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Abstract:—Apparent fracture toughness in Mode I of microcracking materials such as rocks under

confining pressure is analyzed based on a cohesive crack model. In rocks, the apparent fracture toughness

for crack propagation varies with the confining pressure. This study provides analytical solutions for the

apparent fracture toughness using a cohesive crack model, which is a model for the fracture process zone.

The problem analyzed in this study is a fluid-driven fracture of a two-dimensional crack with a cohesive

zone under confining pressure. The size of the cohesive zone is assumed to be negligibly small in

comparison to the crack length. The analyses are performed for two types of cohesive stress distribution,

namely the constant cohesive stress (Dugdale model) and the linearly decreasing cohesive stress.

Furthermore, the problem for a more general cohesive stress distribution is analyzed based on the fracture

energy concept. The analytical solutions are confirmed by comparing them with the results of numerical

computations performed using the body force method. The analytical solution suggests a substantial

increase in the apparent fracture toughness due to increased confining pressures, even if the size of the

fracture process zone is small.
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1. Introduction

It has been reported that fracture toughness of rocks increases with increasing

confining pressure (SCHMIDT and HUDDLE, 1977; ABOU-SAYED, 1978; FUNATSU

et al., 2004). Fracture toughness is often expressed in terms of the stress intensity

factor required for crack propagation. In the fracture of a linear elastic solid, the

fracture toughness is assumed to be an inherent material property and independent

of loading configurations. In rocks, however, the stress intensity factor for crack

propagation varies with confining pressure. Therefore, the fracture toughness of

rocks should be viewed as an apparent material property.
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It is well known that the fracture process zone that is formed prior to crack

growth is significantly large in size compared to the specimen dimensions for many

rock types (LABUZ et al., 1987). Therefore, a suitable model for the fracture process

zone is necessary to evaluate the crack growth on the basis of laboratory

experiments. A Barenblatt-type cohesive crack model has been applied to express

the formation of the fracture process zone in rocks (HASHIDA, 1990; SATO et al.,

1995). HASHIDA et al. (1993) have reported that the crack growth behavior of Iidate

granite under confining pressure up to 26.5 MPa can be predicted using the cohesive

crack model (tension-softening model). In the tension-softening model, the fracture

process zone is represented as a crack subjected to a cohesive stress which depends on

the crack opening displacement. The relation between the cohesive stress and the

crack opening displacement is referred to as the tension–softening curve. The critical

fracture energy is provided by the area under the tension-softening curve (HILLER-

BORG, 1983). HASHIDA et al. (1993) have concluded that the tension-softening curve is

independent of confining pressure. Therefore, it can be seen that the tension-

softening curve is the inherent material property to be used to evaluate the crack

growth under confining pressure. The cohesive crack model is expected to provide a

useful tool for predicting the apparent fracture toughness.

In this study, the apparent fracture toughness under confining pressure is

examined using a cohesive crack model. A two-dimensional fluid-driven fracture with

cohesive zone under confining pressure is analyzed. Two types of cohesive stress

distributions are studied. The size of cohesive zone is assumed to be negligibly small.

The apparent fracture toughness is measured in terms of the stress intensity factor

induced by the fluid pressure. The theoretical model is verified by comparing it with

numerical results obtained by the body force method.

2. Problem Formulation

The problem to be analyzed is a fluid-driven fracture of a two-dimensional crack

with cohesive zones under confining pressure in an infinite body, as shown in Figure.

1. Tension is taken to be positive. The plane strain condition is assumed.

The fracture process zone is represented by the cohesive zone. The cohesive zone

length is R. The fluid pressure P is applied to the crack surface except within the

cohesive zone. The pressurized crack length is 2a, and the total crack length including

the cohesive zone is 2c. The cracked body is subjected to the confining pressure S at a

far distance.

Two types of cohesive stress distributions were analyzed, as shown in Figure. 2.

Case 1 represents a model of constant cohesive stress, while case 2 corresponds to a

linearly decreasing stress model.

When the fracture process zone is negligibly small, the critical stress intensity

factor Kc for the case of constant cohesive stress is
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K2
c

E0 ¼ rcdc; ð1Þ

where rc is the peak stress of the cohesive stress, dc is the critical crack opening

displacement and E0 is the effective Young’s modulus. For the case of linearly

decreasing stress, the critical stress intensity factor is given by

K2
c

E0 ¼
1

2
rcdc: ð2Þ
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Figure 1

Fluid-driven crack with cohesive zone under confining stress.
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Figure 2

Cohesive stress distributions analyzed in this study: (a) constant cohesive stress and (b) linearly decreasing

stress. The cohesive zone length is determined by the critical crack opening displacement dc.
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It is assumed that the r–d relation is maintained under confined conditions as well as

atmospheric (no confining pressure) condition. Therefore, Kc is the inherent material

property and should be viewed as the fracture toughness of the rock.

This study analyzes the stress intensity factor required for crack growth when the

fracture process zone is assumed to be negligibly small. This stress intensity factor

corresponds to the apparent fracture toughness.

3. Theoretical Analysis

3.1. Stress Intensity Factor Based Analysis

This section presents the analytical results based on the stress intensity factor for

both the cases of constant and linearly decreasing cohesive stress.

In order to derive a predictive model for the apparent fracture toughness, we

considered subproblems with respect to the applied pressure and to the closing

stress, as shown in Figure. 3. The stresses acting on the crack in the problem to be

analyzed, as shown in Figure. 1, are the fluid pressure P , the cohesive stress r and

the confining stress S. The applied pressure that is the opening stress is the excess

pressure ðP � SÞ acting on the pressurized region 2a. The closing stress is the

composition of the cohesive stress and the confining stress ð�r� SÞ acting on the

cohesive zone R.
The first subproblem is that of the crack, length 2c, subjected to the applied

pressure acting on the pressurized interval 2a. The second subproblem is that of the

crack subjected to the closing stress acting on the cohesive zone R. The original

problem can be analyzed by superimposing the solution of the two subproblems. In

the original problem, the stresses at the crack tip (x ¼ �c) have to be finite. This

2c

2a K=0R R

P−S−σ−S −σ−S

Kp
P−S

−Kclose
−σ−S −σ−S

=

+
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Figure 3

Problem analyzed by superimposing two subproblems with respect to applied pressure and cohesive stress:

(a) original problem, (b) subproblem of applied pressure and (c) subproblem of cohesive stress.
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requires that the stress intensity factor at the crack tip equals to zero. Based on this

condition, the apparent fracture toughness that is produced by the applied pressure

can be determined.

When the length of the cohesive zone is sufficiently small in comparison to the

crack length, the stress intensity factor KP produced by the applied pressure (see

Figure. 3b) is

KP ¼ DP
ffiffiffiffiffi
pc

p ¼ DP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ RÞ

p
ð3Þ

¼ DP
ffiffiffiffiffiffi
pa

p
1� R

2a
þ 	 	 	

� �
ð4Þ

where DP ¼ P � S is the excess pressure. For R=a � 1,

KP ¼ DP
ffiffiffiffiffiffi
pa

p
: ð5Þ

KP corresponds to the apparent fracture toughness, as mentioned above.

Considering a constant cohesive stress rc acting over the length R at the tip of a

semi–infinite crack, the stress intensity factor Kclose produced by the closing stress

(TADA et al., 1973a) is

Kclose ¼
ffiffiffi
8

p

r
ðrc þ SÞ

ffiffiffi
R

p
: ð6Þ

The condition that the stress at the tip of the cohesive zone has to be finite requires

KP � Kclose ¼ 0: ð7Þ
Substituting equation (6) into equation (7) yields

R ¼ p
8

KP

rc þ S

� �2

: ð8Þ

The crack opening displacement at x ¼ �a due to the excess pressure DP (TADA

et al., 1973a) is

dP ¼ 2ð1� mÞ
G

DP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
ð9Þ

¼ 2ð1� mÞ
G

DP
ffiffiffiffiffiffiffiffi
2aR

p
1� R

4a
þ 	 	 	

� �
: ð10Þ

For R=a � 1,

dP ¼ 2ð1� mÞ
G

DP
ffiffiffiffiffiffiffiffi
2aR

p
; ð11Þ

where m is Poisson’s ratio and G is the shear modulus. For a semi-infinite crack, the

crack opening displacement due to the closing stress at the edge of the cohesive zone

is
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dclose ¼ 2ð1� mÞ
G

	 2
p
ðrc þ SÞR: ð12Þ

The overall crack opening displacement at x ¼ �a is

dj�a ¼ dP � dclose: ð13Þ
The crack growth takes place when the crack opening displacement at x ¼ �a
reaches the critical crack opening displacement dc. Considering the crack growth

condition, dj�a in equation (13) is replaced by dc. Then, substituting equations (1),

(8), (11) and (12) into equation (13), yields

K2
P

K2
c
¼ 1þ S

rc
; ð14Þ

where E0 ¼ E=ð1� mÞ and G ¼ E=2ð1þ mÞ were used.

Equation (14) suggests that the stress intensity factor required for crack growth

under confining pressure should exceed the inherent material property Kc due to the

presence of the cohesive zone. Equation (14) provides a predictive model for the

apparent fracture toughness when the cohesive stress is assumed to be constant.

Next, the case where the cohesive stress decreases linearly from the crack tip is

considered.

In this case, in order to evaluate the stress intensity factor due to the cohesive

stress, the distribution of cohesive stress along the crack should be given. However,

the cohesive stress distribution is not linear since the crack opening displacement is

not proportional to the distance from the crack tip. Therefore, the profile of crack

opening displacement is needed for a rigorous analysis. Nonetheless, in this study, a

linear distribution of cohesive stress along the crack is assumed for simplicity as

r ¼ rc 1� n
R

� �
; ð0 � n � RÞ; ð15Þ

where n is the distance from the crack tip. This approximation results in an error of

about 10%, as described below. For this case, the stress intensity factor produced by

the cohesive stress is obtained by integrating the stress intensity factor for the

problem of the semi-infinite crack with a point load (TADA et al., 1973b)

Kclose ¼ 4

3p
rc

ffiffiffiffiffiffiffiffiffi
2pR

p
: ð16Þ

Therefore, the cohesive zone length is

R ¼ p
8

K2
P

2
3 rc þ S
	 
2 ; ð17Þ

where KP is given by equation (5).
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The crack opening displacement due to the cohesive stress is obtained by

integrating the crack opening displacement for the semi–infinite crack with a point

load (TADA et al., 1973b)

dclose ¼ 2ð1� mÞ
G

	 2

3p
rcR: ð18Þ

Kc is given by equation (2), then the result is

K2
P

K2
c
¼

2 2
3 þ S

rc

� �2

1þ S
rc

: ð19Þ

Equation (19) indicates that K2
P=K

2
c becomes 8=9 when the confining pressure is zero

(S ¼ 0). This deviation from unity may be due to the approximation of the cohesive

stress distribution along the crack.

3.2. Fracture Energy Based Analysis

This section describes an analysis based on the fracture energy concept. The

fundamental idea is that the energy required for opening the crack under confining

pressure is the sum of the two components needed to overcome the confining

pressure as well as the cohesive stress.

When the cohesive zone length is small, for the constant cohesive stress case, the

total fracture energy is

Gtotal ¼ rcdc þ Sdc ¼ K2
P

E0 : ð20Þ

When the confining pressure is zero, the total fracture energy is given by

Gtotal ¼ rcdc ¼ K2
c

E0 : ð21Þ

Dividing (20) by (21), yields

K2
P

K2
c
¼ 1þ S

rc
: ð22Þ

This equation is in agreement with equation (14), which is derived based on the stress

intensity factor. On the basis of the fracture energy approach, a solution for a general

stress distribution (nonlinear) also can be obtained.

When the cohesive stress is provided by

r ¼ rc 1� d
dc

� �n

; ð23Þ

the fracture energy can be calculated for unconfined conditions by the J–integral
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K2
c

E0 ¼
Zdc
0

rdd ¼ rcdc
nþ 1

: ð24Þ

Therefore, under the confining pressure, the total fracture energy is

K2
P

E0 ¼
rcdc
nþ 1

þ Sdc: ð25Þ

Then, the apparent fracture toughness can be obtained as

K2
P

K2
c
¼ 1þ ðnþ 1Þ S

rc
: ð26Þ

When n is zero (constant cohesive stress), equation (26) coincides with equation (14).

When n is unity, equation (26) corresponds to the linear decreasing cohesive stress

case.

The predictive model of equation (26) holds true independent of the loading

configuration. The only requirement is that the fracture process zone is small enough

in comparison to the crack length.

Next, the result from the fracture energy approach is compared with that obtained

based on the stress intensity factor. Thus, three equations (14), (19) and (26) deduced

in this study are compared in Figure. 4. In this figure, equation (26) with n ¼ 1 is

compared with equation (19). The increasing tendency of equation (26) is consistent

with equation (19), although equation (19) shows slightly smaller values due to the
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Figure 4

Comparison of derived equations. Equation (14) and equation (26) with n ¼ 0 corresponds to the case of

the constant cohesive stress. equation (19) and equation (26) with n ¼ 1 corresponds to the case of the

linear cohesive stress.
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approximation of the stress distribution along the crack. The formulation obtained

from the fracture energy approach is expected to provide a general model for

predicting the increase of the apparent fracture toughness under confining pressure.

The apparent fracture toughness significantly increases with the confining

pressure. This result demonstrates that the fracture toughness increases when the

fracture process zone exists at the crack tip, even if the size of the fracture process

zone is negligibly small.

4. Numerical Analysis

4.1. Numerical Procedure

In order to examine the validity of the derived equations, numerical analyses were

performed in this study.

Two-dimensional numerical computations were also carried out, based on the

cohesive crack model, in addition to the theoretical analysis described in the previous

sections. The body force method (NISHITANI, 1968; NISHITANI et al., 1990) was used

to determine the stress intensity factor and the inner pressure. The body force

method allows us to examine the effect of confining pressure on the apparent fracture

toughness, under the condition in which the extent of the cohesive zone is not

negligibly small. The problem configuration is shown in Figure. 1. In the numerical

computations, the size of the cohesive zone and the cohesive stress were predeter-

mined and the inner pressure was adjusted to maintain the stress intensity factor zero

at the crack tip (x ¼ �c). Therefore, the fracture toughness Kc was varied by

changing the size of the cohesive zone and cohesive stress in the computations. Here,

Kc is evaluated by equations (1) or (2). The size parameter of the cohesive zone, R=c
in the numerical computations was in the range of 0:001 ffi 0:5. As seen in the size

parameter, the numerical computations were conducted to include the condition in

which the size of the cohesive zone is nonnegligible with respect to the crack length.

4.2. Numerical Results and Discussion

Figures 5 and 6 show the dependency of Kc on the cohesive zone size obtained by

numerical calculations. Figure 5 is obtained for the constant cohesive stress condition

and Figure. 6 is for the linearly decreasing stress condition. The fracture toughness

Kc increases with the increase of the cohesive zone size. For the same cohesive zone

length, Kc increases with increasing confining pressure.

The numerical results are compared with the analytical solutions. The depen-

dency of apparent fracture toughness on the confining pressure is shown in Figures.

7(b) and 8(b), for the constant cohesive stress condition and for the linearly

decreasing stress condition, respectively. These figures were constructed by selecting
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the set of data presented in Figures. 5 and 6 which provided the similer same Kc

value. The analytical results given by equations (14) and (26) are indicated as solid

lines in Figures. 7(b) and 8(b), respectively. In the case of the linearly decreasing

cohesive stress, the parameter n in equation (26) is taken to be 1.0. The apparent

fracture toughness KP is evaluated by equation (5).

Figures 7(a) and 8(a) show the cohesive zone size for different Kc values and

confining pressure conditions. It can be seen that the numerical result obtained for

the lower Kc value and smaller R=c is very close to the trend predicted by the
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Dependency of Kc on the cohesive zone size R for the case of constant cohesive stress.
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Dependency of Kc on the cohesive zone size R for the case of linear cohesive stress.
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theoretical analysis. This evidence demonstrates the validity of the theoretical

analysis for the condition of the negligible cohesive zone size. When the Kc value

increases and the cohesive zone size becomes larger with respect to the crack length,

the numerical result tends to deviate from the theoretical result. It is very interesting

to note that the slope in the plot of K2
P=K

2
c –S=rc shows no drastic change even when

the cohesive zone size becomes larger.

The apparent fracture toughness significantly increases with increasing confining

pressure as shown in Figs. 7 and 8. MATSUKI et al. (1995) have stated that the reason

for the increase of apparent fracture toughness is the closure of pre-existing cracks

involved in the rock specimen. This causes the rock specimen to become less

damaged material. RUBIN (1993), and FIALKO and RUBIN (1997) have reported that
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Comparison of numerical results and the analytical solution for the case of constant cohesive stress: (a)

Size of cohesive zone and (b) dependency of apparent fracture toughness on confining pressure.

Vol. 163, 2006 Cohesive Crack Analysis of Toughness Increase 1069



the high tensile stress field appears off crack plane when the confining pressure

becomes sufficiently high. The magnitude of the tensile stress can be higher than the

peak cohesive stress, namely the tensile strength of rocks. They have concluded that

the increase of the apparent fracture toughness is the result of inelastic deformation

near the crack tip region due to this high tensile stress. However, no quantitative

model has been proposed for predicting the increase of apparent fracture toughness

under higher confining pressures. In contrast with the above-mentioned previous

studies, the present study points out the different mechanism for the increase of

apparent fracture toughness. Based on our theoretical analysis, we propose that the

apparent toughness increase may be due to the additional energy required to open up

the crack frank within the cohesive zone against the confining pressure. Furthermore,
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Comparison of numerical results and the analytical solution for the case of linear cohesive stress: (a) Size of

cohesive zone and (b) dependency of apparent fracture toughness on confining pressure.
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a quantitative model for the apparent toughness increase has been derived based on

the theoretical analysis.

5. Concluding Remarks

The present study provides a predictive model for the apparent fracture

toughness, which was derived on the basis of a cohesive crack model. A two–

dimensional fluid-driven fracture with a cohesive zone under confining pressure was

analyzed. Two types of cohesive stress distributions were studied. Furthermore, the

problem for more general cohesive stress distribution was analyzed based on the

fracture energy concept. The size of the cohesive zone was assumed to be negligibly

small. The apparent fracture toughness was measured as the stress intensity factor

induced by the fluid pressure. The derived results were compared with numerical

results.

The analytical solution suggests a substantial increase in the apparent fracture

toughness due to the increased confining pressures, even if the size of the fracture

process zone is small. The apparent fracture toughness is shown to be a function of

the tensile strength (the peak value of the cohesive stress) and confining pressure.

Their functional form depends on the cohesive stress distribution. Consequently, the

evaluation of the fracture process zone in rocks is of importance to fracture

problems.
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