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Abstract—Crack damage results in a decrease of elastic wave velocities and in the development of

anisotropy. Using non-interactive crack effective medium theory as a fundamental tool, we calculate dry

and wet elastic properties of cracked rocks in terms of a crack density tensor, average crack aspect ratio

and mean crack fabric orientation from the solid grains and fluid elastic properties. Using this same tool,

we show that both the anisotropy and shear-wave splitting of elastic waves can be derived. Two simple

crack distributions are considered for which the predicted anisotropy depends strongly on the saturation,

reaching up to 60% in the dry case. Comparison with experimental data on two granites, a basalt and a

marble, shows that the range of validity of the non-interactive effective medium theory model extends to a

total crack density of approximately 0.5, considering symmetries up to orthorhombic. In the isotropic case,

KACHANOV’s (1994) non-interactive effective medium model was used in order to invert elastic wave

velocities and infer both crack density and aspect ratio evolutions. Inversions are stable and give coherent

results in terms of crack density and aperture evolution. Crack density variations can be interpreted in

terms of crack growth and/or changes of the crack surface contact areas as cracks are being closed or

opened respectively. More importantly, the recovered evolution of aspect ratio shows an exponentially

decreasing aspect ratio (and therefore aperture) with pressure, which has broader geophysical implications,

in particular on fluid flow. The recovered evolution of aspect ratio is also consistent with current

mechanical theories of crack closure. In the anisotropic cases—both transverse isotropic and orthorhombic

symmetries were considered—anisotropy and saturation patterns were well reproduced by the modelling,

and mean crack fabric orientations we recovered are consistent with in situ geophysical imaging.

Our results point out that: (1) It is possible to predict damage, anisotropy and saturation in terms of a

crack density tensor and mean crack aspect ratio and orientation; (2) using well constrained wave velocity

data, it is possible to extrapolate the contemporaneous evolution of crack density, anisotropy and

saturation using wave velocity inversion as a tool; 3) using such an inversion tool opens the door in linking

elastic properties, variations to permeability.

Key words: Elastic wave velocities, anisotropy, crack density, saturation, effective medium, attenu-

ation, aspect ratio, Vp/Vs ratio, shear stress, effective pressure.

1Lassonde Institute, University of Toronto, 170 College Street, Toronto, ON M5S 3E3, Canada
2Mineral, Ice and Rock Physics Laboaratory, University College London, Gower Street, London,

WC1E 6BT, UK
3Applied Seismology Laboratory, Department of Earth Sciences, Liverpool University, 4 Brownlow

St., Liverpool, L69 3GP, UK
4Rocksciences Inc., 439 University Ave., Toronto, ON M5G 1Y8, Canada

Pure appl. geophys. 163 (2006) 947–973
0033–4553/06/060947–27
DOI 10.1007/s00024-006-0061-y
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1. Introduction

In upper-crustal conditions, fractures are ubiquitous (from major fault zones to

continental shields) and present at all scales in rocks (from macroscopic fractures

to microcracks). Despite the fact that these fractures generally represent only small

amounts of porosity, they can exert considerable influence upon the rock physical

properties (BRACE et al., 1968) or even the fracture toughness (NASSERI et al., this

issue). In particular, the existence of embedded microcrack fabrics in rocks

significantly influences the elastic properties (SIMMONS and BRACE, 1965; WALSH,

1965), contributes to the difference between static and dynamic elastic moduli

(SIMMONS et al., 1975; MAVKO and JIZBA, 1991) and aligned crack fabrics may

produce elastic anisotropy (KERN, 1978; KERN et al., 1997). When fluids are

present, cracks also play a key role in making the rock permeable on a macroscopic

scale. For such reasons, seismic data and velocity field analysis are used on a daily

basis in the oil industry to quantify the oil content and the identify fluid properties,

i.e., oil or gas. In seismotectonics, a key unanswered question is whether

earthquakes and volcanic eruptions can be predicted by quantifying time dependent

precursory damage accumulation using elastic wave velocity variations (CHUN et

al., 2004; VOLTI and CRAMPIN, 2003; GAO and CRAMPIN, 2004). Thus the

understanding and quantification of elastic wave velocity variations is critical to

extract information on the physical state of rocks from seismic and seismological

data. This has major implications when considering the possible hydro-mechanical

coupling taking place during the seismic cycle (MILLER, 2002), forecasting the life

time of oil reservoirs, or the integrity of underground storage of hazardous wastes.

In most cases, geophysicists have few means to retrieve information on the physical

state of field rock masses, other than to invert elastic wave velocities into damage

parameters.

For all those reasons, numerous models which predict properties of materials

as a function of damage have been developed in the framework of Effective

Medium Theories (EMT) in the last thirty years (ESHELBY, 1957; WALSH; 1965;

O’CONNELL and BUDIANSKY, 1974, 1977; ANDERSON et al., 1974; SOGA et al., 1978;

CHENG and TOKSÖZ, 1979; HUDSON, 1981, 1982, 1986; NISHIZAWA, 1982;

KACHANOV, 1994; SAYERS and KACHANOV, 1991, 1995; LE RAVALEC and

GUÉGUEN, 1996; SCHUBNEL and GUÉGUEN, 2003). Here, we report an approach

based on KACHANOV’s (1994) non-interactive EMT scheme which allows the

straightforward inversion of elastic wave-velocity measurements made on several

rock types in the laboratory into crack density, mean crack aspect ratio and mean

crack fabric (or alignment). As the extensive laboratory input data compiled in this

study were measured independently, our study provides an ideal opportunity to

test the model applicability and investigate directly the elastic wave inversion

results, in particular the evolution of crack density and mean crack aspect ratio

with pressure and shear stress.
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2. Effective Elastic Medium Containing Cracks

Statistically, the effective elastic properties of an initially isotropic medium

depend on a few intrinsic parameters, including:

� the solid matrix elastic properties (Young’s modulus Eo and Poisson ratio mo).
� the fluid bulk modulus Kf and the level of fluid saturation.

� the crack density q defined as q ¼ 1
V

PN c3i where ci is the radius of the i-th crack, N
being the total number of cracks embedded in the Representative Elementary

Volume (REV) V .
� the crack geometry (in our case, we consider penny-shaped geometry (Figure 1a),

their average aspect ratio f ¼ hw=ci and their spatial distributions.

The concept of crack density and mean aspect ratio is a statistical generalization of the

concept of porosity for non-spherical inclusions since the crack porosity / is defined

as / ¼ pqf. In an isotropic matrix containing a uniform (isotropic) distribution of

crack centers, the effective elastic modulus of a rock M� is a linear function of the

crack density that can be written in the form (first perturbation order):

Mo

M� ¼ 1þ h:q; ð1Þ

whereMo is the solid matrix elastic modulus and h is a positive scaling parameter that

depends on the matrix and fluid properties, the geometry of the cracks and the

interactions between them. Despite the facts that i) real fractures are not generally

uniformly distributed spatially — a fractal-type description is often more realistic

a) penny-shaped crack geoetry 
    and normal coordinates

c) distribution of planar
    penny-shaped cracks

b) distribution of radial
    penny-shaped cracks

Figure 1 a)

Geometry, conventions and coordinates of a 3-D penny-shaped crack. The two crack distributions

considered here: b) the case of radial penny-shaped cracks. c) the case of coplanar penny-shaped cracks.
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(e.g., in some crystalline rocks, cracks can be very highly spatially concentrated, with

intact rock between these zones), ii) real fractures have intersections and iii) real

fractures also have shapes which are complex in detail, most EMT have been derived

for non-intersecting cracks, uniform distributions of crack centers and simple crack

geometries. Although those three important simplifications can be discussed from a

theoretical point of view, considerable insight has been gained from them and the

scalar h has been calculated by various authors for all kind of inclusion geometries

(spherical, elliptical, penny-shaped discs, rectangular plates or linear cracks — see

MAVKO et al., 1998 for a good compilation) and fluid properties. These simplifica-

tions (non-intersecting ‘penny-shaped’ cracks and uniform distributions of crack

centers) are used throughout this paper.

Recently, ORLOWSKY et al. (2003) and SAENGER et al. (2004) showed numerically

that the best EMT scheme was the Differential Self-Consistent (DSC) theory (CLEARY

et al., 1980; BERRYMAN, 1992; LE RAVALEC and GUÉGUEN, 1996). However the

accuracy of the DSC calculation has two main drawbacks: 1) it is limited to isotropic

formulations and 2) the way the effective elastic moduli are calculated makes its use

for elastic wave inversion complicated.

The most simple of all EMT is certainly the non-interactive theory because it

neglects the problem of stress interactions between cracks and is therefore

independent of crack centers distribution. It also allows easy computation of

anisotropic fluid-filled crack distributions. Non-interactive EMT was shown to be

valid when cracks are distributed randomly or when aligned (KACHANOV, 1994;

SAYERS and KACHANOV, 1995; SCHUBNEL and GUÉGUEN, 2003) although ORLOWSKY

et al. (2003) and SAENGER et al. (2004) have shown numerically that it would

systematically overestimate the crack density. However, it has several advantages

over other EMTs: i) it overcomes the divergence problems encountered in HUDSON’s

theory (HUDSON, 1981, 1982, 1986) or the non-physical drop of an elastic modulus to

zero after a critical crack density encountered in the Self Consistent (SC) theory

(O’CONNELL and BUDIANSKY, 1974, 1977, ANDERSON et al., 1974; SOGA et al., 1978);

ii) any crack distribution can be computed easily, keeping in mind that results are

best for aligned or randomly oriented cracks; iii) it depends both on the crack density

and the mean crack aspect ratio; iv) and, most importantly, its easy formulation

enables one to perform a direct inversion of elastic wave velocities into crack density

and aspect ratio, as we will see in the next sections.

2.1 Non-interactive Formulation for Isotropically Distributed Cracks

When neglecting stress interactions between cracks, the effective elastic modulii of

a cracked solid can be calculated exactly and rigorously in a unique manner that

depends solely upon the crack orientations and distribution. Such a hypothesis is

often wrongly confused with the low crack density approximation. Clearly, a low

crack density means that cracks are (on average) distant from each other and the
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non-interactive assumption is likely to be verified. At higher densities however, it is

clear that cracks will interact with each other, both in terms of direct stress transfer

and fluid flow between fractures (which will become more common with increasing

crack densities). Nonetheless one should keep in mind (and this has been forgotten

for example in both HUDSON’s and the Self Consistent theory) that the stress field is is

not only amplified at crack tips, but also shielded on the crack flanks. For such

reasons, we can assume that stress interactions are partially compensating geomet-

rically for certain distributions such as random (isotropic) or aligned crack

distribution. KACHANOV (1994) showed numerically that the stress interactions in

the case of intersecting cracks are small and that stress amplifications are shorter

range than shielding. Finally and because of the non-intersecting assumption, EMTs

are high-frequency (>KHz) theories for which squirt-flow mechanisms (MAVKO and

JIZBA, 1975) can be neglected. It has been shown that, using all those assumptions,

the non-interactive approximation gave reasonable and interpretable results at least

up to crack densities of 0.5 (KACHANOV, 1994; SAYERS and KACHANOV, 1995;

SCHUBNEL and GUÉGUEN, 2003; BENSON et al., 2006).

In the non-interactive approximation, each crack is considered to be isolated and

the elastic perturbation DSijkl compliance due to cracks is simply the sum of each

crack contribution. Since the average bulk elastic strain is the sum of the matrix

elastic strain and the superposition of elastic strain of each individual crack, effective

elastic modulii can simply be calculated using the elastic potential f (KACHANOV,

1994; SAYERS and KACHANOV, 1995). In the isotropic case, KACHANOV (1994)

showed that the effective Young E� and shear modulii l� of a rock could be written1

as:

Eo

E� ¼ 1þ 1þ 3

5
1� mo

2

� � d
1þ d

� 1

� �� �� �
hq ð2Þ

and:

lo
l�

¼ 1þ 1þ 2

5
1� mo

2

� � d
1þ d

� 1

� �� �� �
hq

ð1þ moÞ ; ð3Þ

where h is a geometrical factor linked to the penny-shaped geometry (see Appendix I)

and given by,

h ¼ 16ð1� m2oÞ
9ð1� mo=2Þ : ð4Þ

d is a non-dimensional number which characterizes the coupling between the stress

and the fluid pressure, and is equal to:

1 Note that equation (3) has been corrected from KACHANOV’s (1994) original manuscript by FORTIN

(2005) and BENSON et al. (2006).
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d ¼ ð1� mo=2ÞE0f
Kf

h: ð5Þ

d compares the fluid bulk modulus Kf to the crack bulk modulus fð1� mo=2ÞEofhg
assuming that all change in the crack volume is due to aperture variations (see

Appendix I). As a lower bound, i.e., for an incompressible fluid such as water, and

using E0 � 5:1010, d ! 0 and is negligible if f is small (<10�3). As an upper bound,

i.e., for a compressible fluid such as dry air, d considerably exceeds 1 and

d=1þ d ! 0.

Figures 2a and 2b present the normalized P- and S- wave velocity isocontours

respectively as a function of both crack density and the aspect ratio. The velocities

were calculated from equations (2)–(3) using solid matrix and fluid elastic parameters

typical of an undamaged water saturated granite and equal to: Eo ¼ 85 GPa,

mo ¼ 0:25 and Kf ¼ 2 GPa. Velocities were normalized to the crack-free velocities

(i.e., q ¼ 0) to remove bulk density effects. On Figure 2a, the P -wave velocity is

shown to decrease with crack density. However, at a given crack density, P -wave
velocity remains more or less constant with aspect ratio. On the contrary, whilst

S-wave velocity also decreases with crack density on Figure 2b, they are very sensitive

to the crack mean aspect ratio. Figure 2c shows that the evolution of the Vp/Vs ratio

is a function of both crack density and aspect ratio when cracks are saturated with

fluid. This way, KACHANOV’s (1994) non-interactive model permits the quantification

of both the crack density q and the aspect ratio f, through the saturation coefficient d
(equation 5). As a direct consequence, one can expect to be able to extract from Vp

and Vs measurements in saturated rocks containing cracks, not only the crack

density, but also the aspect ratio.

2.2 Non-interactive Formulation: General Case

In the most general case, when fractures seem to be aligned in one or several

directions and wavelengths are considerably larger than the fracture spacing, it is

convenient to formulate the equivalent anisotropic medium problem in terms of

compliances (KACHANOV, 1994; SAYERS and KACHANOV, 1995; SCHOENBERG and

SAYERS, 1995). For an isotropic matrix containing penny-shaped cracks, the

additional elastic compliance DSijkl due to those can be expressed as (SAYERS and

KACHANOV, 1995):

DSijkl ¼ 1

4hEo
ðdikajl þ dilajk þ djkail þ djlaikÞ þ bijkl ð6Þ

where aij is the crack density tensor:

aij ¼ q:hninji ð7Þ
and bijkl the saturation tensor:
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bijkl ¼ q: 1� m0
2

� � d
1þ d

� 1

� �
hninjnknli: ð8Þ

dij is the Kronecker symbol and we recall that the scalar (or total) crack density is

equal to q ¼ trðaÞ ¼ Nc3=V . In the case of an orthorhombic crack distribution, the

crack density tensor is diagonal, and it follows from equations (6)–(8) that the nine

independent effective elastic compliances can be expressed:

Figure 2

Isotropic case: Elastic wave velocities calculated from equations (2)–(3) using solid matrix and fluid elastic

parameters typical of a water saturated granite and equal to: Eo ¼ 85 GPa, mo ¼ 0:25 and Kf ¼ 2 GPa. a)

and b) normalized P - and S-wave velocity isocontours as a function of crack density and aspect ratio.

Velocities were normalized to the crack free velocities (i.e., q ¼ 0) to remove bulk density effects. c)

evolution of the Vp/Vs ratio as a function of both crack density and aspect ratio.
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Sijkl ¼

¼ Soijklþ q
Eoh

hn2i iþ ð1� m0
2 Þ d

1þd�1Þ
h i

hn4i i
� �

if fi¼ j¼ k¼ lg

¼ Soijklþ q
Eoh

hn2i iþhn2j i
4 þ ð1� m0

2 Þ d
1þd�1Þ

h i
hn2i n2j i

� �
if fi¼ k and j¼ lg

¼ Soijklþ q
Eoh

ð1� m0
2 Þ d

1þd�1Þ
h i

hn2i n2ki if fi¼ j and k¼ lg

8>>>>><
>>>>>:

ð9Þ

Recalling the relationship between dependent elastic compliances, the formulation

for transverse isotropy can also be obtained from equation (9). Assuming now a

continuous distribution function of crack orientations, the average i-th component of

the crack fabric can be defined as follows:

hnii ¼ 1

2p

Z 2p

0

d/
Z p=2

0

wðh;/Þni sin hdh ; ð10Þ

wðh;/Þ being the orientation distribution function (cf. fig. 1a). The tensors hninji and
hninjnknli, which represent respectively the second-order and the fourth-order

moments of the crack orientation distribution function respectively, can be

calculated easily in the same way.

2.3 Wet and Dry Elastic Waves Anisotropy: Numerical Results

For the sake of simplicity, we will consider Dirac distributions, so that hnii ¼ ni
and subsequently, in such a way that the average crack fabric orientation is described

as on Figure 1a for a single crack. In this section, we consider two different types of

crack distributions: i) radial cracks (n3 ¼ 0; n1 ¼ n2 ¼ 1=
ffiffiffi
2

p
) and ii) planar cracks

(n3 ¼ 1; n1 ¼ n2 ¼ 0). The first case corresponds to a distribution of symmetrically

distributed radial cracks (symmetry along the vertical axis, cracks normal in the

horizontal axis) and is representative of the TI symmetry (Fig. 1b). The second case

corresponds to horizontally aligned coplanar penny-shaped cracks and is represen-

tative of both TI and orthorhombic symmetry (Fig. 1c). Furthermore, only the lower

and upper bound of saturation, i.e., for an incompressible fluid such as water d ! 0

and for a compressible fluid such as dry air, d=1þ d ! 0, were investigated. In all

that follows, the solid matrix Young’s modulus and Poisson ratio were taken as equal

to the ones of an isotropic and crack-free granite material, i.e., Eo ¼ 85 GPa and

mo ¼ 0:25, respectively.

2.3.1 Radial cracks

The case of radial cracks is illustrated on Figure 3. Figures 3a and 3b show the

normalized P velocities versus the angle of propagation c of the elastic wave, in wet

and dry conditions respectively, and for crack densities equal to 0.1, 0.25, 0.5 and 1.

The angle c is defined as that between the vertical axis Ox3 and the wave vector. For

example, elastic waves propagating at 0 and 90 degrees correspond to propagation

along the vertical and horizontal axes, respectively. The normalized wave velocity is
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the ratio of Vc to the solid grain velocity. In the case of radial cracks, P waves

propagating vertically are unaffected and do not ‘‘see’’ the cracks. Anisotropy is

larger in the dry case (up to 50% in the dry case, up to � 40% in the wet case) but the

pattern is very comparable in both cases. Figures 3c and 3d show the results obtained

in terms of the shear-wave splitting
SV ðcÞ�SHðcÞ

SV ðcÞ � 100 or birefringence
� �

between

vertically (SV) and horizontally (SH) polarized S waves in the wet and dry cases,

respectively. In the dry case, SV waves always travel faster than SH. In the wet case,

maximum splitting is observed at a c angle of 60 degrees, whereas maximum dry

splitting is obtained for horizontally propagating S waves. However, and as one

could expect for a set of radial cracks, the effect of fluid is rather small.
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Figure 3

Case of radial cracks (Fig. 1b). Only the lower (d ! 0) and upper (d=1þ d ! 0) bound of saturation were

investigated using equation (9). The solid matrix Young’s modulus and Poisson ratio were taken as equal

to Eo ¼ 85 GPa and mo ¼ 0:25, respectively. Velocities were normalized to the crack-free velocities (i.e.,

q ¼ 0) to remove bulk density effects. Results are displayed for crack densities equal to 0.1 (open triangles),

0.25 (plain circles), 0.5 (open diamonds) and 1 (plain squares). a) and b) show the normalized P -wave
velocity as a function of the direction of propagation c in the wet and dry cases respectively. c) and d) show

the shear-wave splitting (SV ðcÞ�SHðcÞ
SV ðcÞ � 100 or birefringence) as a function of the direction of propagation c in

the wet and dry cases, respectively.

Vol. 163, 2006 Damage, Saturation and Anisotropy in Cracked Rocks 955



2.3.2 Planar cracks

Figure 4 shows numerical results obtained in the case of planar cracks. Figures 4a

and 4b present the normalized P velocities as a function of propagation angle c and

crack density in the wet and the dry cases, respectively. As noted earlier, the effect of

cracks is considerably stronger in the dry case than in the wet case. This time, cracks

are ‘‘invisible’’ to waves propagating in the horizontal direction (c ¼ 90o); and in the

dry case (Fig. 4b), the P -wave velocity decrease is very large (up to 60%) for waves

propagating vertically, which is expected from geometrical considerations. However,

and because the fluid is assumed to be fully incompressible, cracks are also ‘‘invisible’’

in the direction c ¼ 0o in the wet case (Fig. 4a). This can be explained theoretically as

in KACHANOV’s model, the normal crack compliance is assumed to be equal to zero
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Figure 4

Case of coplanar cracks (Fig. 1c). Only the lower (d ! 0) and upper (d=1þ d ! 0) bound of saturation

were investigated using equation (9). The solid matrix Young’s modulus and Poisson ratio were taken as

equal to Eo ¼ 85 GPa and mo ¼ 0:25, respectively. Velocities were normalized to the crack free velocities

(i.e., q ¼ 0) to remove bulk density effects. Results are displayed for crack densities equal to 0.1 (open

triangles), 0.25 (plain circles), 0.5 (open diamonds) and 1 (plain squares). a) and b) show the normalized P -
wave velocity as a function of the direction of propagation c in the wet and dry cases, respectively. c) and d)

show the shear-wave splitting (SV ðcÞ � SHðcÞ=SV ðcÞ � 100 or birefringence) as a function of the direction

of propagation c in the wet and dry cases, respectively.
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(see Appendix I) when the fluid is fully incompressible (or when the crack is fully

constrained). Therefore, in the wet case, the maximum anisotropy (up to 20% for

q ¼ 1) is seen for waves propagating at 45 degrees from the vertical, for which the

associated shear strain is maximum. Figures 4c and 4d show the predicted results for

shear-wave splitting (SV ðcÞ � SHðcÞ=SV ðcÞ � 100). Again, the pattern is very different

in the wet and the dry cases. As expected, in the dry case SH waves always propagate

faster than SV waves. In the wet case however, and for propagation angles between 0

and 60 degrees, SV waves are faster than SH waves. Conversely, SH-wave velocity is

higher than SV-wave velocity for angles larger than 60 degrees. The shear-wave

splitting maximum observed is thus an effect of fluid incompressibility.

In each of the two distributions discussed above, the non-interactive model

manifests a clear difference between dry and fully saturated cracks, both for P waves

and S waves. Intermediate results for partial saturation could be obtained

considering the d parameter and average crack aspect ratio. It demonstrates that,

to a certain extent, the P -wave anisotropy and S-wave birefringence patterns can

correspond to a genuine crack distribution and saturation state. Therefore,

combining velocity data on P -wave anisotropy and S-wave birefringence should

allow one to investigate the ‘‘average’’ crack distribution in a rock, as well as the

saturation state. Unfortunately, such extensive wave-velocity data is very rare in the

literature. It exists at the field scale, however one would need to take into account

the dispersion effects due to frequency and ‘‘squirt flow’’ mechanisms (MAVKO and

NUR, 1975). This may be done using BIOT-GASSMANN or BROWN and KORRINGA’s

equations (1975), as shown by SCHUBNEL and GUÉGUEN (2003).

3. Inversion of Experimental Data

In the laboratory, experimental studies measuring the evolution of dynamic

elastic properties under conditions simulating upper crust burial depths can be

performed thanks to the use of piezoelectrics transducers (PZT), for which eigen-

frequencies are generally well into the dynamic range (>100 KHz). Despite the

experimental difficulties, such studies have been undertaken and can provide ‘well-

constrained’ experimental datasets which are perfectly suited to attempt predicting

the evolution of rock fabric parameters such as crack density, aspect ratio and

alignment.

When modelling the evolution of elastic velocities, we restricted ourselves to the

case of an initially isotropic solid rock matrix. The crack distribution function

obeyed either an isotropic, transverse isotropic or orthorhombic symmetry. In such

conditions, the effective elastic properties predicted by equations (2), (3) and (9) are

dependent only upon the matrix Young’s modulus Eo and Poisson ratio mo, and more

importantly, the scalar crack density q. Additionally, when cracks are non-randomly

oriented, elastic wave velocities also depend on the mean orientation (h;/ — Fig. 1a)
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of the crack fabric with respect to the axis of symmetry. Finally, when saturated,

elastic properties also depend on the saturation coefficient d and therefore the

average crack aspect ratio f and fluid bulk modulus Kf . In the following, we simply

performed least-square inversions of laboratory datasets:

RMSi ¼ 1

Ni

X
Ni

ðV data
c � V model

c ðq; f; h;/ÞÞ2 ð11Þ

in order to recover the crack density, average crack aspect ratio and orientation.

Inversions were performed using initial P - and S- wave velocities of the

‘‘uncracked’’ material as calculated from experimental and/or petrological consid-

erations, thus reflecting the average bulk solid matrix elastic properties. Model

elastic wave-velocity field was calculated from equations (2), (3) and (9) as a

function of q, f when the rock was saturated with water together with h and /
when the rock was anisotropic. Each modelled velocity field was then compared

using a simple RMS technique (equation 11) with experimental measurements. In

equation (11), Ni represents the number of P - and S- velocity measurements along

several c directions at each step i of a given experiment. The lowest RMS error

between modelled and data velocities was taken as being the best inversion result,

which output the quadruplet ðq; f; h;/Þ. The agreement between data and best fit

velocities is, in general, very good with the average error between model and data

points lower than 0:05 km=sec. This is a direct consequence of the well constrained

laboratory data itself.

3.1 Isotropic Inversions

Elastic wave velocities have been widely shown to increase with increasing

hydrostatic pressure, because of crack closure. Conversely and in the presence of

shear stress, elastic wave velocities can decrease due to nucleation and propagation of

new microcracks. In the following, we compile experimental results obtained on two

different rock types, representative of contrasting isotropic microcrack fabric, a

porphyritic alkali basalt from Mount Etna and Carrara marble.

3.1.1 Crack density and aspect ratio evolution as a function of hydrostatic pressure

In the case of the Etnean basalt, the simultaneous evolutions of P - and S- wave
elastic wave velocities were measured during hydrostatic compression of three

different rock samples (38.1 mm diameter by 40 mm length) cored in three

orthogonal directions (Fig. 5a). The measurements, performed in a high pressure

confining cell installed at University College London (BENSON, 2004; BENSON et al.,

2005), evidenced no marked elastic anisotropy in the rock. The experimental P -wave
velocities ranged from 5:35� 0:13 km=s at 5 MPa to 5:88� 0:12 km=s at 80 MPa;

while S-wave velocities ranged from 3:30� 0:04 km=s to 3:60� 0:04 km=s. P and S
elastic wavespeeds were inverted using equations (2) and (3). Crack-free elastic wave
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velocities were taken as equal to Vp ¼ 6400m=s and Vs ¼ 3750m=s (i.e., solid matrix

elastic parameter equal to E ¼ 100 GPa and m ¼ 0:22). The fluid bulk modulus was

taken as Kf ¼ 2 GPa.

0.1

0.01

0.001

as
p

ec
t 

ra
ti

o

0.2 0.25 0.40.350.3 0.450.15

a) Modeled and data P and S velocities

b) Error contour map at 80 MPa
   between modeled and data velocities

Figure 5

a) Modelled (solid lines) P and S velocities in Etna basalt compared to the laboratory measurements (dots -

BENSON et al., 2005). The effective confining pressure was calculated as Pc � Pp where Pc is the confining

pressure and Pp the pore pressure. b) Error contour map between modelled and data (P and S) velocities in
the case of sample EBD01 at 80 MPa confining pressure. Error contours are displayed as a function of

crack density and aspect ratio, respectively. Darker areas represent lower errors.
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Figure 5a compares the model P and S elastic velocities (solid and dashed line) to

the experimental results (symbols). Because the degree of freedom of the inversion is

zero (i.e., P - and S-wave velocities were modelled using only two distinct parameters:

crack density and aspect ratio), the fit appears perfect, well below the experimental

error bar. Figure 5b presents the error contour maps between modelled and data

velocities as a function of crack density and aspect ratio for sample EBD01 at

80MPa; respectively. As illustrated, the inversion is stable as only one minima can be

distinguished and for a wave-velocity doublet (P,S) corresponds a unique solution

for the crack density and aspect ratio doublet (q; f). As an output, the model gives

back the evolution of parameters (q; f) with confining pressure which are displayed

on Figures 6a and 6b. Results from the inversion reveal a decrease in crack density

from � 0:5 to � 0:35 during pressurization, while the average crack aspect ratio

decreases by one order of magnitude approximately. The decrease in crack density

illustrates a decrease in the cracks apparent radii c as crack density evolves with � c3.
This is generally attributed to an increase of the crack surfaces contact areas as

cracks are being closed. More importantly, the recovered evolution of aspect ratio

shows an exponentially decreasing aspect ratio with confining pressure (and thus

aperture evolution as the radius is not expected to vary much). The drop of one order

of magnitude within the first MPa’s is consistent with that expected intuitively, i.e.,

fast elastic crack closure at low pressures. This is also consistent with current theories

on crack closure (KASELOW and SHAPIRO, 2004) where crack closure is generally

modelled using an exponentially decreasing law with pressure with varying power

exponents. One should note that the elastic wave inversion not only interprets the

increase in both P and S velocities in terms of crack density consistently, but also the

fact that the ratio P /S is changing in terms of aspect ratio reduction. This is probably

one of the key advantages in using KACHANOV’s (1994) scheme when modelling

elastic properties in isotropy.

3.1.2 Crack density and aspect ratio evolution as a function of shear stress

Carrara marble is a well investigated marble, with coarse grainsize (150 lm) and a

very low initial anisotropy (<1%). SCHUBNEL et al. (2005) measured both P - and
S- wave velocities during a full tri-axial cycle in wet conditions (Pc ¼ 260 MPa and

Pp ¼ 10 MPa). In this case, the non-interactive scheme becomes particularly relevant

as calcite behaves plastically and intragranular plasticity inhibits long-range stress

interactions between cracks. Initial P - wave velocity was equal to 5:9 km.s�1 � 1%

while final P -wave velocity was lower than 3 km.s�1 � 1%. Figure 7a presents the

evolution of both P - and S-wave velocities as a function of effective mean stress

P¼ ½ðr1 þ 2r3Þ=3� Pp�. In the first phase both velocities increased. When the onset of

crack propagation was reached, P - and S-wave velocities began to decrease rapidly

due to damage accumulation. During the subsequent relaxation period, wave

velocities increased again, before decreasing drastically due to stress relief

microcracking as hydrostatic stress was removed. On the figure, the fit between
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data and modelled velocity appears perfect for the same reasons as on Figure 5a. This

time, the model crack-free parameters were taken as that of a non-porous calcite

aggregate, i.e., E ¼ 100 GPa and m ¼ 0:32. Figure 7b shows the inversion results, i.e.,

the evolution of crack density (solid diamonds) and aspect ratio (open squares) as a

Figure 6

Evolution of crack density (a) and aspect ratio (b) as a function of confining pressure in Etna basalt. Both

crack density and aspect ratio were inverted from experimental data presented in Figure 5 and using

equations (2) and (3). Matrix elastic parameters were taken as E ¼ 100 GPa and m ¼ 0; 22 (i.e., crack-free

elastic wave velocities equal to Vp ¼ 6400 m=s and Vs ¼ 3750 m=s)
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function of effective mean stress. During the first phase, crack density drops from

0.35 to 0.2 while aspect ratio drops again exponentially from 0.01 to lower than 0.001

(more than one order of magnitude) which clearly illustrates crack closure, contact

increase in crack surfaces and aperture reduction. During the second phase, crack

density increases slightly to 0.5 while aspect ratio increases rapidly to 0.5, revealing

that high aspect ratio voids are being opened, which is consistent with microstruc-

tural analysis of cataclastic deformation in calcite performed by FREDRICH et al.

(1989) and SCHUBNEL et al. (2005). The aspect ratio last value is probably an artifact

of the inversion due to a bad Vp/Vs dataset at the onset of relaxation, because

deformation rates were rapid at that point and Vp and Vs measurements were

probably distant in time. During the relaxation phase, crack density remains more

or less constant while the aspect ratio decreases exponentially again, which is a

clear geophysical signature of visco-elastic crack closure and aperture reduction

during restrengthening (BEELER and TULLIS, 1997). The fourth phase corresponds

to a rapid increase in both crack density and aspect ratio due to stress relief

crack propagation and opening. It is interesting to note that the final crack density is

larger than 1, although no macroscopic rupture or strain localization band was

observed.

3.2 Anisotropic Inversions

Most rocks are characterized by anisotropic crack patterns, often produced by

deviatoric stress fields. For example, as a rock body is being deformed during triaxial

compression experiments, cracks grow and propagate along preferential orientations,

leading to an overall anisotropic elastic pattern (HADLEY, 1975; SCHUBNEL et al.,

2003; STANCHITS et al., this issue). However and in the following, because the upper-

limit of a non-interactive model is obviously that of instable crack propagation, we

do not pretend to deal with coalescence or rupture propagation, but with phenomena

prior to these.

3.2.1 Crack density as a function of depth and hydrostatic pressure

Granodiorite samples retrieved from the Nojima fault core were investigated

experimentally at room pressure by ZAMORA et al. (1999). Elastic wave velocities,

measured in the laboratory (500 KHz), are in good agreement with the sonic log

Figure 7

a) Modelled (lines) and data (dots) P - and S-wave velocities as a function of effective mean stress in

Carrara marble. Experiment was performed at Pc ¼ 260 MPa confining pressure and Pp ¼ 10 MPa. Model

crack-free parameters were taken as E ¼ 100 GPa and m ¼ 0:32. b) Evolution of crack density and aspect

ratio as a function of effective mean stress. Both crack density and aspect ratio were inverted from

experimental data presented on a) and using equations (2) and (3). Arrows indicate the reading and the

important phases of the experiment (onset of crack propagation and relaxation phases - cf. SCHUBNEL

et al., 2005).

b
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performed during drilling (10 KHz, ZAMORA et al., 1999). In both dry and wet

conditions, P -wave velocities were measured along the vertical axis and along 18

different azimuthal directions in the horizontal plane; S-wave velocities propagating

along the vertical axis were measured along 18 different azimuthal polarizations.

Figure 8 presents the experimental data (symbols) obtained on four different samples,

Figure 8

P - and S-wave velocity measurements in dry (empty symbols) and wet conditions (plain symbols) of

Nojima fault core granodiorite (ZAMORA et al., 1999). Experimental data obtained on four different

samples, retrieved at 220, 232, 362 and 429 meters, respectively is presented. P waves were measured along

the vertical axis and along 18 different directions in the horizontal plane; S waves propagating along the

vertical axis were measured along 18 different azimuthal polarizations. Modelled velocities for each of

these samples are represented by solid and dashed lines. Crack-free elastic parameters were taken as equal

to that of sample 232 (Eo ¼ 85GPa and mo ¼ 0:25). The inversion outputs both the crack density q and the

crack fabric orientation ðh;/Þ.
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retrieved at 220, 232, 362 and 429 meters, respectively. Wet velocities are marked by

plain symbols, while dry velocities are marked by empty symbols. For each of these

samples, a simultaneous inversion of the dry and wet elastic wave velocity field was

performed using equation (9). Crack-free elastic parameters were taken as equal to

that of sample 232 (Eo ¼ 85 GPa and mo ¼ 0:25), which presented the least amount of

damage in the column. The inversion was performed simultaneously in both dry

(assuming d=1þ d ! 0) and saturated (assuming d ! 0) conditions. Modelled

azimuthal velocities are represented on Figure 8 as solid and dashed lines. Figure 8

shows that our inversion is reasonable even when the degree of freedom is drastically

increased. Indeed, for a given crack density and crack fabric, our modelling

effectively mimics both the observed anisotropy pattern and the saturation effect. The

retrieved crack density for samples 220, 362 and 429 was 0.2, 0.125 and 0.4,

respectively. Fitting of dry data is generally more accurate than fitting of wet data,

which might be due to the fact that the incompressible fluid assumption (d ! 0) is

not valid at room pressure. The dip of the distribution is not well constrained due to

the paucity of vertical measurements (and the absence of diagonal measurements -

see Figures 3 and 4), but is nevertheless in overall agreement with the geological

setting (SCHUBNEL, 2002). However, the azimuth of the crack fabric is well

constrained and was found to be approximately constant in the column, which is

what is intuitively expected in a fault zone, where cracks and damage are aligned

parallel to the main fracture plane. This gives us additional confidence in our

modelling.

3.2.2 Crack density and aspect ratio evolution as a function of shear stress

Here, we present P -wave velocity measurements performed along several

directions on a sample of dry Westerly granite during a tri-axial compression

(Pc ¼ 50 MPa). The experiment was performed at the USGS at Menlo Park

(THOMPSON et al., this issue). The initial P -wave velocity field was more or less

isotropic and equal to 5:9 km.s�1 while final P -wave anisotropy exceeded 30%. The

non-interactive model can provide a useful tool to study and quantify the first phase of

crack propagation, which is stable in triaxial compression experiments. Figure 9a

presents a non-exhaustive compilation of the P -wave velocity data (symbols, see also

THOMPSON et al., this issue) as a function of raypath angle and shear stress steps. The

anisotropic pattern is very similar to that of the modelled velocity field for radial

cracks presented on Figure 3b, which is as you would expect during the primary

phases of a triaxial compression experiment. Modelled velocities are represented by

solid and dashed lines. Model crack-free parameters were taken as Eo ¼ 85 GPa and

mo ¼ 0:25. Data and model velocities fit well. The orientation of the crack fabric is first

vertical and then appears to continuously diminish: at 617MPa, the mean crack fabric

dip is only 78� with respect to horizontal, while the crack density increased to 0.44.

The inversion, although poorly constrained (only P -waves), is stable and coherent.

The P -wave anisotropy pattern is well reproduced. Figure 9b delineates the evolution
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of shear stress and crack density with time. The system was loaded using Acoustic

Emission (AE) feedback (see THOMPSON et al., this issue) and one can see that, at first,

crack density increased linearly with time. As the system was unloaded, crack density

started decreasing, indicating that vertical cracks were closing due to diminishing

shear stress. One can see the clear correlation between the two curves. The overall final

crack fabric orientation (78�) is in agreement with AE locations, which enabled

geophysical imaging of the fracture as it slowly propagated. Although it seems clear

that the assumption of homogeneous damage was no longer valid at the end of the

test, the inversion continuously output reasonable and physically interpretable results.

4. Discussion and Conclusions

We finally compare our model to that of a numerical simulation of damage

evolution using the Particle Flow Code in 3 Dimensions (Itasca Consulting Group).

First, a laboratory study was conducted in which a 50 mm cubic sample of

Crossland Hill sandstone was subjected to true triaxial loading with velocity

measurements taken parallel to each of the principal stress directions. The

experiment was performed at Imperial College London (KING, 2002) and then

simulated with a distinct element modelling approach using PFC3D. In the

numerical experiment, the sample of Crossland Hill sandstone was simulated by an

assemblage of 20,000 spherical particles closely packed and bonded together at

points of contact. Particle stiffnesses and bond strengths were set such that the

macro stiffness and strength of the model matched that of the actual rock. The

numerical model and the actual rock sample were both subjected to two episodes of

hydrostatic loading up to 100 MPa and then deviatoric loadings. Results of the

numerical and laboratory study can be found in HAZZARD and YOUNG (2004). The

model was fully dynamic so that changes in wave velocities can be measured with

changes in stress. The number of ’cracks’ in the model was then directly counted.

Figure 10 compares the crack densities calculated from measured velocities and

using equations (2)–(3), compared with the crack densities calculated by directly

counting the number of cracks (or broken bonds) in the numerical assemblage. To

arrive at the curve for ’direct counting’, all cracks were assumed to be closed at 100

MPa hydrostatic stress and the number of particle-particle contacts and bonds

Figure 9

a) Modelled (lines) and data (symbols) P -wave evolution as a function of shear stress and raypath angle in

Westerly granite (THOMPSON et al., 2006). Experiment was performed at Pc ¼ 50 MPa confining pressure

in dry conditions. Model crack-free parameters were taken as E ¼ 85 GPa and m ¼ 0:25. Modelled crack

density and average crack fabric dip are marked on the legend. b) Shear stress and crack density evolutions

as a function of time.

b
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broken relative to this stress state were counted as cracks. Cracks were assumed to

have a radius equal to that of the particles. It is clear that there is a fairly good

match between the directly counted and calculated crack densities, which validates

the modelling. However, the direct counting seems to systematically overestimate

the crack density and the deviation between theoretical and numerical modelling

increases with increasing crack density. This is probably due to the fact the crack

radii are overestimated when taken as equal to the particle’s radius. Real fractures

also have shapes which are complex in detail, and this may be an additional reason

for the differences shown in Figure 10. This may also reflect the fact that the

material is no longer isotropic and that a Transversely Isotropic formulation might

have produced better results.

The main question that remains is that of the significance of the fit between the

laboratory or numerical and theoretical data. In general, this fit (e.g., in Fig. 5) is

excellent and clearly, P - and S-wave velocities will in general be smoothly varying

functions of the various parameters involved, in Figure 5a the effective confining

pressure for example. If this is the case, then we can expect to describe any such

curve with few parameters (i.e., the true empirical curve contains relatively few

degrees of freedom). If the true number of degrees of freedom in the model is

comparable to the true number of degrees of freedom in the data, then an excellent

Figure 10

Comparison between PFC model directly observed crack density (crack radii were taken as equal to

particles) and Kachanov’s model inversion results for Crossland sandstone (KING, 2002; HAZZARD and

YOUNG, 2004).
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fit will always be found - but this is not necessarily significant. However, only a

relatively good model which relies on good parameters will systematically output,

using an inverse method, a physically understandable and expected evolution of the

fitting parameters. In our case, the systematic decrease in crack density with

confining pressure illustrates a decrease in the crack’s apparent radii c as crack

density evolves with � c3. An increase in crack density also helps in quantifying

crack growth. This can also be interpreted as a variation of the crack surfaces

contact areas as cracks are being closed or opened, respectively. Even more so, the

recovered evolution of aspect ratio shows an exponentially decreasing aspect ratio

(and therefore aperture) with confining pressure which is also consistent with

current mechanical theories of crack closure (KASELOW and SHAPIRO, 2004). The

crack fabric orientations we recovered, when the rock was anisotropic, are also

consistent with in situ geophysical imaging.

In conclusion, by using a non-interactive crack effective medium theory as a

fundamental tool, it is possible to calculate the cracked rock dry and wet elastic

properties in terms of a crack density tensor, average crack aspect ratio and mean

crack fabric orientation using the solid grains and fluid elastic properties solely.

Using the same method, both the anisotropy and shear-wave splitting of elastic

waves can be derived. Two simple crack distributions have been considered for which

the predicted anisotropy depends strongly on the saturation, reaching 60% in the dry

case.

In the isotropic case, KACHANOV’s (1994) model was used to invert elastic

wave velocities and infer both crack density and aspect ratio evolutions. Inversion

results were coherent in terms of crack density and aperture evolutions. A

systematic decrease in crack density with confining pressure illustrated a decrease

in the crack’s apparent radii c. An increase in crack density can facilitate the

precise quantification of crack growth (FORTIN et al., 2006). Using such an

inversion tool opens the door in linking elastic propertie’s variations to

permeability, as pointed out GUÉGUEN and SCHUBNEL (2003) or BENSON et al.

2006.

Inversion results agreed very well with the data and were consistent with the

microstructure of the different rocks investigated here. That the theoretical curves

in Figures 5a and 7a so closely follow the minor fluctuations in the empirical data

curves might also suggest that the data are being overfitted. Obviously, if the first

step in verifying a theoretical model is to compare it directly to data, a logical next

step would be to perform a variance, covariance analysis in order to more reliably

assess what the fit between data and model really means. It needs to be pointed out

that for crack densities larger than 0:5, the predictions of the model are less

accurate but would nevertheless remain within the same physical trend, which is a

major difference with the Self-Consistent method (O’CONNELL and BUDIANSKY,

1975). A natural extension of this work would be to incorporate inversion of
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porosity into the model. Unfortunately, such extensive laboratory data is very rare

in the literature.
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Appendix I

Elastic Deformation of a Single Penny-shaped Crack

For a single penny-shaped crack under a uniform normal load p or shear stress s,
the elastic normal and shear displacements of the crack surfaces are not equal (and

thus there can be a non-collinearity between the stress and displacement vectors).

Such elastic displacements hbi can be written respectively as (KACHANOV, 1994):

hbi ¼
hbni ¼ 16ð1�m2Þc

3pE p

hbsi ¼ 16ð1�m2Þc
3pð1�m=2ÞE s

8><
>: ð12Þ

where c is the crack radius, E and m the matrix YOUNG’s modulus and Poisson ratio

respectively. In the case of a crack filled up with fluid, an applied stress on the crack

surface will generate a pore pressure variation Dpf . Considering the crack aspect

ratio f ¼ w=c, and assuming that w � c, the volume variation of the crack is mainly

related to a change in its aperture. Thus the total traction applied on the crack

surface is n:r:nþ Dpf . From equation (12), one obtains:

hDbni ¼ 16ð1� m2Þc
3pE

ðn 	 r 	 nþ Dpf Þ: ð13Þ

Considering that the fluid mass is constant, the variation in fluid density, volume and

aperture are linked:
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D.
.o

¼ �DV
Vo

¼ �hDwi
hwi ¼ � hDbni

hwi : ð14Þ

Remembering that Dpf ¼ �Kf
D.
.o
, the crack normal compliance BN is such that

(KACHANOV, 1994):

BN

BT
¼ 1� m0

2

� � d
1þ d

; ð15Þ

where d is given by equation (5) of the main text.
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