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Abstract—Stress changes within and around a depleting petroleum reservoir can lead to reservoir

compaction and surface subsidence, affect drilling and productivity of oil wells, and influence seismic waves

used for monitoring of reservoir performance. Currently modeling efforts are split into more or less

coupled geomechanical (normally linearly elastic), fluid flow, and geophysical simulations. There is

evidence (from e.g. induced seismicity) that faults may be triggered or generated as a result of reservoir

depletion. The numerical technique that most adequately incorporates fracture formation is the DEM

(Discrete Element Method). This paper demonstrates the feasibility of the DEM (here PFC; Particle Flow

Code) to handle this problem. Using an element size of 20 m, 2-D and 3-D simulations have been

performed of stress and strain evolution within and around a depleting reservoir. Within limits of elasticity,

the simulations largely reproduce analytical predictions; the accuracy is however limited by the element

size. When the elastic limit is exceeded, faulting is predicted, particularly near the edge of the reservoir.

Simulations have also been performed to study the activation of a pre-existing fault near a depleting

reservoir.

Key words: Reservoir geomechanics, numerical modeling, discrete element method, reservoir

compaction, surface subsidence, stress path, fault.

Introduction

Petroleum reservoir depletion leads to stress alteration within and outside the

reservoir. During recent years it has become evident that such stress changes can

have a profound impact on reservoir management (e.g., TEUFEL et al., 1991; ADDIS,

1997; KENTER et al., 1998; HOLT et al., 2004). Not only do they control purely

mechanical deformation (reservoir compaction and surface subsidence), but they also

impact petroleum recovery through compaction drive and through possible

permeability changes. Furthermore, stress changes may affect the ability to drill

stable wells, and the risks for onset of particle production or casing collapse

throughout the life of the reservoir. In some cases, depletion-induced stress changes
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may be large enough to cause seismicity by activation of existing or generation of

new faults. This may be utilized as a tool for reservoir performance monitoring

(MAXWELL and URBANCIC, 2001). The main purpose of reservoir monitoring is to

identify which parts of the reservoir that are produced, so that the production

strategy can be tailored to the behavior of the reservoir. Today reservoirs are

frequently monitored by ‘‘4-D’’ (also called time-lapse) seismic surveys. Clearly,

stress sensitive wave velocities within a depleting reservoir or its surroundings may

cause time-shifts that can be used as indicators of reservoir performance (KENTER

et al., 2004).

The economic impact of the issues above calls for modeling tools that can predict

the evolution of stresses as a result of pore pressure changes associated with fluid

extraction from the reservoir. Further, models need to be available that can also

predict associated strains (compaction, subsidence, casing deformations), associated

seismic velocity changes, and associated seismicity risk. There is currently no model

that can be used to predict all these facets of the problem. Geomechanical simulators

(PANDE et al., 1990; ZIENKIEWICZ, 1991; JING and HUDSON, 2002) addressing large-

scale problems like those described above are most often based on Finite Element

(FEM) formulations, and are inherently static in the sense that they do not predict

dynamic features like faulting. They do however predict plastic strain occurrence, but

need to be re meshed in order to account for faulting. Although full poromechanical

coupling is available (SETTARI and MOURITS, 1994; GUTIERREZ and LEWIS, 1998;

LEWIS et al., 2003; KOUTSABELOULIS and HOPE, 1998; OSORIO et al., 1998; LONGUE-

MARE et al., 2002) in such models, at least in a staggered manner, a further link to

seismic modeling is as yet absent.

The motivation behind the work presented here is to explore the feasibility of

applying an inherently dynamic model to this problem, namely a discrete element

(DEM) approach. The DEM used here is the Particle Flow Code1 (PFC), which is

available in 2-D and 3-D formulations, and which has been applied with success at

grain scale (CUNDALL and STRACK, 1979; POTYONDY and CUNDALL, 2004), and also

has been refined to incorporate poromechanical coupling (SHIMIZU, 2004; LI and

HOLT, 2004) and elastic wave propagation (LI and HOLT, 2002). Clearly, this model

may have severe limitations for a reservoir or even basin-scale application as outlined

here — the elements in the model can no longer be particles, but must be several

meter large circular or spherical grid blocks. Conversely, the potential of the DEM to

study localized failure, as demonstrated by LI and HOLT (2002), makes it attractive

for the purpose of studying the impact of inelasticity which has not been properly

addressed by other tools.

A key subject in reservoir geomechanics is the reservoir stress path as defined in

the next Section, and how the stress path may be linked to the production strategy of

1Trademark of Itasca c.g., Minneapolis, U.S.A.

1132 H.T.I. Alassi et al. Pure appl. geophys.,



the field. We then proceed to describe the basic principles of the DEM used in this

work (PFC). It is important to validate such an approach: Since direct experimental

calibration is not possible, our validation strategy has been to determine if results of

analytical elastic modeling can be reproduced. We will therefore show a comparison

between predictions of the DEM and the classical Geertsma theory (GEERTSMA,

1973), both for 2-D and 3-D cases. We then proceed to address the case in which the

elastic limit is exceeded somewhere in the model, leading to damage, in the form of

fault generation. Finally, we demonstrate how DEM may be used to analyze the

circumstances in which a pre-existing fault may be activated as a result of reservoir

depletion.

Geomechanics of Depleting Reservoirs

The reservoir stress path is defined through the following parameters (HETTEMA

et al., 1998)

cv ¼
Drv
Dpf

; ch ¼
Drh
Dpf

: ð1Þ

Here Dv and Dh denote vertical and horizontal stress path coefficients,

representing the change in total vertical and horizontal stresses (Drv and Drh) with
change (Dpf ) in reservoir pore pressure. Notice that the c – parameters are valid

within the reservoir as well as in the surrounding rock volume, but the pore pressure

change always refers to the reservoir.

If there is no stress arching so that the full weight of the overburden is carried by

the reservoir, then cv ¼ 0. If in addition the reservoir compacts (linearly) elastically

with no lateral strain, then

ch ¼ a
1� 2mfr
1� mfr

; ð2Þ

where a is the poroelastic (Biot) coefficient and mfr is Poisson’s ratio for the drained

reservoir rock. Since ch > 0 and the pore pressure decrease is negative, Eqs. (1) and

(2)imply that the total horizontal stress is reduced.

It is evident from field experience (TEUFEL et al., 1991; ADDIS, 1997; KENTER

et al., 1998) and also from theoretical considerations (RUDNICKI, 1999; SEGALL and

FITZGERALD, 1998) that the stress path in a general case will deviate from that above.

If the reservoir is drained in such a way that the drained volume cannot be

approximated as a flat ‘‘pancake’’–like object, then stress arching will occur. Also, a

stiff (compared to the draining rock volume) overburden will promote stress arching.

One consequence of stress arching is that stress changes occur more in the

overburden than within the reservoir.
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GEERTSMA (1973) used the so-called ‘‘nucleus of strain’’ method to calculate an

analytical solution for displacements as well as changes in the stress field for a

depleting disk-shaped reservoir. His solution is limited by the assumption of uniform

elastic properties of the sedimentary basin, including the reservoir and the

surrounding rock.

In order to solve this problem for realistic field cases, where the shape of the

reservoir differs from the idealized cylindrical geometry, where there is elastic

contrast between the reservoir and its surroundings, and where the reservoir may be

tilted, numerical techniques must be used. The Finite Element Method (FEM) has

been applied to this problem by e.g. KOSLOFF et al. (1980); MORITA et al. (1989);

BRIGNOLI et al. (1997); GAMBOLATI et al. (1999; 2001) and MULDERS (2003).

As an example of the outcome of such simulations, Figure 1 shows the stress path

coefficients obtained on the basis of FEM simulations (MAHI, 2003) vs. depth for a

case of elastic match between reservoir and surrounding rock. Results are shown for

two different radii of drainage. cv is positive, which means that the reservoir

compacts (as a response to effective stress change) less than it would if arching was

not present. Outside the reservoir, where the pore pressure is not expected to change

much as a result of depletion, the positive cv value corresponds to vertical

decompression. The other stress path coefficient, ch, is positive within the reservoir

(reduced total but increased effective horizontal stress), and negative above and

below, implying horizontal compression in those areas. Reducing drainage area is
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Figure 1

Vertical and horizontal stress path coefficients along a vertical line through the reservoir center, calculated

based on FEM simulations (after MAHI, 2003). The computations are performed for a disk-shaped (500 m

thick) reservoir centered at 3000 m depth, with a drainage radius of 2000 m (bold curves) and 500 m

(narrow curves). Approximate solutions are shown for the case of elastically matched reservoir and

surroundings (Young’s modulus = 12 GPa; Poisson’s ratio = 0.20). Notice that these curves are

reproduced as mathematical approximations to FEM simulations.
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seen to cause increased arching within and near the reservoir, although the influenced

zone is shrinking. This situation may correspond to an early development phase or

production of an isolated reservoir compartment. Note that the zone affected by

stress alteration as a result of depletion in both cases extends 1000 m or more above

and below the reservoir.

An important observation from FEM simulations as well as from analytical

computations (SEGALL and FITZGERALD, 1998) is that the vertical stress is strongly

increased near the edge on the outside of the reservoir, while the horizontal stress is

reduced. This stress alteration may exceed the elastic limit of the rock around the

reservoir, and the edge zone is therefore where fault generation or fault activation

most likely will take place.

Discrete Element Modeling

We have in this work applied a Discrete Element Method (DEM) named PFC

(‘‘Particle Flow Code’’) (CUNDALL and STRACK, 1979; POTYONDY and CUNDALL,

2004), which is widely used to model the mechanical behavior of rock and other

granular materials. The material is represented by discrete particles, basically disks

(in 2-D) or spheres (in 3-D) which interact with each other through a user-defined

(usually linear) force-displacement contact law, using a soft contact (overlapping

particles) approach. Within a calculation cycle, the values of forces and displace-

ments are calculated, and the law of motion is applied to each particle to update

position and velocity. Bonds can be inserted at the contacts to represent cementation

in rocks. The model is fully dynamic, and hence able to describe complex phenomena

like rock failure. One significant point in PFC is that elastic energy can be tracked

during simulation, which allows the user to monitor the energy release during crack

development and fault sliding. Additionally, wave propagation simulations can be

easily performed (LI and HOLT, 2002) since PFC is a dynamic program.

In the subsequent sections of this paper we will use bonded models to simulate

reservoir depletion and fault activation.

Elastic Case: Comparison with Geertsma’s Analytical Model

Bonded particles can be used tomodel continuummedia, similar to other numerical

methods like FEM.Themain purpose of thework presented in this section, is to discern

towhat extent PFCperforms as a continuummodel. To do this, a set of simulations has

been performed both with two-dimensional (PFC2-D) and three-dimensional (PFC3-D)

DEM models, and then compared to analytical predictions based on GEERTSMA

(1973). Thus; the model and the boundary conditions have been constructed so that no

interparticle bonds break, i.e., the model material is linearly elastic.
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GEERTSMA (1973) used the center of dilatation (‘‘nucleus of strain’’) concept to

calculate displacements and stress changes associated with depletion of a disk-shaped

reservoir in an elastically homogeneous half-space. His analytical solutions are valid

for 3-D, making it necessary to derive similar analytical solutions for the center of

dilatation (represented as disks) approach in 2-D (the derivation is not shown in this

paper). Also, instead of using analytical integrals as done by Geertsma for the disk-

shaped reservoir, numerical integral is incorporated to solve the problem of other 3-

D reservoir shapes.

Modeling of Depletion for a Rectangular Reservoir Using PFC2-D.

PFC is suitable for grain-scale modeling, where recent studies indicate that a

good qualitative and close to quantitative match between modeling and experiment

can be obtained (HOLT et al., 2005). Since here we use PFC for modeling of large-

scale behavior, the particle size must be chosen large (typically 20 m radius in this

work) as well, to keep reasonable computational time. No controlled experiment is

possible, consequently, validation is performed by comparison with an analytical

model as described above.

In order to make the PFC model most comparable to continuum models, the

particle packing should be chosen as compact as possible. In the work presented here,

a hexagonal packing of uniformly-sized particles is used. This leads to anisotropy,

which creates difficulty in finding suitable linear elastic parameters for the model

when comparing it to isotropic analytical theory. An alternative would be to choose a

Reservoir

Reservoir
boundary

Figure 2

PFC2-D geomechanical model used for modeling reservoir depletion. The black particles along the reservoir

boundary denote where forces are applied to simulate depletion.
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broad particle-size distribution. Further, force transmission in granular materials is

different from that in continua. The force chain pattern depends not only on the

elastic parameters of the system, but also on the contact law that governs the relation

among the neighboring particles (linear or nonlinear), and the packing of the

particles.

The model is 10 km wide and 4.3 km deep. It is composed of a hexagonal packing

of 31250 equally sized (radius = 20 m) particles. After packing, gravitational force is

added under zero lateral strain (fixed walls) boundary conditions. Finally, parallel

bonds are inserted at all interparticle contacts. The tensile as well as the shear

strength of the bonds are set equal to 5 MPa. Figure 2 shows the model that is used

during the simulation, including a rectangular reservoir inserted at 2000 m depth

from the surface. Table 1 shows the model properties. Note that the reservoir

parameters do not represent any real reservoir, since the main purpose of this study is

to demonstrate feasibility of DEM for reservoir and basin scale studies.

The reservoir is depleted uniformly, with no drainage to the surroundings. Under

this assumption, the pore pressure gradient on the boundary will be very large,

whereas inside the reservoir it will be zero. In FEM modeling this problem may be

solved using a technique presented by GAMBOLATI et al. (2001). They let the pore

pressure decrease from pf to zero on a string of elements around the reservoir. In our

model we similarly apply these forces to all particles at the reservoir boundary. The

accuracy of our solution will hence depend on the element (i.e., particle) size, which is

linked to computational time.

Using this method, the reservoir is depleted by a pore pressure change

Dpf ¼ �10 MPa. The reservoir has been placed at different depths c within the

model basin. Young’s modulus and Poisson’s ratio of the reservoir material (as listed

in Table 1) were determined by performing a biaxial test on a sample with the same

PFC parameters as the reservoir. In the reservoir model there is however a stress

gradient, therefore elastic parameters are also expected to change with depth. No

bonds were broken in the model during this simulation, meaning that the PFC

material behaves perfectly elastic. The resulting compaction and subsidence are

plotted in Figure 3 together with the analytical solution obtained from Geertsma’s

Table 1

Model properties for the PFC2-D simulations

Properties Values

Model dimensions [km] 10 * 4.3

Reservoir dimension [m] 4000*500

Particle radius [m] 20

Interparticle normal stiffness [GN/m] 24

Interparticle shear stiffness [GN/m] 12

Interparticle normal and shear bond strength [MPa] 5

Young’s modulus [Gpa] 30

Poisson’s Ratio [-] 0.14
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Surface subsidence and displacement at the top and the bottom of a rectangular (4000 · 500 m) reservoir,

simulated with a PFC2-D model and those obtained by analytical solution. Results are shown for different

reservoir depths. The reservoir is depleted with Dpf 10 MPa. uz is the vertical displacement, cm is the

uniaxial compaction coefficient, h, R, and c are reservoir thickness, radius (= 2000 m), and depth,

respectively. Reservoir compaction equals the difference between reservoir top and bottom displacements.
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Comparison between PFC2-D modeled and analytically calculated reservoir displacement (at the top of the

reservoir) and surface subsidence along the x axis (lateral direction). Model parameters are listed in

Table 1, reservoir depth is 2000 m, uz is the vertical displacement. cm is the uniaxial compaction

coefficient, h is reservoir thickness, R is the reservoir radius.
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method, adapted to 2-D. As depth c increases, the values of subsidence and also the

displacement of the top of the reservoir decrease, given that the reservoir dimensions

are kept unchanged. It can also be seen that for shallow depths (c=R < 0:5; R is

reservoir radius) the value of subsidence becomes closer to that of vertical

displacement at the top of the reservoir. Satisfactory agreement is obtained between

the numerical and the analytical solutions. Figure 4 shows a similar comparison

between PFC2-D and the Geertsma 2-D solution of the subsidence and compaction

bowls in the case of a reservoir placed at 2000 m depth. The agreement is again

acceptable.

The PFC2-D simulation permits determination of the stress path coefficients (Eq.

(1)) throughout the model. The changes in vertical and horizontal stresses are

measured after depleting the reservoir by 10 MPa. The arching coefficients obtained

from PFC and analytical solutions are shown vs. depth through the reservoir center

in Figure 5, and in the lateral direction just above the top of the reservoir in Figure 6.

Note that the discrete element model predicts an increase in the horizontal stress path

coefficient with distance from the center of the reservoir towards the edge, as was

found also in the finite-element simulations of a disk-shaped reservoir by MULDERS

(2003). On the other hand, there is a significant difference between the results of the

PFC simulation and the analytical solution: While the trends are the same, the values
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Vertical and horizontal arching coefficients versus depth, from PFC2-D simulation. Reservoir depth =

2000 m.
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of the stress path coefficients differ significantly. This is related to element size and

texture as mentioned above, and particularly to choosing the appropriate elastic

parameter for the analytical computation. The difference also depends on the method

used to measure the stress in PFC: To date the stress is assumed to exist only in the

particles (or disks). The boundary conditions also highly contribute to the difference,

as can be seen in Figure 4, where the discrepancy between the analytical and the

numerical solution increases with distance from the reservoir boundary towards the

model boundary.
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Vertical and horizontal arching coefficients along x axis, from PFC2-D simulation. Reservoir depth =

2000 m.

Table 2

Model properties for the PFC3-D simulations

Properties Values

Model dimensions [m] 1600 * 1600*800

Reservoir dimension [m] 800*800*120

Particle radius [m] 20

Young’s modulus [GPa] 12

Poisson’s Ratio [-] 0.0
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Figure 7

Comparison between PFC3-D modeled and analytically calculated (with the nucleus of strain model;

GEERTSMA, 1973) compaction (at the top of the reservoir). Model parameters are listed in Table 2,

reservoir depth is 400 m.

Figure 8

Vertical displacements at the surface and at the top of the reservoir during simulated depletion, using a

PFC2-D model as described in the text. Also shown are recorded numbers of broken bonds between

elements within the reservoir and in the full model.
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Modeling of Depletion Using PFC3-D

A PFC3-D model consisting of 32,000 spherical particles is constructed, using a

cubic packing (see Table 2 for model description). The element (particle) size was

kept the same as in the 2-D modeling (20 m). In order to limit computational time,

the model size is considerably reduced (1600 · 1600 · 800 m). The reservoir thickness

is 120 m, and it is inserted at a depth of 400 m. Depletion of the reservoir is again

simulated by applying normal forces to the boundary particles (as was done above).

Figure 7 shows a comparison between PFC3-D modeling and the Geertsma [3-D]

solution for compaction at the top of the reservoir. Again, a triaxial test was

performed to establish Young’s modulus and Poisson’s ratio for the reservoir

material. As in the 2-D case, the fit is acceptable, but not perfect. The reasons for not

accomplishing perfect matching are the same as above: The size of the model relative

to the particle size is even smaller in this case, which is a primary source of error.

Again; rock properties in the PFC model are expected to vary with depth, and the

cubic packing also introduces a slight anisotropy. Nevertheless, a main conclusion is

that both 2-D and 3-D PFC simulations with perfectly elastic (no bond breakage)

material produce results which are fairly close to analytical predictions.

Beyond Elasticity: Fault Initiation within and outside a Depleting Reservoir

As can be depicted from the previous sections, the stresses evolving during

reservoir depletion may exceed the elastic limit; within the reservoir, as well as outside

of it. This may lead to the formation of localized deformation bands, or activation of

pre-existing faults. In order to study faulting, the PFC2-D model created in the

previous section was used, with a significantly larger reservoir depletion ( = 60 MPa).

Figure 8 shows the modeled surface subsidence and displacement at the top of

the reservoir. The rate of compaction increases with increasing depletion, and the

increased reservoir compressibility can be directly linked to damage inside the

reservoir as measured by the number of bond breakages. The vertical displacement

on the surface of the model shows a similar trend. Obviously, the increased

compaction within the reservoir contributes to this. The change in subsidence to

compaction ratio is small, in spite of significant bond breakage also in the

surrounding material, in particular near the reservoir edges, as illustrated in

Figure 9. The localized failure zone near the reservoir edge seems to have little

impact on the surface subsidence, at least as long as they do not reach the surface.

The observed failure pattern is in agreement with expectations based on analytical

computations, finite-element simulations (e.g., BRIGNOLI et al., 1997), as well as

laboratory modeling (PAPAMICHOS et al., 2001). While bonds fail largely in shear

within the reservoir, tensile bond failures dominate outside. This is partly a result

of the somewhat arbitrary choice of tensile vs. shear bond strengths. Notice that

1142 H.T.I. Alassi et al. Pure appl. geophys.,



the failure pattern in this simulation corresponds largely to that seen in a previous

PFC2-D simulation (HOLT et al., 2004), but differs in details: In that case, significant

bond breakage occurred above the reservoir as well as near the edges. The

difference is mainly caused by the difference in particle-size distribution and

texture. Figure 10 also shows bond breakages after continued depletion to

100 MPa (notice that the values are arbitrarily chosen and do not represent a

real case — in reality, the level of depletion should be compared to the strength

parameters of the surrounding and reservoir rock). Cracks are seen to propagate to

Figure 10

Positions of bond breakages after depleting the PFC2-D model shown in Figure 2 with 100 MPa. The black

line segments indicate local shear failures, while the grey ones represent tensile failures.

Figure 9

Positions of bond breakages after depleting the PFC2-D model shown in Figure 2 with 60 MPa. The black

line segments indicate local shear failures, while the grey ones represent tensile failures.
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the surface and the number of cracks inside and outside the reservoir increase

significantly. Although this is not a realistic case, it shows a similar trend to that

obtained from laboratory modeling (PAPAMICHOS et al., 2001).

DEM Modeling with a Pre-existing Fault

The simulations shown in the previous section demonstrate that the DEM is able

to simulate faulting during depletion of an initially intact reservoir embedded in

initially intact surroundings. One may however question if this fault pattern is

realistic or not – it is clearly limited by the resolution of the simulation (particle size),

which limits the possibility for a fault to localize within the model. In reality, faults

may also exist before the reservoir is depleted. The positions of these faults may be

seen from seismics, and then it makes no sense to use a numerical model to attempt

reproduction of their formation.

These considerations triggered a study of how PFC may be used to embed and

simulate the behavior of an existing fault, and to explore the feasibility of studying

fault response to reservoir depletion.

To create a fault in PFC2-D, the same model as in previous sections is applied, but

with specific properties assigned to a group of particles along a pre-defined fault

plane. Table 3 presents the fault properties. Recognize that since the hexagonal

packing is used, the fault takes a straight shape because of the chosen dipping angle

(60�). Irregular packing may also be used, however then smaller particle sizes need to

be created in the fault zone. Slip may be initiated in different ways. A triggering

process driven by a high shear stress is mimicked by reducing the friction coefficient

between the fault particles and neighboring particles. If the process is triggered by

high normal stress, fault activation may be simulated by slightly reducing the size (by

1%) and stiffness (see Table 3) of the fault particles.

After the fault is initiated, the model is run to equilibrium, where the unbalanced

force is reduced to a minimum value, and no further fault slipping occurs. In our

case, a normal fault is developed according to both scenarios above, since the model

Table 3

Fault properties used in PFC simulations. These properties are assigned to all the particles that compose the

fault

Properties Values

Normal stiffness kn [GN/m] 1

Shear stiffness ks [GN/m] 0.5

Friction coefficient l [-] 0.3

Fault length [m] 1480

Fault dip angle [�] 60
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is in a normal-faulting environment (vertical > horizontal stress). The hanging wall

slips downward and the foot wall slips upward.

The shear-induced fault (Fig. 11) extends in the direction of the maximum

principal stress by development of wing cracks. Damage is mainly located of the tip

Figure 11

Bond breakages during fault sliding, triggered by reducing the interparticle friction coefficient. Note that

all bond failures are tensile (gray color), except at the fault face, which shows failures in shear (black).

Figure 12

Bond breakages during fault sliding, triggered by reducing particle size and stiffness. Note that all bond

failures are tensile (gray color), except at the fault face, which shows failures in shear (black).
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regions of the fault. The compaction-induced fault, on the other side, develops a

more extended damage zone (Fig. 12).

Fault sliding alters the stress distribution of the model, leading to stress

concentrations at the tips of the fault. On one side of the tip, the stress increases

(more compression), while on the other side of the same tip, there is an area where

the stress decreases (becomes more tensile). Within the stress reduction zones, bonds

may break in tension. Cracks grow during sliding of the fault as a result of more

stress concentration, and the stress re-distribution caused by bonds breakage.

Eventually the cracks that nucleate at different places will coalesce with each other

forming a damage-zone around the fault. The cracks do not only start at the tips of

the fault, but also along the fault plane, because of the stress disturbance caused by a

sudden change of the stiffness and the size of the particles that form the fault.

Figure 12 shows the tensile breakages of the parallel bonds at the end of the

simulation. ODED et al. (2002) presented a fault deformation model which predicts

damage (cracks) not only at the fault tips, but also along the fault plane, as is also

seen from the PFC model with particle shrinkage as the fault trigger.

Reservoir Depletion, with Fault on the Side of the Reservoir

To study the effect of reservoir depletion on re-activation of a fault, a reservoir is

inserted to the left of the fault created previously (see Fig. 13). The size of the

reservoir is (arbitrarily chosen) 2500 *500 m. Again an undrained boundary

condition is assumed. According to SEGALL and FITZGERALD (1998), normal faults

that lie on the side of the reservoir will be re-activated under such circumstances,

Figure 13

A normal fault is placed to the right of a reservoir. The model is used to simulate the re-activation behavior

of the fault due to reservoir depletion.
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given a sufficient pore pressure reduction. A simulated reservoir depletion of 40 MPa

causes slipping of the fault, the hanging wall moves downward, while the foot wall

follows the movement of the reservoir boundary. It can be seen that the deformation

of the lower boundary increases the amount of slip, while the deformation of the

upper boundary of the reservoir decreases the slip between the two fault faces. This

behavior differs from that of a typical normal fault, in which the foot wall is expected

to move upward.

The slip or frequently called RSD (relative shear displacement) is plotted in

Figure 14 versus depth after 20 and 40 MPa depletion. This value represents the

relative displacement between the two sides of the fault in the dipping direction.

Reactivation causes new bond breakage in the area of stress concentration; in this

case at the tensional side of the fault tips. Figure 15 depicts the new cracks that are

developed due to reservoir depletion. The increasing tension on the sides of the

reservoir as a result of depletion causes creation of a tensile-normal fault in the

direction perpendicular to minimum horizontal stress (SEGALL and FITZGERALD,

1998; FERRILL and MORRIS, 2003). Since in our model the minimum stress is

horizontal, the created tensile fault has a dip angle = 0 (vertical fault).

Discussion

The simulations presented here demonstrate the feasibility of using a discrete

element model to simulate the geodynamics of a depleting reservoir. The strength of
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Figure 14

Slip between the fault faces (see Fig. 12) after 20 and 40 MPa depletion.
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DEM is the ability to simulate faulting and fault activation in a dynamic manner,

where natural complexity emerges from simple contact laws. A dynamic approach is

therefore beneficial when fracturing is expected to take place. Consequently

traditional finite-element solutions suffer, mainly from the need to continuously

remesh as a fracture grows, but also because of limitations in path conformability

and element size. However; there will be a multitude problems where FEM solutions

are sufficient, and these solutions are more efficiently obtained than DEM solutions.

Element size also is a main restriction for DEM. Within limits of current

computer technology, element size cannot be reduced to the size of physical particles.

Rules need to be developed to guide the choice of particle size distribution and

packing, and to guide the choice of parameters for contact laws between elements.

Notice that disks or spheres as used here are basic building blocks which may be

grouped into clusters or ‘‘clumps’’ to generate elements of various shapes (POTYONDY

and CUNDALL, 2004; LI and HOLT, 2002). Micromechanical calibration (as in HOLT

et al., 2005) cannot be expected to provide a complete answer here, and the approach

must be based largely on field experience, geological considerations, and comparison

to theory or other modeling tools. Improved resolution may however be obtained by

using small particles in parts of the model where the dynamic feature is most

required. This may be achieved with PFC by utilizing a recent option for automatic

linkage of the DEM to a continuum (e.g., FEM or finite-difference) model.

In the PFC simulations shown here, poromechanical coupling was (for simplicity)

not applied. This is however possible (SHIMIZU, 2004; LI and HOLT, 2004), and would

permit more realistic treatments of pressure gradients within a reservoir compartment

Figure 15

Bond breakages developed after depleting the reservoir in Figure 12 by 40 MPa. Note the concentration of

the cracks at the tips of the fault and also at tips of the reservoir, as a result of stress concentration in those

areas.
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and across faults. This also permits well drainage to be part of the model. Currently,

only single phase fluid flow has been coupled to PFC, nonetheless this is not a

fundamental limitation. Also, since wave propagation can be performed relatively

easy with PFC (LI and HOLT, 2002), direct simulations of seismic surveys as well as

induced seismicity (HAZZARD and YOUNG, 2000) may be incorporated within the same

scheme as the geomechanical and fluid flow simulations.

Conclusions

We have demonstrated the feasibility of a Discrete Element Model (PFC) to

simulate stress evolution and associated displacements resulting from pore pressure

depletion of a producing reservoir. The model was calibrated in 2-D as well as 3-D

for a case of perfect elasticity, when comparison could be made to analytical

calculations by the nucleus of strain theory (GEERTSMA, 1973). The accuracy of the

DEM is limited by element size, which here was 20 m (given by the radius of disk

elements in 2-D; spheres in 3-D). While calculated compaction and subsidence were

in good agreement with theory, the scatter in stress calculations was more significant.

The results are also sensitive to particle size distribution and packing, indicating that

more work is required to optimize the choices of these parameters and parameters

controlling the contact law between particles. Also as with other numerical methods,

the results are largely affected by the boundary conditions. Therefore the model must

be refined to achieve better results.

The simulations performed illustrate the ability of the DEM to generate localized

faults when the elastic limit is exceeded somewhere in the model. As one would

expect from analytical stress calculations and from previous numerical work, faulting

is likely to take place in the surrounding near the edge of a depleting reservoir. When

faults are known to exist prior to depletion and can be identified from seismic images,

they may be embedded in the DEM model by selecting an array of particles with

properties different from the surroundings. In our case, two options for numerical

simulation of fault activation were considered; (i) reduced friction; (ii) reduced

particle size and stiffness. Further work is required to find a geologically

representative formulation for a fault in the DEM.

We conclude that DEM, such as PFC, may provide useful insight into the

dynamic behavior of a rock mass such as in the case of a depleting reservoir

embedded in a sedimentary basin. In principle, fluid flow and elastic wave

propagation may also be incorporated in this model. Only when faulting is expected

to take place will DEM be beneficial compared to more traditional simulation

approaches (like FEM). Improvements include reducing particle (element) size,

particularly in zones where failure may occur. Linking of DEM to a continuum

model appears to be a promising tool for this.
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