
Can Damage Mechanics Explain Temporal Scaling Laws in Brittle

Fracture and Seismicity?

DONALD L. TURCOTTE,1 and ROBERT SHCHERBAKOV
2

Abstract—Time delays associated with processes leading to a failure or stress relaxation in materials

and earthquakes are studied in terms of continuum damage mechanics. Damage mechanics is a quasi-

empirical approach that describes inelastic irreversible phenomena in the deformation of solids. When a

rock sample is loaded, there is generally a time delay before the rock fails. This period is characterized by

the occurrence and coalescence of microcracks which radiate acoustic signals of broad amplitudes. These

acoustic emission events have been shown to exhibit power-law scaling as they increase in intensity prior

to a rupture. In case of seismogenic processes in the Earth’s brittle crust, all earthquakes are followed by

an aftershock sequence. A universal feature of aftershocks is that their rate decays in time according to

the modified Omori’s law, a power-law decay. In this paper a model of continuum damage mechanics in

which damage (microcracking) starts to develop when the applied stress exceeds a prescribed yield stress

(a material parameter) is introduced to explain both laboratory experiments and systematic temporal

variations in seismicity.
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1. Introduction

Time delays are generally observed in processes of rock fracture and earthquake

occurrences. The time delay associated with the initiation and propagation of a single

fracture can be attributed to stress corrosion and a critical stress intensity factor (DAS

and SCHOLZ 1981; FREUND 1990). Usually, however, the fracture of a brittle material,

such as rock, results from the coalescence and growth of microcracks (MOGI, 1962;

HIRATA, 1987; HIRATA et al., 1987; LOCKNER et al., 1992; LOCKNER, 1993). In these

processes it is possible to distinguish two types of time delays. One type is associated

with processes leading to the failure of a material and is realized as a process

of accumulation and coalescence of microcracks and microdefects or in the case of

earthquakes the occurrence of foreshocks before a main shock. The second type of
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time delays is associated with the relaxation processes in materials or in the Earth’s

crust. A specimen subjected to a sufficient external load yields and, as a result, its

mechanical properties degrade over time. Time delays are also associated with the

occurrence of aftershocks that is a relaxation process.

In the case of fracture phenomena, time delays were observed prior to the failure

of a material (SORNETTE and ANDERSEN, 1998; JOHANSEN and SORNETTE, 2000;

GLUZMAN and SORNETTE, 2001). We will consider in some detail experiments on the

fracture of fiberboard panels (GUARINO et al., 1998, 1999, 2002). When the panels

were subjected to rapid loading, microcracks developed randomly and then coalesced

until a throughgoing rupture developed. Experiments with very rapid loading,

showed a systematic power-law decrease in the delay time to failure as a function of

the increasing difference between the applied stress and a yield stress. These

experiments also gave a power-law increase in the energy associated with acoustic

emissions as a function of time prior to rupture. Also, the frequency-strength

statistics of the acoustic emissions satisfied the power-law Gutenberg-Richter scaling

applicable to earthquakes.

Another example of systematic delays in rock failure is the occurrence of earthquake

aftershocks. Aftershocks are attributed to the increase in stress in some regions near an

earthquake rupture. This increase is very rapid, on the scale of the earthquake rupture

which is typically a few minutes. They also could result from the changes in pore fluid

pressure associated with the migration of water in the damaged zone after a main shock.

However, aftershocks occur days, months, and years later. This temporal decay of the

rate of occurrence of aftershocks is extremely systematic and satisfies the modified

Omori’s law to a good approximation (UTSU et al., 1995; SCHOLZ, 2002).

The principal purpose of this paper is to demonstrate that the temporal scaling

laws in material fracture and earthquakes described above can be explained by

continuum damage mechanics. We will first provide a brief description of a damage-

mechanics model that captures essential aspects of processes leading to the failure of

a specimen and also processes of relaxation.

2. A Model of Continuum Damage Mechanics

Damage refers to the irreversible deformation of solids. Some examples include

plasticity, brittle microcracking, and thermally activated creep [KRAJCINOVIC, 1996].

In order to quantify the deformation of solids associated with microcracking, several

empirical continuum damage mechanics models were introduced and are widely used

in civil and mechanical engineering [KACHANOV 1986; KRAJCINOVIC, 1989, 1996;

HILD, 2002; KATTAN and VOYIADJIS 2002; SHCHERBAKOV and TURCOTTE, 2003).

Damage mechanics has also been applied to the brittle deformation of the Earth’s

crust by a number of authors (LYAKHOVSKY et al., 1997, 2001; BEN-ZION and

LYAKHOVSKY, 2002; TURCOTTE et al., 2003).
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The application of continuum damage mechanics can be illustrated by consid-

ering a rod in a state of uniaxial stress rxx 6¼ 0, ryy ¼ rzz ¼ 0. For an elastic material

Hooke’s law is applicable and is written in the form

r ¼ E0�; ð2:1Þ
where � is a strain and E0 is the Young’s modulus of the undamaged material.

In this paper we will consider a model of continuum damage mechanics as

introduced by (SHCHERBAKOVet al., 2005). If the stress is less than the yield stress

r � ry , (2.1) is assumed to be valid. If the stress is greater than the yield stress,

r > ry , a damage variable a is introduced according to

r� ry ¼ E0ð1� aÞð�� �yÞ; ð2:2Þ

where ry ¼ E0�y . When a ¼ 0, (2.2) reduces to (2.1) and linear elasticity is applicable;

as a ! 1ð� ! 1Þ failure occurs. Increasing values of a in the range 0 � a < 1

quantify the weakening (decreasing E) associated with the increase in the number and

size of microcracks in the material. Several authors (KRAJCINOVIC, 1996; TURCOTTE

et al., 2003) have shown a direct correspondence between the damage variable a in a

continuum material and the number of surviving fibers N in a fiber bundle that

originally had N0 fibers, a ¼ 1� N=N0.

To complete the formulation of the damage problem it is necessary to specify the

kinetic equation for the damage variable. In analogy to Lyakhovsky et al. (1997) we

take

daðtÞ
dt

¼ 0; if 0 � r � ry ð2:3Þ

daðtÞ
dt

¼ 1

td

rðtÞ
ry

� 1

� �q
�ðtÞ
�y

� 1

� �2
; if r > ry ; ð2:4Þ

where td is a characteristic time scale for damage and q is a constant to be determined

from experiments. The power-law dependence of da=dt on stress (and strain) given

above must be considered empirical in nature. However, a similar power dependence

of dN=dt on stress is widely used in the analysis of fiber failures in fiber bundles

(NEWMAN and PHOENIX, 2001). It is important to note the introduction of a yield

limit in (2.3) and (2.4). If the stress is less than the yield stress, r < ry , no damage

occurs. The monotonic increase in the damage variable a given by (2.4) represents the

weakening of the brittle solid by the nucleation and coalescence of microcracks.

Microcracks are initiated only when r > ry .
As a first example we considered a rod to which a constant uniaxial tensional

stress r0 > ry is applied instantaneously at t ¼ 0 and held constant until the sample

fails. The applicable kinetic equation for the rate of increase of damage with time is

obtained from (2.2)–(2.4) with the result
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da
dt

¼ 1

td

r0
ry

� 1

� �qþ2
1

½1� aðtÞ�2 : ð2:5Þ

Integrating with the initial condition að0Þ ¼ 0 gives

aðtÞ ¼ 1� 1� 3
t
td

r0
ry

� 1

� �qþ2
" #1=3

: ð2:6Þ

Substituting (2.6) into (2.2) gives the strain in the sample as a function of time t

�ðtÞ
�y

¼ 1þ r0=ry � 1
	 


1� 3 t
td

r0=ry � 1
	 
qþ2

h i1=3 : ð2:7Þ

This behavior is illustrated in Fig. 1 for the case r0=ry ¼ 2:0. Initially, at t ¼ 0, we

have �ð0Þ=�y ¼ 2:0 at point A. The state of the rod moves along the constant stress

path AB until it fails. Failure occurs at the time tf when a ! 1ð� ! 1Þ. From (2.7)

this failure time is given by

tf ¼ td
3

r0
ry

� 1

� ��ðqþ2Þ
: ð2:8Þ

The time to failure tends to infinity as a power-law as the applied stress approaches

the yield stress r0 ! ry . Substitution of (2.8) into (2.6) gives the time evolution of

damage as

Figure 1

Dependence of the nondimensional stress r=ry on nondimensional strain �=�y (ry and �y are the yield stress

and strain). Path OA is linear elasticity. If a stress r0=ry ¼ 2:0 is applied instantaneously failure and damage

occur along the path AB. If the stress is removed instantaneously the sample follows the path bYO. At point b
the damage a is the slope of the straight line connecting point b with the yield point Y as illustrated. If a

strain �0=�y ¼ 2:0 is applied instantaneously stress relaxation and damage occur along the path AD. If the
stress on the sample is removed instantaneously at the point a the sample follows the path aYO.
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aðtÞ ¼ 1� 1� t
tf

� �1=3

ð2:9Þ

and the corresponding time dependence of strain from (2.7)

�ðtÞ
�y

¼ 1þ ðr0=ry � 1Þ
ð1� t=tf Þ1=3

: ð2:10Þ

The approach to failure is in the form of a power-law.

A particularly interesting set of experiments on brittle failure were carried out by

GUARINO et al. (1999). These authors studied the failure of circular panels (222 mm

diameter, 3–5 mm thickness) of chipboard panels. A differential pressure was applied

rapidly across a panel and it was held constant until failure occurred. For these

relatively thin panels, bending stresses were negligible and the panels failed under

tension (a mode I fracture). Initially the microcracks appeared to be randomly

distributed across the panel, as the number of microcracks increased they tended to

localize and coalesce in the region where the final rupture occurred. The times to

failure tf of these chipboard panels were found to depend systematically on the

applied differential pressure P . Taking a yield pressure (stress) Py ¼ 0:038 MPa their

results are reinterpreted in Fig. 2 assuming r=ry ¼ P=Py . Their results correlate very
well with our failure condition (2.8) taking q ¼ 0:25 and td ¼ 168 s.

10-1 10
0

10 2

10 3

10 4

10 5

tf ~ (P/Py - 1)-2.25

Py = 0.38 atm

t f 
, s

ec

P/Py  - 1

Figure 2

Times to failure of chipboard panels subjected to differential pressure (GUARINO et al., 1999). Failure times

tf are given as a function of the ratio of the excess stress over the yield stress r=ry � 1 (assumed to be equal

to P=Py � 1 with Py ¼ 0:038 MPa. The straight line correlation is with (2.8) taking q ¼ 0:25 and td ¼ 168 s.
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GUARINO et al. (1999) also determined the cumulative energy in the acoustic

emission (AE) events eAE as a function of the time t. The total AE energy at the time

of rupture is etot. They studied the dependence of eAE=etot on ð1� t=tf Þ. After an

initial transient period good power-law scaling was observed that can be correlated

with eAE / ð1� t=tf Þ�0:27. This equivalent to having deAE=dt / ð1� t=tf Þ�1:27.

We now relate the rate of increase of the damage variable da=dt to the rate of AE

events. The rod extends under the constant stress r0 ¼ 2ry from point A to point b as

shown in Figure 1. The slope of the straight line connecting the point b and the yield

point Y is 1� a. We assume that when the stress at point b is removed

instantaneously the sample will follow the path bYO. Thus the energy lost in

acoustic emissions eAE is equal to the work done on path Ab so that we have

eAE ¼ 1

2
ðr0 � ryÞð�b � �AÞ ¼ ry�y

2

r0
ry

� 1

� �2
1

ð1� t=tf Þ1=3
� 1

" #
; ð2:11Þ

where we used (2.9). Taking the derivative of (2.11) with respect to t we obtain the

rate of AE

deAE

dt
¼ ry�y

6tf

r0
ry

� 1

� �2

1� t
tf

� ��4=3

: ð2:12Þ

This result compares with the observed time dependence of the rate of the acoustic

energy release in experiments on chipboard panels described above.

It should be noted that the relaxation path from b to Y to O in Figure 1 is not

unique. An alternative path would be parallel to the initial path O to A. The path we

have chosen corresponds to the closure of type I extensional microcracks along the

path b to Y and the subsequent elastic behavior from Y to O. The alternative parallel
path would be appropriate for shear displacements that do not relax. The entire

relaxation process is elastic. It should be noted however, that the time dependence

given in (2.12) can be obtained taking either path.

As a second example we consider a rod under a tensional stress that increases

linearly in time, that is

rðtÞ ¼ ry
t
ty
: ð2:13Þ

Damage begins to occur when r ¼ ry at t ¼ ty . The applicable equation for the

subsequent increase in damage with time is obtained from (2.2)–(2.4) and (2.13) with

the result

da
dt

¼ 1

td

t
ty
� 1

� �qþ2
1

1� aðtÞ½ �2 : ð2:14Þ

Integrating with the initial condition aðtyÞ ¼ 0 gives
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aðtÞ ¼ 1� 1� 3ty
ðqþ 3Þtd

t
ty
� 1

� �qþ3
" #1=3

: ð2:15Þ

Substituting (2.13) and (2.15) into (2.2) gives the time dependence of the strain

�ðtÞ
�y

¼ 1þ ðt=ty � 1Þ
1� 3ty

ðqþ3Þtd t=ty � 1
	 
qþ3

h i1=3 : ð2:16Þ

Failure occurs at the time tf when a ¼ 1ð� ! 1Þ. From (2.15) this failure time is

given by

tf
ty
¼ 1þ ðqþ 3Þtd

3ty

� � 1
qþ3

ð2:17Þ

and the corresponding time dependent strain from (2.16) is given by

�ðtÞ
�y

¼ 1þ ðt=ty � 1Þ

1� t�ty
tf�ty

� �qþ3
� �1=3 : ð2:18Þ

Again the approach to failure takes the form of a power law.

We will now apply the results derived above to the problem of seismic activation

prior to earthquakes. Systematic increases in intermediate levels of seismicity prior to

large earthquakes have been documented by several authors (SYKES and JAUMÉ,

1990; KNOPOFF et al., 1996; JAUMÉ and SYKES, 1999). It has also been observed that

an increase in the seismic activity prior to large earthquakes takes the form of a

power law. This was first proposed by BUFE and VARNES (1993). They considered the

cumulative Benioff strain in a region defined as

�BðtÞ ¼
XNðtÞ

i¼1

ffiffiffiffi
ei

p
; ð2:19Þ

where ei is the seismic energy release in the ith precursory earthquake and NðtÞ is the
number of precursory earthquakes considered up to time t.

The precursory increase in seismicity is referred to as accelerated moment release

(AMR). In terms of the cumulative Benioff strain it is quantified as

�BðtÞ ¼ �Bðtf Þ � B 1� t
tf

� �s

; ð2:20Þ
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where �Bðtf Þ is the final cumulative Benioff strain when the large earthquake occurs,

tf is time measured forward from the beginning of AMR, B is a constant, and s is the
exponent. Examples of AMR have been given by BOWMAN et al. (1998), BUFE et al.

(1994), VARNES and BUFE (1996), BREHM and BRAILE (1998, 1999a,b), ROBINSON

(2000), ZÖLER et al. (2001), MAIN (1999), BOWMAN and KING (2001), YANG et al.

(2001), KING and BOWMAN (2003), BOWMAN and SAMMIS (2004), and SAMMIS et al.

(2004). RUNDLE et al. (2000) found that the distribution of values of the power-law

exponent s for 12 earthquakes was s ¼ 0:26� 0:15.

We assume that the stress in a seismological zone increases linearly with time as

given by (2.13). This increase in the tectonic stress is very slow compared with the

development of damage so that it is appropriate to assume ty=td 
 1. We associate

the AMR energy eAMR with the energy added to the rod by the time t. Using (2.13)

and (2.18) we can obtain the rate of energy release

deAMR

dt
¼ 1

2

d
dt
½rðtÞ�ðtÞ� ¼ �yry

2ty
1þ

6t � 3ty þ ½3ty þ ðq� 3Þt� t�ty
tf�ty

� �qþ3

3ty 1� t�ty
tf�ty

� �qþ3
� �4=3

8>>><
>>>:

9>>>=
>>>;
: ð2:21Þ

It is also possible to analyze the behavior of the rate near the failure time tf . The
expansion of (2.21) around ðt � tf Þ gives

deAMR

dt
¼ �yry

2ty
1þ tf

3tyðqþ 3Þ1=3
1

t�tf
ty�tf

� �4=3

8><
>:

þ tf ð10� qÞ � 6ty

9tyðqþ 3Þ1=3
1

t�tf
ty�tf

� �1=3
þ Oðt � tf Þ2=3

9>=
>;: ð2:22Þ

The result deAMR=dt / ð1� t=tf Þ�4=3 was previously derived from damage mechanics

by BEN-ZION and LYAKHOVSKY (2002) who used the assumption of the constant

applied stress.

To make the association with Benioff strain we use a derived expansion for the

energy release rate (2.22)

d�B
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deAMR

dt

r
: ð2:23Þ

The cumulative Benioff strain can be obtained by integrating (2.23) with the

result
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�BðtÞ ¼ �Bðtf Þ �
Ztf
t

d�B
dt

dt ð2:24Þ

¼ �Bðtf Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3tf ðty � tf Þ4=3ry�y

2t2y ðqþ 3Þ1=3

vuut ðtf � tÞ1=3 � Oðtf � tÞ4=3; ð2:25Þ

where we used (2.22). The exponent of s ¼ 1=3 is in reasonably good agreement with

the range of values associated with AMR s ¼ 0:26� 0:15 as given above. This

agreement was also noted by BEN-ZION and LYAKHOVSKY (2002).

As our final example we will consider a rod to which a constant uniaxial tensional

strain �0 > �y has been applied instantaneously at t ¼ 0 and is held constant. The

applicable equation for the rate of increase of damage with time is obtained from

(2.2)–(2.4) with the result

da
dt

¼ 1

td

�0
�y

� 1

� �qþ2

1� aðtÞ½ �q: ð2:26Þ

Integrating with the initial condition að0Þ ¼ 0, we find

aðtÞ ¼ 1� 1þ ðq� 1Þ t
td

�0
�y

� 1

� �qþ2
" #� 1

q�1

: ð2:27Þ

This result is valid as long as q > 1. The damage increases monotonically with time

and as t ! 1 the maximum damage is að1Þ ¼ 1. Using (2.27) with (2.2) one derives

the stress relaxation in the material as a function of time t

rðtÞ
ry

¼ 1þ �0
�y

� 1

� �
1þ ðq� 1Þ t

td

�0
�y

� 1

� �qþ2
" #� 1

q�1

: ð2:28Þ

At t ¼ 0 we have linear elasticity corresponding to a ¼ 0. In the limit t ! 1 the

stress relaxes to the yield stress rð1Þ ¼ ry below which no further damage can occur.

This behavior is illustrated in Figure 1 for the case �0=�y ¼ 2:0. Initially, at t ¼ 0, we

have r=ry ¼ 2:0 at point A. The sample then moves along the constant strain path AD
until the stress has relaxed to the yield stress ry .

This stress relaxation process has been applied to the understanding of the

aftershock sequence that follows an earthquake. During an earthquake some regions

in the vicinity of the fault rupture experience a rapid increase of strain (stress). This is

in direct analogy to the instantaneous application of strain considered above. Just as

the microcracks associated with damage relax stress in our model, aftershocks relax

stresses applied during the main shock. We recognize that all aftershocks have
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secondary aftershocks and so forth but all aftershocks contribute to stress relaxation

similarly.

A universal scaling law is applicable to the temporal decay of aftershock activity

following an earthquake. This is known as the modified Omori’s law and can be

written in the form (UTSU et al., 1995, SCHOLZ, 2002)

dN
dt

¼ 1

s½1þ t=c�p ; ð2:29Þ

where dN=dt is the rate of occurrence of aftershocks with magnitudes greater than m,
t is the time that has elapsed since the main shock, s and c are characteristic times,

and the exponent p has a value near unity. The total number of aftershocks with

magnitudes greater than m, Ntotð� mÞ, was obtained by integrating (2.29) with the

result (SHCHERBAKOV et al., 2004)

Ntotð� mÞ ¼
Z1
0

dN
dt

dt ¼
Z1
0

dt
sð1þ t=cÞp ¼

c
sðp � 1Þ : ð2:30Þ

If the modified Omori’s law is assumed to be valid for large times (no cutoff) then

the total number of aftershocks is finite only for p > 1. Combining (2.29) and (2.30)

gives

1

Ntot

dN
dt

¼ p � 1

c
1

ð1þ t=cÞp ; ð2:31Þ

We will next show that this result can be derived using continuum damage

mechanics.

In order to relate our continuum damage mechanics model to aftershocks we

determine the rate of energy release in the relaxation process considered above. In

order to do this we use the approach applied to the AE experiments considered in

the previous section. Since the strain is constant during the stress relaxation, no

work is done on the sample. We hypothesize that if the applied strain (stress) is

instantaneously removed during the relaxation process then the sample will return

to a state of zero stress and strain following a linear stress-strain path (aY) with

slope E0ð1� aÞ to stress ry and following the path (YO) with slope E0 to zero

stress (Fig. 1). We assume that the difference between the energy added eYA and

the energy recovered eaY is lost in aftershocks and find that this energy eas is given
by

eas ¼ eYA � eaY ¼ 1

2
E0 �0 � �y

	 
2
aðtÞ: ð2:32Þ

The rate of energy release is obtained by substituting (2.27) into (2.32) and taking the

time derivative with the result
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deas
dt

¼ E0�
2
y

2td

�0
�y

� 1

� �qþ4

1þ ðq� 1Þ �0
�y

� 1

� �qþ2 t
td

� �" #� q
q�1

: ð2:33Þ

The total energy of aftershocks east is obtained by substituting að1Þ ¼ 1 into (2.32)

with the result

east ¼ 1

2
E0 �0 � �y

	 
2
: ð2:34Þ

Combining (2.33) and (2.34) gives

1

east

deas
dt

¼
1
td

�0=�y � 1
	 
qþ2

1þ ðq� 1Þ �0=�y � 1
	 
qþ2 t

td

� �h i q
q�1

: ð2:35Þ

This result is clearly similar to the aftershock relation given in (2.31). To demonstrate

this further let us make the substitutions

q ¼ p
p � 1

; ð2:36Þ

c ¼ td

ðq� 1Þ �0=�y � 1
	 
qþ2

: ð2:37Þ

Substitution of (2.36) and (2.37) into (2.35) gives

1

east

deas
dt

¼ p � 1

c
1

ð1þ t=cÞp : ð2:38Þ

This damage mechanics result is identical in form to the modified Omori’s law for

aftershocks given in (2.31).

We next consider a specific example. In Fig. 3 the rate of occurrence of

aftershocks with m � 2:5 following the mms ¼ 7:3 Landers (California) earthquake,

June 28, 1992, is given as a function of the time after the earthquake. Also shown is

the correlation with (2.31) taking s ¼ 2:22
 10�3 days, c ¼ 2:072 days, and p ¼ 1:22.

From (2.36) we find that the corresponding power law exponent is q ¼ 5:55. Further

assuming that �0=�y ¼ 1:2 we find from (2.37) that the damage time is td ¼ 4:3 s.

3. Discussion

In this paper we have presented a damage mechanics model with a yield stress.

We have also applied the solutions of the model to several problems in the fracture of

materials and earthquakes. This model is derived from several damage mechanics

models that have been applied to problems in mechanical and civil engineering

(ANIFRANI et al., 1995; KRAJCINOVIC, 1996). The approach based on specifying the
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kinetic equation for damage evolution is empirical, however, it is justified by

experimental observations. Although the physical mechanisms of time delays leading

to fracture of materials remain unclear.

It should be pointed out that a similar time-to-failure model is routinely applied to

composite materials. In the time-dependent fiber-bundle model the failure statistics of

the individual fibers that make up the fiber bundle are specified (COLEMAN, 1957,

1958; SMITH and PHOENIX, 1981; NEWMAN and PHOENIX, 2001). It has been shown by

KRAJCINOVIC (1996) and TURCOTTE et al. (2003) that the damage variable a can be

introduced into the studies of fiber-bundle models where it defines the fraction of

broken fibers. In the dynamic fiber-bundle models the time delays of failures of

individual fibers are specified through an empirical distribution function.

The description of the damage evolution based on the empirical equation is

valid for a gradual deterioration of ductile materials under creep (KACHANOV,

1986). This should be distinguished from the case of brittle-elastic behavior where

damage can be defined as a density of microcracks and cavities and can be

calculated exactly for certain geometries of these defects. It was noted by

KACHANOV (1994) that the use of a kinetic equation for the scalar damage variable

in the case of brittle-elastic solids can lead to inconsistencies. Our proposed kinetic

equation is based on the studies of the fiber-bundle model where a similar power-

law dependence on stress is observed (TURCOTTE et al., 2003) and can be considered

as an approximation. This model is also one-dimensional and extrapolations to

higher dimensions should be done with care.
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Figure 3

The rate of occurrence of aftershocks as a function of time following the June 28, 1992 Landers earthquake

(mms ¼ 7:3). The magnitude cutoff for aftershocks is m ¼ 2:5. Also shown is the correlation with (29)

taking s ¼ 2:22
 10�3 days, c ¼ 2:072 days, and p ¼ 1:22.
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We have compared the predictions of our damage model with laboratory studies

of the time delays associated with the rupture of chipboard panels and also with the

time delays associated with the occurrence of aftershocks. In both cases the predicted

power-law dependence of damage on time is consistent with the observations. The

damage mechanics model basically has two parameters: the power-law exponent q
and the characteristic time td . For the failure of the chipboard we find q ¼ 0:25 and

td ¼ 168 s. For the aftershock sequence we have q ¼ 5:55 and td ¼ 4:3 s. Although

both behave brittley, the chipboard is a much ‘‘softer’’ material than the rock in

which aftershocks occur. We attribute the differences in the parameter values to this

difference in material properties.

Some forms of damage are clearly thermally activated. The irreversible

deformation of a solid by diffusion or dislocation creep is an example. The ability

of vacancies and dislocations to move through a crystal is governed by an

exponential dependence on absolute temperature with a well-defined activation

energy. Time delays associated with fracture have been attributed to stress corrosion

which is also a thermally activated process (DAS and SCHOLZ, 1981). However,

GUARINO et al. (1998) varied the temperature in their experiments on the fracture of

chipboard and found no effect. An alternative explanation for the time delay

associated with microcracking has been given by SCORRETTI et al. (2001) and

CILIBERTO et al. (2001). An effective ‘‘temperature’’ can be attributed to the spatial

disorder (heterogeneity) of the solid. The spatial variability of stress in the solid is

caused by the microcracking itself, not by thermal fluctuations.
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