56. Avenier P et al (2007) Dinitrogen dissociation on an isolated surface tantalum atom. Science 317:1056–1060
- 57. Vol'pin ME, Shur VB (1966) Nitrogen fixation by transition metal complexes. Nature 209:1236
- 58. Brintzinger H (1966) Formation of ammonia by insertion of molecular nitrogen into metalhydride bonds. I. The formation of dimeric dicyclopentadienyltitanium(III) hydride as an intermediate in the Vol'pin-Shur nitrogen-fixing system. J Am Chem Soc 88:4305–4307
- 59. Brintzinger H (1966) Formation of ammonia by insertion of molecular nitrogen into metalhydride bonds. II. Di-μ-imido-bis(dicyclopentadienyltitanium(III)) as a product of the reaction between di-μ-hydrido-bis(dicyclopentadienyltitanium(III)) and molecular nitrogen. J Am Chem Soc 88:4307–4308
- 60. Bercaw JE (1974) Bis(pentamethylcyclopentadienyl)titanium(II) and its complexes with molecular nitrogen. J Am Chem Soc 96:5087–5095
- 61. Sanner RD et al (1976) Structure and magnetism of μ-dinitrogen-bis(bis(pentamethylcyclopentadienyl)titanium(II)), $\{(\eta^5 - C_5(CH_3)_5)_2\$ Ti}₂N₂. J Am Chem Soc 98:8358–8365
- 62. de Wolf JM et al (1996) Bis(tetramethylcyclopentadienyl)titanium chemistry. Molecular structures of $[(C_5HMe_4)(\mu-\eta^1:\eta^5-C_5Me_4)Ti]_2$ and $[(C_5HMe_4)_2Ti]_2N_2$. Organometallics 15:4977–4983
- 63. MacLachlan EA, Fryzuk MD (2006) Synthesis and reactivity of side-on-bound dinitrogen metal complexes. Organometallics 25:1530–1543
- 64. Pool JA, Lobkovsky E, Chirik PJ (2004) Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427:527–530
- 65. Hanna TE et al (2007) Bis(cyclopentadienyl) titanium dinitrogen chemistry: synthesis and characterization of a side-on bound haptomer. Organometallics 26:2431–2438
- 66. Chirik PJ, Henling LM, Bercaw JE (2001) Synthesis of singly and doubly bridged ansazirconocene hydrides. Formation of an unusual mixed valence trimeric hydride by reaction of H_2 with $\{ (Me_2Si)_2(\eta^5-C_5H_3)_2\} Zr(CH_3)_2$ and generation of a dinitrogen complex by reaction of N2 with a zirconocene dihydride. Organometallics 20:534–544
- 67. Manriquez JM et al (1978) Reduction of carbon monoxide promoted by alkyl and hydride derivatives of permethylzirconocene. J Am Chem Soc 100:2716–2724
- 68. Zhang S et al (2016) A dinitrogen dicopper(I) complex via a mixed-valence dicopper hydride. Angew Chem Int Ed Engl 55:9927–9931
- 69. Smith JM et al (2006) Studies of low-coordinate iron dinitrogen complexes. J Am Chem Soc 128:756–769
- 70. Yu Y et al (2008) The reactivity patterns of low-coordinate iron–hydride complexes. J Am Chem Soc 130:6624–6638
- 71. Ding K, Brennessel WW, Holland PL (2009) Three-coordinate and four-coordinate cobalt hydride complexes that react with dinitrogen. J Am Chem Soc 131:10804–10805
- 72. Pfirrmann S et al (2009) A dinuclear nickel(I) dinitrogen complex and its reduction in singleelectron steps. Angew Chem Int Ed Engl 48:3357–3361
- 73. Pfirrmann S et al (2009) β-Diketiminato nickel(I) complexes with very weak ligation allowing for H_2 and N_2 activation. Organometallics 28:6855–6860
- 74. Fryzuk MD et al (1997) Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes. Science 275:1445–1447
- 75. Basch H, Musaev DG, Morokuma K (2000) Can the binuclear dinitrogen complex $[P_2N_2]Zr$ $(\mu - \eta^2 - N_2)Zr[P_2N_2]$ activate more than one hydrogen molecule? A theoretical study. Organometallics 19:3393–3403
- 76. Pool JA, Bernskoetter WH, Chirik PJ (2004) On the origin of dinitrogen hydrogenation promoted by $[(\eta^5 - C_5Me_4H)_2Zr]_2(\mu_2, \eta^2, \eta^2-N_2)$. J Am Chem Soc 126:14326–14327
- 77. Bernskoetter WH, Lobkovsky E, Chirik PJ (2005) Kinetics and mechanism of N_2 hydrogenation in bis(cyclopentadienyl) zirconium complexes and dinitrogen functionalization by 1,2-addition of a saturated C–H bond. J Am Chem Soc 127:14051–14061
- 78. Fryzuk MD, Johnson SA, Retting SJ (1998) New mode of coordination for the dinitrogen ligand: a dinuclear tantalum complex with a bridging N_2 unit that is both side-on and end-on. J Am Chem Soc 120:11024–11025
- 79. Fryzuk MD (2009) Side-on end-on bound dinitrogen: an activated bonding mode that facilitates functionalizing molecular nitrogen. Acc Chem Res 42:127–133
- 80. Fryzuk MD, MacKay BA, Patrick BO (2003) Hydrosilylation of a dinuclear tantalum dinitrogen complex: cleavage of N_2 and functionalization of both nitrogen atoms. J Am Chem Soc 125:3234–3235
- 81. MacKay BA, Patrick BO, Fryzuk MD (2005) Hydroalumination of a dinuclear tantalum dinitrogen complex: N–N bond cleavage and ancillary ligand rearrangement. Organometallics 24:3836–3841
- 82. Fryzuk MD et al (2002) Hydroboration of coordinated dinitrogen: a new reaction for the N_2 ligand that results in its functionalization and cleavage. Angew Chem Int Ed Engl 41:3709–3712
- 83. Akagi F, Matsuo T, Kawaguchi H (2007) Dinitrogen cleavage by a diniobium tetrahydride complex: formation of a nitride and its conversion into imide species. Angew Chem Int Ed Engl 46:8778–8781
- 84. Akagi F et al (2013) Reactions of a niobium nitride complex prepared from dinitrogen: synthesis of imide and ureate complexes and ammonia formation. Eur J Inorg Chem 3930–3936
- 85. Shima T et al (2013) Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 340:1549–1552
- 86. Hu S, Shima T, Hou Z (2014) Carbon–carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride. Nature 512:413–415
- 87. Guru MM, Shima T, Hou Z (2016) Conversion of dinitrogen to nitriles at a multinuclear titanium framework. Angew Chem Int Ed Engl 55:12316–12320