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Partial and Complete Linearization of PDEs
Based on Conservation Laws

Thomas Wolf

Abstract. A method based on infinite parameter conservation laws is de-
scribed to factor linear differential operators out of nonlinear partial differen-
tial equations (PDEs) or out of differential consequences of nonlinear PDEs.
This includes a complete linearization to an equivalent linear PDE (system)
if that is possible. Infinite parameter conservation laws can be computed, for
example, with the computer algebra package ConLaw.
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1. Introduction

With the availability of computer algebra programs for the automatic computation
of all conservation laws up to a given differential order of the integrating factors
(as described in [5, 6]) conservation laws have been found that involve arbitrary
functions, i.e. infinitely many parameters. In this paper we show how based on such
conservation laws a linear differential operator can be factored out of a combination
of the original nonlinear partial differential equations (PDEs) and their differential
consequences. Possible outcomes include

• a complete linearization into an equivalent linear system,
• a partial linearization in the sense that a linear differential operator is fac-

tored out, splitting the problem into a linear one plus a nonlinear problem of
lower order and often fewer independent variables (e.g. ordinary differential
equations (ODEs)),

• the derivation of at least one linear equation from a nonlinear system (with
the possibility of deriving further linear equations for the new mixed linear-
nonlinear system).

An advantage of the procedure to be presented is that conservation laws need
not be given explicitly in terms of the arbitrary functions. It is enough to have
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the conservation law determining conditions solved up to the solution of a system
of consistent and necessarily linear PDEs which have arbitrary functions in their
general solution.

The content of the paper is as follows. After comments are made on the
computation of conservation laws in Section 3, the four computational steps of
factoring out linear differential operators are illustrated using the Liouville equa-
tion in Section 4. Sufficient conditions for complete or partial linearizations are
listed in Section 5, followed by a discussion of computational aspects in Section 6.
A generalization involving the introduction of potentials in terms of which a lin-
earization becomes possible is explained in Section 7. In later sections 8 and 9, an
illustration is given of how the method works when nonlinear equations linearize to
inhomogeneous equations or to triangular linear systems. Further examples where
a complete or at least a partial linearization is possible are given in the appendix.

In this contribution we concentrate on computational aspects of the method
and give examples for all of the above scenarios. An extension of the method
discussing complete and partial linearizability through point and contact transfor-
mations will appear in a future publication [1], with numerous new examples and
a comparison with other linearization methods found in the literature.

2. Notation

We follow the notation in [3] and denote the original nonlinear partial differential
equations as 0 = ∆α, the dependent variables by uβ, α, β = 1, . . . , q and the
independent variables by xi, i = 1, . . . , p. In examples dealing with functions u =
u(x, t) or u = u(x, y), partial derivatives are written as subscripts like uxy =
∂2u/(∂x∂y). If a formula already contains subscripts then ∂i∂∂ will be used for
∂/∂xi. The multi-indices J ,K denote multiple partial derivatives like uα

J which in
our notation include uα. With #J we denote the differential order, i.e. number of
partial derivatives represented by J . Total derivatives with respect to xi will be
denoted as Di. We apply the convention that summation is performed over terms
that involve two identical indices, one subscript and one superscript. For example,
the divergence of a vector field P i would be denoted as DiP

i (≡ ∑i DiP
i). The

procedure to be presented repeatedly uses adjoint differential operators as follows.d
For given functions fA(xi), A = 1, . . . , r, let linear differential expressions Hk be
defined as

Hk = aJ
kA∂JfA, k = 1, . . . , s,

with coefficients aJ
kA = aJ

kA(xi) and summation over A and the multi-index J . The
corresponding adjoint operators H ∗

AkH are computed for arbitrary functions Gk(xi)
by repeatedly reversing the product rule of differentiation for the sum GkHk to
get

GkHk = fAH ∗
AkH Gk + DiP̄

i (2.1)
where

H ∗
AkH Gk = (−1)#J∂J

(
aJ

kAGk
)
. (2.2)
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and P̄ i are expressions resulting from integration by parts with respect to ∂J in
this computation.

3. Conservation Laws with Arbitrary Functions

Conservation laws can be formulated in different ways (see [6] for four different
approaches to compute conservation laws). The form to be used in this paper is

DiP
i = Qα∆α (3.1)

where the components P i of the conserved current and the so-called characteristic
functions Qα are differential expressions involving xi, uα

J . Other forms of conserva-
tion laws can easily be transformed into (3.1). One approach to find conservation
laws for a given system of differential equations 0 = ∆α is to specify a maximum
differential order m of derivatives uα

J on which P i, Qα may depend and then to
solve condition (3.1) identically in xi, uα

J for the unknown functions P i, Qα. Due
to the chain rule of differentiation in (3.1) the total derivatives Di introduce extra
derivatives uα

K with #K = m+1 > m, i.e. derivatives not occurring as variables in
P i, Qα. Splitting with respect to these uα

K results in an overdetermined and linear
system of PDEs for P i, Qα.1

What is important in the context of this paper is that a differential Gröbner¨
basis can be computed algorithmically and from it the dimension of the solution
space can be determined, i.e. how many arbitrary functions of how many vari-
ables the general solution for P i, Qα depends on. In extending the capability of a
program in solving condition (3.1) by not only computing a differential Gröbner¨
basis (for linear systems) but also integrating exact PDEs (see [8]) and splitting
PDEs with respect to only explicitly occurring uα

J (which here act as independent
variables), the situation does not change qualitatively. The result is still either the
explicit general solution or a linear system of unsolved PDEs

0 = Ck(xi, uα
J , fA), k = 1, . . . , r , (3.2)

for some functions fA(xj , uβ
J) where this system is a differential Gröbner basis and¨

allows one to determine algorithmically the size of the solution space. The functions
fA are either the P i, Qα themselves or are functions arising when integrating the
conservation law condition (3.1).

If the conservation law condition (3.1) is solved, i.e. P i, Qα are determined in
terms of xi, uα

J , fA
Kf possibly up to the solution of remaining conditions (3.2) then

it is no problem to use a simple division algorithm to determine coefficients Lk

satisfying
Qα∆α = DiP

i + LkCk (3.3)
identically in xi, uα

J , fA
J . The coefficients Lk are necessarily free of fA

J because (3.1)
is linear and homogeneous in Qα, P i and this property is preserved in solving these

1Note that regarding (3.1) as an algebraic system for unknowns Qα implies division through
∆α and does therefore not produce Qα which are regular for solutions uα of the original system
∆α = 0. For details regarding the ansatz for Qα see [6].
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conditions, so Ck are linear and homogeneous in fA
J as well and Lk must therefore

be free of fA
J . We call relation (3.3) a conservation law identity because it is

satisfied identically in all xi, uα
J and fA

J .

4. The Procedure

The individual steps of our method are shown in detail to demonstrate that all
steps are algorithmic and can be performed by computer. The REDUCE package
ConLaw has the algorithm implemented and performs it whenever a conservation
law computation results in a solution involving arbitrary functions possibly up to
the solution of a linear system (3.2).

Input. Input to the procedure is the conservation law identity (3.3)

Qα∆α = DiP
i + LkCk (4.1)

including expressions for all its constituents Qα, P i, Lk, Ck in terms of xi, uα, fA.
To start the procedure the functions fA have to depend only on the variables

xi. If they depend on uα
J then a linearization will necessarily involve a change of

variables. This case is treated in [1].

Step 1. If all functions fA depend exactly on all p independent variables xi then
proceed to step 2. Step 1 is concerned with the case that not all fA = fA(xi)
depend on all xi. To add the dependence of, say fB on xj , one has to

• compute

Z := (Qα∆α −DiP
i − LkCk)

∣∣∣∣
fB(xi)→fB(xi,xj)

which vanishes modulo 0 = ∂j∂ fB and therefore must have the form

Z = MJ∂J

(
fB
)

with suitable coefficients MJ and summation over the multi-index J ,
• compute the adjoint Z∗

B as in (2.1) and (2.2) to bring Z into the form

Z = DiP̄
i + Z∗

B∂j∂ fB, (4.2)

• rename P i + P̄ i → P i and add a new condition CrCC +1 = ∂j∂ fB and multi-
plier Lr+1 = Z∗

B to arrive at a new version of the conservation law identity
Qα∆α = DiP

i + LkCk where the function fB depends now on xj .

This process is repeated until all fA depend on all xi.

Example 1. We illustrate the steps of the procedure with an investigation of the
Liouville equation

0 = ∆ := uxy − eu. (4.3)

Although it is not completely linearizable, we choose this equation because it
involves computations in each of the first three steps.
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For the Liouville equation a conservation law identity involving an arbitrary
function f(x) is given through

(fxff + fux)∆ = Dx(−feu) + Dy(fxff ux + fu2
x/2), (4.4)

i.e. Q = fxff +fux, P x = −feu, P y = fxff ux+fu2
x/2, Ck = 0. Adding a y-dependence

to f requires to add to the right-hand side of our identity (4.4) the terms

Z = −fxyff ux − fyff u2
x/2

which in adjoint form (4.2) read

Z = Dx(−fyff ux) + (uxx − u2
x/2)fyff ,

giving the new conservation law identity

(fxff + fux)∆ = Dx(−feu − fyff ux) + Dy(fxff ux + fu2
x/2) + (uxx − u2

x/2)fyff . (4.5)

Step 2. As the Qα are linear homogeneous differential expressions for the fA one
can compute adjoint operators Qα∗

A as in (2.1) and (2.2) by expressing

Qα∆α = fAQα∗
A ∆α + DiP̄

i.

After renaming P i − P̄ i → P i the conservation law identity takes the new form

fAQα∗
A ∆α = DiP

i + LkCk. (4.6)

In the case of the Liouville equation we partially integrate

(fxff + fux)∆ = f(ux −Dx)∆ + Dx(f∆)

and get the conservation law identity

f(ux−Dx)∆ = Dx(−feu−fyff ux−f∆) + Dy(fxff ux+fu2
x/2) + (uxx−u2

x/2)fyff

= Dx(−fyff ux−fuxy) + Dy(fxff ux+fu2
x/2) + (uxx−u2

x/2)fyff . (4.7)

Step 3. Because the Ck are linear homogeneous differential expressions in the fA

we can compute the adjoint form of LkCk as in (2.1) and (2.2) by expressing

LkCk = fAC ∗
AkC Lk + DiP̄

i.

After renaming P i + P̄ i → P i the conservation law identity takes the new form

fAQα∗
A ∆α = DiP

i + fAC ∗
AkC Lk. (4.8)

In our example partial integration gives

(uxx − u2
x/2)fyff = Dy((uxx − u2

x/2)f)− f(uxx − u2
x/2)y

and substituted into (4.7) the new conservation law identity

f(ux −Dx)∆ = Dx(−fyff ux − fuxy) + Dy

(
fxff ux + fu2

x/2 + f(uxx − u2
x/2)

)
−f(uxx − u2

x/2)y (4.9)

after simplification.

Step 4. This step does not involve any computation; it merely completes the con-
structive proof how linearizations are achieved.
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By bringing fAC ∗
AkC Lk to the left-hand side of the conservation law identity

(4.8) we get
fA
(
Qα∗

A ∆α − C ∗
AkC Lk

)
= DiP

i (4.10)

which still is an identity for arbitrary functions uα, fA. Applying the Euler oper-
ator with respect to fA (for its definition see e.g. [3, 1]) to the left-hand side of
(4.10) gives the coefficient of fA and on the right-hand side gives zero as it is a
divergence,2 i.e. we get

Qα∗
A ∆α = C ∗

AkC Lk identically in uα for all A. (4.11)

The vanishing of DiP
i on the right-hand side of (4.9) was therefore not accidental.

For the Liouville equation the identity (4.11) takes the form

(ux −Dx)∆ = −DyL = 0 with (4.12)

L = uxx − u2
x/2. (4.13)

Integrating at first (4.12) to L = L(x) leaves the Riccati ODE

uxx − u2
x/2 = L(x) (4.14)

for ux to be solved, for example, through a linearizing transformation u(x, y) =
−2 log(v(x, y)).

Output. The results of the procedure are expressions Qα∗
A , C ∗

AkC and Lk. The relation

C ∗
AkC Lk = 0 (4.15)

is a necessary condition which can be solved by first regarding Lk as dependent
variables and then solving

Lk = Lk(uα
J ) (4.16)

for uα = uα(xi). The system (4.15)–(4.16) is a sufficient condition for the original
system ∆α = 0 if Qα∗

A is an invertible algebraic operator and it is a complete
linearizing point transformation if (4.16) is purely algebraic in uα.

5. Scope of the Procedure

The degree to which the original system ∆α = 0 can be linearized depends on
properties of the conservation law identity that has been computed: the number
of functions fA and the number of variables each fA depends on, the differential
order of derivatives of fA with respect to xi, uα

J in Ck and in Qα. Some properties,
like the size of the solution space of remaining conditions (3.2), are essentially
independent of the extent to which these conditions are solved. Other criteria, like
the number of functions fA and the number of their arguments, do depend on the

2To prove this statement without Euler operator we could choose the fA to be zero outside some
region R such that an integral over a volume with boundary outside R will vanish using Gauss
law on the right-hand side of identity (4.10) as P i are linear homogeneous in the fA. Because the
fA are arbitrary inside R the coefficients of the fA on the left-hand side must vanish identically.
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extent to which conditions (3.2) were solved. The strength of the procedure to be
presented is to be able to handle a wide range of situations.

The following is a list of four scenarios, sorted from most special, fully algo-
rithmic (and most beneficial) to most general, not strictly algorithmic (and less
beneficial). We refer to the computational steps described in Section 4 as “the
procedure”.

• If the following criteria are met:
1. the size of the solution space of 0 = ∆α is equal to the size of the

solution space of 0 = Ck,
2. the conditions 0 = Ck involve q functions fA (equal to the number of

functions uα in ∆α) and all fA depend on p variables (equal to the
number of variables uα depend on),

3. the functions Qα expressed in terms of fA involve fA only algebraically,
i.e. no derivatives of fA, and

4. functions fA do not depend on jet variables uα
J , i.e. fA = fA(xi),

then the procedure will algorithmically provide a linearizing point transfor-
mation of the system ∆α = 0.

Example 2. The Burgers equation in the form

0 = ∆1 := ut − uxx − uux (5.1)

for a function u(x, t) cannot be linearized but in the potential form

0 = ∆2 := vt − vxx − v2
x/2 (5.2)

for v(x, t) a conservation law identity involving a function f(x, t) is given through

fev/2∆ = Dt

(
2fev/2

)
+ Dx

(
2fxff ev/2 − fev/2vx

)
+ 2ev/2(−ftff − fxxff ) (5.3)

and the related linearization is

L = 2ev/2

ev/2∆ = Lt − Lxx = 0.

A proof that every nonlinear PDE (system) that is linearizable through point or
contact transformations can be linearized this way will be given in [1].

• If criteria 1, 2 and 3 are satisfied but not 4 then a linearization is possible but
at the price of a change of variables, which will be a contact transformation if
it is invertible or otherwise it will be a non-invertible transformation depend-
ing on derivatives of uα. Furthermore, in all such cases the transformation
can be derived explicitly from the conservation law identity as will be shown
in [1].

• If criterion 3 is not satisfied then the partially or completely linearized equa-
tions may only be a necessary but not a sufficient condition for ∆α = 0.

• If criterion 1 is satisfied but not 2 then
– if functions fA of fewer than p variables occur then one can add extra

variable dependencies through step 1 of the procedure,
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– if more than q functions fA occur in 0 = Ck or functions fA of more
than p variables occur then one has to integrate more of the conditions
0 = Ck in order to be able to linearize the original system completely
(a full treatment of this case will be given in [1]).

• If criterion 1 is not satisfied but the solution space of Ck involves at least
one arbitrary function of one argument then the method will result in a
differential expression for uα

J which vanishes modulo 0 = ∆α and factorizes
into a linear differential operator acting on a nonlinear differential expression.
Typically this leads to a PDE for uα which is lower in differential order than
∆α for one of the xi. In Example 1 in Section 4 and Examples 8, 9 and 10 in
the appendix an equation in one less variable results, i.e. an ODE.

The algorithmic beauty of the procedure is that the above wide range of situations
is covered by one and the same 4-step algorithm.

The case that a non-local linearization exists in which the Lk depend on inte-
grals of uα is not covered directly as the computer algebra package ConLaw does
not compute non-local conservation laws. On the other hand single conservation
laws (without parametric functions) can be used to introduce potentials such that
the original system re-formulated in these potentials is linearizable. This approach
has been successful in all 6 linearizable evolutionary systems found in [4]. Examples
given in this paper are the system (7.1)–(7.2) in Section 7, the system (9.4)–(9.5)
in Section 9 and the system (10.8)–(10.9) in the appendix.

6. Computational Aspects

Given a nonlinear PDE system 0 = ∆α, what are possible computational hurdles
to be overcome in oder to find a linearization? The method described in Section 4
is algorithmic and does not pose a problem. The formulation of the conservation
law condition (3.1) and its analysis through computing a differential Gröbner basis¨
0 = Ck is algorithmic as well and could only become difficult because of a growing
size of equations.

A first computational challenge lies in the fact that for linearizable systems
0 = ∆α the conservation law condition (3.1) has a general solution involving
arbitrary functions. It is well known that systems of equations with a large solution
space are much harder to solve than systems with only few solutions or no solutions.
To incorporate many solutions, algebraic Gröbner bases for algebraic systems have¨
to be of high degree and differential Gröbner bases for differential systems have to¨
be of sufficiently high differential order. As a consequence, the length of expressions
encountered during the Gröbner basis computation is more likely to explode and¨
exceed available resources.

The second challenge is to integrate a Gr¨bner basis¨ 0 = Ck sufficiently often
to meet criterion 2 in Section 5. Because the general solution of the conservation
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law conditions involves arbitrary functions, any integrations to be done can only
be integrations of PDEs, not of ODEs.

The package Crack that is used to compute the examples in this paper
differs from similar other programs (as listed in [2]) in that it has a number of
modules addressing the above problems. For example, the growth of expressions
is lowered by a module for reducing the length of equations by replacing them
through a suitable linear combination of equations as described in [7]. Integrations
are handled by a module that integrates exact PDEs, that is able to introduce
potentials to integrate certain generalizations of exact PDEs and that determines
monomial integrating factors to achieve integration (see [8]). A relatively new
module applies syzygies that result as a by-product of a differential Gröbner basis¨
computation. This module allows to perform integrations more efficiently and to
avoid a temporary explosion of the number of functions of integration generated
in the process (see [9]). A module that integrates underdetermined linear ODEs
with non-constant coefficients is often useful in the last stages of the computation.
A description of the algorithm and its implementation is in preparation.

7. An Example Requiring the Introduction of a Potential

The following example demonstrates that a linearization of a nonlinear equation
or system may only be possible if it is reformulated in terms of potentials which
in turn might be found by studying conservation laws.

Example 3. The system

0 = ∆1 := ut − uxx − 2vuux − 2(a + u2)vx − v2u3 − bu3 − auv2 − cu, (7.1)
0 = ∆2 := vt + vxx + 2uvvx + 2(b + v2)ux + u2v3 + av3 + bvu2 + cv (7.2)

with u = u(x, t), v = v(x, t) and constants a, b, c results as one of the 15 cases of a
class of generalized nonlinear Schrodinger equations [4]. This system itself does not¨
have conservation laws involving arbitrary functions but it has the zeroth order
conservation law

v∆1 + u∆2 = Dt(uv) + Dx(vxu− uxv + bu2 − av2)

which motivates the introduction of a function w(x, t) through

wx = uv, (7.3)
−wt = vxu− uxv + bu2 − av2.

The remaining system to be solved for r := u/v and w simplifies if we substitute

w =
1
2

log z (7.4)

with z = z(x, t). This substitution is not essential for the following but it reduces
the size of the resulting system for r(x, t), z(x, t) and eases memory requirements
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in the computation of conservation laws of the resulting system ∆3, ∆4:

0 = ∆3 := 2rrtz
2
x + r2

xz2
x + 2ar2rxz2

x − 2brxz2
x + 2r2zxzxxx

− r2z2
xx + 2ar3zxzxx + 2brzxzxx + 4cr2z2

x,

0 = ∆4 := rxzx + rzt − ar2zx + bzx. (7.5)

The program ConLaw finds a conservation law with integrating factors

Q3 = r−5/2z−3/2
x (fr + f̃),

Q4 = r−5/2z−3/2
x

(
−2zxr(fxff r − f̃xff )− rxzx(fr + f̃) + zxxr(fr − f̃)

)
involving two functions f(x, t), f̃(x, t) that have to satisfy the conditions

0 = C1 := −ftff + fxxff + cf − 2af̃xff ,

0 = C2CC := f̃tff + f̃xxff + cf̃ − 2bfxff .

The conservation law identity takes the form

Q3∆3 + Q4∆4 = DtP
t + DxP x + L1C1 + L2C2CC (7.6)

with some conserved current (P t, P x) and coefficients L1, L2 of C1, C2CC

L1 = 4
√√

zxr, L2 = 4
√

zx/r. (7.7)

Derivatives fxff , f̃xff in Q4 can be eliminated by adding total x-derivatives

Dx

(
r−5/2z−3/2

x 2zxr(fr − f̃)∆4

)
to the left-hand site of the identity (7.6) and to DxP x. The modified form of the
identity (7.6) is

0 = z−3/2
x r−5/2

(
2zxr(fr − f̃)Dx∆4 − 2rxzx(fr − f̃)∆4 + (fr + f̃)∆3

)
= Dt

(
4
√

zx/r(rf − f̃)
)

+ Dx

(
2z−1/2

x r−3/2(−2fxff zxr2 − 2f̃xff zxr + rxzxfr − rxzxf̃

+zxxfr2 + zxxf̃ r + 4zxaf̃r2 + 4zxbfr)
)

+ L1C1 + L2C2CC .

Partial integration of L1C1 + L2C2CC until f, f̃ appear purely algebraically makes
necessarily P t = P x = 0. Because f, f̃ are free we obtain the identities

0 = r−3/2z−3/2
x (∆3 + 2rzxDx∆4 − 2rxzx∆4) = L1

t + L1
xx + cL1 + 2bL2

x, (7.8)

0 = r−5/2z−3/2
x (∆3 − 2rzxDx∆4 + 2rxzx∆4) =−L2

t + L2
xx + cL2 + 2aL1

x (7.9)

completing the linearization. For any solution L1, L2 of (7.8), (7.9), equations (7.7)
provide r, zx. With zt from (7.5) we get z as a line integral, w from (7.4) and u, v
from r and equation (7.3).

In the following section the effect of our method on PDEs is investigated that
linearize to inhomogeneous equations.
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8. Inhomogeneous Linear DEs

If the general solution of conservation law determining equations involves a numberaa
of free constants or free functions then individual conservation laws are obtained
by setting all but one to zero. The remaining terms are homogeneous in the surviv-
ing constant or function. The question arises whether our conservation law based
method is suitable to find linearizations that lead to linear but inhomogeneous
equations.

Example 4. For the (ad hoc constructed) equation

0 = ∆ := 2uut + 2uuxx + 2u2
x + 1 (8.1)

the conservation law identity

(fxff + f̃tff )∆ = Dt

(
fxff u2 + f̃tff u2 + f̃

)
+ Dx

(
−fxxff u2 + 2fxff uux − f̃t,xff u2 + 2f̃tff uux + f

)
+ u2(ft,xff − fxxxff − f̃txxff + f̃ttff )

involves functions f(x, t), f̃(x, t) and establishes a conservation law provided f, f̃
satisfy

0 = ft,xff − fxxxff − f̃txxff + f̃ttff .

Our method gives the linear system

0 = Dx∆ = Ltx + Lxxx, (8.2)
0 = Dt∆ = Ltt + Ltxx; (8.3)

L = u2.

The system (8.2)–(8.3) represents the x and t derivatives of the linear equation

0 = Lt + Lxx + 1 (8.4)

which is equivalent to equation (8.1) and is an inhomogeneous linear PDE. Al-
though our linearization method does not quite reach (8.4), it nevertheless pro-
vides L = u2 as the new unknown function which makes it easy to get to the
equivalent linear equation (8.4) through a change of dependent variables in (8.1)
or through an integration of (8.2), (8.3).

The way how homogeneous consequences can be derived from an inhomoge-
neous relation is to divide the inhomogeneous relation through the inhomogeneity,
i.e. to make the inhomogeneity equal 1 and then to differentiate with respect to all
independent variables and to obtain a set of linear homogeneous conditions in the
same way as equations (8.2) and (8.3) are consequences of (8.4). The application
in the following section leads to an inhomogeneous linear PDE with non-constant
inhomogeneity.
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9. An Example of a Triangular Linear System

A generalization of complete linearizability of the whole PDE system in one step
is the successive linearization of one equation at a time.

Example 5. Assume a triangular system of equations, like the (ad hoc constructed)
system

0 = ∆1 := ut, (9.1)
0 = ∆2 := vvt − uvvxx − uv2

x (9.2)

with one equation (9.1) involving only one function, say u = u(x, t), and this equa-
tion being linear or being linearizable and a second nonlinear equation being linear
or linearizable in another function v = v(x, t). How can the method in Section 4
be used to recognize that such a system can be solved by solving successively only
linear equations?

In determining all conservation laws for this system with unknown functions
v, u and with integrating factors of order zero we get apart from two individ-
ual conservation laws with pairs of integrating factors (Q1, Q2) = ( v2

u2 ,− 2
u ) and

(xv2

u2 ,− 2x
u ) only one with a free function f(u, x):

fuff ∆1 = Dtf

which indicates the linearity of ∆1 but not the linearity of ∆2 in v once u(x, t) is
known.

The proper way of applying the method of Section 4 is to compute conser-
vation laws of 0 = ∆2 alone which now is regarded as an equation for v(x, t) only.
The function u(x, t) is assumed to be parametric and given. We obtain the identity

2f∆2 = Dx(fxff uv2 + fuxv2 − 2fuvvx) + Dt(fv2)− v2(ftff + ufxxff + 2uxfxff + uxxf)

which is a conservation law if f satisfies the linear condition

0 = ftff + ufxxff + 2uxfxff + uxxf. (9.3)

This provides the linearization

0 = 2∆2 = Lt − uLxx,

L = v2.

The reason that now a linearization of ∆2 is reached is that in the second try u is
assumed to be known and therefore u, uxx, . . . are not jet-variables and hence the
condition (9.3) has solutions, otherwise not.

Examples where this triangular linearization method is successful are the
systems (17) and (18) in [4]. We demonstrate the method with one of them (system
(17)); the other is similar.

Example 6. The system

0 = ∆1 := ut − uxx − 4uvux − 4u2vx − 3vvx − 2u3v2 − uv3 − au, (9.4)
0 = ∆2 := vt + vxx + 2v2ux + 2uvvx + 2u2v3 + v4 + av (9.5)
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involves functions u(x, t), v(x, t) and the constant a. The single conservation law

0 = v∆1 + u∆2 = Dt(uv) + Dx(uvx − uxv − u2v2 − v3)

motivates the introduction of a function w(x, t) through

wx = uv, (9.6)
−wt = uvx − uxv − u2v2 − v3. (9.7)

Substitution of u from (9.6) brings equations (9.5) and (9.7) in the form

0 = ∆3 := wt − 1
v
(−2vxwx + wxxv + w2

xv + v4), (9.8)

0 = ∆4 := vt + vxx + 2wxxv + 2w2
xv + av + v4. (9.9)

This system obeys conservation laws that involve a function f(x, t) that has to
satisfy ftff = fxxff + af . Our procedure provides the linearization

ew(v∆3 + ∆4) = L1
t + L1

xx + aL1 = 0, (9.10)
L1 := vew.

The second linearized equation can be obtained by
• substituting v = L1/ew into equations (9.8) and (9.9): to get the remaining

condition

0 = ∆5 := wt − wxx − 3w2
x + 2wxL1

x(L1)−1 − (L1)3e−3w, (9.11)

• assuming that L1 has been solved from (9.10) and treating L1(x, t) as a
parametric function when computing conservation laws for equation (9.11)
which turn out to involve two functions that have to satisfy linear PDEs,

• performing the linearization method to find that the remaining equation
(9.11) linearizes with L2 = e3w to

e3w∆5 = L2
t − L2

xx + 2L2
xL1

x/L1 − 3(L1)3. (9.12)

Because the condition (9.12) is inhomogeneous for L2 due to the term 3(L1)3,
actually two homogeneous linear equations are generated which are the x- and
t-derivative of (9.12) divided by 3(L1)3 (see the previous section about linear
inhomogeneous equations). But as the function L2 = e3w results in this process,
it is no problem to find (9.12) from (9.11) directly or from an integration of these
two equations. This completes the linear triangularisation of the original problem
(9.4)–(9.5) to the new system (9.10)–(9.12).

10. Summary

The paper starts with introducing conservation law identities as a natural way to
formulate infinite parameter conservation laws.

Conservation law identities are the input to a four-step procedure that returns
a differential consequence of the original system together with a linear differential
operator that can be factored out.
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Sufficient conditions on the conservation law identity which either guarantee
a complete linearization or at least a partial linearization are discussed.

The possibility to find a non-local linearization arises from the application
of single (finite parameter) conservation laws with the aim to introduce potentials
which satisfy infinite parameter conservation laws and thus allow a linearization.

In examples it is demonstrated how the standard procedure can lead to in-
homogeneous linear PDEs and how a successive linearization of one equation at a
time may be possible when the whole system cannot be linearized at once.

Appendix

In this appendix we list further examples of linearizations and integrations without
giving details of the calculations.

The first example of the Kadomtsev–Petviasvili equation demonstrates what
our method gives when a PDE has p independent variables and the conservation
law involves free functions of less than p− 1 variables. Although the result will be
less useful than in the other examples, we still include it for illustration.

Example 7. The Kadomtsev–Petviasvili equation

0 = ∆ = utx + uxxxx + 2uxxu + 2u2
x − uyy

for u(t, x, y) has four conservation laws with a zeroth order integrating factor and
an arbitrary function f(t) as given in [6]. We comment on one of these four with an
integrating factor ftff y3 + 6fxy as the situation for the others is similar. Omitting
the details we only give the result of our method:

L1 = y
(
utxxxy2 + 2utxuy2 + utty

2 + 2utuxy2

−6utx− 6uxxxx + 6uxx − 12uxux + 6u2
)
,

L2 = −utyy
3 + 3uty

2 + 6uyxy − 6ux,

y(6x∆− y2Dt∆) = −L1
x − L2

y.

The arbitrary function f(t) involves only one independent variable t and the con-
servation law 0 = L1

x + L2
y involves two functions L1, L2 and has derivatives with

respect to two variables x, y and is therefore not as useful as if it would be a single
total derivative.

The three following equations were shown to the author first by V. Sokolov
[10] who obtained their integrations earlier and independently. We add them here
to demonstrate that these results can be obtained in a straight forward procedure.

Example 8. For the equation

0 = ∆ := uxy − eu
√

u2
x − 4, u = u(x, y) (10.1)

a conservation law with an arbitrary function f(x) enables to factor out Dy leaving
an ODE to solve

(ux −Dx)

(
∆√√

u2
x − 4

)
= Dy

(
−uxx + u2

x − 4√
u2

x − 4

)
= 0. (10.2)
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Another conservation law with an arbitrary function g(y) gives(
uy − uxeu√

u2
x − 4

−Dy

)
∆ = Dx

(
−uyy +

1
2
u2

y +
1
2
e2u

)
= 0. (10.3)

Example 9. For the equation

0 = ∆ := uxy −
(

1
u− x

+
1

u− y

)
uxuy, u = u(x, y) (10.4)

a conservation law with an arbitrary function f(x) similarly to the above example
provides

y − x

(u − x)(u − y)
∆ + Dx

(
∆
ux

)
= Dy

(
uxx

ux
− 2(ux − 1)

u− x
− u

(u − x)x

)
= 0. (10.5)

A second conservation law is obtained from an arbitrary function g(y) and is
equivalent to (10.5) after swapping x ↔ y.

Example 10. For the equation

0 = ∆ := uxy − 2
x + y

√
uxuy, u = u(x, y) (10.6)

a conservation law with an arbitrary function f(x) gives

1
(x + y)

(
1√
ux

− 1√√
uy

)
∆ + Dx

(
∆√
ux

)
= Dy

(
uxx√
ux

+
2
√

u
√√

x

x + y

)
= 0. (10.7)

A second conservation law is obtained from an arbitrary function g(y) and is
equivalent to (10.7) after swapping x ↔ y.

The final example shows a linearization of a system that resulted in classifying
nonlinear Schrodinger type systems in [4].¨

Example 11. The system

0 = ∆1 := ut − uxx − 2vux − 2uvx − 2uv2 − u2 − au− bv − c, (10.8)
0 = ∆2 := vt + vxx + 2vvx + ux (10.9)

involves functions u(x, t), v(x, t) and the constants a, b, c. The trivial conservation
law

0 = ∆2 = Dt(v) + Dx(vx + u + v2)

motivates the introduction of a function w(x, t) through

wx = v, (10.10)
−wt = vx + u + v2. (10.11)

Substitution of u, v from (10.10) and (10.11) brings equation (10.8) in the form

0 = ∆3 = wtt + w2
t − wta− wxxxx − 4wxxxwx − 3w2

xx − 6wxxw2
x − wxxa

−w4
x − w2

xa + wxb + c.
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This equation admits a conservation law identity

few∆3 = Dt [(ew)tf − ewftff − ewfa]
+ Dx [−(ew)xxxf + (ew)xxfxff − (ew)xfxxff + ewfxxxff

− (aew)xf + aewfxff + bewf ]
+ ew [fttff + aftff − fxxxxff − afxxff − bfxff + cf ] .

From this follows the linearization

ew∆3 = Ltt − Lta− Lxxxx − Lxxa + Lxb + Lc = 0,

L = ew.
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