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Summary: 
As organizations move from creating plans for individual production lines to en-
tire supply chains it is increasingly important to recognize that decisions concern-
ing utilization of production resources impact the lead times that will be experi-
enced. In this paper we give some insights into why this is the case by looking at 
the queuing that results in delays. In this respect, special mention should be made 
that it is difficult to experience related empirical data, especially for tactical plan-
ning issues. We use these insights to survey and suggest optimization models that 
take into account load dependent lead times and related “complications.” 
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1 Introduction 

Let us define the lead time as the time between the release of an order to the shop 
floor or to a supplier and the receipt of the items. Lead time considerations are 
essential with respect to the global competitiveness of firms, because long lead 
times impose high costs due to rising WIP (work in process) inventory levels as 
well as larger safety stocks caused by increased uncertainty about production 
prerequisites and constraints. Despite this, considerations about load dependent 
lead times are rare in the literature. The same is valid for models linking order 
releases, planning and capacity decisions to lead times, and take into account 
factors influencing lead times such as the system workload, batching and 
sequencing decisions or WIP levels. 

Present practice for manufacturing supply chains is dominated by the use of 
material requirements planning (mrp) with its inherent problems. Many companies 
do not use adequate planning tools at all. Accordingly, problems arise when fixed, 
constant or “worst case” lead times are assumed at an aggregate planning level, 
e.g., to have enough “buffer time” to securely meet demands. In order to meet due 
dates there is also a tendency to release jobs into the system much earlier than 
necessary, leading to very high WIP levels and, therefore, longer queuing (waiting 
times) causing even longer lead times. This overreactional behavior becomes a 
self-fulfilling prophecy and is addressed in the literature as the lead time syndrome
which results from the fact that the relationship between WIP, output, workload 
and average flow times is ignored (Zäpfel & Missbauer, 1993; Tatsiopoulos & 
Kingsman, 1983). Moreover, most mrp and enterprise resource planning (ERP) 
models implement sequential planning algorithms which neither consider 
uncertainties nor resource and production flow constraints of raw material, WIP 
and finished goods inventory (FGI), leading to suboptimal or infeasible production 
plans (Caramanis & Ahn, 1999). 

Another fundamental problem of manufacturing and production planning models 
is the omission of modeling nonlinear dependencies, e.g., between lead times and 
the workload of a production system or a production resource. This happens even 
though there is empirical evidence that lead times increase nonlinearly long before 
resource utilization reaches 100% (Asmundsson et al., 2003; Karmarkar, 1987); 
see Figure 1. This may lead to significant differences in planned and realized lead 
times. There is a lack of models allowing the analysis of behavior of lead times 
and WIP levels considering the facility workload under variable demand patterns 
like seasonal demand. In addition, it seems likely that queuing tends to be 
correlated so that a machine failure at one point of the system will cause queuing 
at other stations which leads to the presumption that lead time distributions tend to 
be fat-tailed and skewed. However, to the best of our knowledge there is no 
comprehensive (empirical) work on this topic currently available. Furthermore, it 
seems that there is no model which analyzes load dependent lead times in the 
context of stochastic demand evidently prevailing in practice. 
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Figure 1: Nonlinear Relationship between Waiting Time and Resource Utilization  
(Voß & Woodruff, 2003: 162) 

It is necessary to examine the problem of lead time dynamics at individual links to 
better understand the effects and the modelling requirements and complexities at 
the aggregate planning level for the entire supply network. The aim of this paper is 
to demonstrate, based on empirical evidence obtained by a survey and interviews 
recently executed and briefly sketched in the next section, the need for aggregate 
planning models with the following features: being able to take into account the 
nonlinear relation between lead times and workload, while remaining tractable to 
be adapted to complex production systems and supply chains. The remainder of 
this paper is organized as follows. In Section 2 we point out the empirical 
evidence of load dependent lead times by means of the results obtained from 
interviews and a survey recently executed. Then we survey methods and models 
dealing with load dependent lead times and examine indirect approaches, aspects 
of queuing theory, and introduce so-called clearing functions in Section 3. The 
paper concludes with some remarks and suggestions for future research directions. 

2 Load Dependent Lead Times – Empirical Evidence 

Production planning is a complex issue especially in the context of variable 
demand patterns or stochastic demand. In numerous production environments 
demand quantities are not known at the beginning of the production planning 
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process. As a result it is difficult to create forecasts of (highly) variable demand 
patterns. Production uncertainties and unforeseen events such as machine 
breakdowns, unavailability of production resources, illness of workers, etc. raise 
the instability of the production process with queues building up in front of 
machines resulting in increased WIP and FGI levels and consequently in raised 
lead times. Therefore, production processes in such environments tend to become 
somewhat hectic with overtime in peak situations leading to unbalanced utilization 
of production resources. This is especially true for the food (or semiconductor) 
industry which also has to account for various deteriorating rates of their 
production material, which is another complication issue of (load dependent) lead 
times. As a result, the forecast quality is very important in tactical (and 
operational) production planning since it prevents precipitated releases of jobs 
(orders) in the production process and, therefore, should be linked with aggregate 
production planning and order release control. Nevertheless, there is a lack of 
practical and useful tools for tactical production planning which permits 
companies to account for variable demand and unforeseen events causing load 
dependent lead times. This is one of the principle outcomes of our survey and 
interviews with companies from different industrial sectors such as transportation, 
logistics and inventory, aerospace, industry automation and mineral oil, and the 
chemical industry. 

The study includes enterprises of various sizes producing different types of 
products with very different product life cycles including base polyols, load cels, 
indicators/ transmitters, software, IT- and logistic services and satellite launchers. 
These companies face diverse demand patterns and environmental challenges they 
have to take into consideration in the overall production planning process, 
especially with regard to the planning of resources and their utilization levels. 
Many companies face variable (seasonal) and not easily predictable demand for 
their foremost products. This seems to be the main uncertainty in the production 
process, because further potential precarious factors such as, e.g., the cooperations 
with supply chain partners and delieveries from supply chain partners are not 
validated as highly impacting the production process. This is due to the fact that, 
e.g., the launcher business has very long production cycle times (the production of 
one launcher like Ariane 5 or Vega takes on average 2.5 years). Here, problems 
concerning the cooperation of supply chain partners are not very critical in terms 
of time compared to other branches like the automotive industry where JIT 
production is mainly implemented and late deliveries of components cause the 
whole production process to stop. Nevertheless, late deliveries of important 
components for, e.g., a launcher also cause the whole assembly process to stop 
which leads to great financial losses not only because of idle times of production 
resources and very expensive WIP waiting in the queue, but also because of the 
costs for the client associated with the delay (lost profits of satellite services). 
Other companies do not experience supply chain cooperation problems due to 
long endurance with few supply chain partners, leading to a stabilized and well 
defined work flow. 
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Usually medium or large organisations are characterized by a large number of 
supply chain partners and more or less complex production processes. The range 
of surveyed companies and their production systems cover synchronized facilities, 
job shops and make-to-order-systems with different core objectives in tactical 
production planning as, e.g., maximizing resource utilization in order to avoid idle 
times (mostly in synchronized production facilities), minimizing lead times or 
cycle times (this holds true for make-to-order situations) and minimizing WIP and 
FGI levels. Only a few companies use specific tools for tactical production 
planning such as SAP R/3, SAP APO (APO SNP for tactical production planning 
and APO PP/DS for operational production planning). The survey confirms the 
prevailing use of mrp-based systems together with estimated lead times (or 
planned lead times) leading to the problems outlined above. Most of the 
companies experience rising lead times due to machine breakdowns as well as 
rising WIP levels and consequent queuing in front of machines. Nevertheless, 
because of the unavailability of data sets (surveys) which are necessary to execute 
a detailed empirical analysis, it is not clear whether this occurs before reaching 
100% utilization, but despite the lack of information, queuing theory emphasizes 
the impact of resource utilization on load dependent lead times. 

The main goals in tactical production planning of the surveyed companies consist 
in minimizing lead (or cycle) times, as well as WIP and FGI inventory levels, and 
maximizing resource utilization in order to avoid idle times. For this purpose some 
of them use, e.g., some “worst case lead times” in order to have enough buffer 
time at certain (critical) points in the production system and to secure that 
demands can be met. Others implement estimates of lead times derived from 
historical data of the production system, which gets problematic when production 
processes change. Consequently, the underlying data for estimated or planned lead 
times is neither reliable nor useful in order to achieve the mentioned objectives. 
However, companies are aware of the fact that decisions on the workload in the 
production system (and of single resources), on scheduling and sequencing, and 
on lot sizing and setup times are key factors influencing (load dependent) lead 
times. To summarize, they lack models (included in comprehensive, usable and 
useful software tools) providing them with, e.g., “if-then”-analysis in order to 
better understand the impact of decisions of resource utilization levels, and not 
only for one single machine or production resource, but even for the whole supply 
chain network, and furthermore, in order to permit them to use better estimates of 
lead  times. Until now useful models did not exist which provide production 
planners with necessary information about the lead times which will be 
experienced in case of diverse resource utilization levels. 

As mentioned above, load dependent lead times are the result of production 
planning processes and should not be an input factor for production planning and 
scheduling. Moreover, the surveyed companies state the interest in models which 
take into account load dependent lead times and their impact on the performance 
of production. Thus it is necessary to analyse the nonlinear relationship of 
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resource utilization and lead times, as well as influencing factors in more detail in 
order to integrate them in aggregate production planning. Finally, the integration 
of supply chain partners in an overall supply chain network tends to precede in the 
right direction by connecting the participants through information system tools, 
e.g., the same production planning software or linking them together by add-ons in 
order to guarantee real time information of their production process and those of 
the supply chain partners. Nevertheless, this is still an ongoing process. 

3 Models Including Load Dependent Lead Times 

Load dependent lead times are primarily considered in the framework of capacity 
planning models and order release control mechanisms. Traditional models aim at 
“filling time buckets” which represent the available capacity of a production 
system in discrete time periods, while linear programming models are typically 
employed using hard capacity constraints which ignore the phenomenon that in 
asynchronous systems, prevailing in practice, queues build up long before 100% 
resource utilization is reached. Furthermore, they do not impose costs until the 
capacity constraint is violated, i.e., the constraint only tightens in case of 100% 
utilization (Karmarkar, 1989). Moreover, these models neither account for WIP 
and other lead time related cost factors that increase with queues and delays and 
accordingly with longer lead times (Karmarkar, 1993; Zipkin, 1986), nor do they 
include WIP costs and lead time consequences of capacity loading which can have 
significant effects on the performance of the production system. 

3.1 Indirect Approaches 

There are several ways to address problems associated with load dependent lead 
times. Some authors do not directly consider the difficulty of modeling nonlinear 
dependencies of lead times and workload, but try to solve the problem indirectly 
by influencing parameters that have an effect on lead times such as decisions on 
job release policies, influences of the demand side, changes in production plans or 
by smoothing demand variability, e.g., by implementing a make to stock policy, or 
shifts (away) from bottlenecks in order to increase capacity. Other approaches 
concentrate on lot sizing as an influencing factor or on production system 
characteristics as well as employing queuing theory as an analytical method. 

3.2 Aspects of Queuing Theory 

Analysis of production system performance and important key factors like 
throughput, WIP levels and load dependent lead times are frequently executed in 
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the context of queuing theory due to the fact that a large percentage of lead times 
are waiting times. It has been shown that 90% of the total flow time is due to 
transit times, where 85% consists of waiting (queuing) time, 3% of quality control, 
and 2% of transportation time; only 10% is due to value added processing 
operations (Tatsiopoulos & Kingsman, 1983). Queuing network models highlight 
the relationship between the capacity, loading and production mix as well as the 
resulting WIP levels and effect on lead times (Karmarkar, 1987) and provide 
important information on the causes of congestion phenomena. Furthermore, they 
show that delays predominantly depend on the service variability, i.e., the 
processing time of a resource, the variability of the arrival rate of work at a 
resource and the current workload as well as scale effects with major delays near 
the maximum capacity usage (Srinivasan et al., 1988). 

Congestion phenomena are inherent problems of production systems complicating 
the planning process. They emerge at different and frequently changing times and 
places which are hardly predictable. Therefore, it is crucial to better understand 
the reasons for congestion phenomena like the limited capacity of a machine 
(resource) to respond to demand variation over time (Lautenschläger, 1999) and to 
account for them in aggregate planning models. The literature on queuing and 
congestion phenomena is multitudinous; see, e.g. (Chen et al., 1988; Karmarkar, 
1987, 1989; Spearman, 1991; Suri & Sanders, 1993; Zipkin, 1986). Spearman 
(1991) develops a cyclic closed queuing network model with three parameters, 
viz. the bottleneck capacity, the “raw processing time” (i.e., increasing failure rate 
processing time, IFR) and a congestion coefficient which specifies a unique 
throughput/WIP curve in order to analyze the dependency between mean cycle 
time (synonymously used for “flow time” in many references) and WIP for the 
whole production system, i.e., single resources and their processing times are not 
considered. The model indicates a relationship between mean cycle time and WIP 
level and can be used to predict the average cycle time in exponential as well as in 
IFR closed queuing networks. Chen et al. (1988) provide a network queuing 
model for semiconductor wafer facilities which points out that congestion and 
delays are due to variability in the operating environment. So this variability has to 
be smoothed in order to obtain shorter production cycle times. 

It is useful to start with a queuing model in order to obtain some approximations 
for the key parameters or objective functions to be implemented in an aggregate 
planning model (Buzacott & Shantikumar, 1993). 

3.3 Indirect Integration of Load Dependent Lead Times 

There are only a few approaches which try to integrate load dependent lead times 
directly into mathematical programming models. For instance, Zijm & Buitenhek 
(1996) developed a manufacturing planning and control framework for a machine 
shop which includes workload oriented lead time estimates. For this purpose they 
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suggest a method that determines the earliest possible completion time of arriving 
jobs with the restriction that the delivery performance of any other job in the 
system will not be adversly affected, i.e., that every job can be completed and 
delivered on time. Their aim is to determine reliable planned lead times based on 
workload which guarantee that due dates are met and can be implemented at a 
capacity planning level, serving as input for a final detailed capacity scheduling 
procedure that also takes into account additional resources, job batching decisions 
as well as machine setup characteristics. Their framework is partly based on the 
work of (Karmarkar, 1987; Karmarkar et al., 1985). Missbauer (1998) focuses on 
the hierarchical production planning concept in which all partial problems can be 
included (e.g., aggregate production planning, capacity planning, lot sizing, 
scheduling etc.), but which avoids the problems of a comprehensive model, e.g., 
problems of data procurement, limited computational storage space, CPU times 
that are too long for calculation etc.  

Graves (1986) studied the dependencies between production capability, variability 
(uncertainty) of the production requirements, and level of WIP inventory in a 
tactical planning model and analyzes to which extent the job flow time (or WIP 
inventory) depends on the utilization of each resource of a job shop or production 
stage. He further concentrates on analyzing the interrelationship of flow time and 
production mix. For this purpose he employs a network model where multiple 
routings of jobs are possible so that the lack of a dominant work flow renders 
production control, which aims at reducing the variance of planned lead times. In 
addition, he uses a queuing model that includes flexible production rates of 
resources which can be set by a tactical planning model in order to smooth the 
work flow and to avoid the overload of resources. Moreover, he implements a 
control rule at each resource that determines the amount of work performed during 
a time period which is a fixed portion j of the queue of work at j remaining at the 
start of the period at a specific resource j: tjQP jtjjt ,  with Pjt denoting the 

production of resource j in time period t, j a smoothing parameter with 
10 j  and Qjt the queue of work at j at the beginning of time period t. This 

parameter j is called “proportional factor” by Missbauer (1998) and “clearing 
factor” by Graves (1986), because it indicates the quantity of jobs (orders) which 
can be cleared or finished (and passed to another station) in one time period. Here, 
the clearing factor implies infinite capacity since the resource is able to complete 
the fixed portion j even when the workload (WIP) is infinitely high. The major 
drawback of this model is the employment of a linear function and consequently 
the omission of the nonlinear relationship of WIP and lead times. Nevertheless, 
Graves (1986) seems to be the first reference accounting for the dependency 
between lead times and workload and giving a practical aid on how to set planned 
lead times in, e.g., mrp models considering the workload of the production system. 
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3.4 Clearing Functions 

Taking up the idea of Graves and integrating it in a model with so-called “clearing 
factors” (WIP) which are nonlinear functions of the WIP yields a clearing 
function of the following form (Karmarkar, 1989; Srinivasan et al., 1988): 

)(*)( WIPfWIPWIPCapacity

where f represents the clearing function which models capacity as a function of the 
workload. The clearing factor specifies the fraction of the actual WIP which can 
be completed, i.e., “cleared,” by a resource in a given period of time (Asmundsson 
et al., 2003). Missbauer (1998) calls this function “utilization function.” 
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Figure 2: Different Clearing Functions (Karmarkar, 1993) 

Figure 2 depicts some possible clearing functions where the constant level clearing 
function corresponds to an upper bound for capacity as mainly employed by linear 
programming models. This implies instantaneous production without lead time 
constraints since production takes place independently of WIP in the production 
system. The constant proportion clearing function represents the control rule given 
by Graves (1986) which implies infinite capacity and hence allows for unlimited 
output. In contrast to the nonlinear clearing function of Karmarkar and Srinivasan 
et al., the combined clearing function in some region underestimates and in others 
overestimates capacity. Moreover, the nonlinear clearing function relates WIP 
levels to output and lead times to WIP levels which are influenced by the work-
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load of the production system (Karmarkar, 1993) and, therefore, is able to capture 
the behavior of load dependent lead times. By applying Little’s Law, the clearing 
function can be reinterpreted in terms of lead time or WIP turn. Additionally, the 
slope of the clearing function represents the inventory turn with lead times given 
by the inverse of the slope (Karmarkar, 1989). Asmundsson et al. (2003) combine 
aspects of queuing theory with the clearing function concept by employing a clear-
ing function of the above given form and by defining the performance of a re-
source (work center) as dependent on the workload using a G/G/1 queuing model. 

In order to develop the clearing function, two approaches can be found in the 
literature to date. The first is the analytical derivation from queuing network 
models and the second an empirical approximation using a functional form which 
can be fitted to empirical data. Because of the large amount of detail in practical 
systems the complete identification of the clearing function will not be possible, 
so we have to work with approximations. Asmundsson et al. (2002) integrate the 
estimated clearing function in a mathematical programming model where the 
framework is based on the production model of (Hackman & Leachman, 1989) 
with an objective function that minimizes the overall costs. It is assumed that 
backorders do not occur and that all demand must be met on time. We concentrate 
on this model as an example for the direct integration of load dependent lead times 
in aggregate production planning models. The model is then stated as follows: 
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n
t X  denotes the costs of the total amount of production over the latter 

half of period t and the first half of period t+1, represented by n
itX , with 

n
t

referring to the corresponding unit costs at node n in period t. The WIP costs 

and the FGI costs of item i at node n at the end of period t are denoted by n
it

n
itW

and n
it

n
it I , respectively, with n

it
 and n

it
 being the corresponding unit costs and 

n
itW  and n

itI  representing the WIP and the inventory, respectively. Likewise, the 

costs of releases of raw material of item i at node n during period t are represented 
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by n
it

n
it R  with unit costs n

it
 and finally the transfer costs on arc j during period t

are given by 
jtjtY  with corresponding unit costs 

jt
. n

tX  is the production 

quantity and n
tW  the WIP level summarized over all items i.

The first two constraints denote the flow conservation for WIP and FGI, which is 
different from classical models since inventory levels at each node in the network 
are connected with the throughput rate. (A(n,i) / B(n,i) represent a set of 
transportation arcs contributing to inflow / outflow of item i at node n.) In contrast 
to Ettl et al. (2000), the nonlinear dynamic is incorporated in the clearing function 
and thus not included in the objective function, but modeled as a constraint of the 
model. Furthermore, the planning circularity which is one of the most significant 
shortcomings of mrp systems is overcome by not modeling the lead time explicitly 
in the mathematical program. Consequently, there is no need to employ fixed and / 
or estimated lead times ignoring the nonlinear relationship between lead times and 
WIP. Instead, they are calculated using Little’s Law: 

n
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n
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W
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where n
itL  denotes the expected lead time for the last job of item i which arrived 

before the end of period t. We are also interested in deriving the lead times for 
single items i in order to consider multiple product types with different resource 
consumption patterns. For that purpose we assume the standard case of FIFO 
processing for which the following relationship holds: 
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itZ  we obtain the clearing function for each item i

which is called the partitioned clearing function: 
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Figure 3: Clearing Function for Products A and B (Asmundsson et al., 2002) 

In order to relax the assumed priority rule (FIFO) we only suppose that n
itZ

satisfies the properties stated above, but has an arbitrary functional form. With this 
formulation Asmundsson et al. (2002) succeed in integrating the nonlinear 
relationship between WIP and lead times in a mathematical model. The second 
goal is to transform this model in a tractable form which allows even the relatively 
large planning problems to be dealt with. For this reason we use a linear 
programming formulation by representing the partitioned clearing function 
through a set of linear constraints. To be more precise, the clearing function is 
approximated by the convex hull of straight lines which is possible because of its 
concavity: 

tnWWf c
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c
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n
tnt ,min

The individual lines of the items are denoted by the index c. The  coefficients 
represent the intersection with the y-axis and indicate the capacity splitting 
(sharing) across the items while the  coefficients represent the slope of the 
clearing function. Applying this formulation to the partitioned clearing function 
leads to the following form: 
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Replacing the former capacity constraint of the original nonlinear mathematical 
programming model with nonlinear lead time and capacity dynamics gives the 
complete linearized formulation: 
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The approximation of the partitioned clearing function is depicted in Figure 4.
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Advantages of this approach lie in the fact that the marginal cost of capacity and 
the marginal benefit of adding WIP are strictly positive, because of the fact that 
the constraints are always active as opposed to classical models where, e.g., the 
capacity constraint is only active at 100% utilization. However, this is only likely 
to be the fact at the bottleneck of the production system (Asmundsson et al., 
2002). In order to examine the relevance and performance of this approach the 
authors consider an example of a simple single stage system with three products, 
which gives very good results. Furthermore, the sensitivity of the estimated 
clearing function to diverse shop floor scheduling algorithms, different demand 
patterns and techniques of production planning using a simulation model is 
analyzed. To summarize, the clearing function model reflects the characteristics 
and capabilities of the production system better than models using fixed planned 
lead times (like mrp) and derives realistic and robust plans with better on time 
delivery performance, lower WIP and system inventory (Asmundsson et al., 
2003). In addition, the model captures the effects of congestion phenomena on 
lead times and WIP and, therefore, the fundamental trade-off between anticipatory 
production to account for possible demand peaks and just in time production to 
avoid higher costs due to preventable FGI. Finally, the releases generated by the 
partial clearing function model are smoother and lead to enhanced lead time 
performance. Moreover, interactions between clearing functions and shop floor 
execution systems such as the dependency of load dependent lead times on the 
various priority rules have to be analyzed more closely. This is a circularity, 
because clearing functions are dependent on the employed scheduling policy and, 
therefore, on the result of the scheduling algorithm. Moreover, the schedules are 
dependent on the release schedule and consequently on the planning algorithm. 

4 Conclusions 

We have seen that considerations on load dependent lead times are rare in the 
literature to date which is also true for aggregate planning and control models. 
This is particularly noteworthy, because reflections on lead times are essential 
with respect to the global competitiveness of firms. Furthermore, we have seen the 
importance to account for the nonlinear relationship between lead times and 
workload of production systems and further influencing factors such as product 
mix, scheduling policies, batching or lot sizing, variable demand patterns, 
deterioration etc. Analytical (queuing) models emphasize the nonlinear 
relationship between lead times and workload which is included only in a few 
mathematical planning models. Additionally, there is a lack of models which 
analyze load dependent lead times in the context of stochastic demand and 
uncertainties evidently prevailing in practice. The approach of modeling clearing 
functions in order to account for load dependent lead times as outlined in this 
paper is considered very promising and will be implemented in a stochastic 
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framework by using queuing models with the purpose of integrating the problem 
of variable demand patterns, and in order to analyze the behavior of load 
dependent lead times. This will be used as a starting point for more sophisticated 
modelling of production systems where we try to model single production units 
(resources, workstations, etc.) as queuing models in order to derive their specific 
clearing functions. Furthermore, it has been stated that load dependent lead times 
mainly arise due to congestion phenomena which are pervasive problems of 
production systems, complicating the planning process by emerging at different 
and frequently changing times and places which are hardly predictable due to 
various factors like machine breakdowns, variable demand patterns or 
deteriorating items. For future work we shall develop approaches for aggregate 
production planning which take empirical values of the probability of machine 
breakdowns into account as well as the other mentioned causes of congestion 
phenomena. This can be achieved by applying, e.g., a learning algorithm which 
allows for learning the behavior of production units (resources or workstations) as 
well as the overall system behavior, and including this information into aggregate 
production planning. Information on downtimes is rarely considered or integrated 
in mathematical models. It is not even considered in the latest and sophisticated 
supply chain management software like SAP APO. This will be a subject for 
further research. 
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