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Transition Metal-Free Incorporation of CO2

Shuai Zhang, Ran Ma, and Liang-Nian He

Abstract Carbon dioxide can be regarded as an ideal C1 chemical feedstock in

both academic and pharmaceutical laboratories owing to its abundance, low cost,

non-toxicity, and nonflammability. However, due to CO2 inherent thermodynamic

stability and kinetic inertness, it is difficult to convert CO2 to value-added

chemicals under mild conditions. In order to overcome such barriers, numerous

useful synthetic methodologies by strategically using highly active catalysts have

been developed for the incorporation of CO2 to organic compounds. Transition

metal-free compounds are proved to be promising efficacious catalysts able to

activate CO2 molecule for efficient transformation of CO2 on the basis of mecha-

nistic understanding at the molecular level. This chapter features recent advances at

methodologies for catalytic transformation of CO2 promoted by organocatalysts

(e.g., N-heterocyclic carbenes, frustrated Lewis pairs and superbases), ionic liquids,
and main group metal to produce value-added chemicals such as linear or

cyclic carbonates, quinazoline-2,4(1H,3H )-diones, alkylidene cyclic carbonates,

amino acids, and so on.

Keywords Carbon dioxide � Catalysis � Ionic liquid � Organocatalyst � Sustainable
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1 Introduction

From a standpoint of C1 chemistry and green chemistry, incorporation of CO2 has

become one of the most important subjects for the synthesis of valuable organic

chemicals/materials in synthetic organic chemistry [1–3]. Much effort has been

devoted to this promising subject, and numerous reactions and catalytic systems

have been developed for CO2 utilization. However, the inherent thermodynamic

stability and kinetic inertness of CO2 hinder CO2 conversion under mild conditions.

Accordingly, practical transformation of CO2 would inevitably rely on its activation

via either metal coordination or weak interaction between the active species and

CO2 molecule. Various transition metal complexes have been developed as efficient

catalysts, which are usually applied in the carboxylation reactions and hydro-

genations reactions. CO2 as a ligand is able to coordinate with a transition metal

center and is thus activated and subsequently converted into carboxylic acids,

esters, formic acid, and methanol. On the other hand, transition metal-free com-

pounds are also promising catalysts capable of activating CO2 for upgrading CO2

into organics with the advantages of low cost, easy preparation, non-sensitivity to

air or moisture, and relative hypotoxicity to the environment. Furthermore, the

characteristics of transition metal-free catalysts, such as nucleophilicity, basicity,

ease of introducing functionalized groups, and so on, could be applied to activate

both CO2 and substrates, furnishing further transformation of CO2. In this chapter,

efficient transition metal-free catalysts for the transformation of CO2 including

organocatalysts, ionic liquids, and main group metals are summarized. Various

valuable chemicals such as carbonates, carbamates, quinazoline-diones, amino

acids, etc., could be synthesized with transition metal-free catalysis under mild

conditions.

144 S. Zhang et al.



2 Organocatalysts

2.1 N-Heterocyclic Carbenes and N-Heterocyclic Olefins

N-Heterocyclic carbenes (NHCs) are usually generated through deprotonation of

the corresponding imidazolium salts by strong bases and have been extensively

employed as versatile ligands for the formation of a large variety of organometallic

complexes [4–7]. Inspiringly, NHCs are able to react with CO2 to form NHC-CO2

adducts (N,N0-disubstituted imidazolinium-2-carboxylates), in which a bent geo-

metry with a O–C–O angle of 129–131� has been determined by X-ray single-

crystal study [8, 9]. From a structural point of view, NHC-CO2 adducts are

considered to be zwitterionic compounds formed via NHC’s nucleophilic attack

at the weak electrophilic carbon center of the CO2 molecule. Furthermore,

NHC-CO2 adducts show high catalytic activity for carboxylative cyclization with

CO2 because of the strong nucleophilic nature [9–11]. As depicted in Scheme 1,

IPr-CO2 adduct 2a exhibits the highest catalytic activity for the coupling reaction of

CO2 and epoxides; 100% yield of propylene carbonate is attained from propylene

oxide and CO2 at 120
�C, 2 MPa CO2 pressure. The mechanism of the NHC-CO2-

catalyzed cycloaddition reaction is shown in Scheme 2. The zwitterionic com-

pounds NHC-CO2 adducts (2) are able to go through nucleophilic attack at the

epoxide, leading to generation of the zwitterion (3). Then, the intramolecular

cyclization produces cyclic carbonate along with the release of free NHC. The

formation of NHC-CO2 adduct 2 allows next catalytic cycle to begin. Indeed, the

CO2 adducts (MCM-41-IPr-CO2) from mesoporous material-supported NHC

(MCM-41-IPr) and CO2 are efficient heterogeneous catalysts for the cycloaddition

of CO2 with epoxides or aziridines under 2.0 MPa CO2 pressure at 120�C
(Scheme 3) [12]. Moreover, the catalyst could easily be recovered by a simple

filtration and reused multiple times without obvious loss in activity.

Furthermore, the isolable NHC-CO2 catalyst provides access to a variety of five-

membered α-alkylidene cyclic carbonates from propargyl alcohols [10, 11]. 73%

yield of 4-methyl-5-methylene-4-phenyl-1,3-dioxolan-2-one is obtained from the

corresponding propargyl alcohol and CO2 with 2b as the catalyst (catalyst loading

7.7%) under 6 MPa CO2, 100
�C. The cyclic carbonate formation can be explained

by the mechanism involving the nucleophilic addition of the imidazolium-2-car-

boxylate at either the C–C bond and subsequent intramolecular cyclization of the

alkoxide intermediate as depicted in Scheme 4.

N-Heterocyclic olefins (NHOs) with high electronegativity at the terminal car-

bon atom are found to show a strong tendency for CO2 sequestration, affording the

NHO-CO2 adducts. Notably, the NHO-CO2 adducts are found to be highly active in

promoting the carboxylative cyclization of propargylic alcohols with CO2 at 60
�C,

2 MPa CO2 pressure (even at ambient temperature and 1 atm CO2 pressure), giving

α-alkylidene cyclic carbonates in excellent yields [13]. Based on deuterium-

labeling experiments, two reaction paths regarding the hydrogen at the alkenyl

position of cyclic carbonates coming from substrate (path A) or both substrate and
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catalyst (path B) are proposed as shown in Scheme 5. At the identical reaction

conditions, NHO-CO2 adducts show much higher catalytic activity than that of the

corresponding NHC-CO2 adducts. The high activity of the NHO-CO2 adducts is

tentatively ascribed to its low stability for easily releasing CO2 moiety and/or the

desired product, a possible rate-determining step in the catalytic cycle.

O CO2 O O

O

+

N N

O O

R

R

R

R

NHC-CO2 adduct
2a: R = i-Pr
2b: R = t-Bu
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Scheme 1 The NHC-CO2 adduct-catalyzed cycloaddition reaction of epoxide and CO2 [9, 10]
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Scheme 2 Possible mechanism for the coupling reaction of CO2 with epoxides catalyzed by

NHC-CO2 adduct [9, 10]
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2.2 Superbase

Superbases, such as amidines and guanidines, have been found in many appli-

cations in CO2 capture and conversion because of their characteristic of nucleo-

philicity and basicity. For example, a mixture of superbase and alcohol could

effectively capture equimolar CO2 and has been proven to be efficient catalysts in

the synthesis of organic carbonates and urethanes via the respective reactions of
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N
N

tBu

tBu
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R

R
OH

O
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Scheme 4 Plausible mechanism for the NHC-CO2 adduct-catalyzed carboxylative cyclization of

propargylic alcohol with CO2 [10, 11]
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Scheme 5 Plausible mechanism for carboxylative cyclization of propargyl alcohols with CO2

catalyzed by the NHO-CO2 adduct [13]
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CO2 with epoxides and amines, respectively [14–18]. 1,8-Diazabicyclo[5.4.0]

undec-7-ene (DBU) or 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) performs nucleo-

philic attack at the weakly electrophilic carbon center of CO2 molecule leading to

the formation of zwitterionic adducts DBU-CO2 and TBD-CO2, respectively

(Scheme 6), just like NHC and NHO [16–21]. Recently, the existence of such

adducts has been clearly confirmed by X-ray single-crystal diffraction [22] and 11C-

labeling [14]. In addition, these DBU-CO2 and TBD-CO2 adducts could promote

cycloaddition reaction of epoxides and CO2 through nucleophilic attack at the ring

of the epoxide.

The strong basicity enables those superbases to find application in the base-

catalyzed CO2 conversion. For example, superbases are efficient catalysts for the

chemical fixation of CO2 with 2-aminobenzonitriles for the synthesis of

quinazoline-2,4(1H,3H )-diones under solvent-free conditions as depicted in

Scheme 7 [23, 24]. A variety of 2-aminobenzonitriles bearing electron-withdrawing

or electron-donating substitutes give the corresponding quinazoline-2,4(1H,3H )-

diones in moderate to excellent isolated yields (60–95%) catalyzed by low-loading

TMG under 10 MPa CO2 pressure at 120�C within 4 h. As shown in Scheme 8,

superbases could also catalyze the carboxylative cyclization reactions of propargyl-

amines or propargyl alcohols with CO2, affording α-methylene cyclic carbonates

and oxazolidinones, respectively [25, 26].
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Scheme 6 The structure of DBU-CO2 and TBD-CO2 adducts [16–21]
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2.3 Frustrated Lewis Pair

Frustrated Lewis pairs (FLPs) consist of sterically hindered Lewis donors and

acceptors. The steric demands preclude the formation of simple Lewis acid–base

adducts, allowing for subsequent reactions of both Lewis acids and bases with other

potential molecules. Recently, FLPs have become a fundamentally unique strategy

for activating a variety of small molecules [27, 28]. Especially, FLP amido-

phosphoranes [29] could rapidly capture one equivalent of CO2 with simultaneous

activation as shown in Scheme 9. Furthermore, B/P-, B/N-, P/N-, and Al/P-based

FLPs have been shown to have the ability to convert CO2 into carbonic acid

derivatives, methanol, methane, or CO by the groups of Stephan [30–32], O’Hare
[33], and Piers [34]. For example, Al/P-based FLPs Mes3P(AlX3) (Mes¼ 2,4,6-

C6H2Me3 X¼Cl 4; Br 5), a 1:2 mixture of PMes3 with AlX3, could irreversibly

capture CO2 with the formation of species 6 and 7 (Mes3P(CO2)(AlX3)2 X¼Cl 6;

Br 7) (Scheme 10). Furthermore, the species 6 and 7 could react rapidly with excess

ammonia borane at room temperature to give CH3OH upon quenching with water

[30]. The structure of species 6 or 7 has been identified by X-ray single-crystal

diffraction, in which phosphine is bound to the C atom of CO2, while AlX3 units are

bonded to each of the O atoms. The P–C bond lengths in 6 and 7 are found to be

1.927(8) and 1.918(5) Å, respectively, while the O–Al distances are 1.807(5) and

1.808(6) Å in 6 and 1.829(4) and 1.803(3) Å in 7. The C–O bond lengths are

determined to be 1.233(8) and 1.251(8) Å in 6 and equivalent at 1.248(6) Å in 7.

The O–C–O angles are 126.6(7)�and 125.8(4)� in 6 and 7, respectively, while the

C–O–Al angles differ substantially from each other being 141.3(5)� and 165.2(6)�

and 140.0(3)� and 178.7(4)� in 6 and 7, respectively.

NH

R1
R

R2

+ CO2 N

R1
R

R2
O

O
Base

BaseH+

NO

HC

O

R2

R1
R

BaseH+

NO

O

R2

R1
R

N

N

N
R

N
N

N
P

N N
N t-Bu P NN

N

N
P

P

N
NN

N
NN

PN
N

NBase:

DBUTBD: R=H
MTBD: R=Me

phosphazene bases

Scheme 8 Superbase-catalyzed carboxylative cyclization of propargylamines with CO2 [25, 26]
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3 Ionic Liquid

Ionic liquids (ILs) being composed of organic cations and inorganic/organic anions

have some very attractive properties, such as nonvolatile, nonflammable, high

thermal stability, and excellent solubility. In addition, the functions of ILs can be

designed for different processes by changing the structures of their cations or

anions. ILs, especially task-specific ILs (TSILs) with various functionalized groups,

have great potential applications in chemical reactions, material synthesis, separ-

ation, and fractionation [35, 36]. Encouragingly, by introducing corresponding

functionalized groups, TSILs could activate CO2 molecule or substrates for further

transformation. Therefore, TSILs display superior performance for CO2 capture

and conversion such as hydrogenation of CO2 to formic acid [37], preparation of

5-aryl-2-oxazolidinones from aziridines and CO2 [38], synthesis of disubstituted

urea from amines and CO2 [39], synthesis of quinazoline-2,4(1H,3H )-diones from

CO2 and 2-aminobenzonitrile, and so on.

3.1 Homogeneous Ionic Liquid

One of the most attractive synthetic protocols utilizing CO2 is the coupling reaction

of epoxides and CO2 to afford the five-membered cyclic carbonates such as

ethylene carbonate (EC) and propylene carbonate (PC) which could serve as

excellent polar aprotic solvents, intermediates in the production of pharmaceuticals,

and electrolytic elements of lithium secondary batteries [40–42]. ILs, for instance,

tetrabutylammonium bromide (TBAB) or tetrabutylammonium iodide (TBAI) [43],

1-octyl-3-methylimidazolium tetrafluoroborate ([C8MIm][BF4]) [44], and Lewis

N

P

Me

Ph

Ph

F

CO2 N
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Me
O

O
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Scheme 9 Equimolar CO2 capture by amidophosphoranes [29]

NH3BH3

15 min
25 oC

H2O
CH3OH

Mes3P(AlX3)
PMes3 + AlX3

CO2

AlX3
Mes

P
Mes

Mes

O O

AlX3AlX3

6 X= Cl,
7 X= Br

(3 equiv)

4 X= Cl,
5 X= Br

Scheme 10 Stoichiometric reduction of CO2 to CH3OH promoted by Al/P-based FLPs [30]
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basic ILs [45] are effective catalysts for the cycloaddition reaction of epoxide and

CO2. Taking TBAB as an example, a plausible mechanism for the cycloaddition

reaction is shown in Scheme 11. The epoxide ring is opened by nucleophilic attack

of the bromide anion, which could lead to generation of an oxy anion species, then

affording the corresponding cyclic carbonate after CO2 insertion.

Under supercritical CO2 (scCO2) conditions, ILs usually show relatively high

activity for the cycloaddition reaction due to complete miscibility of CO2 in the ILs

under high pressure conditions. With 1-octyl-3-methylimidazolium tetrafluoro-

borate ([C8MIm][BF4]) as the catalyst under supercritical conditions (14 MPa

CO2) at 110�C, the cycloaddition of CO2 and propylene oxide could complete

within 5 min with TOF of 516 h�1 [44].

The introduction of hydroxyl group or carboxylic acid group could highly

increase the catalytic activity of ILs. As depicted in Scheme 12, the interaction of

the H atom with the O atom of epoxide through a hydrogen bond results in the

polarization of C–O bond, so the ring of the epoxide could be opened easily. A

series of hydroxyl-functionalized ILs [46, 47] and carboxyl-functionalized ILs [48–

50] have been proven to be efficient catalysts for the coupling of epoxide and CO2

(Scheme 13). In the presence of 1-(2-hydroxyl-ethyl)-3-methylimidazolium bro-

mide (HEMIMB), 99% yield of propylene carbonate with >99% selectivity is

obtained. The excellent catalytic activity is obtained because of the synergistic

interaction of the hydrogen-bonding groups with the nucleophile in these ILs as

shown in Scheme 12. Even the existence of water in ILs could also accelerate the

reaction due to the formation of hydrogen bonds [51], which is quite similar to the

role of hydroxyl group.

Poly(ethylene glycol)s (PEGs) are a family of water-soluble linear polymers

which could be regarded as a kind of CO2-philic materials. In other words, “CO2-

expansion” effect could lead to changes in the physical properties of the liquid

phase mixture including lowered viscosity and increased gas/liquid diffusion rates

[52]. PEG-functionalized ILs, BrBu3NPEG6000NBu3Br [53, 54],

BrBu3PPEG6000PBu3Br [55], PEG6000(GBr)2 [56], and BrTBDPEG150TBDBr

[57] as listed in Scheme 14, could be utilized as highly active homogeneous

catalysts for CO2 transformation. For example, the cycloaddition reaction of PO

with CO2 in the presence of 0.5 mol% BrBu3NPEG6000NBu3Br affords PC in 98%

yield together with 99% selectivity at 120�C, 8 MPa CO2, in 6 h. Furthermore, the
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R

O

Br

NBu4

CO2

R

O

Br

NBu4
O

O

O O

O

R

Br NBu4
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Scheme 11 Proposed

mechanism of propylene

carbonate synthesis

catalyzed by TBAB [43]
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PEG6000-supported catalyst can be readily recovered by simple filtration and reused

without appreciable loss of activity.

Attachment of fluorinated chains to chelating agents and surfactants could

generally enhances the solubility of such compounds in scCO2. Fluorine-containing

ILs and polymer [58–60] as illustrated in Scheme 15 have been proven to be

efficient and recyclable homogeneous CO2-soluble catalysts for solvent-free syn-

thesis of cyclic carbonates from epoxides and CO2 under scCO2 conditions.

Furthermore, these catalysts can be easily recovered after reaction and reused

with retention of high activity and selectivity. For example, the catalyst F-PIL-Br

is easily recovered through centrifugation, dried, and then used directly for the next

run without any further purification. As for catalyst 8, simple filtration can get the

catalyst recovered because it precipitates upon venting CO2.

Zwitterionic compounds have been used as halogen-free bifunctional catalysts

for the cycloaddition of epoxides with CO2. A range of aromatic zwitterions bearing

an ammonium betaine able to activate CO2 molecule proved to be efficient

catalysts for the production of cyclic carbonates under metal-free, solvent-free
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conditions [61]. Interestingly, the 9-CO2 adduct as shown in Scheme 16 was

characterized and used as a synthon to prepare cyclic carbonates. Very recently,

Lu and his coworkers reported that the alkoxide-functionalized imidazolium beta-

ines (AFIBs) bearing an alkoxide anion and an imidazolium cation show strong

tendencies for CO2 capture, affording a CO2 adduct (AFIB-CO2) [62]. Furthermore,

Scheme 14 PEG-functionalized ionic liquids for the synthesis of cyclic carbonates [53–57]
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F F
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FFX X

X= Br, ClF-PIL-X

n
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O
O

Rf Rf=(CF2)7CF3
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8

Scheme 15 Fluoro-functionalized polymeric ionic liquids [58–60]
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AFIB-CO2 adducts could effectively catalyze the coupling reaction of propargylic

alcohols with CO2 under solvent-free reaction conditions, selectively affording

alkylene cyclic carbonates, as depicted in Scheme 17.

ILs could act as both solvent and catalyst for the synthesis of quinazoline-2,4

(1H,3H )-dione derivatives through incorporation of CO2 into aminobenzonitriles

as delineated in Scheme 18. Excellent results are attained by using 1-butyl-3-

methyl imidazolium hydroxide ([Bmim]OH) [63] and 1-butyl-3-methylimi-

dazolium acetate ([Bmim]Ac) [64]. With [Bmim]Ac as catalysts, 92% yield of

quinazoline-2,4(1H,3H )-dione is attained at 1 atm CO2, 90
�C in 10 h. Moreover,
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Scheme 16 The synthesis of cyclic carbonates catalyzed by aromatic zwitterions [61]
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recovery of such ILs is easily performed by simple filtration. The catalyst could be

reused at least five times without considerable loss in catalytic activity.

The synthesis of quinazoline-2,4(1H,3H )-dione could be regarded as a kind of

base-catalyzed reactions; superbases, such as TMG, could be applied as catalysts

for this transformation [65]. Furthermore, superbase-derived protic IL, e.g.,

[HDBU+][TFE�], has been found to activate CO2 and 2-aminobenzonitriles simul-

taneously to produce quinazoline-2,4(1H,3H )-diones under 1 atm CO2 and room

temperature as shown in Scheme 19 [66]. 97% yield of quinazoline-2,4(1H,3H )-

dione is attained with [HDBU+][TFE�] (3% catalyst loading) at 30�C, 1 atm CO2 in

24 h. A new signal that appears at δ¼ 167.7 ppm in the 13C-NMR spectrum of

[HDBU+][TFE�]/CO2 mixture is attributed to the carbonyl carbon atom of the

carbonate, suggesting that CO2 is activated by the anion [TFE�], thus forming a

carbonate intermediate. Simultaneously, 2-aminobenzonitriles could form hydro-

gen bonds with both the cation and anion of the IL, resulting in weakening the N–H

bond in NH2 group of 2-aminobenzonitrile.

3.2 Supported Ionic Liquid

Although ILs have been reported to be one of the most efficient catalysts for CO2

fixation, application of homogeneous catalysts in industry could be limited due to

the complicated separation procedure. On the other hand, proper use of hetero-

geneous catalysis for CO2 conversion may offer enhancement of the reaction rate

and control of selectivity, increasing catalyst lifetime and facilitating separation.

One way is to immobilize the IL onto silica. A series of silica-supported ILs

including phosphonium salts [67, 68], imidazolium ILs [69–73],

4-pyrrolidinopyridinium iodide [74], aluminum(salen) complexes [75, 76], and

hexa-alkylguanidinium chloride [77] exhibit high catalytic activity, selectivity,
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and reusability in the cycloaddition of CO2 to epoxides. An almost quantitative

amount of propylene carbonate is produced using SiO2-C3H6-P(n-Bu)3I as catalyst
at 100�C, 10 MPa of CO2 in 1 h. Interestingly, the silica-supported ILs dramatically

increase the catalytic activities compared to the corresponding homogeneous ILs.

The cooperative catalysis originating from the silica surface and the onium part

may result in the enhanced activity. In other words, the acidic surface silanol groups

are able to activate epoxides, and then the ring opens via subsequent nucleophilic

attack. A proposed mechanism of the coupling reaction catalyzed by silica-

supported phosphonium salts [67, 68] has been proposed as shown in Scheme 20.

Furthermore, these heterogeneous ILs could easily be separated and reused without

considerable loss of the activity.

Besides silica, mesoporous sieves and polymeric materials are other kinds of

promising supports, which could immobilize ILs. ILs immobilized on mesoporous

sieves (SBA-15 [78, 79] and MCM-41 [80–82]) and polymeric materials [83, 84]

could act as efficient catalysts for the transformation of CO2 into cyclic carbonates

with high yield and excellent selectivity under relatively mild conditions. High

activity is displayed when ILs immobilized on carboxymethyl cellulose (CMC) and

chitosan (CS) are applied as heterogeneous catalysts for cycloaddition of epoxides

with CO2, since CMC or CS is rich in hydroxyl and carboxyl groups [85–87]. CMC

and CS not only act as the supporting materials for ILs but also serve as carriers of

functional groups capable of activating the nucleophilic attack via the hydroxyl and

the carboxyl moieties. The synergistic function originating from the hydroxyl and

carboxyl moieties in the supporter could activate epoxides through formation of

hydrogen bonds, thus facilitating the ring opening of epoxides.
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4 Main Group Metal

Main group metal compounds are an important kind of effective catalysts for CO2

incorporation to form value-added chemicals. Unlike transition metal catalysts,

which usually coordinate with CO2 molecule leading to simultaneously activate

CO2, main group metal catalysts usually react with substrates, in situ generating

nucleophiles to go through nucleophilic attack at CO2. For example, cesium

carbonate could react with 2-aminobenzonitrile, providing a nitrogen anion to

perform a nucleophilic attack at CO2. The Lewis basic cation of aluminum(III)

(salen) complex could active the epoxide through interaction with the oxygen,

furnishing a nucleophilic oxygen anion to react with CO2. Fluorine salts usually

react with silicon compounds, affording a carbon anion to attack at CO2. Stannum

compounds have a strong tendency to react with alcohols with the formation of Sn–

O bonds, furnishing CO2 insertion. By applying these characteristics of main metal

catalysts, various valuable products are obtained in high yield and selectivity.

4.1 Main Group Metal Salts

Cesium carbonate shows remarkable activity for the base-catalyzed reaction of CO2

with 2-aminobenzonitriles [88]. Cs2CO3 could react with 2-aminobenzonitrile,

providing a nitrogen anion due to its strong basicity. As shown in Scheme 21, the

nitrogen anion could attack to CO2, furnishing further conversion of CO2. In the

presence of 0.25 equivalent Cs2CO3, 94% of quinazoline-2,4(1H,3H)-diones is

obtained at 1.3 MPa CO2, 100
�C in 4 h. Notably, this catalytic system is applicable

to a wide variety of substituted 2-aminobenzonitriles with different steric and

electronic properties. Interestingly, the reaction temperature has a pronounced

positive effect on the synthesis of quinazoline-2,4(1H,3H)-diones. The reaction

does not occur at 80�C, while the yield increases to 94–95% with an increase in the

reaction temperature from 100 to 120�C.
Inexpensive K2CO3 could catalyze the formation of carbamates in scCO2 with a

catalytic amount of Bu4NBr as cocatalyst [89]. The reaction efficiency in scCO2 is

50–100 times higher than that attained in heptane. The amine readily forms the
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carbamic acid ammonium salt upon the introduction of liquid CO2. As for catalytic

activity among alkali metal carbonate, Cs2CO3 is much higher than K2CO3 and

Na2CO3. Cs2CO3 together with tetrabutylammonium iodide (TBAI) is proven to be

an efficient catalyst for the synthesis of carbamates in which Cs2CO3, TBAI, and

alkyl halides are excessive [90]. Aliphatic, aromatic, and heterocyclic amines and

reactive, unreactive, and secondary halides can be converted to the corresponding

carbamates using DMF as solvent.

The conversion of the aziridine to the corresponding oxazolidinone can be

performed by employing LiI as the catalyst in THF with hexamethylphosphoramide

(HMPA, a lithium-complexing agent) as a cosolvent which is used to facilitate the

ion pair separation of the LiI and strengthen the SN2 character of the reaction

(Scheme 22) [91]. Only one isomer oxazolidinone (10a 97% yield or 10b 95%

yield) can be obtained. Nucleophilic attack of the I� at the less substituted carbon

leads to the ring-opened structure of aziridine, which then reacts with CO2 to further

form oxazolidinones by intramolecular ring closure, and the catalyst is regenerated.

Mg–Al-mixed oxide and magnesium oxide possess both acid and base surface

sites and could activate both epoxides and CO2. With magnesium oxide or Mg–Al-

mixed oxide as catalysts, the reaction of CO2 with epoxides gives organic carbon-

ates in excellent yields [92, 93]. As depicted in Scheme 23, the basic and acidic sites

located in Mg–Al-mixed oxide could activate CO2 molecule and substrates, respec-

tively, which greatly increases the catalytic activity. Especially, the Lewis basic

sites could absorb CO2 onto the surfaces to form the carbonate species, which

promotes the ring opening of epoxides by a nucleophilic attack. Besides Mg–Al

oxide, basic zeolites [94–96] are also effective catalysts for the cycloaddition of

CO2 with epoxides.

4.2 Aluminum(Salen) Complex

Salen ligands are commonly prepared through the condensation of a salicyl-

aldehyde and a diamine. The ease of synthesis and modification has promoted

more and more interest in using salen as a ligand for many different catalytic
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reactions. Salen complexes with a number of transition metals and main group

metals have been found to catalyze the cycloaddition of CO2 to epoxides. Alumi-

num(III)(salen) complexes are promising main group metal catalysts for the cyclo-

addition reaction. For example, Al(III)(salen)Cl complex 11 (Scheme 24) is

reported to be effective catalysts for the synthesis of ethylene carbonate in the

presence of TBAB as cocatalyst [97–101]. Quantitative yield is obtained under

16 MPa CO2, 110
�C, with a TOF of 2,200 h�1. In the absence of onium cocatalysts,

complex 11 shows a more moderate activity (TOF 174 h�1) under the otherwise

identical reaction conditions.

Dimeric aluminum(salen) complexes (12, Scheme 25) with TBAB as cocatalyst

have shown exceptionally high catalytic activity for the synthesis of cyclic carbon-

ates at ambient temperature and pressure [98]. 3-Phenylpropylene oxide,

1,2-hexene oxide, and 1,2-decene oxide are transformed into the corresponding

cyclic carbonates with the yields of 99% (after 24 h), 88% (after 3 h), and 64%

(after 3 h), respectively. As depicted in Scheme 19, both aluminum ions of the

complex play a role in activating the epoxide and CO2, resulting in the excellent

catalytic activity. Furthermore, the catalyst 12 could be reused over 60 times

without loss of catalytic activity, although periodic addition of TBAB is necessary.

An aluminum complex based on an amino triphenolate ligand scaffold as shown

in Scheme 26 has been demonstrated to be a highly active and versatile catalyst for
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organic carbonate formation [99]. Unprecedented activity (initial TOFs up to

36,000 h�1 and TONs exceeding 118,000) is attained during catalysis for the

cycloaddition of CO2 to epoxides, with a wide substrate scope and functionality

tolerance [102].

4.3 Fluorine Salts

Fluorine anion has a strong tendency to react with compounds containing silicon

atoms, affording silicon fluoride compounds and a carbon anion. This unique

characteristic is applicable to the synthesis of amino acids by using gaseous CO2 as

carboxylating reagent. Arylglycine derivatives are prepared from the imine equi-

valents (N-Boc-R-amido sulfones 13) using a combination of TMS-SnBu3 and CsF

under CO2 atmosphere as illustrated in Scheme 27 [103–106]. Reversal of polarity on

the imino carbon atom is a key to the success of the proposed transformation, which

could be accessed via α-metalation of alkylamine derivatives. A plausible pathway of

the reaction is proposed as shown in Scheme 27. Firstly, by treatment with CsF, imine

14 could be generated in situ from a readily available synthetic precursor of imines,

amino sulfone 13. Subsequently, imine 14 is converted into amino stannane 15 by

attack of tributylstannyl anion. Finally, the fluoride ion further activates α-amino

stannane 15 by attack at the tin atom to improve nucleophilicity of the carbon atom,

thus leading to CO2 insertion into the C–Sn bond and affording α-amino acid

derivative 16.

Arynes are highly unstable species with salient electrophilic nature that could

undergo nucleophilic addition with a variety of neutral nucleophiles, and the
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resulting reactive zwitterions are readily trapped by various carbon electrophiles

such as aldehydes or sulfonylimines. In 2006, Yoshida and coworkers disclosed that

CO2 could be used as a carbon electrophile for the aryl anion intermediate which is

generated from nucleophilic attack of imines at arynes [107]. A plausible mecha-

nism is proposed as depicted in Scheme 28. Benzyne, which is formed by fluoride-

induced 1,2-elimination of o-trimethylsilylphenyl triflate, undergoes nucleophilic

addition with an imine. The resulting zwitterion is readily trapped by CO2, and a

subsequent intramolecular cyclization affords six-membered heterocycles,

benzoxazinone derivatives. After that, amines or isocyanides have been used as

nucleophilic partners for CO2 incorporation into arynes, giving anthranilic acid

derivatives and N-substituted phthalimides, respectively, under mild reaction con-

ditions [108, 109].

4.4 Stannum Compounds

Sn compounds are remarkable catalysts for the synthesis of organic carbonates,

such as dimethyl carbonate (DMC), and cyclic carbonates from methanol, glycol,

and glycerol with CO2 as raw materials as depicted in Scheme 29.

R1 S

HN
Ph

O O
13

-F

HF

N
R2

R1

SnBu3 + H+-

-F
+TMSSnBu3

HN

SnBu3R1

R2R2

-F

CO2,
then H+ R1

HN
R2

CO2H

imine 14 amino stannane 15

amino acid 16

inversion of polarity
at the imine carbon

Scheme 27 One-pot synthesis of α-amino acids with the aid of fluorine anion [103]

TMS

OTf

KF
18-O-6

Ph

N
N Ph CO2

N Ph

O

O

+
Ph

N
+ CO2 O

N

O

PhKF
18-O-6

THF, 0 oC

Scheme 28 Three-component coupling of benzyne, imine, and CO2 [107]

Transition Metal-Free Incorporation of CO2 161



Sn compounds, such as dibutyltin oxide (Bu2SnO) and dibutyltin dimethoxide

(Bu2Sn(OMe)2), have been reported to be efficient catalysts for the carboxylation of

methanol [110, 111], glycol [112], glycerol [113], and 1,2-aminoalcohols into

carbonates and 2-oxazolidinones, respectively. Taking the carboxylation of propyl-

ene glycol with CO2 as an example, a plausible catalytic cycle is proposed as

illustrated in Scheme 30. It involves three steps: (1) the reaction of Bu2SnO and

propylene glycol gives 2,2-dibutyl-1,3,2-dioxastannolan 18 [114]; (2) since Sn–O

bond is known to be susceptible to CO2 insertion [115], a cyclic tin carbonate 19 is

formed through the insertion of CO2 to 17; (3) subsequent intramolecular nucleo-

philic attack of alkoxy group at the carbonyl group may cause the production of

propylene carbonate along with regenerating dibutyltin oxide. The removal of

water is a crucial issue for the reaction by shifting the equilibrium to carbonates.

In the presence of a catalytic amount of Bu2SnO or Bu2Sn(OMe)2 with molecular
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sieve as the dehydrating agent, the yield of propylene carbonate reaches nearly 50%

at 180�C for 72 h.

5 Conclusion and Prospective

Over the past decade, CO2 chemistry has been developed greatly. Catalytic CO2

incorporation into valuable organic molecules has become an essential subject in

synthetic organic chemistry. This chapter highlights many promising transition

metal-free catalysts, including organocatalysts, ionic liquids, and main group

metal, which are proven to be efficient catalysts for the transformation of CO2.

Compared to transition metal-based catalysts, catalysts outlined in this chapter

possess many significant advantages of low cost, easy preparation, non-sensitivity

to air or moisture, and relative hypotoxicity to the environment. Many important

progresses on transition metal-free incorporation of CO2 have been made resulting

in the production of various valuable chemicals such as linear or cyclic carbonates,

quinazoline-2,4(1H,3H )-diones, alkylidene cyclic carbonates, and amino acids.

Although great progresses have been made on chemical transformation of CO2

by transition metal-free catalysts, CO2 incorporation at milder reaction conditions

and more efficient catalysts are still highly desired. Especially, it is highly wishful

to perform CO2 conversion at low pressure (<1 MPa), even at 1 atm CO2 pressure.

Therefore, more efficient transition metal-free catalysts on the basis of activation of

CO2 or substrates should be further designed to improve the catalytic efficiency.

We hope this presentation will stimulate further interest in the development of

more effective transition metal-free catalysts for chemical transformation of CO2

in academic research and industrial utilization.

Acknowledgments We are grateful to the National Natural Sciences Foundation of China, the

Specialized Research Fund for the Doctoral Program of Higher Education (20130031110013), the

MOE Innovation Team (IRT13022) of China, and the “111” Project of Ministry of Education of

China (project no. B06005) for financial support.

References

1. Parkin G (2004) Synthetic analogues relevant to the structure and function of zinc enzymes.

Chem Rev 104(2):699–768

2. Darensbourg DJ, Holtcamp MW (1996) Catalysts for the reactions of epoxides and carbon

dioxide. Coord Chem Rev 153:155–174

3. Leitner W (1995) Carbon dioxide as a raw material: the synthesis of formic acid and its

derivatives from CO2. Angew Chem Int Ed 34(20):2207–2221

4. Herrmann WA (2002) N-Heterocyclic carbenes: a new concept in organometallic catalysis.

Angew Chem Int Ed 41:1290–1309

Transition Metal-Free Incorporation of CO2 163



5. Crabtree RH (2007) Recent developments in the organometallic chemistry of N-heterocyclic

carbenes. Coord Chem Rev 251(5–6):595

6. Hahn FE, Jahnke MC (2008) Heterocyclic carbenes: synthesis and coordination chemistry.

Angew Chem Int Ed 47(17):3122–3172

7. Shen Y, Duan W, Shi M (2003) Chemical fixation of carbon dioxide catalyzed by

binaphthyldiamino Zn, Cu, and Co salen-type complexes. J Org Chem 68:1559–1562

8. Duong HA, Tekavec TN, Arif AM, Louie J (2004) Reversible carboxylation of

N-heterocyclic carbenes. Chem Commun 1:112–113

9. Zhou H, Zhang W-Z, Liu C-H, Qu J-P, Lu X-B (2008) CO2 adducts of N-heterocyclic

carbenes: thermal stability and catalytic activity toward the coupling of CO2 with epoxides.

J Org Chem 73(20):8039–8044

10. Kayaki Y, Yamamoto M, Ikariya T (2009) N-heterocyclic carbenes as efficient

organocatalysts for CO2 fixation reactions. Angew Chem Int Ed 48(23):4194–4197

11. Tommasi I, Sorrentino F (2009) 1,3-Dialkylimidazolium-2-carboxylates as versatile

N-heterocyclic carbene–CO2 adducts employed in the synthesis of carboxylates and

α-alkylidene cyclic carbonates. Tetrahedron Lett 50(1):104–107

12. Zhou H, Wang Y-M, Zhang W-Z, Qu J-P, Lu X-B (2011) N-Heterocyclic carbene

functionalized MCM-41 as an efficient catalyst for chemical fixation of carbon dioxide.

Green Chem 13(3):644–650

13. Wang YB, Wang YM, Zhang WZ, Lu XB (2013) Fast CO2 sequestration, activation, and

catalytic transformation using N-heterocyclic olefins. J Am Chem Soc 135(32):11996–12003

14. Hooker JM, Reibel AT, Hill SM, Schueller MJ, Fowler JS (2009) One-pot, direct incorpo-

ration of [11C]CO2 into carbamates. Angew Chem Int Ed 48(19):3482–3485

15. Zhang X, Zhao N, Wei W, Sun Y (2006) Chemical fixation of carbon dioxide to propylene

carbonate over amine-functionalized silica catalysts. Catal Today 115(1–4):102–106

16. Barbarini A, Maggi R, Mazzacani A, Mori G, Sartori G, Sartorio R (2003) Cycloaddition of

CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahe-

dron Lett 44(14):2931–2934

17. Zhang X, Jia Y-B, Lu X-B, Li B, Wang H, Sun L-C (2008) Intramolecularly two-centered

cooperation catalysis for the synthesis of cyclic carbonates from CO2 and epoxides. Tetra-

hedron Lett 49(46):6589–6592

18. Ma J, Zhang X, Zhao N, Al-Arifi ASN, Aouak T, Al-Othman ZA, Xiao F, Wei W, Sun Y

(2010) Theoretical study of TBD-catalyzed carboxylation of propylene glycol with CO2.

J Mol Catal A Chem 315(1):76–81
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