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Fluorous Organometallic Chemistry
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Abstract The synthesis, characterisation and application of organometallic com-

plexes functionalised with fluorous substituents are reviewed.
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1 Introduction

Organometallic chemistry has made a significant contribution to the developments

in fluorous chemistry since its inception in 1994 [1], but this science has never been

brought together or reviewed from an organometallic perspective previously. In this

article, we attempt to draw together the various strands of fluorous organometallic
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chemistry and present an overview of its contribution to the evolution of fluorous

separation methods.

Although originally envisioned by analogy to “aqueous” to embody a third,

orthogonal liquid phase that is both lipophobic and hydrophobic, such as a

perfluoroalkane or perfluoroether, the scope, meaning and application of the

fluorous concept have evolved rapidly, such that it now encompasses solid-phase

extraction [2], chromatographic separation [3], solid-supported catalysis [4–8],

thermoregulated solubility [9, 10] and release-and-capture concepts [11]. In each

of these areas, molecules of interest are adorned with one or more perfluoroalkyl

segments in order to generate the desired physical and/or chemical property. These

perfluoroalkyl segments are called “ponytails” or “labels” and have traditionally

been at least six carbon atoms long (i.e. C6F13) in order to give a molecule the

desired “fluorous” characteristics (solubility or separability). More recently, there

has been interest in the development of alternative fluorophilic segments based

upon smaller perfluorinated groups, e.g. –OC(CF3)3 [12–22], or perfluoropolyethers

[23–29] that are designed to reduce the potential environmental impact of the

degradation products of organic or organometallic species derivatised with long

perfluoroalkyl groups [30–33], but their applications in organometallic systems

have been restricted to just a couple of research articles.

In organometallic systems, it is possible to envisage the attachment of the

perfluoroalkyl segment either directly within the metal-bound organic ligand,

such as an alkyl, cyclopentadienyl or N-heterocyclic carbene (NHC), or as part of

another donor ligand (phosphine, pyridine, carboxylate, etc.) in the metal coordi-

nation sphere. The synthesis, physical properties and applications of these two

classes of fluorous organometallic complexes will be considered separately.

2 Organometallic Complexes with Ancillary Fluorous
Ligands

Organometallic systems derivatised with perfluoroalkylated ancillary ligands, such

as phosphines or carboxylates, have been absolutely fundamental in the develop-

ment of the fluorous approach to catalysis, whether that catalysis is under classical

fluorous biphase conditions, as part of release-and-capture methodologies or for

recycling using solid-phase extraction. However, in many instances, the fluorous

organometallic catalysts are only formed in situ, e.g. ene catalysts from fluorous

rhodium carboxylates [34–36] or fluorous silver trispyrazolylborates [37], and

hydrogenation catalysts from fluorous Wilkinson analogues [38–41]. Much of the

chemistry in such systems has been very well reviewed elsewhere [42–45] and,

since the focus of this article is on the synthesis and characterisation of fluorous
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organometallic complexes, these non-isolated fluorous organometallic species will

not be discussed further here.

The synthetic approaches to organometallic complexes with fluoroalkylated

ligands mirror those applied throughout organometallic chemistry. Cleavage of

chloride bridges in [MCl(CO)2]2 (M¼Rh, Ir) or [Cp*MCl2]2 (M¼Rh, Ir; Cp*¼η5-
C5Me5) with a variety of classes of perfluoroalkylated monodentate phosphorus(III)

ligands generates well characterised [MCl(CO)L2] [46–60] and [Cp*MCl2L] [50, 52,

55–57, 61] that have been used to establish the impact of the fluorous substituents on

the electronic, physical and structural properties of the metal complexes. A number of

these systems have been the subject of single crystal X-ray analyses, which generally

revealed that the ponytails had little influence on the structural features of the metal

centres (bond lengths, bond angles) but dictated the packing of these species in the

solid state. Oxidative addition reactions (of H2, O2, MeI, C8F17C2H4I) on the iridium

Vaska’s complex analogues {P(C2H4C6F13)3 and PPhn(C6H4-4-C6F13)3�n (n¼ 0,

1, 2) ligands} generate the anticipated octahedral Ir(III) species, but in-depth studies

suggest a different mechanism for the addition reactions to these fluorous-

functionalised complexes compared to those with protio ligands [46, 47, 50]. The

hydroformylation catalyst [HRh(CO){P(C2H4C6F13)3}3] is formed quantitatively in

the reaction of the phosphine with [Rh(CO)2(acac)] under Syngas in a closed system

[62]. It has been fully identified in solution by spectroscopic studies, but not isolated.

The analogous complex with the P(C6H4-4-OCH2C7F15)3 ligand has also been

detected in solution by high-pressure NMR spectroscopy [63]. Carbonyl displace-

ment from tungsten hexacarbonyl with perfluoroalkylated phosphines affords [W

(CO)5L] {L¼P(C6H4-4-C2H4C8F17)3, P(C2H4C6F13)3}, the former of which has been

structurally characterised [64]. Using the same ligands, this group has also prepared

some acetate-bridged ruthenium dimers [Ru(μ-O2CCH3)(CO)L]2, again using an

established organometallic approach, for which the trialkylphosphine complex was

the subject of a structural characterisation [65]. The only examples of metal carbonyl

clusters derivatised with fluorous ligands were reported in 2010 [66]. [Os3(CO)11L]

and [Os3(CO)10L2] {L¼P(C2H4C6F13)3} were prepared in moderate yields by ligand

displacement from the respective acetonitrile adducts. Reaction of the former with

triphenylphosphine gave a mixture of [Os3(CO)10L(PPh3)] and [Os3(CO)9L(PPh3)2],

which are readily separated by chromatography; the latter has been structurally

characterised. Alternatively, reaction of H2Os3(CO)10 with either P(C2H4C6F13)3 or

P(C6H4-4-C2H4C8F17)3 gave the hydrido-bridged complex [(μ-H)2Os3(CO)9L]
[66]. Displacement of tetramethylethylenediamine (tmeda) from [PdCl(Me)(tmeda)]

with 2-[bis(4-{[2-(perfluorohexyl)ethyl]dimethylsilyl}phenyl)phosphine]pyridine

gave the desired trans-square planar [PdCl(Me)L2] [67]. Similar displacement, this

time of norbornadiene, using P[C6H4-4-SiMe2(C2H4C6F13)]3 has been used to access

the palladium(0) alkene adduct, [Pd(maleic anhydride)L2] which is a relatively poor

pre-catalyst for themethoxycarbonylation of styrene [68]. In an attempt to improve the

solubility of [1, 2]-methanofullerene-substituted cyclometalated (C-N) platinum(II)-
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based macrostructures, van Koten et al. have displaced DMSO from platinum with

P[C6H4-4-SiMe3�n(C2H4C6F13)n]3 (n¼ 1, 2) (L) to generate highly soluble [Pt(C-N)

ClL] and [{Pt(C-N)L}2(4,4
0-bipy)] in which the fluorinated ligand has no electronic

impact on the fullerene moieties [69].

In the area of bidentate ligands, coordination of a 2,20-fluorous-tagged-
bipyridine to [Re(CH3)O3] generates a molecular olefin epoxidation catalyst [70].

Ligand-bridged dinuclear [{Cp*RhCl2}(L-L)] and cationic mononuclear [Cp*RhCl

(L-L)]+ complexes are formed in the cleavage of [Cp*RhCl2]2 with a perfluor-

oalkylated diphenylphosphinoethane ligand [71]. Displacement of one equivalent

of cyclooctadiene (COD) from [Rh(COD)2](BF4) or [Rh(COD)2](BPh4) with

perfluoroalkylsilyl dppe ligands generates [Rh(COD)(L-L)]+ cations; [Rh(COD)

{P(C6H4-4-SiMe2C2H4C6F13)2CH2CH2P(C6H4-4-SiMe2C2H4C6F13)2}](BPh4) has

been structurally characterised [72]. Alternatively, displacement of acetylacetonate

(acac) from [Rh(COD)(acac)] with fluorous bidentate phosphines, in the presence

of fluorous tetraphenyl borate anions, generates highly fluorophilic [Rh(COD)

(L-L)](BPhRf4) recyclable hydrogenation catalysts [73]. Ligand displacement is

also employed in the reaction of [CpMX(PPh3)2] (M¼Ru, X¼Cl; M¼Os, X¼Br)

with fluorous bidentate phosphines to generate [CpMX(L-L)] [74]. Displacement of

COD from [MClMe(COD)] (M¼Pd, Pt) or [PtMe2(COD)] with the P(C6H4-4-

C6F13)2CH2CH2CH2P(C6H4-4-C6F13)2 ligand affords the desired organometallic

[MClMe(L-L)] (M¼Pd, Pt) and [PtMe2(L-L)] in modest to good yields; [PtClMe

(L-L)] has been structurally characterised [75].

Recently, organometallic systems have been targeted where the fluorous ligand

has been engineered for a specific purpose (Fig. 1). Displacement of pyridine from

the Grubbs–Hoveyda catalyst with fluorous trialkyl phosphines (1) generates new
ring-opening metathesis polymerisation catalysts that offer dramatic rate accelera-

tions in a two-phase organic–fluorous system where “phase transfer activation”

following phosphine dissociation is envisaged [76–78]. Cleavage of the chloride

bridges in [(p-cymene)RuCl2]2 with a perfluoroalkyl-tagged pyridine generates the

anticipated mononuclear complexes (2) in high yield [79]. These compounds with

fluorous tails show greater uptake by tumoral cells than analogues with long alkyl

tails and are thermoresponsive, exerting considerable chemotoxicity on mild

hyperthermia. Three luminescent rhenium(I) bipyridyl complexes [Re

(CO)3(4,4
0-dimethylbipy)LRf](PF6) (3) [80] and the closely related [Re(CO3)

(phenR)LRf](PF6) (phen
R¼phen/4,7-diphenylphen/3,4,7,8-tetramethylphen) (4)

[81], prepared by displacement of acetonitrile from the parent organometallic

complexes, have been investigated as trifunctional biological probes that have

luminescent properties for detection and a reactive group for bioconjugation and

exploit the perfluoroalkyl functionalisation for straightforward isolation using

fluorous solid-phase extraction.
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3 Organometallic Complexes with Fluorous Organic
Ligands

3.1 Cyclopentadienyl Metal Complexes

Given the ubiquity of the cyclopentadienyl (Cp) and related ligands in organo-

metallic chemistry, it is not surprising that the first perfluoroalkyl-substituted Cp

ligand (CpRf) was reported relatively soon after Horváth and Rábai’s seminal paper,

and a number of both early and late transition metal-CpRf complexes have been

reported. A number of groups found that the usual, direct route to functionalised

cyclopentadienes (Fig. 2), the reaction of a metal cyclopentadienide with a
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Fig. 1 Designer organometallic complexes incorporating perfluoroalkyl-functionalised ligands
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Fig. 2 Perfluoroalkylated pre-ligands and ligands
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perfluoroalkyl iodide, gave complicated mixtures of products with the desired

perfluoroalkyl cyclopentadienes (I) produced in poor yields. In contrast, Hughes

and Trujillo [82] adapted Månsson’s methodology [83] through the reaction of

nickelocene with the appropriate iodide in the presence of triphenylphosphine, to

give a series of mixtures of the respective double bond isomers. The dienes with the

fluorous ponytail directly attached demonstrated very different properties to those

containing the short ethylene spacer unit. Whilst the latter were stable in solution

for several days at room temperature and could be deprotonated with butyl lithium

to give synthetically useful anions (vide infra), the former dimerise relatively

quickly in solution and decomposed on attempted deprotonation. Low-temperature

reactions of the more stable lithium cyclopentadienide of (IIc) with [MBr(CO)5]

(M¼Mn, Re) or of (IIa, IIb, IIc) with FeCl2·2THF gave the first light fluorous

cyclopentadienyl metal complexes with one or two fluorous substituents, respec-

tively. Alternatively, the reaction of (Ib, Ic or IIc) with [Co2(CO)8] in the presence

of 1,3-cyclohexadiene gave the desired CpRfCo(CO)2 complexes (Fig. 3; 5a–c) with
and without the ethylene spacer group, although the latter could only be isolated in

relatively low yield. As expected, although these light fluorous complexes are

soluble in perfluorinated solvents, they are not preferentially soluble in the fluorous

phase of a fluorous–organic biphasic system. Later, Horváth and Hughes extended

this chemistry to the synthesis of [CpRfRh(CO)2] (5d) and [CpRfRh(CO)

{P(C2H4C6F13)3}] by the reaction of the LiCp
Rf with [Rh(CO)2Cl]2 and, subsequently,

ligand substitution [84]. Most recently [85], the iridium analogue, [CpRfIr(CO)2] (5e),
has been used to study photolytic C–H activation and dehydrogenation processes of

alkanes (methane, cyclopentane, cyclohexane) in CF3C6F11. Here, the light fluorous

complex–perfluorinated solvent combination engenders both enhancements in catalyst

stability and unprecedented reactivity; for example, methane undergoes photolytic

oxidative addition to generate [CpRfIr(CO)(CH3)(H)] under 1 bar pressure at room

temperature.

There have been three reports on the synthesis of fluorous analogues of the

ubiquitous Cp* ligand. Tetramethylcyclopenta-1,3-dienes with C6F13, C8F17 or

C10F21 side chains on reaction with rhodium precursors yielded the anticipated

[Cp*RfRh(CO)2] (6a) and [Cp*
RfRhCl2]2; exemplars of both have been structurally

characterised [86, 87]. Cleavage of the chloride-bridged dimer with PMe3 or a

series of pyridines generated rhodium(III) piano-stool monomers with single C6F13
ponytails [88]. Reduction in the presence of ethylene or various dienes, on the other

hand, affords rhodium(I) bisalkene complexes (6b–e) [87].
Elsewhere, silicon-based chemistry has been used in order to elaborate

cyclopentadienyl ligands with fluorous ponytails. The light fluorous cyclopen-

tadienes with a single fluorous ponytail (III, IV) were readily prepared by the

reaction of RfSiMe2Cl with LiCp or LiC5H4EMe3 (E¼ Si, Sn) [89, 90]. As

expected, the monosubstituted species were obtained as mixtures of the 1-, 2- and

5-isomers, of which the 5-isomer was the major species, and the disubstituted

species as highly complex mixtures, of which the 5,5-isomer was the major species.

The pre-ligand (Vb) with two fluorous ponytails was prepared similarly, again as a

mixture of isomers, following lithiation of the previously isolated (IIIb) and
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reaction with a further equivalent of RfSiMe2Cl [89]. On the reaction of (IVb) with
TiCl4, loss of trimethyltin gave a good yield of the [CpRfTiCl3] complex with a

single ponytail. Alternatively, using well-established protocols from non-fluorous

chemistry, LiCpRf from (IIIb and Vb) on reaction with CpSiMe3TiCl3 gave
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Fig. 3 Perfluoroalkylated cyclopentadienyl metal complexes
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asymmetric bis-cyclopentadienyltitaniumdichlorides (7a, 7c) with one or two pony-
tails, respectively, whilst reaction of LiCpRf with TiCl3, followed by oxidation with

PbCl2, gave the highly-insoluble symmetrical bis-Cp complex with two ponytails

(7b), which has been crystallographically characterised [89]. Extending these

methodologies has been used to make [CpRf2TiCl3] with two ponytails and the

asymmetric [CpRfCpRf2TiCl2] with three ponytails [90]. In closely related chemis-

try, the symmetrical bis-Cp zirconium dichloride complex (8a) was prepared from

the reaction of the cyclopentadienyl lithiate with ZrCl4 and has been structurally

characterised [91]. Van Koten has taken this zirconocene derivative further, dem-

onstrating that the dichlorides can be converted into the dimethyl complexes in a

stoichiometric reaction with MeLi. The dichloride has also been used, in the

presence of methylaluminoxane (MAO), as an ethylene polymerisation catalyst,

which interestingly appeared to be more robust than the standard catalyst leading to

increased productivity over prolonged polymerisation times [91]. The related

zirconocene dichloride (8b) with C10F21 substituents has also been reported [92].

Various attempts to increase the number of perfluoroalkyl substituents on the

cyclopentadienyl ring have been made. [CpRfCpTiCl2] (9) can be formed via a

similar protocol to that described above using BrSi(C2H4C6F13)3 and LiCp,

followed by lithiation and reaction with CpTiCl3 [93]. Recently, cyclopentadienes

with the same three-tailed silane unit, but separated from the ring by ethyl or propyl

spacer units (IId, IIe), were prepared in three steps from the chloroalkyltrichlor-

osilanes as mixtures of the 1- and 2-isomers [94]. The subsequent reaction using the

[Co2(CO)8]/1,3-cyclohexadiene approach gave the desired [CpRfCo(CO)2] com-

plexes (5f, 5g) in good yields. Oxidative addition of medium and long

perfluoroalkyl iodides to these cobalt(I) derivatives afforded cobalt(III) complexes

(10) with both functionalised Cp rings and directly metal-bound fluoroalkyl ligands

[94]. Reaction of LiCpRf with 2-(perfluoroalkyl)ethyl triflates afforded inseparable

mixtures of four isomers of cyclopentadienes with two fluorous ponytails (VI)
[95]. Lithiation and reaction with [Rh(CO)2Cl]2 gave mixtures of the [1,2- and

1,3-{C5H3(C2H4C6F13)2}Rh(CO)2] (11), whilst reaction with FeCl2·2THF gave

highly fluorophilic tetrasubstituted ferrocenes as mixtures of the bis-1,2, bis-1,3

and mixed 1,2/1,3 regioisomers [96]. Alternatively, the pre-ligands with two pony-

tails [Va, Vc] on lithiation and reaction with ZrCl4 generate zirconocene dichloride
complexes with four perfluoroalkyl substituents, for which the C6F13 complex has

been structurally characterised [92].

An alternative approach to fluorous cyclopentadienes involves the reaction of

preformed metal complexes. Acylation of ferrocene with perfluoroalkylated acyl

chlorides with C2H4 spacers [97] or C10H20 spacers [98] in the presence of AlCl3
generates, depending on stoichiometry, mono- or di-acylated ferrocenes. Reduction

readily affords complexes with (CH2)3C6F13 or (CH2)11C6F13 ponytails respec-

tively. [(η5-C5H4Br)M(CO)3] (M¼Mn, Re) undergoes a palladium-catalysed

cross-coupling reaction with IZn(CH2)2Rf to generate the associated CpRfM(CO)3
(12) with a single fluorous ponytail in high yields [99, 100]. This approach can be

extended to multiply functionalised Cp metal complexes. [(η5-C5Br5)M(CO)3],

[(η5-C5HBr4)M(CO)3] or [(η5-1,2,3-C5H2Br3)M(CO)3] (M¼Mn, Re) reacts with
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IZn(CH2)2Rf to give fairly complex mixtures of products with varying fluorophi-

licities, which could be readily separated by chromatography on fluorous silica. The

pentabromocyclopentadienyl starting materials gave the desired complexes with

five perfluoroalkyl substituents (13) in poor yields (Mn¼ 2 %, Re¼ 15 %) along-

side complexes with four perfluoroalkyl substituents (14) in which the fifth bromine

had been replaced by a hydrogen atom (Mn¼ 45 %, Re¼ 30 % yields) and

mixtures of the 1,2,4- and 1,2,3-trisubstituted derivatives (15) with two hydrogens

(Mn¼ 7 %, Re¼ 7 %). The tetrasubstituted (14) and trisubstituted (15) derivatives
were similarly isolated following reactions of the parent tetrabromo or tribromo

complexes in 50–55 % yields. One of the standard routes for detaching Cp ligands

from transition metals involves high-pressure mercury lamp photolysis of manga-

nese tricarbonyl adducts, which has been applied in this study to liberate the parent

cyclopentadienes with three and four perfluoroalkyl substituents (VII, VIII) in

reasonable yields. The application of this route to generate other metal complexes

of these polyderivatised ligands was amply demonstrated by the subsequent

lithiation of 1,2,4-C5H2(C2H4C8F17)3 (VII) and reaction with [Rh(CO)2Cl]2 to

give the desired [CpRfRh(CO)2] (16) [99, 100]. As expected, the fluorophilicities

of these multiply functionalised complexes are very high with “no detectable

amount of complex remaining in the toluene phase” of a CF3C6F11/toluene

two-phase system.

3.2 Other π-Ligands

In comparison to the studies on functionalised Cp ligands, complexes of other

π-donor ligands have received scant attention (Fig. 4). Reaction of the unsymmet-

rical F17C8(CH2)3C�CSi(CH3)3 alkyne with dicobalt octacarbonyl at low temper-

ature gave the fluorous-functionalised [Co2(CO)6{η2-μ-F17C8(CH2)3CCSi(CH3)3}]

in good yield [101]. Fluorous benzenes with 1, 2 or 3 ponytails [102] and more

recently with the shorter –OC(CF3)3 pigtail [103] have been synthesised. Reaction

of the former with Cr(CO)6 under standard conditions affords in moderate to good

yields the unremarkable piano-stool [(arene)Cr(CO)3] complexes (e.g. 17) with 1–3
fluorous substituents [101]; the equivalent reactivity of the latter to generate

organometallic derivatives has not yet been reported. Alternatively, reaction of

the symmetrical F17C8(CH2)3C�C(CH2)3C8F17 or unsymmetrical

F17C8(CH2)3C�CSi(CH3)3 alkynes with [CpCo(CO)2] gave the well-established

mixed sandwich [CpCo{η4-C4[(CH2)3C8F17]2[SiMe3]2}] as a mixture of cis- and
trans-isomers with two ponytails for the latter and the quadruply ponytailed [CpCo

{η4-C4[(CH2)3C8F17]4}] (18) for the former [101]. The intriguing possibility of

combining this dimerisation complexation with the multiple functionalisation of the

Cp ring described above to generate a mixed-π-sandwich complex with eight

fluorous ponytails has not yet been pursued.
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3.3 Alkyl and Aryl Metal Complexes

The fluorous analogues of classical organometallic reagents (Grignards, organozincs,

organocoppers, aryl lithiates, etc.) have been exploited widely throughout the devel-

opment of fluorous synthetic chemistry, in most cases without isolation or even

identification. In contrast, the number of formally isolated and characterised com-

plexes containing a transition metal-sp3 carbon bond in which the organometallic

ligand incorporates a fluorous unit is extremely rare. As outlined above, one of the

CpRfCo(CO)Rf complexes (10c) contains a directly bound C6F13 ponytail [86], whilst

[IrClI(C2H4C8F17)(CO){P(C2H4C6F13)3}2] contains a ponytail with a spacer group

[47, 49]; both complexes are formed by oxidative addition of the respective alkyl

iodides to metal(I) precursors. The reactions of CnF2n+1I with diethylzinc generate

bis(perfluoroalkyl)zinc compounds, Zn(CnF2n+1)2·2solv (solv¼MeCN, THF,DMSO),

which have been comprehensively characterised in solution by multinuclear NMR

[104, 105]. Reaction of 1,6-diiodododecafluorohexane with ZnEt2 generates an

unusual bisperfluoroalkyl-bridged dizinc species, [(solv)2Zn(μ2-C6F12)Zn(solv)2]

(solv¼MeCN, 1,3-dimethyl-3,4,5,6-tetrahydro-1(1H)-pyrimidinone); the latter has

been used as a transfer reagent for the perfluoroalkyl chain to form perfluoro-bridged

diaryls in the presence of CuCl [106]. Some experimental details for the isolation of the

highly active Lewis acid scandium and ytterbium(III) tris(perfluoroalkylsulfonyl)

methide catalysts have been reported [107–110]. The reaction of fluorous-1,5-

diphosphinopentanes (IX) with Pd(O2CCF3)2 in benzotrifluoride at elevated tempera-

tures afforded a small series of palladium(II) PCP pincers complexes (Fig. 5; 19) with
four perfluoroalkyl substituents in modest yields [111]. Metathesis of (19b) gave the
chloride complex, which has been crystallographically characterised, and further

reaction with MeLi gave the palladium–methyl complex, which has limited stability.

The striking exception to this situation arises outside the transition metal series where

not only have a wide range of fluorous organotin reagents been widely employed as

reagents in organic synthesis but also fluorous tin halides, fluorous tin hydrides and

fluorous tin allyl complexes have also been prepared and isolated on large scales [2,

112–116], and even the tetraalkyltin complex, [Sn(C2H4C6F13)4], has been

described [117].

Cr
C8F17(CH2)3

(CH2)3C8F17

(CH2)3C8F17

OC
CO

CO

Co
(CH2)3C8F17

(CH2)3C8F17
C8F17( )3

C8F17(CH2

CH2

)3

(17) (18)

Fig. 4 Perfluoroalkylated arene metal complexes
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In a similar vein, there are no reports of unsupported fluorous sp2 hybridised

carbon–metal complexes; however, there are a variety of reports of such interac-

tions when they form part of cyclometalated or pincer ligand systems. Ortho-C–H
activation on the aryl rings in (X and XI) with palladium acetate readily afforded

the cyclopalladated acetate-bridged dimers (20a and 21) with six C8F17 ponytails

[118, 119]. These complexes are thermomorphic in that they have little or no

solubility in conventional organic solvents at room temperature but have significant

solubility at elevated temperatures, but they act mainly as sources of soluble

colloidal palladium nanoparticles, rather than as a discrete molecular catalyst,

when applied in Heck or Suzuki reactions. The related halide (X ¼ Cl, I)-bridged

dimers (20b, 20c) are formed readily for the imine palladacycle, and the bridge can

be cleaved with triphenylphosphine to give (22). A similar C–H activation protocol

with Pd(OAc)2, this time in the presence of LiCl, affords the related chloride-

bridged dimers of chiral NC ligands with two, four or six perfluoroalkyl groups

(CH2)3C8F17

C8F17(H2C)2

NC8F17(H2C)3

(CH2)3C8F17

C8F17(H2C)2

SC8F17(H2C)3
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X

2

Pd
OAc

2
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Pd

PPh3Cl

SiMe3-n{(CH2)2Rf}n
Me2N

Pd
LCl

SC6H4-4-C2H4C6F13

SC6H4-4-C2H4C6F13

Pd Cl

P(C2H4Rf)2

P(C2H4Rf)2

Pd O2CCF3

(19a, Rf = C6F13);
(19b, Rf = C8F17);
(19c, Rf = C10F21)

(25)

(20a, X = OAc);
(20b, X = Cl);
(20c, X = I)

(21)

(22) (23a, n = 1, Rf = C6F13,L = py);
L = py);
L = py);

(23b, n = 2, Rf = C8F17,
(23c, n = 3, Rf = C8F17,
(23d, n = 1, Rf = C6F13,L = PPh3);
(23e, n = 2, Rf = C8F17,L = PPh3);
(23f, n = 3, Rf = C8F17,L = PPh3)

O(CH2)3C8F17

NHO
Pd

Cl
2

(24)

C8F17(H2C)3O

Fig. 5 Perfluoroalkylated cyclometalated and pincer metal complexes
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attached via the silyl linker [120]. Bridge cleavage with pyridine or PPh3 generates

a series of mononuclear complexes (23); the complex with one C6F13 unit and

L¼PPh3 (23d) has been structurally characterised. In 2011, a series of luminescent

iridium(III) biscyclometalated cations [Ir(N-C)2(N-N)](PF6) with two C8F17 pony-

tails were reported, in which the fluorous substituents appeared to impact positively

on the photophysical and biological properties [121]. The oxime-based

palladacycle (24), formed in a slow reaction of the free oxime with Li2PdCl4 in

acetone at reflux, has been shown to be a highly effective pre-catalyst for Suzuki–

Miyaura, Sonagashira, Stille, Heck and Kumada reactions, either in aqueous solu-

tion or organic solvents, that could be recycled and reused up to five times

[122, 123].

The first metal-pincer ligand complex was reported in 1998. Heteroatom-

assisted lithiation of the perfluoroalkylsilyl pre-ligands (XII) followed by reaction

with metal dichloride reagents gave the desired NCN-metal complexes with one

ponytail in high yields; one of the nickel complexes was structurally characterised

[124]. In a standard Kharasch addition reaction of CCl4 to methyl methacrylate in

dichloromethane, the nickel complexes exhibited almost identical activities to that

of the analogous, underivatised pincer complex. Three groups have reported closely

related PCP pincer metal complexes; firstly, van Koten et al. described the synthesis

of the ruthenium(II) complex with three C8F17 ponytails attached via a silyl spacer

to the arene unit in (XIII) [125]. Incorporating the fluorous ponytails using the

phosphorus donors is an alternative approach: The trialkylphosphine PCP

pre-ligands (XIV) react readily with Pd(O2CCF3)2 or [IrCl(COE)2]2
(COE¼ cyclooctene) to generate square planar palladium(II) or trigonal bipyrami-

dal iridium(III) complexes, each with four perfluoroalkyl groups; the Pd

(II) complex with C8F17 groups has been structurally characterised [126]. The

triarylphosphine PCP pre-ligand (XV) reacts with either NiCl2·6H2O,

PdCl2(MeCN)2 or PtCl2(COD) to generate the anticipated square planar complexes

[127]. The palladium(II) complex performed reasonably as a catalyst for the Heck

reaction under standard conditions and was recycled four times using a fluorous

solid-phase extraction protocol. Analogous alkyl- and aryl-SCS pre-ligands (XVI
and XVII) have also been reported [128, 129]. Coordination of the pre-ligands to

palladium(II) is straightforward affording complexes with two fluorous ponytails,

and the aryl-SCS-PdCl complex (25) has been structurally characterised. These

complexes have all been evaluated as catalysts for the Heck reaction and, whilst the

S-alkyl catalyst precursors are consumed during the reaction, the S-aryl catalyst

could be recycled three times using a fluorous solid-phase extraction approach.

The final area where perfluoroalkyl groups have been incorporated into carbon-

based ligands for coordination to a metal centre is in functionalised benzylidenes

for the synthesis of Grubbs–Hoveyda-type catalysts (Fig. 6) and their applications

in alkene metathesis. In the first of these, a fluorocarbon-soluble acrylate polymer

bearing the key isopropoxystyrene unit for coordination was reacted with the

Grubbs–Hoveyda catalyst in the presence of CuCl for styrene group exchange

[130]. The air-stable catalyst (26a) was tested in a series of ring-closing metathesis

(RCM) reactions, with a variety of di-, tri- and tetrasubstituted dienes, delivering
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excellent conversions. The catalyst could be readily recovered following extraction

with FC-72 and up to 20 catalyst recovery/reuse cycles were demonstrated. More

conventional molecular first- and second-generation Grubbs–Hoveyda catalysts

have been prepared (26b–d; 27a–c) with a directly attached C6F13 ponytail [131],

spacer (CH2)2/3C8F13 ponytail [132] and a silyl spacer with three C2H4C8F17
ponytails [133]. Each of these catalysts shows good activity in model RCM

reactions, with recovery/reuse cycles (up to five times) either via a fluorous solid-

phase extraction protocol or via noncovalent immobilisation on fluorous silica gel.

Most recently, the functionalised benzylidene complexes (26b, 27a) have been

converted into their fluorocarboxylate salts to improve their fluorophilicities

[134]. Whilst the two complexes with the linear C6F13 carboxylate ligands are

modestly fluorophilic, those complexes with the perfluoropolyoxyalkanoate ligands

are highly fluorophilic, in line with this group’s observations on functionalised

silver NHC complexes (vide infra). Whilst those complexes with linear
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Fig. 6 Perfluoroalkylated benzylidene and N-heterocyclic carbene metal complexes
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carboxylates showed reasonable activities in RCM reactions, those with branched

carboxylate ligands were virtually inactive, suggesting that steric crowding at the

ruthenium centre is an issue for these species.

3.4 NHC Metal Complexes

The versatility and applications of N-heterocyclic carbene ligands in catalysis and

beyond is now extremely well established. However, the number of reports of

fluoroalkylated NHC ligands and their complexes is relatively small (Fig. 6). In

2000, rotationally equilibrated, 1:1 mixtures of the trans-anti and trans-syn isomers

of the palladium(II) complexes (28a) with two ponytails were generated readily in

the reaction of the parent imidazolium salt with Pd(OAc)2, for which the trans-anti
isomer has been structurally characterised [135]. Presumably, a similar isomeric

mixture of trans-[PdI2(NHC)2] (28b) with one C2H4C10F21 ponytail per NHC

ligand (generated in situ but not isolated) and preformed, or generated in situ,

trans-[PdCl2(NHC)(PPh3)] (29a) with one C2H4C10F21 ponytail have each been

used in Mizoroki–Heck arylations of α,β-unsaturated acids in a fluorous ether with

similar activities and separation characteristics [136]. In closely related work,

trans-[PdCl2(NHC)(PPh3)] (29b) [137] and trans-[PdCl2(NHC)(3-chloropyridine)]
(29c) [138], both with two C2H4C6F13 ponytails, have been tested as catalysts for

Suzuki cross-coupling reactions. Finally in palladium(II) chemistry, the more

heavily perfluoroalkylated trans-[PdI2(NHC)2] complexes with either four

C2H4C6F13 (28c) [135] or four C2H4C8F17 (28d) [139] ponytails have been reported
separately, the former being structurally characterised.

Elsewhere, the perfluoroalkylated analogue of the Grubbs-II catalyst with a

single C2H4C6F13 ponytail on the carbene (30) has been prepared [140], ostensibly

to enhance the solubility of such catalysts in scCO2, but, to date, further work with

this complex has not been published. Three perfluoroalkyl units have been attached

to a Grubbs–Hoveyda-type catalyst via both the benzylidene and a symmetrically

substituted NHC (31) [132]. This catalyst showed higher activity in the challenging
RCM of a tetrasubstituted diene than the commercially available catalyst, but

recycling of the catalyst has not been described. The reactions of perfluoroalkylated

imidazolium salts with silver oxide in acetonitrile gave silver NHC complexes,

formulated as [Ag(NHC)2][AgX2] (X¼ I, OTf) on the basis of APCI+ MS. The

analogous complexes formed from imidazolium salts functionalised with perfluor-

opolyether ponytails exhibit enhanced fluorophilicities, which the authors ascribe to

the enhanced flexibility of the perfluoropolyether over the conventional

perfluoroalkyl ponytail [28].
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4 Conclusions and Future Prospects

In the past 20 years, the synthetic challenges of incorporating long perfluoroalkyl

ponytails into organometallic complexes have, for the most part, been overcome

through the development and adaptation of existing methodologies. These have

generated fluorous analogues of almost every class of organometallic complex that

have, almost without fail, been thoroughly characterised analytically and spectro-

scopically, generating a large amount of new insight into fluorous systems. Studies

on the single most extensively studied class of organometallic complex, the Vaska’s
analogues, have been used to establish the electronic influence of incorporating the

fluorinated substituents, but, perhaps, the insight into the role of the fluorous solvent

and/or substituents on the kinetics and mechanism of oxidative addition in these

systems, mentioned in the work from two groups [47, 50], has been overlooked.

Structurally, more than 20 single crystal structure determinations have been

reported on fluorous organometallic complexes, and these reveal two significant

facts: The perfluoroalkyl groups have little or no impact upon the key structural

features in the first metal coordination sphere (M–L bond lengths, L–M–L0 bond
angles), but they dominate the packing in the solid-state generating fluorous and

non-fluorous domains throughout the extended structures. Another aspect that has

received considerable attention is the relative partition coefficients of organome-

tallic complexes within organic–fluorous two-phase systems. However, the reali-

sation that the FBS system (as originally conceived) is untenable on an industrial

scale, due to the cost of and environmental factors associated with perfluorocarbon

solvents, has led to the development of light fluorous and thermomorphic

approaches to separation diminishing the importance of relative partition

coefficients.

Isolated organometallic compounds, as outlined above, or perfluoroalkylated

organometallic catalysts generated in situ, have been evaluated in a diverse range of

catalytic processes, with particular emphasis on oxidations, reductions and C–C

bond-forming reactions. Generally, these fluorous organometallic systems have

performed adequately, some better, some worse, in terms of catalytic activity or

selectivity, than other systems reported in the academic literature. The recovery and

reuse of the catalysts, combined with the amount of metal leaching to the product

phase, have been determined for many systems, but to date none has performed

sufficiently better than their non-fluorous counterparts to warrant their development

beyond laboratory scale systems.

Where will fluorous organometallic chemistry go in the future?

Firstly, the concerns over the bioaccumulation of the degradation products from

organic molecules with the archetypal fluorous ponytails, C6F13 or C8F17, are

challenging the fluorous community to consider alternative strategies. A number

of reports on two of these, the incorporation of perfluoro-t-butoxy or perfluoropo-

lyethers, have appeared in the synthetic organic chemistry literature. The recent

observation [28] of enhanced fluorophilicity of species functionalised with perfluor-

opolyether groups over those with perfluoroalkyl groups is a clear signpost of a
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direction to be followed in organometallic chemistry. Secondly, insight is provided

by the recent work on the engineering of organometallic systems in which the

fluorous substituent imparts specific, even unique, biological properties to the

organometallic complex [79–81], and this is undoubtedly an area that is going to

grow in the next few years. We look forward to the continued evolution of research

in fluorous organometallic chemistry.
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45. Zhao Z, He D, Mika LT, Horváth IT (2012) Fluorous hydroformylation. Top Curr Chem

308:275–290

46. Fawcett J, Hope, EG, Kemmitt RDW, Paige DR, Russell DR, Stuart AM, Cole-Hamilton DJ,

Payne MJ (1997) Fluorous-phase soluble rhodium complexes: X-ray structure of [RhCl(CO)

(P(C2H4C6F13)2]. Chem Commun (12):1127–1128
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