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Introduction

Salinity is an extending environmental issue which compromises the long-term sus-
tainability of agriculture, especially in the coastal semi-arid areas [1]. This is the case
in Tunisia, where the semi-arid Mediterranean climate prevails (mean annual precip-
itation of 200–700 mm). Subsequently, around 10 % of the whole territory would be
salt-affected [2]. Halophytes have evolved a wide range of attributes (morphological,
physiological and biochemical) allowing them to tolerate the presence of salt in the
medium [3]. Besides, several studies suggest that these plants are potentially useful
for ecological and economical purposes [4].

Intracellular salt flux control is one of the major salt tolerance determinants, in-
volving salt exclusion and/or compartmentation. P and V H+-ATPases (respectively
localized at the plasma membrane and tonoplast) provide energy for Na+/H+ an-
tiporters, thus allowing sodium active transport away from the cytoplasm [5]. The
bi-directional transport of sodium insures ion homeostasis, cell turgor, as well as
the metabolic functioning [6]. On the other hand, impairment of the photosynthetic
activity greatly accounts for growth restriction of non-halophytes under salinity [7].
Depressive effects of salinity are thought to arise from stomatal and/or non stomatal
limitations (i.e., stomatal closure and/or damage to Calvin cycle enzymes) [8].

Cakile maritima (Brassicaceae) is an annual fleshy halophyte which colonizes
the sandy beaches of the Tunisian littoral. This study aims to characterize the plant re-
sponse to long-term salt treatments (0–500 mM NaCl), using physiological (growth,
water status, mineral nutrition) and biochemical (H+-ATPase activity and photo-
synthetic capacity) criteria. Changes in seed yield and seed oil characteristics under
salinity are also assessed.
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Material and methods

Mature seeds of C. maritima were harvested on sandy beaches of Raoued (20 km to
the north of Tunis). Seedlings were grown in pots filled with inert sand in a glasshouse
(16 h/8 h light/dark regime; 60 % relative humidity; 300 ‹mol·m−2·s−1 photosyn-
thetic active radiation – PAR; 22±1◦ C temperature). Irrigation was performed with
a LongAshton nutrient solution [9]. Four week-old plants were progressively submit-
ted to increasing salinities (0–500 mM NaCl) for 6 weeks. The same experience was
repeated until the complete maturation of seeds. At the final harvest, physiological
parameters were determined (i.e., dry weight, leaf number and area, leaf succulence
ratio, leaf ion status). Yield components assessed were seed yield, seed mass, seed
viability, and seed oil content.

Expanded leaves situated on the fifth node from the shoot top were used for photo-
synthetic and H+-ATPase activity measurements. Leaf gas exchanges were measured
with a portable photosynthesis system (LCi, ADC Bioscientific Ltd., UK) at 2,500
‹mol.m−2.s−1 PAR (saturating light). Ribulose-biphosphate carboxylase/oxygenase
(Rubisco; EC 4.1.1.39) activity was spectrophotometrically assayed (λ = 340 nm)
[10]. Vacuolar and plasma membrane (respectively, V and P) H+-ATPase activi-
ties were assayed on isolated chloroplasts, using [γ−32P] ATP (1 MBq) (Hartmann
Analytik, Braunschweig, Germany) [11]. Seed total lipids were extracted [12] and
triacylglycerols (TAG) were separated by thin layer chromatography (TLC), using
silica gel plates (Merck G 60) [13]. Fatty acid methyl esters were quantified by
adding heptadecanoic acid (17:0) as an internal standard. Results are the means of
three samples. A one way ANOVA was achieved to compare the mean values, using
the SPSS statistical program (P < 0.05). In case of significant differences, Duncan
post hoc tests were performed.

Results and discussion

Moderate salinities (50–100 mM NaCl) were optimal for the plant growth, since
improving whole plant dry weight (+24 % at 100 mM NaCl) (Fig. 1A). No signifi-
cant growth decrease occurred in the 200–300 mM NaCl range (ca. 90 % of control
values), and the plant was able to survive, even at a salinity close to that of seawater
(500 mM NaCl). These data corroborate previous investigations on other halophytes,
showing sub-optimal growth in mediums lacking salt [14, 15]]. Leaves largely ac-
counted for the plant response pattern, since their dry weight and number were
significantly stimulated at optimal salinities (50–100 mM NaCl) (Figs 1A and 1B).
Leaf water status, evaluated by leaf succulence ratio, was significantly enhanced by
salt treatments (Fig. 2A), and remained higher than the control values, even at 500
mM NaCl. The improvement of leaf hydration under salinity was concomitant with
the accumulation of high amounts of Na+, and at a lesser content of Cl− (Fig. 2B)
(1.8 and 3.8 mmol.g−1 DW, respectively). Since salt treatment did not impair leaf
hydration, most of Na+ ions transported in leaves might have been removed from the
leaf apoplast and efficiently compartmentalized by cells for water retention. Salin-
ity restricted the plant nutrient uptake, leading to a significant decrease in leaf K+
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contents (Fig. 2B). The same tendency was observed for Ca2+ and Mg2+ (data not
shown). The salt-induced reduction of growth could be a consequence of nutritional
imbalance. Moreover, despite Na+ is a cheap osmoticum for halophytes, an excess
of this ion over K+ can inhibit several metabolic processes.

Figure 1. Effect of NaCl on growth of C. maritima. (A) Biomass production of the whole plant
and the different organs. (B) Leaf number per plant. Means of 18 replicates ± SE. (Values
within each salt treatment marked with at least one same letter are not significantly different
at P< 0.05.)
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Figure 2. Effect of NaCl on leaf water status and mineral nutrition of C. maritima. (A) Leaf
succulence ratio. (B) Leaf ion contents. Means of 18 replicates ± SE. (Values within each salt
treatment marked with at least one same letter are not significantly different at P < 0.05.)

Combining the results relative to the leaf water status and salt accumulation of
salt-treated C. maritima provide indirect evidence for the existence of salt compart-
mentation mechanisms within leaf cells (i.e., inclusive strategy). This assumption
was confirmed by (i) the strong stimulation of V H+-ATPase activity up to 300
mM NaCl (+80 %/control) (Fig. 3A) and (ii) the absence of anatomical structures



Salt effect on growth, photosynthesis, seed yield and oil composition 59

responsible for salt exclusion at the leaf surface. NaCl concentrations in the 300–
500 mM range significantly promoted P H+-ATPase activity, suggesting that the
exclusive pattern may take place at high salinities (Fig. 3B). Keeping sodium and
chloride away from cytosol (using inclusive strategy) is of vital importance for di-
cotyledonous halophytes lacking morphological structures of salt excretion at their
leaf surface [16]. Owing to their catalyzer role, proton pumps enable both vacuolar
and plasma membrane antiporter functioning, and play therefore, a major role in salt
tolerance [17]. In addition, the overexpression of Na+/H+ antiporters plants has been
reported to improve the performance of several species in saline conditions [18].

Figure 3. Effect of NaCl on H+-ATPase activity (%/Control) of C. maritima. (A) Changes
in vacuolar V H+-ATPase activity. (B) Changes in plasma membrane P H+-ATPAse activity.
Means of three replicates ± SE. (Values within each salt treatment marked with at least one
same letter are not significantly different at P < 0.05.)



60 A. Debez et al.

Figure 4. Effect of NaCl on photosynthetic activity of C. maritima. Results of gas exchanges
are the means of 10 replicates. Results of Rubisco activity are the means of three replicates.

Both stomatal and non stomatal components of photosynthesis were improved at
optimal salinity for growth. CO2 assimilation rate (A), stomatal conductance (gs), and
transpiration rate (E) were 30–40 % higher at 100 mM NaCl, while specific activity
of Rubisco was augmented by ca. 10 % (Fig. 4). Supra-optimal salinities impaired
photosynthetic activity, but this depressive effect was more pronounced on stomatal
conductance than on enzyme activity (respectively 15 % and 75 % of the control
values at 400 mM NaCl). Former studies showed that stomatal limitation accounted
for the reduction of photosynthesis in salt-treated plants [8]. In C. maritima, stomata
closure was associated with reduced transpiration rate (E), leading to higher water-use
efficiency (+ ca. 50 % at 500 mM NaCl). No salt-induced shift in the photosynthetic
pathway (C3 to C4) was observed, since phosphoenolpyruvate carboxylase (PEPC,
EC 4.1.1.39) activity remained lower than Rubisco one, irrespective of salt treatment
(data not shown).

Optimal salinities for growth and photosynthesis promoted significantly seed
production (+50 % in the 50–100 mM NaCl range) (Fig. 5A). This parameter was
more affected than plant growth at high salinities (respectively 21 % and 84 % of
the control values at 300 mM NaCl), likely resulting from a reduction of flower
production and/or a decrease of their fertility [19]. The mean mass of individual seed
decreased significantly in the presence of salt in C. maritima (Fig. 5A), indicating
that assimilate allocation to seeds was more restricted by salt than seed initiation.
Seeds harvested from plants exposed to mild salinities (50–200 mM NaCl) displayed
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Figure 5. Effect of NaCl on the reproductive capacity of C. maritima. (A) Seed production
per plant (means of 12 replicates) and individual seed mass (mg) (means of 300 replicates),
expressed as % of the control. (B) Germination capacity (%) in distilled water of seeds har-
vested from plants exposed to increasing salinities. Means of three replicates ± SE. (Values
within each salt treatment marked with at least one same letter are not significantly different
at P < 0.05.)

high germination rates (up to 80 %), contrasting with those produced under high salt
levels (Fig. 5B). Increasing salinities led to both quantitative and qualitative changes
in the seed oil characteristics. Seed oil content (on a dry weight basis) was positively
correlated with the medium salinity (respectively 30 % and 28 % at 100 mM and 500
mM NaCl). Seed oil content seemed also to be unaffected by salinity in the oleaginous
halophyte Lesquerella fendleri [20], while decreasing in sunflower [21]. Erucic acid
(22:1) level increased markedly, reaching 26 % at 500 mM NaCl (two-fold higher
than control values). This trend was concomitant with a significant decrease in oleic
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acid (18:1) level (ca. 45 % of the control value at 500 mM NaCl). In our conditions,
higher erucic acid in salt treated C. maritima was associated with increased 22:1/18:1
ratio (0.39 and 1.36, respectively for the control and 500 mM NaCl plants), likely
mediating elongases, which are known to catalyze the formation of long fatty acids
(such as erucic acid), using oleic acid as initial substrate [22].

In summary, the present study shows that moderate salinities are required by C.
maritima to express maximal growth and seed production potentialities, in relation
with the concomitant involvement of several processes at different levels. Further
field experiments are necessary to confirm the economic potential of this promising
halophyte.
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