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Preface

This book provides a picture of what can be done in differential equations with
advanced methods and software tools of symbolic computation. It focuses on the
symbolic-computational aspect of three kinds of fundamental problems in differ-
ential equations: transforming the equations, solving the equations, and studying
the structure and properties of their solutions. Modern research on these prob-
lems using symbolic computation, or more restrictively using computer algebra,
has become increasingly active since the early 1980s when effective algorithms
for symbolic solution of differential equations were proposed, and so were com-
puter algebra systems successfully applied to perturbation, bifurcation, and other
problems. Historically, symbolic integration, the simplest case of solving ordinary
differential equations, was already the target of the first computer algebra package
SAINT in the early 1960s.

With 20 chapters, the book is structured into three parts with both tutorial
surveys and original research contributions: the first part is devoted to the quali-
tative study of differential systems with symbolic computation, including stability
analysis, establishment of center conditions, and bifurcation of limit cycles, which
are closely related to Hilbert’s sixteenth problem. The second part is concerned
with symbolic solutions of ordinary and partial differential equations, for which
normal form methods, reduction and factorization techniques, and the computa-
tion of conservation laws are introduced and used to aid the search. The last part
is concentrated on the transformation of differential equations into such forms that
are better suited for further study and application. It includes symbolic elimina-
tion and triangular decomposition for systems of ordinary and partial differential
polynomials. A 1991 paper by Wen-tsün Wu on the construction of Gr¨¨ obner bases¨
based on Riquier–Janet’s theory, published in China and not widely available to
the western readers, is reprinted as the last chapter. This book should reflect the
current state of the art of research and development in differential equations with
symbolic computation and is worth reading for researchers and students working
on this interdisciplinary subject of mathematics and computational science. It may
also serve as a reference for everyone interested in differential equations, symbolic
computation, and their interaction.

The idea of compiling this volume grew out of the Seminar on Differential
Equations with Symbolic Computation (DESC 2004), which was held in Beijing,
China in April 2004 (see http://www-calfor.lip6.fr/˜wang/DESC2004) to facilitate
the interaction between the two disciplines. The seminar brought together active
researchers and graduate students from both disciplines to present their work and
to report on their new results and findings. It also provided a forum for over 50
participants to exchange ideas and views and to discuss future development and
cooperation. Four invited talks were given by Michael Singer, Lan Wen, Wen-tsün
Wu, and Zhifen Zhang. The enthusiastic support of the seminar speakers and the



vi

high quality of their presentations are some of the primary motivations for our
endeavor to prepare a coherent and comprehensive volume with most recent ad-
vances on the subject for publication. In addition to the seminar speakers, several
distinguished researchers who were invited to attend the seminar but could not
make their trip have also contributed to the present book. Their contributions have
helped enrich the contents of the book and make the book beyond a proceedings
volume. All the papers accepted for publication in the book underwent a formal
review-revision process.

DESC 2004 is the second in a series of seminars, organized in China, on
various subjects interacted with symbolic computation. The first seminar, held in
Hefei from April 24–26, 2002, was focused on geometric computation and a book
on the same subject has been published by World Scientific. The third seminar
planned for April 2006 will be on symbolic computation in education.

The editors gratefully acknowledge the support provided by the Schools of
Science and Advanced Engineering at Beihang University and the Key Laboratory
of Mathematics, Informatics and Behavioral Semantics of the Chinese Ministry of
Education for DESC 2004 and the preparation of this book. Our sincere thanks
go to the authors for their contributions and cooperation, to the referees for their
expertise and timely help, and to all colleagues and students who helped for the
organization of DESC 2004.

Beijing Dongming Wang
May 2005 Zhiming Zheng
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Symbolic Computation of Lyapunov Quantities
and the Second Part of Hilbert’s Sixteenth
Problem

Stephen Lynch

Abstract. This tutorial survey presents a method for computing the Lyapunov
quantities for Lienard systems of differential equations using symbolic manip-´
ulation packages. The theory is given in detail and simple working MATLAB
and Maple programs are listed in this chapter. In recent years, the author
has been contacted by many researchers requiring more detail on the algo-
rithmic method used to compute focal values and Lyapunov quantities. It is
hoped that this article will address the needs of those and other researchers.
Research results are also given here.

Mathematics Subject Classification (2000). Primary 34C07; Secondary 37M20.

Keywords. Bifurcation, Lienard equation, limit cycle, Maple, MATLAB, small-´
amplitude.

1. Introduction

Poincare began investigating isolated periodic cycles of planar polynomial vector´
fields in the 1880s. However, the general problem of determining the maximum
number and relative configurations of limit cycles in the plane has remained unre-
solved for over a century. In the engineering literature, limit cycles in the plane can
correspond to steady-state behavior for a physical system (see [25], for example),
so it is important to know how many possible steady states there are. There are
applications in aircraft flight dynamics and surge in jet engines, for example.

In 1900, David Hilbert presented a list of 23 problems to the International
Congress of Mathematicians in Paris. Most of the problems have been solved,
either completely or partially. However, the second part of the sixteenth problem
remains unsolved. Ilyashenko [37] presents a centennial history of Hilbert’s 16th
problem and Li [19] has recently written a review article.
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The Second Part of Hilbert’s Sixteenth Problem. Consider planar polynomial
systems of the form

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where P and Q are polynomials in x and y. The question is to estimate the maximal
number and relative positions of the limit cycles of system (1.1). Let HnHH denote
the maximum possible number of limit cycles that system (1.1) can have when P
and Q are of degree n. More formally, the Hilbert numbers HnHH are given by

HnHH = sup {π(P, Q) : ∂P, ∂Q ≤ n},
where ∂ denotes “the degree of” and π(P, Q) is the number of limit cycles of system
(1.1).

Dulac’s Theorem states that a given polynomial system cannot have infinitely
many limit cycles. This theorem has only recently been proved independently by
Ecalle et al. [13] and Ilyashenko [36], respectively. Unfortunately, this does not
imply that the Hilbert numbers are finite.

Of the many attempts to make progress in this question, one of the more
fruitful approaches has been to create vector fields with as many isolated periodic
orbits as possible using both local and global bifurcations [3]. There are relatively
few results in the case of general polynomial systems even when considering lo-
cal bifurcations. Bautin [1] proved that no more than three small-amplitude limit
cycles could bifurcate from a critical point for a quadratic system. For a homoge-
neous cubic system (no quadratic terms), Sibirskii [33] proved that no more than
five small-amplitude limit cycles could be bifurcated from one critical point. Re-
cently, Zoladek [39] found an example where 11 limit cycles could be bifurcated
from the origin of a cubic system, but he was unable to prove that this was the
maximum possible number.

Although easily stated, Hilbert’s sixteenth problem remains almost com-
pletely unsolved. For quadratic systems, Songling Shi [32] has obtained a lower
bound for the Hilbert number H2HH ≥ 4. A possible global phase portrait is given
in Figure 1. The line at infinity is included and the properties on this line are de-
termined using Poincaré compactification, where a polynomial vector field in the´
plane is transformed into an analytic vector field on the 2-sphere. More detail on
Poincare compactification can be found in [27]. There are three small-amplitude´
limit cycles around the origin and at least one other surrounding another critical
point. Some of the parameters used in this example are very small.

Blows and Rousseau [4] consider the bifurcation at infinity for polynomial
vector fields and give examples of cubic systems having the following configura-
tions:

{(4), 1}, {(3), 2}, {(2), 5}, {(4), 2}, {(1), 5} and {(2), 4},
where {(l), L} denotes the configuration of a vector field with l small-amplitude
limit cycles bifurcated from a point in the plane and L large-amplitude limit cycles
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Limit cycle

limit cycles
Small-amplitude

Figure 1. A possible configuration for a quadratic system with
four limit cycles: one of large amplitude and three of small ampli-
tude.

simultaneously bifurcated from infinity. There are many other configurations pos-
sible, some involving other critical points in the finite part of the plane as shown
in Figure 2. Recall that a limit cycle must contain at least one critical point.

By considering cubic polynomial vector fields, in 1985, Jibin Li and Chunfu
Li [18] produced an example showing that H3H ≥ 11 by bifurcating limit cycles out
of homoclinic and heteroclinic orbits; see Figure 2.

Figure 2. A possible configuration for a cubic system with 11
limit cycles.

Returning to the general problem, in 1995, Christopher and Lloyd [7] consid-
ered the rate of growth of HnHH as n increases. They showed that HnHH grows at least
as rapidly as n2 log n.

In recent years, the focus of research in this area has been directed at a
small number of classes of systems. Perhaps the most fruitful has been the Liénard´
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system. A method for computing focal values and Lyapunov quantities for Liénard´
systems is given in detail in the next section. Liénard systems provide a very´
suitable starting point as they do have ubiquity for systems in the plane [14, 16, 28].

2. Small-Amplitude Limit Cycle Bifurcations

The general problem of determining the maximum number and relative configu-
rations of limit cycles in the plane has remained unresolved for over a century.
Both local and global bifurcations have been studied to create vector fields with
as many limit cycles as possible. All of these techniques rely heavily on symbolic
manipulation packages such as Maple, and MATLAB and its Symbolic Math Tool-
box. Unfortunately, the results in the global case number relatively few. Only in
recent years have many more results been found by restricting the analysis to
small-amplitude limit cycle bifurcations.

It is well known that a nondegenerate critical point, say x0, of center or focus
type can be moved to the origin by a linear change of coordinates, to give

ẋ = λx− y + p(x, y), ẏ = x + λy + q(x, y), (2.1)

where p and q are at least quadratic in x and y. If λ �= 0, then the origin is��
structurally stable for all perturbations.

Definition 2.1. A critical point, say x0, is called a fine focus of system (1.1) if it
is a center for the linearized system at x0. Equivalently, if λ = 0 in system (2.1),
then the origin is a fine focus.

In the work to follow, assume that the unperturbed system does not have a
center at the origin. The technique used here is entirely local; limit cycles bifurcate
out of a fine focus when its stability is reversed by perturbing λ and the coefficients
arising in p and q. These are said to be local or small-amplitude limit cycles. How
close the origin is to being a center of the nonlinear system determines the number
of limit cycles that may be obtained from bifurcation. The method for bifurcating
limit cycles will be given in detail here.

By a classical result, there exists a Lyapunov function, V (x, y) = V2VV (x, y) +
V4VV (x, y)+ · · ·+VkVV (x, y)+ · · · say, where VkVV is a homogeneous polynomial of degree
k, such that

dV

dt
= η2r

2 + η4r
4 + · · ·+ η2ir

2i + · · · , (2.2)

where r2 = x2 + y2. The η2i are polynomials in the coefficients of p and q and
are called the focal values . The origin is said to be a fine focus of order k if
η2 = η4 = · · · = η2k = 0 but η2k+2 �= 0. Take an analytic transversal through��
the origin parameterized by some variable, say c. It is well known that the return
map of (2.1), c �→ h(c), is analytic if the critical point is nondegenerate. Limit
cycles of system (2.1) then correspond to zeros of the displacement function, say
d(c) = h(c) − c. Hence at most k limit cycles can bifurcate from the fine focus.
The stability of the origin is clearly dependent on the sign of the first non-zero
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focal value, and the origin is a nonlinear center if and only if all of the focal values
are zero. Consequently, it is the reduced values, or Lyapunov quantities , say L(j),
that are significant. One needs only to consider the value η2k reduced modulo the
ideal (η2, η4, . . . , η2k−2) to obtain the Lyapunov quantity L(k − 1). To bifurcate
limit cycles from the origin, select the coefficients in the Lyapunov quantities such
that

|L(m)| � |L(m + 1)| and L(m)L(m + 1) < 0,

for m = 0, 1, . . . , k − 1. At each stage, the origin reverses stability and a limit
cycle bifurcates in a small region of the critical point. If all of these conditions
are satisfied, then there are exactly k small-amplitude limit cycles. Conversely, if
L(k) �= 0, then at most�� k limit cycles can bifurcate. Sometimes it is not possible
to bifurcate the full complement of limit cycles.

The algorithm for bifurcating small-amplitude limit cycles may be split into
the following four steps:

1. computation of the focal values using a mathematical package;
2. reduction of the n-th focal value modulo a Grobner basis of the ideal gener-¨

ated by the first n− 1 focal values (or the first n− 1 Lyapunov quantities);
3. checking that the origin is a center when all of the relevant Lyapunov quan-

tities are zero;
4. bifurcation of the limit cycles by suitable perturbations.

Dongming Wang [34, 35] has developed software to deal with the reduction part
of the algorithm for several differential systems. For some systems, the following
theorems can be used to prove that the origin is a center.

The Divergence Test. Suppose that the origin of system (1.1) is a critical point of
focus type. If

div (ψX) =
∂(ψP )

∂x
+

∂(ψQ)
∂y

= 0,

where ψ : �2 → �2, then the origin is a center.

The Classical Symmetry Argument. Suppose that λ = 0 in system (2.1) and that
either

(i) p(x, y) = −p(x,−y) and q(x, y) = q(x,−y) or

(ii) p(x, y) = p(−x, y) and q(x, y) = −q(−x, y).

Then the origin is a center.

Adapting the classical symmetry argument, it is also possible to prove the
following theorem.

Theorem 2.1. The origin of the system

ẋ = y − F (G(x)), ẏ = −G′(x)
2

H(G(x)),

where F and H are polynomials, G(x) =
∫ x

0

∫∫
g(s)ds with g(0) = 0 and g(x) sgn(x) >

0 for x �= 0�� , is a center.
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To demonstrate the method for bifurcating small-amplitude limit cycles, con-
sider Lienard equations of the form´

ẋ = y − F (x), ẏ = −g(x), (2.3)

where F (x) = a1x+a2x
2 + · · ·+auxu and g(x) = x+b2x

2 +b3x
3 + · · ·+bvx

v. This
system has proved very useful in the investigation of limit cycles when showing
existence, uniqueness, and hyperbolicity of a limit cycle. In recent years, there have
also been many local results; see, for example, [9]. Therefore, it seems sensible to
use this class of system to illustrate the method.

The computation of the first three focal values will be given. Write

VkVV (x, y) =
∑

i+j=k

Vi,jVV xiyj

and denote Vi,jVV as being odd or even according to whether i is odd or even and that
Vi,jVV is 2-odd or 2-even according to whether j is odd or even, respectively. Solving
equation (2.2), it is easily seen that V2VV = 1

2 (x2 + y2) and η2 = −a1. Therefore,
set a1 = 0. The odd and even coefficients of V3VV are then given by the two pairs of
equations

3V3VV ,0 − 2V1VV ,2 = b2,

V1VV ,2 = 0

and

−V2VV ,1 = a2,

2V2VV ,1 − 3V0VV ,3 = 0,

respectively. Solve the equations to give

V3VV =
1
3
b2x

3 − a2x
2y − 2

3
a2y

3.

Both η4 and the odd coefficients of V4VV are determined by the equations

−η4 − V3VV ,1 = a3,

−2η4 + 3V3VV ,1 − 3V1VV ,3 = −2a2b2,

−η4 + V1VV ,3 = 0.

The even coefficients are determined by the equations

4V4VV ,0 − 2V2VV ,2 = b3 − 2a2
2,

2V2VV ,2 − 4V0VV ,4 = 0

and the supplementary condition V2VV ,2 = 0. In fact, when computing subsequent
coefficients for V4VV m, it is convenient to require that V2VV m,2m = 0. This ensures that
there will always be a solution. Solving these equations gives

V4VV =
1
4
(b3 − 2a2

2)x
4 − (η4 + a3)x3y + η4xy3
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and

η4 =
1
8
(2a2b2 − 3a3).

Suppose that η4 = 0 so that a3 = 2
3a2b2. It can be checked that the two sets of

equations for the coefficients of V5VV give

V5VV =
(

b4

5
− 2a2

2b2

3

)
x5 + (2a3

2 − a4)x4y +
(

8a3
2

3
− 4a4

3
+

2a2b3

3

)
x2y3

+
(

16a3
2

15
− 8a4

15
− 4a2b3

15

)
y5.

The coefficients of V6VV may be determined by inserting the extra condition V4VV ,2 +
V2VV ,4 = 0. In fact, when computing subsequent even coefficients for V4VV m+2, the extra
condition V2VV m,2m+2 + V2VV m+2,2m = 0, is applied, which guarantees a solution. The
polynomial V6VV contains 27 terms and will not be listed here. However, η6 leads to
the Lyapunov quantity

L(2) = 6a2b4 − 10a2b2b3 + 20a4b2 − 15a5.

Lemma 2.1. The first three Lyapunov quantities for system (2.3) are L(0) = −a1,
L(1) = 2a2b2 − 3a3, and L(2) = 6a2b4 − 10a2b2b3 + 20a4b2 − 15a5.

Example. Prove that

(i) there is at most one small-amplitude limit cycle when ∂F = 3, ∂g = 2 and

(ii) there are at most two small-amplitude limit cycles when ∂F = 3, ∂g = 3,

for system (2.3).

Solutions. (i) Now L(0)=0 if a1 = 0 and L(1) = 0 if a3 = 2
3a2b2. Thus system (2.3)

becomes

ẋ = y − a2x
2 − 2

3
a2b2x

3, ẏ = −x− b2x
2,

and the origin is a center by Theorem 2.1. Therefore, the origin is a fine focus of
order one if and only if a1 = 0 and 2a2b2− 3a3 �= 0. The conditions are consistent.��
Select a3 and a1 such that

|L(0)| � |L(1)| and L(0)L(1) < 0.

The origin reverses stability once and a limit cycle bifurcates. The perturbations
are chosen such that the origin reverses stability once and the limit cycles that
bifurcate persist.

(ii) Now L(0) = 0 if a1 = 0, L(1) = 0 if a3 = 2
3a2b2, and L(2) = 0 if

a2b2b3 = 0. Thus L(2) = 0 if

(a) a2 = 0,

(b) b3 = 0, or

(c) b2 = 0.
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If condition (a) holds, then a3 = 0 and the origin is a center by the divergence
test (divX = 0). If condition (b) holds, then the origin is a center from result (i)
above. If condition (c) holds, then a3 = 0 and system (2.3) becomes

ẋ = y − a2x
2, ẏ = −x− b3x

3,

and the origin is a center by the classical symmetry argument. The origin is thus
a fine focus of order two if and only if a1 = 0 and 2a2b2 − 3a3 = 0 but a2b2b3 �= 0.��
The conditions are consistent. Select b3, a3, and a1 such that

|L(1)| � |L(2)|, L(1)L(2) < 0 and |L(0)| � |L(1)|, L(0)L(1) < 0.

The origin has changed stability twice, and there are two small-amplitude limit
cycles. The perturbations are chosen such that the origin reverses stability twice
and the limit cycles that bifurcate persist.

3. Symbolic Computation

Readers can download the following program files from the Web. The MATLAB
M-file lists all of the coefficients of the Lyapunov function up to and including
degree six terms. The output is also included for completeness. The program was
written using MATLAB version 7 and the program files can be downloaded at

http://www.mathworks.com/matlabcentral/fileexchange
under the links “Companion Software for Books” and “Mathematics”.

% MATLAB Program - Determining the coefficients of the Lyapunov

% function for a quintic Lienard system.

% V3=[V30;V21;V12;V03], V4=[V40;V31;V22;V13;V04;eta4],

% V5=[V50;V41;V32;V23;V14;V05],

% V6=[V60;V51;V42;V33;V24;V15;V06;eta6]

% Symbolic Math toolbox required.

clear all

syms a1 a2 b2 a3 b3 a4 b4 a5 b5;

A=[3 0 -2 0;0 0 1 0;0 -1 0 0;0 2 0 -3];

B=[b2; 0; a2; 0];

V3=A\B

A=[0 -1 0 0 0 -1;0 3 0 -3 0 -2;0 0 0 1 0 -1;4 0 -2 0 0 0;

0 0 2 0 -4 0; 0 0 1 0 0 0];

B=[a3; -2*a2*b2; 0; b3-2*a2^2;0;0];

V4=A\B

A=[5 0 -2 0 0 0;0 0 3 0 -4 0;0 0 0 0 1 0;0 -1 0 0 0 0;0 4 0 -3 0 0;
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0 0 0 2 0 -5];

B=[b4-10*a2^2*b2/3;0;0;a4-2*a2^3;-2*a2*b3;0];

V5=A\B

A=[6 0 -2 0 0 0 0 0;0 0 4 0 -4 0 0 0;0 0 0 0 2 0 -6 0;

0 0 1 0 1 0 0 0;0 -1 0 0 0 0 0 -1;0 5 0 -3 0 0 0 -3;

0 0 0 3 0 -5 0 -3;0 0 0 0 0 1 0 -1];

B=[b5-6*a2*a4-4*a2^2*b2^2/3+8*a2^4;16*a2^4/3+4*a2^2*b3/3-8*a2*a4/3;

0;0;a5-8*a2^3*b2/3;-2*a2*b4+8*a2^3*b2+2*a2*b2*b3-4*a4*b2;

16*a2^3*b2/3+4*a2*b2*b3/3-8*a4*b2/3;0];

V6=A\B

L0=-a1

eta4=V4(6,1)

L1=maple(’numer(-3/8*a3+1/4*a2*b2)’)

a3=2*a2*b2;

eta6=V6(8,1)

L2=maple(’numer(-5/16*a5+1/8*a2*b4-5/24*a2*b2*b3+5/12*a4*b2)’)

%End of MATLAB Program

V3 =

[ 1/3*b2]

[ -a2]

[ 0]

[ -2/3*a2]

V4 =

[ 1/4*b3-1/2*a2^2]

[ -5/8*a3-1/4*a2*b2]

[ 0]

[ -3/8*a3+1/4*a2*b2]

[ 0]

[ -3/8*a3+1/4*a2*b2]

V5 =

[ 1/5*b4-2/3*a2^2*b2]

[ -a4+2*a2^3]

[ 0]

[ -4/3*a4+8/3*a2^3+2/3*a2*b3]

[ 0]

[ -8/15*a4+16/15*a2^3+4/15*a2*b3]

V6 =
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[ 14/9*a2^4+1/6*b5-10/9*a2*a4-2/9*a2^2*b2^2+1/18*a2^2*b3]

[ -11/16*a5-1/8*a2*b4+5/24*a2*b2*b3-5/12*a4*b2+8/3*a2^3*b2]

[ 2/3*a2^4+1/6*a2^2*b3-1/3*a2*a4]

[ 2/9*a4*b2-5/6*a5+1/3*a2*b4-1/9*a2*b2*b3+16/9*a2^3*b2]

[ -2/3*a2^4-1/6*a2^2*b3+1/3*a2*a4]

[ -5/16*a5+1/8*a2*b4-5/24*a2*b2*b3+5/12*a4*b2]

[ -2/9*a2^4-1/18*a2^2*b3+1/9*a2*a4]

[ -5/16*a5+1/8*a2*b4-5/24*a2*b2*b3+5/12*a4*b2]

L0 =-a1

L1 =-3*a3+2*a2*b2

L2 =-15*a5+6*a2*b4-10*a2*b2*b3+20*a4*b2

The Maple 9 program files can be found at
http://www.maplesoft.com/books/.

> # MAPLE program to compute the first two Lyapunov quantities for

> # a quintic Lienard system.

> restart:

> kstart:=2:kend:=5:

> pp:=array(1..20):qq:=array(1..20):

> vv:=array(1..20):vx:=array(0..20):

> vy:=array(0..20):xx:=array(0..20,0..20):

> yy:=array(0..20,0..20):uu:=array(0..20,0..20):

> z:=array(0..20):ETA:=array(1..20):

> pp[1]:=y:qq[1]:=-x:vv[2]:=(x^2+y^2)/2:vx[2]:=x:vy[2]:=y:

>

> for j1 from 0 to 20 do

> for j2 from 0 to 20 do

> xx[j1,j2]:=0:yy[j1,j2]:=0:

> od:od:

>

> # Insert the coefficients for a quintic Lienard system.

> xx[0,1]:=1:xx[2,0]:=-a2:xx[3,0]:=-a3:xx[4,0]:=-a4:xx[5,0]:=-a5:

> yy[1,0]:=-1:yy[2,0]:=-b2:yy[3,0]:=-b3:yy[4,0]:=-b4:yy[5,0]:=-b5:

>

> for kloop from kstart to kend do

> kk:=kloop:

> dd1:=sum(pp[i]*vx[kk+2-i]+qq[i]*vy[kk+2-i],i=2..kk-1):

> pp[kk]:=sum(xx[kk-i,i]*x^(kk-i)*y^i,i=0..kk):

> qq[kk]:=sum(yy[kk-i,i]*x^(kk-i)*y^i,i=0..kk):

> vv[kk+1]:=sum(uu[kk+1,i]*x^(kk+1-i)*y^i,i=0..kk+1):

> d1:=y*diff(vv[kk+1],x)-x*diff(vv[kk+1],y)+pp[kk]*vx[2]+
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qq[kk]*vy[2]+dd1:

> dd:=expand(d1):

>

> if irem(kk,2)=1 then dd:=dd-ETA[kk+1]*(x^2+y^2)^((kk+1)/2):

> fi:

> dd:=numer(dd):x:=1:

> for i from 0 to kk+1 do z[i]:=coeff(dd,y,i);

> od:

>

> if kk=2 then

> seqn:=solve({z[0],z[1],z[2],z[3]},

{uu[3,0],uu[3,1],uu[3,2],uu[3,3]}):

> elif kk=3 then

> seqn:=solve({z[0],z[1],z[2],uu[4,2],z[3],z[4]},

{uu[4,0],uu[4,1],uu[4,2],uu[4,3],uu[4,4],ETA[4]}):

> elif kk=4 then

> seqn:=solve({z[0],z[1],z[2],z[3],z[4],z[5]},

{uu[5,0],uu[5,1],uu[5,2],uu[5,3],uu[5,4],uu[5,5]}):

> elif kk=5 then

> seqn:=solve({z[0],z[1],z[2],uu[6,2]+uu[6,4],z[3],z[4],z[5],z[6]},

{uu[6,0],uu[6,1],uu[6,2],uu[6,3],uu[6,4],uu[6,5],

uu[6,6],ETA[6]}):

> fi:

>

> assign(seqn):x:=’x’:i:=’i’:

> vv[kk+1]:=sum(uu[kk+1,i]*x^(kk+1-i)*y^i,i=0..kk+1):

> vx[kk+1]:=diff(vv[kk+1],x):vy[kk+1]:=diff(vv[kk+1],y):

> ETA[kk+1]:=ETA[kk+1]:

> od:

>

> print(L1=numer(ETA[4])):a3:=2*a2*b2/3:print(L2=numer(ETA[6]));

L1 = -3 a3 + 2 b2 a2

L2 = 20 b2 a4 - 10 b3 b2 a2 + 6 b4 a2 - 15 a5

The programs can be extended to compute further focal values. The algorithm
in the context of Lienard systems will now be described. Consider system (2.3); the´
linearization at the origin is already in canonical form. Write Dk for the collection
of terms of degree k in V̇ . Hence

Dk = y
∂VkVV

∂x
− x

∂VkVV

∂y
−
{

k−1∑
r=2

(
ar

∂VkVV −r+1

∂x
+ br

∂VkVV −r+1

∂y

)
xr

}
. (3.1)

Choose VkVV and η2k (k = 2, 3, . . .) such that D2k = η2krk and D2k−1 = 0. The focal
values are calculated recursively, in a two-stage procedure. Having determined V�VV
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with � ≤ 2k, V2VV k+1 is found by setting D2k+1 = 0, and then V2VV k+2 and η2k+2 are
computed from the relation D2k+2 = η2k+2

(
x2 + y2

)k+1. Setting D2k+1 = 0 gives
2k + 2 linear equations for the coefficients of V2VV k+1 in terms of those of V�VV with
� ≤ 2k. These uncouple into two sets of k + 1 equations, one of which determines
the odd coefficients of V2VV k+1 and the other the even coefficients. For system (2.3)
the two sets are as follows:

(2k + 1)V2VV k+1,0 − 2V2VV k−1,2 =
2k−1∑
i=2

iVi,VV 1a2k+1−i +
2k−2∑
i=0

2Vi,VV 2b2k−i

(2k − 1)V2VV k−1,2 − 4V2VV k−3,4 =
2k−3∑
i=1

iVi,VV 3a2k−1−i +
2k−4∑
i=0

4Vi,VV 4b2k−2−i

... =
...

3V3VV ,2k−2 − 2kV1VV ,2k = V1VV ,2k−1a2 + 2kV0VV ,2kb2

V1VV ,2k = 0,

and

−V2VV k,1 =
2k∑
i=2

iVi,VV 0a2k+2−i +
2k−1∑
i=1

Vi,VV 1b2k+1−i

2kV2VV k,1 − 3V2VV k−2,3 =
2k−2∑
i=1

iVi,VV 2a2k−i +
2k−3∑
i=0

3Vi,VV 3b2k−1−i

... =
...

4V4VV ,2k−3 − (2k − 1)V2VV ,2k−1 =
2∑

i=1

a4−i +
1∑

i=0

(2k − 1)Vi,VV 2k−1b3−i

2V2VV ,2k−1 − (2k + 1)V0VV ,2k+1 = 0.

The coefficients of V2VV k+2 are obtained by setting D2k+2 = η2k+2

(
x2 + y2

)k+1. The
odd and even coefficients are given by the following two sets of equations:

−η2k+2 − V2VV k+1,1 =
2k+1∑
i=2

iVi,VV 0a2k+3−i +
2k∑
i=1

Vi,VV 1b2k+2−i

−kη2k+2 + (2k + 1)V2VV k+1,1 − 3V2VV k−1,3 =
2k−1∑
i=1

iVi,VV 2a2k+1−i +
2k−2∑
i=0

3Vi,VV 3b2k−i

... =
...

−kη2k+2 + 3V3VV ,2k−1 − (2k + 1)V1VV ,2k+1 = V1VV ,2ka2 + (2k + 1)V0VV ,2k+1b2

−η2k+2 + V1VV ,2k+1 = 0,
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and

(2k + 2)V2VV k+2,0 − 2V2VV k,2 =
2k∑
i=1

iVi,VV 1a2k+2−i +
2k−1∑
i=0

2Vi,VV 2b2k+1−i

2kV2VV k,2 − 4V2VV k−2,4 =
2k−2∑
i=1

iVi,VV 3a2k−i +
2k−3∑
i=0

4Vi,VV 4b2k−1−i

... =
... (3.2)

4V4VV ,2k−2 − 2kV2VV ,2k =
2∑

i=1

iVi,VV 2k−1a4−i +
1∑

i=0

2kVi,VV 2kb3−i

2V2VV ,2k − (2k + 2)V0VV ,2k+2 = 0.

To simplify the calculations for system (3.3) set V2VV r,2r+2+V2VV r+2,2r = 0 if k = 4r+2,
and V2VV r,2r = 0 if k = 4r.

4. Results

Lienard systems have proved very useful in th´ e investigation of multiple limit cycles
and also when proving existence, uniqueness, and hyperbolicity of a limit cycle.
Let ∂ denote the degree of a polynomial, and let H(m, n) denote the maximum
number of global limit cycles, where m is the degree of f and n is the degree of g
for the Liénard equation´

ẍ + f(x)ẋ + g(x) = 0. (4.1)
The results in the global case are listed below:

1. In 1928, Lienard [17] proved that when´ ∂g = 1 and F is a continuous odd
function, which has a unique root at x = a and is monotone increasing for
x ≥ a, then (2.3) has a unique limit cycle.

2. In 1975, Rychkov [30] proved that if ∂g = 1 and F is an odd polynomial of
degree five, then (2.3) has at most two limit cycles.

3. In 1976, Cherkas [5] gave conditions in order for a Liénard equation to have´
a center.

4. In 1977, Lins, de Melo, and Pugh [20] proved that H(2, 1) = 1. They also
conjectured that H(2i, 1) = H(2i + 1, 1) = i, where i is a natural number.

5. In 1988, Coppel [10] proved that H(1, 2) = 1.
6. In 1992, Zhifen Zhang [38] proved that a certain generalised Liénard system´

has a unique limit cycle.
7. In 1996, Dumortier and Chengzhi Li [11] proved that H(1, 3) = 1.
8. In 1997, Dumortier and Chengzhi Li [12] proved that H(2, 2) = 1.

More recently, Giacomini and Neukirch [15] introduced a new method to
investigate the limit cycles of Liénard systems when´ ∂g = 1 and F (x) is an odd
polynomial. They are able to give algebraic approximations to the limit cycles and
obtain information on the number and bifurcation sets of the periodic solutions
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even when the parameters are not small. Sabatini [31] has constructed Liénard´
systems with coexisting limit cycles and centers.

Although the Lienard equation (4.1) appears simple enough, the known global´
results on the maximum number of limit cycles are scant. By contrast, if the
analysis is restricted to local bifurcations, then many more results may be obtained.
Consider the Liénard system´

ẋ = y, ẏ = −g(x)− f(x)y, (4.2)

where f(x) = a0 + a1x+ a2x
2 + · · ·+ aix

i and g(x) = x+ b2x
2 + b3x

3 + · · ·+ bjx
j ;

i and j are natural numbers. Let Ĥ(i, j) denote the maximum number of small-
amplitude limit cycles that can be bifurcated from the origin for system (4.2) when
the unperturbed system does not have a center at the origin, where i is the degree
of f and j is the degree of g. The following results have been proved by induction
using the algorithm presented in Section 2.

1. If ∂f = m = 2i or 2i + 1, then Ĥ(m, 1) = i.
2. If g is odd and ∂f = m = 2i or 2i + 1, then Ĥ(m, n) = i.
3. If ∂g = n = 2j or 2j + 1, then Ĥ(1, n) = j.
4. If f is even, ∂f = 2i, then Ĥ(2i, n) = i.
5. If f is odd, ∂f = 2i+1 and ∂g = n = 2j+2 or 2j+3; then Ĥ(2i+1, n) = i+j.
6. If ∂f = 2, g(x) = x+ ge(x), where ge is even and ∂g = 2j; then Ĥ(2, 2j) = j.

Note that the first result seems to support the conjecture of Lins, de Melo, and
Pugh [20] for global limit cycles. Results 1 and 2 were proven by Blows and
Lloyd [2], and the results 3 to 5 were proven by Lloyd and Lynch [21]. An ex-
ample illustrating the result in case 5 is given below.

Example. Use the algorithm in Section 2 to prove that at most four limit cycles
can be bifurcated from the origin for the system

ẋ = y−(a2x
2 + a4x

4 + a6x
6
)
, ẏ = − (b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6 + b7x
7
)
.

Solution. Note in this case that ∂f = 2i + 1 = 5 and ∂g = 2j + 3 = 7, therefore
in this case i = 2 and j = 2. That η4 = L(1) = 2a2b2, follows directly from the
computation of the focal values in the second section of the chapter. The computer
programs given earlier can be extended to compute further focal values. This is
left as an exercise for the reader. Let us assume that the reader has computed the
focal values correctly.

Suppose that b2 = 0, then L(2) = a2b4. Select a2 = 0, then L(3) = 7a4b4.
Next, select b4 = 0, then L(4) = 9a4b6. Finally, select a4 = 0, then L(5) = 99a6b6.
A similar argument is used if a2 is chosen to be zero from the equation L(1) = 0.
The first five Lyapunov quantities are as follows:

L(1) = a2b2, L(2) = a2b4, L(3) = 7a4b4, L(4) = 9a4b6, L(5) = 99a6b6.

If a2 = a4 = a6 = 0 with b2, b4, b6 �= 0, then the origin is a center by the divergence��
test. If b2 = b4 = b6 = 0 with a2, a4, a6 �= 0, then the origin is a center by the��
classical symmetry argument.
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From the above, the origin is a fine focus of order four if and only if

a2b2 = 0, a2b4 = 0, a4b4 = 0, a4b6 = 0,

but
a6b6 �= 0�� .

The conditions are consistent: for example, let b2 = a2 = a4 = b4 = 0 and
a6 = b6 = 1. Select a6, b6, a4, b4, a2 and b2 such that

|a4b6| � 1 and a4a6 < 0,

|a4b4| � 1 and b4b6 < 0,

|a2b4| � 1 and a2a4 < 0,

|a2b2| � 1 and b2b4 < 0,

respectively. The origin has reversed stability four times and so four small-amplitude
limit cycles have bifurcated.

5. A New Algorithm

The author [22] considered the generalized Liénard equation´

ẋ = h(y)− F (x), ẏ = −g(x), (5.1)

where h(y) is analytic with h′(y) > 0. It is not difficult to show that the above
results 1. – 6. listed above also hold for the generalized system.

In [23], the author gives explicit formulae for the Lyapunov quantities of gen-
eralized quadratic Lienard equations. This work along with the results of Christo-´
pher and Lloyd [8] has led to a new algorithmic method for computing Lyapunov
quantities for Lienard systems. An outline of the method is given below and is´
taken from [9].

Define
u =

√√
2G(x)sgn(x), u(0) = 0, u′(0) > 0, (5.2)

where

G(x) =
∫ x

0

∫∫
g(ξ)dξ =

x2

2
+ O(x3).

The function u is analytic and invertible. Denote its inverse by x(u) and let
F ∗(u) = f(x(u)), then (5.1) becomes

u̇ = h(y)− F ∗(u), ẏ = −u, (5.3)

after scaling time by u/g(x(u)) = 1 + O(u).
It turns out that the Lyapunov quantities can be expressed very simply in

terms of the coefficients of F ∗(u), as shown in [23] and stated in the following
theorem:
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Theorem 5.1. Let F ∗(u) =
∑∞

1 aiu
i, and suppose that a2i+1 = 0 for all i < k

and a2k+1 �= 0�� , k > 0. Then system (5.3) has a fine focus of order k at the origin.
Furthermore, for k greater than zero, L(k) = Cka2k+1, where Ck < 0 is some
non-zero constant, depending only on k.

A proof to this theorem can be found in [9].

The following corollary is then immediate from the above theorem:

Corollary 5.1. Let F and G be as above. If there exists a polynomial H so that

F (x)−H(G(x)) = ckx2k+1 + O(x2k+2),

then the system (5.1) or (4.2) has a fine focus of order k and L(k) is proportional
to ck, the constant of proportionality depending only on k.

From this corollary, we can show that the calculation of Lyapunov quantities
is entirely symmetric if we swap f and g, provided that f ′(0) �= 0.��
Theorem 5.2. Suppose f(0) = 0. If the origin is a fine focus and F ′′(0) = f ′(0) is
non-zero then the order of the fine focus of (5.1) or (4.2) given above is the same
when F is replaced by G (f(( replaced by g) and g replaced by f/f ′(0). Further-
more, the Lyapunov quantities of each system are constant multiples of each other
(modulo the lower order Lyapunov quantities).

Proof. From the hypothesis, we have F (0) = F ′(0) = 0, F ′′(0) �= 0 and��
F (x)−H(G(x)) = ckx2k+1 + O(x2k+2),

for some k > 0 and some constant ck; thus H ′(0) �= 0 too, and��
G(x) = H−1(F (x)− ckx2k+1 + O(x2k+2) )

or
G(x) = H−1F (x) − ckx2k+1H ′(0)−1 + O(x2k+1).

The result follows directly. The form f/f ′(0) is used in the statement of the the-
orem just to guarantee that the conditions on g are satisfied when the functions
are swapped. �

We now apply these results to calculate the Lyapunov quantities of the system
(4.2) or (5.1) with deg(g) = 2. We shall show that the same results hold for
deg(f) = 2 at the end of this section.

We write F and G in the form

F =
n+1∑
i=2

cix
i, 2G = x2 + ax3.

We shall always assume that g is fully quadratic, that is a �= 0. If not, we can��
apply the results of [2] to conclude that at most �n/2	 limit cycles can bifurcate.
By a simultaneous scaling of the x and y axes, we can also assume that a = 1.
As before, such a scaling respects the weights of the Lyapunov quantities, and
therefore will have no effect on the dynamics.
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We now use the transformation (5.2) to obtain x as a function of u:

u2 = x2 + x3. (5.4)

The return map depends on the odd terms of the function F (x(u)); however,
since x(u) satisfies the algebraic identity (5.4), we can write this as

F (x(u)) = A(u2) + B(u2)x(u) + C(u2)x(u)2, (5.5)

where A, B and C are polynomials of degree at most⌊
n + 1

3

⌋
,

⌊
n

3

⌋
,

⌊
n− 1

3

⌋
,

respectively, whose coefficients are linear in the ci. There is no constant term in
A, so the total number of parameters in A, B and C is equal to the total number
of parameters in F . It is clear to see that we can transform between the two sets
of coefficients by a linear transformation.

In order to pick out the odd degree terms of F (x(u)), consider the function

F (x(u)) − F (x(−u)) = (x(u) − x(−u))
(
B(u2) + C(u2)[x(u) + x(−u)]

)
. (5.6)

Let ζ(u) be the third root of the algebraic equation (5.4). Then x(u) + x(−u) +
ζ(u) = −1. Thus, ζ is even in u. Since x(u)−x(−u) = 2u+O(u2), the first non-zero
term of (5.6) will be of order

ordu(B(u2) + C(u2)[−1− ζ(u)]) + 1.

From the results above, rewriting v = u2 and ξ(v) = 1 + ζ(u), the order of
fine focus at the origin will be given by

ordv(B(v) − C(v)ξ(v)), ξ(ξ − 1)2 = v, ξ(0) = 0. (5.7)

Since the coefficients of B and C are linear in the ci, the coefficients a2i above
will also be linear in the ci, and hence L(k) will be a multiple of the coefficient of
vk in the polynomial

B(v) − C(v)ξ(v). (5.8)
Note that the coefficients of A play no part in the calculations, and so the number
of parameters remaining is⌊n

3

⌋
+
⌊

n− 1
3

⌋
+ 2 =

⌊
2n + 1

3

⌋
+ 1.

Since the coefficients (and hence the Lyapunov quantities L(i)) are linear in
the ci, we need only show that the coefficients for the first

⌊
2n+1

3

⌋
+ 1 terms of

(5.8) are linearly independent. It is then clear that we can have at most a fine
focus of order

⌊
2n+1

3

⌋
. Furthermore, we can choose the coefficient of the

⌊
2n+1

3

⌋
term to be non-zero with the other terms zero, and bifurcate

⌊
2n+1

3

⌋
limit cycles.

It turns out that to show that these coefficients are linearly independent is
quite hard (even though an explicit matrix for this problem may be written down).
We shall therefore proceed on a different path. We first show that the parameters
of B and C are all effective, that is there are no non-trivial values of the parameters
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for which the coefficients of (5.8) all vanish, and then establish that the maximum
order of vanishing of (5.8) is

⌊
2n+1

3

⌋
.

Suppose, therefore, that the expression (5.8) vanishes for some polynomials
B and C. Thus ξ(v) is a rational function of v, and we write ξ(v) = r(v)/s(v),
where r and s have no common factors. Thus (5.7) gives

r(v)(r(v) − s(v))2 = s(v)3v.

Any linear factor of s(v) cannot divide r(v) and so cannot divide r(v)−s(v). Thus,
s is a constant and deg(r) = 1, which is certainly not the case.

We now wish to show that there are no non-trivial expressions of the form
(5.8) with order greater than

⌊
2n+1

3

⌋
. The proof of this assertion is more tricky.

We use a counting argument reminiscent to that used by Petrov [29] to investigate
the bifurcation of limit cycles from the Hamiltonian system

ẋ = y, ẏ = x− x2.

This of course is of a similar form to our system. It is interesting to speculate on
whether some stronger connection can be obtained between these local and global
results.

Theorem 5.3. Let ξ(v) be the solution of

ξ(ξ − 1)2 = v.

Suppose B and C are polynomials of degree at most n and m respectively one of
which is non-zero. Then the multiplicity of the zero of

H(v) = B(v)− C(v)ξ(v), deg(C) ≤ m, deg(B) ≤ n

at v = 0 is at most m + n + 1.

Proof. By induction on m + n we can assume that deg(C) = m and deg(B) =
n. From the argument above, H cannot vanish identically. We now consider the
function ξ over the complex plane with branch points at v = 4/27, ξ = 1/3 and
v = 0, ξ = 1. If we take a cut along [4/27,∞] then the branch of ξ with ξ(0) = 0 is
well defined and single-valued over the complex plane. Clearly for a zero at v = 0
we need B(0) = 0, which we shall assume from now on.

Let Γr denote the closed curve reiθ+4/27, θ ∈ [0, 2π]. We measure the change
in the argument of H as v describes the contour

[4/27 + ρ, 4/27 + R] + ΓR − [4/27 + ρ, 4/27 + R]− Γρ.

Along (4/27,∞), ξ is complex and so there will be no zeros of H , and for ρ
sufficiently small and R sufficiently large, these curves will not pass through a zero
of H either.

At v = 4/27, ξ(v) ≈ 1/3 − (4/27 − v)1/2, and so the contribution to the
argument of H as we move around −Γρ, will tend to a negative number or zero as
ρ → 0. On the other hand, about ΓR we have ξ ≈ v1/3 and so

H(v) ≈ αvm+1/3 or βvn.
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Finally, we consider the change in argument of ξ along the two sides of the
cut. We only consider the upper half of the cut, as the contribution on the lower
half is the same by conjugation. Note that Im ξ = 0 along [�� ρ, R], and therefore, if
the argument of H is to be increased by more than (k+1)π, C(v) must change sign
k times. Furthermore, as v tends from 0 to ∞, the argument of ξ above the cut
changes from 0 to 2π/3. If the argument of H increases by more than (k + 5/3)π,
then H must be a real multiple of ξ at least k times. At each of these points B(v)
must have a root. However, one root of B is already at the origin.

Thus, the maximum change in the argument of H is given by

2π
(
min(n + 2/3, m + 1) + max(n, m + 1/3)

)
= 2π(n + m + 1),

as ρ → 0 and R →∞. This proves the theorem. �

Theorem 5.4. No more than
⌊

2n+1
3

⌋
limit cycles can appear from the class of

systems (4.2) with
(i) deg(f) ≤ n and deg(g) = 2;
(ii) deg(g) ≤ n and deg(f) = 2.

Proof. We have demonstrated (i) above, so it only remains to show how (ii) follows
from Theorem 5.2. If f(0) �= 0 then there is a focus which�� is structurally stable and
no limit cycles are produced. Hence we may assume that f(0) = 0. If f ′(0) = 0 also
then F = ax3, for some constant a. Using Corollary 5.1, we find that there must
be a fine focus of order one unless a = 0, in which case the system has a centre at
the origin (a Hamiltonian system). If f ′(0) �= 0, then we can apply Theorem 5.2��
to show that this case is entirely symmetric to the case (i). �

Using similar methods to those above and expanding on the work in [24],
Christopher and the author [9] were able to prove the following result:

Theorem 5.5. For system (4.2) with m = k, n = 3 or with m = 3, n = k and
1 < k ≤ 50, the maximum number of bifurcating limit cycles from the origin as
a fine focus is equal to the maximum order of the fine focus. In the real case this
number is ⌊

3(k + 2)
8

⌋
.

Table 1 shows the results for system (4.2) using the theorems appearing in
this chapter, along with computed results by the author and Christopher.

6. Conclusions and Further Work

Table 1 is symmetric, it remains an open question whether the completed table
will also be symmetric. The relationship between global and local results is still
to be addressed as is the question of simultaneous bifurcations when there is more
than one fine focus for these systems. The ultimate aim, however, is to establish
a general formula for Ĥ(i, j) as a function of the degrees of f and g, for Liénard´
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50 38
49 24 33 38
48 24 32 36

13 6 9 10
12 6 8 10
11 5 7 8
10 5 7 8
9 4 6 8 9
8 4 5 6 9
7 3 5 6 8
6 3 4 6 7
5 2 3 4 6 6
4 2 3 4 4 6 7 8 9 9
3 1 2 2 4 4 6 6 6 8 8 8 10 10 36 38
2 1 1 2 3 3 4 5 5 6 7 7 8 9 32 33
1 0 1 1 2 2 3 3 4 4 5 5 6 6 24 24

1 2 3 4 5 6 7 8 9 10 11 12 13 48 49 50
degree of g

38
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Table 1. The maximum number of small-amplitude limit cycles
that can be bifurcated from the origin of the Lienard system (4.2)´
for varying degrees of f and g.

systems. It is hoped that future results might also give some indication on how
to provide a solution to the second part of Hilbert’s sixteenth problem. Symbolic
manipulation packages will undoubtedly play a significant role in future work on
these problems, but ultimately it will be the mathematicians who will prevail.
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Estimating Limit Cycle Bifurcations
from Centers

Colin Christopher

Abstract. We consider a simple computational approach to estimating the
cyclicity of centers in various classes of planar polynomial systems. Among
the results we establish are confirmation of Żo�l¸��adek’s result that at least 11
limit cycles can bifurcate from a cubic center, a quartic system with 17 limit
cycles bifurcating from a non-degenerate center, and another quartic system
with at least 22 limit cycles globally.

Mathematics Subject Classification (2000). 34C07.

Keywords. Limit cycle, center, multiple bifurcation.

1. Introduction

The use of multiple Hopf bifurcations of limit cycles from critical points is now a
well-established technique in the analysis of planar dynamical systems. For many
small classes of systems, the maximum number, or cyclicity, of bifurcating limit
cycles is known and has been used to obtain important estimates on the general
behavior of these systems. In particular, quadratic systems can have at most three
such limit cycles [1]; symmetric cubic systems (those without quadratic terms)
and projective quadratic systems at most five [11, 15, 8]. Results are also known
explicitly for several large classes of Lienard systems [3].´

The idea behind the method is to calculate the successive coefficients αi in
the return map for the vector field about a non-degenerate monodromic critical
point. That is, we choose a one-sided analytic transversal at the critical point with
local analytic parameter c, and represent the return map by an expansion

h(c) = c +
∑
i≥0

αi ci.

The cyclicity can then be found from examining these coefficients and their com-
mon zeros. The terms α2k are merely analytic functions of the previous αi, so
the only interesting functions are the ones of the form α2i+1. If α2k+1 is the first
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non-zero one of these, then at most k limit cycles can bifurcate from the origin,
and, provided we have sufficient choice in the coefficients αi, we can also obtain
that many limit cycles in a simultaneous bifurcation from the critical point.

We call the functions α2i+1 the Liapunov quantities of the system. If all the
α2i+1 vanish then the critical point is a center. It is possible to analyze this case
also, but to do fully requires a more intimate knowledge, not only of the common
zeros of the polynomials αi, but also of the ideal they generate in the ring of
coefficients. The papers [1, 15] cover the case of a center also. We call the set of
coefficients for which all the αi vanish the center variety.

In the cases we consider here, when α0 = 0, the remaining coefficients are
polynomials in the parameters of the system. By the Hilbert Basis Theorem, the
center variety is then an algebraic set.

Unfortunately, although the calculation of the Liapunov quantities is straight
forward, the computational complexity of finding their common zeros grows very
quickly. The result is that some very simple systems have remained intractable (to
direct calculation at least) at present; for example, the system of Kukles’ [9]:

ẋ = y, y = −x + a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy2 + a7y
3.

For higher degree systems it seems that a more realistic approach would be
to restrict our attention to finding good lower bounds to the cyclicity by carefully
selecting subclasses of the systems investigated. For example, the Kukles’ system
above has cyclicity 6 when a2 = 0 [10], and this is expected to be the maximum
number. In the same way, Lloyd and James [6] found examples of cubic systems
with cyclicity 8. Recently, a cubic system with 12 limit cycles has been found by
generating two symmetric nests of 6 limit cycles [13].

The disadvantage of such an approach is that there is no clear geometry of
the order of cyclicity, and so we must find suitable classes of systems on a rather
ad hoc basis. The higher the cyclicity desired, the more parameters we need in our
model, and the less likely it is that we will be able to complete the calculations
due to the inevitable expression swell.

In contrast, the classification of centers in polynomial systems is much more
accessible to an a-priori geometric approach. Żo�l¸��adek and Sokulski have enumer-¸
ated a great number of known classes of cubic centers of the two main types
conjectured to comprise all non-degenerate centers [16, 17, 12]. Furthermore, the
analysis of global bifurcations of limit cycles from integrable systems has yielded
nice estimates of the number of limit cycles in such systems. For example, Li and
Huang’s proof that a cubic system has 11 limit cycles [7], and recent estimates on
the growth of the Hilbert numbers [4].

A natural approach therefore would be to use center bifurcations rather than
multiple Hopf bifurcations to estimate the cyclicity of a system. Using such a
technique, Żo�l��adek has shown that there are cubic systems with 11 limit cycles¸
bifurcating from a single critical point [17]. However the proof is quite technical
and in general such methods are hard to apply to systems of higher degree.
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Näıvely, we would expect the number of limit cycles to be estimated by¨
one less than the maximum codimension of a component of the center variety.
A comparison of the cyclicities of the Liénard systems computed in [4] with the
codimensions of their center varieties, using the results of [2], shows that this
is indeed the case for Lienard systems of low degree. Making this observation´
rigorous, however, would be much harder.

Our aim here is to describe a simple computational technique which will
allow us to estimate the generic cyclicity of a family of centers. It can also be
used to check whether we have found the whole of an irreducible component of
the center variety. One nice aspect of this work is that it removes on one hand
the necessity of lengthy calculations or complex independence arguments, and on
the other hand gives room for a more creative approach to estimating cyclicity,
using the latent geometry of the centers of the system. We give several examples to
prove the effectiveness of our technique, including a quartic system with 17 limit
cycles bifurcating from a center, and another quartic system with at least 22 limit
cycles. We also confirm Żo�l��adek’s result that 11 limit cycles can bifurcate from a¸
center in a cubic system.

Throughout the paper, we have tried to keep the details of the individual
calculations to a minimum. This is because, once an initial system is given, the
intermediate calculations themselves are entirely automatic, and do not appear to
be of any independent interest. The method has been implemented in REDUCE,
but it should be a straight-forward matter to be able to write similar routines to
work in any of the standard Computer Algebra systems. Copies of the REDUCE
programs used and a detailed summary of the calculations can be obtained from
the author via e-mail.

2. The Basic Technique

The idea of the method is very simple. We choose a point on the center variety, and
linearize the Liapunov quantities about this point. In the nicest cases, we would
hope that the point is chosen on a component of the center variety of codimension
r, then the first r linear terms of the Liapunov quantities should be independent.
If this is the case, we will show below that the cyclicity is equal to r − 1. That is,
there exist perturbations which can produce r− 1 limit cycles, and this number is
the maximum possible.

Sometimes it is possible that we have found a particular class of centers,
and want to check whether the set comprises the whole of a component of the
center variety. Again, in nice cases, a simple computation of the linear terms of
the Liapunov quantities can establish that the codimension is in fact maximal. It
would be an interesting task to go through the known families of centers found
by Żo�l��adek and Sokulski [16, 17, 12] to see how many of these families of centers¸
form complete components of the center variety for cubic systems.
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Of course, we cannot know a-priori whether the method will work for a given
component of the center variety. We may not have chosen a good point on the
variety or, worse still, the presence of symmetries, for example, might have forced
the ideal generated by the Liapunov quantities to be non-radical. Furthermore,
even in the nicest cases, this method will only determine the cyclicity of a generic
point on that component of the center variety.

However, although these are serious shortfalls, there are also great advantages
to this method. Since we choose the starting system explicitly, the computations
involved are essential linear and therefore extremely fast. It is hard to see how some
of the cyclicities given here could have been obtained by more standard approaches
without a lot of hard effort.

We now explain the technique in more detail for the cases we are particu-
larly interested in. Modifications to more general situations (analytic vector fields,
analytic dependence on parameters etc.) should be clear.

Consider a critical point of focal or center type in a family of polynomial
systems. After an affine change of coordinates, we can assume that the members
of the family are of the form

ẋ = λx − y + p(x, y), ẏ = λy + x + q(x, y). (2.1)

Where p and q are some polynomials of fixed degree. We let Λ denote the set
of parameters, λ1, . . . , λN of p and q where λ1 = λ. We shall assume that the
coefficients of p and q are polynomials in the parameters, and we let K ≡ RN

denote the corresponding parameter space. That is, we identify each point in K
with its corresponding system (2.1).

We choose a transversal at the origin and calculate the return map h(c) as in
the introduction. Standard theory shows this to be analytic in c and Λ. The limit
cycles of the system are locally given by the roots of the expression

P (c) = h(c)− c = α1 c +
∞∑

i=2

αk ck,

where the αi are analytic functions of Λ.
We are interested in a fixed point of the parameter space K, which we can

choose to be the origin without loss of generality (for we know that λ must be zero
for any bifurcations to take place, and the other parameters can be translated to
zero).

More detailed calculations show that α1 = e2πλ − 1 = 2πλ (1 + O(λ)) and
that

αk = βk +
k−1∑
i=1

βiwik, (k > 1)

where the βi are polynomials in the coefficients of p and q. The wik are analytic
functions of Λ. We set β1 = 2πλ. Furthermore, β2k always lies in the ideal generated
by the previous βi (1 ≤ i ≤ 2k − 1) in the polynomial ring generated by the
coefficients in Λ. This means that in most of the calculations below the β2i are
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effectively redundant. We call the functions β2i+1 the i-th Liapunov quantity and
denote it by L(i).

If at the origin of K, we have L(i) = 0 for i < k and L(k) �= 0, then�� P (c) has
order 2k + 1. In this case P (c) can have at most 2k + 1 zeros in a neighborhood
of the origin for small perturbations. It follows that at most k limit cycles can
bifurcate from this point under perturbation (each limit cycle counts for two zeros
of the return map, one of each sign). The number k is called the order of the fine
focus.

If we can choose the L(i) (1 ≤ i ≤ k − 1) independently in a neighborhood
of 0 ∈ K, for example when the Jacobian matrix of the L(i)’s with respect to the
parameters Λ has rank k − 1 then we can produce k − 1 limit cycles one by one
by choosing successively

|L(i− 1)| � |L(i)|, L(i− 1)L(i) < 0,

working from L(k − 1) down to L(0). At each stage the lower terms remain zero.
With a little more analysis we can show that this bifurcation can be made simul-
taneously.

Suppose now that at the origin of K, we have L(i) = 0 for all i, then the
critical point is a center. Let R[Λ] denote the coordinate ring generated by the
parameters Λ, and I the ideal generated in this ring by the Liapunov quantities.
By the Hilbert Basis Theorem, there is some number n for which the first n of the
L(i) generate I. Thus, the set of all centers is in fact an algebraic set, which we
call the center variety.

Since all the β2k’s lie in the ideal generated by the L(i) with i < k, we can
write

P (c) =
n∑

i=0

b2i+1c
2i+1(1 + Ψ2i+1(c, λ1, . . . , λN )), (2.2)

where the functions Ψ2i+1 are analytic in their arguments and Ψ(0, 0) = 0. A
standard argument from [1] shows that at most n limit cycles can bifurcate.

To find the cyclicity of the whole of the center variety, not only is it necessary
to know about the zeros of the L(i), but also the ideal that they generate. It is no
surprise therefore that few examples are known of center bifurcations [1, 15].ff

However, if we are working about one point on the center variety, we can
simplify these calculations greatly. Instead of taking the polynomial ring generated
by the L(i), we can take the ideal generate by the L(i) in R{{Λ}}, the power
series ring of Λ about 0 ∈ K instead. This also has a finite basis, by the equivalent
Noetherian properties of power series rings.

What makes this latter approach so powerful, however, is that in many cases
this ideal will be generated by just the linear terms of the L(i). In which case we
have the following theorem.

Theorem 2.1. Suppose that s ∈ K is a point on the center variety and that the
first k of the L(i) have independent linear parts (with respect to the expansion of
L(i) about s), then s lies on a component of the center variety of codimension at



28 Christopher

least k and there are bifurcations which produce k− 1 limit cycles locally from the
center corresponding to the parameter value s.

If, furthermore, we know that s lies on a component of the center variety of
codimension k, then s is smooth point of the variety, and the cyclicity of the center
for the parameter value s is exactly k − 1.

In the latter case, k − 1 is also the cyclicity of a generic point on this com-
ponent of the center variety.

Proof. The first statement is obvious. As above we can choose s to be the origin
without loss of generality. Since the theorem is local about the origin of K, we can
perform a change of coordinates so that the first k of the L(i) are given by λi.

Now since we can choose the λi independently, we can take λi = miε
2(k−i) for

some fixed values mi (0 ≤ i ≤ k − 1), and mk = 1. The return map will therefore
be an analytic function of ε and c. From the (2.2) above, we see that

P (c)/c =
k∑

i=0

mic
2iε2(k−i) + Φ(c, ε).

Here Φ contains only terms of order greater than 2k in c and ε. For appropriate
choices of the mi, the linear factors of

∑r
i=0 mic

2iε2(k−i) can be chosen to be
distinct and real, and none tangent to ε = 0; whence P (c)/c has an ordinary 2k-
fold point at the origin as an analytic function of c and ε. Now it is well known
that in this case each of the linear factors c− viε of the terms of degree 2k can be
extended to an analytic solution branch c = viε + O(ε2) of P (c)/c = 0. This gives
2k distinct zeros for small ε, and the second statement follows.

The third statement follows from noticing that the first k of the L(i) must
form a defining set of equations for the component of the center variety. Any L(i)
for i > k must therefore lie in the ideal of the L(i) if we work over R{{Λ}}. The
results follows from Bautin’s argument mentioned above [1].

The last statement follows from the fact that the points where the center
variety is not smooth or where the linear terms of the first k Liapunov quantities
are dependent form a closed subset of the component of the center variety we are
on. �

In practice, the computation of the Liapunov quantities from the return map
P (c) is not the most efficient way to proceed. Instead we use a method which turns
out to be equivalent. Recall that we only need to calculate the Liapunov quantities
L(k) modulo the previous L(i), i < k. In particular, L(1) is a multiple of λ and so
we can assume that λ = 0 when we calculate the L(k) for k > 0.

We seek a function V = x2 + y2 + · · · such that for our vector field X ,

X(V ) = λη4y
4 + η6y

6 + · · · , (2.3)

for some polynomials η2k. The calculation is purely formal, and the choice of V can
be made uniquely if we specify that V (x, 0)−x2 is an odd function for example. It
turns out that the polynomials η2k are equivalent to L(k)/2π modulo the previous
L(i) with i < k.
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This is the method we shall adopt here, though there are many other meth-
ods of calculating equivalent sets of Liapunov quantities. In particular, it is more
common to replace the quantities y2i in right hand side of (2.3) by (x2 + y2)i.
The two give equivalent sets of Liapunov quantities, in the sense explained above,
however the version in y2i is slightly easier to work with computationally.

If the linear parts of the system are not quite in the form of (2.1), then rather
than transform the system to (2.1), we can replace the terms x2 + y2 in expansion
of V by the equivalent positive definite quadratic form which is annihilated by the
linear parts of X .

Now suppose once again that our center corresponds to 0 ∈ K. We can write
the general vector field in the family as X = X0+X1+X2+ · · · , where Xi contains
the terms of degree i in Λ (again, we can take λ = 0 if we only want to calculate
the higher Liapunov quantities). Let η2k,i denote the terms of degree i in η2k, and
similarly let ViVV denote the terms of degree i in Λ in V , then (2.3) gives

X0V0VV = 0, X0V1VV + X1V0VV = η4,1 y4 + η6,1 y6 + · · · , (2.4)

and, more generally

X0ViVV + · · ·+ XiV0VV = η4,i y4 + η4,i y6 + · · · . (2.5)

We can then solve the two equations of (2.4) by linear algebra to find the linear
terms of the L(k) (modulo the L(i), (i < k)). The algorithm can be implemented
in a straight forward manner in a computer algebra system and is extremely fast
(the author used REDUCE here). Higher order terms in the expansion of the L(i)
(considered later) can be generated using (2.5), but the calculations are no longer
linear, and soon become unmanageable.

Now we give the main result of this section.

Theorem 2.2. There exists a class of cubic systems with 11 limit cycles bifurcating
from a critical point. There exists a class of quartic systems with 15 limit cycles
bifurcating from a critical point.

Proof. We first consider the family of cubic systems C31CC in Żo�l¸��adek’s most recent
classification [17]. These systems have a Darboux first integral of the form

φ =
(xy2 + x + 1)5

x3(xy5 + 5xy3/2 + 5y3/2 + 15xy/8 + 15y/4 + a)2
.

There is a critical point at

x =
6(8a2 + 25)
(32a2 − 75)

, y =
70a

(32a2 − 75)
.

If we translate this point to the origin and put a = 2 we find we have the system,

ẋ = 10(342 + 53x)(289x− 2112y + 159x2 − 848xy + 636y2),
ẏ = 605788x− 988380y + 432745xy− 755568y2 + 89888xy2 − 168540y3,

whose linear parts give a center.
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We consider the general perturbation of this system in the class of cubic
vector fields. That is, we take a parameter for each quadratic and cubic term and
also a parameter to represent λ above, when the system is brought to the normal
form (2.1).

From the discussion above, we know that L(1) is just a multiple of λ and can
be effectively ignored in the rest of the calculations. Furthermore, we do not need
to bring the system to (2.1) to calculate the Liapunov quantities, as we use the
alternative method described above, computing V starting from the more general
quadratic form, 302894x2/2− 988380xy + 3611520y2/2. As this term can also be
generated automatically, we do not mention it again in the examples which follow.

Automatic computations now show that the linear parts of L(2), . . . , L(12)
are independent in the parameters and therefore 11 limit cycles can bifurcate from
this center.

For the quartic result, we look at a system whose first integral is given by

φ =
(x5 + 5x3 + y)6

(x6 + 6x4 + 6/5xy + 3x2 + a)5
.

The form is inspired by Żo�l��adek’s system C45 in [16]. We take¸ a = −8 which gives
a center at x = 2, y = −50, which we move to the origin. This gives a system

ẋ = −510x− 6y − 405x2 − 3xy − 120x3 − 15x4,

ẏ = 49950x + 510y + 22500x2 − 1335xy − 15y2

+ 2850x3 − 630x2y − 300x4 − 105x3y.

This time we take a general quartic bifurcation and find that, assuming L(1) = 0
as above, we have L(2) to L(16) linearly independent in the parameters. Hence
this center can produce 15 limit cycles by bifurcation. �

Remark 2.3. We note that an immediate corollary of the work is that there are
components of the center variety of the class of all cubic systems which have
codimension 12.

The result for cubic systems was first shown by Żo�l��adek. However, the system¸
he considers is different from ours. This is because, as noted in his paper, it is not
possible to generate 11 limit cycles from his system by considering the linear terms
only. The nice thing about the result here is that it depends on only the simplest
arguments and a direct calculation.

We will improve the quartic bound in the next section.

3. Higher Order Perturbations

Of course, it will often happen that the linear terms of the Liapunov quantities
are not independent. Several reasons for this are discussed in Żo�l��adek [18].¸

Loosely speaking, we may be at an intersection point of two components
of the center variety. Alternatively, the existence of a symmetry can sometimes
imply that the parameters only appear to certain powers in the expansion of the
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Liapunov quantities. Finally, it can also happen that the parameter space can be
embedded in a larger parameter space where it is tangent to the center variety.

This last possibility occurs in the paper of Żo�l��adek [18], and he must consider¸
second order terms.

It is still possible in this case to obtain cyclicities by considering the higher or-
der terms of the Liapunov quantities. These can be calculated as in (2.5). However,
the procedure becomes much slower as the degree of the terms increases.

In general, as soon as higher order terms are taken into account, the situation
becomes much more complex. However, we shall give one result here where we can
say something concrete under some generic assumptions.

We apply this result to the quartic system considered in the previous section
and show that in fact 17 limit cycles can bifurcate from this center when we
consider the quadratic terms. We also show that the strata of symmetric centers
C46CC can generate 11 limit cycles under cubic perturbations.

This latter result dates back to an earlier attempt by Żo�l��adek [14] to find 11¸
limit cycles, but has not been established until now.

Suppose that L(1), . . . , L(r) have independent linear parts. Since we are in-
terested only in the cyclicity in a neighborhood 0 ∈ K, we can perform an analytic
change of coordinates in parameter space and assume L(i) = λi for i = 2, . . . , r
(recall L(1) = 2πλ already).

Now, suppose we have expanded the Liapunov quantities L(r + 1), . . . , L(k)
in terms of the parameters λr+1, . . . , λk, and that the order of the first non-zero
terms of each of these Liapunov quantities is the same, m say. In this case, we
can write the Liapunov quantities as L(i) = hi(λr+1, . . . , λk) + · · · where hi is a
homogeneous polynomial of degree m. Here, we have reduced the L(i), (i > r),
modulo the L(i), (i = 1, . . . r), so that they have no dependence on λ1, . . . , λr.

Theorem 3.1. Suppose the hi are given as above, and consider the equations hi = 0
as defining hypersurfaces in S = Rk−r \ {0}. If there exists a line � in S such
that hi(�) = 0 and the hypersurfaces hi = 0 intersect transversally along � for
i = r + 1, . . . , k − 1, and such that hk(�) �= 0�� , then there are perturbations of the
center which can produce k − 1 limit cycles.

Proof. In this case, there exists an analytic curve C in a neighborhood of 0 ∈ R
given by L(i) = hi+ · · · = 0, i = r+1, . . . , k−1, which is tangent to � at 0 ∈ R. We
now move the parameters λr+1, . . . , λk along C, keeping λ1 = · · · = λr = 0. For a
sufficiently small perturbation along C we shall have L(1) = · · · = L(k − 1) = 0
and L(k) �= 0. Thus we have a weak focus of order�� k− 1. Furthermore, the rank of
the the other L(i) will be equal to k − 1, by hypothesis. Thus we can move away
from this curve in a direction which produces k − 1 limit cycles. �
Theorem 3.2. There is a class of quartic system with 17 limit cycles bifurcating
from a critical point.

Proof. We calculate the linear and quadratic terms of the first 18 Liapunov quan-
tities with respect to a general perturbation of a quartic system which has no
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quadratic or cubic terms in the perturbation of ẏ, so that we have 18 parameters
(including λ). The first 16 Liapunov quantities are independent and we perform a
change of variable to express L(17) and L(18) as quadratic terms in the remaining
two parameters. In these new coordinates, L(17) and L(18) have only one linear
factor in common and hence the remaining linear factor in L(17) gives the line �
in the theorem above, and we obtain 17 limit cycles. �

We now consider the symmetric cubic systems

ẋ = −8ax + 4y − 4x3 + xy2, ẏ = −16x + 8ay + 32ax3 − 28x2y + 3y3,

which are based on the first integral

φ =
(x4 + xy + 1)3

(x6 + 3x3y/2 + 3x2/2 + 3y2/8 + a)2
.

When a = 1/2 the origin is a center and the linear parts of L(1) to L(6) are inde-
pendent. From the symmetry of the system, the six parameters which correspond
to the quadratic perturbation terms always appear in monomials of even degree.
The remaining Liapunov quantities L(7) to L(12) turn out to have leading terms
which are quadratic in these six parameters.

From the above theorem, it is only necessary to verify that the first five of
these quadratic terms have a common zero at which the sixth doesn’t vanish, and
for which the Jacobian of the first five terms with respect to five of the remaining
parameters is non-zero. The computations are very hard in this case, and recourse
was had to the specialist commutative algebra package Singular [5] for some of
the Gröbner basis calculations described below.¨

The original conjecture of Żo�l¸��adek was that C46 centers formed their own¸
component in the center variety of all cubic systems. We were not able to verify
this here, as there exist non trivial solutions of the first five quadratic terms which
are shared by the sixth. However, it is testimony to the original intuition of Żo�l¸��adek
(an investigation done without the aid of any computer algebra) that the Liapunov
quantities are sufficiently independent that we can indeed obtain the number of
limit cycles hoped for.

Theorem 3.3. The symmetric cubic centers C46 can generate 11 limit cycles.

Proof. Ideally, to obtain the common solutions for the intersections of the first
five quadratic terms, we would like to compute their Gröbner basis with respect to¨
a lexicographic ordering. Unfortunately, the computations are sufficiently difficult
that such an approach does not work directly. However, we can compute a Gröbner¨
basis with a total degree ordering, which is much more efficient computationally,
but less useful for obtaining explicit equations for the zeros of the polynomials.

If the ideal was zero dimensional, then we could use the FGLM algorithm to
return efficiently to a lexicographic basis, but in our case, it turns out that there is
a non-trivial one dimensional solution (also shared by the sixth quadratic term).
However, our Gröbner basis calculation shows that this solution lies on a quadratic¨
hypersurface h = 0.
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Since all the polynomials are homogeneous, any solution away from h = 0
can be scaled so that h = 1 or h = −1. By adding the polynomial h = 1 to the
other quadratic terms, we can guarantee that any solutions found lie away from
h = 0. Gröbner basis calculations show that the solutions of the revised set of¨
polynomials is zero dimensional and we can apply the FGLM algorithm to obtain
a lexicographic basis. From this we get an explicit set of algebraic equations for
some of the common zeros of the first five quadratic terms. These are obtained in
the form of a polynomial in one of the parameters and the remaining parameters
are expressed as polynomials in this parameter. It can easily be shown that some
of these solutions are real by a sign change argument. These solutions therefore
give real points in R6 \ {0} which represent the intersections of the hypersurface
h = 1 with the solutions of the original homogeneous problem. The curve � can
therefore be reconstructed by taking the line passing through one of these real
solutions and the origin.

Another Gröbner basis calculation shows that there are no common zeros¨
of the first five quadratic terms and their Jacobian, apart from the trivial zero
solution, so we can indeed generate 11 limit cycles by moving along � as in Theorem
3.1. �

4. Using Symmetries

Finally, we give in this section, one example of the use of symmetry techniques with
our center bifurcation method. The use of center bifurcations with symmetries has
proved useful in obtaining good asymptotic lower bounds for the number of limit
cycles in polynomial systems of large degree [4]. We use the same ideas here to
prove the following.

Theorem 4.1. There exists a quartic system with 22 limit cycles. The cycles appear
in two nests of 6 cycles and one nest of 10.

Proof. We work with the cubic center C4CC ,5, which was the one considered in
Żo�l��adek in [18]. This is of the form¸

ẋ = 2x3 + 2xy + 5x + 2a, ẏ = −2x3a + 12x2y − 6x2 − 4ax + 8y2 + 4y, (4.1)

with first integral

φ =
(x4 + 4x2 + 4y)5

(x5 + 5x3 + 5xy + 5x/2 + a)4
.

When a = 3, the system has a center at the point (−3/2,−11/4). We translate the
system by (x, y) �→ (x − 1, y + 3), which brings the critical point to (−5/2, 1/4).
Now we perform a singular transformation (x, y) �→ (x, y2). After multiplying the
resulting equation through by y we get the quartic system

ẋ = y(2x3 + 6x2 + 2xy2 + 5x + 2y2 + 7),
ẏ = −3x3 + 6x2y2 − 30x2 + 12xy2 − 57x + 4y4 − 16y2.

(4.2)
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This system has a center at the origin, and we calculate that the linear parts of the
Liapunov quantities L(1) to L(11) are independent. Now, suppose we add pertur-
bation terms to the system (4.1) in such a way that applying the same transform
as that given above we still obtain a system of degree 4. Because of the forced sym-
metry in the last step of the transformation, the origin of the perturbed version of
(4.2) will still have a center. Furthermore, the linear parts of the Liapunov quan-
tities will still remain independent as long as the perturbation is small enough.
That is, after a sufficiently small perturbation of (4.1), we can still bifurcate 10
limit cycles from the system (4.2) after the transformation.

If we consider the center (−3/2,−11/4) of (4.1) transformed to the origin, the
possible non-linear perturbation terms which still allow for the unfolding transfor-
mation are x2, xy and x3 in the ẋ equation, and x2, xy, y2, x3 and x2y in the ẏ
equation. All the linear perturbation terms are permissible.

We calculate that the linear parts of L(1) to L(7) are independent if we allow
all these terms as perturbation parameters, and hence 6 limit cycles can bifurcate
from (4.1). However, the symmetry in the transformation means that the point
(−3/2,−11/4) in (4.1) corresponds to both (−5/2, 1/2) and (−5/2,−1/2) in (4.2).
Thus, after we perturb (4.2) we have produced two nests of 6 limit cycles. We
perturb the origin to bring the total number of limit cycles up to 22. �

5. Conclusion

The investigations presented in this paper are still in an elementary stage — the
quartic estimates, for example, are likely to be far from the best possible — but
the author hopes that the results obtained are sufficiently interesting that others
might try their hand at exploiting more of the underlying geometry of families of
centers in the bifurcation theory of cubic and higher degree systems.
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Conditions of Infinity to be an Isochronous
Center for a Class of Differential Systems

Wentao Huang and Yirong Liu

Abstract. In this article, the definition of isochronous center at infinity is given
and the center conditions and the isochronous center conditions at infinity for
a class of differential systems are investigated. By a transformation, infinity is
taken to the origin and therefore properties at infinity can be studied with the
methods developed for finite critical points. Using the computations of singu-
lar point values and period constants at the origin, the problem of conditions
for infinity to be a center or to be an isochronous center has been solved for
complex vector fields in this case.
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1. Introduction

In the qualitative theory of polynomial differential systems, the problem of deter-
mining center conditions and isochronous center conditions are two interesting and
difficult topics. In the case of a finite critical point a lot of work has been done. The
case of a center is considered in [3, 4, 12, 13]. Several classes of isochronous systems
have also been studied: quadratic isochronous centers [14]; isochronous centers of
a linear center perturbed by third, fourth and fifth degree homogeneous polyno-
mials [16, 17, 18]; complex polynomial systems [20]; reversible systems [19, 21];
isochronous centers of cubic systems with degenerate infinity [22, 23]. For the case
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of infinity, research has concentrated on the following 2n + 1 degree system

dx

dt
=

2n∑
k=0

Xk(x, y)− y(x2 + y2)n,

dy

dt
=

2n∑
k=0

YkYY (x, y) + x(x2 + y2)n,

where Xk(x, y), YkYY (x, y) are homogeneous polynomials of degree k of x and y. For
this system, the equator Γ∞ on the Poincare closed sphere is a trajectory of the´
system, having no real critical point. Γ∞ is called infinity in this point of view. As
far as center conditions at infinity are concerned, several special systems have been
studied: cubic systems in [6, 9]; fifth degree systems in [10]. But for the problem
concerning the conditions of infinity to be a isochronous center, there are very
few results. In [11] the conditions of infinity to be an isochronous center for a real
rational system are discussed. In this paper, we study the center conditions and
the isochronous center conditions at infinity for a class of differential system of the
form

dx

dt
=

1
(x2 + y2)2

(−λy + A30x
3 + A21x

2y + A12xy2 + A03y
3)− y,

dy

dt
=

1
(x2 + y2)2

(λx + B30x
3 + B21x

2y + B12xy2 + B03y
3) + x.

(1.1)

By a time transformation, system (1.1) can be transferred into the following poly-
nomial differential system

dx

dt
= −λy + A30x

3 + A21x
2y + A12xy2 + A03y

3 − y(x2 + y2)2,

dy

dt
= λx + B30x

3 + B21x
2y + B12xy2 + B03y

3 + x(x2 + y2)2.
(1.2)

Systems (1.1) and (1.2) have the same of phase portraits in the phase plane, so
their center conditions at infinity are identical.

This paper is organized as follows. In Section 2 we define isochronous center
of infinity and restate some known results which are necessary for investigating
center and isochronous center conditions. In Section 3 we give the singular point
values and center conditions. In Section 4, we compute period constants and discuss
isochronous center conditions of the system.

2. The Isochronous Center at Infinity and Some Preliminary
Results

Definition 2.1. For a real planar differential system, infinity Γ∞ is said to be an
isochronous center if the trajectories of the system in the neighborhoods of infinity
(the equator) are all closed and their periods are constant.
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The following theorem is obvious.

Theorem 2.2. For two differential systems (A) and (B), if there exists a home-
omorphism taking infinity of system (A) to the origin of system (B), then the
infinity of system (A) is a center (an isochronous center) if and only if the origin
of system (B) is a center (an isochronous center).

By means of transformation

x =
ξ

(ξ2 + η2)3
, y =

η

(ξ2 + η2)3
,

system(1.1) becomes the following polynomial system

dξ

dt
= −η + (ξ2 + η2)3 ((−ξ2

5 + η2) (A30 ξ3 + A21 ξ2 η + A12 ξ η2 + A03 η3)

− 6
5

ξ η (B30 ξ3 + B21 ξ2 η + B12 ξ η2 + B03 η3))− η (ξ2 + η2)
10

λ,

dη

dt
= ξ + (ξ2 + η2)

3
((ξ2 − η2

5
) (B30 ξ3 + B21 ξ2 η + B12 ξ η2 + B03 η3)

+
−6
5

ξ η (A30 ξ3 + A21 ξ2 η + A12 ξ η2 + A03 η3)) + ξ (ξ2 + η2)
10

λ.

(2.1)
From Theorem 2.2, the center (isochronous center) conditions at infinity of

system (1.1) are the same as the center (isochronous center) conditions at the
origin of system (2.1).

By means of transformation

z = ξ + ηi, w = ξ − ηi, T = it, i =
√−1, (2.2)

system (2.1) can be transformed into the following complex system

dz

dT
= z +

2 a03 w7 z4

5
+ (

2 a12

5
+

3 b30

5
)w6 z5 + (

2 a21

5
+

3 b21

5
)w5 z6

+ (
2 a30

5
+

3 b12

5
)w4 z7 +

3 b03 w3 z8

5
+ w10 z11 λ ,

dw

dT
= −[w + +

2 b03 w4 z7

5
+ (

3 a30

5
+

2 b12

5
)w5 z6 + (

3 a21

5
+

2 b21

5
)w6 z5

+ (
3 a12

5
+

2 b30

5
)w7 z4 +

3 a03 w8 z3

5
+ w11 z10 λ],

(2.3)
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where

a30 =
1
8
(A03 + iA12 −A21 − iA30 + iB03 −B12 − iB21 + B30),

b30 =
1
8
(A03 − iA12 −A21 + iA30 − iB03 −B12 + iB21 + B30),

a03 =
1
8
(−A03 + iA12 + A21 − iA30 − iB03 −B12 + iB21 + B30),

b03 =
1
8
(−A03 − iA12 + A21 + iA30 + iB03 −B12 − iB21 + B30),

a21 =
1
8
(−3A03 − iA12 −A21 − 3iA30 − 3iB03 + B12 − iB21 + 3B30),

b21 =
1
8
(−3A03 + iA12 −A21 + 3iA30 + 3iB03 + B12 + iB21 + 3B30),

a12 =
1
8
(3A03 − iA12 + A21 − 3iA30 + 3iB03 + B12 + iB21 + 3B30),

b12 =
1
8
(3A03 + iA12 + A21 + 3iA30 − 3iB03 + B12 − iB21 + 3B30),

(2.4)

and z, w, T are complex variables. We say that systems (2.1) and (2.3) are con-
comitant. Evidently, the coefficients of system (2.1) are real if and only if the
coefficients of system (2.3) satisfy the conjugate condition, i.e.,

aαβ = bαβ, α ≥ 0, β ≥ 0, α + β = 3. (2.5)

In [1, 7, 8], the authors defined the complex center and complex isochronous
center for the following complex systems

dz

dT
= z +

∞∑
k=2

Zk(z, w) = Z(z, w),

dw

dT
= −w −

∞∑
k=2

WkWW (z, w) = −W (z, w),

(2.6)

with

Zk(z, w) =
∑

α+β=k

aαβzαwβ , WkWW (z, w) =
∑

α+β=k

bαβwαzβ,

and gave a recursive algorithm to determine the necessary conditions for a center.
We now restate the definitions and the algorithm.

By means of the transformation

z = reiθ , w = re−iθ, T = it, (2.7)
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where r, θ are complex numbers, system (2.6) can be transformed into

dr

dt
= i

wZ − zW

2r
= ir

∞∑
k=1

wZk+1 − zWkWW +1

2zw

=
ir

2

∞∑
m=1

∑
α+β=m+2

(aα,β−1 − bβ,α−1)ei(α−β)θrm,

dθ

dt
=

wZ + zW

2zw
= 1 +

∞∑
k=1

wZk+1 + zWkWW +1

2zw

= 1 +
1
2

∞∑
m=1

∑
α+β=m+2

(aα,β−1 + bβ,α−1)ei(α−β)θrm.

(2.8)

For the complex constant h, |h| � 1, we write the solution of (2.8) satisfying
the initial condition r|θ=0 = h as

r = r̃(θ, h) = h +
∞∑

k=2

vk(θ)hk

and denote

τ(ϕ, h) =
∫ ϕ

0

∫∫
dt

dθ
dθ

=
∫ ϕ

0

∫∫
[1 +

1
2

∞∑
m=1

∑
α+β=m+2

(aα,β−1 + bβ,α−1)ei(α−β)θ r̃(θ, h)m]−1dθ.

Definition 2.3 ([1]). For a sufficiently small complex constant h, the origin of system
(2.6) is called a complex center if r̃(2π, h) ≡ h. The origin is a complex isochronous
center if

r̃(2π, h) ≡ h, τ(2π, h) ≡ 2π.

Lemma 2.4 ([5]). For system (2.6), we can derive uniquely the following formal
series

ξ = z +
∞∑

k+j=2

ckjz
kwj , η = w +

∞∑
k+j=2

dk,jw
kzj, (2.9)

where ck+1,k = dk+1,k = 0, k = 1, 2, . . ., such that

dξ

dT
= ξ +

∞∑
j=1

pj ξj+1ηj ,
dη

dT
= −η −

∞∑
j=1

qjq ηj+1ξj . (2.10)

Definition 2.5 ([7, 1]). Let µ0 = 0, µk = pk − qk, τ(k) = pk + qk, k = 1, 2, . . .. µk is
called the kth singular point value of the origin of system (2.6) and τ(k) is called
the kth period constant of the origin of system (2.6).

Theorem A ([1]). For system (2.6), the origin is a complex center if and only if
µk = 0, k = 1, 2, . . .. The origin is a complex isochronous center if and only if
µk = τkτ = 0, k = 1, 2, . . . .
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Theorem B ([8]). For system (2.6), we can derive successively the terms of the
following formal series

M(z, w) =
∞∑

α+β=0

cαβzαwβ (2.11)

such that

∂(MZ)
∂z

− ∂(MW )
∂w

=
∞∑

m=1

(m + 1)µm(zw)k,

where c00 = 1, ∀ckk ∈ R, k = 1, 2, . . ., and for any integer m, µm is determined by
the following recursion formulas:

c0,0 = 1,

if (α = β > 0) or α < 0, orβ < 0, then cα,β = 0

else

cα,β =
1

β − α

α+β+2∑
k+j=3

[(α + 1)ak,j−1 − (β + 1)bj,k−1]cα−k+1,β−j+1;

(2.12)

µm =
2m+2∑
k+j=3

(ak,j−1 − bj,k−1)cm−k+1,m−j+1. (2.13)

Theorem C ([1]). For system (2.6), we can derive uniquely the following formal
series

f(z, w) = z +
∞∑

k+j=2

c′kjz
kwj , g(z, w) = w +

∞∑
k+j=2

d′k,jw
kzj ,

where c′k+1,k = d′k+1,k = 0, k = 1, 2, . . . , is such that

df

dT
= f(z, w) +

∞∑
j=1

p′j zj+1wj ,
dg

dT
= −g(z, w)−

∞∑
j=1

q′jq wj+1zj, (2.14)

and when k − j − 1 �= 0�� , c′kj and d′kj are determined by the following recursive
formulas:

c′kj =
1

j + 1− k

k+j+1∑
α+β=3

[(k − α + 1)aα,β−1 − (j − β + 1)bβ,α−1]c′k−α+1,j−β+1,

d′kj =
1

j + 1− k

k+j+1∑
α+β=3

[(k − α + 1)bα,β−1 − (j − β + 1)aβ,α−1]d′k−α+1,j−β+1,

(2.15)
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and for any positive integer j, p′j and q′jq are determined by the following recursive
formulas:

p′j =
2j+2∑

α+β=3

[(j − α + 2)aα,β−1 − (j − β + 1)bβ,α−1]c′j−α+2,j−β+1,

q′jq =
2j+2∑

α+β=3

[(j − α + 2)bα,β−1 − (j − β + 1)aβ,α−1]d′j−α+2,j−β+1.

(2.16)

In the expressions (2.15) and (2.16), we take c′1,0 = d′1,0 = 1, c′0,1 = d′0,1 = 0, and
if α < 0 or β < 0, let aαβ = bαβ = c′αβ = d′αβ = 0.

The relations between pj, qjq and p′j , q
′
jq (j = 1, 2, . . .) are as follows.

Theorem D. Let p0 = q0 = p′0 = q′0 = 0. If there exists a positive integer m, such
that

p0 = q0 = p1 = q1 = · · · = pm−1 = qm−1 = 0, (2.17)
then

p′0 = q′0 = p′1 = q′1 = · · · = p′m−1 = q′m−1 = 0, pm = p′m, qm = q′m, (2.18)

and the corresponding statement with p and q swapped with p′ and q′ also holds.

Theorem B gives a recursive algorithm to compute singular point values µk

and Theorems C and D give a method to compute the period constants τmττ . How-
ever, we cannot use Theorems C and D to calculate µk (see [1, Remark 3.1]). The
computation of µk and τmττ gives necessary conditions for the origin to be a center
or an isochronous center respectively, but to prove the sufficiency of the condi-
tions other methods are needed. In the following we give a sufficient condition for
the origin to be an isochronous center. The authors of [7] gave the definition of
Lie invariants of system (2.6) and a proof of the constructive theorem of singular
point values (see [7, Theorem 2.5] or [2, Theorem 4.15]). Similarly, in analogy to
the constructive theorem of singular point values, we have

Theorem 2.6. For system (2.6), the kth period constant at the origin τkτ is a Lie
invariant of order k .

From Theorem 2.6, we can introduce a sufficient condition for the origin to
be a complex isochronous center.

Theorem 2.7. If all the elementary Lie invariants of system (2.6) are zero, then
the origin of system (2.6) is a complex isochronous center.

Evidently, the isochronous center in the real number field is a special case
of the complex isochronous center, i.e., the coefficients of the complex system
satisfy an additional conjugate condition. So, in the following we only discuss
the conditions for a complex center or complex isochronous center of the origin for
system (2.3). In order to get more extended results, we assume that the coefficients
of the system (2.3) aαβ , bαβ are independent.
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3. Singular Point Values and Center Conditions

We now discuss the computation of the singular point values and center conditions
at the origin for system (2.3). Applying the recursive formula in Theorem B, we
compute the singular point values of the origin of system (2.3) and simplify them
(the detailed recursive formulas are given in Appendix A); then we have

Theorem 3.1. The first 45 singular point values at the origin of system (2.3) are
as follows:

µ5 =
1
5
(−a21 + b21)

µ10 =
1
5
(a12a30 − b12b30)

µ15 =
1
40

(−9a03a
2
30 + 9b03b

2
30 + a03b

2
12 − b03a

2
12)

µ20 =
1
20

(a21 + b21)(3a03a
2
30 − 3b03b

2
30 − a03a30b12 + b03b30a12)

µ25 = − 1
120

(3a03a
2
30 − 3b03b

2
30 − a03a30b12 + b03b30a12)·

(3a03b03 − 16a30b30 − 24λ)
µ30 = 0

µ35 = − 1
9600

(3a03a
2
30 − 3b03b

2
30 − a03a30b12 + b03b30a12)·

(5a2
03b

2
03 − 992a03b03a30b30 + 6400a2

30b
2
30)

µ40 =
7

1440
(3a03a

2
30 − 3b03b

2
30 − a03a30b12 + b03b30a12)(a03a

2
30 + b03b

2
30)·

(5a03b03 − 32a30b30)

µ45 =
11

31500
a2
30b

2
30(3a03a

2
30 − 3b03b

2
30 − a03a30b12 + b03b30a12)·

(24909a03b03 − 164000a30b30)

and µk = 0, k �= 5�� i, i < 9, i ∈ N. In the above expression of µk, we have already
let µ1 = µ2 = · · · = µk−1 = 0, k = 2, 3, . . . , 45.

From Theorem 3.1, we get

Theorem 3.2. For system (2.3), the first 45 singular point values are zero if and
only if one of the following five conditions holds:

(i) a21 = b21, a12a30 = b12b30, a03a
2
30 = b03b

2
30, a30 �= 0�� or b30 = 0; (3.1)��

(ii) a21 = b21, a12 = 3b30, b12 = 3a30, a03a
2
30 �=�� b03b

2
30, a30 �= 0�� or b30 = 0; (3.2)��

(iii) λ = a21 = b21 = a30 = a03 = b12 = 0, a12 = −3b30, b30b03 = 0; (3.3)��
(iv) λ = a21 = b21 = b30 = b03 = a12 = 0, b12 = −3a30, a30a03 = 0; (3.4)��
(v) a21 = b21, a30 = b30 = 0, a03b

2
12 = b03a

2
12. (3.5)
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Proof. Let us prove the necessity. If a30 = b30 = 0, then from µ15 = 0 we have
a03b

2
12 = b03a

2
12, so condition (v) holds. If a30 �= 0 or�� b30 �= 0, then by�� µ10 =

(a12a30 − b12b30)/5 there is a constant p, such that

a12 = p b30, b12 = p a30. (3.6)

By substituting (3.6) into every expression of µk and simplifying them it is easy
to complete the proof. �

In order to make use of the constructive theorem of singular point values ([7,
Theorem 2.5] or [2, Theorem 4.15]) to get the center conditions of the system, we
need find out all the elementary Lie invariants of the system. From the technique
used in [7], we have the following lemma.

Lemma 3.3. All the elementary Lie invariants of system (2.3) are as follows:

a21, b21, λ (i.e., a10, b10)
a30b30, a12b12, a03b03,

a30a12, b30b12,

a2
30a03, b

2
30b03, a30b12a03, b30a12b03, b

2
12a03, a

2
12b03.

In Theorem 3.2:

(1) If condition (i) holds, then from a12a30 = b12b30, a30 �= 0 or�� b30 �= 0 there��
is a constant p, such that a12 = p b30, b12 = p a30. Hence, from a03a

2
30 = b03b

2
30

we see that b30a12b03 = b30a12b03, a2
12b03 = b2

12a03. Let g = f(aα β, bα β), g∗ =
f(bα β , aα β). Under the condition (i), if g is any Lie invariant of system (2.3), then
g = g∗. According to the constructive theorem of singular point values (see [7]),
we get that all µk = 0, k = 1, 2, . . .. So, the origin of the system is a center of the
system (2.3). Similarly, if condition (v) holds, then the origin of the system is also
a center of system (2.3).

(2) If condition (ii) holds, then an analytic first integral for the system is

F (z, w) = (zw)5(4 + 12λw10z10 + 6b21w
5z5 + 12b30w

6z4 + 12a30w
4z6

+ 3b03w
3z7 + 3a03w

7z3)−
1
3 .

(3) If condition (iii) holds, then the system has an integrating factor

J(z, w) = (zw)−16(−1 + 3b30w
6z4).

(4) If condition (iv) holds, then the system has an integrating factor

J(z, w) = (zw)−16(−1 + 3a30w
4z6).

Thus we have the following theorem.

Theorem 3.4. For system (2.3), all the singular point values of the origin are zero
if and only if the first 45 singular point values of the origin are zero, i.e., one of
the five conditions in Theorem 3.2 holds. Thus, the five conditions in Theorem 3.2
are the center conditions of the origin.
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4. Period Constants and Isochronous Center Conditions

We now discuss the isochronous center conditions.
For system (2.3), according to Theorems C and D, we get recursive formulas

to compute period constants (see Appendix B). From the center conditions, we
investigate the following four cases.

Case 1: Expression (3.1) holds.
Since a30 �= 0 or�� b30 = 0, from expression (3.1) we can take��
a12 = Ab30, b12 = Aa30, a03 = B b2

30, b03 = B a2
30, a21 = b21 = r21, (4.1)

where A and B are any complex constants. Putting expression (4.1) into the re-
cursive formulas in Appendix B, we see that the first 30 period constants of the
origin of system (2.3) are as follows, after careful computations:

τ5ττ = 2r21,

τ10ττ =
1
2
(−4a30b30 − 4Aa30b30 − a2

30b
2
30B

2 + 4λ),

τ15ττ = −1
4
a2
30b

2
30B(A− 3)(A + 3),

τ20ττ = − 1
96

a30
2 b30

2 (−384− 192 A + 192 A2 − 288 a30 B2 b30

− 32 Aa30 B2 b30 + 3 a30
2 B4 b30

2),

τ25ττ = − 1
24

a3
30b

3
30B(A + 11)(−32 + 3B2a30b30),

τ30ττ =
1

600
(−3 + A)a30

3b30
3(−10056− 12720A + 1032A2 + 3696A3

+ 957B2a30b30 − 1301AB2a30b30),
and τkτ = 0, k �= 5�� i, i < 6, i ∈ N.

(4.2)

In the above expression of τkτ , we have already let τ1ττ = · · · = τkτ −1 = 0, k =
2, 3, . . . , 30.

From (4.1) and (4.2), we have

Theorem 4.1. Under the condition (3.1), the first 30 period constants of the origin
of system (2.3) are zero if and only if one of the following expressions holds:

λ = a21 = b21 = a30 = b12 = b03 = 0, b30 �= 0;�� (4.3)
λ = a21 = b21 = b30 = a12 = a03 = 0, a30 �= 0;�� (4.4)
λ = a21 = b21 = a03 = b03 = 0, a12 = −b30, b12 = −a30, a30 �= 0�� or b30 �= 0�� .(4.5)

Proof. According to τ15ττ = − 1
4a2

30b
2
30B(A − 3)(A + 3) = 0, we get four cases with

A = 3, A = −3, B = 0 and a30b30 = 0. By taking the four cases separately and
considering expression (4.1) it is easy to complete the proof of the theorem. �

If (4.3) or (4.4) holds, then all the elementary Lie invariants of system (2.3)
are zero. According to Theorem 2.7, the origin is an isochronous center.
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If expression (4.5) holds, then system (2.3) becomes

dz

dT
= z − 1

5
a30z

7w4 +
1
5
b30z

5w6,

dw

dT
= −(w − 1

5
b30w

7z4 +
1
5
a30w

5z6).
(4.6)

From formula (2.8), we get

dθ

dt
=

1
2zw

(w(z − 1
5
a30z

7w4 +
1
5
b30z

5w6) + z(w − 1
5
b30w

7z4 +
1
5
a30w

5z6)) = 1.

System (4.6) therefore has an isochronous center at the origin.
Thus, we have the following result.

Theorem 4.2. Under the center conditions (3.1), the origin of system (2.3) is an
isochronous center if and only if one of the three conditions in Theorem 4.1 holds.

Case 2: Expression (3.2) holds.

Putting expression (3.2) into the recursive formulas in Appendix B, we find
that the first forty period constants are as follows:

τ5ττ = 2b21,

τ10ττ = −1
2
(a03b03 + 16a30b30 − 4λ),

τ15ττ = 0,

τ20ττ =
1
32

(−a03
2 b03

2 + 128 a03 a30 b03 b30 − 256 a30
2 b30

2),

τ25ττ = − 7
24

(3 a03 b03 − 32 a30 b30) (a03 a30
2 + b03 b30

2),

τ30ττ = 0,

τ35ττ =
56933
270

a30
2 b30

2 (a03 a30
2 + b03 b30

2),

τ40ττ = −376751200
46080000

(a03
3 a30

4 b03 − 1811085 a03
4 b03

4 + 3630412800 a03
2 a30

5 b30

+ 198975544 a03
3 a30 b03

3 b30 + 4255128088 a03
2 a30

2 b03
2 b30

2

+ 42511012864 a03a30
3 b03 b30

3 − 101293762560 a30
4 b30

4

− 376751200 a03 b03
3 b30

4 + 3630412800 a30 b03
2 b30

5),

τkτ = 0, k �= 5�� i, i < 8, i ∈ N.
(4.7)

From τ35ττ = 0, we get a30b30 = 0 or a03 a30
2 + b03 b30

2 = 0. If a30b30 = 0, then
from τkτ = 0, k <= 40, we get a03b03 = λ = a21 = b21 = 0. If a30b30 �= 0, then��
let a03 = hb2

30, b03 = −ha3
30 with h being an arbitrary complex constant and it is

easy to see that τ20ττ = 0 is in contradiction with τ40ττ = 0. Considering condition
(3.2), we have
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Theorem 4.3. Under the condition (3.2), the first 40 period constants of the origin
of system (2.3) are zero if and only if one of the following expressions holds:

λ = a21 = b21 = a30 = a03 = b12 = 0, a12 = 3b30, b30 = 0; (4.8)��
λ = a21 = b21 = b30 = b03 = a12 = 0, b12 = 3a30, a30 �= 0�� . (4.9)

If expression (4.8) holds, then system (2.3) becomes
dz

dT
= z +

9
5

b30 w6 z5 +
3
5

b03 w3 z8,

dw

dT
= −(w +

11
5

b30 w7 z4 +
2
5

b03 w4 z7).
(4.10)

By the transformation

u =
√√

1 + 3 b30 w6 z4

w
5
2 z

3
2

, v =
w

7
2 z

5
2√√

1 + 3 b30 w6 z4
,

system (4.10) becomes

du

dT
=

u (10 u− 32 b30 v + b03 u15 v13 (u− 3 b30 v)3)
10 (u− 3 b30 v)

= U(u, v),

dv

dT
=

v (−10 u + 28 b30 v + b03 u15 v13 (u− 3 b30 v)3)
10 (u− 3 b30 v)

= −V (u, v).

(4.11)

From formula (2.8) we get
dθ

dt
=

1
2uv

(vU + uV ) = 1, (4.12)

so the system has an isochronous center at the origin.
By the symmetry of (4.8) and (4.9), it is easy to see that the system also has

an isochronous center at the origin under the condition (4.9). Thus we have the
following theorem.

Theorem 4.4. Under the center condition (3.2), the origin of system (2.3) is an
isochronous center if and only if one of the two conditions in Theorem 4.3 holds.

Case 3: Expression (3.3) or (3.4) holds.

Putting expression (3.3) into the recursive formulas in Appendix B, we get
that the first 45 period constants are all zero. It implies that the expression (3.3)
is a necessary condition for the origin to be an isochronous center of system (2.3).
Under this condition, system (2.3) becomes

dz

dT
= z − 3

5
b30 w6 z5 +

3
5

b03 w3 z8,

dw

dT
= −(w − 7

5
b30 w7 z4 +

2
5

b03 w4 z7).
(4.13)

By the transformation

u =
√−1 + 3 b30 w6 z4

w
5
2 z

3
2

, v =
w

7
2 z

5
2√√−1 + 3 b30 w6 z4

,
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system (4.13) becomes

du

dT
=

u

10
(10 + b03 u15 v13 (u− 3 b30 v)2 +

4 b30 v

−u + 3 b30 v
) = U,

dv

dT
=

v

10
(−10 + b03 u15 v13 (u− 3 b30 v)2 +

4 b30 v

−u + 3 b30 v
) = −V.

(4.14)

Because
dθ

dt
=

1
2uv

(vU + uV ) = 1,

the system has an isochronous center at the origin. From the symmetry of (3.3)
and (3.4), we have the following theorem.

Theorem 4.5. For the origin of system (2.3), the center conditions (3.3) and (3.4)
are also isochronous center conditions.

Case 4: Expression (3.5) holds.

According to (3.5) and the recursive formulas in Appendix B, we have, after
careful computations,

τ5ττ = 2b21,

τ10ττ =
−(a03 b03) + 4 λ

2
,

τ15ττ =
−(a12

2 b03)− a03 b12
2

8
,

τ20ττ =
−(a03

2 b03
2)

32
.

(4.15)

From τ5ττ = τ10ττ = τ15ττ = τ20ττ = 0 and (3.5), it is easy to get the following result.

Theorem 4.6. Under the center condition (3.5), the necessary conditions for the
origin of system (2.3) to be an isochronous center is that one of the following three
expressions holds:

λ = a21 = b21 = a30 = b30 = a03 = a12 = 0, b03 = 0; (4.16)��
λ = a21 = b21 = a30 = b30 = b03 = b12 = 0, a03 = 0; (4.17)��

λ = a21 = b21 = a30 = b30 = a03 = b03 = 0. (4.18)

If (4.16) or (4.17) holds, then all the elementary Lie invariants of system
(2.3) are zero. According to Theorem 2.7, the origin is an isochronous center. If
expression (4.18) holds, then system (2.3) becomes

dz

dT
= z +

2 a12 w6 z5

5
+

3 b12 w4 z7

5
,

dw

dT
= −(w +

3 a12 w7 z4

5
+

2 b12 w5 z6

5
).

(4.19)
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By the transformation

u =
√

1 + a12 w6 z4

w
5
2 z

3
2

, v =
w

7
2 z

5
2√√

1 + a12 w6 z4
,

system (4.19) becomes

du

dT
=

u (10 u− 11 a12 v + b12 u12 v9 − 2 a12 b12 u11 v10 + a12
2 b12 u10 v11)

10 (u− a12 v)
= U,

dv

dT
=

v (−10 u + 9 a12 v + b12 u12 v9 − 2 a12 b12 u11 v10 + a12
2 b12 u10 v11)

10 (u− a12 v)
= −V.

(4.20)
Since

dθ

dt
=

1
2uv

(vU + uV ) = 1,

we see that system has an isochronous center at the origin. From the discussion
above we have the following theorem.

Theorem 4.7. Under the center condition (3.5), the origin of system (2.3) is an
isochronous center if and only if one of the three conditions in Theorem 4.6 holds.

Because all of the above isochronous center conditions have included the
corresponding center conditions, we can summarize the results in the following
theorem.

Theorem 4.8. System (2.3) has an isochronous center at the origin if and only if
one of the conditions (3.3), (3.4), (4.3), (4.4), (4.5), (4.8), (4.9), (4.16), (4.17),
and (4.18) holds.

If system (1.1) is a real system, then the coefficients of system (2.3) satisfy
the conjugate condition. Hence we have the following corollary.

Corollary 4.9. A real system (1.1) or (1.2) has a center at the origin if and only
if one of the conditions (3.1), (3.2), and (3.5) holds. Real system (1.1) has an
isochronous center at infinity if and only if one of the conditions (4.5) and (4.18)
holds.

Appendix A

The recursive formulas to compute singular values of the origin of system (2.3):

c(0, 0) = 1;

if (u = v > 0), or u < 0, or v < 0 then c(u, v) = 0 else

c(u, v) = 1
−u+v ((1 + u)λ− (1 + v)λ) c(−10 + u,−10 + v) + (3 b03 (1+u)

5 −
2 b03 (1+v)

5 ) c(−7+u,−3+ v)+ ( (2a30+3 b12) (1+u)
5 − (3 a30+2 b12) (1+v)

5 ) c(−6+u,−4+

v) + ( (2 a21+3 b21) (1+u)
5 − (3 a21+2 b21) (1+v)

5 ) c(−5 + u,−5 + v) + ( (2 a12+3 b30) (1+u)
5 −

(3 a12+2 b30) (1+v)
5 ) c(−4 + u,−6 + v) + (2 a03 (1+u)

5 − 3 a03 (1+v)
5 ) c(−3 + u,−7 + v)).
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µm = b03 c(−7+m,−3+m)
5 + (−3 a30−2 b12

5 + 2 a30+3 b12
5 ) c(−6 + m,−4 + m) +

(−3 a21−2 b21
5 + 2 a21+3 b21

5 ) c(−5 + m,−5 + m) + (−3 a12−2 b30
5 + 2 a12+3 b30

5 ) c(−4 +

m,−6 + m)− a03 c(−3+m,−7+m)
5 .

Appendix B

The recursive formulas to compute the period constants of the origin of system
(2.3):

c′(1, 0) = d′(1, 0) = 1; c′(0, 1) = d′(0, 1) = 0;

if k < 0, or j < 0, or (j > 0 and k = j + 1) then c′(k, j) = 0, d′(k, j) = 0 else

c′(k, j) = − 1
5 (1+j−k) (5 j λ c′(−10 + k,−10 + j) − 5 k λ c′(−10 + k,−10 + j) +

15 b03 c′(−7 + k,−3 + j) + 2 b03 j c′(−7 + k,−3 + j)− 3 b03 k c′(−7 + k,−3 + j) +
10 b12 c′(−6 + k,−4 + j) + 3 a30 j c′(−6 + k,−4 + j) + 2 b12 j c′(−6 + k,−4 + j)−
2 a30 k c′(−6 + k,−4 + j) − 3 b12 k c′(−6 + k,−4 + j) − 5 a21 c′(−5 + k,−5 + j) +
5 b21 c′(−5 + k,−5 + j) + 3 a21 j c′(−5 + k,−5 + j) + 2 b21 j c′(−5 + k,−5 + j) −
2 a21 k c′(−5 + k,−5 + j)− 3 b21 k c′(−5 + k,−5 + j)− 10 a12 c′(−4 + k,−6 + j) +
3 a12 j c′(−4 + k,−6 + j) + 2 b30 j c′(−4 + k,−6 + j)− 2 a12 k c′(−4 + k,−6 + j)−
3 b30 k c′(−4 + k,−6 + j)− 15 a03 c′(−3 + k,−7 + j) + 3 a03 j c′(−3 + k,−7 + j)−
2 a03 k c′(−3 + k,−7 + j));

d′(k, j) = − 1
5 (1+j−k) (5 j λ d′(−10 + k,−10 + j) − 5 k λ d′(−10 + k,−10 + j) +

15 a03 d′(−7 + k,−3 + j) + 2 a03 j d′(−7 + k,−3 + j)− 3 a03 k d′(−7 + k,−3 + j) +
10 a12 d′(−6 + k,−4 + j) + 2 a12 j d′(−6 + k,−4 + j) + 3 b30 j d′(−6 + k,−4 + j)−
3 a12 k d′(−6 + k,−4 + j)− 2 b30 k d′(−6 + k,−4 + j) + 5 a21 d′(−5 + k,−5 + j)−
5 b21 d′(−5 + k,−5 + j) + 2 a21 j d′(−5 + k,−5 + j) + 3 b21 j d′(−5 + k,−5 + j) −
3 a21 k d′(−5 + k,−5 + j)− 2 b21 k d′(−5 + k,−5 + j)− 10 b12 d′(−4 + k,−6 + j) +
2 a30 j d′(−4 + k,−6 + j) + 3 b12 j d′(−4 + k,−6 + j)− 3 a30 k d′(−4 + k,−6 + j)−
2 b12 k d′(−4 + k,−6 + j)− 15 b03 d′(−3 + k,−7 + j) + 3 b03 j d′(−3 + k,−7 + j)−
2 b03 k d′(−3 + k,−7 + j)).

p′(j) = 1
5 (5 λ c′(−9+j,−10+j)−12 b03 c′(−6+j,−3+j)+b03 j c′(−6+j,−3+j)+

2 a30 c′(−5+j,−4+j)−7 b12 c′(−5+j,−4+j)−a30 j c′(−5+j,−4+j)+b12 j c′(−5+
j,−4+j)+7 a21 c′(−4+j,−5+j)−2 b21 c′(−4+j,−5+j)−a21 j c′(−4+j,−5+j)+
b21 j c′(−4+j,−5+j)+12 a12 c′(−3+j,−6+j)+3 b30 c′(−3+j,−6+j)−a12 j c′(−3+
j,−6+j)+b30 j c′(−3+j,−6+j)+17 a03 c′(−2+j,−7+j)−a03 j c′(−2+j,−7+j));

q′(j) = 1
5 (5 λd′(−9 + j,−10 + j)− 12 a03 d′(−6 + j,−3 + j) + a03 j d′(−6 +

j,−3 + j)− 7 a12 d′(−5 + j,−4 + j) + 2 b30 d′(−5 + j,−4 + j) + a12 j d′(−5 +
j,−4 + j)− b30 j d′(−5 + j,−4 + j)− 2 a21 d′(−4 + j,−5 + j) + 7 b21 d′(−4 +
j,−5 + j) + a21 j d′(−4 + j,−5 + j)− b21 j d′(−4 + j,−5 + j) + 3 a30 d′(−3 +
j,−6 + j) + 12 b12 d′(−3 + j,−6 + j) + a30 j d′(−3 + j,−6 + j)− b12 j d′(−3 +
j,−6 + j) + 17 b03 d′(−2 + j,−7 + j)− b03 j d′(−2 + j,−7 + j));



52 Huang and Liu

τmττ = p(m) + q(m) = p′(m) + q′(m).
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Darboux Integrability and Limit Cycles for
a Class of Polynomial Differential Systems

Jaume Giné and Jaume Llibre

Abstract. We consider the class of polynomial differential equations ẋ =
PnPP (x, y)+PnPP +m(x, y) +PnPP +2m(x, y)+PnPP +3m(x, y), ẏ = Qn(x, y)+Qn+m(x, y)
+Qn+2m(x, y) + Qn+3m(x, y), for n, m ≥ 1 and where PiPP and Qi are homo-
geneous polynomials of degree i. Inside this class we identify new subclasses
of Darboux integrable systems. Moreover, under additional conditions such
Darboux integrable systems can have at most three limit cycles. We provide
the explicit expression of these limit cycles.

Mathematics Subject Classification (2000). Primary 34C05; Secondary 34C07.

Keywords. Integrability, algebraic limit cycle.

1. Introduction and Statement of the Results

In 1900 Hilbert [14] in the second part of his 16th problem proposed to find an esti-
mation of the uniform upper bound for the number of limit cycles of all polynomial
vector fields of a given degree, and also to study their distribution or configuration
in the plane IR2. This has been one of the main problems in the qualitative theory
of planar differential equations in the 20th century. The contributions of Bamón
[2] for the particular case of quadratic vector fields, and mainly of Écalle [6] and
Ilyashenko [15] proving that any polynomial vector field has finitely many limit
cycles have been the best results in this area. But until now the existence of a uni-
form upper bound is not proved. This problem remains open even for quadratic
polynomial vector fields.

Another main problem in the qualitative theory of planar differential systems
is the determination of first integrals. This paper deals with both problems for the

The first author is partially supported by a DGICYT grant number BFM 2002-04236-C02-01 and
by a DURSI grant of Government of Catalonia “Distinció de la Generalitat de Catalunya per a
la promoció de la recerca universit´ aria”. The second author is partially supported by a DGICYT`
grant number BFM 2002-04236-C02-02 and by a CICYT grant number 2001SGR00173.
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following class of real polynomial differential systems

ẋ = PnPP (x, y) + PnPP +m(x, y) + PnPP +2m(x, y) + PnPP +3m(x, y),
ẏ = Qn(x, y) + Qn+m(x, y) + Qn+2m(x, y) + Qn+3m(x, y),

(1.1)

where PiPP and Qi are homogeneous polynomials of degree i.
A limit cycle of system (1.1) is a periodic orbit isolated in the set of all

periodic orbits of system (1.1). Let W ⊂ IR2 be the domain of definition of a C1

vector field (P, Q), and let U be an open subset of W . A function V : U → R

satisfying the linear partial differential equation

P
∂V

∂x
+ Q

∂V

∂y
=
(

∂P

∂x
+

∂Q

∂y

)
V (1.2)

is called an inverse integrating factor of the vector field (P, Q) on U . We note
that {V = 0} is formed by orbits of the vector field (P, Q). This function V is very
important because R = 1/V defines on U \{V = 0} an integrating factor of system
(1) (which allows to compute a first integral of the system on U \ {V = 0}), and
{V = 0} contains the limit cycles of system (1) which are in U , see [8]. This fact
allows to study the limit cycles which bifurcate from periodic orbits of a center
(Hamiltonian or not) and compute their shape, see [9] and [10]. For doing that,
the function V in power series of the small perturbation parameter is developed.
A remarkable fact is that the first term of this expansion coincides with the first
non-identically zero Melnikov function, see [20].

A function of the form fλ1
1 · · · fλp

pff exp(h/g), where fiff , g and h are polynomials
of C[x, y] and the λi’s are complex numbers, is called a Darboux function. System
(1.1) is called Darboux integrable if it has a first integral or an integrating factor
which is a Darboux function (for a definition of a first integral and of an integrating
factor, see for instance [3, 5]). The problem of determining when a polynomial
differential system (1.1) has a Darboux first integral is, in general, open.

We shall study a subclass of real polynomial differential systems (1.1) which
will be Darboux integrable, and such that under an additional assumption over
their inverse integrating factors they can have at most 3 limit cycles. Moreover,
we shall prove that this upper bound is reached.

In order to present our results we need some preliminary notation and results.
Thus, in polar coordinates (r, θ), defined by

x = r cos θ, y = r sin θ, (1.3)

system (1.1) becomes

ṙ = fnff +1(θ)rn + fnff +m+1(θ)rn+m

+ fnff +2m+1(θ)rn+2m + fnff +3m+1(θ)rn+3m,

θ̇ = gn+1(θ)rn−1 + gn+m+1(θ)rn+m−1

+ gn+2m+1(θ)rn+2m−1 + gn+3m+1(θ)rn+3m−1,

(1.4)
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where
fiff (θ) = cos θPiPP −1(cos θ, sin θ) + sin θQi−1(cos θ, sin θ),
gi(θ) = cos θQi−1(cos θ, sin θ)− sin θPiPP −1(cos θ, sin θ).

We remark that fiff and gi are homogeneous trigonometric polynomials in the vari-
ables cos θ and sin θ having degree in the set {i, i−2, i−4, . . .}∩N, where N is the
set of non-negative integers. This is due to the fact that fiff (θ) can be of the form
(cos2 θ + sin2 θ)sfiff −2s with fiff −2s a trigonometric polynomial of degree i− 2s ≥ 0.
A similar situation occurs for gi(θ).

If we impose gn+1(θ) = gn+2m+1(θ) = gn+3m+1(θ) = 0 and gn+m+1(θ) either
> 0 or < 0 for all θ, and do the change of variable R = rm, then system (1.4)
becomes the Abel differential equation

dR

dθ
=

m

gn+m+1(θ)
[fnff +1(θ) + fnff +m+1(θ) R

+ fnff +2m+1(θ) R2 + fnff +3m+1(θ) R3
]
.

(1.5)

This kind of differential equations appeared in the studies of Abel on the theory
of elliptic functions. For more details on Abel differential equations, see [16], [4] or
[7].

We say that all polynomial differential systems (1.1) with

gn+1(θ) = gn+2m+1(θ) = gn+3m+1(θ) = 0

and gn+m+1(θ) either > 0 or < 0 for all θ define the class F if they satisfy the
equality

gn+m+1(θ)
(
f ′

n+3m+1(θ)fnff +2m+1(θ)− fnff +3m+1(θ)f ′
n+2m+1(θ)

)
+ 3 a3w3(θ)f 3

nff +3m+1(θ)

=
2
9
f 3

nff +2m+1(θ)− fnff +m+1(θ)fnff +2m+1(θ)fnff +3m+1(θ) + 3fnff +1(θ)f 2
nff +3m+1(θ)

(1.6)
for some a ∈ R, where

w(θ) = exp
(∫ [

fnff +m+1(θ)
gn+m+1(θ)

− f 2
nff +2m+1(θ)

3fnff +3m+1(θ)gn+m+1(θ)

]
dθ

)
. (1.7)

Here fn(θ) means [f(θ)]n, and ′ = d/dθ.
Since gn+m+1(θ) either > 0 or < 0 for all θ, it follows that the polynomial

differential systems (1.1) in the class F must satisfy that n + m + 1 is even.
We have found the subclass F thanks to case (g) of Abel differential equations

studied on page 26 of the book of Kamke [16] where a complete prescription
for the integrability of Abel differential equations having constant invariant is
given. These equations are referred to in the literature as constant invariant Abel
differential equations which can always and systematically be transformed into
separable equations.

Our main results are the following two theorems. In the first, it is proved that
all polynomial differential systems (1.1) in the class F are Darboux integrable, and
in the second, it is proved that under an additional assumption over the inverse
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integrating factor they can have at most 3 limit cycles. Moreover, this upper bound
is reached.

Theorem 1.1. For a polynomial differential system (1.1) in the class F the follow-
ing statements hold.

(a) If fnff +m+1(θ)fnff +2m+1(θ)fnff +3m+1(θ) �= 0�� , then the system is Darboux inte-
grable, see Proposition 2.1 for the explicit expression of the first integral.

(b) If fnff +m+1(θ) �= 0�� , a = 0 and fnff +2m+1(θ) = 0, then the system is Darboux
integrable, see Proposition 2.2 for the explicit expression of the first integral.

Theorem 1.1 will be proved in Section 2.

Theorem 1.2. Assume that fnff +m+1(θ)fnff +2m+1(θ)fnff +3m+1(θ) �= 0�� for a polynomial
differential system (1.1) in the class F . If g(R, θ) = R+fnff +2m+1(θ)/(3fnff +3m+1(θ)),
then the following statements hold.

(a) The maximum number of its limit cycles contained in the domain of definition
of the inverse integrating factor

V (R, θ) =
1

w(θ)2
g(R, θ)3 + a3 w(θ)

is one.
(b) The maximum number of its limit cycles contained in the domain of definition

of the inverse integrating factor V (R, θ) equal to

1
2

g(R, θ) +
1

w(θ)2
g(R, θ)3

∫
fnff +3m+1(θ)w2(θ)

gn+m+1(θ)
dθ (1.8)

is three.

Moreover, these upper bounds are reached.

We remark that in the proof of Theorem 1.2 in Section 3 we provide the
explicit expression for the limit cycles.

It is easy to check that the polynomial differential systems (1.1) in the class
F with n = 1 have always a node at the origin. Moreover, systems (1.1) in the
class F have no monodromic singular points at the origin because gn+1(θ) = 0,
see Theorem 3.3 in the book [22]. A singular point is monodromic for system (1.1)
if there is no characteristic orbit associated to it; i.e., there is no orbit tending
to the singular point with a defined tangent at this point. When the vector field
is analytic, a monodromic singular point is either a center or a focus, see [1]. In
short, the limit cycles given by Theorem 1.2 cannot surround a focus; in general
they will surround a node. Using similar techniques to the ones for proving The-
orems 1.1 and 1.2, in the papers [11], [12] and [13] we found different families of
Darboux integrable polynomial differential systems with at most two limit cycles
surrounding foci.
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2. Proof of Theorem 1.1

Statement (a) of Theorem 1.1 follows from the next proposition which is a conse-
quence of the case (g) presented in [16] for the integrability of the Abel differential
equations.

Proposition 2.1. If fnff +m+1(θ)fnff +2m+1(θ)fnff +3m+1(θ) �= 0�� for a polynomial dif-
ferential system (1.1) in the class F , then it is Darboux integrable with the first
integral H̃(x, y) obtained from

H(η, ξ) = exp
[
ξ − 1√

3 a2
arctan

[
2η − a√

3 a

]]
(η+a)−

1
3a2 (η2−aη+a2)

1
6a2 , if a �= 0�� ;

and
H(η, ξ) = ξ + 1/(2η2), if a = 0,

where

η =
1

w(θ)
g(R, θ), and ξ =

∫
fnff +3m+1(θ)w2(θ)

gn+m+1(θ)
dθ,

with w(θ) given by (1.7), through the changes of variables (1.3) and with R = rm.

Proof. Following the case (a) of Abel differential equation studied on page 24
of the book [16], which just defines the transformation of an Abel differential
equation to its normal form, we do the change of variables (R, θ) → (η, ξ) defined
by R = w(θ)η(ξ) − fnff +2m+1(θ)/(3fnff +3m+1(θ)). This transformation writes the
Abel equation (1.5) into the normal form

η′(ξ) = [η(ξ)]3 + I(θ), (2.1)

where

I(θ) =
gn+m+1(θ)

fnff +3m+1(θ)w3(θ)

[
fnff +1(θ)

gn+m+1(θ)
+

d

dθ

(
fnff +2m+1(θ)
3fnff +3m+1(θ)

)
− fnff +m+1(θ)fnff +2m+1(θ)

3fnff +3m+1(θ)gn+m+1(θ)
+

2f 3
nff +2m+1(θ)

27f 2
nff +3m+1(θ)gn+m+1(θ)

]
.

It is easy to see that for the case I(θ) = a3 with a ∈ R, the differential
equation (2.1) is of separable variables and we can obtain a first integral for it.
For a �= 0 a first integral is the one given in the statement of the proposition, and��
for a = 0 the first integral is H(η, ξ) = ξ + 1/(2η2). The condition I(θ) = a3 is
equivalent to (1.6) which defines the class F . We must mention that cases (b) and
(c) of Abel differential equation studied on page 25 of the book [16] provide again
the case studied for a = 0.

Now, we are going to prove that systems of statement (a) are Darboux inte-
grable. For systems (1.1) in the class F with fnff +m+1(θ)fnff +2m+1(θ)fnff +3m+1(θ) �=��
0, it is easy to check that an inverse integrating factor for its associated Abel equa-
tion (2.1) with I(θ) = a3 is V (ξ, η) = η3 +a3. Consequently, an inverse integrating
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factor for the Abel differential equation (1.5) is

V (R, θ) = w(θ)(η3 + a3) =
1

w(θ)2
g(R, θ)3 + a3 w(θ), (2.2)

for all a ∈ R. Taking into account that an indefinite integral of the form∫
P (sin θ, cos θ)
Q(sin θ, cos θ)

dθ ,

where P and Q are polynomials, can be transformed to a rational indefinite integral
which always give elementary functions, we have that w(θ) is an elementary func-
tion. So, this inverse integrating factor V (R, θ) is an elementary function in Carte-
sian coordinates (see [18, 19] for more details and a definition of elementary func-
tion), then systems (1.1) in the class F with fnff +m+1(θ)fnff +2m+1(θ)fnff +3m+1(θ) �= 0��
have a Liouvillian first integral according with the results of Singer [19]. �

Statement (b) of Theorem 1.1 is a direct consequence of the following propo-
sition.

Proposition 2.2. If fnff +m+1(θ) �= 0�� , a = 0 and fnff +2m+1(θ) = 0 for a polyno-
mial differential system (1.1) in the class F , then condition (1.6) implies fnff +1(θ)
fnff +3m+1(θ) = 0 and the system is Darboux integrable with the first integral H̃(x, y)
obtained from

H(R, θ) =
exp
(

2
∫

fn+m+1(θ)
gn+m+1(θ) dθ

)
R2

+ 2
∫ exp

(
2
∫

fn+m+1(θ)
gn+m+1(θ) dθ

)
fnff +3m+1(θ)

gn+m+1(θ)
dθ

if fnff +1(θ) = 0, and

H(R, θ) = exp
(
−
∫

fnff +m+1(θ)
gn+m+1(θ)

dθ

)
R−

∫ exp
(
−
∫

fn+m+1(θ)
gn+m+1(θ) dθ

)
fnff +1(θ)

gn+m+1(θ)
dθ

if fnff +3m+1(θ) = 0, through the change of variables (1.3) and with R = rm.

Proof. Under the assumptions condition (1.6) implies fnff +1(θ)fnff +3m+1(θ) = 0. If
fnff +1(θ) = 0, then the Abel differential equation (1.5) is the Bernoulli differential
equation dR/dθ = m(fnff +m+1(θ)R + fnff +3m+1(θ)R3)/gn+m+1(θ). If fnff +3m+1(θ) =
0, then the Abel differential equation (1.5) is the linear differential equation dR/dθ
= m(fnff +1(θ) + fnff +m+1(θ)R)/gn+m+1(θ). Solving these differential equations we
obtain the first integrals of the proposition.

The systems of the proposition are Darboux integrable because their first
integrals are obtained by integrating elementary functions, see [19] for more details.

�
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3. Existence of Limit Cycles in the Class F
It is known that the polynomial systems of degree 1 have no limit cycles, and
that if a polynomial differential system of degree 2 has a limit cycle, then in its
interior the system can only have a unique singular point, which must be a focus.
But this is not true for polynomial differential systems of higher degree. The next
proposition provides probably the easiest well-known example of a polynomial
differential system with a node at the origin. The example is a family of cubic
polynomial differential systems depending on two parameters. This family was
considered by Vorobev [21] for showing that around a node, a cubic polynomial
system can have limit cycles.

Proposition 3.1. The differential system

ẋ = −y + ax(x2 + y2 − 1), ẏ = x + by(x2 + y2 − 1),

with ab > −1 and (a− b)2 > 4 has the algebraic solution x2 + y2− 1 = 0 as a limit
cycle surrounding a node, namely the origin.

Proof. See [21]. �

In order to study the existence and non-existence of limit cycles for system
(1.1) we use the following result.

Theorem 3.2. Let (P, Q) be a C1 vector field defined in the open subset U of IR2.
Let V = V (x, y) be a C1 solution of the linear partial differential equation (1.2)
defined in U . If γ is a limit cycle of (P, Q) contained in the domain of definition
U , then γ is contained in {(x, y) ∈ U : V (x, y) = 0}.
Proof. See Theorem 9 in [8], or [17]. �

We recall that under the assumptions of Theorem 3.2 the function 1/V is
an integrating factor in U \ {V (x, y) = 0}. Again for more details, see [3, 5]. As
we have seen, the function V is called an inverse integrating factor. In fact, using
this notion, recently it is proved that any topological finite configuration of limit
cycles is realizable by algebraic limit cycles of a Darboux integrable polynomial
differential system, see [17].

3.1. Proof of Theorem 1.2

Proof. As we have seen in the proof of Proposition 2.1, systems (1.1) in the class
F with fnff +m+1(θ)fnff +2m+1(θ)fnff +3m+1(θ) �= 0 have an inverse integrating factor��
for its associated Abel differential equation (1.5) given by expression (2.2) for all
a ∈ R. By Theorem 3.2, if system (1.1) and consequently its associated Abel
equation (1.5) have limit cycles in the domain of definition of (2.2), such limit
cycles for the Abel equation must be contained into the set {V (R, θ) = 0}. From
the expression of the inverse integrating factor, the possible limit cycles must be
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given by

R =

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
− fnff +2m+1(θ)

3fnff +3m+1(θ)
− a w(θ),

− fnff +2m+1(θ)
3fnff +3m+1(θ)

+
1
2
(1± i

√
3 ) a w(θ).

In order that these expressions of R(θ) define limit cycles, we must have R(θ) > 0
for all θ. Since, from equality (1.6), w(θ) is a real function, we must take a = 0 in
the above second expression for the possible limit cycles. So, the maximum number
of possible limit cycles in the domain of definition of V (R, θ) is at most 1 for all
a ∈ R.

We can find other inverse integrating factors multiplying V (R, θ) by an
arbitrary function of the first integral given in Proposition 2.1. Therefore, for
a = 0 another inverse integrating factor for its associated Abel equation (2.1)
is V (ξ, η) = η/2 + η3ξ. Consequently, an inverse integrating factor for the Abel
differential equation (1.5) is V (R, θ) = w(θ)[η(R, θ)/2 + η3(R, θ) ξ(θ)], or equiv-
alently (1.8). From this expression of the inverse integrating factor, the possible
limit cycles must be

R =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

− fnff +2m+1(θ)
3fnff +3m+1(θ)

,

− fnff +2m+1(θ)
3fnff +3m+1(θ)

± w(θ)

√
2

√
−
∫

fnff +3m+1(θ)w(θ)2

gn+m+1(θ)
dθ

.

In conclusion, in the domain of definition of the inverse integrating factor (1.8)
such systems can have at most three limit cycles.

Now it only remains to prove that the upper bounds for the number of the
limit cycles in the statement of Theorem 1.2 are reached.

Systems (1.1) with n = 1 and m = 2 satisfying g2(θ) = g6(θ) = g8(θ) = 0 for
all θ can be written into the form

ẋ = a10x + P3PP (x, y) + x(A4(x, y) + A6(x, y)),
ẏ = a10y + Q3(x, y) + y(A4(x, y) + A6(x, y)),

(3.1)

where aij are arbitrary constants and PiPP (x, y), Qi(x, y) and Ai(x, y) are homoge-
neous polynomials of degree i. Consider the following particular system of (3.1)

ẋ = −12x + (13x− y)(x2 + y2)− x
(
9(x2 + y2)2 − (x2 + y2)3

)
/2,

ẏ = −12y + (x + 13y)(x2 + y2)− y
(
9(x2 + y2)2 − (x2 + y2)3

)
/2;

(3.2)

for a = 0 it is in the class F and satisfies fnff +m+1(θ)fnff +2m+1(θ)fnff +3m+1(θ) �= 0. It��
is easy to check that this system has exactly three limit cycles given by the circles
x2 + y2 − 2 = 0, x2 + y2 − 3 = 0 and x2 + y2 − 4 = 0. Moreover it has a node at
the origin and therefore this example generalizes the example of Proposition 3.1
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given by Vorobev. This example has the Darboux first integral

H(x, y) = exp (−2 arg(x + iy))
(x2 + y2 − 2)(x2 + y2 − 4)

x2 + y2 − 3

and the polynomial inverse integrating factor

V (x, y) = (x2 + y2)(x2 + y2 − 2)(x2 + y2 − 3)(x2 + y2 − 4).

As system (3.2) has a unique singular point at the origin which is a node and a
polynomial inverse integrating factor defined in the whole plane, applying Theorem
3.2, one sees that system (3.2) has exactly 3 limit cycles which are algebraic.

Consider now the following particular system of (3.1)

ẋ = (1 + a3)x + 3(x− 2y)(x2 + y2) + 3x(x2 + y2)2 + x(x2 + y2)3,
ẏ = (1 + a3)y + 3(2x + y)(x2 + y2) + 3y(x2 + y2)2 + y(x2 + y2)3;

(3.3)

for a �= 0 it is in the class�� F and satisfies fnff +m+1(θ)fnff +2m+1(θ)fnff +3m+1(θ) �= 0.��
It is easy to check that for a < 1 this system has exactly one limit cycle given by
the circle x2 + y2 + 1 + a = 0. This system has the Darboux first integral

H(x, y) = exp
[
1
3

arg(x + iy)− 1√
3 a2

arctan
[
2(1 + x2 + y2)− a√

3 a

]]
·(1 + a + x2 + y2)−1/(3a2)(a2 − a(1 + x2 + y2) + (1 + x2 + y2)2)1/(6a2)

and the polynomial inverse integrating factor

V (x, y) = (x2 + y2)[(x2 + y2 + 1)3 + a3].

As system (3.3) has this polynomial inverse integrating factor defined in the whole
plane, applying Theorem 3.2, one sees that system (3.3) has exactly one limit cycle
which is algebraic. This completes the proof of Theorem 1.2. �

4. The Appendix

We denote the polynomials appearing in system (3.1) as follows:

P3PP (x, y) = a30x
3 + a21x

2y + a12xy2 + a03x
3,

Q3(x, y) = b30x
3 + b21x

2y + b12xy2 + b03x
3,

A4(x, y) = αx4 + βx3y + γx2y2 + δx3y + εy4,

A6(x, y) = Ax6 + Bx5y + Cx4y2 + Dx3y3 + Ex2y4 + Fxy5 + Gy6.

Then, the following proposition provides some explicit systems which belong to
the class F .

Proposition 4.1. System (3.1) belongs to the class F if one of the following state-
ments holds.

(a) a10 = α = β = γ = δ = ε = 0 and a = 0.
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(b) b30 = b12, b03 = b21, a30 = a12, a03 = a21, b21 = a12, b12 = −a21, a =
e = −a21k2, c = −2a21k2, b = d = 0, A = G = −a21k3, E = −3a21k3,
B = D = F = 0, a12 = −(2a21k

3
2 − 27a10k

2
3)/(9k2k3) and a = 0.

(c) a10 = (k3
1 + a3k3

2)/k1, a30 = a12 = b21 = b03 = 3k1k2, a21 = a03 = −b30 =
−b12 = −6k2k3, β = δ = 0, γ = 2α = 2ε = 6k2

2, B = D = F = 0,
C = E = 3A = 3G = 3k3

2/k1 and a �= 0�� .
(d) α = β = γ = δ = ε = A = B = C = D = E = F = G = 0 and a = 0.

Systems provided by statements (a) and (d) are Darboux integrable with the first
integral given by Proposition 2.2 with n = 1 and m = 2 and where f2ff (θ) = 0 and
f8ff (θ) = 0, respectively. Systems provided by statements (b) and (c) are Darboux
integrable with the first integral given by Proposition 2.1 with n = 1 and m = 2.

The proof of this proposition follows from doing tedious computations and
using Propositions 2.1 and 2.2 when n = 1 and m = 2.
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[12] J. Giné and J. Llibre,´ A Family of Isochronous Foci with Darbouxian First Integral.
Pacific J. Math. 218 (2005), to appear.
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Time-Reversibility in Two-Dimensional
Polynomial Systems

Valery G. Romanovski and Douglas S. Shafer

Abstract. We characterize the set of all time-reversible systems within a par-
ticular family of complex polynomial differential equations in two complex
dimensions. These results are a generalization to the complex case of the-
orems of Sibirsky for real systems. We also give an efficient computational
algorithm for finding this set. An interconnection of time-reversibility and
the center problem is discussed as well.
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1. Introduction

Consider a real system of the form

u̇ = v + U(u, v), v̇ = −u + V (u, v), (1.1)

where U and V are real analytic functions whose series expansions in a neighbor-
hood of the origin start with terms of the second degree or higher. Conversion to
polar coordinates shows that near the origin either all non-stationary trajectories
of (1.1) are ovals (in which case the origin is called a center) or they are all spirals
(in which case the origin is called a focus). The problem of distinguishing between
centers and foci is known as the Poincaré center problem´ .

A first integral for system (1.1) on a neighborhood of the origin is a non-
constant function that is constant on trajectories of (1.1). According to the Poin-
care–Lyapunov theorem the origin is a center for (1.1) if and only if system (1.1)´
admits a formal first integral of the form

Φ(u, v) = u2 + v2 +
∞∑

k=3

φk(u, v), (1.2)

where for each k φk(u, v) is a homogeneous polynomial in u and v of degree k.
(Actually it is known that if there exists a formal integral (1.2) then the series must
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in fact converge). However, there are no regular methods for constructing such
an integral and this is one of the reasons why, despite its hundred-year history,
the center problem has been solved for only a few relatively simple non-trivial
subfamilies of system (1.1) (see, for example, [1, 3, 12, 13, 17, 18] and the references
therein), most notably for the family of quadratic systems, those systems for which
max{deg U, degV } = 2.

Sometimes it is possible to distinguish between a center and a focus in system
(1.1) using a geometric argument, which we illustrate by the following example.
Consider a system of the form

u̇ = v + vf(u, v2), v̇ = −u + g(u, v2), (1.3)

where f is a real analytic function whose series expansion starts with terms of order
at least one and g is a real analytic function whose series expansion starts with
terms of order at least two. As already noted, in a sufficiently small neighborhood
Ω of the origin either all non-stationary trajectories of (1.3) are spirals or all are
closed curves. We observe, however, that the transformation u → u, v → −v,
t → −t leaves the system unchanged. This implies that the u-axis is a line of
symmetry for the orbits (as point-sets); hence no trajectory in Ω can be a spiral.

System (1.3) is an example of a time-reversible system, i.e. a system which
is invariant under reflection with respect to a line and a change in the direction of
time. To study the center problem in conjunction with reversibility properties it is
convenient to introduce a complex structure on the phase plane {(u, v) | u, v ∈ R}
by setting x = u + iv (i =

√√−1). This can be done for any real system

u̇ = Ũ(u, v), v̇ = Ṽ (u, v), (1.4)

which is thereby transformed into the complex differential equation

dx

dt
= P (x, x̄) ; (1.5)

one simply uses ẋ = u̇ + iv̇ and the identities u = 1
2 (x + x̄) and v = 1

2i(x − x̄) in
Ũ(u, v) and Ṽ (u, v). We will limit our study to the case that U and V in (1.1) and
Ũ and Ṽ in (1.4) are polynomial functions of u and v, so that P is a polynomial
as well.

We say that a straight line L is an axis of symmetry of system (1.4) if as
point-sets (ignoring the sense of the parametrization by time t) the orbits of the
system are symmetric with respect to the line L.

The proof of the following lemma is straightforward.

Lemma 1.1 ([15]). Let a denote the vector of coefficients of the polynomial P (x, x̄)
in (1.5), arising from the real system (1.4) by setting x = u + iv. If a = ±ā
(meaning that either all the coefficients are real or all are pure imaginary), then
the u-axis is an axis of symmetry of the real system (1.4) and of the corresponding
complex differential equation (1.5).
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By the lemma the u-axis is an axis of symmetry for (1.5) if

P (x̄, x) = −P (x, x̄) (1.6)

(the case a = −ā), or if
P (x̄, x) = P (x, x̄) (1.7)

(the case a = ā). We now observe that if condition (1.6) is satisfied then under
the change

x → x̄, x̄ → x, (1.8)
(1.5) is transformed to its negative,

ẋ = −P (x, x̄), (1.9)

and if condition (1.7) holds then (1.5) is unchanged. Thus condition (1.7) means
that the system is reversible with respect to reflection across the u-axis (i.e., the
transformation does not change the system) while condition (1.6) corresponds to
time-reversibility with respect to the same transformation.

It is clear that if the origin is known to be a singular point of center or focus
type and we are interested in a symmetry with respect to a line passing through
the origin, then only time-reversibility is possible. So if (1.5) is obtained from (1.1)
and the transformation (1.8) yields the system (1.9), then the real system (1.1) is
time-reversible, and hence has a center at the origin.

If the line of reflection is not the u-axis but a distinct line L then we can
apply the rotation x1 = e−iϕx through an appropriate angle ϕ to make L the
u-axis. In the new coordinates we have

ẋ1 = e−iϕP (eiϕx1, e
−iϕx̄1) .

By the discussion in the paragraph following (1.9) this system is time-reversible
with respect to the line Im x1 = 0 if (1.6) holds, meaning that

eiϕP (eiϕx1, e−iϕx̄1) = −e−iϕP (eiϕx̄1, e
−iϕx1).

Hence, reverting to the variable x, (1.5) is time-reversible when there exists a ϕ
such that

e2iϕP (x, x̄) = −P (e2iϕx̄, e−2iϕx). (1.10)
This suggests the following natural generalization of the notion of time-reversibility
to the case of two-dimensional complex systems.

Definition 1.2. Let z = (x, y) ∈ C2. We say that the system
dz
dt

= F (z) (1.11)

is time-reversible if there is a linear transformation T ,

x �→ αy, y �→ α−1x (1.12)

(α ∈ C), such that
d(Tz)

dt
= −F (Tz). (1.13)
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For more details about time-reversible systems and their applications the
reader can consult the survey [9].

Direct calculation shows that the system

ẋ = P (x, y), ẏ = Q(x, y) (1.14)

is time-reversible (in the sense of Definition 1.2) if and only if for some α

αQ(αy, x/α) = −P (x, y), αQ(x, y) = −P (αy, x/α) . (1.15)

Thus we see that (1.10) is a particular case of (1.15): setting α = e2iϕ, y = x̄, and
Q = P̄ in (1.15) we obtain (1.10).

As mentioned above a real polynomial system that has a critical point at the
origin of center or focus type and which is time-reversible with respect to a line
passing through the origin must in fact have a center at the origin. When the notion
of a center is properly generalized to the complex two-dimensional system displayed
by equations (1.17) below, this fact is also true for them. A natural generalization is
provided by the Poincaré–Lyapunov theorem. After the complexification´ x = u+iv
we obtain from system (1.4) the equation (1.5). Adjoining to the latter equation
its complex conjugate we obtain the system

dx

dt
= P (x, x̄),

dx̄

dt
= P (x, x̄),

which we also can write as

dx

dt
= P (x, x̄),

dx̄

dt
= P̄ (x̄, x)

(where only the coefficients in P are conjugated to form P̄ ). It is convenient to
consider x̄ as a new variable y and P̄ as a new function Q. Then from the latter
system we obtain a system of two complex differential equations of the form (1.14).ffff
Without loss of generality we can write it in the form

dx

dt
= −

∑
(p,q)∈eS

ap,qx
p+1yq = P̃ (x, y),

dy

dt
=

∑
(p,q)∈eS

bq,px
qyp+1 = Q̃(x, y),

(1.16)

where S̃ is the set

S̃ = {(pi, qi) | pi + qi ≥ 0, i = 1, . . . , �} ⊂ ({−1} ∪N+)× N+,

and N+ denotes the set of nonnegative integers. The notation (1.16) simply em-
phasizes that we take into account only non-zero coefficients of the polynomials.
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In the case that system (1.16) is obtained from system (1.1) it can be written
in the form

i
dx

dt
= x−

∑
(p,q)∈S

apqx
p+1yq = P (x, y),

i
dy

dt
= −y +

∑
(p,q)∈S

bqpx
qyp+1 = Q(x, y),

(1.17)

where

S = {(pi, qi) | pi + qi ≥ 1, i = 1, . . . , �} ⊂ ({−1} ∪ N+)× N+.

Definition 1.3. System (1.17) has a center at the origin if there is an analytic
function of the form

Ψ(x, y) = xy +
∞∑

s=3

s∑
j=0

vj,s−jx
jys−j , (1.18)

where the vj,s−j are polynomials in the coefficients of P and Q, such that

∂Ψ
∂x

P (x, y) +
∂Ψ
∂y

Q(x, y) = 0.

In particular if system (1.17) is obtained from (1.1) then setting y = x̄ we
obtain the first integral (1.2) of system (1.1).

We denote by (a, b) = (ap1,q1 , ap2,q2 , . . . , bq1,p1) the ordered vector of coeffi-
cients of system (1.16), by Ẽ(a, b) = C2� the parameter space of (1.16) (for the pa-
rameter space of (1.17) we use the notation E(a, b)), and by C[a, b] the polynomial
ring in the variables apq, bqp. It is clear that there is a one-to-one correspondence
between points of E(a, b) and systems of the form (1.17). Thus to solve the center
problem, we need to identify all points (a, b) such that their corresponding systems
have a center at the origin.

For system (1.17) one can always find (see, for example, [7, 12]) a Lyapunov
function Ψ of the form (1.18) such that

∂Ψ
∂x

P (x, y) +
∂Ψ
∂y

Q(x, y) = g11 · (xy)2 + g22 · (xy)3 + g33 · (xy)4 + · · · , (1.19)

where the gii are polynomials in the coefficients of (1.17) called focus quanti-
ties . Thus system (1.17) with coefficients (a∗, b∗) has a center at the origin if
and only if gii(a∗, b∗) = 0 for all i = 1, 2, . . . , and Ψ is then a first integral. In
general, for polynomials f1, . . . , fsff , we let I = 〈f1, . . . , fsff 〉 denote the ideal in
C[a, b] that they generate, and V(〈f1, . . . , fsff 〉) = V(I) the variety of I (the set
on which every element of I vanishes). Then a necessary and sufficient condi-
tion that system (1.17) with coefficients (a∗, b∗) has a center at the origin is that
(a∗, b∗) ∈ V(〈g11, g22, . . . , gii, . . . 〉). This motivates the following definition.

Definition 1.4. The ideal

B := 〈g11, g22, . . . , gii, . . . 〉 ⊆ C[a, b]
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is called the Bautin ideal of system (1.17) and its variety V(B) is called the center
variety of system (1.17).

Since C[a, b] is a Noetherian ring, by the Hilbert basis theorem the ideal B is
finitely generated. It is known that for quadratic systems B is generated by the first
three focus quantities. At present there are no general methods for finding a basis
of the Bautin ideal for an arbitrary polynomial system. There do exist, however,
various methods for computing the variety of an ideal. But even for the general
cubic system of the form (1.17), attempts to compute the center variety have failed
because of the fact that the focus quantities are such enormous expressions that
as of yet no computer algebra system can perform the computations needed.

For a fixed collection (p1, q1), . . . , (p�, q�) of elements of ({−1} ∪ N+) × N+,
and letting ν denote the element (ν1, . . . , ν2�) of N2�

+ , let L be the map from N2�
+

to N2
+ (the elements of the latter written as column vectors) defined by

L(ν) =
(

L1(ν)
L2(ν)

)
=
(

p1

q1

)
ν1 + · · ·+

(
p�

q�

)
ν�ν +

(
q�

p�

)
ν�ν +1 + · · ·+

(
q1

p1

)
ν2�. (1.20)

Let M denote the set of all solutions ν = (ν1, ν2, . . . , ν2l) with non-negative com-
ponents of the equation

L(ν) =
(

k

k

)
(1.21)

as k runs through N+, and the pairs (pi, qi) determining L(ν) come from system
(1.17). Similarly, let M̃ denote the set of such solutions corresponding to (1.16).
Obviously, M and M̃ are Abelian monoids. Let C[M] (respectively, C[M̃]) denote
the subalgebra of C[a, b] generated by all monomials of the form

aν1
p1q1

aν2
p2q2

· · · aν�
p�q�

bν�+1
q�p�

bν�+2
q�−1p�−1

· · · bν2�
q1p1

,

for all ν ∈ M (respectively, ν ∈ M̃). In order to simplify the notation we will
abbreviate such a monomial by [ν] = [ν1, . . . , ν2�]. For ν in either M or M̃, let ν̂
denote the involution of the vector ν:

ν̂ = (ν2�, ν2�−1, . . . , ν1).

It is shown in [12] that the focus quantities of system (1.17) belong to C[M] and
have the form

gkk =
∑

L(ν)=(k,k)T

g(ν)([ν]− [ν̂]), (1.22)

with g(ν) ∈ Q, k = 1, 2, . . . . (Similar properties of the focus quantities were also
obtained in [3, 11].)

Consider the ideals

IsymI = 〈[ν]− [ν̂] | ν ∈M〉 ⊂ C[M]

and
ĨsymI = 〈[ν]− [ν̂] | ν ∈ M̃〉 ⊂ C[M̃].

From (1.22) and Definition 1.4 it is clear that B ⊆ IsymI ; hence V(IsymI ) ⊆ V(B).
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Definition 1.5. For system (1.17) the variety V(IsymI ) is called the Sibirsky (or
symmetry) subvariety of the center variety, and the ideal IsymI is called the Sibirsky
ideal .

As already stated it is geometrically obvious that every time-reversible system
of the form (1.1) has a center at the origin. It is easily seen that this property is
transferred to systems of the form (1.17): every time-reversible system (1.17) has
a center at the origin. Indeed, (1.15) immediately yields that systems (1.17) and
(1.16) are time-reversible if and only if

bqp = αp−qapq, apq = bqpα
q−p. (1.23)

Hence in the case that (1.17) is time-reversible, using (1.23) we see that for ν ∈M
[ν̂] = α(L1(ν)−L2(ν))[ν] = [ν] (1.24)

and thus from (1.22) we obtain gkk ≡ 0 for all k, which implies that the system
has a center.

By (1.24) every time-reversible system (a, b) ∈ Ẽ(a, b) belongs to V(ĨsymI ).
The converse is false. A simple counterexample is the system

ẋ = x(1 − a10x− a01y), ẏ = −y(1− b10x− b01y).

In this case ĨsymI = 〈a10a01 − b10b01〉. The system

ẋ = x(1 − a10x), ẏ = −y(1− b10x) (1.25)

arises from V(IsymI ) but the conditions (1.23) are not fulfilled, so (1.25) is not
time-reversible.

The correct statement is the following theorem, announced in [8].

Theorem 1.6. Let R ⊂ E(a, b) be the set of all time-reversible systems in the family
(1.16). Then:

(1) R ⊂ V(ĨsymI );
(2) V(ĨsymI ) \ R = {(a, b) | ∃(p, q) ∈ S such that apqbqp = 0 but apq + bqp �= 0�� }.

We will present the proof of Theorem 1.6 in Section 2. Actually, the theorem
is an easy generalization of the results of Sibirsky for real systems to the case of
complex systems and we closely follow his reasoning. However, since the work of
Sibirsky is often not well enough known to be used in the Western literature (one
example is the recent paper [5] in which results of Sibirsky are re-derived using
different methods), we believe that it is worthwhile to present detailed proof of the
theorem (so, in a sense, the present paper can be considered as mainly a survey
paper).

2. Invariants of the Rotation Group

We recall the notion of a polynomial invariant.

Definition 2.1. Let G be a matrix group acting on x = (x1, . . . , xn) and let k be
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any field. A polynomial f(x) ∈ k[x] is invariant under G if f(x) = f(A · x) for
every A ∈ G.

Example. Let B =
(

0 −1
1 0

)
. Then the set C4CC = {I2II , B, B2, B3} is a group, and

for the polynomial p(x) = p(x1, x2) = 1
2 (x2

1 + x2
2) we have that p(x) = p(Bx),

p(x) = p(B2x), and p(x) = p(B3x). Thus p(x) is an invariant of the group C4CC .

Consider the group of rotations of the phase space

x′ = e−iφx, y′ = eiφy. (2.1)

In (x′, y′) coordinates system (1.16) has the form

ẋ′ =
∑

(p,q)∈eS
a(φ)(p,q)x

′p+1y′q, ẏ′ =
∑

(p,q)∈eS
b(φ)(q,p)x

′qy′p+1
,

and the coefficients of the transformed system are

a(φ)pkqk
= apkqk

ei(pk−qk)φ, b(φ)qkpk
= bqkpk

ei(qk−pk))φ, (2.2)

where k = 1, . . . , �. Let UφUU denote the transformation (2.2), so that UφUU is the
diagonal 2�× 2� matrix

UφUU =

(
U

(a)
φU 0
0 U

(b)
φU

)
,

where U
(a)
φU and U

(b)
φU are diagonal matrices that act on the coordinates a and b,

respectively. For example, for the system

ẋ = a00x + a−1,1y + a20x
3, ẏ = b−1,1x + b00y + b02y

3

we have

UφUU (a, b) =

(
U

(a)
φU 0
0 U

(b)
φU

)
(a, b)T =⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1 0 0 0 0 0
0 e−i2φ 0 0 0 0
0 0 ei2φ 0 0 0
0 0 0 e−i2φ 0 0
0 0 0 0 ei2φ 0
0 0 0 0 0 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
a00

a−1,1

a20

b02

b1,−1

b00

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
a00

a−1,1e
−i2φ

a20e
i2φ

b02e
−i2φ

b1,−1e
i2φ

b00

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

so here

U
(a)
φU =

⎛⎝⎛⎛1 0 0
0 e−i2φ 0
0 0 ei2φ

⎞⎠⎞⎞ and U
(b)
φU =

⎛⎝⎛⎛e−i2φ 0 0
0 ei2φ 0
0 0 1

⎞⎠⎞⎞ .

Note that U
(a)
φU and U

(b)
φU do not really depend on a and b; rather, the notation

simply indicates that U
(a)
φU acts on the vector of coefficients of the first equation of

(1.16) and U
(b)
φU acts on the vector of coefficients of the second equation of (1.16).
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We will write (2.2) in the short form

(a(φ), b(φ)) = UφUU (a, b) = (U (a)
φU a, U

(b)
φU b).

It follows from (2.2) that U = {UφUU } is a group. We call U the rotation group of
the system (1.16) (not to be confused with the group (2.1), which is the group of
rotations of the phase plane, and is not associated with any particular system of
differential equations). Here we are studying polynomial invariants of the group U ,
which we call the invariants of the rotation group, or more simply the invariants.
It is straightforward to see that a polynomial f(a, b) ∈ C[a, b] is an invariant of
the group U if and only if each of its terms is an invariant.

We associate to system (1.16) the linear operator L(ν) defined by (1.20) (with
(pm, qm) ∈ S̃) and as above we denote by M̃ the monoid of all integer solutions
ν = (ν1, ν2, . . . , ν2�) with non-negative components of the equation (1.21).

It is easily seen that there is a slightly different way to define this monoid.
Consider the Diophantine equation

(p1−q1)ν1+(p2−q2)ν2+· · ·+(p�−q�)ν�ν +(q�−p�)ν�ν +1+· · ·+(q1−p1)ν2� = 0 (2.3)

which is obtained by subtracting the second equation of system (1.21) from the
first one.

Proposition 2.2. The set of all non-negative integer solutions of equation (2.3)
coincides with the monoid M̃ defined by equation (1.21).

Proof. Obviously every solution of (1.21) is also a solution of (2.3). Conversely,
let ν be a solution of (2.3) and let ei = (0, . . . , 0, 1, 0, . . . , 0) be the ith basis vector
of C2�. Then

L1(ν) = L2(ν) = k, (2.4)
yielding

L1(ν) + L2(ν) = 2k. (2.5)
Note that

L1(ei) + L2(ei) = L1(e2�−i) + L2(e2�−i) = pi + qi ≥ 0 (2.6)

for i = 1, . . . , �. Taking into account the fact that L(ν) is a linear operator, we
conclude from (2.5) and (2.6) that the number k on the right-hand side of (2.4) is
non-negative. �

For ν = (ν1, . . . , ν2�) ∈ N2� define

(a, b)(ν) := [ν] = aν1
p1q1

· · · aν�
p�q�

bν�+1
q�p�

· · · bν2�
q1p1

.

Then the action of UφUU on the coefficients aij , bji of the system of differential equa-
tions (1.16) yields the following transformation of the monomial (a, b)(ν):

(a(φ), b(φ))(ν) := a(φ)ν1
p1q1

· · ·a(φ)ν�

p�q�
b(φ)ν�+1

q�p�
· · · b(φ)ν2�

q1p1

= eiφ(L1(ν)−L2(ν))aν1
p1q1

· · ·aν�
p�q�

bν�+1
q�p�

· · · bν2�
q1p1

= eiφ(L1(ν)−L2(ν))(a, b)(ν).

(2.7)
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Thus we have the following characterization of the invariants.

Lemma 2.3. The monomial [ν] = (a, b)(ν) is invariant under U if and only if
L1(ν) = L2(ν), i.e., if and only if ν ∈ M̃.

Definition 2.4. The vector

ζ = (p1 − q1, . . . , p� − q�, q� − p�, . . . , p1 − q1)

is the characteristic vector of system (1.16). The non-negative integer

{ζ} = GCD(ζ) = GCD(p1 − q1, . . . , p� − q�)

is the characteristic number of system (1.16). The vector κ = ζ
{ζ} is the reduced

characteristic vector of system (1.16).

Consider the equation

L1(ν)−L2(ν) = (p1−q1)ν1+· · ·+(p�−q�)ν�ν +(q�−p�)ν�ν +1+· · ·+(q1−p1)ν2� = {ζ},
(2.8)

which can be written in the equivalent form

ζ1ν1 + · · ·+ ζ�ζζ ν�ν + ζ�ζζ +1ν�ν +1 + · · ·+ ζ2�ν2� = {ζ}.
Lemma 2.5. If ζ �= 0�� then equation (2.8) has a solution ν ∈ N2�

+ for which νi ≥ 0
for all i and νi > 0 for at least one i.

Proof. The equation (p1 − q1)t1 + · · · + (p� − q�)t� = {ζ} has a solution t ∈ Z�

because {ζ} is a generator of the ideal 〈p1 − q1, . . . , p� − q�〉. Write t′ = t′+ − t′−,
where t′+i ≥ 0 and t′−i ≥ 0 for all i. Then ν = (t′+, t̂′−ˆ ) ∈ N2�

+ (where t̂′− is the
involution of the vector t′− defined by t̂′−ĵ = t′−�−j) is a solution of (1.21) with
non-negative coordinates and such that |ν| > 0. �

We will write z = (z1, z2, . . . , z2�) for the vector (a, b), so that

zi =

{
api,qi if 1 ≤ i ≤ �

bq2�+1−i,p2�+1−i
if � + 1 ≤ i ≤ 2�.

A pair of variables zi and zj in z are conjugate variables provided zi = zs and
zj = z2�−s for some s, so that (zi, zj) = (apsqs , bqsps). Invariants that depend on
only one pair of conjugate variables are unary invariants; invariants that depend
on two pairs of conjugate variables are binary invariants. Thus for example for
system (4.1) considered below, a11 and a02b20 are the unary invariants and a20a02

and b4
20a

2
−13 are the binary invariants.

Lemma 2.6. (1) The unary irreducible invariants of system (1.16) have the form
app, bpp, apqbqp.

(2) The binary irreducible invariants of system (1.16) are

z
|ζs|

GCD(ζr ,ζs)
r z

|ζr|
GCD(ζr ,ζs)
s , (2.9)

where ζrζζ ζs < 0.
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Proof. (1) From Lemma 2.3 we have that zs is a unary invariant if and only if the
corresponding coordinate of the characteristic vector ζ is equal to zero, that is, if
and only if the corresponding coefficient of system (1.16), apsqs or bqsps , satisfies
ps = qs. Similarly, a monomial

aµ1
pq bµ2

qp (2.10)
is a unary invariant if and only if (µ1, µ2) is a positive solution to the equation
µ1(p − q) + µ2(q − p) = 0. Therefore µ1 = µ2, and the only irreducible invariant
of the form (2.10) is apqbqp.

(2) Again, by Lemma 2.3 and Proposition 2.2 the monomial zµ1
r zµ2

s is an
irreducible invariant if and only if µ = (µr, µs) is the minimal non-negative solution
to µrζrζζ +µsζs = 0 such that |µ| > 0. This equation has such a solution if and only
if ζrζζ ζs < 0, and in such a case the solution is

µr =
|ζs|

GCD(ζrζζ , ζs)
, µs =

|ζrζζ |
GCD(ζrζζ , ζs)

.
�

Remark. In terms of the original variables apkqk
and bqkpk

the second statement
of the lemma is that the binary irreducible invariants are

a

|pj−qj |
GCD(qj−pj,pi−qi)
piqi a

|pi−qi|
GCD(qj−pj,pi−qi)
pjqj and a

|pj−qj |
GCD(qj−pj,pi−qi)
piqi b

|pi−qi|
GCD(qj−pj,pi−qi)
pjqj

according as (pi − qi)(pj − qjq ) < 0 and (pi − qi)(pj − qjq ) > 0, respectively.

3. Invariants and Time-Reversibility

For h ∈ C2� let R(h) be the set of indices of the non-zero coordinates of the vector
h.

Lemma 3.1. If g, h ∈ E(a, b), R(g) = R(h), and for all unary and binary invariants
J(a, b) the condition

J(g) = J(h) (3.1)
holds, then for any r, s ∈ R(h) = R(g)(

hr

gr

)κs

=
(

hs

gs

)κr

. (3.2)

Proof. For r, s ∈ R(h), none of hr, hs, gr, and gs is zero. If κs = 0 (that is,
ps − qs = 0) then zs (which is equal to apsps or to b2�+1−s,2�+1−s) is a unary
invariant. By (3.1), hs = gs and therefore (3.2) holds. The case κr = 0 is similar.

Now suppose κrκs < 0. If r = s then certainly (3.2) holds. If r �=�� s then the
binary invariants are given by (2.9). Therefore using (3.1) we obtain

h|κs|
r h|κr|

s = g|κs|
r g|κr|

s (3.3)

(here we have raised both parts of (3.1) to the power GCD(ζs, ζrζζ )/{ζ}). Consid-
ering the two possibilities κr < 0 < κs and κr > 0 > κs we see that (3.3) yields
(3.2).
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Finally, consider the case κrκs > 0. Suppose κr and κs are positive, and note
that κi = −κ2�+1−i for all i = 1, . . . , 2�. From (2.9) we see that zκs

r zκr

2�+1−s is a
binary invariant. Using (3.1) we get

hκs
r hκr

2�+1−s = gκs
r gκr

2�+1−s.

Multiplying both sides of this equation by h−κr
s h−κr

2�+1−s = g−κr
s g−κr

2�+1−s (which
follows from (3.1) because zsz2�+1−s is a unary invariant) we obtain (3.2). The
case that κr and κs are both negative is similar. �

For σ ∈ R we denote by σ · h the vector (σ−ζ1h1, . . . , σ
−ζ2�h2�). The next

theorem shows that if the values of all unary and binary invariants are the same on
the ordered vectors g and h of the coefficients of two systems (1.16), and if R(g) =
R(h), then these systems can be transformed to each other by a transformation of
the form (1.12).

Theorem 3.2. The equation
σ · h = UφUU g (3.4)

has a solution with respect to σ �= 0�� and φ if and only if R(h) = R(g) and for all
unary and binary invariants J(a, b) the condition J(g) = J(h) holds.

Proof. If for some φ0 and non-zero σ0 the equality σ0 · h = UφUU 0g holds, then from
(2.2) we see that R(h) = R(g) and (3.1) holds not only for the unary and binary
invariants but in fact for all invariants (by Lemma 2.3).

To prove the converse we must show that if for all unitary and binary invari-
ants (3.1) holds, and if R(g) = R(h), then the system

hr = grσ
ζreiζrφ (i = 1, . . . , 2�) (3.5)

has a solution, that is, that there are σ0 �= 0 and�� φ0 ∈ [0, 2π) such that

hr = grσ
ζr

0 eiζrφ0 (i = 1, . . . , 2�). (3.6)

If ζ = 0 then all the irreducible invariants are z1, . . . , z2� (that is, apsps , bpsps ,
where s = 1, . . . , �), and, in this case, for the unary invariants (3.1) is just the
equality hr = gr, so that (3.6) holds with any σ and φ0.

Hence suppose ζ �= 0. We consider two separate cases:��
1. All the coordinates of the vectors g and h are different from zero;
2. Some coordinates of h and g are equal to zero.

Case 1. Let µ be a non-negative solution to (2.8) as provided by Lemma 2.5.
For s ∈ C2� we write

s(µ) := sµ1
1 sµ2

2 · · · sµ2�

2� .

By our assumption g(µ) �= 0 and�� {ζ} �= 0, so the equation�� h(µ) = g(µ)σ{ζ}ei{ζ}φ

has a solution σ = σ0, φ = φ0:

h(µ) = g(µ)σ
{ζ}
0 ei{ζ}φ0 . (3.7)



Time-Reversibility in Polynomial Systems 79

We will now show that in fact (3.6) is equivalent to (3.7). Indeed, if φ =
φ0, σ = σ0 satisfy (3.6) then (3.7) holds because µ is a solution to (2.8). Conversely,
suppose (3.7) holds. For any r ∈ R(h)(

h(µ)
)κr

=
(
g(µ)
)κr

σζr

0 eiζrφ0 . (3.8)

According to Lemma 3.1, for any r and s in R(h) we have equality (3.2). Hence
2�∏

s=1

hκsµs
r (hµs

s )−κr =
2�∏

s=1

gκsµs
r (gµs

s )−κr (3.9)

which yields

h
P2�

s=1 κsµs
r

(
h(µ)
)−κr

= g
P2�

s=1 κsµs
r

(
g(µ)
)−κr

and, therefore, (
h(µ)
)κr

=
hr

gr

(
g(µ)
)κr

(here we have used the fact that
∑2�

s=1 κsµs =
∑2�

s=1 ζsµs/{ζ} = 1). Substituting
this expression for

(
h(µ)
)κr into (3.8) we see that σ0 and φ0 satisfy (3.6).

Case 2. Assume now that some coordinates of the vector g are equal to zero.
By our assumption that R(h) = R(g) the same coordinates of h are also equal to
zero.

Consider the system of equations (3.5) corresponding to the coordinates of g
such that gr �= 0. If all�� ζrζζ corresponding to these gr are equal to zero then system
(3.5) is satisfied for any φ and σ = 0 (in this case the corresponding polynomials��
zr are unary invariants). Otherwise, in order to see that there is a solution of the
system composed of the remaining equations of (3.5),

hr = grσ
ζreiζrφ (r ∈ R(g)),

we proceed as above, with the only difference that in (3.7) and (3.9) we take
the product over all non-zero coordinates of the vector g, that is, over R(g), and
instead of {ζ} we use the number {ζ(g)}, which is the greatest common divisor of
the coordinates ζiζζ corresponding to the non-zero entries of the vector g. (Another
possible point of view for this case is that, in the set S̃, we drop the indices
corresponding to zero entries of g and then obtain from (1.16) a system of the
same form but with the vector of coefficients containing no zero entry.) �

Remark. It is obvious that if (3.1) holds for all unary and binary invariants from
a basis of the monoid M̃ then it holds for all unary and binary invariants (since
every unary and binary invariant is a product of unary and binary invariants from
a basis of M̃). Hence in the statements of Theorem 3.2 it is sufficient to require
the fulfillment of condition (3.1) not for all unary and binary invariants but only
for unary and binary invariants from a basis of M̃.

It is also easy to see that if (3.1) is fulfilled for unary and binary invariants
then it is fulfilled for all invariants.
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Theorem 3.3. If R(g) = R(h), and if J(g) = J(h) holds for all unary and binary
invariants (or, equivalently, for unary and binary invariants from a basis of M̃)
then J(g) = J(h) holds for all invariants J(z).

Proof. It is sufficient to consider only monomial invariants. Let z(θ) be such an
invariant and let σ0 and φ0 be solutions to (3.7) provided by Theorem 3.2. Then

h(θ) = g(θ)σζ1θ1+···+ζ2�θ2�

0 ei(ζ1θ1+···+ζ2�θ2�)φ0 .

However, z(θ) is an invariant. Therefore by Proposition 2.2 and Lemma 2.3 ζ1θ1 +
· · ·+ ζ2�θ2� = 0. Hence h(θ) = g(θ). �

We let [ν]|g denote the value of the monomial [ν] = zν1
1 · · · zν2�

2� at the vector
g; that is, [ν]|g = g(ν). We let (b, a) denote the involution of (a, b); that is, (b, a) =
(bq1p1 , . . . , bqlpl

, aplql, . . . , ap1q1).
We can now prove Theorem 1.6.

Proof of Theorem 1.6. Conclusion (1) of the theorem follows from formula (1.23)
and the definition of ĨsymI . As to conclusion (2), we begin by noting that, for fixed
(a, b), the existence of (p, q) in S for which apqbqp = 0 but apq + bqp �= 0 means��
the same thing as R(a, b) �=�� R(b, a). Thus for systems (a, b) from V(ĨsymI ) \ R we
have that R(a, b) = R(b, a) and

[ν]|(a,b) = [ν̂]|(a,b) (3.10)

for all ν ∈ M̃. However, the set {[ν] | ν ∈ M̃} contains all unary and binary
invariants of the system (1.16). Thus (3.10) means that J(a, b) = J(b, a) for all
such invariants. Thus by Theorem 3.2 the system σ ·(b, a) = UφUU (a, b) has a solution
{UφUU 0 , σ0}. Then α = σ0e

iφ0 satisfies the equation (1.23), which implies that the
system (a, b) is a time-reversible one. �

4. A Computational Algorithm

Theorem 1.6 implies that in order to find all time-reversible systems within a
given polynomial family (1.16) it is sufficient to find a basis of the Sibirsky ideal
of the system, or, equivalently, a Hilbert basis (i.e., a minimal generating set of
the corresponding monoid M̃, which in [11] is called the set of “elementary Lie
invariants”). Such a basis can be found by examining solutions of (1.21) through
a step-by-step sorting ([11, 14]). An algorithmic method for computing ĨsymI and
a basis of M̃ was proposed in [8]. It yields the following algorithm for finding all
time-reversible systems within the family (1.16).

The correctness of the first two steps of the algorithm is proven in [8]; the
correctness of step 3 follows from Theorem 3 (of course, the set {G ∩C[a, b]} also
defines the variety of ĨsymI , but as rule the set K is essentially smaller).
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Algorithm (for finding time-reversible systems).

Input: Two sequences of integers p1, . . . , p� (pi ≥ −1) and q1, . . . , q� (qi ≥ 0).
(These are the coefficient labels for a system of the form (1.16).)

Output: A finite set of generators for the Sibirsky ideal ĨsymI of (1.16) and a set
K of polynomials defining the variety of ĨsymI .

1. Compute a reduced Gröbner basis¨ G for the ideal

J = 〈apiqi − yit
pi

1 tqi

2 , bqipi − y�−i+1t
q�−i+1
1 t

p�−i+1
2 | i = 1, . . . , �〉

⊂ C[a, b, y1, . . . , y�, t
±
1 , t±2 ]

with respect to any elimination ordering for which

{t1, t2} > {y1, . . . , yd} > {ap1q1 , . . . , bq1p1}.
2. ĨsymI = 〈G ∩ C[a, b]〉.
3. K is formed by the generators of ĨsymI whose terms are unary or binary

invariants.

We demonstrate how the algorithm works using as an example the system
studied in [10]:

ẋ = x(1 − a20x
2 − a11xy − a02y

2 − a−13x
−1y3 − a22x

2y2),

ẏ = −y(1− b3,−1x
3y−1 − b20x

2 − b11xy − b02y
2 − b22x

2y2) .
(4.1)

Computing a Gröbner basis of the ideal¨

J = 〈a11 − t1 t2 y1, b11 − t1 t2 y1, a20 − t21 y2, b02 − t22 y2, a02 − t22 y3, b20 − t21 y3,

a−13 − t32 y4

t1
, b3,−1 − t31 y4

t2
, a22 − t21 t22 y5, b22 − t21 t22 y5〉

with respect to lexicographic order with

t1 > t2 > y1 > y2 > y3 > y4 > y5

> a11 > b11 > a20 > b20 > a02 > b02 > a−13 > b3,−1 > a22 > b22

we obtain a list of polynomials. (The list is too long to be presented here, but is
easily computed using any standard computer algebra system.) According to step
2 of the algorithm above, in order to get a basis of ĨsymI we just have to pick up
the polynomials that do not depend on t1, t2, y1, y2, y3, y4, y5 . In fact,

ĨsymI = 〈a−13 b2
20 − a2

02 b3,−1, a02 a20 − b02 b20, a−13 a20 b20 − a02 b02 b3,−1,

a−13 a2
20 − b2

02 b3,−1, a11 − b11, a22 − b22〉.
Now the third step of the algorithm yields
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Theorem 4.1. System (4.1) is time-reversible if and only if its coefficients satisfy
the system of simultaneous equations

a−13 b2
20 − a2

02 b3,−1 = a02 a20 − b02 b20

= a−13 a2
20 − b2

02 b3,−1 = a11 − b11 = a22 − b22 = 0

and aks and bsk vanish simultaneously.
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On Symbolic Computation of the LCE
of N -Dimensional Dynamical Systems

Shucheng Ning and Zhiming Zheng

Abstract. In the present paper, based on our earlier work, we propose a sys-
tematic method for symbolically computing the Lyapunov characteristic ex-
ponents, briefly LCE, of n-dimensional dynamical systems. First, we analyze
in mathematics the LCE of n-dimensional dynamical systems. In particular,
as an example, we discuss the LCE of the Lorenz systems. Then, to do the
above task, a framework on representation and manipulation of a class of
non-algebraic objects using non-standard analysis (NSA) is established. In
this framework, an algorithm can be developed for deriving some unknown
relations on some objects involving limit processes. Finally, applying this algo-
rithm to n-dimensional dynamical systems, we can show that their maximal
LCE can be derived mechanically; particularly, for the Lorenz systems, we
obtain an important result on the maximal LCE of the chaotic attractors of
these systems — their dependence on the systems parameters.

Mathematics Subject Classification (2000). Primary 58F13; Secondary 68Q40.

Keywords. Dynamical system, LCE, symbolic computation, non-algebraic
object.

1. Introduction

Using computer algebra systems and symbolic computation techniques in dynam-
ical systems research is an important recent development [8, 16, 13, 12, 11]. In
the present paper the authors want to employ the techniques to establish a sys-
tematic method to compute the maximal LCE, say h(α), of n-dimensional chaotic
systems, where α = (α1, . . . , αm) are the systems parameters. As an example, we
apply the method to compute the LCE of Lorenz systems. As we know, one of
the most important methods in dynamical systems theory, used to analyze the
behavior of chaotic dynamical systems, is to discuss their Lyapunov characteristic
exponents, of which the maximal one is of special interest for us. Although the

Research supported by the National 863 Project and the NSF of China.
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concept of LCE seems simple, it is never easy to get accurate LCE in practice
when we meet a chaotic system. Thus, numerical methods have to be admitted.
Such methods are used in many papers for studying the LCE of dynamical sys-
tems; unfortunately, the numerical results cannot satisfy many of the requirements
in theoretical analysis. For example, how do the LCE depend on the correspond-
ing systems parameters? Instead of numerically computing the LCE of attractors
of chaotic dynamical systems, in the present paper we try to give a systematic
method for finding LCE dependence on the systems parameters by symbolic com-
putation for n-dimensional dynamical systems, and then apply it to investigate
LCE of Lorenz systems of the following form:

ẋ1 = −σx1 + σx2,

ẋ2 = −x1x3 + rx1 − x2,

ẋ3 = x1x2 − bx3,

where σ, b and r are the systems parameters. One of the main results in the present
paper is the following.

Main Result 1. For n-dimensional dynamical systems, some symbolic expressions
satisfied by the systems parameters and the maximal LCE of their attractors can
be derived mechanically.

Since computing the LCE of a dynamical system is a non-algebraic problem,
which involves limit process, the algorithm constructed in this paper is beyond,
in principle, the conventional symbolic computation methods (for example, the
Grobner basis method and Ritt–Wu’s method), which are in nature algebraic and¨
not appropriate for dealing with mathematical problems with non-algebraic back-
ground. Towards solving the above problem, our idea, based on our earlier work
[13, 12, 11, 5, 18], is to extend the methods of algebraic equation solving to a
class of non-algebraic objects. More precisely, our approach is first to introduce
infinitesimals to describe in mathematics a class of non-algebraic objects, called
analytic equalities, and the problem of computing LCE can be reduced into the
category of the above non-algebraic objects; then we enlarge traditional algebraic
axiom system by introducing infinitesimals such that we can develop a computing
method for the analytic equalities, which leads to an algorithm for constructing
necessary conditions for a set of analytic equalities to hold. The algorithm can be
applied to mechanically derive unknown relations (unknown mathematical theo-
rems). Armed with it, we try to approach some problems related to dynamical
systems; in particular, we obtain another result on the LCE of Lorenz systems,
which can be briefly described as follows.

Main Result 2. For the Lorenz systems, there exists an algorithm with inputs σ0

and b0, which can generate an analytic equality φ(σ0, b0, r, ĥ) = 0 automatically,
where ĥ ∈ R̃ and R̃ is the field of real numbers of non-standard analysis (NSA),
and the maximal LCE, say h, of the Lorenz systems is the standard part of ĥ, i.e.,
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h = 〈ĥ〉 ∈ R, and R is the field of real numbers. Moreover, ĥ is one of the roots of
φ(σ0, b0, r, y) = 0.

We remark that when we investigate some problems of dynamical systems
with the algorithm, we may meet some computing obstructions due to the com-
plexity of the corresponding symbolic computation. However, the difficulties can
be overcome from our understanding for some qualitative properties of the con-
cerned dynamical systems or by combining the algorithm with other computing
methods (see Section 3 and [11, 18, 15]).

This paper is arranged as follows. In Section 2, we show that a system of
polynomial equations associating with the LCE of n-dimensional dynamical sys-
tems can be obtained and, as an example, the LCE of the Lorenz systems are
discussed. In Section 3, we describe how to represent and manipulate the non-
algebraic objects of our interest using non-standard analysis. In Section 4, two
results on n-dimensional dynamical systems and the LCE of the Lorenz systems
are obtained symbolically by applying our algorithm described in Section 3. The
last section gives some remarks on our work.

2. On the LCE of N -Dimensional Dynamical Systems

2.1. The General Case

First, we consider in general the following n-dimensional dynamical systems⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪
ẋ1 = f1(α1, . . . , αm, x1, . . . , xn),
ẋ2 = f2ff (α1, . . . , αm, x1, . . . , xn),

...
ẋn = fnff (α1, . . . , αm, x1, . . . , xn),

(2.1)

where f1, . . . , fnff are polynomials of x1, . . . , xn, and α1, . . . , αm are the systems
parameters.

Suppose that x1(t), . . . , xn(t) are the solutions with bounded initial values
and x1(t), . . . , xn(t) are also bounded. The LCE h of an invariant set of (2.1) can
be defined as follows:

h = lim
t→∞

1
t

ln ‖D(x0
1,...,x0

n)(x1(t), . . . , xn(t)) ◦ �v‖,

where x0
1, . . . , x

0
n are initial values of (2.1), and �v = (a1, . . . , an) ∈ Rn. Without

loss of generality, we can assume that �v ∈ Sn−1, where Sn−1 is a unit sphere in
Rn. Roughly speaking, h describes the degree of sensitive dependence of solutions
of (2.1) on the initial conditions. By parametrizing the initial values, i.e., letting
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x0
1 = x0

1(s), . . . , x
0
n = x0

n(s), where s is the introduced parameter, we have

∂x1

∂s
=

∂x1

∂x0
1

dx0
1

ds
+ · · ·+ ∂x1

∂x0
n

dx0
n

ds
=

∂x1

∂x0
1

a1 + · · ·+ ∂x1

∂x0
n

an,

...
∂xn

∂s
=

∂xn

∂x0
1

dx0
1

ds
+ · · ·+ ∂xn

∂x0
n

dx0
n

ds
=

∂xn

∂x0
1

a1 + · · ·+ ∂xn

∂x0
n

an.

(2.2)

We introduce u1 =
∂x1

∂s
, . . . , un =

∂xn

∂s
, and then have

‖D(x0
1,...,x0

n)(x1(t), . . . , xn(t)) ◦ �v‖ =
√

u2
1 + · · ·+ u2

n,

and the following variational systems of (2.1):⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
u̇1

...
u̇n

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fnff

∂x1
· · · ∂fnff

∂xn

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

u1

...
un

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ , (2.3)

or u̇ = Df(x)u, where u = (u1, . . . , un)T , x = (x1, . . . , xn), and

f(x) =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
f1(x1, . . . , xn)

...
fnff (x1, . . . , xn)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ , Df(x) =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
∂f1

∂x1
. . .

∂f1

∂xn
...

. . .
...

∂fnff

∂x1
. . .

∂fnff

∂xn

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

The above variational systems (2.3) are obtained by differentiation of (2.1) by s.
When attractors are strange, we let initial values (x0

1, . . . , x
0
n) be in the chaotic

attractors, and want to compute the maximal LCE h of the attractors. Note that
there exists a �v0 ∈ Sn−1, such that

lim
t→∞

1
t

ln ‖D(x0
1,...,x0

n)(x1(t), . . . , xn(t)) ◦ �v0‖ = h,

and for sufficiently large t and any �v ∈ Sn−1,

‖D(x0
1,...,x0

n)(x1(t), . . . , xn(t)) ◦ �v‖ ≤ C‖D(x0
1,...,x0

n)(x1(t), . . . , xn(t)) ◦ �v0‖, (2.4)

where C (≥ 1) is a positive constant independent of �v.
Let

α(t, �) =�
1
t

ln ‖D(x0
1,...,x0

n)(x1(t), . . . , xn(t)) ◦ �v‖ − h.

For t ≥ 0, from (2.4), we have α(t, �)� ≤ α(t, �0) + 1
t lnC, for any �v ∈ Sn−1.

Since the maximal LCE h can be defined as

h = lim
t→∞

1
t

ln ‖D(x0
1,...,x0

n)(x) ◦ �v‖, for any �v ∈ Sn−1 \ Sn−2,
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where Sn−2 is a unit sphere in Rn−1 [1], by writing

h + α(t, �) =�
1
t

ln ‖D(x0
1,...,x0

n)(x) ◦ �v‖ =
1
t

ln |U |,

we can obtain
th + tα(t, �) = ln� |U |.

Differentiating the two sides of the above formula, we get

h + (tα(t, �))� ′ =
UT U̇

UT U
=

UT Df(x)U
UT U

. (2.5)

Noting that (2.5) can be rewritten as

h =
1

u2
1 + · · ·+ u2

n

(u1, . . . , un)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fnff

∂x1
· · · ∂fnff

∂xn

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎝⎜⎜ u1

...
un

⎞⎟⎞⎞⎠⎟⎟− (tα(t, �))′,

we can let z1 = u2
u1

, z2 = u3
u1

, . . . , zn−1 = un

u1
, and then have

h =
1

1 + z2
1 + · · ·+ z2

n−1

(1, z1, . . . , zn−1)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fnff

∂x1
· · · ∂fnff

∂xn

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎝⎜⎜

1
z1

...
zn−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎠⎟⎟
− (tα(t, �))� ′.

(2.6)
We also have

ż1 =
u̇2u1 − u̇1u2

u2
1

,

...

żn−1 =
u̇nu1 − u̇1un

u2
1

,

or ⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

ż1

ż2

...

żn−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

u̇2

u1
− u̇1

u1
0 · · · 0 0

u̇3

u1
0 − u̇1

u1
0 · · · 0 0

...
...

...
...

...
...

u̇n

u1
0 0 0 . . . 0 − u̇1

u1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

z1

...

zn−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
. (2.7)
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Theorem 2.1. There exist vectors �v1, . . . , �n ∈ Sn−1 and two polynomials F1FF and
F2FF such that for �v ∈ {�v1, . . . , �n}, we have{

F1FF (α1, . . . , αm, h, x1, . . . , xn, (tα(t, �))� ′) = 0,

F2FF (α1, . . . , αm, h, x1, . . . , xn, z1, . . . , zn−1, (tα(t, �))� ′) = 0.

Proof. From (2.5), we can obtain

UT (Df(x)− (h + (tα(t, �))′)I)U = 0, for any t.

The above formula can be rewritten as

UT ((Df(x) + Df(x)T )/2− (h + (tα(t, �))� ′)I)U = 0, for any t.

Note that (Df(x) + Df(x)T )/2 − (h + (tα(t, �))� ′)I) is a symmetric matrix. Let
Ũ = U/|U |; then the above equation can be transformed into

ŨT ((Df(x) + Df(x)T )/2− (h + (tα(t, �))� ′)I)Ũ = 0,

where |Ũ | = 1. Note that (Df(x)+Df(x)T )/2 is independent of �v and, thus, there
is an orthogonal matrix |T (t)| = 1, where T (t) = T (t, x0

1, . . . , x
0
n, x1(t), . . . , xn(t)),

independent of �v, such that

T (t)T ((Df(x) + Df(x)T )/2) T (t) =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
β1(t) 0 · · · 0

0 β2(t) · · · 0
...

...
. . .

...
0 0 · · · βn(t)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

where βi(t) is independent of �v, for 1 ≤ i ≤ n.
Let Ũ = T Û and note that T T = T−1; then we have

h + (tα(t, �))� ′ = ÛT

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
β1(t) 0 · · · 0

0 β2(t) · · · 0
...

...
. . .

...
0 0 · · · βn(t)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ Û

= β1(t)û2
1 + β2(t)û2

2 + · · ·+ βn(t)û2
n,

where Û = (û1, û2, . . . , ûn)T .
As Ũ = T Û and Ũ is a diffeomorphism, Û(t, ·) : Rn → Rn is also a diffemor-

phism. Choose �v1, �2, . . . , �n ∈ Sn−1, such that Û(t, �i) = ei, where (ei, ej) = δij ,
i, j = 1, 2, . . . , n. Thus, we have

h + (tα(t, �1))′ = β1(t), . . . , h + (tα(t, �n))′ = βn(t).
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Now, noting that T (t)T = T (t)−1, we have got the following important fact

|(Df(x) + Df(x)T )/2− (h + (tα(t, �))� ′)I|
= |T (t)T ((Df(x) + Df(x)T )/2− (h + (tα(t, �))� ′)I)T (t)|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
β1(t) 0 · · · 0

0 β2(t) · · · 0
...

...
. . .

...
0 0 · · · βn(t)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟− (h + (tα(t, �))� ′)I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (β1(t)− (h + (tα(t, �))� ′)) · · · (βn(t)− (h + (tα(t, �))� ′))

= 0, for �v ∈ {�v1, �2, . . . , �n}.
We write

F1FF = |(Df(x) + Df(x)T )/2− (h + (tα(t, �))� ′)I|.
By rewriting (2.6) into

(h+(tα(t, �))�� ′)(1+z2
1 + · · ·+z2

n−1)−(1, z1, . . . , zn−1)Df(x)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎝⎜⎜
1
z1

...
zn−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎠⎟⎟ = 0, (2.8)

for any �v, we have another polynomial

F2FF = (h + (tα(t, �))� ′)(1 + z2
1 + · · ·+ z2

n−1)− (1, z1, . . . , zn−1)Df(x)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎝⎜⎜
1
z1

...
zn−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

Thus, for �v ∈ {�v1, . . . , �n}, we obtain the following system of polynomial equations{
F1FF (α1, . . . , αm, h, x1, . . . , xn, (tα(t, �))� ′) = 0,

F2FF (α1, . . . , αm, h, x1, . . . , xn, z1, . . . , zn−1, (tα(t, �))� ′) = 0. �

By differentiating F1FF and F2FF , and substituting the systems (2.1) and (2.8),
we can obtain

F ′
1FF (α1, . . . , αm, h, x1, . . . , xn, (tα(t, �))� ′, (tα(t, �))� ′′) = 0,

F ′
2FF (α1, . . . , αm, h, x1, . . . , xn, z1, . . . , zn−1, (tα(t, �))� ′, (tα(t, �))� ′′) = 0.

Continuing in this fashion, we get

F
(2n−1)
1FF (α1, . . . , αm, h, x1, . . . , xn, (tα(t, �))� ′, . . . , (tα(t, �))� (2n)) = 0,

F
(2n−1)
2FF (α1, . . . , αm, h, x1, . . . , xn, z1, . . . , zn−1, (tα(t, �))� ′, . . . , (tα(t, �))� (2n)) = 0.
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So, we have the following.

Corollary 2.2. For n-dimensional dynamical systems, there is a system of polyno-
mial equations associating with the LCE h as follows:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

F1FF (α1, . . . , αm, h, x1, . . . , xn, (tα(t, �))� ′) = 0,

F2FF (α1, . . . , αm, h, x1, . . . , xn, z1, . . . , zn−1, (tα(t, �))� ′) = 0,

F ′
1FF (α1, . . . , αm, h, x1, . . . , xn, (tα(t, �))� ′, (tα(t, �))� ′′) = 0,

F ′
2FF (α1, . . . , αm, h, x1, . . . , xn, z1, . . . , zn−1, (tα(t, �))� ′, (tα(t, �))� ′′) = 0,

...

F
(2n−1)
1FF (α1, . . . , αm, h, x1, . . . , xn, (tα(t, �))� ′, . . . , (tα(t, �))� (2n)) = 0,

F
(2n−1)
2FF (α1, . . . , αm, h, x1, . . . , xn, z1, . . . , zn−1, (tα(t, �))� ′, . . . , (tα(t, �))� (2n)) = 0.

(2.9)
It seems that we can apply Ritt–Wu’s method to the above system of polyno-

mial equations, by eliminating x1, . . . , xn, z1, . . . , zn−1, (tα(t,�))� ′, . . . , (tα(t,�))� (2n),
to obtain the symbolic expressions satisfied by α1, . . . , αm and h. However, the in-
volved symbolic computations are so complex that they cannot be finished. In
Section 4, an algorithm will be developed for deriving some unknown relations on
some objects involving limit processes in a framework of representing and manip-
ulating a class of non-algebraic objects. Applying this algorithm to (2.9), we can
obtain symbolic expressions satisfied by α1, . . . , αm and h.

2.2. The LCE of the Lorenz Systems

As an example, in this section we turn to consider the Lorenz systems [10]⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
ẋ1 = −σx1 + σx2,

ẋ2 = −x1x3 + rx1 − x2,

ẋ3 = x1x2 − bx3.

(2.10)

The LCE h of (2.10) can be defined as follows:

h = lim
t→∞

1
t

ln ‖D(x0
1,x0

2,x0
3)

(x1(t), x2(t), x3(t)) ◦ �v‖,

where �v = (a1, a2, a3) ∈ S2.
From (2.3), we have the following variational systems of (2.10):⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪

u̇1 = −σu1 + σu2,

u̇2 = −x3u1 + ru1 − u2 − x1u3,

u̇3 = x2u1 + x1u2 − bu3.

(2.11)
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From (2.5) and (2.7) we have

h + (tα(t, �))� ′ =
UT Df(x)U

UT U

=
1

u2
1 + u2

2 + u2
3

(u1, u2, u3)

⎛⎜⎛⎛⎝⎜⎜ −σ σ 0
r − x3 −1 −x1

x2 x1 −b

⎞⎟⎞⎞⎠⎟⎟
⎛⎜⎛⎛⎝⎜⎜ u1

u2

u3

⎞⎟⎞⎞⎠⎟⎟ ,

and
ż1 = −σz2

1 + (σ − 1)z1 − x1z2 − x3 + r,

ż2 = −σz1z2 + (σ − b)z2 + x1z1 + x2.
(2.12)

For the Lorenz systems, F1FF and F2FF are as follows:

F1FF =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−σ − (h + (tα(t, �))� ′)

1
2
(σ + r − x3)

1
2
x2

1
2
(σ + r − x3) −1− (h + (tα(t, �))′) 0

1
2
x2 0 −b− (h + (tα(t, �))� ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

F2FF = (h + (tα(t, �))� ′)(1 + z2
1 + z2

2) + z2
1 + bz2

2 − (σ + r − x3)z1 − x2z2 + σ.

For �v ∈ {�v1, �2, �3}, we have{
F1FF (σ, b, r, h, x1, x2, x3, (tα(t, �))� ′) = 0,

F2FF (σ, b, r, h, x1, x2, x3, z1, z2, (tα(t, �))� ′) = 0.
(2.13)

By differentiating F1FF and F2FF five times and substituting (2.10), (2.11) and
(2.12), we obtain⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

F ′
1FF (σ, b, r, h, x1, x2, x3, (tα(t, �))� ′, (tα(t, �))� ′′) = 0,

F ′
2FF (σ, b, r, h, x1, x2, x3, z1, z2, (tα(t, �))� ′, (tα(t, �))� ′′) = 0,

F ′′
1FF (σ, b, r, h, x1, x2, x3, (tα(t, �))� ′, . . . , (tα(t, �))� ′′′) = 0,

F ′′
2FF (σ, b, r, h, x1, x2, x3, z1, z2, (tα(t, �))� ′, . . . , (tα(t, �))� ′′′) = 0,

...

F
(5)
1FF (σ, b, r, h, x1, x2, x3, (tα(t, �))� ′, . . . , (tα(t, �))� (6)) = 0,

F
(5)
2FF (σ, b, r, h, x1, x2, x3, z1, z2, (tα(t, �))� ′, . . . , (tα(t, �))� (6)) = 0.

(2.14)

3. Representing and Manipulating a Class of Non-Algebraic
Objects

The necessity of symbolically dealing with mathematical objects involving limit
processes with non-standard analysis [14] has been recognized and some efforts
have been made towards doing such tasks (see, e.g., [4, 12]), among which the
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authors proposed a symbolic manipulation method for these objects [12]. Based
on this earlier work and some related methods, here we present a framework for
representing and manipulating a class of non-algebraic objects. In this framework,
an algorithm can be developed for deriving mechanically some unknown relations
on the mathematical objects of our interest.

3.1. The Construction of a Class of Non-Algebraic Objects

Let K be a totally ordered commutative field, and Q ⊂ K, where Q is the field
of rational numbers, and ≺ is a total ordering on K. We introduce the binary
relations ∼ and � on K. Any a, b and c ∈ K satisfy the following axioms:

(1) a ∼ a,
(2) a ∼ b �−→�� b ∼ a,
(3) a ∼ b, b ∼ c �−→�� a ∼ c,
(4) a ∼ (a + a),
(5) a ∼ 1 �−→�� 0 ≺ a,
(6) 0 � 1,
(7) a � 1, b � 1 �−→�� (a + b) � 1,
(8) a � 1 �−→ −�� a � 1,
(9) a � 1, c ∼ 1 �−→�� c · a � 1.

Intuitively, the meanings of a ∼ a and a � b are respectively as follows:
a ∼ b stands for that a has the same order of magnitude as b, i.e., lim a

b = M
and M �= 0, and�� a � b stands for that a is negligible w.r.t. b, particularly, i.e.,
lim a

b = 0, a � 1 for that a can be negligible, i.e., lim a = 0.
In addition, for any a �= 0�� ∈ K, we define

sign(a) = + ←→ 0 ≺ a, sign(a) = − ←→ a ≺ 0, and

|a| =
⎧⎨⎧⎧⎩⎨⎨

a, if sign(a) = +,

0, if a = 0,

−a, if sign(a) = −.

Let N = {a | a ∈ K and a � 1}, C = {a | a ∈ K and |a| ≺ 1}. It can be
proved that there is no model in the field of real numbers, but there is a model
in the field R̃ of real numbers of NSA [14]. Let I ⊂ R̃ be the infinitesimals of R̃,
A = R + I = {a + i | a ∈ R, i ∈ I}, and R be the field of real numbers. Then
N can be interpreted as I, and C as A, K as R̃. For a ∈ R̃, we define 〈a〉 ∈ R to
be the standard part of a, i.e., 〈 〉 : R̃ → R maps a from R̃ to R. If a ∈ R, then
a = 〈a〉. Construct a polynomial ring R̃[x1, . . . , xn] of indeterminates x1, . . . , xn

with coefficients in R̃.

Definition 3.1. An analytic equality e is of the form f = δ, where f ∈ K[x1, . . . , xn]
and δ � 1. Let φ denote an empty equality.

Let x1 < x2 < · · · < xn, which induces a total ordering < on polynomials
in K[x1, . . . , xn]. Let P1PP and P2PP be two finite polynomial sets. Define P1PP < P2PP ,
if (1) P1PP = Φ, P2PP = Φ, where Φ denotes the empty set, or (2)�� f < g, or (3)
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P1PP − {f} < P2PP − {g}, where f and g are the minimal polynomials of P1PP and P2PP ,
respectively.

By this ordering we can define a total ordering on analytic equalities.

Definition 3.2. For two analytic equalities f = δ1 and g = δ2 define f = δ1 < g = δ2

if f < g.

As usual, we can define the ordering on analytic equality sets in the following
way. Let E1 = {f1 = δ1, . . . , fnff = δn} and E2 = {g1 = δ′1, . . . , gl = δ′l} be finite
sets of analytic equalities, and define E1 < E2 if {f1, . . . , fnff } < {g1, . . . , gl}.

3.2. Symbolic Manipulation for Analytic Equalities and an Algorithm

First, we need some definitions and notations, which are the extensions of those
from Buchberger [3] and Wu [17].

Definition 3.3. Let f =δ1 and g=δ2 be analytic equalities; we define class(f =δ) =δδ i,
if i is the largest subscript such that yi occurs in f , where yi ∈ {p1, . . . , pm,
x1(t), . . . , xn(t)}, and call yi the leading variable of f = δ1. If f ∈ R, then define
class(f = δ1) = 0. f can be written as

f = fkff yk
i + fkff −1y

k−1
i + · · ·+ f0ff ;

we call k the degree of f with respect to yi, written as k = deg(f, yi). If deg(g, yi) <
deg(f, yi), then g = δ2 is said to be reduced with respect to f = δ1, written as
g = δ2 red / f = δ1.

In the following, some reasoning methods for analytic equalities are devel-
oped, which will lead to an algorithm for constructing necessary conditions for a
set of analytic equalities to hold.

Let f = δ1 and g = δ2 be analytic equalities, and x be the leading variable of
f − δ1. Write f and g, respectively, as f = fkff xk + · · · and g = glx

l + · · · . If g = δ2

is not reduced with respect to f − δ1, i.e., k ≤ l, then we have

f = δ1, g = δ2 ⇒ r = δ, (3.1)

where r = v · g − u · f , u = glx
l−k, v = fkff , δ = δ1 + δ2.

Note that r = δ < g = δ2, and r = δ is the logic consequence of reasoning
from f = δ1 and g = δ2, because, by axioms (1)–(9),

r = v · g − u · f = v · δ2 − u · δ1 = δ2 + δ1 = δ.

(3.1) corresponds to the superposition in term rewriting and S-polynomial in the
Grobner basis method [3, 9].¨

Let

new(f = δ1, g = δ2) =

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
φ, if r is 0.

r = δ, if deg(r, x) < k.

new(f = δ1, r = δ), if deg(r, x) ≥ k.
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Obviously, new(f = δ1, g = δ2) is the logical consequence of reasoning from f = δ1

and g = δ2, and new(f = δ1, r = δ) < g = δ2. So, we have

f = δ1, g = δ2 ⇒ new(f = δ1, g = δ2). (3.2)

Let E be a finite set of analytic equalities,

E ⇒ (E − {g = δ2}) ∪ {new(f = δ1, g = δ2)}. (3.3)

Note that (E−{g = δ2})∪{new(f = δ1, g = δ2)} < E. In fact, by (3.3) we describe
the reduction of E by the reducer f = δ1.

We also have

E ⇒ (E − {f = δ}) ∪ {f1 = δ} or (E − {f = δ}) ∪ {f2ff = δ}, (3.4)

if f = f1 · f2ff . Note that

(E − {f = δ}) ∪ {f1 = δ} < E and (E − {f = δ}) ∪ {f2ff = δ} < E.

In the following, we discuss how to construct necessary conditions for a set of
analytic equalities to hold, based on the computing methods in the above section,
which are of the form A ⇒ B, where, of course, B is a necessary condition for A to
hold. The algorithm can be used for mechanically deriving unknown relations from
given relations by constructing necessary conditions for them to hold. Let E be a
finite nonempty set of analytic equalities. The idea for developing the algorithm
is to use repeated reduction of equalities in E by some “reducers” chosen from E
and repeated split of E, if possible, by factorizing the left-hand sides of reducers.

An Algorithm Constructing Necessary Conditions for Analytic Equality Sets
By mc(E) we denote the set of the equalities with the highest class in E, i.e.,
mc(E) = {e′ | e′ ∈ E and class(e′) ≥ class(e) for all e ∈ E}. Define the reducer
of E as follows: if E = Φ then reducer(E) = φ; otherwise, reducer(E) = the
minimal equality of mc(E). The reducer of E will be used as the initial equality
in the following recursive procedure. Necessary conditions for E to hold can be
constructed by calling the procedure CON(E, reducer(E)), where CON(S, e) is
defined recursively as follows:

(1) If there is g = δ1 ∈ S and g �= 0�� ∈ R, then CON(S, e)= false.
(2) If e = φ then CON(S, e) = S.
(3) If e �=�� φ, supposing e is of the form f = δ, then if δ = 0 and f = f1 · f2ff ,

then CON(S, e) = CON(S′, reducer(S′)) ∨ CON(S′′, reducer(S′′)), where
S′ = (S − {e}) ∪ {f1 = δ}, S′′ = (S − {e}) ∪ {f2ff = δ}.

(4) If, for every e′ ∈ S, e′ red / e, then CON(S, e) = CON(S, reducer({e | e ∈ S
and e ≺ e})).

(5) If there is some e′ ∈ S and ¬ e′ red /e, then CON(S, e) = CON((S − {e′})∪
{new(e, e′)}, e).

Remark. In case (1), there is a contradictory equality g = δ1 in S, so let the
condition be the false. In case (2), when e becomes φ, a recursive branch of the
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procedure stops. If all recursive branches stop, then the procedure stops and con-
structs necessary conditions for S to hold, which are of the form S1 ∨ · · · ∨ Sr. In
case (3), factorization is used to split S. In case (4), there is no equality in S which
is not reduced w.r.t. e. So the procedure recursively calls itself to use new reducer
to reduce S. In case (5), there is an equality e′ in S, which is not reduced w.r.t.
e. So, the procedure reduces S by replacing e′ in S with new(e, e′), and then the
procedure continues to reduce (S − {e′}) ∪ {new(e, e′)} by e.

It is easy to show that the algorithm terminates.

Proof of Termination. To prove the termination of the algorithm, we only need to
note that, in case (3), S′ < S and S′′ < S; in case (4), reducer({e | e ∈ S and
e < e}) < e; in case (5), (S−{e′})∪{new(e, e′)} < S. Thus, the pair of arguments,
(S, e), of CON strictly decreases. �

4. Symbolic Computation of the LCE

In the following we will do symbolic computations in R̃, the field of real numbers
of NSA. In this field a � 1 is interpreted as a ∈ I, where I are infinitesimals of
R̃, and |a| ∼ 1 is interpreted as a is bounded in R̃. After we get results in R̃, we
should get back to the field R of real numbers. This can be done by taking the
standard parts of the results.

Recall that lim
t→∞α(t, �) = 0 for any� �v ∈ Sn−1. Therefore, if we let t∗ satisfy

1/t∗ � 1, then α(t∗, �)� � 1. For simplicity, let τ = t∗ − t; then
dτ

dt
= −1 and

dx

dt
=

dx

dτ

dτ

dt
= −dx

dτ
. Thus (2.1) and (2.3) become⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

dx1

dτ
= −f1(α1, . . . , αm, x1, . . . , xn),

dx2

dτ
= −f2ff (α1, . . . , αm, x1, . . . , xn),

...
dxn

dτ
= −fnff (α1, . . . , αm, x1, . . . , xn),

(4.1)

and ⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
du1

dτ
...

dun

dτ

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ = −

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fnff

∂x1
· · · ∂fnff

∂xn

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

u1

...

un

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ . (4.2)

F1FF and F2FF become

F1FF = | − (Df(x) + Df(x)T )/2− (h + (τᾱ(τ, �))� ′)I|
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and

F2FF = (h + (τᾱ(τ, �))� ′)(1 + z2
1 + · · ·+ z2

n−1) + (1, z1, . . . , zn−1)Df(x)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1
z1

...
zn−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

Now α(t∗, �)� � 1 becomes

ᾱ(τ, �)� |τ=0 � 1.

Thus

(τᾱ(τ, �))� ′|τ=0 = (ᾱ(τ, �) +� τᾱ′(τ, �))� |τ=0 = ᾱ(τ, �)� |τ=0.

That is, β = (τᾱ(τ, �))� ′|τ=0 � 1.
From the corollary in Section 2.1, we can establish a set of analytic equalities

for τ = 0:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

F1FF (α1, . . . , αm, h, x1, . . . , xn, β) = 0,

F2FF (α1, . . . , αm, h, x1, . . . , xn, z1, . . . , zn−1, β) = 0,

F ′
1FF (α1, . . . , αm, h, x1, . . . , xn, β, (τᾱ(τ, �))� ′′) = 0,

F ′
2FF (α1, . . . , αm, h, x1, . . . , xn, z1, . . . , zn−1, β, (τᾱ(τ, �))� ′′) = 0,

...

F
(2n−1)
1FF (α1, . . . , αm, h, x1, . . . , xn, β, (τᾱ(τ, �))� ′′, . . . , (τᾱ(τ, �))�� (2n)) = 0,

F
(2n−1)
2FF (α1, . . . , αm, h, x1, . . . , xn, z1, . . . , zn−1, β,

(τᾱ(τ, �))� ′′), . . . , (τᾱ(τ, �))�� (2n)) = 0.
(4.3)

For (4.3) we can take some ordering on x1, . . . , xn, z1, . . . , zn−1, (τᾱ(τ, �))� ′′,
. . . , (τᾱ(τ, �))� (2n). Applying the algorithm described to (4.3), by eliminating x1, . . . , xn,
z1, . . . , zn−1, (τᾱ(τ, �))� ′′, . . . , (τᾱ(τ, �))� (2n), we can obtain an analytic equality
F (α1, . . . , αm, h, β) = 0. This process is completely automated, because in every
step of the algorithm only analytic equalities are generated and the algorithm can
terminate. Thus, we have the following result.

Main Theorem 1. For n-dimensional dynamical systems, there exists an algorithm
which can generate an analytic equality F (α1, . . . , αm, ĥ) = 0 automatically, where
ĥ = h + β, β ∈ I, I ⊂ R̃ are infinitesimals, and R̃ is the field of real numbers of
NSA. The maximal LCE h is the standard part of ĥ, i.e., h = 〈ĥ〉 ∈ R, where R is
the field of real numbers. Moreover, ĥ is one of the roots of F (α1, . . . , αm, y) = 0.
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As an example, we consider the Lorenz systems. In this case, (4.3) becomes⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

F1FF (σ, b, r, h, x1, x2, x3, β) = 0,

F2FF (σ, b, r, h, x1, x2, x3, z1, z2, β) = 0,

F ′
1FF (σ, b, r, h, x1, x2, x3, β, (τᾱ(τ, �))� ′′) = 0,

F ′
2FF (σ, b, r, h, x1, x2, x3, z1, z2, β, (τᾱ(τ, �))� ′′) = 0,

F ′′
1FF (σ, b, r, h, x1, x2, x3, β, (τᾱ(τ, �))� ′′, (τᾱ(τ, �))� ′′′) = 0,

F ′′
2FF (σ, b, r, h, x1, x2, x3, z1, z2, β, (τᾱ(τ, �))� ′′, (τᾱ(τ, �))� ′′′) = 0,

...

F
(5)
1FF (σ, b, r, h, x1, x2, x3, β, (τᾱ(τ, �))� ′′, . . . , (τᾱ(τ, �))� (6)) = 0,

F
(5)
2FF (σ, b, r, h, x1, x2, x3, z1, z2, β, (τᾱ(τ, �))� ′′, . . . , (τᾱ(τ, �))� (6)) = 0.

Theoretically, we can apply the algorithm to the above system of analytic
equalities, by eliminating x1, x2, x3, z1, z2, (τᾱ(τ, �))� ′, . . . , (τᾱ(τ, �))� (6), to obtain
the symbolic expressions satisfied by σ, b, r and h. However, the involved symbolic
computations are so complex that they cannot be finished. To overcome this ob-
struction, we will use our knowledge on some qualitative properties of the Lorenz
systems to simplify the computations. We choose the initial values x0

1, x
0
2, x

0
3, such

that ẋ1(t∗) = 0 and ẋ2(t∗) = 0, that is, x2(t∗) = x1(t∗) and x3(t∗) = r − 1. (2.10)
and (2.11) become ⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

dx1

dτ
= σx1 − σx2,

dx2

dτ
= x1x3 − rx1 + x2,

dx3

dτ
= −x1x2 + bx3

(4.4)

and ⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

du1

dτ
= σu1 − σu2,

du2

dτ
= x3u1 − ru1 + u2 + x1u3,

du3

dτ
= −x2u1 − x1u2 + bu3.

(4.5)

F1FF and F2FF become

F1FF =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
σ − (h + (τα(t, �))′) −1

2
(σ + r − x3) −1

2
x2

−1
2
(σ + r − x3) 1− (h + (τα(t, �))′) 0

−1
2
x2 0 b− (h + (τα(t, �))′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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and

F2FF = (h + (τα(t, �))′)(1 + z2
1 + z2

2)− z2
1 − bz2

2 + (σ + r − x3)z1 + x2z2 − σ.

Note that ẋ1(t∗) = 0 and ẋ2(t∗) = 0; thus

dx1

dτ
(0) = 0 and

dx2

dτ
(0) = 0.

Now we can establish a set of analytic equalities for τ = 0:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

σx1 − σx2 = 0,

x1x3 − rx1 + x2 = 0,

F1FF (σ, b, r, h, x1, x2, x3, β) = 0,

F2FF (σ, b, r, h, x1, x2, x3, z1, z2, β) = 0,

F ′
1FF (σ, b, r, h, x1, x2, x3, β, (τᾱ(τ, �))� ′′) = 0,

F ′
2FF (σ, b, r, h, x1, x2, x3, z1, z2, β, (τᾱ(τ, �))� ′′) = 0,

F ′′
1FF (σ, b, r, h, x1, x2, x3, β, (τᾱ(τ, �))� ′′, (τᾱ(τ, �))� ′′′) = 0,

F ′′
2FF (σ, b, r, h, x1, x2, x3, z1, z2, β, (τᾱ(τ, �))� ′′, (τᾱ(τ, �))� ′′′) = 0.

(4.6)

For (4.6), we order z1 < z2 < x1 < (τᾱ(τ, �))� ′′ < (τᾱ(τ, �))� ′′′ < x3 <
x2. Applying the algorithm described in Section 3 to (4.6), by eliminating x2,
x3, (τᾱ(τ, �))� ′′′, (τᾱ(τ, �))� ′′, x1, z1, and z2, we can obtain an analytic equality
φ(σ0, b0, r, h, β) = 0. This process is completely automated. Note that the symbolic
computations with three parameters σ, b and r are complex, and we choose any σ0

and b0 as the input to the algorithm, i.e., write σ and b as σ0 and b0 respectively.
Assuming that the readers are not familiar with the algorithm, here we briefly
explain this process. As the process is very complicated, we only describe the
successful path chosen from all the paths produced in the process. Let the reducer
e be σx1 − σx2 = 0. x1x3 − rx1 + x2 = 0, F1FF = 0, F2FF = 0, F ′

1FF = 0, F ′
2FF = 0,

F ′′
1FF = 0 and F ′′

2FF = 0 are reduced by e w.r.t. x2, and then let the reducer e be
x1x3 − rx1 + x1 = 0. The analytic equalities of F1FF = 0, F2FF = 0, F ′

1FF = 0, F ′
2FF = 0,

F ′′
1FF = 0 and F ′′

2FF = 0 reduced w.r.t. x2 are further reduced by the new reducer e
w.r.t. x3, yielding⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

1F1FF (σ0, b0, r, h, x1, β) = 0,

1F2FF (σ0, b0, r, h, x1, z1, z2, β) = 0,

1F
′
1FF (σ0, b0, r, h, x1, β, (τᾱ(τ, �))� ′′) = 0,

1F
′
2FF (σ0, b0, r, h, x1, z1, z2, β, (τᾱ(τ, �))� ′′) = 0,

1F
′′
1FF (σ0, b0, r, h, x1, β, (τᾱ(τ, �))� ′′, (τᾱ(τ, �))� ′′′) = 0,

1F
′′
2FF (σ0, b0, r, h, x1, z1, z2, β, (τᾱ(τ, �))� ′′, (τᾱ(τ, �))� ′′′) = 0.



Symbolic Computation of LCE 101

Then, let the reducer e be 1F
′′
1FF = 0. 1F1FF = 0, 1F2FF = 0, 1F

′
1FF = 0, 1F

′
2FF = 0 and

1F
′′
2FF = 0 are reduced by e w.r.t. (τᾱ(τ, �))� ′′′. One system of the reduced analytic

equalities are as follows:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

1F1FF (σ0, b0, r, h, x1, β) = 0,

1F2FF (σ0, b0, r, h, x1, z1, z2, β) = 0,

1F
′
1FF (σ0, b0, r, h, x1, β, (τᾱ(τ, �))� ′′) = 0,

2F
′
2FF (σ0, b0, r, h, x1, z1, z2, β, (τᾱ(τ, �))� ′′) = 0,

2F
′′
2FF (σ0, b0, r, h, x1, z1, z2, β, (τᾱ(τ, �))� ′′) = 0.

Let the new reducer e be 1F
′
1FF = 0. 1F1FF = 0, 1F2FF = 0, 2F

′
2FF = 0 and 2F

′′
2FF = 0

are reduced by e w.r.t. (τᾱ(τ, �))� ′′. One system of the reduced analytic equalities
is in the following form:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

1F1FF (σ0, b0, r, h, x1, β) = 0,

1F2FF (σ0, b0, r, h, x1, z1, z2, β) = 0,

3F
′
2FF (σ0, b0, r, h, x1, z1, z2, β) = 0,

3F
′′
2FF (σ0, b0, r, h, x1, z1, z2, β) = 0.

Furthermore, let the reducer e be 1F2FF = 0. 1F1FF = 0, 3F
′
2FF = 0 and 3F

′′
2FF = 0 are

reduced by e w.r.t. x1. One system of the corresponding reduced analytic equalities
is ⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪

1F1FF (σ0, b0, r, h, z1, z2, β) = 0,

4F
′
2FF (σ0, b0, r, h, z1, z2, β) = 0,

4F
′′
2FF (σ0, b0, r, h, z1, z2, β) = 0.

Let the reducer e be 2F1FF = 0. 4F
′
2FF = 0 and 4F

′′
2FF = 0 are reduced by e w.r.t.

z2. One system of the reduced analytic equalities is{
5F

′
2FF (σ0, b0, r, h, z1, z2, β) = 0,

5F
′′
2FF (σ0, b0, r, h, z1, z2, β) = 0.

Then, let the reducer e be 5F
′
2FF = 0. 2F1FF = 0 and 5F

′′
2FF = 0 are reduced by e

w.r.t. z2, and one system of the corresponding reduced analytic equalities is{
4F1FF (σ0, b0, r, h, z1, β) = 0,

6F
′′
2FF (σ0, b0, r, h, z1, β) = 0.

Let the new reducer e be 4F1FF = 0. 6F
′′
2FF = 0 is reduced by e w.r.t. z1. The reduced

analytic equality is
7F

′′
2FF (σ0, b0, r, h, z1, β) = 0.

Finally, let the reducer e be 7F
′′
2FF = 0. 4F1FF = 0 is reduced by e w.r.t. z1. The

reduced analytic equality is

F (σ0, b0, r, h, β) = 0.
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F can be factorized automatically into the following form:

F (σ0, b0, r, h, β) = φ1φ2φ3φ
2
4φ

4
5φ

6
6,

where φ1, φ2, φ3, φ2
4, φ4

5, and φ6
6 contain 2, 29, 147, 19, 28 and 15 terms, respectively.

We choose φ = φ3(σ0, b0, r, h, β) from these factors, and the reason will be clear
later. φ can be written as

φ(σ0, b0, r, ĥ) =
26∑

i=0

gi(σ0, b0, r)ĥi,

where ĥ = h + β and gi(σ0, b0, r), for 0 ≤ i ≤ 26, are polynomials of degree up to
26 (see the appendix for σ0 = 10, b0 = 8/3).

We consider the case for the Lorenz systems with the parameter values σ0 =
10, b0 = 8/3 and r = 28. By applying Sturm’s theorem to φ(σ0, b0, r, ĥ) = 0, we
obtain four real roots σ1, σ2, σ3 and σ4 of φ(σ0, b0, r, ĥ) = 0. Among them, σ4 is
in the interval (9008361/1000000, 9008362/1000000). Note that the computations
involved in applying Sturm’s theorem are exact, and therefore we can compute σ4

as precisely as desired.
According to the known numerical results with σ0 = 10, b0 = 8/3 and r = 28,

the maximal LCE h = 0.91± 0.01 [6, 5], we select σ4 from σ1, σ2, σ3 and σ4, and
let ĥ = σ4. But we have to get back to the standard real number field R. Hence
the desired LCE h should be the standard part of ĥ, i.e., h = 〈ĥ〉 ∈ R. Thus, we
have already obtained the following result.

Main Theorem 2. For the Lorenz systems, there exists an algorithm with inputs σ0

and b0, which can generate an analytic equality φ(σ0, b0, r, ĥ) = 0 automatically,
where ĥ ∈ R̃ and R̃ is the field of real numbers of NSA, and the maximal LCE h

of the Lorenz systems is the standard part of ĥ, i.e., h = 〈ĥ〉 ∈ R, where R is the
field of real numbers. Moreover, ĥ is one of the roots of φ(σ0, b0, r, y) = 0.

5. Final Remarks

Since the 1980s, with the rapid development of computer science, particularly com-
puter algebra systems and symbolic computation techniques, the new interplays
between mathematics and computer science have appeared from some unexpected
subjects such as algebraic topology, differential geometry, and dynamical systems.
These new developments support the promise of bringing us new insights and
powerful mathematical tools to bear on problems in computing. At the same time,
such problems have opened new frontiers of exploration and put a challenge for
both mathematicians and computer scientists [2]. The authors’ work presented in
this paper is mainly inspired by the above new developments.

We remark that, compared with numerical methods, our symbolic method has
two advantages. (1) It is a continuous approach, more precisely, when computing
the LCE by numerical methods we have to fix initial values and parameters of
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systems and thus obtain discrete results only, i.e., we cannot have the precise
relations between the LCE and the corresponding parameters. Using the symbolic
method, we can get a definite expression of the LCE with parameters, which is an
important basis for discussing the properties of the systems in theory. (2) For some
dynamical systems, in fact, it is impossible to numerically compute their LCE. For
example, for van der Pol systems, how to compute the LCE of its invariant sets of
zero-measure by numerical methods [12, 18]?

The proposed method of symbolic manipulation for some non-algebraic ob-
jects is applicable to other problems related to dynamical systems; for example,
Hausdorff dimension, entropy and weakened Hilbert 16th problems. Our work on
such aspects will appear later.
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Appendix

F1FF =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−σ + (h + (τα(t, �))� ′)

1
2
(σ + r − x3)

1
2
x2

1
2
(σ + r − x3) −1 + (h + (τα(t, �))� ′) 0

1
2
x2 0 −b + (h + (τα(t, �))′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

F2FF = (h + (τα(t, �))′)(1 + z2
1 + z2

2)− z2
1 − bz2

2 + (σ + r − x3)z1 + x2z2 − σ;

f1 = −h − τᾱ(τ, �)� ′ + b − x2
1τᾱ(τ, �)� ′ + 2σh + 2στᾱ(τ, �)� ′ − 4h2 − 8hτᾱ(τ, �)� ′ −

4τᾱ(τ, �)� ′2−2σb−4σh2−4στᾱ(τ, �)� ′2+4hb−4h2b+12h2τᾱ(τ, �)� ′+12hτᾱ(τ, �)� ′2+
4τᾱ(τ, �)� ′b−4τᾱ(τ, �)� ′2b+4σhb−8σhτᾱ(τ, �)� ′+4στᾱ(τ, �)� ′b−8hτᾱ(τ, �)� ′b+4h3+
4τᾱ(τ, �)� ′3 + σ2b− σ2h− σ2τᾱ(τ, �)� ′ − x2

1h + x2
1,

f2ff = h+hz2
1+hz2

2+τᾱ(τ, �)� ′+τᾱ(τ, �)�� ′z2
1+τᾱ(τ, �)�� ′z2

2−z2
1−bz2

2+z1σ+z1+x1z2−σ,

f ′
1 = −2x2

1τᾱ(τ, �)� ′ + 2σb2 − 2hb− 2τᾱ(τ, �)�� ′b− 2σhb− 2στᾱ(τ, �)�� ′b− τᾱ(τ, �)�� ′′ −
2x2

1h− 8σhτᾱ(τ, �)� ′′ − 8στᾱ(τ, �)� ′′τᾱ(τ, �)� ′ − 8τᾱ(τ, �)� ′′τᾱ(τ, �)� ′b +
24hτᾱ(τ, �)�� ′′τᾱ(τ, �)� ′+4στᾱ(τ, �)�� ′′b−8hτᾱ(τ, �)�� ′′b+4τᾱ(τ, �)�� ′′b+12h2τᾱ(τ, �)�� ′′+
2στᾱ(τ, �)� ′′ − 8hτᾱ(τ, �)� ′′ − 8τᾱ(τ, �)� ′′τᾱ(τ, �)�� ′ + 12τᾱ(τ, �)� ′′τᾱ(τ, �)�� ′2 −
σ2τᾱ(τ, �)� ′′+2b2+2σbx2

1−x2
1τᾱ(τ, �)� ′′−2σb2r+2τᾱ(τ, �)� ′br+2hbr−2στᾱ(τ, �)� ′x2

1−
2σhx2

1 + 2bx2
1 − 2b2r + 2στᾱ(τ, �)� ′br + 2σhbr,

f ′
2ff = −1+2τᾱ(τ, �)� ′z2

2b−σ− 2τᾱ(τ, �)� ′z2
1σ +2hz3

1σ− 2z1x1z2 + τᾱ(τ, �)� ′′− 2z2
1 +

2hz2
1 +2τᾱ(τ, �)� ′z2

1 +3z1−2τᾱ(τ, �)� ′z2
2σ+2z2

2bσ−2hz2
1σ+2τᾱ(τ, �)� ′z3

1σ+2hz2
2b−

2hz2
2σ − 2hz1 + 3σz2

1 + x1z2 + 2hz2
2σz1 + 2τᾱ(τ, �)� ′z2

2σz1 − 2z2
2bσz1 + 2z2bx1z1 +

σ2z2
1 − z1σ

2 − 2σz3
1 − 2z2

2b
2 + 3z2bx1 + τᾱ(τ, �)� ′′z2

1 + τᾱ(τ, �)� ′′z2
2 + z1σx1z2 − x2

1 −
2τᾱ(τ, �)� ′z1 − z1br + z1b− 2hz2x1 − 2τᾱ(τ, �)� ′z2x1,

f ′′
1 = −8τᾱ(τ, �)� ′′′τᾱ(τ, �)� ′b− 8τᾱ(τ, �)� ′′2b + 24τᾱ(τ, �)� ′′2τᾱ(τ, �)� ′ −

8στᾱ(τ, �)� ′′′τᾱ(τ, �)� ′ − 8hτᾱ(τ, �)� ′′′b + 24hτᾱ(τ, �)� ′′′τᾱ(τ, �)� ′ + 4στᾱ(τ, �)� ′′′b +
24hτᾱ(τ, �)� ′′2 − 8στᾱ(τ, �)� ′′2 + 6b2x2

1 − 8σhτᾱ(τ, �)� ′′′ − τᾱ(τ, �)� ′′′ + 2σb3 −
σ2τᾱ(τ, �)� ′′′ − 8τᾱ(τ, �)� ′′′τᾱ(τ, �)� ′ + 4τᾱ(τ, �)� ′′′b + 12τᾱ(τ, �)� ′′′τᾱ(τ, �)� ′2 +
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2στᾱ(τ, �)� ′′′ − 8hτᾱ(τ, �)� ′′′ + 12h2τᾱ(τ, �)� ′′′ − 8τᾱ(τ, �)� ′′2 − 4στᾱ(τ, �)� ′′b−
4τᾱ(τ, �)� ′′b− 4x2

1τᾱ(τ, �)� ′′ − x2
1τᾱ(τ, �)� ′′′ − 2x4

1 − 4στᾱ(τ, �)� ′′x2
1 − 4τᾱ(τ, �)� ′bx2

1 −
4hbx2

1 + 4στᾱ(τ, �)� ′′br− 2σhb2 + 2σhb2r− 2στᾱ(τ, �)� ′b2 + 2στᾱ(τ, �)� ′b2r + 2bx4
1 +

4τᾱ(τ, �)� ′′br−4τᾱ(τ, �)� ′b2−2τᾱ(τ, �)� ′b2r2+6τᾱ(τ, �)� ′b2r−4hb2−2hb2r2+6hb2r−
2σb3r+2rbx2

1+2rhbx2
1+2rτᾱ(τ, �)� ′bx2

1−2σhbx2
1−4rb2x2

1+2σb2x2
1−2στᾱ(τ, �)� ′bx2

1−
2bx2

1 + 4b3 + 2b3r2 − 6b3r,

f ′′
2ff = −3+2h+2τᾱ(τ, �)� ′−3b+2x2

1τᾱ(τ, �)� ′−16τᾱ(τ, �)� ′z2
1σ+10hz3

1σ−σb+σ2−
6z1x1z2 +2z2

2bx
2
1 +2σbz2

1 +4hz2
2σ

2 +σrb+ τᾱ(τ, �)� ′′′−4z2
1 +4hz2

1 +4τᾱ(τ, �)� ′z2
1 −

9z1σ + 7z1 − 2τᾱ(τ, �)� ′z2
2σ + 2z2

2bσ − 16hz2
1σ + 4τᾱ(τ, �)� ′z2

2b
2 + 10τᾱ(τ, �)� ′z3

1σ +
4τᾱ(τ, �)� ′′z2

2b−4τᾱ(τ, �)� ′′z2
2σ+4τᾱ(τ, �)� ′′z3

1σ+4hz2
2b

2−10τᾱ(τ, �)� ′z3
1σ

2−2hz2
2σ−

4τᾱ(τ, �)� ′′z2
1σ−2σx1z2−6hz1+2x2

1h+19σz2
1+5x1z2+τᾱ(τ, �)� ′′′z2

1 +τᾱ(τ, �)� ′′′z2
2 +

4τᾱ(τ, �)� ′′z2
2σz1 +2hz2

2σz1 +2τᾱ(τ, �)� ′z2
2σz1− 2z2

2bσz1− 4σ2z2
1 − 3z1σ

2− 10σz3
1 −

2bσz1 − 7σx1z2b− 4z2
2b

3 + 2x2
1z

2
1 − 8hz2

2bσ − 4hz2bx1z1 + 6b2x1z1z2 − 8z2
2b

2σz1 +
8z2

2b
2σ−2σx2

1z1+6hz1σ−6hz1σx1z2+8hz2
2σz1b+8τᾱ(τ, �)� ′z2

2σz1b−8τᾱ(τ, �)� ′z2
2bσ−

4τᾱ(τ, �)� ′z2bx1z1 + 6hz2
2σ

2z2
1 − 10hz2

2σ
2z1 + 2hz3

2σx1 + 6τᾱ(τ, �)� ′z1σ −
6τᾱ(τ, �)� ′z1σx1z2 + 6τᾱ(τ, �)� ′z2

2σ
2z2

1 − 10τᾱ(τ, �)� ′z2
2σ

2z1 + 2τᾱ(τ, �)� ′z3
2σx1 +

2hz2
1σx1z2 − 6z2

2bσ
2z2

1 + 10z2
2bσ

2z1 − 2z3
2bσx1 + 8z2bx1σz2

1 + 2τᾱ(τ, �)� ′z2
1σx1z2 +

4τᾱ(τ, �)� ′′z2
1 + 4hz1x1z2 + σ3z1 + 4τᾱ(τ, �)� ′z1x1z2 − 10x1z2σz2

1 − z2σ
2x1 +

4τᾱ(τ, �)� ′z2
1σ

2 + 6hz4
1σ

2 − 10hz3
1σ

2 + 6τᾱ(τ, �)� ′z4
1σ

2 + 4hz2
1σ

2 + 4τᾱ(τ, �)� ′z2
2σ2 −

2bx2
1z

2
1 −4z2

2bσ
2 +2z3

1σ
3−3z2

1σ
3−2x2

1z
2
2 −6σ2z4

1 +12z1σx1z2− z2brx1 +12z3
1σ

2−
3x2

1 − 6τᾱ(τ, �)� ′z1 − 4τᾱ(τ, �)� ′′z1 − 2hz1b + 2hz1br + 2bσz1r − 2τᾱ(τ, �)� ′z1b +
2τᾱ(τ, �)� ′z1br− 2σbz2

1r− 4z1br + z1b
2 − z1b

2r + 4z1b− 2hz2x1 − 2τᾱ(τ, �)� ′z2x1 −
4τᾱ(τ, �)�� ′′z2x1 + 4z1x

2
1 + 7b2x1z2 + 3rb− 3bx2

1 − σx2
1 + 6τᾱ(τ, �)�� ′z2σx1 −

6τᾱ(τ, �)�� ′z2bx1 + x2
1z

2
2σ + 6hx1z2σ − 6hx1z2b + 2x1z2σ

2z2
1 − 4z1bx

2
1;

φ(σ0, b0, r, ĥ) =
26∑

i=0

gi(σ0, b0, r)ĥi, where

g0 = −198484859289600r6 + 74694822463365120r5 + 86392659723736172544r4 +
16580753327534090045184r3 + 1606495263194255209344000r2 +
239319968563225703302822800r + 10155964294751629631905278000,

g1 = 963399936245760r6− 245805012282556416r5− 291908934002665371648r4−
54762017663510933847552r3− 6042592250983265463349440r2−
672562972107381775378977600r− 19392153165712955957748429600,

g2 = −1676953233522688r6+23974813726097408r5+229468533318246817792r4+
43759234750045552096256r3 + 4635463001845914488060992r2 +
510114183504245059049013968r + 9503083687160250797824170500,
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g3 = 878720224854016r6 + 873657521973428224r5 + 270842808702290925568r4 +
33630966637386612987648r3 + 3436458895851627743278880r2−
40591193788555630070978080r− 2289382524087970568018379487,

g4 = 914341883543552r6−1301664575982247936r5−524187030032331436032r4−
59465350814684001365760r3− 4564645900917092541981440r2 +
42408565028331802161662112r + 2405220492380890242920452186,

g5 = −1489728728596480r6+360141087570182144r5+187460219915061731328r4+
13283826021649132574976r3 + 582087164074662713679776r2−
76816786996207910351317384r + 1173842541351396467488019467,

g6 = 661894339624960r6 + 755731932755918848r5 + 144515894798881581056r4 +
6818037684898147106304r3 + 24495668809615116909376r2−
25495914253954238891499528r− 3622603872541189189781357118,

g7 = 5340820668416r6 − 823891876621582336r5 − 134654713631522807808r4 +
7607841177843112272896r3 + 380589873036621265963904r2 +
46350145124567875855822224r + 2587944936282469247752334758,

g8 = −49006006239232r6 + 325574288035807232r5 + 35146666009625608192r4 −
11179008453230871699456r3 + 296808678691923465416704r2−
17280170178667987958893632r− 1170496574133006352998283790,

g9 = −30427414790144r6 − 28691027338723328r5 − 7787830491802075136r4 +
4086245620301221945344r3− 610971831894096108327424r2 +
12087998274491738408216704r + 389033676273323566553647504,

g10 = 28285054484480r6− 22236388532420608r5 + 8770108622552236032r4−
259332401215666282496r3 + 322119004448080179779584r2−
12306479503268766459441792r + 69588713919153055827694928,

g11 = −8589221560320r6 + 10865880257789952r5− 5591229073995726848r4−
62792014196874739712r3− 69825310527288462555136r2 +
5468480756209576785711104r− 224037561262307076652719392,

g12 = 1300519452672r6− 2763285407465472r5 + 1875585388544000000r4−
79635733761092321280r3 + 3266341165982996672512r2−
141529236113144385885696r + 157081601833589610455676000,

g13 = −96032784384r6 + 457437446406144r5− 394107107698802688r4 +
53715640825657294848r3− 746735274048841474048r2−
923998829484573689650176r− 60666833682633239295578624,

g14 = 2717908992r6− 48451484123136r5 + 56886813385555968r4−
14445144729166675968r3 + 1545555521945671139328r2 +
471111072279951255328768r + 14154082082187031313831936,
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g15 = 2906803666944r5− 5944527084847104r4 + 2130906321977868288r3−
685691923550396645376r2− 126707051386212335816704r−
1888601083190912242964992,

g16 = −73383542784r5 + 446619545763840r4− 176359304464957440r3 +
159317338058693443584r2 + 21643935892023898177536r +
111617605409145632470528,

g17 = −21527877648384r4 + 6796795028963328r3 − 23115779493830590464r2 −
2455485674867333332992r− 7596397738759288295424,

g18 = 483108323328r4 + 31804631285760r3 + 2206962111068504064r2 +
187012227883716476928r + 5962768736200944316416,

g19 = −11010589065216r3 − 139101667591716864r2 − 10070806418923585536r−
1885157164832436707328,

g20 = 238496514048r3 + 5588570712047616r2 + 506279865092014080r +
317935943226023288832,

g21 = −130214510198784r2− 32762777717440512r− 33928005510434193408,

g22 = 1348422598656r2 + 1903461317738496r + 2426606802105532416,

g23 = −64600450007040r− 117263464381808640,

g24 = 908121341952r + 3715090011389952,

g25 = −70585795215360,
g26 = 619173642240.
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Symbolic Computation for Equilibria
of Two Dynamic Models

Weinian Zhang and Rui Yan

Abstract. Many practical dynamic models contain complicated nonlinearities
that make it difficult to investigate the distribution and qualitative properties
of equilibria, which are actually the basic information for further discussion
on bifurcations. In this paper effective methods of symbolic computation are
introduced for two nonlinear systems.

Mathematics Subject Classification (2000). Primary 68W30; Secondary 34C05.

Keywords. Symbolic computation, equilibrium, qualitative property, polyno-
mial.

1. Introduction

Many practical dynamic models are in the form of ordinary differential equations
with complicated nonlinearities. The nonlinearities make it difficult to investigate
the qualitative properties of their equilibria or even difficult to give the number of
equilibria. For example, the multi-molecular reaction model [2]⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪

dx

dt
= 1− ax− xpyq,

dy

dt
= b(xpyq − y),

(1.1)

is a polynomial differential system of degree n = p + q, where x, y ≥ 0, integer
parameters p, q ≥ 1, and real parameter a ≥ 0, b > 0. We have to solve the system
of polynomial equations {

1− ax− xpyq = 0,

b(xpyq − y) = 0,
(1.2)

This work was completed with the support of NSFC (China) Grant 10471101, TRAPOYT, and
MOE Doctoral Base Grant.
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for equilibria of (1.1). Factoring (1.2) we turn to solve{
1− ax− xpyq = 0,

by = 0,
or

{
1− ax− xpyq = 0,

xpyq−1 − 1 = 0.
(1.3)

Clearly, from the first system of (1.3) we obtain a unique equilibrium A : (1/a, 0).
Moreover, equilibria determined by the second system of (1.3) lie on the line

1− ax− y = 0. (1.4)

For y ≥ 0, we can get x ≤ 1
a . Eliminating y in the second system of (1.3), we have

xp(1− ax)q−1 − 1 = 0. (1.5)

However we hardly solve (1.5) for general p and q.
Another example is the nonlinear mathematical model

JsJ
d2θ

dt2
+ g(θ) = 0, (1.6)

where

g(θ) = LK

(
c−
√√

c2 + L2 sin
θ

2
− cL sin θ

)
−L

2 sin θ + c cos θ√
c2 + L2

2 − L2

2 cos θ − cL sin θ

−LK

(
c−
√√

c2 + L2 sin
θ

2
+ cL sin θ

)
L
2 sin θ + c cos θ√

c2 + L2

2 − L2

2 cos θ + cL sin θ

= −K
√

∆ sin(θ − ψ)(
c√

c2 + L2/2−√
∆ cos(θ − ψ)

− 1)

−K
√

∆ sin(θ + ψ)(
c√

c2 + L2/2−√√
∆ cos(θ + ψ)

− 1), (1.7)

JsJ , K, L, c are all positive constants, ∆ = (L2/2)2 + (cL)2 and ψ = arccos(L2/2√√
∆

).
It was considered in [5] and [4] to describe the free oscillations of the shaft of a
rigid rotor supported symmetrically by four equal bearings at the ends on a low-
speed balance platform. For the convenience of computation we take JsJ = 1. In
practice L is always much greater than c (simply denoted by L � c), for example
L = 4.765m and c = 0.00138m. Equation (1.6) is a Hamiltonian system and can
be reduced equivalently to

dθ

dt
= η,

dη

dt
= −g(θ). (1.8)
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The energy function is H(θ, η) = η2

2 + G(θ), where

G(θ) :=
∫ θ

0

∫∫
g(ζ) dζ

= 2Kc(2c−
√

c2 + L2/2−
√√

∆ cos(θ − ψ)−
√

c2 + L2/2−
√√

∆ cos(θ + ψ))

+K
√√

∆(2 cosψ − cos(θ − ψ)− cos(θ + ψ)). (1.9)

Here η2

2 and G(θ) represent its kinetic energy and potential energy respectively.
It is easy to check that −π, 0, π are zeros of g in the interval [−π, π], thus the
system has at least three equilibria A− : (−π, 0), O : (0, 0) and A+ : (π, 0) for
θ ∈ [−π, π]. However, it is not easy to determine whether the complicated g has
other equilibria in the interval θ ∈ [−π, π].

Investigating all equilibria of a system is the first step to study the dynam-
ics of the system. Without knowing qualitative properties of equilibria we cannot
discuss global behaviors and bifurcations further. In this paper we show two ef-
fective methods of symbolic computation in the investigation of distribution and
qualitative properties of equilibria for these nonlinear systems.

2. Equilibria of the Multi-molecular Reaction

As known in Section 1, the other equilibria of system (1.1) are determined by the
polynomial in (1.5), denoted by f(x). The difficulties in computation come from
both the unspecific degree p, q in the polynomial and the irreducibility over the
field Q of rational numbers. There is not an effective Maple command available
to find either the number of its real roots or their locations. Our strategy is to
transfer f to another simple polynomial. More concretely, its derivative f ′ may be
reducible over Q and, by the Rolle’s theorem, its zeros provide information about
the number and locations of the real roots of f .

With the Maple V7 software, the derivative f ′ can be factored as

f ′(x) = xp−1(1− ax)q−2(p− a(p + q − 1)x), (2.1)

which has three zeros

x1 = 0, x2 =
p

a(p + q − 1)
, x3 =

1
a
, (2.2)

where x1 < x2 < x3. Moreover, f(x1) = f(x3) = −1 and

f(x2) = (
p

a(p + q − 1)
)p(1− p

p + q − 1
)q−1 − 1.

By the Rolle’s theorem, in the first quadrant the second system of (1.3) has no
zero when f(x2) < 0, a unique zero B0 : (x2, y2), where

y2 = 1− ax2 =
q − 1

p + q − 1
, (2.3)
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when f(x2) = 0, or two zeros B− : (x−, y−) and B+ : (x+, y+), where

x− ∈ (0,
p

a(p + q − 1)
), x+ ∈ (

p

a(p + q − 1)
,
1
a
), (2.4)

when f(x2) > 0. Here the analytic expressions of x−, x+, y− and y+ cannot be
given simply.

Let

a0 = (
pp(q − 1)q−1

(p + q − 1)p+q−1
)

1
p . (2.5)

The above conditions f(x2) < 0, f(x2) = 0 and f(x2) > 0 are equivalent to
a > a0, a = a0 and a < a0, respectively. Thus we can summarize the above results
in the following theorem.

Theorem 2.1. System (1.1) has
(i) a unique equilibrium A : ( 1

a , 0) when a > a0;
(ii) two equilibria A : ( 1

a , 0) and B0 : (x2, y2), where x2 and y2 are given in (2.2)
and (2.3), when a = a0;

(iii) three equilibria A : ( 1
a , 0), B− : (x−, y−) and B+ : (x+, y+), where y− =

1− ax−, y+ = 1− ax+, when a < a0.

Next, we further show how to investigate qualitative properties of equilibria.
Our discussion is focused at case (iii), where not all equilibria are determined with
their exact coordinates. Let B : (x, y) be one of the equilibria of (1.1) determined
by the second system of (1.3). At B the vector field of (1.1) has its linear part(

P ′
xPP (x, y) P ′

yPP (x, y)
Q′

x(x, y) Q′
y(x, y)

)
=
( −a− pxp−1yq −qxpyq−1

bpxp−1yq bqxpyq−1 − b

)
=
( −a− py/x −q

bpy/x bq − b

)
=
( −a− p(1− ax)/x −q

bp(1− ax)/x bq − b

)
, (2.6)

where the second system of (1.3) and (1.4) are applied. This matrix has its trace

T =
(a(p− 1) + b(q − 1))x− p

x
(2.7)

and determinant

D = −ab(p + q − 1)x− bp

x
. (2.8)

Let

∆ := T 2 − 4D

= {(a2 + b2 − 2ab + 2abp + 2abq − 2a2p− 2b2q + a2p2 + b2q2 + 2abpq)x2

+ (2ap− 2bp− 2ap2 − 2bpq)x + p2}/x2. (2.9)

The qualitative properties of the equilibrium B are decided by the relations among
T, D and ∆, i.e., B is a saddle if D < 0, a node if D > 0 and ∆ ≥ 0, a focus if
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D > 0, ∆ < 0 and T �= 0, or a center-type equilibrium if�� D > 0 and T > 0, as seen
in [3] and [6].

Obviously, T has a zero x(1) = p
−a−b+ap+bq , D has a zero x(2) = x2 =

p
a(p+q−1) , and ∆ has two zeros x(3) = p

ap+(
√√

bq+
√√

b−a)2
, x(4) = p

ap+(
√√

bq−√√
b−a)2

,
when b ≥ a but ∆ has no zeros when b < a. Those zeros have the following
relations of order:

Lemma 2.2. If q = 1 then x(1) > x(2) and, moreover, x(1) ≥ x(2) ≥ x(4) ≥ x(3)

when b ≥ a. If q > 1 then x(1) > x(2) when b < a; x(1) ≥ x(2) ≥ x(4) ≥ x(3) when
a ≤ b ≤ aq

q−1 ; and x(2) > x(4) > x(1) > x(3) when b > aq
q−1 .

Proof. The proof for q = 1 is trivial since x(1) = p
a(p−1) , x(2) = 1

a , x(3) =
p

ap+(
√√

b+
√√

b−a)2
and x(4) = p

ap+(
√√

b−√√
b−a)2

. In case q > 1,

1
x(2)

− 1
x(1)

=
aq + b(1− q)

p
> 0, (2.10)

i.e., x(1) > x(2), when b < a. Furthermore, for b ≥ a, it is obvious that x(3) ≤ x(4).
The result that x(2) ≥ x(4) comes from

1
x(2)

− 1
x(4)

= − (
√

b−√(b− a)q)2

p
≤ 0. (2.11)

Similarly to show x(1) ≥ x(3). From (2.10) we see that x(1) ≥ x(2) when b ≤ aq
q−1

and x(1) < x(2) when b > aq
q−1 . Similarly, x(4) ≤ x(1) when b ≤ aq

q−1 and x(4) < x(1)

when b > aq
q−1 . �

Theorem 2.3. A is a stable node of (1.1). Moreover, when a<a0 =( pp(q−1)q−1

(p+q−1)p+q−1 )
1
p ,

the qualitative properties of the other two equilibria B+, B− are described in the
following table.

possibilities of a, b, p, q B− B+

q = 1 a > b stable node saddle
a ≤ b f(x(4)) ≤ 0 or f(x(3)) ≥ 0 stable node

f(x(4)) > 0 and f(x(3)) < 0 stable focus
q > 1 b > a stable node

a ≤ b ≤ aq
q−1 f(x(4)) ≤ 0 or f(x(3)) ≥ 0 stable node

f(x(4)) > 0 and f(x(3)) < 0 stable focus
b > aq

q−1 f(x(3)) > 0 stable node
f(x(3)) < 0 and f(x(1)) > 0 stable focus

f(x(4)) < 0 unstable node
f(x(1)) < 0 and f(x(4)) > 0 unstable focus

f(x(1)) = 0 weak focus
Remark: f(x) = xp(1− ax)q−1 − 1, x(1) = p

−a−b+ap+bq , x(2) = x2 = p
a(p+q−1) ,

x(3) = p

ap+(
√√

bq+
√√

b−a)2
and x(4) = p

ap+(
√√

bq−√√
b−a)2

.
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Proof. We can give the linear part of the vector field of (1.1) at A easily and see
that it has two eigenvalues λ1 = −a, λ2 = −b. Thus A is a stable node.

As above, let B : (x, y) be B− or B+. Clearly, 0 < x < 1/a. Moreover, from
(2.8), D < 0 (resp. > 0) if and only if x > x(2) (resp. < x(2)), i.e., x ∈ ( p

a(p+q−1) ,
1
a )

(resp. x ∈ (0, p
a(p+q−1) )). This means that B = B+ (resp. B = B−) by (2.4) . We

discuss B− and B+ in the following six cases.
Case i: D < 0. In this case B = B+ is a saddle.
Case ii: D > 0, T < 0, ∆ ≥ 0. In this case B = B− is a stable node. By

(2.7)–(2.8) the conditions that D > 0 and T < 0 are equivalent to x− < x(2) and
x− < x(1) respectively. Moreover, from (2.9), the polynomial x2∆ has its leading
coefficient

2ab(q − 1) + b2(q − 1)2 + 2ap(bq − a) + b2 + 2abp + a2p2 + a2 > 0

for q ≥ 1 and b ≥ a. Thus the condition ∆ ≥ 0 is equivalent to

a > b or
{

a ≤ b,
x− ≥ x(4) or

{
a ≤ b,
0 < x− ≤ x(3).

Hence the conditions of the case ii can be expressed equivalently as

(I) :

⎧⎨⎧⎧⎩⎨⎨
x− < x(2),

x− < x(1),
a > b

or (II) :

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
x− < x(2),

x− < x(1),
a ≤ b,
x− ≥ x(4)

or (III) :

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
x− < x(2),

x− < x(1),
a ≤ b,
0 < x− ≤ x(3).

When q = 1, the relations that x− < x(2) and that x− < x(1) hold naturally, so
(I) is equivalent to that a > b. As the unique zero of f(x) in (0, x(2)), x− must
lie in [x(4), x(2)] since x− ≥ x(4) > 0 in (II). By continuity, f(x(4)) ≤ 0 because
f(0) = −1 and f(x(2)) > 0, so (II) is equivalent to that both a ≤ b and f(x(4)) ≤ 0.
In (III), similarly, x− as the unique zero of f(x) in (0, x(2)) must lie in (0, x(3)].
Noting that f(0) = −1 and f(x(2)) > 0, we see that (III) is equivalent to that both
a ≤ b and f(x(3)) ≥ 0. When q > 1, using the same arguments as above we know
that (I) is equivalent to that a > b; (II) is equivalent to that both a ≤ b ≤ aq

q−1

and f(x(4)) ≤ 0; and (III) is equivalent to{
a ≤ b ≤ aq

q−1 ,

f(x(3)) ≥ 0
or

{
b > aq

q−1 ,

f(x(3)) > 0.

Therefore, B− is a stable node if and only if

a > b or
{

a ≤ b,

f(x(4)) ≤ 0
or

{
a ≤ b,

f(x(3)) ≥ 0

if q = 1, or

a > b or

{
a ≤ b ≤ aq

q−1 ,

f(x(4)) ≤ 0
or

{
a ≤ b ≤ aq

q−1 ,

f(x(3)) ≥ 0
or

{
b > aq

q−1 ,

f(x(3)) > 0
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if q > 1.
Case iii: D > 0, T < 0, ∆ < 0. In this case B = B− is a stable focus. Similarly,

we can show that the conditions of this case are equivalent to⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
a < b,

f(x(3)) < 0,

f(x(4)) > 0
if q = 1,

or ⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
a ≤ b ≤ aq

q−1 ,

f(x(3)) < 0,

f(x(4)) > 0
or

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
b > aq

q−1 ,

f(x(3)) < 0,

f(x(1)) > 0
if q > 1.

Case iv: D > 0, T > 0, ∆ ≥ 0. In this case B = B− is an unstable node and
it is similar to show that the conditions of this case are equivalent to⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪

q > 1,

b > aq
q−1 ,

f(x(4)) < 0.

Case v: D > 0, T > 0, ∆ < 0. In this case B = B− is an unstable focus and
the conditions of this case can be proved similarly to be equivalent to⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪

q > 1,

b > aq
q−1 ,

f(x(1)) < 0,

f(x(4)) > 0.

Case vi: D > 0, T = 0. In this case B = B− is of center type. Similarly, the
conditions of this case are equivalent to{

b > aq
q−1 ,

f(x(1)) = 0.

Further computation with the aid of Maple V7 derives the Lyapunov number

L3(a, b, p, q) =
q(b(bq − b− aq))1/2(ap− a + b + 2aq − bq)(ap− a + bq − b)3

16b3p2(a + b− bq)(aq + b− bq)3
,

which vanishes when b = a((p + 2q − 1)/(q − 1)). Continue to compute the Lya-
punov number

L5(a, b, p, q) =
q(p + q)(q − 1)7/2(p + q − 1)5/2K(p, q)

18a4p4(p + 2q − 1)9/2(p + 2q − 2)3
,

where

K(p, q) = p3 + (4q − 3)p2 + 2(q − 1)p + 4(q − 1)2 > 0

since p ≥ 1, q > 1. This proves that B− is a weak focus of multiplicity at most 2.
Up to now, all possibilities of parameters are verified. �
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3. Equilibria of the Rotor Oscillation

The equilibria of system (1.6) is determined by zeros of g. Our strategy is to:

(i) Reduce the zero problem of g to the corresponding one of a polynomial by
eliminating trigonometric functions and rationalizing;

(ii) Apply the interval isolating computation to find the number and locations of
zeros;

(iii) Pick out the extraneous roots by reasoning on polynomial inequalities.

Let s := L/c and rewrite g in (1.7) as

g(θ) = K
√

∆g0(θ), (3.1)

where

g0(θ) = − sin(θ − ψ)(
√

2√
2 + 2s2 −√√

s4 + 4s2 cos(θ − ψ)
− 1)

− sin(θ + ψ)(
√

2√
2 + 2s2 −√

s4 + 4s2 cos(θ + ψ)
− 1), (3.2)

and ψ := arccos(s/
√√

2s2 + 4). Let gmin denote the minimal of g0(θ) on [0, π].
Clearly gmin is a continuous function of the new parameter s.

Numerically plotting gmin(s) shows that when s is approximately greater than
2.0, i.e., L � 2c, g(θ) has no other zeros between 0 and π. The same conclusion
can also be made on (−π, 0) by symmetry. However, the inevitable error makes
the numerical simulation be short of enough persuasion to the existence of zeros
of g0 in a definite interval. The following theorem demonstrates that we are able
to prove rigorously the exclusion of other equilibria for any specified parameters
L and c when L � c.

Theorem 3.1. The system (1.8) is 2π-periodic and has equilibria O : (0, 0), A− :
(−π, 0) and A+ : (π, 0) for θ ∈ [−π, π]. For specified L = 4.765 and c = 0.00138,
system (1.8) has exactly these three equilibria in [−π, π]. Moreover, when L � c
(for instance L = 4.765 and c = 0.00138), O is a center and both A− and A+ are
saddles. The curve H(θ, η) = h∗, where h∗ := 2Kc(2c− 2

√
c2 + L2) + 2KL2, has

two branches Γ+ and Γ−, which are two heteroclinic orbits both connecting A−
and A+ but lie in the upper half-plane and lower half-plane respectively. For each
h ∈ (0, h∗), the curve H(θ, η) = h is a periodic orbit Γh around O and surrounded
by Γ±.

Proof. The periodicity of the system is implied by the periodicity of g. Thus it
suffices to discuss the system for θ in the interval [−π, π]. It is immediately obvious
that the system has at least three equilibria A− : (−π, 0), O : (0, 0) and A+ : (π, 0)
for θ ∈ [−π, π]. For specified L = 4.765 and c = 0.00138, we further claim that g
has no zeros in the open interval (0, π).
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Consider g0 as in (3.2). It can be factorized as g0(θ) = − U(θ)
U+U−

, with U±UU =

[1 + s2/2−√√s4/4 + s2 cos(θ ± ψ)]1/2 nonsingular and

U(θ) = [sin(θ) cos(ψ) + cos(θ) sin(ψ)]U− + [sin(θ) cos(ψ)
− cos(θ) sin(ψ)]U+UU − 2 sin(θ) cos(ψ)U+UU U−. (3.3)

Clearly, all zeros of g can be calculated from U(θ) = 0. Take a change of variable
z := cos θ, which in fact defines a homeomorphism from (0, π) onto (−1, 1). Let
Ũ(z) := U(arccos z). Rationalizing the equality Ũ(z) = 0 leads to an equation

(z − 1)(z + 1)P (z) = 0, (3.4)

where

P (z) := (s10 + 8s8 + 16s6)z6 + (−4s10 − 22s8 − 16s6 + 32s4)z5

+ (5s10 + 10s8 − 20s6 + 28s4 + 32s2 − 64)z4

+ (20s8 − 120s4 + 64s2 + 128)z3

+ (−5s10 − 20s8 + 40s6 + 32s4 − 64s2)z2

+ (4s10 + 2s8 − 16s6 + 24s4 − 32s2)z
+ (−s10 + 2s8 − 4s6 + 4s4) (3.5)

and s := L/c = 3665.384615. The polynomial P in the form (3.5) is irreducible
over the field Q of rational numbers, so it is hard to compute real roots of such
a polynomial of high degree. In order to find all real roots of P , we employ the
command “realroot(P, 1/100000)” of the Maple V7 software, which immediately
gives isolating intervals of width 1/100000 by its internal symbolic operations[

268435411
268435456

,
67108853
67108864

]
,

[
−1,

−131071
131072

]
,

covering all real roots of P (z). These two intervals in the variable z correspond to
the intervals

[5.789646011× 10−4, 5.725382162× 10−4], [3.137686400, π] (3.6)

in θ, respectively.
On the other hand, for θ ∈ (0, ψ), where ψ = arccos(L2/2√√

∆
) = 5.793099424×

10−4, it can be seen that sin(θ−ψ) < 0, sin(θ+ψ) > 0, cos(θ−ψ) > cos(−ψ) = L2/2√√
∆

and cos(θ + ψ) < cos(ψ) = L2/2√
∆

. So√
c2 +

L2

2
−
√

∆ cos(θ − ψ) < c,

√
c2 +

L2

2
−
√

∆ cos(θ + ψ) > c. (3.7)

Hence in terms of (1.7), g(θ) > 0 on the interval (0, ψ). The first interval in (3.6) is
obviously contained in (0, ψ); therefore, the real root of P (z) in the first interval is
an additional one arising in the procedure of rationalization of Ũ(z). It is actually
not a root of g.
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In order to show that the real root of P (z) in the second interval in (3.6) is not
a root of g, we notice that the interval is contained in (2ψ, π]. For θ ∈ (2ψ, π−ψ),
we have that sin(θ − ψ) > 0, sin(θ + ψ) > 0 and that√

c2 +
L2

2
−
√

∆ cos(θ − ψ) > c,

√
c2 +

L2

2
−
√

∆ cos(θ + ψ) > c,

similar to (3.7). Hence in terms of (1.7), g(θ) > 0 on the interval (2ψ, π − ψ). For
θ ∈ [π − ψ, π), define

gp(θ) := −
√

∆ sin(θ − ψ)(
c√

c2 + L2/2−√
∆ cos(θ − ψ)

− 1),

gq(θ) :=
√

∆ sin(θ + ψ)(
c√

c2 + L2/2−√
∆ cos(θ + ψ)

− 1).

For the given L = 4.765 and c = 0.00138, note the fact that π
2 −ψ ≤ θ−ψ

2 < π
2 − ψ

2
and sin(θ−ψ) < | cos(θ−ψ)| < 1 for θ ∈ [π−ψ, π). Employing Maple V7 we have

d

dθ
gp(θ) = 11.35261440 cos(θ − ψ)(1 − 0.00138√

22.7052288sin( θ−ψ
2 )

)

+
0.08892847907 sin2nn (θ − ψ)
(22.7052288)3/2 sin3( θ−ψ

2 )

< 11.35261440 cos(θ − ψ)(1 − 0.00138√√
22.7052288sin(π

2 − ψ)
)

+
0.08892847907 sin2nn (θ − ψ)

(22.7052288)3/2 sin3(π
2 − ψ)

= 11.34932655 cos(θ − ψ) + 0.0008219629813 sin2nn (θ − ψ)
< 0. (3.8)

Similarly, noting that π
2 ≤ θ+ψ

2 < π
2 + ψ

2 and sin(θ + ψ) < | cos(θ + ψ)| < 1 for
θ ∈ [π − ψ, π), we can derive

d

dθ
gq(θ) = −11.35261440 cos(θ + ψ)(1− 0.00138√

22.7052288sin( θ+ψ
2 )

)

− 0.08892847907 sin2nn (θ + ψ)
(22.7052288)3/2 sin3( θ+ψ

2 )

> −11.35261440 cos(θ + ψ)(1− 0.00138√√
22.7052288sin(π

2 + ψ
2 )

)

− 0.08892847907 sin2nn (θ + ψ)
(22.7052288)3/2 sin3(π

2 + ψ
2 )

= −11.34932655 cos(θ + ψ)− 0.0008219626723 sin2(θ + ψ)
> 0. (3.9)
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Moreover, it is easy to check that gp(π − ψ) > gq(π − ψ) = 0 and gp(π) = gq(π).
By (3.8) and (3.9) we see that g(θ) = gp(θ) − gq(θ) > 0 on [π − ψ, π). Therefore,
g(θ) > 0 on (2ψ, π) and thus g has no zeros in the second interval in (3.6) except
for the point π.

As above, the claimed fact that g has no zeros in the interval (0, π) is proved.
We can similarly prove that g has no zeros in (−π, 0). It follows that system (1.8)
has only three equilibria O, A− and A+ in [−π, π].

Now we continue to discuss the qualitative properties of the equilibria and
orbits near them. As a basic knowledge in Chapter V of [1], the potential G(θ)
reaches extrema at equilibria, and an equilibrium (θ0, 0) is a center (resp. saddle)
when G(θ0) reaches a minimal (resp. maximal) value. Notice that

G′′(0) =
K

2c2
∆[sin2(−ψ) + sin2 ψ] = KL2 > 0;

hence O is a center. Similarly, let us check

G′′(±π) = −2K
√

∆{− cosψ (
c√√

c2 + L2
− 1)− c

2

√
∆

sin2 ψ

(c2 + L2)3/2
}

= − KL2D(L, c)
(c2 + L2)3/2[(c2 + L2)3/2 + (cL2 + 2c3)]

, (3.10)

where D(L, c) := L6 + 2L4c2 − c4L2 − 3c6. Clearly, D(L, c) → +∞ as L → +∞.
Consequently D(L, c) > 0 and G′′(±π) < 0 when L � c, in particular when
L = 4.765m and c = 0.00138m. That is, both A− and A+ are saddles when
L � c. Furthermore, we can verify that h∗ := H(±π, 0) = G(±π), which is the
energy of the system at A− and A+ respectively. The orbits Γ± connecting A−
and A+ lie on the curve

H(θ, η) = h∗. (3.11)

At the center O we have H(0, 0) = G(0) = 0. Therefore, each h ∈ (0, h∗) de-
termines a closed curve H(θ, η) = h, which is a periodic orbit around O. This
completes the proof. �

For any given real system parameters L and c with L � c, we can derive
the same result as given in Theorem 3.1, by following the same procedure as for
L = 4.765 and c = 0.00138.
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Attractive Regions in Power Systems by
Singular Perturbation Analysis

Zhujun Jing, Ruiqi Wang, Luonan Chen and Jin Deng

Abstract. This paper aims to investigate attractive regions of operating points
for power systems by applying singular perturbation analysis. A time-scale de-
composition is performed to illustrate how the critical model can be identified
with reduced-order systems and how bifurcation phenomena can be explained
with such low order systems. The slow dynamics and fast dynamics includ-
ing bifurcation conditions and domain of attractor of the stable equilibrium
are also analyzed. We show that the attractive region of a stable equilibrium
point is composed of the domain enclosed by the stable manifold of a saddle
point for the simplified subsystem, and that the size of a stability region is
also considerably affected by the voltage magnitude behind the transient re-
actance. Several numerical examples are used to demonstrate our theoretical
results.

Mathematics Subject Classification (2000). Primary 93C70; Secondary 93C95.

Keywords. Power system, singular perturbation, bifurcation, attractive region,
stability.

1. Introduction

In recent years, study on stability regions of power systems has attracted con-
siderably attention among power system engineers. Many methods based on dy-
namical system theory [5, 7, 13, 27], such as bifurcation analysis and singu-
lar perturbation, have been used to solve this problem, see the references ex-
cept [3, 4, 8, 10, 14, 19, 20, 22, 26] in this paper. In particular, because of the
existence of various time scales in power systems, singular perturbation theory
[6, 12, 15, 16, 17, 18] was applied to study dynamical behavior in several papers
[1, 2, 11, 20, 23, 25, 28]. The major advantages of applying singular perturbation
theory to voltage stability problems of power systems are that the complicated

This work is supported by the National Key Basic Research Fund (No.G1998020307) and the
Chinese Academy of Sciences (KZCX2-SW-118).
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original systems can be mathematically simplified without loss of physical mean-
ing. Specifically, the systems can be approximated by two simple subsystems, i.e.
slow and fast subsystems, whose dimensions are usually much low. We therefore
need only to study the dynamical behavior of the simplified subsystems, and can
understand the global properties of the original system with the combination of
the behaviors of those two subsystems.

A power system considered in [23, 24] is modelled without automatic voltage
regulators, and its dynamics as well as stability were studied by singular pertur-
bation theory. In this paper, we extend the model in [23, 24] to further consider
a voltage control device (excitation field control with hard limits) for both single
and multimachine systems. Slow and fast dynamics are decomposed respectively
by using singular perturbation analysis, and nonlinear properties are also inves-
tigated to derive the attractive regions of equilibria. This paper is a continuing
work of our previous paper [11], which theoretically gives the stability region of a
power system but with only a three-dimensional generator model.

The organization of this paper is as follows: Section 2 briefly describes the
necessary techniques of singular perturbation theory. In Section 3, we give the
theoretical analysis to multimachine systems using the methods introduced in
Section 2. In Section 4, we examine a single machine system from both theoretical
analysis and numerical simulation. The domain of attractor is also derived by using
results obtained from slow and fast subsystems. Finally we give several general
remarks to conclude this paper in Section 5.

2. Singular Perturbed Systems

In this section, we summarize necessary techniques of singular perturbation theory
used in this paper. Consider the standard form of a singular perturbed system:{

ẋt = f(x, z, ε),
εżt = g(x, z, ε),

(2.1)

where x ∈ Rn and z ∈ Rl, and ε is a small parameter. The functions f and g are
both assumed to be Cr on a set U × I, where U ⊂ RN is open with N = n+ l and
r > 1. Due to this small parameter ε, the dynamics of the variable z evolve on a
much faster time scale than the dynamics of the variable x. Thus z is commonly
referred to as the fast variable and x is called the slow variable.

System (2.1) can be reformulated with a change of time-scale t = ετ as{
ẋτ = εf(t, x, z, ε),
żτ = g(t, x, z, ε).

(2.2)

The time scale given by t is said to be slow whereas that for τ is fast. As long as
ε = 0 the dynamics (2.1) and (2.2) are equivalent. Thus (2.1) is called the slow��
system and (2.2) the fast system. The essential idea in singular perturbation is to
deduce the behavior of the solution of the singular perturbation system (2.1) or
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(2.2) by studying two limiting cases. In (2.1) letting ε → 0, the limit only makes
sense if g(x, z, 0) = 0 and is thus given by{

ẋt = f(x, z, 0),
0 = g(x, z, 0),

(2.3)

which is a differential-algebraic system and is also called the slow subsystem or
hybrid system.

Let ε → 0 in (2.2) we obtain the fast subsystem{
ẋτ = 0,

żτ = g(x, z, 0),
(2.4)

where the slow variable x can be regarded as the parameter in the vector field of
the fast variable. The dynamic properties of the fast subsystem (2.4) depend on
the parameter x. The set of equilibria of the fast subsystem is called critical man-
ifold. For sufficiently small ε, a normally hyperbolic subset of the critical manifold
persists as a locally invariant manifold that is O(ε) close to the critical manifold
[5, 12]. This perturbed manifold is called the slow manifold.

By combining the solutions of slow subsystem (2.3) and fast subsystem (2.4)
appropriately, the qualitative behavior of the singular perturbed system (2.1) or
(2.2) can be approximately determined and the theoretical results as well as proofs
are given in [17, 18].

Let z = H(x, ε) be the invariant manifold for (2.1), when H is a sufficiently
smooth function of x and ε, z = H(x, ε) is slow manifold MεMM for (2.1).

According to the implicit function theorem in [13], when det(gz) = 0 (the��
Jacobian matrix gz is nonsingular) the system (2.3) becomes

ẋt = f(x, z(x), 0). (2.5)

System (2.5) determines the dynamics of the slow subsystem (2.3), where z =
H(x, 0) is an order-0 slow manifold M0MM .

For det(gz) = 0, by linearizing equation (2.3) at the equilibrium, we have the��
following linear equation.

ẋ = Ax, (2.6)

where A = J1JJ − J2JJ (J4JJ )−1J3JJ , J1JJ = ∂f
∂x , J2JJ = ∂f

∂z , J3JJ = ∂g
∂x and J4JJ = ∂g

∂z �= 0.��
The equilibrium point is local stable if all the eigenvalues of matrix A have

negative real parts. The stable equilibrium corresponds to the stable operating
point in power system.

There are the two limiting cases, which are considered in power systems.
The first limiting case is that J4JJ �= 0 and the matrix�� A becomes singular

having simple eigenvalue zero or the matrix A has a simple pair of purely imag-
inary eigenvalues with the remaining eigenvalues having nonzero real parts. This
is a condition of nonhyperbolic equilibrium, which can give rise to a saddle-node
bifurcation (SNB) (or transcritical, or pitchfork bifurcation) or Hopf bifurcation.
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Obviously, the condition det(A) = 0 defines a voltage stability limit when the
critical eigenvalue is related to the voltage response. And a Hopf bifurcation causes
the emergence or disappearance of a periodic oscillation from an equilibrium point.

The second limiting case is that fold points [27] correspond to points where
Jacobian matrix J4JJ is singular, and also corresponds to algebraic singular point in
(2.3) or saddle-node bifurcation of the fast subsystem (2.4) or impasse surface [19]
that separates in general the state space into disjoint components called causal re-
gions. The fundamental nature of the solutions changes at the algebraic singularity
point (J4JJ = 0) is called a singularity induced bifurcation (SIB) [21].

As is discussed in [21], the singularity of J4JJ is a sufficient condition for voltage
collapse characterized by an infinitely large eigenvalue of the matrix A near the
point of collapse. Certainly the power system will collapse before reaching the
singularity point due to having an extremely large positive eigenvalue.

3. Decomposition of Multimachine Dynamics

A power system consisting of m-synchronous machines with the excitation field
control can be described in the transient time-scale by the following set of equa-
tions: ⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪

δ̇ = ω − ωs,

Mω̇ = −D(ω − ωs) + PTPP − PGPP ,

T
′
dT Ė

′
= −E′ + Efd − (xd − x′

d)IdII ,

TAT Ėfdr = −KA(V (δ, E′)− VrefVV )− (Efdr − Efd0),

(3.1)

where PGPP = E′IqII − (xq − xd)IdII IqII , and

δ =

⎛⎜⎛⎛⎝⎜⎜ δ1

...
δm

⎞⎟⎞⎞⎠⎟⎟ , ω =

⎛⎜⎛⎛⎝⎜⎜ ω1

...
ωm

⎞⎟⎞⎞⎠⎟⎟ , E′ =

⎛⎜⎛⎛⎝⎜⎜ E′
1
...

E′
m

⎞⎟⎞⎞⎠⎟⎟ , Efdr =

⎛⎜⎛⎛⎝⎜⎜ Efdr1

...
Efdrm

⎞⎟⎞⎞⎠⎟⎟ ,

V =

⎛⎜⎛⎛⎝⎜⎜ V1VV (E′, δ)
...

VmVV (E′, δ)

⎞⎟⎞⎞⎠⎟⎟ , xd =

⎛⎜⎛⎛⎝⎜⎜ xd1

...
xdm

⎞⎟⎞⎞⎠⎟⎟ , x′
d =

⎛⎜⎛⎛⎝⎜⎜ x′
d1
...

x′
dm

⎞⎟⎞⎞⎠⎟⎟ ,

IdII =

⎛⎜⎛⎛⎝⎜⎜ IdII 1(E′, δ)
...

IdmII (E′, δ)

⎞⎟⎞⎞⎠⎟⎟ , IqII =

⎛⎜⎛⎛⎝⎜⎜ IqII 1(E′, δ)
...

IqmII (E′, δ)

⎞⎟⎞⎞⎠⎟⎟ , Efd0 =

⎛⎜⎛⎛⎝⎜⎜ Efd01

...
Efd0m

⎞⎟⎞⎞⎠⎟⎟ ,

PGPP =

⎛⎜⎛⎛⎝⎜⎜ PGPP 1(E′, δ)
...

PGmPP (E′, δ)

⎞⎟⎞⎞⎠⎟⎟ , PTPP =

⎛⎜⎛⎛⎝⎜⎜ PTPP 1

...
PTmPP

⎞⎟⎞⎞⎠⎟⎟ , VrefVV =

⎛⎜⎛⎛⎝⎜⎜ VrefVV 1

...
VrefmVV

⎞⎟⎞⎞⎠⎟⎟ ,

M, D, T ′
dT and TAT are m×m diagonal matrices containing the mechanical starting

times (MiMM = 2HiHH ), the damping terms, and the field open circuit time constants
respectively [24]. PTPP , VrefVV , ωs are considered as constant inputs. δ are the rotor
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angles, ω are the machine frequency deviations, E′ are the voltage magnitudes
behind the transient reactance, Efd are the field excitation voltages. IdII , IqII and
V are the functions of the state variables δ and E′, depending on the intercon-
nection between machines and loads, and are written as IdII (δ, E′), IqII (δ, E′) and
V (δ, E′). All other parameters are explained in [24]. In order to make a thorough
investigation of system stability, ideally all the existing dynamic factors in a power
system should be taken into account. However, such an approach, though theo-
retical preferable, makes the analysis too complicated. It is therefore necessary to
simplify the problem without loss of generality. In this paper, we adopt singular
perturbation theory to simplify the dynamical models of power systems.

The multimachine model (3.1) can be decomposed into two subsystems, i.e.,
a slow one consisting of flux-decay model, and a fast one describing electrome-
chanical oscillations and field excitation voltage. To achieve such a decomposition,
we mainly follow the approach in [23, 24] to introduce the following parameters:

ε =
√

2H

ω0
, H0HH =

1
MiMM

m∑
i=1

HiHH , ω
′
= εω, H = diag[HiHH /H0HH ],

and TAT = εT , ω0 = 2πf0ff = 120π. Using the above notation, the system (3.1) takes
the following singular perturbation form [23, 24]:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪

εδ̇ = ω
′
,

εω̇
′
= PTPP − PGPP (δ, E′)− ε

2H Dω
′
,

εĖfdr = T−1[−KA(V (δ, E′)− VrefVV )− (Efdr − Efdr0)],
Ė

′
= T ′−1

dT (Efd − E(δ, E′)).

(3.2)

In (3.2), clearly δ, ω′, and Efdr are fast variables with 3m dimensions and E′ are
slow variables with m dimensions, when ε is assumed to be sufficiently small.

Consider the m-dimensional slow manifold in the state space of the system
(3.2) defined by the 3m equations, which are written as a series expansion in ε:

δ = h1(E′) = h10 + εh11 + O(ε2), (3.3)

ω′ = h2(E′) = h20 + εh21 + O(ε2), (3.4)

Efdr = h3(E′) = h30 + εh31 + O(ε2). (3.5)

The manifold M defined by h1, h2 and h3 is an invariant manifold for the fast
dynamics equations are satisfied, which guarantee that a trajectory starting on
the manifold will remain on it for all time.

εδ̇ = ε
∂h1

∂E′ Ė
′ = ε

∂h1

∂E′ (T
′
dTT )−1(Efd − E(h1, E

′)) = ω′ = h2(E′), (3.6)

εω̇′ = ε
∂h2

∂E′ Ė
′ = ε

∂h2

∂E′ (T
′
dTT )−1(Efd − E(h1, E

′))

= PTPP − PGPP (h1, E
′)− ε

2H
Dh2(E′), (3.7)



126 Jing, Wang, Chen and Deng

εĖfdr = ε
∂h3

∂E′ Ė
′ = ε

∂h3

∂E′ (T
′
dTT )−1(Efd − E(h1, E

′))

= T−1[−KA(V (h1, E
′)− VrefVV − (h3(E′)− Efdr0)]. (3.8)

It is not possible in general to solve the equations (3.6)–(3.8) in order to obtain
analytically the slow manifold M ={h1, h2, h3} of the system (3.2). However, an
approximate slow manifold can be found in the following way:

ε(
∂h10

∂E′ + ε
∂h11

∂E′ )(T ′
dTT )−1(Efd − E(h10, E

′)− ∂E

∂δ
h11ε) = h20 + εh21,

ε(
∂h20

∂E′ + ε
∂h21

∂E′ )(T ′
dTT )−1(Efd − E(h10, E

′)− ∂E

∂δ
h11ε)

= PTPP − PGPP (h10, E
′)− ε

∂PGPP

∂δ
h11 − ε

2H
D(h20 + εh21),

ε(
∂h30

∂E′ + ε
∂h31

∂E′ )(T ′
dTT )−1(Efd − E(h10, E

′)− ∂E

∂δ
h11ε)

= T−1[−KA(V (h10, E
′) +

∂V

∂δ
h11ε− VrefVV )− (h30 + εh31 − Efdr0)].

Equating the coefficients of ε0, we can obtain

h20 = 0, (3.9)
PTPP − PGPP (h10, E

′) = 0, (3.10)
h30 = Efd0 −KA(V (h10, E

′)− VrefVV ), (3.11)

where h10 is the implicit function of E′.
Equating the coefficients of ε1, it follows that

∂h10

∂E′ (T ′
dTT )−1(Efd − E(h10, E

′)) = h21, (3.12)

∂h20

∂E′ (T ′
dTT )−1(Efd − E(h10, E

′)) = −∂PGPP

∂δ
h11 − D

2H
h20, (3.13)

∂h30

∂E′ (T ′
dTT )−1(Efd − E(h10, E

′)) = T−1(−KA
∂V

∂δ
h11 − h31). (3.14)

Suppose that ∂PGPP
∂δ = 0; by (3.13) we have�� h11 = 0.

From (3.14) and h11 = 0, we obtain

h31 = −(T ′
dTT )−1T (

∂h30

∂E′ )(Efd − E(h10, E
′)), (3.15)

where
∂h30

∂E′ = −KA(
∂V

∂δ

∂h10

∂E′ +
∂V

∂E′ ).

Differentiating (3.10) with respect to E′, we obtain

−∂PGPP

∂δ

∂h10

∂E′ −
∂PGPP

∂E′ = 0.

Thus, we have
∂h10

∂E′ = −(
∂PGPP

∂δ
)−1(

∂PGPP

∂E′ ).
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We therefore write (3.15) as

h31 = (T ′
dTT )−1TKA(M4MM −M3MM M−1

1 M2MM )(Efd − E(h10, E
′)), (3.16)

where
∂PGPP

∂δ
= M1,

∂PGPP

∂E′ = M2MM ,
∂V

∂δ
= M3MM ,

∂V

∂E′ = M4MM ,

and MiMM (i = 1, 2, 3, 4) are matrices.
Finally, the O(ε2) approximations of the slow manifold MεMM can be written as

δ = h1(E′) = h10 + O(ε2), (3.17)
ω′ = h2(E′) = εh21 + O(ε2) (3.18)

= ε
∂h10

∂E′ (T ′
dTT )−1(Efd − E(h10, E

′)) + O(ε2), (3.19)

Efdr = h3(E′) = h30 + εh31 + O(ε2) = Efd0 −KA(V (h10, E
′)− VrefVV ),

+ ε(T ′
dTT )−1TKA(M4MM −M3MM M−1

1 M2MM )(Efd − E(h10, E
′)). (3.20)

The slow dynamics on the order-one slow manifold MεMM , are derived from the
slow-subsystem in (3.2) by replacing h10 and h30+εh31 into δ and Efdr respectively,
i.e.,

T
′
dTT Ė

′
= h30 + εh31 − E(h10, E

′), (3.21)
where h10, h30 and h31 are given by (3.10), (3.11) and (3.16) respectively. (3.21)
has m dimensions, which is much smaller than the 4m-dimensions original system
(3.2). By (3.21) we can examine the dynamical properties of the original system
in a relatively easy way.

To analyze the fast dynamics, we investigate (3.2) in the τ = t/ε time scale.
(3.2) can be rewritten as the following form:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪

δ̇τ = ω
′
,

ω̇
′
τ = PTPP − PGPP (δ, E′)− ε

2H Dω′,
Ėfdrτ = T−1[−KA(V (δ, E′)− VrefVV )− (Efdr − Efdr0)],
Ė

′
τ = εT ′−1

dT (Efd − E(δ, E′)).

(3.22)

Thus, the fast subsystem is given by⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
δ̇τ = ω

′
,

ω̇
′
τ = PTPP − PGPP − ε

2H Dω′,
Ėfdrτ = T−1[−KA(V − VrefVV )− (Efdr − Efdr0)],

(3.23)

where the slow variables E′ act as parameters for the fast-subsystem, which has
3m dimensions.

By the slow system (3.21) and fast system (3.23), theoretically we can ana-
lyze the nonlinear properties of the original system, such as stability, bifurcation
and attractive region for general multimachine power systems in a relatively easy
manner due to the reduced dimensions in each subsystem. Next, we use a single
machine system to demonstrate the detailed analysis.
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4. A Detailed Analysis for Single Machine System

In this section, we investigate the single machine system, i.e., the case m = 1 in
the systems (3.1) and (3.2), in detail by geometric singular perturbation method
and numerical simulation. The system (3.1) is written as⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪

δ̇ = ω0ω,

Mω̇ = −Dω + PTPP − PGPP ,

T
′
dT Ė

′
= Efd − E(δ, E′),

TAT Ėfdr = −KA(V (δ, E′)− VrefVV )− (Efdr − Efd0),

(4.1)

where all variables are scale due to m = 1.
As the same way as the system (3.2), we have the following singular pertur-

bation form:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪
εδ̇ = ω

′
= f1,

εω̇
′
= PTPP − PGPP (δ, E′)− ε

2H Dω
′
= f2ff ,

εĖfdr = T−1
AT [−KA(V (δ, E′)− VrefVV )− (Efdr − Efdr0)] = f3ff ,

Ė
′
= T ′−1

dT (Efd − E(δ, E′)) = g,

(4.2)

where δ, ω′, and Efdr are fast variables and E′ is the slow variable, and D is the
damping factor in per unit; T ′

dT is the direct axis transient time-constant; TAT is the
excitation control time-constant; KA is the control gain which may be varied for
special control actions; VrefVV is the reference bus voltage; Efd0 is the reference field
voltage. The functions PGPP and E(δ, E′) in (4.2) depend on the interaction between
machine and load and are represented as [9]

PGPP =
E′

x′
d + x

sin δ, (4.3)

E(δ, E′) =
xd + x

x
′
d + x

E
′ − xd − x

′
d

x
′
d + x

cos δ. (4.4)

The voltage V (δ, E
′
) refers to the bus voltage at the generator bus terminal and

for the SMIB representation; it is easily computed as

V (δ, E
′
) =

1
x + x

′
d

√
(x′

d + xE′ cos δ)2 + (xE′ sin δ)2. (4.5)

Efd is the the field excitation voltage and is considered as output of the
wind-up limiter

Efd =

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
Efdmax if Efdr > Efdmax ,

Efdr if Efdmin ≤ Efdr ≤ Efdmax ,

Efdmin if Efdr < Efdmin .

(4.6)
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Figure 1. Order-one slow manifold MεMM (the top half manifold A-
S is unstable, and the bottom half manifold B-S is stable, where
S is a singular point of the slow manifold).

4.1. Slow Manifold

In this subsection, since δ, ω′, and Efdr are scale variables, we consider the one-
dimensional slow manifold MεMM in the state space of the system (4.1) defined by
the three equations in (3.3)–(3.5). The O(ε2) approximation of slow manifold MεMM
is also represented by (3.17)–(3.20), and h10 is solved by

h10 =

{
sin−1(PTPP (x′

d+x)
E′ ), h10 ∈ [0, π

2 ),

π − sin−1(PTPP (x′
d+x)

E′ ), h10 ∈ [π
2 , π).

(4.7)

Note that:
1. for Efdr > EfdMax or Efdr < EfdMin , we substitute EfdMax or EfdMin for

Efd in (3.19) or (3.20);
2. for EfdMin ≤ Efdr ≤ EfdMax , we substitute h30 for Efd in (3.19) and (3.20),

where h30 is still defined by (3.11);
3. from (3.19)–(3.20) and [10] we can show that the frequency deviation during

slow transient is of order ε, though the angle and field excitation voltage may
vary considerably. As the value of the frequency error is small we can assume
that the frequency control loop is not excited during the slow flux-voltage
transients.
The order-one slow manifold MεMM is shown in Figure 1 for Efd (Efdmin = 0,

Efdmax = 5) and the other parameters are given as follows:

H = 5, M = 10, T
′
dT 0 = 10, TAT = 1, KA = 190, Efd0 = 2,

x
′
d = 0.4, x = 0.5, xd = 1, VrefVV = 1.05, PTPP = 1.3.
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Figure 1 shows that the slow manifold MεMM is not smooth because M−1
1 be-

comes infinitely large when δ = π
2 .

4.2. Slow Flux and Voltage Dynamics: SNB

In this subsection, we investigate the slow dynamics on the slow manifold MεMM . The
slow dynamics is derived from the slow-subsystem in (4.2) by replacing h10 and
h30 + εh31 into δ and Efdr respectively, i.e.,

T
′
dTT Ė

′
= −xd + x

x
′
d + x

E
′
+

xd − x
′
d

x
′
d + x

cosh10 + h30 + εh31, (4.8)

where h10, h30 and h31 are given by (4.7), (3.11) and (3.16) respectively.
Next, we will study the dynamics of (4.8) on the slow manifold MεMM . The

equilibrium E′
o of system (4.8) satisfies the following equation:

q1(E′
o) = −xd + x

x
′
d + x

E
′
o +

xd − x
′
d

x
′
d + x

cosh10 + h30 + εh31 = 0. (4.9)

The linearized version of the above equation around an equilibrium point E′
o

has the following matrix, by using the definition of the M matrix:

As = T ′−1
dT [KA(M3MM oM

−1
1o M2MM o −M4MM o) + (K3o + K4KK oM

−1
1o M2MM o)] + O(ε), (4.10)

where
K3 = − ∂E

∂E′ |δ=h10 , K4KK =
∂E

∂δ
|δ=h10 ,

and the subscript “o” denotes evaluation at the equilibrium point E′
o. The matrix

M1 −M4MM is in (3.16). When ε is small, the SNB condition is given by

det[KA(M3MM oM
−1
1o M2MM o −M4MM o) + (K3o + K4KK oM

−1
1o M2MM o)] = 0. (4.11)

However, since it is difficult to compute (4.11), the following simplification is
adopted. Using the condition in [9] and PTPP (x′

d+x)
E′ �= 1, we can assume that��

|
xd+x
x′

d+xE′ − xd−x′
d

x′
d+x cos δ − (Efd0 + εh31)

KA
| � VrefVV . (4.12)

Therefore equation (4.9) can be simplified to be

(E′)4 − a0(E′)2 + a1P
2
TPP + a3 = 0, (4.13)

where a0 = 2[V 2
refVV (x+x′

d)2−x′2
d ]+4

x2 , a1 = 4(x′
d+x)2

x2 , and a3 = [V 2
refVV (x+x′

d)2−x′2
d ]2

x4 . This
quadratic equation (4.13) for E′2 has positive solutions for 0 < PTPP < b1, where

b1 =
√

a2
0−4a3

4a1
. Hence, there are two positive solutions for E′ in (4.13). By simple

analysis, we can obtain the approximation condition for the existence of equilib-
rium for (4.8).

Lemma 4.1. If PTPP < b1 and condition (4.12) are satisfied, then system (4.8) has
two equilibria; when PTPP > b1, there is no any equilibrium; when PTPP = b1, there is
only one equilibrium point Ssn, and PTPP = b1 ≡ PTPP SNT is an approximate saddle-
node bifurcation point.
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Note that before the SNB bifurcation, there are two equilibrium points close
to each other. One is stable and the other is unstable. As these two points approach
each other, an annihilation occurs at the saddle-node bifurcation, while at the
same time the system’s Jacobian matrix becomes singular and the system collapse
occurs. A saddle-node bifurcation in the SMIB system (4.1) will result in a slow
flux decay felt by generator. This will have a similar drifting effect on the generator
terminal and load bus leading the whole system to a voltage collapse. The condition
(4.11) is the same as the condition of the SNB for the original system (4.1), but
(4.11) is obtained from the reduced-order models, which implies that the singular
perturbation method simplifies the difficulties of analysis.

4.3. Fast Dynamics: Electromechanical Oscillations and Dynamics of Field
Excitation Voltage

To analyze the fast dynamics, we examine (4.2) in the τ = t/ε time scale; then
(4.2) can be rewritten in the following form:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪

δ̇ = ω
′
,

ω̇
′
= PTPP − PGPP (δ, E′)− ε

2H Dω′,
Ėfdr = T−1[−KA(V (δ, E′)− VrefVV )− (Efdr − Efdr0)],
Ė

′
= εT ′−1

dT (Efd − E(δ, E′)).

(4.14)

We consider the fast subsystem⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
δ̇ = ω

′
,

ω̇
′
= PTPP − PGPP − D

2H εω′,
Ėfdr = T−1[−KA(V − VrefVV )− (Efdr − Efdr0)],

(4.15)

where the slow variable E′ acts as a parameter for the fast-subsystem and ˙= d
dτ .

The equilibrium points of fast subsystem (4.15) satisfy the following condi-
tions: ⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

ω
′
= 0,

sin δ =
PTPP

g1E′ ,

cos δ =
(g3 − Efdr)2 − g2(x′2

d + x2E′2)
2g2xx′

dE′ ,

(4.16)

where the symbols g1, g2 and g3 defined below are introduced for notational con-
venience:

g1 =
1

x′
d + x

, g2 =
K2

A

(x′
d + x)2

, g3 = KAVrefVV + Efdr0.

When δ is eliminated from the equilibrium conditions (4.16), we have the
following equation in Efdr:

P 2
TPP = g2

1E
′2 −

(
(g3 − Efdr)2 − g2(x′2

d + x′2E′2)
2g2xx′

d

)2

g2
1. (4.17)
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Let

a = E′2 − P 2
TPP

g2
1

, b = g2(x′2
d + x′2E′2), c = 2g2xx′

d.

By analysis of the roots of (4.17) for Efdr, we can derive the condition for the
existence of the positive roots of (4.17).

Lemma 4.2. Assume that the following conditions hold:
(1) if G1(E′2) < P 2

TPP < G0(E′2), then equation (4.17) has two positive roots:

E
(1)
fdr = g3 −

√
b + c

√
a, E

(2)
fdr = g3 −

√
b− c

√
a.

Thus, the system (4.15) has exactly two equilibrium points denoted as xl =
(δl, 0, Efdrl

) (0 < δl < π
2 ) and xh = (δh, 0, Efdrh

) (π
2 < δh < π) with Efdrl

<
Efdrh

;
(2) if P 2

TPP = G0(E′2), then equation (4.17) has one positive root ESN
fdr = g3 +

√
b.

Thus, the system (4.15) has only one equilibrium point xSN = (π
2 , 0, EfdrSN ),

and the system bifurcates at the parameter PTPP SNT =
√√

G0(E′2);
(3) if P 2

TPP > G0(E′2), then there is no root for equation (4.17) and

G0(E′2) = g2
1E

′2, G1(E′2) = g2
1E

′2 − g2
1

[
g2(x′2

d + x′2E′2)− g2
3

2g2xx′
d

]2
,

Efdrl
= g3 − h1, Efdrh

= g3 − h2,

h1,2 =

√
g

√√
2(x′2

d + x′2E′2)± 2g2xx′
d

√√
g2
1E′2−P 2

TPP

g2
1

.

The parameter chart for the roots of equation (4.17) is shown in Figure 2.

For checking the local stability properties of equilibrium points, we use the
Jacobian matrix of the system:

J =

⎛⎝⎛⎛ 0 1 0
−M1 − εD

2H 0
−KA

T M3MM 0 − 1
T

⎞⎠⎞⎞ ,

where M1 = ∂PGPP
∂δ and M3MM = ∂V

∂δ . The characteristic polynomial for solving the
eigenvalues of J can be derived to be

det(λI − J) = (− 1
T
− λ)(λ2 +

εD

2H
λ + M1). (4.18)

Using (4.18), we can obtain eigenvalues and stability of equilibrium points
for fast subsystem (4.15) as follows.

1. When D = 0, the equilibrium points on the branch BC in Figure 3 are
unstable due to M1 < 0. The equilibrium points on the branch AB in Figure 3
are nonhyperbolic due to

λ1,2 = ±i

√√
E′2 − (x′

d + x)2P 2
TPP

x′
d + x

, λ3 = − 1
T

.
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Figure 2. Parameter chart for the roots of equation (4.17).
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Figure 3. Bifurcation diagram of equilibrium point on (Efdr −
PTPP ) plane for fast subsystem (4.15) (the points on the dot line
C-B are unstable, and the points on the solid line A-B are stable).

2. When D > 0, the equilibrium points on the branch BC in Figure 3 are
unstable due to M1 < 0. The equilibrium points on the branch AB are stable
due to the eigenvalues

λ1,2 =
1
2

(
− εD

M
±
√

ε2D2

M2
− 4E′

x′
d + x

cos(h10)

)
, λ3 = − 1

T
.
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Figure 4. Phase portraits for equation (4.15) at D = 0 and
PTPP = 0.8. (S1 is a center point, and S2 is a saddle point.)
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Figure 5. Phase portraits for equation (4.15) at D = 5 and
PTPP = 0.8. (Real line represents stable manifold, and the dotted
line is an unstable manifold. S1 is a stable point, and S2 is a saddle
point.)

The bifurcation diagram of Efdr − PTPP for system (4.15) when E′ = 1.25 is
drawn in Figure 3.

For given E′, when G1(E′2) < P 2
TPP < G0(E′2), the projection of the trajectory

of (4.15) on δ−ω′ plane is shown in Figures 4 and 5 for D = 0 and D = 5 respec-
tively. In fact, the first two equations of (4.15) are independent of the third; we
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can easily show that the first two equations of the system (4.15) are a Hamiltonian
system, where the Hamiltonian function is

H(δ, ω′) =
ω′2

2
− E′

x′
d + x

cos δ − PTPP δ.

By summarizing the above discussions, we have the following theorem for the
fast subsystem (4.15).

Theorem 4.3. When G1(E′2) < P 2
TPP < G0(E′2), the approximate fast motion has

two equilibrium points S1 and S2, and each of them lying on one branch of the slow
manifold. Every point on the slow manifold is an equilibrium point of fast motion.
S2 is unstable, and the stability of S1 is as follows:
(1) if D = 0, then S1 is a center and S2 is a saddle;
(2) if D > 0, then S1 is stable, S2 is a saddle.

In Figure 4, we show that the phase portrait and an orbit homoclinic to the
saddle S2 for D = 0, PTPP = 0.8 and E′ = 1.25. The phase portrait for D = 5,
PTPP = 0.8 and E′ = 1.25 is shown in Figure 5. In fact, the attractive region of S1 is
just the domain enclosed by the stable manifold of saddle S2. Now we consider the
dynamical behavior of the fast-subsystem (4.15). From Figure 5 we obtain that
the initial values of state variables (δ, ω′, Efdr) lie in the attractive region of S1,
and the orbit starting from them will eventually converge to the stable equilibrium
S1 with a fast transient.

In the above analysis, slow variable E′ actually acts as a parameter. Now we
consider the effect of E′ on the domain of attractive region. We take PTPP = 0.8
and D = 5. The attractive domain for E′ = 0.8 is shown in Figure 6 and for
E′ = 4 is shown in Figure 7. By comparing Figure 6 with Figure 7, the attractive
domain in Figure 7 is clearly larger than that in Figure 6, which implies that E′

has significant effects on the attractive domain.

4.4. Estimation of Attractive Region for the Original System

Until now we just consider the reduced system, i.e., the limiting case of ε = 0 to the
original system (4.2). For ε �= 0 and sufficiently small, by�� the geometric singular
perturbation theory, we can further construct the dynamical behavior of the system
(4.2) through studying the reduced system (4.8) and (4.15). The motion and the
order-0 slow manifold are sketched in Figure 8, where S1 is a stable equilibrium.
The trajectory starting from the attractive region of S1 first approaches AB by
spiral lines with fast transient, and then it slowly reaches the equilibrium remaining
on the slow manifold. On the other hand, the trajectory starting from point lying
on the slow manifold branch AB moves along AB. Figures 8 and 9 indicate the
trajectories and solution curves of the original system (4.2) for PTPP = 0.8 < PTPP SNT

and D = 5 with initial value (δ, ω′, E′, Efdr) = (2.51, 0.001, 1.25, 2.5643) lying
in the interior of the domain of the attractive region of S1. We observe that the
trajectory starting from the attractive region of S1, which lies on the slow manifold
MεMM , converges to the equilibrium S1 with a fast transient period. Comparing the
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Figure 6. Attractive region for PTPP = 0.8, D = 5 and E′ = 0.8.
(W s is the stable manifold and Wu is the unstable manifold. S1

is a stable equilibrium, and S2 is a saddle equilibrium.)
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Figure 7. Attractive region for PTPP = 0.8, D = 5 and E′ = 4.
(W s is the stable manifold and Wu is the unstable manifold. S1

is a stable equilibrium and S2 is an unstable equilibrium.)

stable and unstable manifolds at saddle S2 of the fast subsystem (4.15) with the
system (4.2) by numerical simulation, Figure 10 shows that the stable and unstable
manifolds at S2 of the system (4.15) coincide well with those of the system (4.2),
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Figure 8. Slow manifold and trajectories near the slow manifold.

which implies that we can only use the simple fast system approximately to analyze
the stability of the complicated original system. Therefore, the attractive region of
the original (4.2) is just the domain enclosed by the stable manifold of the saddle
S2 of system (4.15). Clearly, a stable operating point must be inside the attractive
region for a power system.

On the other hand, if a point is out of the region formed by the stable
manifold, or flows to the edge SNB of the slow manifold where PTPP = PTPP SNT , then the
variables of the system (4.2) cannot converge to an equilibrium, which is displayed
in Figures 11 and 12.

5. Conclusion

In this paper, we mainly examine a dynamical model of power systems, which is
modified from [23, 24] by further considering AVRs for multimachine systems. Non-
linear dynamical system is decomposed into two simple subsystems for a relatively
general settings of power systems, by including AVRs. The dynamical behavior of
the power system was studied using the geometric singular perturbation analysis
and numerical simulations. We show that our model does not only consider the
control devices, such as AVRs for multimachine systems, but also can be used to
derive the attractive regions of equilibria.

We have proven that the attractive region of the system is given by the stable
manifold of a saddle point of the reduced fast-subsystem. Therefore, theoreticallyff
by observing whether its operating point lies in the attractive region with stabil-
ity boundary, we can estimate the stability of the power system in the current
operating state. By a single-machine system and numerical simulation, we also
demonstrate that the complicated original system can be simplified without loss
of dynamical behavior and physical meaning. Moreover, we identified the effect of
E′ on the size of stability region.
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Figure 9. Solution curves of (4.15) for PTPP = 0.8 and D = 5
with initial value (δ, ω′, E′, Efdr) = (2.51, 0.01, 1.25, 2.5643) lying
in the interior of the stable manifold of Figure 5.

−2 −1 0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

2S

δ

ω’

A 

B

C 

Figure 10. Stable manifolds and unstable manifolds for PTPP =
0.8 and D = 5: the dotted line is for fast subsystem at E′ =
2.617636 and the solid line is for original system.
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Algebraic Multiplicity and the Poincaré
Problem

Jinzhi Lei and Lijun Yang

Abstract. In this paper we derive an upper bound for the degree of the strict
invariant algebraic curve of a polynomial system in the complex project plane
under generic condition. The results are obtained through the algebraic mul-
tiplicities of the system at the singular points. A method for computing the
algebraic multiplicity using Newton polygon is also presented.
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1. Introduction

In this paper, we present an approach to establish the upper bound of the de-
gree of the strict invariant algebraic curve of a polynomial system in the complex
projective plane P2

C
. A polynomial system in P2

C
is defined by the vector field

ż = P (z, w), ẇ = Q(z, w), (1.1)

where P and Q are relatively prime polynomials with complex coefficients.

Definition 1.1. A polynomial f(z, w) is said to be a Darboux polynomial of (1.1)
if there exists a polynomial Rf (z, w) such that

P (z, w)
∂f

∂z
+ Q(z, w)

∂f

∂w
= Rf (z, w)f(z, w). (1.2)

We call the zero set C(f) = {(z, w) ∈ Ĉ2| f(z, w) = 0} an invariant algebraic curve,
and Rf the cofactor of f . In particular, if C(f) contains no constant irreducible
component (i.e., the line z = z0 or w = w0), then f is a strict Darboux polynomial,
and C(f) is a strict invariant algebraic curve.

This work was supported by the National Natural Science Foundation of China (10301006).
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The study of invariant algebraic curves of a polynomial system goes back
to Darboux and Poincare (see [11]). In general, the Darboux polynomial of the´
system (1.1) can be found by solving the equation (1.2) for f and Rf . Equation
(1.2) is easy to solve if the degree of f is known in advance (for example, see [10,
Proposition 1]). However, it is still an open problem, for a given system, to establish
the upper bound for the degree of the invariant algebraic curve effectively. This
problem is known as the Poincaré problem. It is known that such an upper bound´
does exist for a given polynomial system, see [11, Corollary 3.1]. However, the
uniform upper bound that depends merely on the degree of the system does not
exist, for non-trivial examples, see [8]. As a consequence, the practical arithmetic
to find the bound from the coefficients is significant for the general solution for
finding the invariant algebraic curve of a polynomial system. For more remarks
and results on the Poincare problem, see [2, 4, 11, 12]. The first result to address´
the Poincare problem was presented by Carnicer [2] as follows.´

Theorem 1.2 (Carnicer’s theorem [2]). Let F be a foliation of P2
C

and let C be an
algebraic curve in P2

C
. Suppose that C is invariant by F and there are no dicritical

singularities of F in C. Then

∂oC ≤ ∂oF + 2.

In the proof of Carnicer’s theorem, the relationship between the sum of the
multiplicities of a foliation along the branches of a curve, the degree of the curve,
the degree of the foliation and the Euler characteristic of the curve are system-
atically used. This idea is also used in the present paper. However, no effective
method was provided in [2] to determine whether a singular point is dicritical or
not. The same inequality had been showed by Cerveau and Lins Neto [3] for those
systems of which all the singularities of the invariant algebraic curve are nodal. A
more straightforward result was presented by Walcher using elementary method
[12]. Walcher’s result is restated as follows.

Theorem 1.3 ([12, Theorem 3.4]). Assume that a vector field X of degree M on
P2

C
admits an irreducible invariant algebraic curve, and if all the stationary points

of X at infinity are non-degenerate and non-dicritical, then the degree of the curve
cannot exceed M + 1.

In Walcher’s proof, the Poincare–Dulac normal forms of the non-degenerate´
stationary points of a vector field were discussed. In particular, when the stationary
point is non-dicritical, the precise information of the number of irreducible semi-
invariants of the vector field X was obtained, from which the upper bound of
the degree of an invariant algebraic curve is derived. It was also pointed out in
[12] that if there are dicritical ones among the non-degenerate stationary points,
then the vector field can admit infinitely many (pairwise relatively prime) semi-
invariants. Moreover, the condition of non-dicriticality can be verified through the
investigation of the linear approximation of the vector field at the stationary points.
Thus, Walcher’s result provides a practical approach for the Poincaré problem.´
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In this paper, we present an alternative approach for the Poincaré problem by´
considering the algebraic multiplicities (see Definition 2.1) of the singular points
of the system, and obtain an approximate inequality for the upper bound for the
degrees under some generic conditions. The main results of this paper are:

Theorem 1.4. Consider the differential equation

dw

dz
=

P (z, w)
z Q(z, w)

(1.3)

of degree M = max{deg P (z, w), deg z Q(z, w)}. Let (1.3) admit an irreducible
strict Darboux polynomial f(z, w), a1, . . . , ak ∈ C be all the roots of P (0, w) = 0,
and a0 = ∞, and Mul(0, ai) be the algebraic multiplicity of (0, ai) respectively;
then

degw f(z, w) ≤
k∑

i=0

Mul(0, ai). (1.4)

In particular, if the singularities (0, ai) are not algebraic critical, then

degw f(z, w) ≤ M (k + 1). (1.5)

Theorem 1.5. Consider the polynomial system (1.1) of degree M=max{degP (z, w),
deg Q(z, w)}. If (1.1) has an invariant straight line L, and the singular points at
L are not algebraic critical, and if (1.1) admits an irreducible strict Darboux poly-
nomial f(z, w), then

deg f(z, w) ≤ M(M + 1).

Note that, in Theorem 1.5, we do not need the singularities to be non-
degenerate, and we will see in the next section that not algebraic critical is weaker
than non-dicritical. In Theorem 1.5, we require that (1.1) has an invariant straight
line. In fact, it is generic that the line at infinity is invariant. Hence, the condition
in Theorem 1.5 is generic.

The rest of this paper is arranged as follows. In Section 2, we will introduce
the concept and computing method of algebraic multiplicity. And next, the main
theorems are proved. In Section 3, as application the 2D Lotka–Volterra system is
studied.

2. Algebraic Multiplicity and the Poincaré Problem´

Let f(z, w) be a Darboux polynomial of (1.1). In general, the upper bound of
the degree of f(z, w) cannot be determined merely from the equation (1.2). Theff
assumption that f(z, w) is irreducible must be taken into account. If f(z, w) is ir-
reducible, then, without loss of generality, we may perform the transformation
(z, w) �→ (z + c w, w) (c ∈ R), if necessary, and assume that degw f(z, w) =
deg f(z, w). Let m = degw f(z, w); then there are m algebraic functions wi(z)
satisfying f(z, wi(z)) = 0 (i = 1, 2, . . . , m). If these m algebraic functions pass
through some common singular points, then m can be bounded by the possible
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number of the algebraic solutions that pass through these singular points. To this
end, we will define the algebraic multiplicity as the number of local algebraic so-
lutions as follows.

Definition 2.1. Consider a differential equation
dw

dz
= F (z, w), (2.1)

and (z0, w0) ∈ C2. A formal series

w(z) = w0 +
∑
i≥0

αi (z − z0)µi (2.2)

is said to be a local algebraic solution of (2.1) at (z0, w0) if w(z) is a formal
series solution of (2.1) with αi �= 0,�� µi ∈ Q+, and µi < µi+1 (∀i). The algebraic
multiplicity of (2.1) at (z0, w0), denoted by Mul(z0, w0; F ) or simply by Mul(z0, w0)
while the context is clear, is defined as the number of distinct local non-constant
algebraic solutions of (2.1) at (z0, w0). If Mul(z0, w0) = ∞, then (z0, w0) is said to
be algebraic critical.

It is evident that algebraic criticality implies dicriticality (i.e., there are in-
finitely many invariant curves passing through the same point).

When w0 = ∞, let w̄ = 1/w; then w̄(z) satisfies

dw̄

dz
= −w̄2 F (z, 1/w̄) := F̄ (z, w̄),

and the algebraic multiplicity Mul(z0,∞; F ) is simply defined as Mul(z0, 0; F̄ ).
Let a, b, c ∈ C with a, c �= 0, and let�� W = a (w−w0)+b (z−z0), Z = c (z−z0);

then W (Z) satisfies an equation of the form

dW

dZ
= F̃ (Z, W ). (2.3)

It is easy to show that a local algebraic solution of (2.1) at (z0, w0) corresponds
to a local algebraic solution of (2.3) at (0, 0). Hence we have

Mul(z0, w0; F ) =

{
Mul(0, 0; F̃ ) if F̃ (Z, 0) �≡ 0,

Mul(0, 0; F̃ ) + 1 if F̃ (Z, 0) ≡ 0.

It is evident that, if (z0, w0) is a regular point and F (z, w0) �≡ 0, then
Mul(z0, w0) = 1. To estimate the algebraic multiplicity at singular point (z0, w0),
we can substitute (2.2) into (2.1) to find out all possible formal series solutions. A
method for finding the formal series solution of a polynomial system at a singular
point is given in [7] using Newton polygon (see [1, 6]). The result and proof are
restated below.

Lemma 2.2. Consider the polynomial system

dw

dz
=

P (z, w)
Q(z, w)

, (2.4)
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where
P (z, w) =

∑
i≥0

PiPP (z)wi, Q(z, w) =
∑
i≥0

Qi(z)wi,

and

PiPP (z) = pi,0 zki + pi,1 zki+1 + · · · , Qi(z) = qi,0 zli + qi,1 zli+1 + · · · , i ≥ 0.

If (0, 0) is a singular point of (2.4), and there exists an index j, satisfying:

(1) kj = lj−1 − 1;
(2) for any i �=�� j,

min{ki, li−1 − 1} > kj + (j − i) (pj,0/qjq −1,0);

(3) pj,0/qjq −1,0 ∈ Q+,

then (0, 0) is algebraic critical for the system (2.4).

Proof. Let λ = pj,0/qjq −1,0, and u(z) = w(z) z−λ; then u(z) satisfies

du

dz
=

∑
i≥0(pi,0 zki+i λ − qi−1,0 λ zli−1+i λ−1 + h.o.t.)ui∑

i≥0(qi,0 zli+(i+1) λ + h.o.t.)ui

=
zlj−1+j λ−1

∑
i≥0(pi,0 zki−kj+(i−j) λ − qi−1,0 λ zli−1−lj−1+(i−j) λ + h.o.t.)ui

zlj−1+j λ
∑

i≥0(qi,0 zli−lj−1+(i−j) λ + h.o.t.)ui
.

Taking the conditions of the index j into account, we can rewrite the above equa-
tion as

du

dz
=

zs P̂ (z, u)
z Q̂(z, u)

,

where P̂ (0, u), Q̂(0, u) �≡ 0, and

s = min
i≥0

{ki − kj + (i− j)λ, li−1 − lj−1 + (i− j)λ} ∈ Q+.

Let z = z̄qj−1,0 ; then

du

d¯
=

qjq −1,0 z̄s qj−1,0−1 P̂ (¯qj−1,0 , u)
Q̂(¯qj−1,0 , u)

. (2.5)

It is easy to have s qjq −1,0 ∈ N and P̂ (¯qj−1,0 , u), Q̂(¯qj−1,0 , u) are polynomials of ¯
and u. Thus, for any α such that Q̂(0, α) = 0, (2.5) has a unique solution�� u( ;̄ α)
which is analytic at ¯ = 0 and satisfies u(0; α) = α. Thus,

w(z; α) = zλ u(z1/qj−1,0 ; α) = zλ(α +
∑
i≥1

1
i!

u(i)
z (0; α)zi/qj−1,0 )

is a solution of (2.4), i.e., w(z; α) is a local algebraic solution of (2.4) for any α

such that Q̂(0; α) = 0. Hence, (0�� , 0) is algebraic critical for (2.4). �



148 Lei and Yang

Remark 2.3. (1) Lemma 2.2 is also valid for those equations of which P and Q
are Puiseux series of z and w (with slight change in the proof):

P (z, w) =
∑

i,j≥0

pi,j zi/µ wj/ν , Q(z, w) =
∑

i,j≥0

qi,j zi/µ wj/ν , µ, ν ∈ N.

(2) From the proof of Lemma 2.2, if the index j satisfies the conditions (1), (2),
but pj,0/qjq −1,0 ∈ R+\Q+, and let λ = pj,0/qjq −1,0, then (2.4) admits infinity
solutions of the form w(z; α) = zλ u(z1/s; α), where u( ;̄ α) is the solution of

du

d¯
=

P̂ (¯1/s, u)
s Q̂(¯1/s, u)

such that u(0; α) = α. Thus, (2.4) is dicritical at (0, 0), but not necessary
algebraic critical.

Lemma 2.4. Let (0, 0) be a singular point of (2.4); then either (0, 0) is algebraic
critical, or

Mul(0, 0) ≤ max{degw P (z, w), degw Q(z, w) + 1}. (2.6)

Proof. Let N = degw P (z, w), M = degw Q(z, w), and

P (z, w) =
N∑

i=0

PiPP (z)wi, Q(z, w) =
M∑
i=0

Qi(z)wi,

where

PiPP (z) = pi,0 zki + pi,1 zki+1 + · · · , Qi(z) = qi,0 zli + qi,1 zli+1 + · · · .

Substitute
w(z) = α0 zλ0 + h.o.t. (α0 �= 0�� , λ0 ∈ Q+) (2.7)

into (2.4); then

0 =
M∑
i=0

Qi(z)(α0 zλ0 + h.o.t.)i (α0λ0 zλ0−1 + h.o.t.)−
N∑

i=0

PiPP (z) (α0 zλ0 + h.o.t.)i

=
M∑
i=0

qi,0 λ0 αi+1
0 zli+(i+1) λ0−1 −

N∑
i=0

pi,0 αi
0 zki+i λ0 + h.o.t.

Thus, at least two of the exponents

li + (i + 1)λ0 − 1, kj + j λ0 (0 ≤ i ≤ M, 0 ≤ j ≤ N)

are equal to each other and not larger than any other exponents, and α0 �= 0 that��
vanishes the coefficient of the lowest degree. If this is the case, (λ0, α0) is said to
be acceptable to (2.4). Assume that (0, 0) is not algebraic critical (i.e., Lemma 2.2
is not satisfied), then the values λ0 and α0 can be obtained using Newton polygon
[1, 6] as follows. Let Γ be the Newton open polygon of all points (see Figure 1)

(i + 1, li − 1), (j, kj) (0 ≤ i ≤ M, 0 ≤ j ≤ N). (2.8)
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Let Γi2
i1

be an edge of Γ, with i1 < i2 to be the horizontal coordinates of the extreme
vertices. Let −λ0 be the slope of Γi2

i1
; then α0 should satisfy a polynomial of degree

i2 − i1. In particular, (λ0, α0) is said to be d-folded if α0 is a d-folded root of the
above polynomial. Thus, for the edge Γi2

i1
, there are at most i2− i1 pairs of (λ0, α0)

that are acceptable to (2.4). Thus, there are totally at most max{M + 1, N} pairs
of (λ0, α0) that are acceptable to (2.4).
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Figure 1. Newton polygon

For each (λ0, α0) in the first step, let w(z) = α0 zλ0 + w1(z); then w1(z)
satisfies the equation

Q(z, α0 zλ0 + w1)(α0 λ0 zλ0−1 + w′
1)− P (z, α0 zλ0 + w1) = 0. (2.9)

Repeat the foregoing argument, if (0, 0) is not an algebraic critical point of (2.4),
then there are finite solutions of (2.9) of the form

w1(z) = α1 zλ1 + h.o.t. (λ1 ∈ Q+, λ1 > λ0). (2.10)

To complete the proof, it is sufficient to show that if (λ0, α0) is d-folded, then there
are at most d pairs of (λ1, α1) with λ1 > λ0 which are acceptable to (2.9).

Let

Q1(z, w1) = Q(z, α0 zλ0 + w1),

P1PP (z, w1) = P (z, α0 zλ0 + w1)− α0 λ0 zλ0−1 Q(z, α0 zλ0 + w1);
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then w1(z) satisfies
Q1(z, w1)w′

1 − P1PP (z, w1) = 0. (2.11)

Write
Q1(z, w1) =

∑
i≥0

Q1,i(z)wi
1, P1PP (z, w1) =

∑
i≥0

P1PP ,i(z)wi
1

and let l1,i and k1,i be the lowest degrees of Q1,i(z) and P1PP ,i(z) respectively, and
r1,i = min{k1,i, l1,i−1 − 1}. We will prove that if (λ0, α0) is d-folded, then for any
i > d,

r1,d ≤ r1,i + (i− d)λ0. (2.12)

When (2.12) is satisfied, there are at most d-pairs of (λ1, α1) which are acceptable
to (2.11) and λ1 > λ0. In fact, let (λ1, α1) be acceptable to (2.11); then there exist
j1 < j2, such that

λ1 =
r1,j1 − r1,j2

j2 − j1
> λ0

and
r1,d ≥ r1,j1 + (j1 − d)λ1, r1,d ≥ r1,j2 + (j2 − d)λ1.

If j1 > d (or j2 > d), then

r1,d > r1,j1 + (j1 − d)λ0 (or r1,d > r1,j2 + (j2 − d)λ0)

which contradicts (2.12). Hence, j1 < j2 ≤ d, and there are at most d-pairs of
(λ1, α1) (taking into account that (0, 0) is not algebraic critical).

To prove (2.12), let

Q(z, α zλ0) =
∑
i≥0

ξi(α) zsi (s0 < s1 < · · · ),

P (z, α zλ0) =
∑
i≥0

ηi(α) zτi (τ0ττ < τ1ττ < · · · );

then

Q1,i(z) =
1
i!

z−i λ0
∑
j≥0

ξ
(i)
jξ (α0) zsj ,

P1PP ,i(z) =
1
i!

z−i λ0

⎛⎝⎛⎛∑
j≥0

η
(i)
jη (α0) zτjτ − α0 λ0 zλ0−1

∑
j≥0

ξ
(i)
jξ (α0) zsj

⎞⎠⎞⎞ ,

and hence
r1,i ≥ min{τ0ττ , s0 + λ0 − 1} − i λ0. (2.13)

Thus, it is sufficient to show that

min{k1,d, l1,d−1 − 1} = min{τ0ττ , s0 + λ0 − 1} − d λ0. (2.14)
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To this end, write

Q1,d−1(z) =
1
d!

ξ
(d−1)
0 (α0) zs0+λ0−d0 λ0 + h.o.t.,

P1PP ,d(z) =
1
d!

(
η
(d)
0 (α0) zτ0 − α0 λ0 ξ

(d)
0 (α0) zs0+λ0−1

)
· z−d λ0 + h.o.t.

and let
P (z, α zλ0)− α λ0 zλ0−1 Q(z, α zλ0) = ϕ(α) zv0 + h.o.t.

Because (λ0, α0) is acceptable to (2.4) and d-folded, we have

ϕ(α0) = · · · = ϕ(d−1)(α0) = 0, ϕ(d)(α0) �= 0�� . (2.15)

Therefore, we have the following:

(a) if τ0ττ < s0 + λ0 − 1, then ϕ(α) = η0(α) and η
(d)
0 (α0) �= 0;��

(b) if s0 + λ0 − 1 < τ0ττ , then ϕ(α) = −λ0 α ξ0(α), and hence ξ
(d)
0 (α0) �= 0;��

(c) if s0 + λ0 − 1 = τ0ττ , then ϕ0(α) = η0(α) − αλ0ξ0(α), and hence

ϕ
(d)
0 (α0) = −λ0ξ

(d−1)
0 (α0) + (η(d)

0 (α0)− α0λ0ξ
(d)
0 (α0)) �= 0�� .

Thus, we have ξ
(d−1)
0 (α0) �= 0 or�� η

(d)
0 (α0)− α0λ0ξ

(d)
0 (α0) �= 0.��

It is not difficult to verify that (2.14) holds in any one of the above cases,
and thus the lemma is concluded. �

From the proof of Lemma 2.4, the local algebraic solutions of (2.4) at (0, 0)
can be obtained by repeating the Newton polygon. Moreover, following the proce-
dure, we will either stop by the case that (0, 0) is algebraic critical (Lemma 2.2),
or encounter the local algebraic solution of the form

w(z) =
k−1∑
i=0

αi zλi + u(z),

where (λk−1, αk−1) is 1-folded, and u(z) satisfies an equation

du

dz
=

P̂ (z, u)
Q̂(z, u)

, (2.16)

where P̂ , Q̂ are Puiseux series. Whenever this is the case, we have the following.

Lemma 2.5. In the equation (2.16) that derived from (2.4) through the above pro-
cedure, let

P̂ (z, u) = p̂0,0z
k0 + p̂1,0z

k1 u + h.o.t., Q̂(z, u) = 0̂,0z
l0 + h.o.t.

If (λk−1, αk−1) is 1-folded, and one of the following is satisfied:
(1) k1 �=�� l0 − 1;
(2) k1 = l0 − 1, and p̂1,0/q̂0,0 �∈ (λk−1,∞) ∩Q+,

then (0, 0) is not algebraic critical of (2.4).
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Proof. Let u(z) be a local algebraic solution of (2.16), expressed as

u(z) =
∑
i≥k

αi zλi , (2.17)

where λi > λi−1 (∀i ≥ k). We will show that (λi, αi) are determined by (2.16)
uniquely.

From the proof of Lemma 2.4, we have

k0 −min{k1, l0 − 1} > λk−1.

Hence, substituting (2.17) into (2.16), and taking into account that (λk−1, αk−1) is
1-folded, and either k1 �=�� l0−1 or k1 = l0−1, p1,0/q0,0 �∈ (λk−1,∞)∩Q+, we have
λk = k0 −min{k1, l0 − 1}, and αk is determined uniquely by p0,0, q0,0, p1,0, k1, l0.
Therefore, (λk, αk) is also 1-folded. Let u(z) = αk zλk + v(z); then v(z) satisfies

dv

dz
=

p̂′0,0 zk′
0 + p̂1,0 zk1 v + h.o.t.
q̂0,0 zl0 + h.o.t.

, (2.18)

where k′
0 > k0. In particular, the conditions in the lemma are also valid for (2.18).

Thus, we can repeat the procedure, and hence there is a unique solution u(z) of
the form (2.17), and (0, 0) is not algebraic critical for (2.4). �

Remark 2.6. In Lemma 2.5, we might also find the solution of the form (2.17)
when k1 = l0 − 1 and p̂1,0/q̂0,0 ∈ (λk−1,∞) ∩Q+. However, when this is the case,
we can identify two cases:
(1) if p̂1,0/q̂0,0 ∈ (λi, λi+1) ∩Q for some i ≥ k − 1, then the condition in Lemma

2.2 is satisfied at the ith step, and (0, 0) is algebraic critical;
(2) if p̂1,0/q̂0,0 = λi for some i, then (0, 0) is not algebraic critical.

In any case, the procedure can stop in a finite number of steps. Thus, it is effective
to find the algebraic multiplicities of (2.4) using the Newton polygon.

Example. Consider the equation

(z + w2)w′ − (z2 + µw) = 0. (2.19)

The Newton polygon of (2.19) is shown in Figure 2. From the Newton poly-
gon, if µ ∈ (1/2, 2)∩Q, then (0, 0) is algebraic critical, with local algebraic solutions

w(z) = α0z
µ + h.o.t. (α0 = 0)�� .

Meanwhile, if µ �∈ (1/2, 2) ∩Q, the possible local algebraic solutions are

w(z) =
1

2− µ
z2 + h.o.t. (if µ = 2)�� ,

w(z) = ±
√

2µ− 1 z1/2 + h.o.t. (if µ �= 1�� /2).

When µ �= 2, let��
w(z) =

1
2− µ

z2 + w1,1(z);
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Figure 2. Newton polygon of (2.19)
then w1,1(z) satisfies

w′
1,1 =

2 z5 − (2− µ)3 µw1,1 + h.o.t.
−(2− µ)3 z + h.o.t.

.

Thus, we conclude the following. If µ ∈ (2, 5) ∩Q, then (0, 0) is algebraic critical,
with local algebraic solutions

w(z) =
1

2− µ
z2 + α1 zµ + h.o.t. (α1 = 0)�� .

If µ �= 2�� , 5, we have the local algebraic solution

w(z) =
1

2− µ
z2 − 2

(5− µ) (2 − µ)3
z5 + h.o.t.

When µ �∈ [1/2, 2)∩Q, let

w(z) =
√

2µ− 1 z1/2 + w1,2(z);

then w1,2(z) satisfies

w′
1,2 =

2 z5/2 + (2− 2µ) z1/2 w1,2 + h.o.t.
4 µ z3/2 + h.o.t.

.

Thus, if µ �= 1�� /5, we have the local algebraic solution

w(z) =
√

2µ− 1 z1/2 +
1

5 µ− 1
z2 + h.o.t.

Thus, repeating the above procedure, we can determine, for given µ, the
algebraic multiplicity Mul(0, 0) of (2.19). In particular, if µ �∈ (1/2,∞) ∩ Q, then
Mul(0, 0) ≤ 3. �

In the rest of this section, we will prove the main results.
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Proof of Theorem 1.4. Let W be the set of all non-constant local algebraic solu-
tions of (1.3) at (0, ai) for some 0 ≤ i ≤ k. Then

|W | =
k∑

i=0

Mul(0, ai).

Let f(z, w) be an irreducible strict Darboux polynomial of (1.3), and m = degw

f(z, w); then there are m algebraic functions wi(z) that are defined by f(z, w) = 0.
It is sufficient to show that any algebraic function wi(z) ∈ W . To this end, we only
need to show that

lim
z→0

wi(z) = {a0, a1, . . . , ak}. (2.20)

Consider the equation

z Q(z, w)
∂f

∂z
+ P (z, w)

∂f

∂w
= Rf (z, w) f(z, w).

Let z = 0; then f(0, w) satisfies

P (0, w) f ′
wff (0, w) = Rf (0, w) f(0, w).

Thus f(0, w) is a non-constant multiply of
∏k

i=1(w − wi)li , (li ≥ 0). From this it
is easy to conclude (2.20).

It is easy to have Mul(0,∞) ≤ M . Hence, if the singularities (0, ai) are not
algebraic critical, then

degw f(z, w) ≤ M (k + 1)

from Lemma 2.4. �

Proof of Theorem 1.5. If (1.1) has an invariant straight line L, then we may per-
form suitable transformation and assume that L is given by

a z + b w + z = 0 (a = 0)��
and deg f(z, w) = degw f((z − b w − c)/a, w). It is easy to see that the degree of
the system does not increase under linear transformation. Let

w̄ = w, z̄ = a z + b w + c;

then w̄(¯) satisfies the equation of the form

dw̄

dz̄
=

P̄ ( ,̄ w̄)
z̄ Q̄( ,̄ w̄)

, (2.21)

where P̄ ( ,̄ w̄), Q̄( ,̄ w̄) are polynomials. Moreover, f̄( ,̄ w̄) = f((¯− b w̄− c)/a, w̄)
is an irreducible Darboux polynomial of (2.21), and deg f(z, w) = degw̄ f̄( ,̄ w̄).
Let (ai, bi) (1 ≤ i ≤ M) be singular points of (1.1) at L; then (0, bi) are singular
points of (2.21) at ¯ = 0, and not algebraic critical. Hence, applying Theorem 1.4
to (2.21), we have

deg f(z, w) = degw̄ f̄( ,̄ w̄) ≤ M (M + 1).
�
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3. Application to 2D Lotka–Volterra System

In this section, we apply Theorem 1.4 to the 2D Lotka–Volterra system

ż = z (z + c w − 1), ẇ = w (b z + w − a). (3.1)

Invariant algebraic curves of the Lotka–Volterra system had been studied by many
authors. For recent results on this topic, refer to [9, 5] and the references therein.
In [9], the complete list of parameters of which the system has a strict invariant
algebraic curve is presented. We will reobtain some of the results through the
algebraic multiplicity.

Note that (3.1) is invariant under the following transformations:

(z, w, a, b, c) → (
w

a
,
z

a
,
1
a
, c, b) if a �= 0;�� (3.2)

(z, w, a, b, c) → (
1
z
, (1− c)

w

z
, 1− b, 1− a,

c

c− 1
) if c �= 1�� . (3.3)

Results in this section are also valid under the above transformations.
Since z = 0 and w = 0 are invariant straight lines of (3.1), Theorem 1.4 is

applicable.

Proposition 3.1. If the 2D L-V system

dw

dz
=

w (b z + w − a)
z (z + c w − 1)

(3.4)

has a strict Darboux polynomial f , then

degw f(z, w) ≤ Mul(0,∞) + Mul(0, a) + Mul(0, 0) if a �= 0�� .

degw f(z, w) ≤ Mul(0,∞) + Mul(0, 0) if a = 0.

In particular, we have

Proposition 3.2. If in (3.4)

a �∈ Q+, c �∈ Q−, c− 1
a
�∈ Q+\{1}, (3.5)

then (3.4) has a strict invariant algebraic curve if and only if

a(1− c) + (1− b) = 0,

and the invariant algebraic curve is given by

a(z − 1) + w = 0.

Proof. When (3.5) is satisfied, the singularities (0, 0), (0, a), (0,∞) are not alge-
braic critical, and

Mul(0, 0) = 0, Mul(0, a) ≤ 1, Mul(0,∞) = 0.

Hence, if f(z, w) is a strict irreducible Darboux polynomial, then degw f = 1.
From this it is easy to conclude the result. �
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Proposition 3.2 shows that the algebraic multiplicities may give an exact
bound for the degree of the Darboux polynomial in particular cases. However, if
there are algebraic critical points among the singularities, (1.4) does not provide
the finite value. In this case, as we have seen from Lemma 2.2, there are infinitely
many local algebraic solutions. On the other hand, this does not automatically
imply that all these local algebraic solutions are algebraic solutions. Hence, we
come to the following concrete problem: if a singular point of a system is algebraic
critical, how many local algebraic solutions are exactly the algebraic function?
It requires additional work to discuss this problem, and one may hope that the
solution of this problem should lead to the final resolution of the Poincaré problem.´
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[12] S. Walcher, On the Poincaré problem,´ J. Diff. Eqns. 166 (2000), 51–78. doi:10.1006/
jdeq.2000.3801



Algebraic Multiplicity and Poincaré Problem´ 157
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Formalizing a Reasoning Strategy in Symbolic
Approach to Differential Equations

Shilong Ma

Abstract. There is a reasoning strategy, which is an incremental computation,
used in symbolic and algebraic approach to differential equations. The center-
focus problem can be solved by using this reasoning strategy. In algebraic
approach to automated reasoning, the construction of polynomial ideals is
at the heart. For polynomials with a known fixed number of variables, the
problem of constructing polynomial ideals can be solved by the Gröbner basis¨
method and Wu’s method. However, in many cases, the concerned polynomials
may contain arbitrarily many variables. Even for the case of polynomials with
a fixed number of variables, sometimes we do not know the number in advance,
and we only know that there exists such a number. Thus, it is necessary to
theoretically study how to construct ideals for polynomial sets with arbitrarily
many variables. In this paper, a model for incremental computations, called
procedure scheme, is proposed, and based on this model the well limit behavior
of incremental computations is studied. It provides an approach to build a new
theory by the limit of a sequence of formal theories. A convergent procedure
scheme, DISCOVER, is defined in algebraically closed fields. We can formalize
the strategy mentioned above using the procedure scheme DISCOVER.

Mathematics Subject Classification (2000). Primary 34C05; Secondary 68W30.

Keywords. Incremental computation, polynomial ideal, limit, well limit be-
havior, center-focus problem.

1. Introduction

1.1. A Reasoning Schema Used in Symbolic Approach to Differential Equations

There is a reasoning schema used in symbolic approach to differential equations.
Given a family of parametrized objects, for example, ẋ = f(x, u) with vector
x = (x1, . . . , xn) and parameters u = (u1, . . . , ul), and a first order property
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P (u1, . . . , ul) which may be a conjecture, how to automatically derive the con-
ditions on the parameters u1, . . . , ul that characterize the objects having (or not
having) the property P in the family?

Formally, that is, how to find a theory Γ such that Γ  P or Γ  ¬P ? Let us
introduce some notation:

Th(Γ) = {A | Γ  A}.
Thus, Γ  P and Γ  ¬P can be denoted P ∈ Th(Γ) and ¬P ∈ Th(Γ)

respectively.

1.2. Center-focus Problem

The center-focus problem is the key to the second part of Hilbert’s 16th problem.
Consider differential systems of center-focus type

ẋ = λx + y + P (x, y), ẏ = −x + λy + Q(x, y),

where P (x, y) and Q(x, y) are homogeneous polynomials of degree k ≥ 2 and with
indeterminate coefficients u = (u1, . . . , ul).

As explained in [14, 8], one can compute a Liapunov function F (x, y) and
derived polynomials η2, η4, . . . , η2i+2, . . . in u1, . . . , ul such that

dF (x, y)
dt

= η2(x2 + y2) + η4(x2 + y2)2 + · · ·+ η2i+2(x2 + y2)2i + · · · ,

where η2i+2 are called focal values.
The origin (0, 0) is a fine focus of order k if

η2i = 0 for 1 ≤ i ≤ k, but η2k+2 �= 0�� .

A fine focus of infinite order is called a center. Deciding the origin to be a center
or a fine focus of finite order is the key to the construction of limit cycles for the
above differential systems.

Wang [14] first applied Ritt–Wu’s method [16, 18, 17] and the Gröbner bases¨
method [2] to deal with such systems, and James and Lloyd [3] also did research
on this problem with computer algebra systems. Ma and Ning [9] combined Ritt–
Wu’s method with Budan–Fourier’s theorem, a simple and efficient method for
locating real roots and proving inequalities, to do such work.

1.3. A Successful Strategy to Solve Center-focus Problem

From the computing experiences of Wang, Ma and Ning [14, 12, 9], a successful
strategy is to compute first a few focal values η2, . . . , η2i for i < j < k and guess
some simple conditions on the parameters u1, . . . , ul, Γ = {f1 = 0, . . . , fmff = 0},
make these focal values be zero (i.e., η2 = 0, . . . , η2i = 0 ∈ Th(Γ)), and then
simplify the differential system using these conditions.

Then, compute η2i+2, . . . , η2j from the simplified differential system, and pro-
ceed as follows:

1. if η2i+2 = 0 ∈ Th(f1 = 0, . . . , fmff = 0), then check η2i+4 = 0, . . .;
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2. if η2i+2 = 0 �∈ Th(f1 = 0, . . . , fmff = 0) and η2i+2 �= 0�� �∈ Th(f1 = 0, . . . , fmff =
0), then make a guess h = 0, consistent with {f1 = 0, . . . , fmff = 0}, such that
η2i+2 = 0 and add h = 0 into {f1 = 0, . . . , fmff = 0};
Remark 1.1. Here, a guess h = 0 can be got from a factor hj of η2i+2 =
h1 · · ·hk, as η2i+2 = 0 iff h1 = 0, or . . . , or hk = 0.

3. if η2i+2 �= 0�� ∈ Th(f1 = 0, . . . , fmff = 0), then we have to revise our guess Γ to
have a new guess Γ′ and simplify the differential system again.

Go on until the goal is proved or disproved.

1.4. Motivation

In algebraic approach to automated reasoning, the construction of polynomial
ideals is at the heart. For polynomials with a known fixed number of variables,
the problem of constructing polynomial ideals can be solved by using the method
of Gröbner bases and Wu’s method. However, in many cases, the concerned poly-¨
nomials may contain arbitrarily many variables. Even for the case of polynomials
with a fixed number of variables, sometimes we do not know the number in ad-
vance, and we only know that there exists such a number. Thus, it is necessary
to theoretically study how to construct ideals for polynomial sets with arbitrarily
many variables.

In this paper, a model for incremental computations, called procedure scheme,
is proposed, and based on this model the well limit behavior of incremental com-
putations is studied. It provides an approach to build a new theory by the limit
of a sequence of formal theories. A convergent procedure scheme, DISCOVER, is
defined in algebraically closed fields. We can formalize the above strategy using
the procedure scheme DISCOVER.

2. Preliminary

Let ALC be the class of algebraically closed fields and Th(ALC) the first order
theory of ALC. Th(ALC) can be axiomatized in a language L having symbols
0, 1, +, ·, by writing the usual field axioms and adding a sequence of axioms

An = ∀a0 · · · ∀an−1∃x(a0 + a1x + · · ·+ an−1x
n−1 + xn = 0),

n = 1, 2, . . .. The complex number field is a model of ALC. For more details,
see [13].

Polynomial and rational equations and inequalities are atomic formulas, which
can be written in normal forms as follows.

1. Polynomial equations and inequalities can be written such that their right-
hand sides are 0, i.e., in the form f = 0 or f �= 0, where�� f is a polynomial.

2. A rational equation f/g = 0 can be reduced to f = 0 ∧ g �= 0; a rational��
inequality f/g �= 0 can be reduced to�� f �= 0�� ∧ g �= 0, where�� f and g are
polynomials.
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Therefore, we only need consider polynomial equations and inequalities. Not-
ing that the satisfiability of f �= 0 is equivalent to the satisfiability of�� fz − 1 = 0
by introducing a new variable z, we can have the following transformations.

2.1. Transformations of Inequalities and Disjunction of Equations

1. f �= 0�� ↔ (∃z)(fz − 1 = 0).
2. f = 0 ∨ g = 0 ↔ fg = 0.
3. ¬(f = 0) ↔ (∃z)(fz − 1 = 0).

Thus in ALC, given a theory Γ containing equations, inequalities and disjunction
of equations, Γ can be written as {f1 = 0, . . . , fmff = 0}. We still use Γ to denote
this polynomial equation system, i.e., Γ = {f1 = 0, . . . , fmff = 0}.

In the following discussions, we only use systems of polynomial equations for
the reason explained above.

Let Γ = {f1 = 0, . . . , fmff = 0}. Then,

Th(Γ) = {f = 0 | f ∈ Ideal(f1, . . . , fmff )},
that is, Γ  f = 0 if and only if f ∈ Ideal(f1, . . . , fmff ) [6].

3. The Construction of Ideals for Polynomial Sets with Arbitrarily
Many Variables

In algebraic approach to automated reasoning the construction of polynomial ideals
and the ideal membership test are at the heart of many problems.

For polynomials with a fixed number of variables, the problems of construct-
ing polynomial ideals and determining ideal or radical ideal membership may be
solved by using the method of Grobner bases [2] and Wu’s method [16, 17].¨

However, in automated differential geometric reasoning, the concerned poly-
nomials may be of the form

p = p

(
x1, . . . , xn,

dx1

dt
, . . . ,

dkx1

dtk
, . . . ,

dxn

dt
, . . . ,

dkxn

dtk
, . . .

)
and thus contain arbitrarily many variables, or even infinitely many variables [15].
In algebraic approach to first order theorem proving in predicate logic, a theorem
may also correspond to a set of polynomials with arbitrarily many variables. Thus,
it is necessary to theoretically study how to construct ideals for polynomial sets
with arbitrarily many variables.

Even for the case of polynomials with a fixed number of variables, we should
distinguish between two subcases.

1. Constructing ideals for polynomial sets with a fixed number n of variables.
We know the number n in advance.

2. Constructing ideals for polynomial sets with a fixed number of variables. We
do not know the number in advance, and we only know that this number
exists. For example, when studying the problem of constructing limit cycles
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for a differential system, we usually do not know in advance the number of
limit cycles.

4. A Model for Incremental Computations

4.1. Long Term Behavior of Incremental Computations

For incremental learning, assume that examples come in sequences, and let Ek

be the example set at time k. An incremental knowledge discovery algorithm A
processes Ek and then produces a theory Γk = A(Γk−1, Ek) for every k, which is
correct with respect to Ek. A reasonable interactive and ongoing computation A
should satisfy the following requirements.

Convergence: For E1, . . . , Ek, . . ., the limit (in some sense) of the knowledge
sequence Γ1, . . . ,Γk, . . . learned by A should exist.

Correctness: If for any k the discovered knowledge Γk is correct with respect
to Ek, then the limit of Γ1, . . . , Γk, . . . should be correct with respect to all
examples E1, . . . , Ek, . . ..

Non-trivialness: For E1, . . . , Ek, . . ., the discovered knowledge sequence Γ1, . . . ,
Γk, . . . learned by A should be laws abstracted from E1, . . . , Ek, . . ., not just
copies of them.

4.2. A Definition for Limit Behavior

In the following, we try to capture the idea of the limit of system sequences.

Definition 4.1 ([4]). Let Γ1, . . . ,Γk, . . . be a sequence of sets.

limk→∞Γk ≡
∞⋂

n=1

∞⋃
m=n

Γm, limk→∞Γk ≡
∞⋃

n=1

∞⋂
m=n

Γm

are called the upper limit and lower limit of the above sequence respectively. If
limk→∞Γk = limk→∞Γk, then we say that the (set-theoretic) limit of Γ1, . . . ,Γk, . . .
exists and denote it by limk→∞ Γk.

Obviously, limk→∞Γk ⊆ limk→∞Γk. If the limit exists, we also say that
Γ1, . . . ,Γk, . . . is convergent.

It follows from the definition that given a sequence Γ1, . . . ,Γk, . . ., an element
belongs to the upper limit iff it belongs to infinitely many Γk’s, and an element
belongs to the lower limit iff it belongs to almost every Γk.

If the limit exists, then Γ = limk→∞ Γk contains all the elements surviving
forever in every Γk when k is large enough.

Note that there are two possible cases for the limit Γ. One case is that the
limit can be reached at some K, Γ = ΓK = ΓK+1 = · · · . Such limit is called
discrete limit. Another case is that the limit cannot be reached and only can be
approached infinitely.
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Formally introducing limits of sequences of formal systems into logic and com-
puter science and using theory versions as approximations to approach complete
formal systems are independent contributions by Li [4].

In the following, we often use {Γk | k = 1, 2, . . .} to stand for the sequence
Γ1, . . . , Γk, . . . and do not distinguish them.

4.3. A Model for Incremental Computations

Let Σ be an alphabet, Σ∗ be all the sentences over Σ, and Σ∞ be all of infinite se-
quences on Σ∗. Φ denotes a Turing computable function on Σ∗; Φ can be extended
to Σ∞ by the following definition.

Definition 4.2 ([5, 6]). Let Γ̄ be a finite set of sentences in Σ∗, and Φ be a given
Turing computable function on Σ∗. For any x = {xk | k = 1, 2, . . .} ∈ Σ∞ and
every k ≥ 1, define

Γ0 = Γ̄,

Γk = Φ(Γk−1, xk).
We extend Φ to Σ∞ in the following way: Let Φinf be the function by extending
Φ to Σ∞, and

Φinf(Γ̄, x) =

{
limk→∞ Γk, if limk→∞ Γk exists,

undefined, otherwise.

Φinf is called a procedure scheme on Σ∞, and Γ̄ is called an initial set.

4.4. Well Limit Behavior of Incremental Computations

Definition 4.3 (Well limit behavior). We say that a convergent sequence {Γk | k =
1, 2, . . .} has well limit behavior, if

Th( lim
k→∞

Γk) = lim
k→∞

Th(Γk).

Remark 4.4. The well limit behavior is similar to some kind of continuous behav-
iors; however, it is not in Scott’s sense. This is because the generated sequence
may not be monotonic when a procedure scheme does incremental computation
during its execution.

We can give examples to show that not every sequence {Γk | k = 1, 2, . . .} has
well limit behavior. Thus, it is desired to find sufficient conditions for a sequence
to have well limit behavior.

5. Well Limit Behavior of Term Rewriting Systems

As it is well known, in theory computations can be studied using term rewriting
systems [1]. Without loss of generality, we assume that every formal system can
be translated into a term rewriting system.

For example, a formal theory Γ can be translated into a term rewriting system
R. For convenience, we use Th(R) to denote the theoretic closure Th(Γ) of Γ, called
the theoretic closure of R.
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Definition 5.1. Let # be a well-founded order on terms and R a term rewriting
system. R is called a # well-founded term rewriting system, if for any l → r ∈ R,
we have l $ r, and for any term T [x] and any substitution θ, l $ r implies
T [lθ] $ T [rθ].

Theorem 5.2. If {Rk | k = 1, 2, . . .} is a # well-founded term rewriting system
sequence and limk→∞ Rk exists, then

Th( lim
k→∞

Rk) = lim
k→∞

Th(Rk).

That is, the term rewriting system sequence {Rk | k = 1, 2, . . .} has well limit
behavior. For a proof of this theorem, see [11].

The following corollaries can be derived from the above results. Let R be an
infinite term rewriting system, and ≺ a well-founded order on terms. If

1. there is a term rewriting system sequence {Rk | k = 1, 2, . . .} such that
R = limk→∞ Rk, where every Rk is a finite term rewriting system and lim is
set-theoretic limit, and

2. every Rk is a ≺ well-founded term rewriting system,

then Th(R) = limk→∞ Th(Rk).
That is, for any term e, we have e ∈ Th(G) iff there is a K such that

e ∈ Th(Rk) for any k ≥ K.
In fact, the above corollary gives a construction method of theoretic closure

generated by a class of infinite term rewriting systems in the case of set-theoretic
limits.

6. Automated Reasoning and the Construction of Ideals for
Polynomial Sets in K[x1, . . . , xn, . . .]

In automated geometric reasoning and computer mathematics, the algorithmic
solutions of the following deduction problem

P1PP , . . . , PmPP |= Q

have been studied, where P1PP , . . . , PmPP are premises and Q is a conclusion. As it is
well known, the deduction problem can be reduced to the construction of ideals of
polynomials over K[x1, . . . , xn] and the ideal membership problem, where K is a
field of characteristic zero.

As pointed previously, it is necessary to theoretically study how to construct
ideals for polynomial sets with arbitrarily many variables.

We studied the limit behavior of polynomials on K[x1, . . . , xn, . . .]. By trans-
forming a polynomial set into a polynomial rewriting system and from the result
on term rewriting system sequences, we get the following result on the construction
of ideals for polynomial sets in K[x1, . . . , xn, . . .].
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Theorem 6.1. If for every k ≥ 1, Rk is the polynomial rewriting system corre-
sponding to an irreducible Gr¨bner basis¨ Gk and R = limk→∞ Rk exists, then

Ideal(R) = lim
k→∞

Ideal(Rk),

where Ideal(Rk) is the ideal generated by Rk on K[x1, . . . , xk] and Ideal(R) is the
ideal generated by R on K[x1, . . . , xk, . . .].

That is, the polynomial rewriting system sequence {Rk | k = 1, 2, . . .} has
well limit behavior. For a proof of the theorem, see [11].

The following corollaries can be derived from the above results. Let R be an
infinite polynomial rewriting system, and ≺ a well-founded order on polynomials.
If

1. there is a polynomial rewriting system sequence {Rk | k = 1, 2, . . .} such that
R = limk→∞ Rk, where every Rk is a finite polynomial rewriting system and
lim is set-theoretic limit, and

2. every Rk is a ≺ well-founded polynomial rewriting system,
then Ideal(R) = limk→∞ Ideal(Rk). That is, for any polynomial f , we have f ∈
Ideal(R) iff there is a K such that f ∈ Ideal(Rk) for any k ≥ K.

The above corollary gives a construction method of ideals for polynomial sets
in K[x1, . . . , xn, . . .] in the case of set-theoretic limits.

7. Procedure Scheme DISCOVER

Using Grobner bases computation, we can define a procedure Cons (Γ¨ , h = 0) that
accepts as input a theory Γ (i.e., a system of equations) and an equation h = 0, and
produces the decision results: (1) Γ  h = 0, or (2) Γ � h = 0, and Γ � ¬�� (h = 0),
or (3) Γ  ¬(h = 0).

In what follows, Γ = {f1 = 0, . . . , fmff = 0} and e is an equation of the form
f = 0.

Procedure Cons(Γ, e):
begin

if 1 ∈ GB({f1, . . . , fmff , hz − 1}) then return “Γ  e”;
/* z is different from x1, . . . , xn */
if 1 ∈ GB({f1, . . . , fmff , h}) then return “Γ  ¬e”;
return “Γ � e and Γ � ¬�� e”

end

Based on the configuration transformation system, we can have a procedure
Recons(Γ, h = 0) that produces a maximal consistent subset of Γ with h = 0.

Procedure Recons(Γ, h = 0):
begin

Σ := ∅;
while 1 ∈ GB(Γ ∪ {h}) do
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begin
Γ := tail(Γ);
Σ := Σ ∪ {head(Γ)}

end;
return Γ

end

Here head(Γ) denotes the first element of Γ, and tail(Γ) denotes the rest of
Γ after removing head(Γ).

The following algorithm is based on the the theory reconstruction process.
It accepts as input an initial theory E0, a set of variable-free sentences U0UU and a
goal P to be proved or disproved.

Main Algorithm. Input: P ; /* P is a goal to be discovered, e.g., a conjecture */
E0 := {}; U0UU := {h1 = 0, h2 = 0, . . .}; E∞ := DISCOVER(E0, U0UU , P ).

The procedure scheme DISCOVER is defined as follows.
procedure DISCOVER(E, U, P ):

begin
e := head(U); /* e is an equation of the form h = 0 */
if E  P or E  ¬P then return E and P (or ¬P ) else
begin

Cons(E, e);
if E  e then begin E := E; U := tail(U) end;
if E � e and E � ¬�� e then

begin E := E ∪ {e, f}; U := tail(U) end;
/* f is an equation of which e is an instance */

if E  ¬e then
begin E := Recons(E, e); U := U end;

U := U ∪ findnew(E);
DISCOVER(E, U, P )

end
end

Here findnew(E) is a procedure for getting new facts with respect to E;
head(U) denotes the first element of U , and tail(U) denotes the rest of U after
removing head(U), so U = head(U) ∪ tail(U).

Remark 7.1. To make the above procedure scheme easy to understand, some re-
dundant statements E := E and U := U are included.

8. An Example

Here, as an example, we take a cubic differential system considered in [3, 12, 9]:

ẋ = λx + y + a1x
2 − 2b1xy + (a3 − a1)y2 + a5x

2y + a7y
3,

ẏ = −x + λy + b1x
2 + 2a1xy − b1y

2 + b4x
3 + b5x

2y + (b6 − a5)xy2.
(8.1)



168 Ma

To simplify the problem, new coefficients a8, b8 and a9 are introduced in compu-
tations by using the relations

a5 =
1
2
(b6 + 2a7 − 2a9), b2

1 =
1
2
(a8 + b8), a2

1 = 1
2 (b8 − a8).

Now, we are going to show how to use the procedure scheme DISCOVER to
find some conditions Γ that ensure the origin to be a fine focus of order 8, i.e.,

η2i = 0 for 1 ≤ i ≤ 8, but η18 �= 0�� .

This is the goal to be discovered, denoted P . We can have a procedure findnew(D)
for computing focal values η’s from the differential system D.

1. First, let Γ0 = {} and compute η2 = λ using findnew(D1), where D1 denotes
the cubic system (8.1) above. We let λ = 0, and put it into the current theory,
i.e., Γ1 = {λ = 0}; now we have η2 = 0. Substituting λ = 0 into the system
(8.1), we get system D2 simpler than the system (8.1) with λ eliminated.

2. Computing η4 = b5+4a3b1 using findnew(D2), for η4 to be 0 we let b5 = 4a3b1

which is logically independent from Γ1, so we put it into the current theory
to obtain Γ2 = {λ = 0, b5 = 4a3b1}. Now we have η2 = 0, η4 = 0 ∈ Th(Γ2).
Substituting b5 = 4a3b1 into the system D2, we get system D3 simpler than
the system D2 with b5 eliminated.

3. Computing η6 = a3b1(2a9−3b6−6b4+10a2
3−4a1a3−18a7) using the procedure

findnew(D3), for η6 to be 0 we let a3 = 0 which is logically independent from
Γ2, so we put it into the current theory to obtain

Γ3 = {λ = 0, b5 = 4a3b1, a3 = 0}.
Now η2 = 0, η4 = 0, η6 = 0 ∈ Th(Γ3). Substituting a3 = 0 into the system
D3, we get system D4 simpler than the system D3 with a3 eliminated.

Remark 8.1. The choice of b1 = 0 will be rejected in the process, while the
choice of 2a9− 3b6− 6b4 +10a2

3− 4a1a3− 18a7 = 0 will lead to very complex
computations. Therefore we choose a3 = 0.

4. Computing
η8 = −a1b1(a7 + b4)(2a9 + 7b4 − 9a7)

using the procedure findnew(D4), for η8 to be 0 we let b4 = −a7 which is
logically independent from Γ3, so we put it into the current theory to obtain
Γ4 = {λ = 0, b5 = 4a3b1, a3 = 0, b4 = −a7}. Now η2 = 0, η4 = 0, η6 = 0, η8 =
0 ∈ Th(Γ4). Substituting b4 = −a7 into the system D4, we get system D5

simpler than the system D4 with b4 eliminated.

Remark 8.2. The choice of a1 = 0 will be rejected in the process, and the
choice of

2a9 − 3b6 − 6b4 + 10a2
3 − 4a1a3 − 18a7 = 0

is right, but will lead to complex computations. The computation with this
choice was done in [9]. Here, to make the example easy to be followed by
readers, we choose a7 + b4 = 0.
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5. Computing η10 = −a1b1a9(20(3b6− 4a8)a7 − (13b6− 20a8)a9) using the pro-
cedure findnew(D5), for η10 to be 0 we let

a7 =
a9(13b6 − 20a8)
20(3b6 − 4a8)

which is logically independent from Γ4, so we put it into the current theory
to obtain

Γ5 =
{

λ = 0, b5 = 4a3b1, a3 = 0, b4 = −a7, a7 =
a9(13b6 − 20a8)
20(3b6 − 4a8)

}
.

Now η2 = 0, η4 = 0, η6 = 0, η8 = 0, η10 = 0 ∈ Th(Γ5). Substituting

a7 =
a9(13b6 − 20a8)
20(3b6 − 4a8)

into the system D5, we get system D6 simpler than the system D5 with a7

eliminated.

Remark 8.3. The choice of a9 = 0 will be rejected in the process.

6. Using the procedure findnew(D6), we compute

η12 = a1b1a
2
9((3123b3

6 − 6270a3
8 − 12156b2

6a8)a9

− 24b6b8(3b6 − 4a8)(15b6 − 28a8))(3b6 − 4a8)−2,

η14 = −a1b1b
4
6b

2
8G5G

2
7G9G

−4
8 , where

G7 = 15b6 − 28a8,

G8 = 3213b3
6 − 6720a3

8 − 12156b2
6a8 + 15920b6a

2
8,

G9 = 5G2
8G10 − 64b2

8G11,

G10 = 115b2
6 − 120b6a8 − 144a2

8,

G11 = 195796845b6
6− 1539283680b5

6a8 + 5123792400a2
8b

4
6

− 9370286592a3
8b

3
6 + 10052919040a4

8b
2
6 − 6038323200a5

8b6

+ 1580544000a6
8,

η16 = −a1b1b
5
6b8G5G

2
7G10G12G

−1
8 G−2

11 , where

G12 =
10∑

k=0

αkbk
6a

10−k
8 , and αk are large integers,

η18 = a1b1b
5
6a

6
8 G5G

2
7G10G13G

−3
11 , where

G13 =
9∑

k=0

βkbk
6a9−k

8 , and βk are large integers.

For the integers αk and βk, see [12].
7. For η12 to be 0, we let

a9 =
24b6b8(3b6 − 4a8)(15b6 − 28a8)
3123b3

6 − 6270a3
8 − 12156b2

6a8
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which is logically independent from Γ5, so we put it into the current theory
to obtain

Γ6 =
{

λ = 0, b5 = 4a3b1, a3 = 0, b4 = −a7, a7 =
a9(13b6 − 20a8)
20(3b6 − 4a8)

,

a9 =
24b6b8(3b6 − 4a8)(15b6 − 28a8)
3123b3

6 − 6270a3
8 − 12156b2

6a8

}
.

Now η2 = 0, η4 = 0, η6 = 0, η8 = 0, η10 = 0, η12 = 0 ∈ Th(Γ6).
The following computations are too tedious to be described in detail

here, so we just give a very brief description of the computations.
8. For η14 to be 0, we let b2

8 = 5G2
8G10/(64G11) which is logically independent

from Γ6, so we put it into the current theory to obtain

Γ7 = Γ6 ∪
{

b2
8 =

5G2
8G10

64G11

}
.

Now η2 = 0, η4 = 0, η6 = 0, η8 = 0, η10 = 0, η12 = 0, η14 = 0 ∈ Th(Γ7).
9. For η16 to be 0, we let G12 = 0 which is logically independent from Γ7,

so we put it into the current theory to obtain Γ8 = Γ7 ∪ {G12 = 0}. Now
η2 = 0, η4 = 0, η6 = 0, η8 = 0, η10 = 0, η12 = 0, η14 = 0, η16 = 0 ∈ Th(Γ8).

Remark 8.4. For η12 = 0, η14 = 0 and η16 = 0, we can have many choices
to make guesses, but they will be rejected in the process. We omit their
descriptions here.

10. Finally, we can check η18 �= 0�� ∈ Th(Γ8), thus the goal P is proved.
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Looking for Periodic Solutions of ODE Systems
by the Normal Form Method

Victor F. Edneral

Abstract. We describe usage of the normal form method and corresponding
computer algebra packages for building an approximation of local periodic
solutions of nonlinear autonomous ordinary differential equations (ODEs).
For illustration a number of systems are treated.
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1. Introduction

The normal form method is based on a transformation of an ODE system to a
simpler set called the normal form. The importance of this method for analyzing of
ODEs near stationary point has been recognized for a long time. For the history of
this subject see, for instance, [2] or [26]. Definitions of normal form and normalizing
transformation can be formulated in different ways for general and special cases.
So there are very developed approaches for Hamiltonian systems, see, for example,
[12, 31, 5, 6] and [9, Chapters 1 and 2]. For resonant and Belitskii normal forms
see [10], [11, Chapter 5 §20] and [3]. There are also many algorithms (and their
implementations) for creating normal forms and corresponding transformations.
See for the Hamiltonian case an improved algorithm of Deprit and Hori in [35] and
its symbolic algebra realization under the REDUCE system in [37]. A matter of
numerical creation of normal forms of Hamiltonians is described in [25]. Questions
of convergence of the normalizing transformation are discussed in [5, 6, 7, 32, 33].
Concerning algorithms for the creation of normal form in a general case we mention
here (in addition to Bruno’s books) the papers [39, 40, 38].

In this paper we use the algorithm based on the approach, which was de-
veloped by A. D. Bruno [5, 6, 7, 10, 11] for a resonant normal form. The im-
portant advantage of this approach is a possibility to investigate a wide class of

This research was supported by the grant of President RF Sc.Sch.-1450.2003.2.



174 Edneral

autonomous systems in united, easily algorithmized frame. In particular it provides
a constructive way for obtaining the approximations of local families of periodic
and conditionally periodic solutions in the form of power/Fourier series for real
families and in a form of power series in time dependent exponents for complex
ones. For this paper it is especially important that the problem of convergence of
used transformations was investigated. This circumstance allows us to hope that
approximations of frequencies and corresponding periodic solutions families near
stationary points by finite formulas can be done with acceptable precision. Except
solutions themselves we can find also approximations of initial conditions, which
initiate such periodic solutions. That is, we can produce some elements of a phase
analysis.

Another advantage of the used approach is an algorithmic simplicity of the
creation of the normal form and the corresponding transformations. We have a
direct recurrence formula for this procedure. The usage does not demand keeping
of some large intermediate results as it is in other algorithms. The approach is free
from a necessity to solve intermediate systems of linear equations and from any
restrictions on low resonance cases.

It is also possible to approximate by the proposed method the non-periodic
families of solutions (“crude” case). The results are close to the results of the
Carleman linearization method. For periodic and conditionally periodic cases the
method is a generalization of the Poincaré–Lindstedt approach.´

Below we describe the creation of the normal form and the application for
building of periodic solutions of well-known second and fourth order equations.
Also we will talk briefly about higher order systems.

2. Problem Formulation

Consider the system of autonomous ordinary differential equations

ẋ = Φ(x) , (2.1)

where x = (x1, . . . , xn) is a vector function of time, ẋ def= dx/dt is the time deriv-
ative, Φ = (Φ1, . . . ,Φn) is a vector which is a function of x and probably of some
parameters.

Such a type of equations originates from many scientific and engineering
problems where oscillations, vibrations or wave processes take place. The standard
way of an investigation of such systems is:

1. Bifurcation analysis, i.e. the investigation of a picture of behavior of sys-
tem solutions in dependence on parameters. It is especially important if this
behavior is changed sharply at some parameters values.

2. Phase portrait, i.e. an investigation of a behavior of system solutions depend-
ing on initial conditions.

3. Calculation of system solutions.



Periodic Solutions of ODE Systems 175

If we have solutions of a system in an analytical form, we have a clear picture
of the system behavior, but we can have such solutions very rarely. As a rule
we have numerical solutions, but a numerical investigation of the above items 1
and 2 is sometimes a complex problem. It is also not simple to obtain numerical
solutions in unstable cases. As a consequence of this, we may be interested in
some “intermediate” approach, which would be between analytical and numerical
methods.

The normal form method is widely used for bifurcation analysis. About meth-
ods of such an investigation see, for example, [34, 28, 26]. One can see in these
books that the numerical bifurcation analysis is indeed based on the normal form
method. The main idea here is in replacing system (2.1) with some “model” sys-
tem having finite order polynomial right-hand sides and transforming them to the
canonical (normal) form. We can make from the lowest no vanishing coefficients
of the normal form the qualitative conclusions about the behavior of the original
system. It is sufficient to know only lowest orders of the normal form for such an
analysis. Sometimes this job can be done by hand, sometimes by computer algebra
systems, see, for example, [36].

Here we try to demonstrate that the calculation of high orders of the normal
form can be useful also for targets 2 and 3 mentioned above. We restrict our con-
sideration here mainly to the construction of approximations to periodic solutions
but we have a material for using this approach in a “crude” case and in the case
of conditionally periodic solutions.

The study of systems of type (2.1) in the neighborhood of stationary point x0,
where Φ(x0) = 0, typically includes three preliminary steps. Firstly x is shifted by
−x0 so that Φ(0) = 0, i.e. 0 is the stationary point to be studied. Each stationary
point of the system is considered separately.

The second step is a reduction of the system to a model form where the
vector Φ(x) is approximated by a vector of polynomials. If in some neighborhood
of the stationary point Φ is an analytic function of x then its power series can
be used to get a smooth approximation with desired precision. Often this step is
made simultaneously with a reduction of the system to its central manifold. In
any case, the right-hand sides of the model system will be polynomials without
constant terms.

The third step is the transformation of the linear parts matrix to Jordan’s
form by a complex linear change of x variables.

After these steps, system (2.1) has the form

ẏi = λiyi + σiyi−1 + Φ̃i (y) , σ1 = 0 , i = 1, . . . , n , (2.2)

where Λ = (λ1, . . . , λn) is the vector of eigenvalues of the matrix of the linear part
of the system and Φ̃ = (Φ̃1, . . . , Φ̃n) is a vector of polynomials of finite degree
without constant and linear terms.

For this paper, we assume that system (2.2) satisfies the following assump-
tions:

• the system is autonomous and has polynomial nonlinearities;
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• 0 is a stationary point and the system will be studied near y = 0;
• the linear part of the right-hand side is diagonal and not all eigenvalues are

zero, i.e. Λ �=�� 0.
It is assumed that neither the system is Hamiltonian, nor that it preserves the
phase volume nor that it has any internal symmetry.

3. The Normal Form Method

Equations (2.2) can be written in the form

ẏi = λiyi + yi

∑
q∈Ni

fi,ff qyq, i = 1, . . . , n , (3.1)

where we use the multi-index notation

yq =
n∏

j=1

yj
qj ,

with the power exponent vector q = (q1, . . . , qn) and the sets

NiNN = {q ∈ Z
n

: qi ≥ −1 and qjq ≥ 0 , if j �=�� i , j = 1, . . . , n} ,

because the factor yi has been moved out of the sum in (3.1).
The normalization is done with a near-identity transformation

yi = zi + zi

∑
q∈Ni

hi,qzq, i = 1, . . . , n (3.2)

and then we will have system (3.1) in the normal form

żi = ψi(z)
def= λizi + zi

∑
〈q,Λ〉 = 0
q ∈ NiNN

gi,qzq, i = 1, . . . , n . (3.3)

The important difference between (3.1) and (3.3) is a restriction on the range
of the summation, which is defined by the equation

〈q,Λ〉 def=
n∑

j=1

qjq λj = 0 . (3.4)

The h and g coefficients in (3.2) and (3.3) are found by using the recurrence formula

gi,q + 〈q,Λ〉 · hi,q = −
n∑

j=1

∑
p + r = q

p, r ∈ ⋃i NiNN
q ∈ NiNN

(pj + δij) · hi,p · gj,r + Φ̃i,q , (3.5)

where the second summation in the right-hand side is over all integer vectors
satisfying the constraint p + r = q, and Φ̃i,q is a coefficient of the factor zizq
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in the polynomial Φ̃i in (2.2), of which the arguments have been transformed by
(3.2). Here ||p|| and ||r|| < ||q||, where ||q|| def= q1 + · · ·+ qn. So (3.5) is a recurrent
formulae.

The ambiguity in (3.5) is usually fixed by the conventions

hi,q = 0 if 〈q,Λ〉 = 0,

gi,q = 0 if 〈q,Λ〉 �= 0�� (3.6)

and then the normalizing transformation is called a “basic” one.

3.1. Local Families of Periodic Solutions

Firstly note that the sums in (3.2) and (3.3) typically include infinitely many
terms even though the sum in (3.1) may have only a finite number of terms.
The convergence properties of these series were investigated in [5, 6, 7] and, in
general, these series diverge. However, using these divergent series, one can find
some solutions of the initial system (3.1).

Let
ξ1(z), . . . , ξs(z) (3.7)

be power series in z without constant terms. If they converge in some neighborhood
of the origin z = 0 then solutions of the system

ξjξ (z) = 0 , j = 1, . . . , s, (3.8)

make up the local analytic set . If series (3.7) are formal (i.e. can diverge in any
neighborhood of the origin), then system (3.8) defines the local formal set . In the
ring of power series there is an ideal generated by series (3.7). If the ideal has a
convergent basis then the formal set is analytic.

In [7] it was shown that local analytic sets of periodic solutions of system
(3.1) can be found by means of its normal form (3.3). Namely, for the normal form
(3.3), define the formal set A to be

A = {z : ψi = λiziω if Reλi = 0;
zi = 0 if Reλi �= 0;�� i = 1, . . . , n} ,

(3.9)

where ω is a free parameter and it is independent of number i. Power series ψi are
the same as in (3.3).

If all imaginary eigenvalues of system (2.2) are rationally dependent numbers
(i.e. in the maximal resonant case) and Λ �=�� 0, the local formal set A is analytic
and contains periodic solutions only. Since the ideal generated by this set has
a convergent basis, the corresponding system (3.9) has a sense as a system of
equations in power series. Each connected branch of set A is a local analytic
family of periodic solutions.

From this point of view, in the above resonant case the normal form is ade-
quate to the original system, at least along the set A, and this set includes all local
families of periodic solutions. From the practical point of view, such system that
has been normalized to some finite order can be used to approximate all families
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of periodic solutions near the stationary point and the precision of approximation
can be increased enough.

If not all eigenvalues are rational dependent we need to split the set A into
such subsets that in each of them all coordinates with corresponding rational
independent eigenvalues would be zero. Each of these subsets is an analytic set. So
in the phase space the set A can have several components. Each such component
can have its own frequency ω.

The general case of non-purely imaginary eigenvalues and a definition of
analytic sets, which contain local families of conditionally periodic solutions, are
given in [7].

3.2. Main Algorithm

The algorithm of the calculation of g and h in (3.2) and (3.3) is based on (3.5)
and (3.6). It is convenient to choose the representation of sets of coefficients gi,q

and hi,q in such a way that they would be combined in homogeneous subgroups
where each subgroup has the same order n, i.e. contains only terms with such
vector-indexes q = {qjq } that ||q|| = n for each i. One can calculate the sets g and
h of the next order by using sets of g and h with smaller order only, i.e. (3.5) is a
recurrence formula.

Algorithm. Let n be the dimension of the system. For its normalization till order
m we are to do:

(i) For i = 1, 2, . . . , n do:
Calculate all squared in y elements in the right-hand side nonlinearity Φ̃i(y)
in (2.2), i.e. calculate the subgroup of the first order (||q|| = 1) elements of
the set fi,ff q in (3.1) and sort it into two subsets depending on the value of
the scalar product (3.4). The first set where this product is zero will be the
first order subgroup of gi and the second set after a division by the value of
the corresponding scalar product will be the first order subgroup of hi

(ii) For k = 2, 3, . . . , m do:
(a) For i = 1, 2, . . . , n do:

Calculate the subgroup of order k of the nonlinear terms Φ̃i(y) in (2.2)
for which the substitution y is evaluated by (3.2) till order k − 1 and
define coefficients at monomials zizq as fi,ff q.

(b) For i = 1, 2, . . . , n do:
Calculate the subgroups of gi and hi of order k by a subdivision of set
fi,ff q into two subsets as in step (i). After that one can supplement the
set gi till full order k and a part of the set hi without a contribution
from the first term of the right-hand side in (3.5).

(c) For i = 1, 2, . . . , n do:
For j = 1, 2, . . . , n do:
Supplement the preliminary set of order k of hi with properly sorted
multiplications of all elements of such subgroups of hi,p and gj,r that
their total order, i.e. ||p+r|| = k. Not all these multiplications should be
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really calculated because of the factor (pj + δi,j) is zero at some values
of j index. Before the supplement all elements above are to be divided
on the corresponding scalar products also.

The cost of the above algorithm is low in comparison with the cost of evalua-
tion of the right-hand side of the nonlinear system. Under such circumstances it is
very important to calculate the right-hand sides very economically, using as much
as possible the fact that we need to calculate at each step of (ii) the homogeneous
terms of Φ̃i of order k only and all terms of lower orders are not changed during
the later operations. The problem of optimization of this evaluation is one of the
main limitations for an automatization of generating codes for the right-hand side
calculation.

3.3. Computer Algebra Implementation of the Normal Form Method

The calculation of the coefficients of the normal form (3.3) and the corresponding
transformation (3.2) with respect to (3.5) and (3.6) was implemented as the NORT
package. Earlier attempts of the author to compute sufficiently high orders of the
normal form using high level of the REDUCE language [29] were not very suc-
cessful. Because of this, the NORT package [23, 24] was created. NORT is written
in Standard LISP and contains now about 2000 operators. NORT is a package of
procedures to treat truncated multivariate power series in arbitrary dimensions.
In addition to procedures for arithmetic operations with series, there are special
procedures for the creation of normal forms and procedures for substitutions, for
calculations of roots (when it is possible), for differentiating, for printing and for
inverting multivariate power series, etc. It contains also special procedures for the
calculation of Lyapunov’s values. NORT can be used as a separate program or as
a REDUCE package.

Besides series, expressions in NORT can contain non-negligible variables (pa-
rameters). So there is implemented multivariate series-polynomial arithmetic. The
complex-valued numerical coefficients of the truncated power series-polynomials
may be treated in three different arithmetics: rational, modular, floating point
and approximate rational. There are also several options for the output form of
these numbers; the output is in a REDUCE readable form. The program uses an
internal recurrence representation for its objects. Remark that a garbage collec-
tion time for examples below was smaller than 3% of the evaluation time. This
can characterize the NORT package as a program with a good enough internal
organization.

Unfortunately at this moment the NORT package has no friendly user in-
terface yet. So we create a package for usage with Mathematica [20, 21]. This
package works with truncated multivariate power series. The demo version of the
PolynomialSeries package can be accessed at the www.mathsource.com site. Trun-
cation of power series allows one to control correctly the length of truncated series.
Therefore, an existing version is enough to support a normal form method. The
comparison of the Mathematica package with an earlier version of the normal
form package NORT written in LISP demonstrates that the calculations within
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the Mathematica system are more flexible and convenient but are considerably
slower than under LISP.

4. General Scheme of Investigation by the Normal Form Method

The general scheme of the investigation of a nonlinear ODE system by the normal
form method near each stationary point is as follows.

1. Recasting the system in a model (free of constant terms polynomial) form.
2. Linear normalization of the system, i.e. the reduction of a linear part of the

right-hand sides of the system to Jordan’s or to a diagonal form and an
investigation of the corresponding eigenvalues.

3. Searching for “resonant” values of parameters, i.e. such values at which groups
of rational dependent pure imaginary eigenvalues appear. The system should
be investigated in the neighborhood of each such value of parameters.

4. Nonlinear normalization of the system, i.e. the creation of the normal form
and the corresponding normalizing transformation (sometimes it is called as
recasting the system in a “resonance form”).

5. Bifurcation analysis of the system in parameters by observing the lowest no
vanishing orders of the corresponding normal form.

6. Building the periodic and conditionally periodic approximations of solution
families, which include the stationary point, i.e. local solutions.

7. Reducing the order of the normalized system if it is necessary, and a repetition
of the investigation above in the neighborhood of each stationary point of the
newest system.

5. Second Order Systems as a Transparent Example

All questions of convergence and integrability of normal forms for any second-order
systems of type (2.2) near a stationary point have been investigated by Bruno [5, 7]
for the case where the stationary point is an elementary singular point, i.e. both
eigenvalues of the system are not equal to zero simultaneously. The result of this
investigation stated briefly is as follows: the normal forms for such equations are
integrable. For each case there are written integrals of the normalized system. The
result regarding the convergence is as follows. Let λ2 �= 0 and�� λ

def= λ1/λ2. If
Im(λ) �= 0 or if�� λ > 0 then the transformation is convergent, and we can produce
an approximate solution of the original system from known integrals of the normal
form by transformation (3.2) with any desirable precision. In other words, the
cases of “focus” and “node” can be treated without any additional demands. At
a negative irrational λ the convergence will take place if for all nonzero vectors q
with integer elements there exist positive ε, ν such that | 〈q,Λ〉 | > ε(|q1|+ |q2|)−ν .
This condition can be checked before creation of the normal form. This case is a
particular case of a saddle point. But at real non-positive rational λ = −m/n ≤ 0
we will have convergence under some additional requirements on the normal form.
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This is an interesting case. It includes the cases of a center and a limit circle. Let
us look at a couple of examples.

5.1. Duffing’s Equation

This is an equation of the second order, which originates from a problem of a
mathematical pendulum:

d2φ

dt2
+ ω2

0 sin(φ) = 0, (5.1)

where φ is an angle of deviation of the pendulum and it can be approximated by
the series (units below have been chosen so that ω0 = 1) with the change φ =

√
6x.

We get the Duffing’s equation

d2x

dt2
= −x + x3. (5.2)

This is a Hamiltonian equation with the full energy

H =
1
2
(
dx

dt
)2 +

1
2
x2 − 1

4
x4. (5.3)

By linear complex change of variables

x = y1 + y2,
dx

dt
= i (y1 − y2), (5.4)

we can rewrite it in the diagonalized form
dy1

dt
= iy1 − i

2
(y1 + y2)3,

dy2

dt
= −iy2 +

i

2
(y1 + y2)3. (5.5)

Note that the above couple of equations have complex conjugate coefficients at
terms with exchange y1 ↔ y2. It will take place always if the original equation has
real coefficients.

The vector of eigenvalues of a linear part of the system is Λ = {i,−i}. In
accordance with the definition of the normal form (3.3) we will have at sums of
this form only terms, where 〈Λ,p〉 = i (p1−p2) = 0, i.e. only terms where p1 = p2:

dz1

dt
= i z1 + z1 (g1,1,1 · z1 · z2 + g1,2,2 · z2

1 · z2
2 + · · · ),

dz2

dt
= −i z2 + z2 (g2,1,1 · z1 · z2 + g2,2,2 · z2

1 · z2
2 + · · · ).

(5.6)

Condition (3.9) for the analytic set A of the second-order equation with
eigenvalues λ1 = −λ2 has the form∑

k=1,...

g1,k,k · (z1 · z2)k = −
∑

k=1,...

g2,k,k · (z1 · z2)k.

As for any second-order (originally) real equation the equalities g1,i,i = ḡ2,i,i, h1,i,j =
h̄2,j,i take place, this condition has the form∑

k=1,...

Re (g1,k,k) · (z1 · z2)k = 0. (5.7)
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After the calculation of the normal form for Duffing’s equation, it can be
revealed that (5.7) is fulfilled identically because all g1,i,i and g2,i,i are purely
imaginary here. It means that for Duffing’s equation we have the case, which is
usually called the “center”, when periodic solutions exist for any (small enough)
initial conditions.

Indeed, by multiplying the first of equations (5.6) by z2 and the second one by
z1 we will have d(z1z2)

dt = 0 after their addition and (5.6) has a family of solutions:

z1(t) = c1e
+iω(c1·c2)t, z2(t) = c2e

−iω(c1·c2)t,

where

ω(z1 · z2)
def= 1 +def

g1,1,1/i + g1,2,2/i + · · ·
is a real constant and c1, c2 are integration constants.

Now we can obtain the approximation to the original equation (5.2) by sub-
stitution of the found zi into yi with (3.2) and after that into x. If we choose
complex conjugate values for c1 = c̄2 we will have an approximation of a real
family of a periodic solution in the form of truncated Fourier series.

We have obtained these series as series in the c = c1 variable. It is not
convenient, and for the final representation we calculated H as a series in c by
substituting the found x and dx

dt in (5.3). By inverting this series and substituting
c as a series of H into expressions for ω and x we will have the final result as series
in H . To save space we show this result here till the fifth order only:

ω = 1− 3
4H − 69

64H2 − 633
256H3 − 110421

16384 H4 − 1318329
65536 H5 + · · · ,

x =
√√

2H×
[ cos(ωt)(1 + 9

16H + 271
256H2 + 10779

4096 H3 + 243613
32768 H4 + 2963587

131072 H5)

− cos(3ωt)H( 1
16 + 3

16H + 1209
2048H2 + 127233

65536 H3 + 6907221
1048576H4)

+ cos(5ωt)H2( 1
256 + 11

512H + 3107
32768H2 + 25567

65536H3)

− cos(7ωt)H3( 1
4096 + 1

512H + 5805
524288H2)

+ cos(9ωt)H4( 1
65536 + 21

131072H)

− cos(11ωt)H5( 1
1048576 ) + · · · ].

(5.8)

The result of this calculation was verified in two ways. The first one was a
direct substitution of series (5.8) in the original equation (5.2). After that we had
only terms with negligible orders of H . The second way was a comparison of the
numerical solutions of Duffing’s equation by the Runge–Kutta method (by NAG’s
d02baf procedure) with the values of the series tabulated at different values of H .

In view of (5.3) we have H = H(x = φ/
√

6, dx
dt = dφ

dt /
√

6). On the other
hand, H is physically not small when at a zero velocity a maximum deviation
of a pendulum takes place, i.e. when φ = π/2 and dφ

dt = 0. In this case we have
HmaxHH & 0.163. Let us now introduce a function of a maximum relative error during
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one period ferrff (H):

ferrff = sup
t∈[0,2π/ω]

√
(xseries − xnum)2 + (dxseries/dt− dxnum/dt)2

x2
num + (dxnum/dt)2

. (5.9)

This function indicates a maximum relative deviation in phase space between
series (5.8) xseries and its symbolically evaluated derivation on the one hand and
numerical solutions of (5.2) xnum, dxnum/dt on the other hand as a function of full
energy H . We have

ferrff (H = 0.1) & 1.8× 10−8,

ferrff (H = 0.125) & 7.4× 10−7,

ferrff (HmaxHH = 0.163) & 7.4× 10−5.

One can see that the achieved precision can be used for practical goals in a physical
range of energies. The use of a ready closed formula can be sometimes more prefer-
able at real-time calculations than the numerical solution of differential equations.
Form (5.8) must of course be improved for real usage by standard methods of
preparing series for numerical tabulation.

5.2. Van der Pol’s Equation

This non-Hamilton equation originated from a problem of vibrations in electronic
circuits:

d2x

dt2
= −x + (ε2 − x2)

dx

dt
. (5.10)

By linear complex change of variables (5.4) it can be rewritten in the diagonalized
form

dy1

dt
= i y1 +

1
2

(y1 − y2) [ε2 − (y1 + y2)2],

dy2

dt
= −i y2 +

1
2

(y2 − y1) [ε2 − (y1 + y2)2],

dε

dt
= 0.

As for Duffing’s case these equations have complex conjugate coefficients at terms
with exchange y1 ↔ y2.

Note that the value ε = 0 is “resonant” here, i.e. only at this value we have a
couple of purely imaginary conjugate eigenvalues. In accordance with our common
receipt we should consider ε as a small perturbation. We have redefined above the
parameter ε as a new variable. Such a trick allows us in practice to free eigenvalues
from parameter dependence.

And as for Duffing’s equation the sums on the right-hand sides of the normal
form will include only terms where p1 = p2. The third “additional” equation will
not be changed. So a difference between (5.6) and the system presented below is
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only in polynomial dependence of the right sides on ε:

dz1

dt
= iz1 + z1

∑
k=0,1,...

[g1,1,1,2k · (z1 · z2)ε2k+ g1,2,2,2k · (z1 · z2)2ε2k + · · · ],

dz2

dt
= −iz2 + z2

∑
k=0,1,...

[g2,1,1,2k · (z1 · z2)ε2k+ g2,2,2,2k · (z1 · z2)2ε2k+ · · · ],

dε

dt
= 0.

(5.11)
For the analytic set (convergent) condition (5.7) we now have the form

Re [
∑

j,k=0,1,...

g1,j,j,2k ε2k (z1 · z2)j ] = 0, g1,0,0,0
def= 0def

. (5.12)

Contrary to Duffing’s equation the above is not satisfied automatically, but
because of the implicit function theorem it may be solved in the form

z1 · z2 =
∑

k=1,2,...

qkε2k.

It is easy to see that if the above is satisfied then z1·z2 is a constant in time. So
we can continue the evaluations as for Duffing’s case, but now the constants c1, c2

of integration are not free. This is the case of a “limit circle”, and this restriction
defines the limit circle trajectory

z1(t) = c1e
+iω(c1·c2)t, z2(t) = c2e

−iω(c1·c2)t, c1 · c2 =
∑

k=1,2,...

qkε2k.

After that we obtain the approximation to the original equation (5.10) by
substituting the above-found zi into yi by (3.2) and then into x. If we choose
complex conjugate values for c1 = c̄2 we will have also for Duffing’s equation an
approximation of the real solution in the form of truncated Fourier series. It is a
limit circle trajectory:

ω = 1− 1
16ε4 + 17

3072ε8 + 35
884736ε12 − 678899

5096079360ε16 + · · · ,

x = ε · [ cos(ωt)(2 + 1
64ε4 − 23

49152ε8 − 51619
169869312ε12 + 948555443

19568944742400ε16)

+ cos(3ωt)ε4(− 3
32 + 101

12288ε4 + 24061
28311552ε8 − 279818087

815372697600ε12)

+ cos(5ωt)ε4(− 5
96 + 1865

110592ε4 − 328835
254803968ε8 − 111998015

293534171136ε12)

+ cos(7ωt)ε8( 1379
110592 − 10923199

3185049600ε4 + 21049213549
183458856960000ε8)

+ cos(9ωt)ε8( 61
20480 − 1769369

589824000ε4 + 161113663733
237817036800000ε8)

+ cos(11ωt)ε12(− 409871
331776000 + 1359229760383

1872809164800000 ε4)

+ cos(13ωt)ε12(− 715247
3715891200 + 2076538440769

5243865661440000 ε4)
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+ cos(15ωt)ε16( 526426361
4661213921280 )

+ cos(17ωt)ε16( 392636471
29964946636800 )

+ sin(3ωt)ε2(− 1
4 + 15

512ε4 − 779
1179648ε8 − 4538017

6794772480ε12)

+ sin(5ωt)ε6( 85
2304 − 8095

1327104ε4 − 1252495
6115295232ε8)

+ sin(7ωt)ε6( 7
576 − 99967

13271040ε4 + 415949513
382205952000 ε8)

+ sin(9ωt)ε10(− 9791
2457600 + 117258703

70778880000ε4)

+ sin(11ωt)ε10(− 5533
7372800 + 1657839733

1486356480000ε4)

+ sin(13ωt)ε14( 21731177
57802752000 )

+ sin(15ωt)ε14( 138697
2774532096 ) + · · · ].

(5.13)

The calculation by the NORT package till the 32nd order in ε took 1.5 minutes
on a PentiumPro-200 computer. We had 145 terms for each sum in the normal
form (5.11) and 1773 terms for the normalizing transformation from zi to yi. The
calculated expression for frequency has 9 terms. Note that the power series for the
frequency of van der Pol’s equation itself has been calculated till the 164th order
in ε in [1].

Comparison of this result with a numerical one in terms of (5.9) gives

ferrff (ε2 = 0.5) & 8× 10−10,

ferrff (ε2 = 0.75) & 4× 10−8,

ferrff (ε2 = 1.0) & 1× 10−5.

Besides the solution of equation we can obtain also the expressions for the original
conditions, which lie in the limit circle trajectory of (5.10) as series in ε by inversion
of series (3.2):

x = 0,
dx

dt
= ε · (2 + 17

96ε4 − 1577
552960ε8 − 102956839

55738368000ε12 + 48722480822161
157315969843200000 ε16 + · · · )

and

x = ε · (2 + 1
96ε4 − 1033

552960ε8 + 1019689
55738368000ε12 + 9835512276689

157315969843200000 ε16 + · · · ),
dx

dt
= 0.

6. Examples of the Fourth Order ODEs

6.1. Henon–Heiles’ System

Paper [16] describes an application of the normal form method for building analytic
approximations for all (including complex) local families of periodic solutions in the
neighborhood of the stationary points of the Henon–Heiles system. The families of
solutions are represented as truncated Fourier series in approximated frequencies,
and the corresponding trajectories are described by intersections of hypersurfaces,
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which are defined by pieces of multivariate power series in phase variables of the
system. A comparison of the numerical values obtained by a tabulation of the
approximate solutions above with results of numerical integration of the Henon–
Heiles system displays a good agreement, which is enough for the usage of these
approximate solutions for engineering applications.

The Henon–Heiles system was originally appeared in the theory of the particle
motion in an axial symmetric gravitation field, more precisely from the problem of a
star’s motion in the Galactic field [30] as a simple model for numerical experiments.
This is a system of two differential equations of the second order:

ẍ = −x− 2xy , ÿ = −y − x2 + y2 ; (6.1)

it can be written in the form (2.1) as a Hamiltonian system with the Hamiltonian
function

H =
1
2
[(ẋ)2 + (ẏ)2 + x2 + y2] + x2y − 1

3
y3 . (6.2)

The linear change of variables

x = y1 + y3 , ẋ = −ı (y1 − y3) ,

y = y2 + y4 , ẏ = −ı (y2 − y4)
(6.3)

transforms (6.1) to the form (2.2) required by the method:

ẏ1 = −ı y1 − ı (y1 + y3) (y2 + y4) ,

ẏ2 = −ı y2 − ı
2 [(y1 + y3)2 − (y2 + y4)2] ,

ẏ3 = ı y3 + ı (y1 + y3) (y2 + y4) ,

ẏ4 = ı y4 + ı
2 [(y1 + y3)2 − (y2 + y4)2] .

(6.4)

The eigenvalues of this system are two pairs of complex conjugate imaginary units:
Λ = (−ı,−ı, ı, ı). So this is a deeply resonant problem, the most difficult type of
problems to analyse using the perturbation theory.

6.2. A Normal Form of the Henon–Heiles System

For the Henon–Heiles system (6.1), the ratios of all pairs of eigenvalues are ±1, so
this is a pure resonant case, and the set A is analytic. It contains all local families
of periodic solutions. The normal form (3.3) for system (6.4) is

żi = zigi
def= λizi + zi

∑
qi ≥ −1 ,

q1, . . . , qi−1, qi+1, . . . , q4 ≥ 0 ,
q1 + q2 = q3 + q4 > 0

gi,q1,q2,q3,q4 zq1
1 zq2

2 zq3
3 zq4

4 , i = 1, 2, 3, 4 . (6.5)

The set A is defined by the system of equations of the type (3.9):

λiziω = λizi + zi

∑
gi,q1,q2,q3,q4 zq1

1 zq2
2 zq3

3 zq4
4 , i = 1, 2, 3, 4 , (6.6)

where ω is a function in z1, . . . , z4 which does not depend on i and time t but it is
defined on the set A only.

A search for all solutions of a system of type (6.6) is an independent problem
of solving systems of equations over the ring of formal power series. It is very
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important that the formal set A has a basis, which consists of convergent power
series. So the families of periodic solutions of (6.6) can be expressed in terms of
convergent series. We need to have a reasonable way of solving systems of type
(6.6). Here we use a simple factorization.

As the Henon–Heiles system (6.1) is real, in the normal form (6.5) for real
x, y the series gj(z) satisfy the reality conditions

gj+2(z) = gj(z) ,

zj+2 = zj , j = 1, 2 .

Using our program NORT for the Henon–Heiles system we have obtained

g3 = ı · [1− 7
3
z1z

−1
3 z2

4 +
2
3
z2z4 − 5

3
z1z3

+
413
54

z−1
3 z1z2z

3
4 +

157
12

z2
2z

2
4 −

59
4

z2
1z2

4

− 601
18

z1z2z3z4 − 403
108

z2
2z

2
3 +

223
108

z2
1z2

3

+
21203
432

z1z
2
2z−1

3 z4
4 +

67025
1296

z3
1z−1

3 z4
4

+
21206
405

z3
2z3

4 −
22387
135

z2
1z2z

3
4 +

67627
1080

z1z
2
2z3z

2
4

− 20551
360

z3
1z3z

2
4 −

3832
405

z3
2z

2
3z4 − 4789

15
z2
1z2z

2
3z4

− 46313
2160

z1z
2
2z3

3 +
102541
6480

z3
1z

3
3 + O(z8)] ,

g4 = ı · [1− 5
3
z2z4 +

2
3
z1z3 − 7

3
z2z

2
3z

−1
4

− 785
108

z2
2z2

4 +
605
108

z2
1z2

4 +
407
18

z1z2z3z4

+
53
4

z2
2z

2
3 −

179
12

z2
1z

2
3 −

595
54

z1z2z
3
3z−1

4

− 65495
1296

z3
2z3

4 +
40139
432

z2
1z2z

3
4 +

11291
135

z1z
2
2z3z

2
4

− 12472
405

z3
1z3z

2
4 +

25295
216

z3
2z2

3z4 +
52267
1080

z2
1z2z

2
3z4

− 16307
135

z1z
2
2z3

3 −
30626
405

z3
1z3

3 +
77777
1296

z3
2z4

3z
−1
4

− 130753
2160

z2
1z2z

4
3z−1

4 + O(z8)] .

(6.7)
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The computation of the normal form and the normalizing transformation for
the Henon–Heiles system up to the order 11 by NORT in the rational arithmetic
took about 6 seconds on a Pentium-Pro 200 MHz computer and brought 110 terms
of the normal form and 1250 terms of the normalizing transformation. There is
a significant difference in the speed of the calculations when different types of
numerical coefficients are used. Indeed the normal form was computed till the
19-order terms in the rational arithmetic.

6.3. Local Families of Periodic Solutions of the Henon–Heiles System

The equations (6.6) can be recasted (by eliminating ω which is nonzero for non-
trivial solutions) in the form

P1PP
def= z1z3 · [g1(z) + g3(z)] = 0 ,

P2PP
def= z2z4 · [g2(z) + g4(z)] = 0 ,

P3PP
def= z1z4 · [g1(z) + g4(z)] = 0 ,

P4PP
def= z2z3 · [g2(z) + g3(z)] = 0 .

(6.8)

Finding all local families of periodic solutions of system (6.5) is equivalent to
the determination of all solutions of system (6.8). For each solution of (6.8), the
corresponding family of solutions of (6.5) has the form

zj = cj exp(−ıωt) , zj+2 = cj+2 exp(ıωt) , j = 1, 2 , (6.9)

because of (6.5) and (6.6). The cj above are integration constants and ω is the
parameter from (6.6) which plays a role of a frequency.

It is important that for any reversible system, both the polynomials P1PP and
P2PP in (6.8) have the same factor (see [10] and [11, Chapter 5, §10]):

P1PP (z) = (zr
1zs

4 − zr
2z

s
3) ·Q1(z) ,

P2PP (z) = (zr
1zs

4 − zr
2z

s
3) ·Q2(z) ,

where r and s are the smallest positive integers that satisfy the equation λ1 · r −
λ2 · s = 0.

The Henon–Heiles system is reversible and has s = r = 1, but due to an
additional symmetry we can find by factorizing the preliminary series calculated
by NORT program for P1PP , P2PP from (6.7) and (6.8):

P1PP = α · (z2
1z2

4 − z2
2z2

3) · [1 + 85
18z1z3 − 59

18z2z4 + O(z4)] ,

P2PP = −α · (z2
1z2

4 − z2
2z2

3) · [1 + O(z2)] ,
(6.10)

where α �= 0 is a numerical constant and the last factors have constant terms,��
i.e. they cannot contribute any new local families of solutions (recall that we are
interested only in sets of solutions which include the stationary point z = 0). Thus
instead of the first pair of equations in (6.8), we have the equation

z2
1z2

4 − z2
2z

2
3 = 0 .
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The equations z1z4 = ±z2z3 describe a pair of hypersurfaces

h+ = {z : z1z4 = z2z3} and h− = {z : z1z4 = −z2z3} (6.11)

respectively. For the second pair of equations in system (6.8) we have:

if z1z4 = z2z3, then

P3PP = β · z1z4 · (3z1z3 − z2z4) · (z1z3 − 3z2z4)·
· [1 + 977

180 (z1z3 + z2z4) + O(z4)] ,

P4PP = −β · z2z3 · (3z1z3 − z2z4) · (z1z3 − 3z2z4) · [1 + O(z2)] ;

if z1z4 = −z2z3, then

P3PP = γ · z1z4 · (z1z3 − z2z4) · [1− 23
18z1z3 + 49

18z2z4 + O(z4)] ,

P4PP = −γ · z2z3 · (z1z3 − z2z4) · [1 + O(z2)] ;

where β and γ are some nonzero numerical constants.
Let us define more hypersurfaces

ha = {z : 3z1z3 = z2z4} ,

hb = {z : z1z3 = 3z2z4} ,

hc = {z : z1z3 = z2z4} ,

hi = {z : zi = 0}, i = 1, 2, 3, 4 .

(6.12)

So there are two branches of solutions of (6.8) corresponding to the inter-
sections h+ ∩ ha and h+ ∩ hb and one branch corresponding to the intersection
h− ∩ hc. Two more branches of solutions correspond to the intersections of hyper-
surfaces h1∩h2 and h3∩h4. There are also a couple of branches, which correspond
to conjugated essentially imaginary families of solutions with zero energy H and
a unit frequency ω; the first branch is the h1 ∩ h3 and the second branch is the
h2 ∩ h4. All together these branches exhaust all possible local families of periodic
solutions of (6.4) by substituting (6.9), binding constants cj and calculating the
corresponding frequency ω as a series in these constants.

These 7 branches of solutions of system (6.8) produce 10 different local fam-
ilies of periodic solutions of system (6.1) with 4 different frequencies (see (6.14)
below):

families 1 & 1′ (h+ ∩ ha) : z1z4 = z2z3 , 3z1z3 = z2z4 ;
families 2 & 2′ (h+ ∩ hb) : z1z4 = z2z3 , z1z3 = 3z2z4 ;
families 3 & 3′ (h− ∩ hc) : z1z4 = −z2z3 , z1z3 = z2z4 ;
family 4 (h2 ∩ h4) : z2 = z4 = 0 ;
family 5 (h1 ∩ h3) : z1 = z3 = 0 ;
family 6 (h1 ∩ h2) : z1 = z2 = 0 ;
family 7 (h3 ∩ h4) : z3 = z4 = 0 .

(6.13)

Some of these families of solutions were presented in [13]. A duplication of the
first three families originates from the symmetry of the original system (6.1) with
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respect to a time reversion. This reversion changes signs at ẋ and ẏ there and so
doubles the number of families. But time reversion only permutes families 6 and
7 and it is equivalent to a trivial time shift for families 4 and 5.

Using representation (6.9) we can rewrite the table above via integration
constants c1, . . . , c4 by simple changing zi → ci there. If we are interested in
families of real solutions of (6.4), then we should choose in (6.9) c1 = c3 and
c2 = c4. However, in the resonant case, more conditions are needed to guarantee
real solutions. The first pair of equations in (6.8) are the critical conditions on the
phases of the ci. Because the system (6.1) is autonomous, the solutions contain a
common phase shift that can be neglected, and then all constants can be chosen
real (or sometimes purely imaginary). After that, each solution of (6.13) (except the
essentially complex families 6 and 7 which are determined by a complex constant)
determines only 3 of the 4 real constants ci. So each real family of solutions of
(6.9) depends on a single constant.

Using the determined values of ci via, say, c1 (for real parametric families
1–5), we substitute them into the system (6.9) and get the corresponding value
of the frequency ω as a series of c1 via (6.6). To find the corresponding families
of periodic solutions of (6.1) as truncated series in this constant, we substitute
(6.9) into the previously calculated normalizing transformation (3.2) and into the
transformation (6.3). Finally the constant c1 can be fixed by a substitution of
the solution (6.1) into the expression for the energy H from (6.2). The energy
(which will not depend on time!) is then as a series in one constant (say, c1), so by
inverting this series, the c1 can be found as series in the energy and then it can be
eliminated from all other results. For the real case, the solutions are in the form
of a truncated Fourier series.

This yields approximate frequencies for the families of periodic solutions of
(6.1) as function of mechanical energy (6.2) which are

ω1,4 = 1− 5
6H + 17

48H2 + 127517
38880 H3 + 51952319

3732480 H4 + 1675438657
111974400 H5 ,

ω2,5 = 1− 5
6H − 95

48H2 − 54935
7776 H3 − 22030445

746496 H4 − 200207485
1492992 H5 ,

ω3 = 1 + 1
3H − 2

3H2 + 5389
2430H3 − 52393

5832 H4 + 29471957
729000 H5 ,

ω6,7 = ±1 ,

(6.14)

where the indices on ω correspond to the above numbered branches of solutions. For
each frequency the corresponding approximation for a family of periodic solutions
is a Fourier series in time and power series in H which are given in [16].

These results were verified in two ways. The first way was a direct substitution
of the approximating series into the original equations (6.1). The results contained
only terms with negligible orders. The second way was a comparison of the nu-
merical solution (xnum(t), ynum(t), ẋnum(t), ẏnum(t)) of equations (6.1) computed
using the Runge–Kutta method with the tabulated values of the approximate so-
lutions (xapp(t), yapp(t), ẋapp(t), ẏapp(t)) computed using preliminary calculated
formulae. The solutions were computed at the values of energy H = 1

24 , H = 1
12
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and H = 1
8 . These values were chosen from the original paper [30]. The error was

computed using the relative mean-square error

ferrff
def= maxt∈[0,2π/ωi]√√

(xnum(t)−xapp(t))2+(ynum(t)−yapp(t))2+(ẋnum(t)−ẋapp(t))2+(ẏnum(t)−ẏapp(t))2

x2
num(t)+y2

num(t)+ẋ2
num(t)+ẏ2

num(t) .

The results of the numerical comparison (i.e. values of ferrff ) are

H = 1/24 : H = 1/12 :
for solutions with ω1 : 1.3× 10−5 7.6× 10−4 ,

for solutions with ω2 : 4.7× 10−5 4.4× 10−3 ,

for solutions with ω3 : 1.1× 10−5 5.0× 10−4 ,

for solutions with ω4 : 1.3× 10−5 7.6× 10−4 ,

for solutions with ω5 : 2.9× 10−5 1.8× 10−3 .

Because for the value H = 1/6 system (6.1) has a chaotic regime [30], the values
1/24 and 1/12 are not physically small values. For the value H = 1/8 the maximal
corresponding relative mean-square error reaches 10 percents.

We did not numerically check the complex families 6 and 7, which have the
special type. Such families exist for any system, which has at least one imaginary
eigenvalue [14].

In Figure 1, the intersections of periodic solutions of the Henon–Heiles system
(6.1) with Surface Of Section (SOS), which is defined by

SOS =
{

x = 0, ẋ ≥ 0, H =
1
12

}
,

are displayed in the coordinates y, ẏ. Since [30] this surface is often used for the
Poincare mapping. The periodic solution of family 5 lies entirely in the plane´
x = ẋ = 0 and bounds one of two domains in the SOS where ẋ ≥ 0. The other
local families cross this surface in a single point each, except of the absent at
nonzero energy complex families 6 and 7.

It is interesting to compare the Gustavson first integral [27] with the partial
integral of motion

I
def= z1z3 + z2z4 ,

whose derivation is

İ = z1z3 · (g1 + g3) + z2z4 · (g2 + g4) = P1PP + P2PP .

This derivation is zero along local families of the periodic solutions above.
The power series I is the formal integral till the seventh order terms including.

It is also interesting that the derivation İ computed till the order n + 8, n = 0, . . .
can be factorized [13]:

İ = Sn(z) · (z2
1z2

4 − z2
2z

2
3) · [3(z1z4 − z2z3)2 − (z1z3 + z2z4)2] ,

where Sn(z) is a polynomial of order l with a nonzero constant term. The existence
of the first factor (z2

1z2
4 − z2

2z2
3) follows from (6.10). The factorization is true at



192 Edneral

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

d
y
/
d
t

y

1’

1

2’

2

3’ 34

5

Figure 1. Intersections of periodic solutions of the Henon–Heiles
system with SOS at the energy level H = 1/12.

least till n = 12, so we can suppose that the factorized form above takes place in
all orders. In this representation it is clear that the derivation above is zero on
h+ ∪ h−, h3 ∩ h4, h1 ∩ h2, h2 ∩ h4 and on h1 ∩ h3. So the above I is a constant in
time along all periodic families of solutions indeed.

6.4. Visualization of Searching Periodic Solutions

Another very important consequence of the general theory [7] is that if the set A
is analytic (i.e. it has a basis which consists of convergent series) then it has such
basis not only in the normalized coordinates z, but in coordinates of the original
phase space also. So families of solutions of (6.6) can be sought in the original
coordinates x, y, ẋ, ẏ.

There are two ways of using this phenomenon, one of which will be dis-
cussed in the next section. For the other, rewrite (6.8) into the original coor-
dinates by inverting the transformations (3.2). We will also need to invert the
transformations (6.3). This can always be done as this transformation is quasi-
identical, but the inversion is computationally lengthy. This will produce functions
z1(x, y, ẋ, ẏ), . . . , z4(x, y, ẋ, ẏ) and then the system (6.6) can be rewritten using the
functions zi. This will produce a system of formal power series equations in the
original coordinates, whose solutions describe all local families of periodic solutions
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Figure 2. Intersections of the SOS with hypersurfaces h+, h−,
ha, hb, hc and with periodic solutions of the families 1, 1′, 2, 2′, 3,
3′, 4, 5 of the Henon–Heiles system at the energy level H = 1/12.

of the system as convergent series. This system (and its solutions), which does not
depend explicitly on time, describes the trajectories of periodic solutions.

Rather than evaluating these implicitly defined functions, for a simple anal-
ysis it is sufficient to draw each one. For an appropriate visualization, we use the
hypersurface SOS, described in the discussion of Figure 1. In Figure 1 we have
results of a tabulation of the formulae. In Figure 2 we plot hypersurfaces from
(6.11) and (6.12) themselves. In other words if we know the reversed normalizing
transformation z(x, ẋ, y, ẏ) we can rewrite system (6.8) in the original coordinates,
and solve it on some surface graphically. For the Henon–Heiles system we have PiPP
in the factorized form (6.10), so in Figure 2 we plot the intersections of the corre-
sponding surfaces h+ and h− with ha, hb and hc. It reproduces points of solutions
of families 1, 1′, 2, 2′, 3 and 3′. Note that the intersection h+ ∩ h− reproduces a
point of the solution of family 4 and the whole solution of family 5 from (6.13).

This method can be used if we cannot solve the conditions (3.9) in analytic
form. Corresponding hypersurfaces can be tabulated numerically and plotted. In
Figure 2, we drew hypersurfaces which are a result of some analysis, i.e. defined
by (6.13). But if we draw the hypersurfaces P1PP = 0 or P2PP = 0 in the original
coordinates, then in the SOS we would see curves which look like to h+ ∪ h−, but
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from the hypersurfaces P3PP = 0 and P4PP = 0, we would see only distinct points which
correspond to the cross sections of periodic orbits with the base surface. This means
that all roots of the equation P3PP = 0 (or P4PP = 0) at other points of this surface
are not real. Of course, the cross section of all hypersurfaces P1PP = 0, . . . , P4PP = 0
gives all periodic trajectories. Their plots give a useful graphic representation of
some elements of the phase portrait.

We treated in the same way the generalized Henon–Heiles system as a case
of a parametric system of fourth order [18]. Some families of its periodic solutions
exist only at fixed values of a system parameter, and other families exist in an
interval of its value. This is an example of bifurcation analysis by the normal form
method. It is remarkable that the system has an additional nontrivial complex
family of periodic solutions at one fixed value of the parameter.

6.5. One More Example of the Fourth Order System — Resonant and
Non-resonant Cases

In this subsection we study local families of periodic solutions of a Hamilton’s
system of ordinary differential equations with a cubic nonlinearity [19]. The system
appears from the water-wade problem after its reduction to a model system. In a
neighborhood of a stationary point we study the system by means of its normal
form. We have found the local families of periodic solutions. We demonstrate the
importance of a separate investigation of a resonant behavior at corresponding
values of parameters.

Let us consider a system with the Hamiltonian

H = x2y1 − x1y2 +
1
2
y2
2 +

α

2
x2

1 +
β

3
x3

1 −
1
4
x4

1.

It is a system of four ordinary differential equations

ẋ1 = x2 ,

ẋ2 = y2 − x1 ,

ẏ1 = y2 − αx1 − βx2
1 + x3

1 ,

ẏ2 = −y1 .

(6.15)

This system is invertible with respect to the involution (x1, x2, y1, y2) →
(x1,−x2,−y1, y2). The origin (0, 0, 0, 0) is a stationary point, and the eigenvalues
are

{−
√
−1−√

α,

√
−1−√

α, −
√
−1 +

√
α,

√
−1 +

√
α } . (6.16)

Below we discuss the cases with positive α. In these cases we have at least
one couple of purely imaginary eigenvalues.

Case α > 1

In this case only the first couple of eigenvalues is purely imaginary. Let

α → (ω2
0 − 1)2 , ω2

0 > 2 ;
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then the eigenvalues will be

{−iω0, iω0, −
√

ω
√√

2
0 − 2,

√
ω

√√
2
0 − 2} . (6.17)

After normalization we have a system in the new coordinates (z1, z2, z3, z4):

ż1 = − iω0z1 + z1P1PP (z1 · z2, z3 · z4)
def= ψ1 ,

ż2 = iω0z2 + z2P2PP (z1 · z2, z3 · z4)
def= ψ2 ,

ż3 = − √√ω
√√

2
0 − 2z3 + z3P3PP (z1 · z2, z3 · z4)

def= ψ3 ,

ż4 =
√

ω
√√

2
0 − 2z4 + z4P4PP (z1 · z2, z3 · z4)

def= ψ4 .

(6.18)

Here P1PP , . . . , P4PP are series calculated with the Mathematica package till the third
order in zi variables. Note that the series PiPP in the right-hand side depends on
products z1 · z2 and z3 · z4 only.

The periodicity condition requires that the local periodic families of solutions
should satisfy the condition A. We have nonzero real parts in eigenvalues λ3, λ4,
so condition (3.9) requires that z3 = z4 = 0. But the calculated values P1PP and P2PP
are such that P1PP (z1 ·z2, 0) = −P2PP (z1 ·z2, 0); therefore one can see that with respect
to (6.18) the product z1 · z2 is constant and we have a one-parametric1 family of
periodic solutions of (6.18):

z1 = µ exp(−i · ω · t) , z2 = µ exp(i · ω · t) , z3 = z4 = 0 , (6.19)

where the frequency is ω = ω0 + i · P1PP (µ2, 0) and µ is a real constant. Calculation
gives for the first in µ terms

ω = ω0 + µ2 β2(20− 58ω2
0)− 9ω2

0(ω
2
0 − 2)(5ω2

0 − 2)
12ω3

0(ω2
0 − 1)3(ω2

0 − 2)(5ω2
0 − 2)

+ O(µ4) . (6.20)

The first order2 solution for (x1, x2, y1, y2) is

(−2µ
cos(ωt)
ω2

0 − 1
, 2µω0

sin(ωt)
ω2

0 − 1
, 2µω0 sin(ωt), 2µ cos(ωt)) (6.21)

(we get it by substituting the zi from above into the normalizing transformation,
as in the previous section [17]).

So we have two external (α = (ω2
0 − 1)2 and β), one internal parameter (the

constant of integration µ), and a trivial time shift.

Case 0 < α < 1
In this case all eigenvalues are purely imaginary, i.e., ω2

0 < 2, and the eigen-
values are

{−iω0, iω0, −i
√

2− ω2
0 , i
√

2− ω2
0} . (6.22)

We now have two subcases: the case when eigenvalues are not comparable and the
resonant case.

1We omit a trivial time shift as a parameter.
2Higher order terms in µ are too large for printing.
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Case when eigenvalues are not comparable
It means that the fraction λ1/λ3 = ω0/

√√
2− ω2

0 is not a rational number.
The normalized equation will have the same form as (6.18), but with all purely
imaginary eigenvalues. We omit here a conditionally periodic two frequencies case.
But periodic families can be here only if we suppose that z3 = z4 = 0 or z1 = z2 =
0. If z3 = z4 = 0 as in the case above, we will have the same frequency (6.20) and
the same solution (6.21). So this family exists for α > 0.

If z1 = z2 = 0, we have the other frequency

ω =
√

2− ω2
0 + µ2 β2(96− 58ω2

0)− 9ω2
0(ω

2
0 − 2)(5ω2

0 − 8)
12ω2

0(ω
2
0 − 1)3(2− ω2

0)3/2(5ω2
0 − 8)

+ O(µ4) , (6.23)

and the first approximation to solutions

(2µ
cos(ωt)
ω2

0 − 1
, −2µ

√
2− ω2

0

sin(ωt)
ω2

0 − 1
, 2µ
√

2− ω2
0 sin(ωt), 2µ cos(ωt)) . (6.24)

But one can see poles in expressions for a frequency above. There are poles
at ω2

0 = 0, 2/5, 1, 2, 8/5, or correspondingly at α = 1, 9/25, 0, 1, 9/25. Let us see
which eigenvalues correspond to these values:

ω2
0 = 0, 1, 2 — Jordan’s matrix in the linear part ,

ω2
0 = 2/5, 8/5 — Resonant case of the linear part;

{λi} = {−i

√
2
5
, i

√
2
5
, −2i

√
2
5
, 2i

√
2
5
} .

(6.25)

So there are domains in ω0 (or α) where series are slowly convergent and can
loose the sense. It is related to the characteristics of a linear part. We omit here
the case of Jordan’s form of a linear part and study the resonant case.

Resonant case
At ω2

0 = 2/5, 8/5 all eigenvalues are comparable. In our case we have the
third order resonance (1 : 2), i.e. λ1/λ3 = 1/2. The order of resonance is defined
as the sum of a numerator and a denominator of this fraction. After normalization
in this case we have the system

ż1 = − i
√

2
5z1 + z1P1PP (z1, z2, z3, z4) ,

ż2 = i
√

2
5z2 + z2P2PP (z1, z2, z3, z4) ,

ż3 = − 2i
√

2
5z3 + z3P3PP (z1, z2, z3, z4) ,

ż4 = 2i
√

2
5z4) + z4P4PP (z1, z2, z3, z4) .

(6.26)

We can choose its solution in the form
z1 = a exp(−i · ω · t) , z2 = a exp(i · ω · t) ,

z3 = (µ− ic) exp(−2i · ω · t) , z4 = (µ + ic) exp(2i · ω · t) (6.27)

(we fix below a trivial time shift by choosing constant a in z1, z2 as a purely real).
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After substitution of these variables into condition (3.9) (4 equations here,
the same as in [16], and Henon–Heiles’ system above) we get firstly the condition
a · c = 0. It has two solutions.

Subcase c = 0
The rest of the periodicity condition (3.9) gives connection between values a

and µ. Resolving this connection we have for the frequency

ω =

√
2
5

+

√
5
2
(
25
18

βµ− 125
6

µ2 +
30625
864

β2µ2) + O(µ4) . (6.28)

Subcase a = 0
The frequency is

ω =

√
2
5

+

√
5
2

125
31104

µ2(455β2 − 216) + O(µ4) . (6.29)

One can see that the values of frequency have no singularities at resonant study-
ing. The solutions have no poles too. The general recommendation is: one should
separately study the resonances of orders, smaller than an order of normal form
used for an analysis.

So for the local families of periodic solutions of the cubic system above with
two external parameters we can conclude that there are two domains in one of
the parameters. In the first domain we found one family of periodic solutions with
one internal parameter, and for the second domain there are two families with
one internal parameter. It is shown that low-level resonances should be studied
separately.

7. Conclusions

Here we can conclude that the obtaining of high order normal forms enables us to
produce closed formulas for a quantitative approximation of periodic solutions of
autonomous nonlinear ODEs.

The normal form method can also be successfully applied to bifurcation anal-
ysis and to a phase portrait investigation.

We also used this method for investigating conditionally periodic solutions
in the double pendulum system [22] and for the evaluation of cyclicity in planar
cubic systems [15] in connection with Hilbert’s sixteenth problem.
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Equations
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Abstract. First order algebraic differential equations are considered. A neces-
sary condition for a first order algebraic differential equation to have a rational
general solution is given: the algebraic genus of the equation should be zero.
Combining with Fuchs’ conditions for algebraic differential equations without
movable critical point, an algorithm is given for the computation of rational
general solutions of these equations if they exist under the assumption that a
rational parametrization is provided. It is based on an algorithmic reduction
of first order algebraic differential equations with algebraic genus zero and
without movable critical point to classical Riccati equations.
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1. Introduction

The study of first order algebraic differential equations can be dated back to
C. Briot and T. Bouquet [2], L. Fuchs [11] and H. Poincaré [20]. M. Matsuda´
[17] gave a modern interpretation of the results using the theory of differential
algebraic function field of one variable, and Eremenko [9] studied the bound of the
degrees of the rational solutions of a first order algebraic differential equation by
using the approach of [17].

From an algorithmic point of view, many authors have been interested in
the constructions of closed form solutions for differential equations (this problem

The second author is partially supported by the NKBRSF of China (no. 2004CB318000), the
NNSF (no. 10301032) and by a CNRS–K.C. WONG fellowship during his visit to the Laboratoire
P. Painleve, Universit´´ e de Lille 1, France.´
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can be traced back to the work of Liouville). In [21], Risch gave an algorithm for
finding closed forms for integration. In [14], Kovacic presented a method for solving
second order linear homogeneous differential equations. In [26], Singer proposed a
method for finding Liouvillian solutions of general linear differential equations. In
[15], Li and Schwarz gave a method to find rational solutions for a class of partial
differential equations. All these works are limited to linear cases.

For algebraic (nonlinear) differential equations there are some studies in this
direction. For Riccati equations, polynomial solutions are considered in [4] and
algorithms for the computation of rational solutions are given in [3, 14]. In [5],
the algebraic solutions of a general class of first order and first degree algebraic
differential equations were studied and the degree bound of algebraic solutions
in the nondicritical case was given. In [10, 16], algorithms for the computation
of rational general solutions or polynomial solutions are given for some kinds of
algebraic differential equations.

Another motivation of our work is differential algebraic geometry. In the se-
ries of papers [29, 30, 31], Wu studied algebraic differential geometry from several
different points of view. In [31], the author presents an algorithmic method of
solving arbitrary systems of algebraic differential equations by extending the char-
acteristic set method to the differential case. The Devil’s problem of Pommaret is
solved in detail as an illustration.

In this paper, we consider the computation of rational general solutions of
first order algebraic differential equations by using methods from algebraic geom-
etry. We give a necessary condition for a first order algebraic differential equation
to have a rational general solution: that is, the algebraic genus of the equation
should be zero. Combining with Fuchs’ conditions for first order algebraic differ-
ential equations without movable critical points, we obtain an algorithm for the
computation of rational general solutions under the assumption that a rational
parametrization is provided. It is based on an algorithmic reduction of first order
algebraic differential equation of algebraic genus zero and without movable critical
point to classical Riccati equations.

2. Rational General Solutions of First Order Algebraic Differential
Equations

We first present some results from algebraic geometry, which is used in the follow-
ing.

Let f(x, y) be an irreducible polynomial over C. We say that f(x, y) = 0 is a
rational curve if there exist two rational functions φ(t), ψ(t) ∈ C(t) such that

(i) for all but a finite set of t0 ∈ C, (φ(t), ψ(t)) is a point of f ;
(ii) with a finite number of exceptions, for every point (x0, y0) of f there is a

unique t0 ∈ C such that x0 = φ(t0), y0 = ψ(t0).
It is impossible to avoid having a finite number of exceptions in the above

conditions. They arise from two sources. One is the fact that a rational function
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is not defined for some values of the variable, and the other is the presence of
singular points on the curve.

The following results are well known in algebraic geometry [28].

Theorem 2.1. An algebraic curve is rational if and only if its genus is zero.

Theorem 2.2. (a) Every rational transform of a rational curve is a rational curve.
(b) If λ is transcendental over C and if C ⊂ F ⊂ C(λ), F �=�� C, then there is an

element µ ∈ F , transcendental over C, such that F = C(µ).
(c) If a curve f(x, y) = 0 satisfies (i) for rational functions φ(λ), ψ(λ) which are

not both constants, then there exist rational functions φ̃(λ), ψ̃(λ) for which
both (i) and (ii) are satisfied, and the curve is rational.

The three statements in Theorem 2.2 are all equivalent. It is called Lüroth’s¨
theorem.

Now we consider a first order algebraic differential equation in the form

F (z, w, w′) = 0, (2.1)

where F is a polynomial in w, w′ with rational coefficients in C(z).

Definition 2.3. A general solution w(z, λ) of (2.1) is called a rational general solu-
tion if it is rational in z and λ.

If F (z, w, w′) = 0 admits a rational general solution, then it is free from
movable critical point for poles are the only singularities of the solution which
change their position if one varies the initial data c ∈ C.

We now prove the following theorem on rational general solution of a first
order algebraic differential equation.

Theorem 2.4. If a first order irreducible algebraic differential equation

F (z, w, w′) = 0

admits a non-constant rational general solution, then the genus of F (z, w, w′) = 0
with respect to w, w′ is zero for any z, except for finitely many exceptions.

Proof. Let w = r(z, λ) be the rational general solution of F = 0 with the arbitrary
constant λ. Then w(z) = r(z, λ) and w′(z) = ∂r

∂z are rational functions and they
satisfy the equation F (z, w, w′) = 0.

Let z be fixed and consider the curve fzff (x, y) = F (z, x, y) = 0. Denote
φz(λ) = w(z) and ψz(λ) = w′(z). If ψz(λ) is a constant, then w(z) = zw′(z) + λ
is of genus zero and hence the genus of fzff (x, y) = 0 is also zero. If ψz(λ) is not a
constant, consider the point (φz(λ), ψz(λ)) of fzff (x, y) = 0 for the parameter λ in
the transcendental extension field C(λ). It is clear that (i) is satisfied for all but
finitely many λ. Hence fzff (x, y) = 0 is a rational curve and its genus is zero by
Theorems 2.1 and 2.2. �

Motivated by this theorem, we present the following definition.



204 Chen and Ma

Definition 2.5. The algebraic genus of a first order algebraic differential equation
F (z, w, w′) = 0 is defined to be the genus of F (z, w, w′) = 0 with respect to w and
w′.

3. Reduction of First Order Algebraic Differential Equations

For a first order algebraic differential equation F (z, w, w′) = 0, Fuchs’ theorem
presents necessary conditions for the equation to be free from movable critical
point. By the Painleve theorem, we know that Fuchs’ conditions are sufficient (see´
[11, 13, 18, 20]).

3.1. Fuchs Theorem

Let D(z, w) be the p–discriminant of the equation F (z, w, w′) = 0; it is a polyno-
mial in w, whose coefficients are analytic functions of z [13].

The conditions, necessary to secure that the first order differential equation

F (z, w, w′) = 0

of degree m shall have no movable critical point, are:
1. The coefficient A0(z, w) is independent of w and therefore reduces to a func-

tion of z alone or to a constant. The equation may then be divided throughout
by A0 and takes the form

w′m + ψ1(z, w)w′m−1 + · · ·+ ψm−1(z, w)w′ + ψm(z, w) = 0

in which the coefficients ψ are polynomials in w, and analytic, except for
isolated singular points, in z.

2. If w = η(z) is a root of D(z, w) = 0, and p = ω(z) is a multiple root of
F (z, η, η′) = 0, such that the corresponding root of F (z, w, w′) = 0 regarded
as a function of w − η(z) is branched, then

ω(z) =
dη

dz
.

3. If the order of any branch is α, so that the equation is effectively of the form
d

dz
{w − η(z)} = ck{w − η(z)} k

α ,

then k ≥ α− 1.

3.2. Reduction to Classical Riccati Equation

Consider now a first order algebraic differential equation F (z, w, w′) = 0 of genus
zero and without movable critical point. One can find a parametrization of the
rational curve F (z, x, y) = 0 in the form x = r1(t, z) and y = r2(t, z) with r1(t, z)
and r2(t, z) rational functions in t and z. By the inversion of rational curves we
know that t is rational function in z, x and y. For algorithms on parametrization
and inversion of rational curves we refer to [1, 22, 23, 24, 25, 27]. One has

dt

dz
=
(
r2(t, z)− ∂r1

∂z

)
/
∂r1

∂t
=

P (t, z)
Q(t, z)

, (3.1)
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where P and Q are polynomials in t and z. Since F (z, w, w′) = 0 has no movable
critical point, one knows that (3.1) also has no movable critical point as t is rational
function in z, x and y. By Fuchs’ theorem, we have that equation (3.1) is a Riccati
equation [12, Chapter II, §7], that is

dt

dz
= A(z)t2 + B(z)t + C(z), (3.2)

where A, B, C are rational functions in z. We distinguish two cases according to
A(z).

Case 1. If A(z) �≡ 0, we consider the change of variables t(z) = −u(z)/A(z).
One has

u′(z) + u2 = (B(z) + A′(z)/A(z))u− C(z)A(z),

in which the coefficient A(z) is reduced to −1. Next we make the change u =
v + β(z) to reduce the coefficient of u to zero by choosing an appropriate β. We
obtain finally a classical Riccati equation in the form

v′ + v2 = r(z) ∈ C(z). (3.3)

Algorithms for the computation of rational solutions of classical Riccati equations
are available in the literature (see for example [3, 14]).

If r(z) �≡ 0, then a rational solution of equation (3.3) is equivalent to an
exponential solution e

R
v(z)dz of the linear differential equation

y′′ = r(z)y. (3.4)

Proposition 3.1. If the Riccati equation (3.3) with r(z) �≡ 0 has a general rational
solution, then r(z) has the form

r(z) =
m∑

i=1

(
βi

(z − zi)2
+

γi

(z − zi)

)
,

in which 4βi = n2
i − 1 where ni is an integer ≥ 2.

Proof. Suppose that v(z) is a rational solution of equation (3.3). Let z1, . . . , zm be
the poles of r. According to Kovacic’s algorithm (see [14]), v(z) should be in the
form

v(z) =
m∑

i=1

νi∑
j=1

aij

(z − zi)j
+

d∑
k=1

1
z − ck

+ f(z),

where the νi are known, aij are known up to two choices each, d is known, and
f ∈ C[z] is known up to two choices. Hence there may be an arbitrary parameter
only in the determination of the ck.

Let

P (z) =
d∏

k=1

(z − ck),
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and

ω(z) =
m∑

i=1

νi∑
j=1

aij

(z − zi)j
+ f(z).

Then v = P ′/P + ω and y = e
R

v = Pe
R

ω is a solution of the linear differential
equation (3.4). Hence P is a polynomial solution of degree d of the following linear
equation:

P ′′ + 2ωP ′ + (ω′ + ω2 − r)P = 0. (3.5)

One can determine whether it has a general polynomial solution or not.
Furthermore if (3.3) admits a rational general solution, then writing r(z) =

p(z)/q(z), according to [32], one has

(a) deg(p)− deg(q) ≤ −2;
(b) r(z) has only double poles, and hence

r(z) =
m∑

i=1

(
βi

(z − zi)2
+

γi

(z − zi)

)
,

in which 4βi = n2
i − 1 where ni is an integer ≥ 2. �

Therefore a possible rational solution of equation (3.3) with r(z) as in the
proposition should be

v(z) =
m∑

i=1

ai

z − zi
+

d∑
k=1

1
z − ck

,

where a2
i − ai − βi = 0. Hence to determine a rational general solution one needs

to compute polynomial solutions of equation (3.5) in order to determine the ck.

Case 2. If A(z) ≡ 0, then one can integrate easily the linear equation

t′ = B(z)t + C(z)

to get the general solution

t(z) =
(∫

C(z)dz + λ
)
e

R
B(z)dz,

where λ is an arbitrary constant. An effective algorithm is given in [21] for inte-
gration in closed forms. One may find rational solutions in this way. It is clear
that in this case one may get rational general solutions only if both

∫
C(z)dz and

e
R

B(z)dz are rational functions.
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3.3. First Order Algebraic Differential Equations with Constant Coefficients

As an application, we consider a first order algebraic differential equation with
constant coefficients:

F (w, w′) = 0. (3.6)

This kind of equations was systematically studied in [2] and an algorithm is given
in [10] for the determination of the rational general solution of the equation if it
exists.

When using the above reduction for equation (3.6), it is clear that z is not
involved in the equation, and we henceforth get a Riccati equation with constant
coefficients.

As above there are two cases to be considered. In case 1, if equation (3.6) has
a non-constant rational solution w(z) then w(z + λ) is a general rational solution.
Since the equation u′ + u2 = c for a constant c �= 0 does not have a rational��
solution, then one can reduce equation (3.6) to the equation u′ + u2 = 0; in this
case we have the general solution

u =
1

z + λ
.

In case 2, the equation can be converted to u′ = bu + c with constant b, c.
Then u = λebz − c

b if b �= 0, and�� u = cz + λ if b = 0, where λ is an arbitrary
constant.

Summarizing the above, we then have the following

Corollary 3.2. Let F (w, w′) = 0 be a first order irreducible algebraic differential
equation with constant coefficients. Then it has a non-constant rational general
solution if and only if it can be reduced either to a linear equation u′ = c for some
constant c or to a Riccati equation of the form u′ + u2 = 0.

Example 1. Consider

F (y, y′) = y′4 − 8 y′3 + (6 + 24 y) y′2 + 257 + 528 y2 − 256 y3 − 552 y.

This example comes from [10]. One finds by computation in Maple that its alge-
braic genus is zero and it has the following rational parametrization:

y =
17
16

− 27t +
2187

2
t2 + 531441t4, y′ = 78732t3 + 81t− 1.

And the corresponding Riccati equation is t′(z) = 1
27 . Hence t = 1

27z + λ and the
general solution of the differential equation F (y, y′) = 0 is

y(z) =
17
16

− 27(
1
27

z + λ) +
2187

2
(

1
27

z + λ)2 + 531441(
1
27

z + λ)4,

where λ is an arbitrary constant.
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4. Algorithm and Example

We can now give the following algorithm on seeking for a rational general solution
of a first order algebraic differential equation.

Algorithm. Input: A first order algebraic differential equation F (z, w, w′) = 0.

Output: A rational general solution of F (z, w, w′) = 0 if it exists.

1. Determine the irreducibility of the equation. If F (z, w, w′) = 0 is reducible,
then factorize it and go to step (2) for each branch curve of F (z, w, w′) = 0,
else go to step 2 directly.

2. Compute the algebraic genus g of F (z, w, w′) = 0. If g �= 0, then the equation��
does not admit any rational general solution by Theorem 2.4, else go to step
3.

3. Determine the Fuchs conditions of F (z, w, w′) = 0. If the conditions are not
satisfied, then the algorithm terminates, else go to step 4.

4. If a rational parametrization of F (z, w, w′) = 0 in the form w = r1(t, z) and
w′ = r2(t, z) with r1(t, z) and r2(t, z) rational functions in t and z is provided,
then go to step 5.

5. Compute the derivative

dt

dz
= (r2(t, z)− ∂r1

∂z
)/

∂r1

∂t

which is a Riccati equation of the form (3.2) by the Fuchs theorem.

6. Reduce the above Riccati equation to a classical Riccati equation (3.3) and
compute a rational solution using the algorithm in [3, 14].

Remark 4.1. Assume that F (z, w, w′) = 0 has algebraic genus 0 for all z (or for
all z with some finite exceptions); in general, the rational parametrization that
we obtain using the the algorithm in [1, 24, 25, 27] are not rational functions
in z (it could appear that algebraic elements are over C(z) as

√
z, see [25]). Our

algorithm works only with those equations F (z, w, w′) = 0 (for instance, first order
algebraic differential equations with constant coefficients) for which a rational
parametrization may be provided.

Remark 4.2. Our algorithm for the case of constant coefficients is the same as the
classical one, which is described for instance in [19, Chapter IV, Section I, pages
62–65].

Example 2. Consider the following equation

F (z, w, w′) = w′2 +
2w

z
w′ − 4 zw3 +

(
1 + 12 z2

)
w2

z2
− 12

w

z
+

4
z2

.
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Its algebraic genus is zero. One gets the following rational parametrization by
Maple:

w = r1 =
t2z2 + 4t2 − 6tz + 1 + 4z2

4z(−z + t)2
,

w′ = r2 = −−4z3 + 13tz2 + t + 2t2z3 − 10t2z + t3z4 + t3z2 + 4t3

4z2(−z + t)3
.

One obtains the following Riccati equation

t′ =

(
z2 + 2

)
2(z2 + 1)

t2 +
z

z2 + 1
t +

3
2(z2 + 1)

.

Continuing the reduction procedure of Section 3.2, one obtains

u′ + u2 = Bu + C,

where

B = − z3

(z2 + 1)(z2 + 2)
and C =

3(z2 + 2)
4(z2 + 1)2

.

And finally one obtains the following classical Riccati equation

v′ + v2 = −6(z2 + 2)−2,

which has a rational general solution as follows:

v(z) = − z

z2 + 2
+

1
z − λ

+
1

z + 2/λ

with λ an arbitrary constant. By substitutions one finally has the following solution
of the equation F (z, w, w′) = 0:

w(z) =
z2λ2 − 2 zλ3 + 4 zλ + 4 + λ4 − 3 λ2

(zλ + 2− λ2)2 z
.

5. Conclusion

In this paper, we present an algebraic geometry approach to the study of first
order algebraic differential equations. The necessary and sufficient conditions of
the rational general solutions of the Riccati equations are studied in [6]. In [7],
we prove that the degree of a rational general solution of a first order algebraic
differential equation of degree d is less than or equal to d. The algebraic geometry
approach is also used to obtain bound for the number of the rational solutions of
a first order algebraic differential equation with algebraic genus greater than one.
In [8], the algebraic general solutions of first order algebraic differential equations
were studied by using the birational transformations of algebraic curves, and an
algorithm was presented to get an algebraic general solution of first order alge-
braic differential equations without movable critical point if the algebraic general
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solution exists. It is interesting to present an effective algorithm to find the ratio-
nal general solutions or the rational solutions of a first order algebraic differential
equation.
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Factoring Partial Differential Systems in
Positive Characteristic

Moulay A. Barkatou, Thomas Cluzeau and Jacques-Arthur Weil

with an appendix by M. van der Put:
Classification of Partial Differential Modules in Positive Characteristic

Abstract. An algorithm for factoring differential systems in characteristic p
has been given by Cluzeau in [7]. It is based on both the reduction of a matrix
called p-curvature and eigenring techniques. In this paper, we generalize this
algorithm to factor partial differential systems in characteristic p. We show
that this factorization problem reduces effectively to the problem of simulta-
neous reduction of commuting matrices.

In the appendix, van der Put shows how to extend his classification of dif-
ferential modules, used in the work of Cluzeau, to partial differential systems
in positive characteristic.

Mathematics Subject Classification (2000). 68W30, 16S32, 15A21, 16S50, 35G05.

Keywords. Computer algebra, linear differential equations, partial differen-
tial equations, D-finite system, modular algorithm, p-curvature, factorization,
simultaneous reduction of commuting matrices.

Introduction

The problem of factoring D-finite partial differential systems in characteristic zero
has been recently studied by Li, Schwarz and Tsarev in [21, 22] (see also [28]).¨
In these articles, the authors show how to adapt Beke’s algorithm (which factors
ordinary differential systems, see [9] or [26, 4.2.1] and references therein) to the
partial differential case. The topic of the present paper is an algorithm that factors
D-finite partial differential systems in characteristic p. Aside from its theoretical
value, the interest of such an algorithm is its potential use as a first step in the
construction of a modular factorization algorithm; in addition, it provides useful
modular filters, e.g., for detecting the irreducibility of partial differential systems.

T. Cluzeau initiated this work while being a member of Laboratoire stix, École polytechnique,
91128 Palaiseau Cedex, France.
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Concerning the ordinary differential case in characteristic p, factorization
algorithms have been given by van der Put in [23, 24] (see also [26, Ch. 13]),
Giesbrecht and Zhang in [11] and Cluzeau in [7, 8]. In this paper, we study the
generalization of the one given in [7]. Cluzeau’s method combines the use of van
der Put’s classification of differential modules in characteristic p based on the p-
curvature (see [23] or [26, Ch. 13]) and the approach of the eigenring factorization
method (see [27, 2, 26]) as set by Barkatou in [2].

In the partial differential case, we also have notions of p-curvatures and eigen-
rings at our disposal, but van der Put’s initial classification of differential modules
in characteristic p cannot be applied directly, so we propose an alternative algorith-
mic approach. To develop a factorization algorithm (and a partial generalization of
van der Put’s classification) of D-finite partial differential systems, we rebuild the
elementary parts from [7, 8] (where most proofs are algorithmic and independent
of the classification) and generalize them to the partial differential context.

In the appendix, van der Put develops a classification of “partial” differential
modules in positive characteristic which sheds light on our developments, and
comes as a good complement to the algorithmic material elaborated in this paper.

We follow the approach of [7], that is, we first compute a maximal decomposi-
tion of our system before reducing the indecomposable blocks. The decomposition
phase is separated into two distinct parts: we first use the p-curvature to compute a
simultaneous decomposition (using a kind of “isotypical decomposition” method),
and then, we propose several methods to refine this decomposition into a maximal
one.

The generalization to the partial differential case amounts to applying si-ffff
multaneously the ordinary differential techniques to several differential systems.
Consequently, since in the ordinary differential case we are almost always reduced
to performing linear algebra on the p-curvature matrix, our generalization of the
algorithm of [7] relies on a way to reduce simultaneously commuting matrices (the
p-curvatures).

A solution to the latter problem has been sketched in [8]; similar ideas can be
found in papers dealing with numerical solutions of zero-dimensional polynomial
systems such as [10]. The essential results are recalled (and proved) here for self-
containedness.

The paper is organized as follows. In the first part, we recall some defini-
tions about (partial) differential systems and their factorizations. We then show
how to generalize to the partial differential case some useful results concerning
p-curvatures, factorizations and rational solutions of the system: we generalize the
proofs given in [7, 8]. After a section on simultaneous reduction of commuting
matrices, the fourth part contains the factorization algorithms. Finally, in Sec-
tion 5, we show how the algorithm in [7] can be directly generalized (with fewer
efforts than for the partial differential case) to other situations: the case of “local”
differential systems and that of difference systems.
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1. Preliminaries

In this section, we recall some classical definitions concerning differential systems in
several derivations. When there is only one derivation (m = 1 in what follows), we
recover the ordinary definitions of differential field, ring of differential operators, . . ..
We refer to [26, Ch. 2 and Ap. D] for more details on all these notions.

1.1. D-Finite Partial Differential Systems

Let m ∈ N∗ and let F = k(x1, . . . , xm) be the field of rational functions in the m
variables x1, . . . , xm with coefficients in a field k.

For i in {1, . . . , m}, let ∂i∂∂ := d
dxi

be the operator “derivation with respect to
the ith variable” and let Θ := {∂1, . . . , ∂m∂∂ } be the commutative monöıd generated¨
by the ∂i∂∂ . Following the terminology of [26, Ap. D], we say that (F , Θ) is a partial
differential field or Θ-field. The field of constants of (F , Θ) is

C := {f ∈ F ; ∀ δ ∈ Θ, δ(f) = 0}.
Definition 1.1. Let (F , Θ) be a partial differential field. The ring of partial dif-
ferential operators with coefficients in F denoted F [Θ] is the non-commutative
polynomial ring over F in the variables ∂i∂∂ , where the ∂i∂∂ satisfy ∂i∂∂ ∂j∂ = ∂j∂ ∂i∂∂ , for
all i, j and ∂i∂∂ f = f ∂i∂∂ + ∂i∂∂ (f), for all f ∈ F .

Definition 1.2. A system of partial (linear) differential equations or (linear) partial
differential system is given by a finite set of elements of the ring F [Θ]. To every
partial differential system S, we associate the (left) ideal (S) generated by the
elements of S.

Definition 1.3. A partial differential system S is said to be D-finite if the F -vector
space F [Θ]/(S) has finite dimension.

D-finite partial differential systems correspond with F [Θ]-modules, i.e., with
vector spaces of finite dimension over F that are left modules for the ring F [Θ]
(see [26, Ap. D], and the next section in positive characteristic). In other words, a
D-finite partial differential system is a partial differential system whose solutions
only depend on a finite number of constants.

Throughout this paper, the partial differential systems that we consider are
D-finite partial differential systems written in the form⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪

∆1(y) = 0 with ∆1 := ∂1 −A1,
...

∆m(y) = 0 with ∆m := ∂m∂∂ −Am,

(1.1)

where the Ai ∈ Mn(F ) are square matrices of size n ∈ N∗ with coefficients in
F and the ∆i commute. This implies the following relations, called integrability
conditions, on the matrices Ai (see [26, Ap. D] for example):

∂i∂∂ (Aj)− ∂j∂ (Ai)−Ai Aj + Aj Ai = 0, for all i, j. (1.2)
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The (D-finite) partial differential system given by (1.1) will sometimes be
noted [A1, . . . , Am]; this is convenient when one wants to refer to the matrices Ai

or to the operators ∆i.
There exist algorithms to test whether a given partial differential system S is

D-finite and if so, to write it into the form (1.1). For example, this can be achieved
by computing a Janet basis (also called involutive basis in the literature) of S (see
[16, 17, 12, 4]). These bases can be viewed as some kind of (non-reduced) Gröbner¨
bases. A Janet basis of the system yields a basis of the quotient F [Θ]/(S). And,
the fact that this basis is finite is then equivalent to the fact that the system is
D-finite. The matrices Ai can be obtained by computing the action of the ∂i∂∂ on
the basis of the quotient.

Let M be an F [Θ]-module of dimension n over F . Let (e1, . . . , en) and
(f1, . . . , fnff ) be two bases of M related by

(f1, . . . , fnff ) = (e1, . . . , en)P

where P ∈ GLn(F ) is an invertible element of Mn(F ). If [A1, . . . , Am] and
[B1, . . . , Bm] are respectively the partial differential systems associated withffff M
with respect to the bases (e1, . . . , en) and (f1, . . . , fnff ), then, for all i ∈ {1, . . . , m},
Bi = P−1 (Ai P − ∂i∂∂ (P )).

In the sequel, to simplify the notations, we will note

P [Ai] := P−1 (Ai P − ∂i∂∂ (P )).

1.2. Factorization and Eigenrings

In this subsection, we define some notions about factorization of partial differential
systems that are used in the sequel. We have seen in the last subsection, that a
partial differential system over (F , Θ) can be thought of as a left module over
F [Θ]. This classical approach has the advantage of enabling one to apply directly
the general theorems on modules [15] (like the Jordan–Hölder theorem, Schur’s¨
lemma, the Krull–Schmidt theorem) to partial differential systems. This allows a
better understanding of the problems arising in the study of partial differential
systems.

Let (F , Θ) be a partial differential field. Two partial differential systems S1 =
[A1, . . . , Am] and S2 = [B1, . . . , Bm] over (F , Θ) are called equivalent differential
systems (or similar) if the associatedr F [Θ]-modules are isomorphic. A simple
computation shows that S1 and S2 are equivalent if, and only if, there exists a
matrix P ∈ GLn(F ) such that, Bi = P [Ai], for all i.

Let S = [A1, . . . , Am] be a partial differential system over (F , Θ) and denote
by M the associated F [Θ]-module. A subspace W ⊂ M is said to be invariant if
∆i W ⊂ W , for all i. One can see easily that W ⊂ M is invariant if, and only if,
W is a submodule of M .

The partial differential system S is called a reducible partial differential sys-
tem if the F [Θ]-module M is reducible, i.e., if there exists a submodule W of M
such that 0 �=�� W �=�� M . Otherwise, S is said to be irreducible.
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The partial differential system S is called a decomposable partial differential
system if M is decomposable, i.e., if M = W1WW ⊕W2WW where WiWW �= 0. Otherwise,�� S is
indecomposable.

The partial differential system S is called a completely reducible partial dif-
ferential system if M is completely reducible, i.e., if it is a direct sum of irreducible
submodules.

In matrix terms, S is reducible, or resp. decomposable, if there exists a system
[B1, . . . , Bm] equivalent to S over F such that, for all i, Bi has the following reduced
form

Bi =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
B1,1 B1,2 . . . B1,r

0 B2,2
. . .

...
...

. . . . . . Br−1,r

0 . . . 0 Br,r

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

or resp. decomposed form

Bi =

⎛⎜⎛⎛⎝⎜⎜ B1,1 0
. . .

0 Br,r

⎞⎟⎞⎞⎠⎟⎟ .

Definition 1.4. Let S = [A1, . . . , Am] be a partial differential system. Factoring S
means deciding whether it is reducible or irreducible, decomposable or indecom-
posable, and, in the reducible (resp. decomposable) case, find an invertible matrix
P such that P [Ai] has a reduced (resp. decomposed) form, for all i.

Thus, factoring a partial differential system means factoring simultaneously
the systems ∂i∂∂ (Y ) = Ai Y . Particularly, we already see that if one of these systems
is irreducible over F , then the system [A1, . . . , Am] is irreducible over F as well.

In the ordinary differential case, when one wants to factor a reducible differ-
ential system, a very useful object is the eigenring associated with the differential
system; indeed, non-trivial elements of this ring provide factorizations of the dif-
ferential system (see [27, 2, 26] for example).

Definition 1.5. The eigenring E (S) of a partial differential system S = [A1, . . . , Am]
is the set of all P ∈ Mn(F ) satisfying ∂i∂∂ (P ) = P Ai − Ai P , for all i.

The eigenring of a partial differential system S is isomorphic to the ring
of endomorphisms End(S) of the associated F [Θ]-module M . Indeed, it is not
difficult to see that a map u : M −→ M belongs to E (S) if, and only if, u is an
F -linear map satisfying u ◦∆i = ∆i ◦ u, for all i.

In the sequel, we will also use the partial eigenrings EiEE (S) consisting of all
P ∈ Mn(F ) satisfying P ∆i = ∆i P . We clearly have E (S) =

⋂m
i=1 EiEE (S).

Remark 1.1. The following facts are standard (e.g., [2, 26]) for usual differential
equations and generalize easily to the case of D-finite partial differential equations.
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E (S) is a finite dimensional C -subalgebra of Mn(F ) which contains C InII . As
a consequence, any element of E (S) has a minimal (and characteristic) polynomial
with coefficients in C .

The eigenrings of two equivalent partial differential systems are isomorphic
as C -algebras.

If E (S) is a division ring, then S is indecomposable.
If S is irreducible, then E (S) is a division ring (Schur’s lemma). The converse

is false. However, if S is completely reducible and if E (S) is a division ring, then
S is irreducible.

2. Partial Differential Systems in Positive Characteristic

Let p be a prime number and r ∈ N∗. Consider the partial differential field (K, Θ)
where K := k(x1, . . . , xm) with k = Fq for q = pr. The partial constant field of K

with respect to, say, ∂1 is C1CC := kerK(∂1) = k(xp
1, x2, . . . , xm). The constant field

of (K, Θ) is

C :=
m⋂

i=1

CiCC = k(xp
1, x

p
2, . . . , x

p
m).

Note that K is a C -vector space of dimension pm and a CiCC -vector space of dimension
p.

In the following, we consider partial differential systems [A1, . . . , Am] with
coefficients in (K, Θ) and, to avoid pathologies, we assume that the prime number
p is strictly greater than the size n of the Ai.

Following the theory of differential equations in characteristic p, we now
introduce partial p-curvatures.

Definition 2.1. Let [A1, . . . , Am] be a partial differential system over (K, Θ). The
partial p-curvatures of [A1, . . . , Am] are the K-linear operators ∆p

i = (∂i∂∂ − Ai)p,
for i ∈ {1, . . . , m}, acting on Kn.

The proof of the following lemma is then immediate.

Lemma 2.1. Let S = [A1, . . . , Am] be a partial differential system over (K, Θ). All
the partial p-curvatures ∆p

i commute and belong to the eigenring E (S). In partic-
ular, the minimal (and characteristic) polynomial of each ∆p

i has its coefficients
in C = k(xp

1, . . . , x
p
m).

Note that in [18, 5, p. 189] (see also [19, VII, p. 222]), Katz defines a notion
of p-curvature in the case of several derivations and remarks the links between
this p-curvature and the eigenring of the system (refined in Lemma 2.1). In [19],
he gives a method for computing the partial p-curvatures (see also [26, Ch. 13] or
[7]). For all i in {1, . . . , m}, it consists in computing the index p element in the Lie
sequence (Ai,(j))j∈N associated with [Ai] which is defined by:

Ai,(0) := InII and ∀j∀ ≥ 0, Ai,(j+1) := ∆i(Ai,(j)) = ∂i∂∂ (Ai,(j))−Ai Ai,(j).
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In [23] (see also [26, Ch. 13]), van der Put gives a classification of differential
modules in characteristic p. A consequence of this classification for the factorization
problem is that the Jordan form of the p-curvature leads to all the factorizations of
the system. In [7] (see also [24, 8]), this is made algorithmic and combining this to
the approach of the eigenring factorization method proposed by Barkatou in [2], the
author develops an algorithm for factoring differential systems in characteristic p
and provides elementary effective proofs of the key results (that can also be viewed
from van der Put’s classification).

In the sequel, we build upon the approach of [7] to generalize the main steps
of the van der Put classification that are needed for the algorithm; in the appen-
dix, van der Put shows how to completely generalize his classification to partial
differential modules.

2.1. Rational Solutions

Let S = [A1, . . . , Am] be a partial differential system over (K, Θ). The space of
rational solutions (or solutions in Kn) of the system S is the set

SolK(S) = {Y ∈ Kn; ∀ i, ∆i(Y ) = 0}.
One can show that SolK(S) is a vector space over the field of constants C of
dimension ≤ n.

The first algorithmic use of the p-curvature stems from Cartier’s lemma ([18,
Theorem 5.1]).

Lemma 2.2 (Cartier). Let S = [A1, . . . , Am] be a partial differential system over
(K, Θ). The partial p-curvatures ∆p

i are all zero if, and only if, S admits a basis
of rational solutions, i.e. solutions in Kn.

Note that S admits a basis of rational solutions if, and only if, S has a
fundamental matrix of rational solutions, i.e., a matrix P ∈ GLn(K) satisfying
∆i(P ) = ∂i∂∂ (P ) − Ai P = 0, for all i. In other words, S admits a basis of rational
solutions if, and only if, there exists P ∈ GLn(K) such that P [Ai] = 0, for all i.

Although a proof of the above lemma can be found in [18, Theorem 5.1], we
propose a new constructive proof for further algorithmic use.

Proof. The implication “⇐” is trivial so we only need to prove “⇒”. Consider
first the differential field (k(x2, . . . , xm)(x1), ∂1) which has C1CC as constant field, and
view ∆1 as a differential operator acting on k(x2, . . . , xm)(x1)n; as it satisfies ∆p

1 =
0, Cartier’s lemma in the ordinary differential case (e.g., [7, Lemma 3.3]) implies
the existence of some P1PP ∈ GLn(k(x2, . . . , xm)(x1)) such that P−1

1PP ∆1 P1PP = ∂1.
For all i in {1, . . . , m}, let ∆̃i = P−1

1PP ∆i P1PP := ∂i∂∂ −Bi for some matrices Bi having
coefficients in k(x1, . . . , xm). The integrability conditions imply that ∂1(Bi) = 0
so that the Bi have their coefficients in C1CC , for all i. Now, we use the hypothesis
∆̃p

2 = 0 and we apply Cartier’s lemma in the ordinary differential case to ∆̃2: there
exists P2PP ∈ GLn(C1CC ) such that P−1

2PP ∆̃2 P2PP = ∂2. Moreover P2PP ∈ GLn(C1CC ) implies
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that ∂1 commutes with P2PP and thus

P−1
2PP P−1

1PP ∆1 P1PP P2PP = P−1
2PP ∆̃1 P2PP = P−1

2PP ∂1 P2PP = ∂1.

Applying this process recursively, we finally find an invertible matrix P = P1PP · · ·PmPP
with coefficients in k(x1, . . . , xm) such that P−1 ∆i P = ∂i∂∂ , for all i; the result
follows. �

This proof exhibits an algorithm to compute a fundamental matrix of rational
solutions of a partial differential system whose partial p-curvatures vanish.

SimRatSols.
Input: A partial differential system S = [A1, . . . , Am] with the Ai ∈ Mn(K)

and whose partial p-curvatures vanish.
Output: A fundamental matrix of rational solutions of [A1, . . . , Am].
1. For i from 1 to m, set A

[1]
i := Ai.

2. For i from 1 to m do:
2a. Compute a fundamental matrix PiPP of rational solutions of the diff-

erential system (viewed as a system in one variable) ∂i∂∂ (Y ) = A
[i]
i Y .

2b. For j from 1 to m, compute A
[i+1]
j := P−1

iPP (A[i]
j PiPP − ∂j∂ (PiPP )).

3. Return P1PP · · ·PmPP .

When only one of the partial p-curvatures is zero, then, after a change
of basis, the system (1.1) can be written as⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪

∆1(y) = 0 with ∆1 := ∂1,
...

∆m(y) = 0 with ∆m := ∂m∂∂ −Am,

(2.1)

so that the integrability conditions (1.2) imply ∂1(Aj) = 0 for all j ∈ {2, . . . , m}.
We can thus deduce that the partial differential system no longer depends on the
variable x1 but rather on xp

1.

An alternative to Algorithm SimRatSols is to use the “Katz’ projector for-
mula”; this will be studied (and used) at the end of the next subsection.

In general (when the partial p-curvatures do not vanish), in characteristic p,
computing rational solutions is an ordinary linear algebra problem which can be
set (and solved) in two ways.

• An iterative method: since for all i,

K ∼=
p−1⊕
j=0

CiCC xj
i ,

any element Y of Kn can be written as Y =
∑p−1

i=0 CiCC xi
1 with CiCC ∈ C n

1CC . The
equation ∆1(Y ) = 0 is then seen as an np× np linear system for the entries
of the CiCC . Let Y1YY ,1, . . . , Y1YY ,r1 denote a basis (over C1CC ) of solutions in Kn of
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∆1(Y ) = 0 obtained from this linear system. As the ∆i commute, the space
generated over C1CC ∩ C2CC by this basis is stable under ∆2. Set

Y2YY :=
r1∑

i=1

p−1∑
j=0

ci,j Y1YY ,i xj
2.

The equation ∆2(Y2YY ) = 0 translates into an r1p × r1p linear system for the
ci,j ∈ C1CC ∩C2CC . Solving this system yields a basis Y2YY ,1, . . . , Y2YY ,r2 (over C1CC ∩C2CC )
of solutions in Kn of {∆1(Y ) = 0, ∆2(Y ) = 0}. Iterating this process, we
finally find a basis over C of rational solutions of [A1, . . . , Am].

• A direct (less interesting) method proceeds as follows: as K is a C vector
space (of dimension pm over C ), the system

{∆1(Y ) = 0, . . . , ∆m(Y ) = 0}
translates into m linear systems of size npm over C , from which a basis (over
C ) of rational solutions is obtained.
As observed in [7, 3.2.1] (see also [8]), this leads to an immediate algorithm for

computing the eigenring (by computing rational solutions of a partial differential
system of dimension n2).

2.2. Scalar Partial p-Curvatures

We consider the case when all the partial p-curvatures ∆p
i are scalar, that is, for

all i, ∆p
i = λi InII with λi ∈ C = k(xp

1, . . . , x
p
m) (see Lemma 2.1).

First consider individually the system ∂1(Y ) = A1 Y (also noted [A1]) with
coefficients in the differential field K = k(x2, . . . , xm)(x1) endowed with the deriva-
tion ∂1 and having C1CC as constant field. In [8] (see also [24, 26]), partial fraction
decomposition shows that if ∆p

1 = λ1 InII with λ1 ∈ C1CC , then there exists

ν1 ∈ k(x2, . . . , xm)(x1)

such that [A1] is equivalent (over k(x2, . . . , xm)(x1)) to [ν1InII ]. Now Theorem 3.7 of
[7] applies and its proof shows that in fact µ1 = Tr(A1)/n ∈ K satisfies ∂p−1

1 (µ1)+
µp

1 = λ1 and the system [A1] is thus equivalent over K to [µ1 InII ].

Proposition 2.1. Let S = [A1, . . . , Am] be a partial differential system over (K, Θ).
All the partial p-curvatures ∆p

i are scalar if, and only if, the system S is equivalent
over K to a “diagonal system”. In other words, for all i, ∆p

i = λi InII with λi ∈ C
if, and only if, there exists P ∈ GLn(K) such that P [Ai] = µi InII with µi ∈ K, for
all i.

Proof. Suppose, without loss of generality, that m = 2. Consider a partial differ-
ential system [A1, A2] satisfying ∆p

1 = λ1 InII and ∆p
2 = λ2 InII with λ1, λ2 ∈ C =

k(xp
1, x

p
2). Set

(µ1, µ2) = (Tr(A1)/n, Tr(A2)/n)
and consider the partial differential system [A1 − µ1 InII , A2 − µ2 InII ]. By con-
struction, its partial p-curvatures vanish. Moreover the integrability condition
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for this new partial differential system is satisfied: indeed, after some simplifi-
cations, this condition can be written as ∂1(µ2) = ∂2(µ1) which is equivalent
to Tr(∂1(A2)) = Tr(∂2(A1)) and, from (1.2), to Tr(A2 A1) = Tr(A1 A2). Then,
Lemma 2.2 shows the existence of an invertible matrix P with coefficients in K

such that P [A1 − µ1 InII ] = P [A2 − µ2 InII ] = 0, that is,

P−1 ( (A1 − µ1 InII )P − ∂1(P )) = P−1 ( (A2 − µ2 InII )P − ∂2(P )) = 0

and the result follows. �

The proof of the next lemma, from [18], exhibits a “Katz’ formula” (see [18],
Formulas 5.1.2 and 5.1.7, p. 191) to compute a fundamental matrix of rational
solutions when all the partial p-curvatures are zero.

Let S = [A1, . . . , Am] be a partial differential system over (K, Θ). It is clear
that the space of rational solutions SolK(S) of S is included in

⋂m
i=1 ker(∆p

i ) (the
common kernel of the partial p-curvatures ∆p

i ).

Lemma 2.3 (Katz). Let S = [A1, . . . , Am] be a partial differential system over
(K, Θ). Then

m⋂
i=1

ker(∆p
i ) = SolK(S)⊗C K.

Proof (adapted from [18]). Assume, for simplicity, that the denominators of Ai

do not vanish at xi = 0. For all i ∈ {1, . . . , m}, we define

Pri : Kn → Kn, v �→
p−1∑
k=0

(−xi)k

k!
∆k

i (v),

and we verify that:
• for all v ∈ Kn,

∆i(Pri(v)) = − (−xi)p−1 ∆p
i (v)

so that Pri sends ker(∆p
i ) into ker(∆i);

• for all i, j ∈ {1, . . . , m} such that i �=�� j,

∆j(Pri(v)) = Pri(∆j(v))

so that the Pri commute.
Now set Pr :=

∏m
i=1 Pri. This operator from Kn to Kn satisfies the following

property: for all i ∈ {1, . . . , m}, if ∆p
i (v) = 0, then ∆i(Pr(v)) = 0. From [18,

Formula 5.1.2, p. 191], the formula for Pr(v) can be expanded to obtain

Pr(v) =
∑
ω

m∏
i=1

(−xi)ωi

ωi!

m∏
i=1

∆ωi

i (v),

where the sum is taken over all r-uples ω = (ω1, . . . , ωr) of integers such that
0 ≤ ωi ≤ p − 1. This projector sends

⋂m
i=1 ker(∆p

i ) to SolK(S) and the (Taylor)
formula [18, Formula 5.1.7, p. 191] induces the identity on

⋂m
i=1 ker(∆p

i ) and proves
the lemma (compare to the proof of [7, Theorem 3.8]). �
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This thus yields an explicit formula for the calculation of a fundamental ma-
trix of rational solutions of a partial differential system whose partial p-curvatures
vanish and which satisfies further that (0, . . . , 0) does not cancel the denominator
of the Ai.

From this, we obtain the following algorithm that diagonalizes partial differ-
ential systems having scalar partial p-curvatures.

Algorithm ScalpCurv.
Input: A partial differential system S = [A1, . . . , Am] satisfying ∆p

i = λi InII ,
for all i.

Output: A matrix P and the P [Ai] = µi InII .
1. For all i, compute µi := Tr(Ai)/n.
2. For all i, set Bi := Ai − µi InII and compute the Lie sequences Bi,(j).

3. Let P :=
m∏

i=1

p−1∑
j=0

(−xi)j

j!
Bi,(j).

4. Return P and the P [Ai] = µi InII .

The correctness of this algorithm follows directly from Proposition 2.1, Lem-
ma 2.3 and their proofs. In Step 3, to apply “Katz’ formula”, we have to make
sure that (0, . . . , 0) does not vanish the denominator of the Bi; if it is the case,
then we shift with respect to the corresponding variable. The calculation in Step
2, can be accelerated using [7, Lemma 3.4] and the fact that the Lie sequences of
the [Ai] have already been computed to obtain the ∆p

i .

2.3. Nilpotent Partial p-Curvatures

In the sequel, the characteristic (resp. minimal) polynomial of a matrix M will be
noted χ(M) (resp. χmin(M)).

We now treat the case when all the partial p-curvatures are nilpotent. Here,
we use a method adapted from [24, 26] to handle the partial differential case.

Assume that all partial p-curvatures are nilpotent so, for all i ∈ {1, . . . , m},
χmin(∆p

i ) = Xdi with di ∈ N∗. The case di = 1 for all i has already been addressed
in Subsection 2.1, so we assume that there exists an i such that di > 1.

The reasoning is the same as in the iterative method for computing rational
solutions given at the end of Subsection 2.1. We have χmin(∆p

1) = Xd1 so, as shown
in [24, 26], one can find a basis of solutions of ∆1(Y ) = 0 in

Kn + Kn l1 + · · ·+ Kn ld1−1
1

where l1 satisfies ∂1(l1) = 1/x1 (note that a general natural algorithm to perform
this task — in characteristic zero — is given in [3] and is easily adapted to our
setting). So, the solutions of ∆1(Y ) = 0 are of the form

Y1YY ,i =
di−1∑
j=0

Y1YY ,i,j lj1
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with Y1YY ,i,j ∈ Kn. We now search for solutions of ∆2(Y ) = 0 of the form
∑

i ci Y1YY ,i

where the ci are constant with respect to ∂1. Viewing the ci as functions in the
variable x2, the relation ∆2 (

∑
i ci(x2)Y1YY ,i) = 0 yields a linear differential system

(S∆2) for the ci(x2). Now χmin(∆p
2) = Xd2, so we know that we can find a basis

of solutions of (S∆2) in

Kn + Kn l2 + · · ·+ Kn ld2−1
2

with ∂2(l2) = 1/x2 (using again a method like in [3]). Iterating this process yields
a basis of solutions in Kn[l1, . . . , lm]. Let P denote the invertible matrix whose
columns are (generated by) the components in Kn of these solutions; then, for all
i, P [Ai] has a reduced form with zeros as diagonal blocks.

The case when, for all i, χmin(∆p
i ) = (X − ai)di with ai ∈ K can then be

handled since it reduces to the nilpotent case by using the tools from the previous
subsection: indeed, letting µi := Tr(Ai)/n and Bi := Ai − µi InII , we factor the
partial differential system [B1, . . . , Bm] having nilpotent partial p-curvatures, and
then we shift back to deduce the factorization of [A1, . . . , Am]. Note that this
particular case appears naturally when we want to adapt van der Put’s method
for the computation of the maximal decomposition of a partial differential system
[A1, . . . , Am] satisfying χ(∆p

i ) = Fmi

iFF , for all i (see Subsection 4.2, [24, 26] or
[7, 8]).

We now have the building blocks for factoring at our disposal. The key will
be to reduce the problem to the simultaneous reduction of the (commuting) par-
tial p-curvature matrices, so we address this problem first before proceeding to
factorization.

3. Simultaneous Reduction of Commuting Matrices

Let K be a field and V be a vector space of finite dimension n over K. Let
L = {φ1, . . . , φs} be a set of s commuting linear endomorphisms of V ; V can be
viewed as a left K[X1, . . . , Xs]-module by defining XjX .v = φj(v) for all v ∈ V ,
j ∈ {1, . . . , s}. We shall denote this module (V, L ).

We say that L is reducible, decomposable or completely reducible over K if the
K[X1, . . . , Xs]-module (V, L ) is reducible, decomposable or completely reducible.

In all of this section, M1, . . . , MsM are s square matrices of size n with coeffi-
cients in K. We further assume that the MiMM commute, i.e.,

∀ i, j, [MiMM , MjM ] := MiMM MjM −MjM MiMM = 0.

We set Ω := {M1, . . . , MsM }. Viewing the MiMM as commuting linear transformations
written in the standard basis of Kn, we naturally define the terms Ω reducible,
decomposable and completely reducible.

3.1. Simultaneous Decomposition

Recall first (see [14, Ch. 4, 9]) that if Ω is indecomposable, then the minimal
polynomial of any N ∈ Ω is a power of an irreducible polynomial over K.
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Suppose now that Ω is decomposable and let M = (Kn, Ω) be the corre-
sponding K[X1, . . . , Xs]-module. We decompose M as

M = W1WW ⊕ · · · ⊕WdWW ,

where the WiWW are indecomposable. Now from [14, Ch. 4, 9], we know that with
respect to a basis of Kn adapted with this decomposition, each element of Ω has
a decomposed form. Moreover, the minimal polynomial of each diagonal block is
a power of an irreducible polynomial. In other words, there exists a P ∈ GLn(K)
such that for all N in Ω, P−1 N P has the form

P−1 N P =

⎛⎜⎛⎛⎝⎜⎜ N1 0
. . .

0 NdNN

⎞⎟⎞⎞⎠⎟⎟ , (3.1)

where, for all j, χmin(NjN ) = F
mj

jF with FjFF irreducible over K.

Definition 3.1. A simultaneous decomposition of Ω is the given of P ∈ GLn(K)
such that, for all N ∈ Ω, P−1 N P has the form (3.1).

In the following, we shall show how to compute a simultaneous decomposition
of Ω. The key to this computation is the (obvious) lemma:

Lemma 3.1. Assume that there exists an N in Ω such that χ(N) = F1FF · · ·FhFF with
h ≥ 2 and the FjFF pairwise coprime. Then, we can compute P ∈ GLn(K) such that,
for all N ′ in Ω, P−1 N ′ P has a decomposed form.

Proof. We know from the kernel decomposition theorem that if χ(N) = F1FF · · ·FhFF

with the FjFF pairwise coprime, then Kn =
⊕h

j=1 ker(FjFF (N)). Now, as the matrices
N and N ′ commute, ker(FjFF (N)) is stable under N ′ and the result follows. �

Following this lemma, one can easily construct a recursive rational algorithm
to compute a simultaneous decomposition of Ω (see [8]).

We now propose to use another approach to compute a simultaneous decom-
position. The idea underlying this method can be found in [10, 8].

Consider the matrix

M := t1 M1 + · · ·+ ts MsM , (3.2)

with coefficients in K[t1, . . . , ts]. Here t1, . . . , ts are indeterminates over K. Note
that, in practice (see [10, 8]), the calculations are performed after having special-
ized the ti to random values.

For all i ∈ {1, . . . , s}, there exists a unique couple of matrices (Si, NiNN ) with
Si semi-simple (that is diagonalizable over K) and NiNN nilpotent such that MiMM =
Si + NiNN and [Si, NiNN ] = 0. Such a decomposition MiMM = Si + NiNN is called the SN
decomposition of MiMM .

Remark 3.1. The eigenvalues of MiMM in K coincide with the eigenvalues of Si in K.
In other words, MiMM and Si have the same characteristic polynomial.
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Lemma 3.2. With the above notations, let

S = t1 S1 + · · ·+ ts Ss and N = t1 N1 + · · ·+ ts NsN .

Then M = S + N is the SN decomposition of the matrix M =
∑s

i=1 ti MiMM .

Proof. We have to show that S is semi-simple, N is nilpotent and [S, N ] = 0.
We know (see [5, Théor´ eme 19.6, p. 294] or [20]) that for all` i, Si and NiNN are
polynomials in MiMM . Consequently, as the MiMM are pairwise commuting matrices, we
have [Si, SjS ] = [NiNN , NjN ] = [NiNN , SjS ] = 0, for all i, j. The matrices S1, . . . , Ss are
thus pairwise commuting and semi-simple matrices. Thus they are simultaneously
diagonalizable over K, that is, there exists an invertible P with coefficients in K
such that P−1 Si P is diagonal, for all i. The fact that S is semi-simple follows
immediately. If we note ui the nilpotence index of NiNN : Nui

iNN = 0 and N l
iNN �= 0 for all��

l < ui, then a direct calculation shows that N is nilpotent with nilpotence index
at most u1 + · · ·+ us. Finally, the equality [S, N ] = 0 is clear since [Si, NjN ] = 0 for
all i, j. �
Corollary 3.1. With the previous notations, let (v1, . . . , vn) ∈ K

n
be a basis of

common eigenvectors of S1, . . . , Ss. Let λi,j be the eigenvalue of Si associated with
vj, i.e., Si vj = λi,j vj. Then

S vj = (
s∑

i=1

ti λi,j) vj

and, in particular, S has all its eigenvalues in
∑s

i=1 ti K ⊂ K[t1, . . . , ts].

An interesting consequence of this corollary is that the eigenvalues of M can
be computed without computing first those of the MiMM . To proceed, it suffices to
factor into products of linear forms over K[t1, . . . , ts] the determinant of M (for
example, we can use the algorithm given in [13, Ap.]). Indeed, we know that det(M)
equals (−1)n times the product of the eigenvalues of M . Now, from Corollary 3.1,
these eigenvalues are linear forms in the ti with coefficients in K and thus det(M)
necessarily factors into linear forms over K[t1, . . . , ts].

We obtain the following algorithm that computes a simultaneous decompo-
sition of {M1, . . . , MsM } (see [10, 8]).

Algorithm SimDec (Simultaneous Decomposition).
Input: Ω = {M1, . . . , MsM } (with MiMM ∈ Mn(K) pairwise commuting matrices).
Output: P ∈ Mn(K) giving a simultaneous decomposition of Ω.
1. Let M := t1 M1 + · · ·+ ts MsM .
2. Compute χ(M) and factor it over K(t1, . . . , ts): let χ(M) = Fm1

1FF · · ·Fmd

dF
with FiFF coprime irreducibles over K(t1, . . . , ts).

3. For i ∈ {1, . . . , d}, do:
3a. Compute a basis ei = (ei,1, . . . , ei,ni) of ker(Fmi

iFF (M))
(choose the ei,j independent of the ti).

4. Return the invertible P having the eij as columns.
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Remark 3.2. This algorithm does not necessarily provide a maximal decomposition
of Ω. However, if the associated module M is semi-simple, then the result of this
algorithm corresponds to the isotypical decomposition of M .

Note that the fact that factoring a partial differential system leads to reducing
a linear combination with indeterminate coefficients of matrices already appears
in a natural way when we consider integrable systems with constant coefficients.
Indeed, let M1, . . . , MsM be s commuting matrices with coefficients in C. The D-
finite partial differential system d

dti
Y = MiMM Y , 1 ≤ i ≤ s admits exp(M1 t1 + · · ·+

MsM ts) as a fundamental matrix of solutions. Thus, if we want to calculate this
exponential of matrix, we have first to reduce the matrix M1 t1 + · · ·+ MsM ts to a
diagonal form (when possible) or a triangular form.

3.2. Reduction of Indecomposable Blocks

Suppose now that Ω is indecomposable. This implies (see [14, Ch. 4, 9]) that there
exists a P ∈ GLn(K) such that for all N ∈ Ω, the matrix P−1 N P has the reduced
form

P−1 N P =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
N1,1 N1,2 . . . N1,r

0 N2NN ,2
. . .

...
...

. . . . . . NrNN −1,r

0 . . . 0 Nr,rNN

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ , (3.3)

where, for all j, χmin(Nj,jN ) = F with F is irreducible over K.

Definition 3.2. Assume that Ω is indecomposable. A (maximal) simultaneous re-
duction of Ω is the given of P ∈ GLn(K) such that, for all N ∈ Ω, P−1 N P has
the form (3.3).

To compute a simultaneous reduction of Ω, we can once again use the matrix

M = t1 M1 + · · ·+ ts MsM .

We know that χmin(M) = Fm with F irreducible over K(t1, . . . , ts). Reducing this
single matrix M over K(t1, . . . , ts), we obtain a simultaneous reduction of Ω (for
details, see [8]). This leads to the following algorithm.

Algorithm SimRed (Simultaneous Reduction).
Input: Ω = {M1, . . . , MsM } (with MiMM ∈ Mn(K)) indecomposable.
Output: P ∈ Mn(K) giving a simultaneous reduction of Ω.
1. Let M := t1 M1 + · · ·+ ts MsM .
2. Compute the polynomial χmin(M) = Fm.
3. For i ∈ {1, . . . , m}, set µi := F i(M) and Ei := ker(µi).
4. Compute a basis of V adapted with the flag (Ei)i

(choose one that does not depend on the ti, see proof below).
5. Return the matrix P having the elements of this basis as columns.
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Proposition 3.1. The algorithm SimRed above computes a simultaneous reduction
of Ω.

Proof. Let µ := F (M). We have µm = 0 and µi �= 0, for�� i ∈ {1, . . . , m − 1}. Let
Ei := ker(µi). It is clear that Em = Kn and Ei ⊂ Ei+1 such that (Ei)i is a flag
of Kn. Let B be a basis of Kn adapted with this flag (i.e., a basis computed from
a basis of E1 extended into a basis of E2, . . .) and that does not depend on the
ti; this is always possible because simultaneous reduction exists. The matrix of µ
with respect to B has a reduced form with zeros as diagonal blocks and the matrix
of M with respect to B has a reduced form. Calling P the matrix formed by the
vectors of B, the reduced forms of the MiMM can be retrieved by conjugating by P
(or by specializing (t1, . . . , ts) respectively into (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) in the
reduced form of M). �

4. Factoring Partial Differential Systems in Positive Characteristic

Let [A1, . . . , Am] be a partial differential system with coefficients in (K, Θ) with
K = k(x1, . . . , xm) and k = Fq for q = pr. We already know that factoring individ-
ually the system ∂i∂∂ (Y ) = Ai Y can be done by applying the algorithm developed
in [7]. To achieve this, we use the partial p-curvature ∆p

i as well as the partial
eigenring EiEE (S). This can be done since during the algorithm of [7], we are always
reduced to performing linear algebra either on the p-curvature or on an element
of the eigenring. Now, if we want to factor the system [A1, . . . , Am], then we have
to factor simultaneously the systems ∂i∂∂ (Y ) = Ai Y ; we are thus naturally led to
reduce simultaneously the partial p-curvatures ∆p

i which commute from Lemma
2.1.

As in the ordinary differential case, we first give a method to decompose the
system and then, we show how to reduce indecomposable blocks.

4.1. Simultaneous Decomposition

The first step to decompose a partial differential system consists in computing a
simultaneous decomposition of the system.

Definition 4.1. Let [A1, . . . , Am] be a partial differential system with coefficients
in (K, Θ). A simultaneous decomposition of [A1, . . . , Am] is given by P ∈ GLn(K)
such that:

1. for all i, P [Ai] =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
B

[1]
i 0

. . .
0 B

[d]
i

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟;

2. for all i, the partial p-curvature of each system ∂i∂∂ (Y ) = B
[j]
i Y has a charac-

teristic polynomial of the form F
mi,j

i,jFF with Fi,jFF irreducible.
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Proposition 4.1. Let [A1, . . . , Am] be a partial differential system with coefficients
in (K, Θ). The matrix P ∈ GLn(K) obtained by applying Algorithm SimDec to
{∆p

1, . . . ,∆
p
m} provides a simultaneous decomposition of [A1, . . . , Am].

Proof. For any polynomial Q, the spaces ker(Q(∆p
i )) are stable under the ∆j

since for all i, j, [∆p
i , ∆

p
j ] = 0. So P obviously achieves conditions (i) and (ii) of

Definition 4.1. �

This induces an algorithm for computing a simultaneous decomposition of a
partial differential system [A1, . . . , Am]:

• Compute the partial p-curvatures ∆p
i of [A1, . . . , Am];

• Return P := SimDec({∆p
1, . . . ,∆

p
m}).

Example 4.1. Let K := Fp(x1, x2) with p = 3 and consider the D-finite partial
differential system [A1, A2] where A1 and A2 are the following matrices:

A1 =
(

1 x1 x2

0 1

)
,

A2 =

⎛⎜⎛⎛⎝⎜⎜ a
(2)
1,1

1
2f2ff (x2)x2x

4
1 + 1

2f3ff (x2)x2
1 + f4ff (x2)

−2f2ff (x2)
x2

f1(x2) + f2ff (x2)x2
1

⎞⎟⎞⎞⎠⎟⎟ ,

where

a
(2)
1,1 =

x1 − 2x3
1x2f2ff (x2)− f3ff (x2)x1 + x1x2(f1(x2) + f2ff (x2)x2

1)
x1x2

and f1, f2ff , f3ff and f4ff are functions in the variable x2.

Case 1. First let us have a look at the case

{f1(x2) = x4
2, f2ff (x2) = x2, f3ff (x2) = x6

2, f4ff (x2) = 2 x6
2 + 2 x4

2}.
Following the algorithm given above, we compute the partial p-curvatures ∆p

1

and ∆p
2, and then, we apply SimDec to {∆p

1, ∆
p
2}: to proceed with the second step,

we form the matrix M = t1 ∆p
1+t2 ∆p

2 and we compute and factor its characteristic
polynomial χ(M). We find

• χ(M)(X) = 2 t2 x15
2 X +2 t1 t2 x12

2 +2 X t2 x12
2 + X t2 x3

2 +2 t2 x15
2 t1 + t1 t2 x3

2

+ X2 + 2 X t1 + t1
2 + t2

2 x18
2 + t2

2x15
2 + t2

2x24
2 + 2 t2

2x27
2 .

The fact that χ(M) is irreducible over K(t1, t2) implies that the partial p-
curvatures cannot be simultaneously reduced (nor decomposed) and consequently,
the partial differential system [A1, A2] is irreducible over K.

Case 2. Now, if

{f1(x2) = 2 x2, f2ff (x2) = 0, f3ff (x2) = 2x6
2 + x2, f4ff (x2) = x2 + x2

2},
then, applying the same process, we find

• χ(M)(X) = (X + t1 + 2 t2 + t2 x3
2 + t2 x15

2 ) (X + t1 + 2 t2 x3
2),
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so that the system is decomposable.
Applying the method of Algorithm SimDec, we find

P :=

⎛⎜⎛⎛⎝⎜⎜ 1 2
x2

(
x2 + x4

2 + x10
2 + 2 x3

2x
2
1 + x11

2 + x6
2 + 2 x2

1 + x2
1x

15
2

)
2 x3

2 + 2 + x15
2

0 1

⎞⎟⎞⎞⎠⎟⎟ .

We can then verify that this matrix decomposes simultaneously the differential
systems [A1] and [A2] (and thus the partial differential system):

P [A1] =
(

1 0
0 1

)
and

P [A2] =

⎛⎜⎛⎛⎝⎜⎜ x6
2 + 2 x2

2 + 2 x2 + 1
x2

0

0 2 x2

⎞⎟⎞⎞⎠⎟⎟ .

More generally, we can see that the factorization of the system is the following:
• If f2ff (x2) �= 0, then the system is irreducible;��
• If f2ff (x2) = 0, then the system is decomposable.

4.2. Maximal Decomposition

Once a simultaneous decomposition has been computed, we may restrict the study
to each block separately. We are now confronted to the case when the partial
differential system [A1, . . . , Am] has partial p-curvatures satisfying χ(∆p

i ) = Fmi

iFF
with FiFF irreducible and mi ≥ 1. If some mi = 1, then [A1, . . . , Am] is irreducible
and the factorization stops.

Let M denote the (partial) differential module associated with the system
[A1, . . . , Am]. We want to find a maximal decomposition of M , i.e., a decomposition

M = W1WW ⊕ · · · ⊕WdWW ,

where the WiWW are indecomposable. As a result, we will write the differential system
[A1, . . . , Am] in block diagonal form where the modules corresponding to the di-
agonal blocks are indecomposable. Here, the techniques from the previous section
do not apply because a matrix P ∈ GLn(K) that decomposes simultaneously the
∆p

i does not necessarily decompose the differential systems ∂i∂∂ (Y ) = Ai Y .
To handle this case, we can use the eigenring. In [7, Proposition 4.7], it is

shown that there exists a “separating” element in the eigenring. This is a matrix
T with characteristic polynomial χ(T ) = F1FF · · ·FdFF such that gcd(FiFF , FjFF ) = 1 and
χ(T|TT

WiWW
) = FiFF . Applying a classical result of the eigenring factorization method

(see [2, Theorem 2] or [8, Proposition 6]) to this element T yields a maximal
decomposition of M .

In practice, such a separating element can be found by taking random ele-
ments in the eigenring. In case of failure, one can use the idempotent decomposition
of the eigenring from [11] to obtain a maximal decomposition.
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As noted in [7], one can also adapt here the method proposed by van der
Put in [24, 26]. Let ai denote a root of FiFF , i.e., the image of X in K[X ]/(F ). Let
K+ := K(a1, . . . , am). Applying the algorithm of Subsection 4.1 over K+, we are
reduced to studying a differential module M + over K+ having p-curvatures with
characteristic polynomial of the form (X − ai)mi . The latter can be reduced (over
K+) using Subsection 2.3 and, thus, we obtain a differential module M + (over K+)
with a maximal decomposition (and a complete reduction of the indecomposable
blocks). Now, K+ has a structure of differential module over K and we have M =
M + ⊗K K+: from this, we recover a basis of M over K and, then, a maximal
decomposition of M (and the indecomposable blocks are fully reduced).

This last method can turn out to be costly because it may require to work in
an unnecessary algebraic extension. In the next section, we give a simple rational
alternative to handle the reduction of indecomposable partial differential systems.

4.3. Reducing Indecomposable Blocks

Definition 4.2. Let [A1, . . . , Am] be an indecomposable partial differential system
with coefficients in (K, Θ). A (maximal) simultaneous reduction of [A1, . . . , Am] is
given by an invertible matrix P such that:

1. for all i, P [Ai] =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
B

[1]
i ∗ . . . ∗
0 B

[2]
i

. . .
...

...
. . .

. . . ∗
0 . . . 0 B

[r]
i

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟;

2. for all i, the partial p-curvature of each system ∂i∂∂ (Y ) = B
[j]
i Y has a minimal

polynomial of the form FiFF with FiFF irreducible.

Proposition 4.2. Let S = [A1, . . . , Am] be an indecomposable partial differential
system with coefficients in (K, Θ). The matrix P ∈ GLn(K) obtained by ap-
plying Algorithm SimRed to {∆p

1, . . . ,∆
p
m} provides a simultaneous reduction of

[A1, . . . , Am].

Proof. In the proof of Proposition 3.1, we have constructed an element µ and
an invertible matrix P such that P−1 µ P = S where S is block triangular with
zeros as diagonal blocks. Now, we remark that, after turning (t1, . . . , ts) into some
(0, . . . , 0, 1, 0, . . . , 0) (the 1 is in the ith position) the element µ[i] obtained is a
non-zero and non-invertible element in the partial eigenring EiEE (S). Then, for the
same reasons as in the proof of [2, Theorem 1], a direct calculation shows that,
Bi := P [Ai] has a reduced form (compare to the proof of [7, Proposition 5.1]). �

We obtain thus the following method to compute a simultaneous reduction
of indecomposable partial differential systems.

• Compute the partial p-curvatures ∆p
i of [A1, . . . , Am];

• Return P := SimRed({∆p
1, . . . ,∆

p
m}).
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5. Two Other Generalizations

We have shown in the previous sections 3 and 4 how to generalize the algorithm
of [7] to factor partial differential systems in characteristic p. We will now see that
this algorithm can be directly adapted to other situations as well. We will sketch
the algorithms corresponding to [7] in the case of one variable but, following the
approach of Sections 3 and 4 to generalize [7] to the multivariate case, one would
obtain algorithms for factoring (integrable) partial local systems and (integrable)
partial difference systems.

5.1. “Local” Factorizations

In this subsection, we give the elements needed to generalize the algorithm factor-
ing differential systems with coefficients in K = k(x) with k = Fq for some q = pr

to the case where the coefficients belong to K((x)).
Let [A] be a differential system with A ∈ Mn(K((x))). The notions of p-

curvature and eigenring can be defined as in the ordinary differential case. Noting
that K((x)) is a C1-field ([15, Definition 11.5, p. 649]), we deduce that the clas-
sification of differential modules in characteristic p given by van der Put in [23]
(see also [26, Ch. 13]) can be applied in this case. Consequently, to construct an
algorithm as the one given in [7] when A ∈ Mn(K(x)), it only remains to specify
how to factor a polynomial with coefficients in Fq((x)) where q = pr: this can
be done by using the standard Newton/Puiseux theorem (see [1, Lecture 12] for
example):

Lemma 5.1. Let F (Y ) = Y n + an−1(x)Y n−1 + · · ·+ a0(x) be a monic polynomial
with coefficients in k((x)) with k = Fp and p > n. There exists an r ∈ N∗ such
that p does not divide r, and F (Y ) =

∏n
i=1(Y − νi) with νi ∈ k((x1/r)).

All the ingredients needed have thus been given and by applying this theorem
to the characteristic polynomial of the p-curvature, we obtain an immediate gener-
alization of the algorithm given in [7] to the case where the system has coefficients
in K((x)).

Remark 5.1. In Lemma 5.1, if F denotes the characteristic polynomial of the
p-curvature, then the νi are related to what we call the exponential parts of the
system. More precisely, we can define a notion of exponential parts in characteristic
p in the same way as in characteristic zero and show that they are exactly the
reduction modulo p of the exponential parts in characteristic zero: this is detailed
in [9] (see also [8, Ch. 2]).

5.2. Factorizations of Difference Systems

The algorithm developed to factor differential systems Y (x)′ = A(x)Y (x) in char-
acteristic p can be generalized to the case of difference systems

Y (x + 1) = A(x)Y (x).

The differential field (k(x),′ ) where k = Fq with q = pr is replaced by the difference
field (k(x), σ) where σ is defined by σ(x) = x + 1 and σ(f) = f for all f ∈ k. The
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constant field {a ∈ k ; σ(a) = a} is then k(xp − x) (see [25, Ch. 5] or [11, Theorem
3.1]).

As in the differential case, there exists a natural notion of p-curvature.

Definition 5.1. Let σ(Y ) = AY with A ∈ GLn(k(x)) (k = Fq, q = pr) be a
difference system. Its p-curvature is the product of matrices

A(x + p− 1) · · ·A(x + 1)A(x).

A classification of difference modules in characteristic p (similar to that of
[23] or [26, Ch. 13] in the differential case) is given in [25, Ch. 5]. It implies that
the Jordan form of the p-curvature gives all the factorizations of the difference
system. The equation y(p−1) + yp = λ with λ ∈ k(xp) is replaced by

u(x + p− 1) · · ·u(x + 1)u(x) = λ

with λ ∈ k(xp − x). When the p-curvature is scalar, then the method used to
improve [7, Lemma 3.6] and to obtain [7, Theorem 3.7] cannot be imitated; indeed,
if we suppose p > n and try to adapt the proof, the solution Tr(A)/n of y(p−1) +
yp = λ is replaced by the solution det(A)1/n of u(x + p− 1) · · ·u(x + 1)u(x) = λ
and we lose the rationality of this solution.

One can define an eigenring as well (see for example [2, 11]): let σ(Y ) = AY
be a difference system with A ∈ Mn(k(x)). The eigenring E(A) of [A] is the set
defined by

E(A) = {P ∈ Mn(k(x)) |σ(P )A = AP}.
All the elements needed to develop an algorithm similar to that of [7] are

collected and the algorithm follows naturally. Note further that:
• The results of [2] stay true in the difference case ([2] is written in the general

setting of pseudo-linear equations);
• The algorithm of Giesbrecht and Zhang [11] can be used to factor Ore poly-

nomials thus, in particular, difference operators.
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[5] L. Chambadal and J. L. Ovaert. Algèbre lin` eaire et alg`´ ebre tensorielle.` Dunot Uni-
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(1) Introduction. In [23, 26] a classification of differential (resp. difference in
[25]) modules over a differential field K of characteristic p > 0 with [K : Kp] = p
is given. The differential modules in question can be seen as ordinary matrix
differential equations. Here we show how to extend this to, say, the case [K :
Kp] = pm with m > 1 (compare [1], 6.6 Remarks (1)). The (partial) differential
modules are the partial differential equations considered in this paper. In order
to simplify the situation, we will, as in the paper, avoid the skew field that may
arise in the classification. The algorithmic results of the paper are made more
transparent from the classification that we will work out.

(2) Assumptions and notation. Let K be a field of characteristic p > 0 and let
K0 be a subfield such that the universal differential module ΩK/K0 has dimension
m ≥ 1 over K. There are elements x1, . . . , xm ∈ K such that {dx1, . . . , dxm} is a
basis of ΩK/K0 . Then x1, . . . , xm form a p-basis of K/K0 which means that the set
of monomials {xa1

1 · · ·xam
m | 0 ≤ ai < p for all i} is a basis of K over KpK0. We will

write C := KpK0. For i ∈ {1, . . . , m}, the derivation ∂i∂∂ of K/K0 is given by ∂i∂∂ xj =
δi,j . Clearly, the {∂i∂∂ } is a set of commuting operators. Put D := K[∂1, . . . , ∂m∂∂ ].
This is a ring of differential operators and the partial differential equations that
one considers (in the paper and here) are left D-modules M of finite dimension
over K. We note that M is a cyclic module (and thus M ∼= D/J for some left
ideal J of finite codimension) if dimK M ≤ p. If dimK M > p, then in general M
is not cyclic (compare [2], Exercise 13.3, p. 319). For notational convenience we
will write D-module for left D-module of finite dimension over K.

(3) Classification of the irreducible D-modules. Similarly to [23], one can prove
the following statements. The center Z of D is C[t1, . . . , tm]. The latter is a (free)
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polynomial ring in the variables {ti := ∂p
i∂ }m

i=1. Consider any maximal ideal m ⊂ Z
and put L = Z/m. Then L ⊗Z D is a central simple algebra over L of dimension
p2m. The well-known classification implies that this algebra is isomorphic to a
matrix algebra Matr(pm1 , D) where D is a (skew) field having dimension p2m2

over its center L. Clearly m1 + m2 = m. The unique simple left module M of this
algebra is Dpm1 and has dimension p−m[L : C]pm1+2m2 = pm2 [L : C] over K. In
particular, if the dimension of M over K is < p, then L ⊗Z D is isomorphic to
Matr(pm, L).

Let M be an irreducible D-module. Then M is also a Z-module of finite
dimension over C. The irreducibility of M implies that mM = 0 for some maximal
ideal m of Z (write again L = Z/m). Hence M is a simple left module over
L⊗Z D. If one knows the structure of the algebras L⊗Z D, then the classification
of irreducible D-modules is complete.

(4) Isotypical decomposition. Let M be anyD-module. Put I := {a ∈ Z | aM =
0}, the annulator of M . Then I ⊂ Z is an ideal of finite codimension. Thus M is
also a Z/I-module of finite dimension. Let {m1, . . . , ms} denote the set of maximal
ideals containing I. This is the support of M . Then the Artin ring Z/I is the di-
rect product of the local Artin rings ZmZZ

i
/(I). One writes 1 = e1 + · · ·+ em, where

ei is the unit element of the ring ZmZZ
i
/(I). Then M = ⊕MiMM , with MiMM = eiM .

This is a module over ZmZZ
i
/(I). Since Z is the center of D each MiMM is again a

D-module. Moreover, the annulator of MiMM is an ideal with radical mi. The above
decomposition will be called the isotypical decomposition of M . The classification
of D-modules is in this way reduced to the classification of D-modules which are
annihilated by a power of some maximal ideal m of Z. The latter depends on the
structure of Z/m⊗Z D.

(5) Restricting the class of D-modules. Let S denote the set of maximal ideals
s = m in Z such that the algebra Z/m ⊗Z D is isomorphic to Matr(pm, Z/m).
In the sequel we will only consider D-modules with support in S. The differential
modules M , considered in this paper, satisfy dimK M < p. According to (3), their
support is in S. We note that S depends on the fields K0 ⊂ K. There are examples
where S is the set of all maximal ideals of Z.

(6) Classification of the D-modules with support in {s}, where s ∈ S. We fix
a maximal ideal s = m ∈ S. The above Tannakian category will be denoted by
(D, s). We note that the tensor product M1 ⊗M2MM of two objects in this category
is defined as M1⊗K M2MM , provided with the action of ∂i∂∂ (for i = 1, . . . , m) given by

∂i∂∂ (m1 ⊗m2) = (∂i∂∂ m1)⊗m2 + m1 ⊗ (∂i∂∂ m2).

Consider the category (Z, s) of the finitely generated Z-modules N , with
support in {s}. The Tannakian structure of this category is determined by the
definition of a tensor product. The tensor product of two modules N1, N2NN in (Z, s)
is N1 ⊗C N2NN equipped with the operations ti given by

ti(n1 ⊗ n2) = (tin1)⊗ n2 + n1 ⊗ (tin2).
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The aim is to produce an equivalence FsFF : (Z, s) → (D, s) of Tannakian cate-
gories. Once this is established, the required classification is reduced to classifying
the objects of (Z, s). The functor FsFF is defined as FsFF (N) = M := K ⊗C N . The
right-hand side is clearly a (left) K[t1, . . . , tm]-module. It suffices to extend this to
a left D-module by defining the operation of the ∂i∂∂ on M .

Let Ẑs denote the completion of the local ring ZmZZ . Let (Ẑs, s) denote the
category of the Ẑs-modules of finite dimension over C. The categories (Z, s) and
(Ẑs, s) are clearly the “same”. Put D̂s = Ẑs ⊗Z D and let (D̂s, s) denote the
category of the left D̂s-modules which have finite dimension over K. Then the
categories (D, s) and (D̂s, s) are the “same”. Therefore it suffices to construct an
equivalence FsFF : (Ẑ, s) → (D̂s, s).

For this purpose we need a free, rank one, Ẑs ⊗C K-module Qs = Ẑs ⊗C Ke,
such that its structure of Ẑs ⊗C K-module extends to that of a left D̂s-module.
Given Qs, the functor FsFF is defined by N �→ M := N ⊗ bZs

Qs. Then M is a
left D̂s-module by λ(n ⊗ µe) = n ⊗ (λµ)e. It is easily verified that FsFF is indeed
an equivalence of Tannakian categories. We note that M is equal to N ⊗C K as
Ẑs⊗C K-module, and our construction extends this to a left D̂s-module structure.

(7) The construction of Qs. By assumption A0 := Z/m ⊗Z D is isomorphic
to Matr(pm, Z/m). Let I be the (unique) simple left module of A0. Then the mor-
phism A0 → EndZ/m(I) is a bijection. In particular, the commutative subalgebra
Z/m⊗C K of A0 acts faithfully on I. By counting dimensions over C, one sees that
I is in fact a free Z/m⊗C K-module with generator, say, e. Thus we have found
a left A0-module structure on Z/m⊗C Ke. Now Qs is constructed by lifting this
structure, step by step, to a left D̂s-module structure on Ẑs ⊗C Ke. This is in fact
equivalent to lifting a given isomorphism A0 → Matr(pm, Z/m) to an isomorphism
Q̂s → Matr(pm, Ẑs). The method of [1] for the case m = 1 can be extended here.
For notational convenience we present here a proof for the case p = 2 and m = 2.

We note that Ẑs ⊗C K = Ẑs[x1, x2] has a free basis {1, x1, x2, x1x2} over
Ẑs. Consider the free module Ẑs[x1, x2]e. We have to construct operators ∂1 and
∂2 on this module such that ∂1∂2 − ∂2∂1 = 0 and ∂2

i∂ = ti for i = 1, 2. Put
∂i∂∂ e = �ie for i = 1, 2. Then the conditions are ∂i∂∂ (�i) + �2

i − ti = 0 for i = 1, 2 and
∂1(�2) − ∂2(�1) = 0. Suppose that we have found �1, �2 such that these equalities
hold modulo ms. Then we want to change the �i in �i+ri with r1, r2 = 0 mod (ms)
such that the required equalities hold module ms+1. This step suffices for the proof
of the statement. It amounts to solving

∂i∂∂ (ri) = −∂(�i)− �2
i + ti mod ms+1 and

∂1(r2)− ∂2(r1) = ∂2(�1)− ∂1(�2) mod ms+1.

The right-hand sides of the equalities are already 0 mod ms. Write r1 = r1(0, 0)+
r1(1, 0)x1 + r1(0, 1)x2 + r1(1, 1)x1x2 and similarly for r2. The right-hand side of
the first equation with i = 1 is killed by the operator ∂1 and therefore contains
only the terms 1, x2. This leads to a unique determination of r1(1, 0) and r1(1, 1)
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and the r1(0, 0), r1(0, 1) can be chosen freely. Similarly, the terms r2(0, 1), r2(1, 1)
are determined and the terms r2(0, 0), r2(1, 0) can be chosen freely. The second
equation reads

r2(1, 0)− r1(0, 1) + r2(1, 1)x2 − r1(1, 1)x1 = ∂2(�1)− ∂1(�2) mod ms+1.

The right-hand side R uses only the terms 1, x1, x2. Moreover, ∂1(R) = ∂1∂2(�1) =
∂2∂1(�1) and this is equal to ∂2(∂1(�1) + �2

1 − t1). Hence the coefficients of x1 of
the two sides are equal. The same holds for the coefficients of x2. The coefficient
of 1 on the two sides can be made equal for a suitable choice of r1(0, 1) and/or
r2(1, 0).

(8) Final remarks. Let (Z, S) denote the Tannakian category of the Z-modules,
having finite dimension over C and with support in S. Let (D, S) denote the cat-
egory of the left D-modules having finite dimension over K and with support in
S (as Z-module). One can “add” the equivalences FsFF in an obvious way to an
equivalence F : (Z, S) → (D, S). For an object M of (D, S), there is an object N
of (Z, S) such that F(N) = M . Then M , as module over K[t1, . . . , tm], describes
in fact the p-curvature of M . Since N ⊗C K ∼= M , one can say that N repre-
sents already the p-curvature of M . In particular, the characteristic (and minimal)
polynomials for the ti have their coefficients in C = K0K

p.
As observed before, classifying the left D-modules of finite dimension over

K and with support in S is equivalent to classifying the Z-modules of finite
dimension over C and with support in S. The latter is done by decomposing
an object into isotypical components. Hence we may restrict our attention to
a single maximal ideal s = m ∈ S. The modules N that we want to classify
are in fact the finitely generated modules over the complete regular local ring
Ẑs

∼= L[[d1, . . . , dm]] which are annihilated by a power of the maximal ideal m. Un-
like the case m = 1, no reasonable classification (or moduli spaces) seems possible.
One observation can still be made. The module N has a sequence of submodules
0 = N0NN ⊂ N1 ⊂ · · · ⊂ NtNN = N such that each quotient NiNN +1/NiNN is isomorphic to
the module L = Z/m. In other words, N is a multiple extension of the module L.

——–
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Abstract. Differential modules are modules over rings of linear (partial) dif-
ferential operators which are finite-dimensional vector spaces. We present a
generalization of the Beke–Schlesinger algorithm that factors differential mod-
ules. The method requires solving only one set of associated equations for each
degree d of a potential factor.
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1. Introduction

The problem of factoring linear ordinary differential equations or operators has
been studied for a long time since Beke [1] and Schlesinger [12] introduced the
idea of associated equations and developed a factorization algorithm for linear
ordinary differential equations (operators). This idea together with some improve-
ments [2, 13] on the Beke–Schlesinger algorithm inspired the study of reducing the
factorization problem to that of finding hyperexponential solutions of associated
systems. Making use of the main algorithm in [8] for computing hyperexponential
solutions of systems of linear partial differential equations (PDEs), Li and others
[9, 10] generalize the Beke–Schlesinger factorization algorithm to systems of lin-
ear PDEs (in one or several unknowns) with finite-dimensional solution spaces.
However, in their algorithm, there is a combinatorial explosion caused by trying
out all the possible sets of leading derivatives for a potential factor. To avoid this
combinatorial explosion, we formulate the factorization problem in terms of dif-
ferential modules and then reduce the factorization problem to that of finding
one-dimensional differential submodules, and further to that of computing hyper-
exponential solutions of associated systems.

Throughout this paper, fields are always assumed to be commutative, mod-
ules and vector spaces are left modules and left vector spaces. The notation (·)τ
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denotes the transpose of vectors or matrices. We write Mn(k) (resp. GLn(k)) for
the set of all n× n (resp. invertible) matrices with entries in a field k.

The paper is organized as follows. Section 2 introduces the notion of differen-
tial modules and gives some straightforward generalizations of results in Chapters 1
and 2 of [11]. Section 3 outlines the idea of the generalized Beke–Schlesinger fac-
torization method, by reducing the problem of finding d-dimensional submodules
of a differential module to that of finding 1-dimensional submodules of its exterior
power and by linking 1-dimensional submodules and hyperexponential solutions
of the associated integrable systems. Section 4 describes a factorization algorithm
for differential modules.

2. Preliminaries

2.1. Differential Modules

Let k be a field (of characteristic zero).

Definition 2.1. A derivation on the field k is a map δ : k �→ k satisfying

δ(a + b) = δ(a) + δ(b), δ(ab) = δ(a)b + aδ(b),

for all a, b ∈ k.

The field k equipped with a set {δ1, . . . , δm} of pairwise commuting deriva-
tions is called a (partial) differential field . An element c of k is called a constant
w.r.t. δi if δi(c) = 0. An element c of k is called a constant if c is a constant w.r.t.
all the δi. All constants of k form a subfield of k, which we denote by C.

Let k be a differential field equipped with the pairwise commuting derivations
δ1, . . . , δm. The ring of linear differential operators over k is the ring k[∂1, . . . , ∂m∂∂ ]
of noncommutative polynomials in ∂1, . . . , ∂m∂∂ with the following multiplicative
rule:

∂i∂∂ ∂j∂ = ∂j∂ ∂i∂∂ and ∂i∂∂ a = a∂i∂∂ + δi(a),
for a ∈ k and i, j ∈ {1, . . . , m}. Denote D = k[∂1, . . . , ∂m∂∂ ]. Definition D.3 in [11]
states that M is a differential module if M is a D-module that is also a finite-
dimensional vector space over k. Hence the dimension of the differential module M
is understood as the dimension of M as a vector space over k.

2.2. Constructions on Differential Modules

We observe that the notion of ordinary differential modules introduced in Chap-
ter 1 of [11] is a special case of differential modules where m = 1. As a straightfor-
ward generalization, the constructions on differential modules can be carried on
as follows.

A (differential) submodule N of M is a k-vector subspace N ⊆ M such
that ∂i∂∂ (N) ⊆ N for i = 1, . . . , m.

Let N be a submodule of M . Then M/N endowed with the map ∂i∂∂ given by

∂i∂∂ (w + N) = ∂i∂∂ (w) + N,



Factorization of Differential Modules 241

for w ∈ M and i = 1, . . . , m, is the quotient differential module.
The direct sum of two differential modules M1 and M2MM is M1 ⊕M2MM endowed

with the map ∂i∂∂ given by

∂i∂∂ (w1 + w2) = ∂i∂∂ (w1) + ∂i∂∂ (w2),

for w1 ∈ M1, w2 ∈ M2MM and each i.
The tensor product M1⊗M2MM of two differential modules is M1⊗kM2MM endowed

with the map ∂i∂∂ given by

∂i∂∂ (w1 ⊗ w2) = ∂i∂∂ (w1)⊗ w2 + w1 ⊗ ∂i∂∂ (w2),

for w1 ∈ M1, w2 ∈ M2MM and each i.
The dth exterior power ∧dM of a differential module M is the k-vector

space ∧d
kM endowed with the map ∂i∂∂ given by

∂i∂∂ (w1 ∧ · · · ∧wd) =
d∑

j=1

w1 ∧ · · · ∧ ∂i∂∂ (wj) ∧ · · · ∧ wd,

for w1, . . . , wd ∈ M and each i.
A morphism φ : M1 → M2MM is a k-linear map φ such that φ ◦ ∂i∂∂ = ∂i∂∂ ◦ φ

for i = 1, . . . , m, namely, φ is a D-linear map.
Two differential modules are said to be isomorphic if there exists a bijective

morphism between them.
The internal Hom, Hom(M1, M2MM ) of two differential modules is the k-vector

space Homk(M1, M2MM ) of all k-linear maps from M1 to M2MM endowed with the map ∂i∂∂
on Homk(M1, M2MM ) given by

∂i∂∂ (�)(w1) = −�(∂i∂∂ (w1)) + ∂i∂∂ (�(w1)),

for w1 ∈ M1, � ∈ Homk(M1, M2MM ) and i = 1, . . . , m. A special case of the in-
ternal Hom is the dual module of a differential module M , which is defined to
be M∗=Homk(M,1k) where 1k denotes the differential module kw with ∂i∂∂ (w) = 0
for each i.

3. Reduction of the Factorization Problem

By factoring a differential module, we mean finding its proper submodules. In the
sequel, we will outline the idea of the generalized Beke–Schlesinger algorithm for
factoring differential modules.

3.1. From M to ∧dM

Let M be a differential module. An element w of ∧dM is said to be decomposable
if w is a wedge product of a finite number of elements of M , i.e., w = w1 ∧· · ·∧wd

with wi ∈ M .
We have the following generalization of Lemma 10 in [3] or the corresponding

statement in Section 4.2.1 of [11].
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Proposition 3.1. A differential module M has a d-dimensional submodule if and
only if ∧dM has a 1-dimensional submodule generated by a decomposable element.

Proof. Let N be a d-dimensional submodule of M with a basis w1, . . . , wd over k.
Suppose that

∂i∂∂ (w1, . . . , wd)τ = Ai(w1, . . . , wd)τ for i = 1, . . . , m,

where Ai = (aist)1≤s, t≤d ∈ Md(k). Then ∧d
kN is a k-vector subspace of ∧d

kM
generated by w1 ∧ · · · ∧ wd. Moreover,

∂i∂∂ (w1 ∧ · · · ∧ wd) =
d∑

s=1

w1 ∧ · · · ∧ ∂i∂∂ (ws) ∧ · · · ∧wd

=
d∑

s=1

w1 ∧ · · · ∧
(

d∑
t=1

aist wt

)
∧ · · · ∧wd = tr(Ai) (w1 ∧ · · · ∧ wd) ∈ ∧dN,

where tr(Ai) denotes the trace of the matrix Ai, for i = 1, . . . , m. So ∧dN is
a 1-dimensional submodule of ∧dM .

Conversely, let u ∈ ∧dM be a decomposable element which generates a 1-
dimensional submodule of ∧dM . Suppose that u = w1 ∧ · · · ∧ wd with wi ∈ M .
Since u �= 0,�� w1, . . . , wd are linearly independent over k and there exists a basis B
of M containing w1, . . . , wd. Pick arbitrarily a finite number of distinct b1, . . . , bs

in B \{w1, . . . , wd}. Since w1, . . . , wd, b1, . . . , bs are linearly independent over k, so
are b1 ∧ u, . . . , bs ∧ u. In particular, b ∧ u �= 0 for any�� b ∈ B \ {w1, . . . , wd}.

Consider a map φu : M → ∧d+1M defined by v �→ v ∧ u. One can verify
that ker(φu) is a k-vector space. Let v ∈ ker(φu). Then v ∧ u = 0 and

0 = ∂i∂∂ (v ∧ u) = ∂i∂∂ (v) ∧ u + v ∧ ∂i∂∂ (u) = ∂i∂∂ (v) ∧ u + v ∧ (au) for some a ∈ k,

which implies that ∂i∂∂ (v) ∧ u = 0 and ∂i∂∂ (v) ∈ ker(φu) for each i. So ker(φu) is
a D-module.

Clearly, ⊕d
i=1kwi ⊆ ker(φu). Suppose that w ∈ ker(φu) ⊂ M . Then there

exist b1, . . . , bs ∈ B \ {w1, . . . , wd} such that

w =
d∑

i=1

λiwi +
s∑

j=1

ξjξ bj with λi, ξjξ ∈ k.

Then 0 = w ∧ u =
∑s

j=1 ξjξ (bj ∧ u) . The linear independence of b1 ∧ u, . . . , bs ∧ u

therefore implies that ξjξ = 0 for j = 1, . . . , s. So ker(φu) = ⊕d
i=1kwi is a d-

dimensional submodule of M . �

Proposition 3.1 converts the problem of finding d-dimensional submodules
of a differential module M into that of finding all those 1-dimensional submod-
ules of ∧dM whose generator is decomposable, and thus reduces the factorization
problem to its “subproblem”of finding 1-dimensional submodules.

Remark 3.2. Proposition 3.1 and the proof remain valid if M is infinite-dimensional
over k.
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3.2. One-Dimensional Submodules of Differential Modules

In this section, we study how to find 1-dimensional submodules of differential
modules.

We recall the definition of integrable systems given in Appendix D.1 of [11]:
let A1, . . . , Am be n× n matrices with entries in a differential field k; the system

{ δ1(Z) = A1Z, . . . , δm(Z) = AmZ } (3.1)

is called an integrable system over k if A1, . . . , Am satisfy the following integrability
condition:

[Ai, Aj ] = δi(Aj)− δjδ (Ai), for any i, j, (3.2)
where [Ai, Aj ] := AiAj −AjAi is the commutator of the matrices Ai and Aj .

Let M be a differential module of dimension n and e1, . . . , en be a basis of M
over F . Suppose that

∂i∂∂ (e1, . . . , en)τ = Bi(e1, . . . , en)τ , with Bi ∈ Mn(k), i = 1, . . . , m.

Let w =
∑n

i=1 aiei ∈ M with ai ∈ k. Then

∂i∂∂ (w)=∂i∂∂ ((a1, . . . , an)(e1, . . . , en)τ )= (δi(a1, . . . , an)+(a1, . . . , an)Bi) (e1, . . . , en)τ ,

for i = 1, . . . , m; hence the condition

∂1(w) = 0, . . . , ∂m∂∂ (w) = 0 (3.3)

translates to

δi(a1, . . . , an)τ = −Bτ
i (a1, . . . , an)τ , i = 1, . . . , m. (3.4)

In other words, the coefficient vector Z := (a1, . . . , an)τ of w satisfies the sys-
tem (3.1) where Ai = −Bτ

i . It follows from (3.4) that the Ai satisfy the integrabil-
ity condition (3.2) and that (3.1) is an integrable system over k, which is called the
integrable system associated with M w.r.t. a basis e1, . . . , en. If we choose another
basis f1, . . . , fnff of M over k with

(f1, . . . , fnff ) = (e1, . . . , en)T for some T ∈ GLn(k),

then by replacing Z with TZ∗ in (3.1) we obtain the integrable system for the new
basis:

{δ1(Z∗) = A∗
1Z

∗, . . . , δm(Z∗) = A∗
mZ∗},

where A∗
i = T−1AiT − T−1δi(T ) for each i. Two integrable systems {δi(Z) =

AiZ}1≤i≤m and {δi(Z∗) = A∗
i Z

∗}1≤i≤m over k of dimension n are said to be
equivalent if there exists a T ∈ GLn(k) such that A∗

i = T−1AiT − T−1δi(T ) for
each i. From the above statement, the integrable systems associated with the same
differential module w.r.t. different bases are equivalent to each other.

It is clear that any integrable system of form (3.1) comes from a differential
module M := kn with the canonical basis {e1, . . . , en} and the ∂i∂∂ given by the
formulas

∂i∂∂ (e1, . . . , en)τ = −Aτ
i (e1, . . . , en)τ for i = 1, . . . , m.

To investigate “solutions”of integrable systems, we introduce



244 Wu

Definition 3.3. A field K ⊇ k is called a differential extension field over k if all
derivations δ1, . . . , δm on k can be extended to K and the extended maps pairwise
commute.

Let K be a differential extension field over k. A vector Z∗ ∈ Kn is called a
solution of the integrable system (3.1) if δi(Z∗) = AiZ

∗ for each i.
First, we recall some definitions introduced in [10]. A nonzero element h

of K is said to be hyperexponential over k w.r.t. δi if δi(h)
h belongs to k. The

element h ∈ K is said to be hyperexponential over k if h is hyperexponential
over k w.r.t. all δi. Two hyperexponential elements h1 and h2 of K are said to be
equivalent over k, denoted by h1 ∼ h2, if their ratio is the product of a constant
of K and an element of k.

A vector H ∈ Kn is said to be hyperexponential over k w.r.t. δi if H = hV
where V ∈ kn and h ∈ K is hyperexponential over k w.r.t. δi. The vector H ∈ Kn

is said to be hyperexponential over k if H is hyperexponential over k w.r.t. all δi.
Observe that an equivalent condition for H ∈ Kn being hyperexponential over k
is that H = hV with V ∈ kn and h ∈ K hyperexponential over k. Indeed, if H

is hyperexponential over k then H = hiViVV with ViVV ∈ kn and δi(hi)
hi

∈ k for each i.
From hiViVV = hjVjVV , it follows that hi

hj
∈ k and hence

k + δi

(
hi

hj

)
=

δi(hi)hj − hiδi(hj)
h2

j

=
δi(hi)

hi

hi

hj
− hi

hj

δi(hj)
hj

,

which implies that δi(hj)
hj

∈ k for each i. So hj is hyperexponential over k and
H = hjVjVV is of the desired form.

Remark 3.4. The definition of hyperexponential vectors in Section 4 of [10] is
slightly different from ours. In [10], a nonzero vector H∗ = (h∗

1, . . . , h
∗
n)τ ∈ Kn

is defined to be hyperexponential over k if each component h∗
i is either zero or

hyperexponential over k. However, we can show that if such H∗ is a hyperexpo-
nential solution of a submodule L in the terminology of [10], then L must have a
solution of form hV where V is a rational vector and h is hyperexponential over k.
Indeed, by re-arrangement of indices we may assume that

h∗
1 = r11u1, . . . , h∗

j1 = r1,j1u1, . . . , h∗
js−1+1 = rs1us, . . . , h∗

js
= rs,jsus,

h∗
js+1 = · · · = h∗

n = 0,

where the rij are rational elements and the ui are hyperexponential elements
that are pairwise inequivalent. In other words, we group the components of H∗

by equivalence classes and move all the zero components to the end. Hence for
any f ∈ L,

0 = f(H∗) = R1u1 + · · ·+ Rsus,
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where the Ri are rational elements. Since the ui are inequivalent to each other, we
have R1 = · · · = Rk = 0 by Proposition 3.3 in [10]. It follows that

f(u1(r11, . . . , r1,j1 , 0, . . . , 0︸︸ ︷︷︷ ︸
n−j1

)τ ) = R1u1 = 0,

for any f ∈ L and therefore u1(r11, . . . , r1,j1 , 0, . . . , 0)τ is a solution of L, which is
hyperexponential by our definition. So these two definitions of hyperexponential
vectors are compatible.

For convenience of later discussion, we give the following proposition, which
is an analogue to Proposition 5.1 in [10]. It describes a correspondence between
1-dimensional submodules of a differential module and hyperexponential solutions
of the associated integrable systems. Although this proposition is obvious in the
ordinary case, we give a detailed proof here because the integrability condition
should be taken into account in the partial case.

Proposition 3.5. Let M be a differential module of dimension n and (3.1) be the
integrable system associated with M w.r.t. a basis e1, . . . , en. Then M has a 1-
dimensional submodule if and only if (3.1) has a hyperexponential solution.

Proof. Let H = hV be a hyperexponential solution of (3.1) where V ∈ kn and h
is a hyperexponential element of some differential extension field K. Set

u = Hτ (e1, . . . , en)τ and w =
u

h
= V τ (e1, . . . , en)τ ∈ M.

Recall that (3.1) is a translation of the condition (3.3). Since H is a solution
of (3.1), we have ∂i∂∂ (u) = 0 and therefore

∂i∂∂ (w) = ∂i∂∂
(u

h

)
=

∂i∂∂ (u)h− δi(h)u
h2

= −δi(h)
h

u

h
= −δi(h)

h
w ∈ kw,

for i = 1, . . . , m. So kw is a 1-dimensional submodule of M . Suppose that we also
have H = h2V2VV where V2VV is another vector in kn and h2 ∈ K is hyperexponential
over k. Set w2 = V τ

2VV (e1, . . . , en)τ ∈ M . In the same way, ∂i∂∂ (w2) = − δi(h2)
h2

w2 for
each i. Since hV = h2V2VV , h = ah2 for some nonzero a ∈ k and thus V = a−1V2VV .
So kw = ka−1w2 = kw2. This means that the hyperexponential solution H of (3.1)
induces uniquely a 1-dimensional submodule kw of M , which is called the 1-
dimensional submodule associated with H .

Conversely, let N be a 1-dimensional submodule of M generated by w and
suppose that ∂i∂∂ (w) = aiw with ai ∈ k for i = 1, . . . , m. It follows that

∂j∂ (∂i∂∂ (w)) − aiajw = δjδ (ai)w,

which has a left hand-side invariant under the permutation of (i, j). This implies
that δjδ (−ai) = δi(−aj) for any i, j. By [10], there is a well-defined hyperexponen-
tial element h over k such that δi(h) = −aih for i = 1, . . . , m. Therefore ∂i∂∂ (hw) = 0
for each i. This again implies, from the translation of (3.3), that h(f1, . . . , fnff )τ

is a solution of the system (3.1) where f1, . . . , fnff are coordinates of w under the
basis e1, . . . , en. In addition, h(f1, . . . , fnff )τ is hyperexponential over k. �
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Proposition 3.5 gives a method of constructing 1-dimensional submodules of a
differential module via hyperexponential solutions of the associated integrable sys-
tems. Note that this construction is independent from the choice of the associated
integrable systems. Indeed, let

S : {δ1(Z) = A1Z, . . . , δm(Z) = AmZ}
and

S∗ : {δ1(Z∗) = A∗
1Z

∗, . . . , δm(Z∗) = A∗
mZ∗}

be integrable systems associated with M w.r.t. the bases e1, . . . , en and f1,. . . , fnff ,
respectively. Then S and S∗ are equivalent, and there is a T ∈ GLn(k) such that

(f1, . . . , fnff ) = (e1, . . . , en)T (3.5)

and A∗
i = T−1AiT − T−1δi(T ) for each i. One can verify that T−1 viewed as a

linear transformation from the set of solutions of S to the set of solutions of S∗ is
a bijection. If H1 := hV is a hyperexponential solution of S with V ∈ kn and h
hyperexponential over k, then H2HH := T−1H1 is a hyperexponential solution of S∗.
Therefore the 1-dimensional submodules of M associated with H1 and H2HH are
generated by (e1, . . . , en)V and (f1, . . . , fnff )T−1V , respectively. From (3.5), these
two generators are equal, so are the 1-dimensional submodules they generate.

We now study the structure of all 1-dimensional submodules of differential
modules. Let M be a differential module of dimension n. Suppose that

S : {δ1(Z) = A1Z, . . . , δm(Z) = AmZ},
with Ai = (aist) ∈ Mn(k), is the integrable system associated with M w.r.t. a ba-
sis e1, . . . , en, and M∗ is the dual module of M with the basis {e∗1, . . . , e∗n} such that
e∗i (ej) equals 1 if i = j and 0 otherwise. Since ∂i∂∂ (e1, . . . , en)τ = −Aτ

i (e1, . . . , en)τ

for each i,

∂i∂∂
(
e∗j
)
(et) = −e∗j(∂i∂∂ (et)) + δi

(
e∗j (et)

)
= −e∗j

(
−

n∑
s=1

aistes

)
= aijt,

for t = 1, . . . , n; hence ∂i∂∂
(
e∗j
)

=
∑n

s=1 aijse
∗
s and

∂i∂∂ (e∗1, . . . , e
∗
n)τ = Ai(e∗1, . . . , e

∗
n)τ , i = 1, . . . , m.

Thus (e∗1, . . . , e
∗
n)τ is a “solution” of the system S.

Assume that k contains a nonconstant a. Then δ�(a) �= 0 for some�� � ∈
{1, . . . , m}. By Proposition 2.9 in [11], M∗ as a k[∂�∂ ]-module has a cyclic vector w
such that M∗ is generated by {w, ∂�∂ (w), ∂2

�∂ (w), . . . } over k; therefore M∗ = k[∂�∂ ]w.
As dimk M∗ = n, the vectors w, ∂i∂∂ (w), ∂2

i∂ (w), . . . , ∂n
i∂ (w) are linearly dependent

over k for each i ∈ {1, . . . , m}. By linear algebra, we can find linear ordinary op-
erators Li ∈ k[∂i∂∂ ] of minimal order such that Li(w) = 0. Clearly, ord(Li) ≤ n
for each i and in particular, ord(L�) = n since w, ∂�∂ (w), . . . , ∂n−1

�∂ (w) form a basis
of M∗. Suppose that

(e∗1, . . . , e
∗
n)τ = P (w, ∂�∂ (w), . . . , ∂n−1

�∂ (w))τ with P ∈ GLn(k). (3.6)
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Denote by L the system {L1(z) = 0, . . . , Lm(z) = 0} of linear PDEs. From (3.6),
every hyperexponential solution of S has the form

H = P
(
h, δ�(h), . . . , δn−1

� (h)
)τ

where h is a hyperexponential solution of L. Applying the algorithm Hyperexpo-
nentialSolutions in [10] to the system L, we obtain

h1, {r11, . . . , r1,t1} ,
...

...
hs, {rs1, . . . , rs,ts} ,

where h1, . . . , hs are hyperexponential elements of a differential extension field K,
hi �∼ hj whenever i �=�� j, and ri1, . . . , ri,ti are elements of k that are linearly
independent over C. According to Proposition 3.4 in [10], every hyperexponential
solution h of L has the form

h = hi(c1ri1 + · · ·+ ctiri,ti),

where i ∈ {1, . . . , s} and c1, . . . , cti ∈ C, not all zero. For 1 ≤ i ≤ s and 1 ≤ j ≤ ti,
we compute

P
(
hirij , δ�(hirij), . . . , δn−1

� (hirij)
)τ

= hiVijVV ,

where VijVV ∈ kn and the first entry of VijVV is rij . Since ri1, . . . , ri,ti are linearly
independent over CFC , so are the vectors ViVV 1, . . . , Vi,tVV i for each i. Therefore, we
obtain

h1, {V11VV , . . . , V1VV ,t1} ,
...

...
hs, {VsVV 1, . . . , Vs,tVV s} ,

such that every hyperexponential solution H of S has the form

H = hi(c1ViVV 1 + · · ·+ ctiVi,tVV i),

where i ∈ {1, . . . , s} and c1, . . . , cti ∈ C, not all zero. Set

NiNN = k(e1, . . . , en)(c1ViVV 1 + · · ·+ ctiVi,tVV i), i = 1, . . . , s,

where the cj are arbitrarily chosen elements of C, not all zero.
From the proof of Proposition 3.5, N1, . . . , NsN are 1-dimensional submodules

of M . We show in the sequel that

IiII = {NiNN | c1, . . . , cti ∈ C, not all zero} , i = 1, . . . , s,

constitute a partition of the set of all 1-dimensional submodules of M by the
equivalence relation “&”, the isomorphism between differential modules. First, we
see that each IiII is a well-defined equivalence class w.r.t. “&”. Suppose that NiNN
and N ′

iNN are two 1-dimensional submodules of M belonging to IiII . There exist two
sets of elements c1, . . . , cti and c′1, . . . , c

′
ti

of C, not all zero, such that

NiNN = k (e1, . . . , en)(c1ViVV 1 + · · ·+ ctiVi,tVV i)︸︸ ︷︷︷ ︸
wi

,
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and
N ′

iNN = k (e1, . . . , en)(c′1ViVV 1 + · · ·+ c′ti
Vi,tVV i)︸︸ ︷︷︷ ︸

w′
i

.

From the proof of Proposition 3.5, we have

∂l(wi) = −δl(hi)
hi

wi and ∂l(w′
i) = −δl(hi)

hi
w′

i, l = 1, . . . , m.

Then the correspondence wi �→ w′
i from NiNN to N ′

iNN is an isomorphism of differential
modules. So NiNN & N ′

iNN and IiII is a well-defined equivalence class. Let N = kw be
a 1-dimensional submodule of M where w = (e1, . . . , en)V ∈ M . From the proof
of Proposition 3.5, there exists a hyperexponential element h such that hV is a
hyperexponential solution of S. There exist i ∈ {1, . . . , s} and c1, . . . , cti ∈ C,
not all zero, such that hV = hi(c1ViVV 1 + · · · + ctiVi,tVV i). It follows that h = ahi for
some a ∈ k, V = a−1 (c1ViVV 1 + · · ·+ ctiVi,tVV i) and

kw = k(e1, . . . , en)V = k(e1, . . . , en) (c1ViVV 1 + · · ·+ ctiVi,tVV i) .

So N belongs to the equivalence class IiII . Now let NiNN and NjN be two 1-dimensional
submodules in the equivalence classes IiII and IjI , respectively. There are two sets
of elements c1, . . . , cti and c′1, . . . , c

′
tj

of C, not all zero, such that

NiNN = k (e1, . . . , en)(c1ViVV 1 + · · ·+ ctiVi,tVV i)︸︸ ︷︷︷ ︸
wi

,

and
NjN = k (e1, . . . , en)(c′1VjVV 1 + · · ·+ c′tj

Vj,tVV j )︸︸ ︷︷︷ ︸
wj

.

Suppose that NiNN & NjN , given by the correspondence φ : wi �→ awj with a ∈ k.
Note that ∂l(wi) = − δl(hi)

hi
wi and ∂l(wj) = − δl(hj)

hj
wj for l = 1, . . . , m. On one

hand,

φ ◦ ∂l(wi) = φ

(
−δl(hi)

hi
wi

)
= −a

δl(hi)
hi

wj ,

and on the other hand,

∂l ◦ φ(wi) = ∂l(awj) =
(

δl(a)− a
δl(hj)

hj

)
wj ,

for each l. Hence

δl

(
hj

ahi

)
hj

ahi

=
δl(hj)

hj
− δl(hi)

hi
− δl(a)

a
= 0, for each l,

which implies that hj

ahi
is a constant of K, a contradiction with the fact hi �∼ hj .

So NiNN �& NjN whenever i �=�� j and {I1, . . . , IsI } is a partition of all 1-dimensional
submodules of M given the equivalence relation “&”.

We now describe an algorithm for finding 1-dimensional submodules of dif-
ferential modules.
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Algorithm OneDimSubMods (for finding 1-dimensional submodules of a differen-
tial module).

Input: A differential module M with a basis e1, . . . , en and the actions of ∂i∂∂ on
this basis:

∂i∂∂ (e1, . . . , en)τ = Bi(e1, . . . , en)τ , i = 1, . . . , m,

where B1, . . . , Bm are n× n matrices with entries in k.
Output: All 1-dimensional submodules of M .

1. [Find the cyclic vector.] Construct the integrable system associated with M

S : {δ1(Z) = A1Z, . . . , δm(Z) = AmZ}
where Ai = −Bτ

i . Let M∗ be the dual module of M with the basis {e∗1, . . . , e∗n}
such that

∂i∂∂ (e∗1, . . . , e
∗
n)τ = Ai(e∗1, . . . , e

∗
n)τ , i = 1, . . . , m.

Find a cyclic vector w of M∗ such that M∗ is generated by w, ∂�∂ (w), . . . , ∂n−1
�∂ (w)

over k for some � ∈ {1, . . . , m}. Then there is a P ∈ GLn(k) such that

(e∗1, . . . , e
∗
n)τ = P (w, ∂�∂ (w), . . . , ∂n−1

�∂ (w))τ .

By linear algebra, find linear ordinary operators Li ∈ k[∂i∂∂ ] of minimal order such
that Li(w) = 0 for i = 1, . . . , m. We then obtain a system of linear PDEs:

L : {L1(z) = 0, . . . , Lm(z) = 0}.
2. [Compute hyperexponential solutions.] Apply the algorithm Hyperexponential-
Solutions in [10] to compute all hyperexponential solutions of L. If the output is
NULL then exit [M has no 1-dimensional submodules]. Otherwise, suppose that
the output is

h1, {r11, . . . , r1,t1} ,
...

...
hs, {rs1, . . . , rs,ts} ,

where h1, . . . , hs are hyperexponential elements of a differential extension field,
hi �∼ hj whenever i �=�� j, and ri1, . . . , ri,ti are elements of k that are linearly
independent over C. Let

VijVV = h−1
i P

(
hirij , δ�(hirij), . . . , δn−1

� (hirij)
)τ ∈ kn,

for i = 1, . . . , s and j = 1, . . . , ti. Then ViVV 1, . . . , Vi,tVV i are linearly independent
over C and

h1, {V11VV , . . . , V1VV ,t1} ,
...

...
hs, {VsVV 1, . . . , Vs,tVV s} ,

describe the structure of hyperexponential solutions of S: every hyperexponential
solution of S has the form

H = hi(c1ViVV 1 + · · ·+ ctiVi,tVV i),
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with i ∈ {1, . . . , s} and c1, . . . , cti ∈ C, not all zero.
3. [Retrieve 1-dimensional submodules.] Set

IiII = {k(e1, . . . , en)(c1ViVV 1 + · · ·+ ctiVi,tVV i) | c1, . . . , cti ∈ C, not all zero} ,

for i = 1, . . . , s. Then {I1, . . . , IsI } is a partition of all 1-dimensional submodules
of M by the equivalence relation “&”.

3.3. Decomposability of Elements of ∧dM

Let M be a differential module. In order to find all d-dimensional submodules
of M , by Proposition 3.1 it suffices to find all those 1-dimensional submodules
of ∧dM whose generators are decomposable.

Apply the algorithm OneDimSubMods to ∧dM to obtain its 1-dimensional
submodules kw where w ∈ ∧dM may contain some unspecified constants c1, . . . , ct.
To test the decomposability of w, consider the map

φw : M → ∧d+1M, v �→ v ∧ w.

From the proof of Proposition 3.1, w is decomposable if and only if ker(φw) is of
dimension d. The latter is equivalent to the condition that the matrix P of the
map φw has rank n − d. Hence identifying the decomposability of w amounts to
a rank computation of P , i.e., identifying the constants c1, . . . , ct in w such that
all (n−d+1)×(n−d+1) minors of P are zero and P has at least a nonzero (n−d)×
(n−d) minor, which amounts to solving a nonlinear system in c1, . . . , ct. We observe
that this is the Plucker relations described in [11, 15] (for more details, see [5, 7,¨
6]). If this nonlinear system has no solutions in C, the algebraic closure of C,
then M has no d-dimensional submodules. Otherwise, ker(φw) is a d-dimensional
submodule of M .

Remark 3.6. There are alternative ways to compute ranks of parameterized ma-
trices, for example, the Gauss method with branching, a Gröbner basis method¨
using the linear structure [4] or the algorithm described in [14] for computing
ranks of parameterized linear systems. These methods may be more efficient than
computing minors.

4. Factorization Algorithm

Based on the results in previous sections, we now describe an algorithm for fac-
toring differential modules.

Algorithm FactorDiffMod (for factoring differential modules).
Input: A differential module M with a basis {e1, . . . , en} and the actions of ∂i∂∂ on
this basis:

∂i∂∂ (e1, . . . , en)τ = Bi(e1, . . . , en)τ , for i = 1, . . . , m, (4.1)
where B1, . . . , Bm are n× n matrices with entries in k.
Output : All d-dimensional submodules of M given by their bases and the actions
of ∂i∂∂ on the bases, for 0 < d < n.
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1. [Construct the exterior power.] From (4.1), construct a basis {f1, . . . , fÑf } of ∧dM

with Ñ =
(

n
d

)
and the matrices B̃i ∈ MÑ (k) such that

∂i∂∂ (f1, . . . , fÑf )τ = B̃i(f1, . . . , fÑf )τ , i = 1, . . . , m.

2. [Compute 1-dimensional submodules.] Apply the algorithm OneDimSubMods
to compute all 1-dimensional submodules of ∧dM . If ∧dM has no 1-dimensional
submodules, then exit [M has no d-dimensional submodules]. Otherwise, suppose
that kw is a 1-dimensional submodule of ∧dM where w may contain some unspec-
ified constants c1, . . . , ct.

3. [Test the decomposability.] For each w obtained in step 2, consider the map

φw : M → ∧d+1M, v �→ v ∧ w.

Construct the matrix P of φw, which is an
(

n
d + 1

)
× n matrix with entries

in k(c1, . . . , ct). The condition that all (n − d + 1) × (n − d + 1) minors of P are
zero and that P has at least one nonzero (n− d) minor yields a nonlinear system
in c1, . . . , ct. If this nonlinear system has no solutions in C then exit [M has no d-
dimensional submodules]. Otherwise, substitute the values of c1, . . . , ct into P and
compute a basis {α1, . . . , αd} of the rational kernel of P with αj ∈ kn.

4. [Retrieve d-dimensional submodules.] Set vj = (e1, . . . , en)αj for j = 1, . . . , d.
Then ⊕d

j=1kvj is a d-dimensional submodule of M .

We now apply the algorithm FactorDiffMod to redo Example 1 in [9].

Example. Let D = Q(x, y)[∂x∂ , ∂y∂∂ ] where ∂x∂ = ∂
∂x and ∂y∂∂ = ∂

∂y are the usual
differential operators w.r.t. x and y, respectively. Let M be a differential module
with a basis {e1, e2, e3} such that

∂x∂ (e1, e2, e3)τ = Bx(e1, e2, e3)τ , ∂y∂∂ (e1, e2, e3)τ = By(e1, e2, e3)τ

where

Bx =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0 − y

4x
−1

4

−1
2− xy

4x
−2 + xy

4y

0
y2

4x

y

4

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ , By =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0 −1

4
− x

4y

0 −2 + xy

4y

2x− x2y

4y2

−1
y

4
x

4

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

To compute two-dimensional submodules of M , construct the second exterior
power ∧2M of M with a basis {f1 := e1 ∧ e2, f2ff := e1 ∧ e3, f3ff := e2 ∧ e3}
and compute the integrable system associated with ∧2M :

S : {∂x∂ (Z) = AxxZ, ∂y∂∂ (Z) = AyyZ}
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where Z = (z1, z2, z3)τ is a vector of unknowns and

Axx =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
xy − 2

4x
− y2

4x
0

2 + xy

4y
−y

4
1

−1
4

y

4x
− 1

2x

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ , Ayy =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
2 + xy

4y
−y

4
−1

x2y − 2x

4y2
−x

4
0

− x

4y

1
4

1
2y

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

Let M∗
2MM be the dual module of ∧2M with the basis {f∗

1 , f∗
2ff , f∗

3ff } such that

∂x∂ (f∗
1 , f∗

2ff , f∗
3ff )τ = Axx(f∗

1 , f∗
2ff , f∗

3ff )τ and ∂y∂∂ (f∗
1 , f∗

2ff , f∗
3ff )τ = Ayy(f∗

1 , f∗
2ff , f∗

3ff )τ .

We find that f∗
1 is a cyclic vector of M∗

2MM and moreover,

(f∗
1 , f∗

2ff , f∗
3ff )τ = P

(
f∗
1 , ∂x∂ (f∗

1 ), ∂2
x∂ (f∗

1 )
)τ

with

P =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 0

xy − 2
4x

− y2

4x
0

−3(xy − 2)
8x2

3y2

8x2
− y2

4x

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

By linear algebra, we find two linear ordinary differential operators, both of mini-
mal order,

Lx = ∂3
x∂ +

3
x

∂2
x∂ +

3− xy

4x2
∂x∂ − y

8x2
∈ Q(x, y)[∂x∂ ]

and

Ly = ∂3
y∂ +

6− 2xy

y(xy − 6)
∂2

y∂ +
23xy − x2y2 − 42

4y2(xy − 6)
∂y∂∂ +

x2y2 − 30xy + 72
8y3(xy − 6)

∈ Q(x, y)[∂y∂∂ ]

such that Lx and Ly both annihilate f∗
1 .

Applying the algorithm HyperexponentialSolutions in [10] to the system

L : {Lx(z1) = 0, Ly(z1) = 0},
we find that every hyperexponential solution h of the system L has the form

h = ce
R
(− 1

2x dx+ 1
2y dy) = c

√
y

x
, for any c ∈ Q,

where e
R
(− 1

2x dx+ 1
2y dy) denotes a hyperexponential function h0 in x, y such that

∂x∂ (h0) = − 1
2x

h0 and ∂y∂∂ (h0) =
1
2y

h0.

Hence every hyperexponential solution of S has the form

Z = P (h, ∂x∂ (h), ∂2
x∂ (h))τ =

√
y

x

(
c, c · x

y
, 0
)τ

, for any c ∈ Q̄,
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and all 1-dimensional submodules of ∧2M are of the form Q̄(x, y)w where

w = (f1, f2ff , f3ff )
(

1,
x

y
, 0
)τ

= e1 ∧ e2 +
x

y
e1 ∧ e3 ∈ ∧2M. (4.2)

To test the decomposability of w, consider the map

φw : M → ∧3M, v �→ v ∧ w.

The matrix of φw is P =
(
0,−x

y , 1
)

and then has rank one. So w is decomposable.

(In fact, from (4.2) one can see directly that w = e1∧
(
e2 + x

y e3

)
is a decomposable

element of ∧2M .) A basis for the rational kernel of P is{
(1, 0, 0)τ ,

(
0, 1,

x

y

)τ}
.

Set v1 = (e1, e2, e3)(1, 0, 0)τ = e1 and v2 = (e1, e2, e3)
(
0, 1, x

y

)τ

= e2 + x
y e3.

Then ker(φu) = kv1 ⊕ kv2 is a two-dimensional submodule of M and the actions
of ∂x∂ and ∂y∂∂ on the basis {v1, v2} are given by

∂x∂ (v1, v2)τ = FxFF (v1, v2)τ , ∂y∂∂ (v1, v2)τ = FyFF (v1, v2)τ

where

FxFF =

⎛⎜⎛⎛⎝⎜⎜ 0 − y

4x

−1
1
2x

⎞⎟⎞⎞⎠⎟⎟ , FyFF =

⎛⎜⎛⎛⎝⎜⎜ 0 −1
4

−x

y
− 1

2y

⎞⎟⎞⎞⎠⎟⎟ .

5. Conclusion and Future Work

In this paper, we present an algorithm for factoring differential modules. By fac-
toring the differential modules associated with systems of linear PDEs with finite-
dimensional solution spaces, the algorithm FactorDiffMod improves the factoriza-
tion algorithm in [9]. Further work will include the refinement of the step in the al-
gorithm OneDimSubMods which deals with computing hyperexponential solutions
of integrable systems and the improvement for computing ranks of parameterized
matrices. The generalization of the factorization algorithm to difference modules
and differential-difference modules will also be studied.
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1. Introduction

This chapter focuses on symbolic methods to compute polynomial conservation
laws of partial differential equations (PDEs) in multi-dimensions and differential-
difference equations (DDEs, semi-discrete lattices). We only treat (1+1)-dimensio-
nal DDEs where time is continuous and the spacial variable has been discretized.

There are several strategies to compute conservation laws of PDEs. Some
methods use a generating function [2], which requires the knowledge of key pieces of
the Inverse Scattering Transform [1]. Other methods use Noether’s theorem to get
conservation laws from variational symmetries. More algorithmic methods, some
of which circumvent the existence of a variational principle [6, 7, 26, 36], require
the solution of a determining system of ODEs or PDEs. Despite their power, only a
few of these methods have been implemented in computer algebra systems (CAS),
such as Mathematica, Maple, and REDUCE. See [17, 36] for reviews.

The most modern techniques [9] rely on tools from the calculus of variations,
including basic operations on vector fields and differential forms. Such tools are
available in Vessiot, a general purpose suite of Maple packages designed by An-
derson [10] for computations on jet spaces. The Vessiot package DE_APPLS offers
commands (but no fully automated code) for constructing conservation laws from
symmetries by Noether’s theorem.

We advocate a direct approach for the computation of conservation laws with-
out recourse to generalized or adjoint symmetries. We use the following procedure:
build candidate densities as linear combinations (with undetermined coefficients)
of terms that are homogeneous under the scaling symmetry of the PDE. If no such
symmetry exists, one is constructed by introducing weighted parameters. Subse-
quently, use the variational derivative to compute the coefficients, and, finally, use
the homotopy operator to compute the flux. Furthermore, our approach can be
adapted to nonlinear DDEs [18, 21, 22].

Our method works for evolution equations with polynomial and transcen-
dental terms and does not require a Lagrangian formulation. Built on tools from
(variational) calculus and linear algebra, our method is entirely algorithmic and
can be implemented in leading CAS. Implementations [17, 18] in Mathematica and
Maple can be downloaded from [13, 20].

Our earlier algorithm [17, 18] worked only for nonlinear PDEs in one spacial
variable. In this chapter we present an algorithm that works for systems of PDEs in
multi-dimensions that appear in fluid mechanics, elasticity, gas dynamics, general
relativity, (magneto-) hydro-dynamics, etc. The new algorithm produces densities
in which all divergences and divergence-equivalent terms have been removed.

During the development of our methods we came across tools from the cal-
culus of variations and differential geometry that deserve attention in their own
right. These tools are the variational derivative, the higher Euler operators, and
the homotopy operator.

To set the stage, we address a few issues arising in multivariate calculus:
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(i) To determine whether or not a vector field F is conservative, i.e. F = ∇f
for some scalar field f, one must verify that F is irrotational or curl free, that is
∇×F = 0. The field f can be computed via standard integrations [32, pp. 518, 522].

(ii) To test if F is the curl of some vector field G, one must check that F is
incompressible or divergence free, i.e. ∇ ·F = 0. The components of G result from
solving a coupled system of first-order PDEs [32, p. 526].

(iii) To verify whether or not a scalar field f is the divergence of some vector
function F, no theorem from vector calculus comes to the rescue. Furthermore,
the computation of F such that f = ∇ ·F is a nontrivial matter. In single variable
calculus, it amounts to computing the primitive F =

∫
f dx.

In multivariate calculus, all scalar fields f, including the components FiFF of
vector fields F = (F1FF , F2FF , F3FF ), are functions of the independent variables (x, y, z).
In differential geometry one addresses the above issues in much greater generality.
The functions f and FiFF can now depend on arbitrary functions u(x, y, z), v(x, y, z),
etc. and their mixed derivatives (up to a fixed order) with respect to the indepen-
dent variables (x, y, z). Such functions are called differential functions [33]. As
one might expect, carrying out the gradient-, curl-, or divergence-test requires ad-
vanced algebraic machinery. For example, to test whether or not f = ∇·F requires
the use of the variational derivative (Euler operator) in 3D. The actual compu-
tation of F requires integration by parts. That is where the homotopy operator
comes into play.

In 1D problems the continuous total homotopy operator1 reduces the problem
of symbolic integration by parts to an integration with respect to a single auxiliary
variable. In 2D and 3D, the homotopy operator allows one to invert the total
divergence operator and, again, reduce the problem to a single integration. At the
moment, no major CAS have reliable routines for integrating expressions involving
unknown functions and their derivatives. As far as we know, no CAS offer a function
to test if a differential function is a divergence. Routines to symbolically invert the
total divergence are certainly lacking.

The continuous homotopy operator is a universal, yet little known, tool that
can be applied to many problems in which integration by parts (of arbitrary func-
tions) in multi-variables plays a role. The reader is referred to [33, p. 374] for a
history of the homotopy operator. One of the first uses of the homotopy operator
in the context of conservation laws can be found in [6, 7] and references therein. Aff
clever argument why the homotopy operator actually works is given in [7, p. 582].
In [5], Anco gives a simple algebraic formula to generate conservation laws of scal-
ing invariant PDEs based on the computation of adjoint symmetries. Like ours,
Anco’s approach is algorithmic and heavily relies on scaling homogeneity. His ap-
proach does not require the use of the homotopy integral formula.

A major motivation for writing this chapter is to demystify the homotopy
operators. Therefore, we purposely avoid differential forms and abstract concepts

1Henceforth, homotopy operator instead of total homotopy operator.
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such as the variational bicomplex. Instead, we present calculus formulas for the
homotopy operators which makes them readily implementable in major CAS.

By analogy with the continuous case, we also present formulas for the discrete
versions of the Euler and homotopy operators. The discrete homotopy operator is a
powerful tool to invert the forward difference operator, whatever the application is.
It circumvents the necessary summation (by parts) by applying a set of variational
derivatives followed by a one-dimensional integration with respect to an auxiliary
variable. We use the homotopy operator to compute conserved fluxes of DDEs.
Numerous examples of such DDEs are given in [34]. Beyond DDEs, the discrete
homotopy operator has proven to be useful in the study of difference equations
[24, 30]. To our knowledge, CAS offer no tools to invert the forward difference
operator. Our discrete homotopy operator overcomes these shortcomings.

As shown in [24, 30], the parallelism between the continuous and discrete
cases can be made rigorous and both theories can be formulated in terms of vari-
ational bicomplexes. To make our work accessible to as wide an audience as pos-
sible, we do not explicitly use the abstract framework. Aficionados of de Rham
complexes may consult [8, 9, 11, 27] and [24, 30, 31]. The latter papers cover the
discrete variational bicomplexes.

2. Examples of Nonlinear PDEs

We consider nonlinear systems of evolution equations in (3 + 1) dimensions,

ut = G(u,ux,uy,uz,u2x,u2y,u2z,uxy,uxz,uyz, . . . ), (2.1)

where x = (x, y, z) are space variables and t is time. The vector u(x, y, z, t) has
N components ui. In the examples we denote the components of u by u, v, w,
etc. Subscripts refer to partial derivatives. For brevity, we use u2x instead of uxx,
etc. and write G(u(n)) to indicate that the differential function G depends on
derivatives up to order n of u with respect to x, y, and z. We assume that G
does not explicitly depend on x and t. There are no restrictions on the number of
components, order, and degree of nonlinearity of the variables in G.

We will predominantly work with polynomial systems, although systems in-
volving one transcendental nonlinearity can also be handled. If parameters are
present in (2.1), they will be denoted by lower-case Greek letters.

Example 2.1. The coupled Korteweg–de Vries (cKdV) equations [1],

ut − 6βuux + 6vvx − βu3x = 0, vt + 3uvx + v3x = 0, (2.2)

where β is a nonzero parameter, describes interactions of two waves with different
dispersion relations. System (2.2) is known in the literature as the Hirota–Satsuma
system. It is completely integrable [1, 23] when β = 1

2 .

Example 2.2. The sine-Gordon (sG) equation [12, 29], u2t − u2x = sinu, can be
written as a system of evolution equations,

ut = v, vt = u2x + sinu. (2.3)
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This system occurs in numerous problems of mathematics and physics, ranging
from surfaces with constant mean curvature to superconductivity.

Example 2.3. The (2+1)-dimensional shallow-water wave (SWW) equations [14],

ut + (u·∇)u + 2Ω× u = −∇(hθ) + 1
2h∇θ,

θt + u·(∇θ) = 0, ht + ∇·(hu) = 0, (2.4)

describe waves in the ocean using layered models. Vectors u = u(x, y, t)i+v(x, y, t)j
and Ω = Ωk are the fluid and angular velocities, respectively. i, j, and k are unit
vectors along the x, y, and z-axes. θ(x, y, t) is the horizontally varying potential
temperature field and h(x, y, t) is the layer depth. The dot (·) stands for Euclidean
inner product and ∇ = ∂

∂x i+ ∂
∂y j is the gradient operator. System (2.4) is written

in components as

ut + uux + vuy − 2Ωv + 1
2hθx + θhx =0, vt + uvx + vvy + 2Ωu + 1

2hθy + θhy =0,

θt + uθx + vθy =0, ht + hux + uhx + hvy + vhy =0. (2.5)

3. Key Definitions — Continuous Case

Definition 3.1. System (2.1) is said to be dilation invariant if it is invariant under
a scaling (dilation) symmetry.

Example 3.2. The cKdV system (2.2) is invariant under the scaling symmetry

(x, t, u, v) → (λ−1x, λ−3t, λ2u, λ2v), (3.1)

where λ is an arbitrary scaling parameter.

Definition 3.3. We define the weight,2 W , of a variable as the exponent p in λp

which multiplies the variable.

Example 3.4. We will replace x by λ−1x. Thus, W (x) = −1 or W (∂/∂x) = 1.
From (3.1), we have W (∂/∂t) = 3 and W (u) = W (v) = 2 for the cKdV equations.

Definition 3.5. The rank of a monomial is defined as the total weight of the mono-
mial. An expression is uniform in rank if its monomial terms have equal rank.

Example 3.6. All monomials in both equations of (2.2) have rank 5. Thus, (2.2) is
uniform in rank.

Weights of dependent variables and weights of ∂/∂x, ∂/∂y, etc. are assumed
to be non-negative and rational. Ranks must be positive natural or rational num-
bers. The ranks of the equations in (2.1) may differ from each other. Conversely,
requiring uniformity in rank for each equation in (2.1) allows one to compute the
weights of the variables (and thus the scaling symmetry) with linear algebra.

2For PDEs modeling physical phenomena, the weights are the remnants of physical units after
non-dimensionalization.
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Example 3.7. For the cKdV equations (2.2), one has

W (u) + W (∂/∂t) = 2W (u) + 1 = 2W (v) + 1 = W (u) + 3,

W (v) + W (∂/∂t) = W (u) + W (v) + 1 = W (v) + 3,

which yields W (u) = W (v) = 2, W (∂/∂t) = 3, leading to (3.1).

Dilation symmetries, which are special Lie-point symmetries, are common to
many nonlinear PDEs. However, non-uniform PDEs can be made uniform by ex-
tending the set of dependent variables with auxiliary parameters with appropriate
weights. Upon completion of the computations one equates these parameters to 1.

Example 3.8. The sG equation (2.3) is not uniform in rank unless we replace it by

ut = v, vt = u2x + α sin u, α ∈ IR. (3.2)

Using the Maclaurin series for the sin function, uniformity in rank requires

W (u) + W (∂/∂t) = W (v),
W (v) + W (∂/∂t) = W (u) + 2=W (α) + W (u)=W (α) + 3W (u) = · · · .

This forces us to set W (u) = 0. Then, W (α) = 2. By allowing the parameter α to
scale, (3.2) becomes scaling invariant under the symmetry

(x, t, u, v, α) → (λ−1x, λ−1t, λ0u, λ1v, λ2α),

corresponding to W (∂/∂x) = W (∂/∂t) = 1, W (u) = 0, W (v) = 1, W (α) = 2. The
first and second equations in (3.2) are uniform of ranks 1 and 2, respectively.

As in (3.2), the weight of an argument of a transcendental function is always
0.

Definition 3.9. System (2.1) is called multi-uniform in rank if it admits more than
one dilation symmetry (not the result of adding parameters with weights).

Example 3.10. Uniformity in rank for the SWW equations (2.5) requires, after
some algebra, that

W (∂/∂t) = W (Ω), W (∂/∂y) = W (∂/∂x) = 1, W (u) = W (v) = W (Ω)− 1,

W (θ) = 2W (Ω)−W (h)− 2,

with W (h) and W (Ω) free. The SWW system is thus multi-uniform. The symmetry

(x, y, t, u, v, θ, h, Ω) → (λ−1x, λ−1y, λ−2t, λu, λv, λθ, λh, λ2Ω), (3.3)

which is most useful for our computations later on, corresponds to W (∂/∂x) =
W (∂/∂y)= 1, W (∂/∂t)= 2, W (u)= W (v)= 1, W (θ)= 1, W (h)= 1, and W (Ω)= 2.
A second symmetry,

(x, y, t, u, v, θ, h, Ω) → (λ−1x, λ−1y, λ−2t, λu, λv, λ2θ, λ0h, λ2Ω), (3.4)

matches W (∂/∂x) = W (∂/∂y) = 1, W (∂/∂t) = 2, W (u) = W (v) = 1, W (θ) = 2,
W (h) = 0, W (Ω) = 2.
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4. Conserved Densities and Fluxes of Nonlinear PDEs

Definition 4.1. A scalar differential function ρ(u(n)) is a conserved density if there
exists a vector differential function J(u(m)), called the associated flux, such that

Dt ρ + Div J = 0 (4.1)

is satisfied on solutions of (2.1).

Equation (4.1) is called a local3 conservation law4w [33], and Div is called the
total divergence.5 Clearly, Div J = (Dx, Dy, Dz)·(J1JJ , J2JJ , J3JJ ) = DxJ1JJ +DyJ2JJ +DzJ3JJ .
In the case of one spacial variable (x), (4.1) reduces to

Dt ρ + DxJ = 0, (4.2)

where both density ρ and flux J are scalar differential functions.
The flux J in (4.1) is not uniquely defined. In 3D, the flux can only be

determined up to a curl. Indeed, if (ρ,J) is a valid density-flux pair, so is (ρ,J +
∇×K) for an arbitrary vector differential function K = (K1, K2, K3). Recall that
∇×K = (DyK3 − DzK2, DzK1 − DxK3, DxK2 − DyK1). In 2D, the flux is only
determined up to a divergence-free vector K = (K1, K2) = (Dyθ),−Dxθ), where θ
is an arbitrary scalar differential function. In (4.2) the flux is only determined up
to an arbitrary constant.

In the 1D case,

Dtρ(u(n)) =
∂ρ

∂t
+

n∑
k=0

∂ρ

∂ukx
Dk

xut. (4.3)

where u(n) is the highest-order term present in ρ. Upon replacement of ut, utx, etc.
from ut = G, one gets

Dtρ =
∂ρ

∂t
+ ρ(u)′[G],

where ρ(u)′[G] is the Fréchet derivative of´ ρ in the direction of G. Similarly,

DxJ(u(m)) =
∂J

∂x
+

m∑
k=0

∂J

∂ukx
u(k+1)x. (4.4)

Generalization of (4.3) and (4.4) to multiple dependent variables is straightforward.

Example 4.2. Taking u = (u, v),

Dtρ(u(n1), v(n2)) =
∂ρ

∂t
+

n1∑
k=0

∂ρ

∂ukx
Dk

xut +
n2∑

k=0

∂ρ

∂vkx
Dk

xvt,

DxJ(u(m1), v(m2)) =
∂J

∂x
+

m1∑
k=0

∂J

∂ukx
u(k+1)x +

m2∑
k=0

∂J

∂vkx
v(k+1)x.

3We only compute densities and fluxes free of integral terms.
4In electromagnetism, this is the continuity equation relating charge density ρ to current J.
5Gradient, curl, and divergence are in rectangular coordinates.
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We will ignore densities and fluxes that explicitly depend on x and t. If G is
polynomial then most, but not all, densities and fluxes are also polynomial.

Example 4.3. The first four density-flux pairs for the cKdV equations (2.2) are

ρ(1) = u, J (1) = −3βu2 + 3v2 − βu2x (any β),
ρ(2) = u2 − 2v2, J (2) = −4βu3 + βu2

x − 2βuu2x + 2v2
x − 4vv2x (any β),

ρ(3) = uv, J (3) = 3u2v + 2u3 − uxvx + u2xv + uv2x (β = −1),
ρ(4) = (1 + β)u3 − 3uv2 − 1

2 (1 + β)u2
x + 3v2

x,

J (4) = − 9
2β(1 + β)u4 + 9βu2v2 − 9

2v4 + 6β(1 + β)uu2
x − 3β(1 + β)u2u2x

+ 3βv2u2x − 1
2β(1 + β)u2

2x + β(1 + β)uxu3x − 6βvuxvx + 12uv2
x

− 6uvv2x − 3v2
2x + 6vxv3x (β �=�� −1).

(4.5)

The above densities are uniform in ranks 2, 4 and 6. Both ρ(2) and ρ(3) are
of rank 4. The corresponding fluxes are also uniform in rank with ranks 4, 6, and
8. In [17], a few densities of rank ≥ 8 are listed, which only exist when β = 1

2 .
In general, if in (4.2) rankρ = R then rankJ = R + W (∂/∂t) − 1. All the

terms in (4.1) are also uniform in rank. This comes as no surprise since (4.1)
vanishes on solutions of (2.1); hence it “inherits” the dilation symmetry of (2.1).

Example 4.4. The first few densities [3, 15] for the sG equation (3.2) are

ρ(1) = 2α cosu + v2 + u2
x, J (1) = −2uxv,

ρ(2) = 2uxv, J (2) = 2α cosu− v2 − u2
x,

ρ(3) = 6αvux cosu + v3ux + vu3
x − 8vxu2x,

ρ(4) = 2α2 cos2 u− 2α2 sin2 u + 4αv2 cosu + 20αu2
x cosu + v4

+ 6v2u2
x + u4

x − 16v2
x − 16u2

2x.

(4.6)

J (3) and J (4) are not shown due to length. Again, all densities and fluxes are
uniform in rank (before α is equated to 1).

Example 4.5. The first few conserved densities and fluxes for (2.5) are

ρ(1) = h, J(1) =
(

uh
vh

)
, ρ(2) = hθ, J(2) =

(
uhθ
vhθ

)
,

ρ(3) = hθ2, J(3) =
(

uhθ2

vhθ2

)
,

ρ(4) = (u2 + v2)h + h2θ, J(4) =
(

u3h + uv2h + 2uh2θ
v3h + u2vh + 2vh2θ

)
,

ρ(5) = vxθ − uyθ + 2Ωθ,

J(5) =
1
6

(
12Ωuθ−4uuyθ +6uvxθ + 2vvyθ +u2θy + v2θy − hθθy + hyθ2

12Ωvθ +4vvxθ −6vuyθ −2uuxθ − u2θx −v2θx + hθθx − hxθ2

)
.

(4.7)
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All densities and fluxes are multi-uniform in rank, which will substantially simplify
the computation of the densities. Under either of the two scaling symmetries, (3.3)
or (3.4), rank(J) = rank(ρ) + 1. With the exception of ρ(2) and J(2), the ranks of
the densities under (3.3) and (3.4) differ by one. The same holds for the fluxes.

5. Tools from the Calculus of Variations

In this section we introduce the variational derivative (Euler operator), the higher
Euler operators (also called Lie–Euler operators) from the calculus of variations,
and the homotopy operator from homological algebra. These tools will be applied
to the computation of densities and fluxes in Section 7.

5.1. Continuous Variational Derivative (Euler Operator)

Definition 5.1. A scalar differential function f is a divergence if and only if there
exists a vector differential function F such that f = Div F. In 1D, we say that
a differential function f is exact6 if and only if there exists a scalar differential
function F such that f = DxF. Obviously, F = D−1

x (f) =
∫

f dx is then the
primitive (or integral) of f.

Example 5.2. Consider

f = 3 ux v2 sin u− u3
x sin u− 6 v vx cosu + 2 ux u2x cosu + 8 vxv2x, (5.1)

which we encountered [3] while computing conservation laws for (3.2). The function
f is exact. Indeed, upon integration by parts (by hand), one gets

F = 4 v2
x + u2

x cosu− 3 v2 cosu. (5.2)

Currently, CAS like Mathematica, Maple7 and REDUCE fail this integration!

Example 5.3. Consider

f = uxvy − u2xvy − uyvx + uxyvx. (5.3)

It is easy to verify that f = Div F with

F = (uvy − uxvy ,−uvx + uxvx). (5.4)

As far as we know, the leading CAS currently lack tools to compute F.
Three questions arise:

(i) Under what conditions for f does a closed form for F exist?
(ii) If f is a divergence, what is it the divergence of?
(iii) Without integration by parts, can one design an algorithm to compute F?
To answer these questions we use the following tools from the calculus of varia-
tions: the variational derivative (Euler operator), its generalizations (higher Euler
operators or Lie–Euler operators), and the homotopy operator.

6We do not use integrable to avoid confusion with complete integrability from soliton theory.
7Versions 9.5 and higher of Maple can integrate such expressions as a result of our interactions
with the developers.
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Definition 5.4. The variational derivative (Euler operator), L(0)
u(x), is defined [33,

p. 246] by

L(0)
u(x) =

∑
J

(−D)J
∂

∂uJ
, (5.5)

where the sum is over all the unordered multi-indices J [33, p. 95].

For example, in the 2D case the multi-indices corresponding to second-order
derivatives can be identified with {2x, 2y, 2z, xy, xz, yz}. Obviously, (−D)2x =
(−Dx)2= D2

x, (−D)xy = (−Dx)(−Dy) = DxDy, etc. For notational details see [33,
pp. 95, 108, 246].

With applications in mind, we give explicit formulas for the variational deriva-
tives in 1D, 2D, and 3D.

Example 5.5. For scalar component u they are

L(0)
u(x) =

∞∑
k=0

(−Dx)k ∂

∂ukx
=

∂

∂u
−Dx

∂

∂ux
+ D2

x

∂

∂u2x
−D3

x

∂

∂u3x
+ · · · , (5.6)

L(0,0)
u(x,y) =

∞∑
kx=0

∞∑
ky=0

(−Dx)kx(−Dy)ky
∂

∂ukxx kyy
=

∂

∂u
−Dx

∂

∂ux
−Dy

∂

∂uy

+ D2
x

∂

∂u2x
+DxDy

∂

∂uxy
+ D2

y

∂

∂u2y
− D3

x

∂

∂u3x
− · · · , (5.7)

and

L(0,0,0)
u(x,y,z) =

∞∑
kx=0

∞∑
ky=0

∞∑
kz=0

(−Dx)kx(−Dy)ky(−Dz)kz
∂

∂ukxx kyy kzz

=
∂

∂u
−Dx

∂

∂ux
−Dy

∂

∂uy
−Dz

∂

∂uz
+ D2

x

∂

∂u2x
+ D2

y

∂

∂u2y
+ D2

z

∂

∂u2z

+ DxDy
∂

∂uxy
+ DxDz

∂

∂uxz
+ DyDz

∂

∂uyz
−D3

x

∂

∂u3x
− · · · . (5.8)

Note that ukxx kyy stands for uxx···x yy···y where x is repeated kx times and
y is repeated ky times. Similar formulas hold for components v, w, etc. The first
question is then answered by the following theorem [33, p. 248].

Theorem 5.6. A necessary and sufficient condition for a function f to be a diver-
gence, i.e. there exists an F so that f = Div F, is that L(0)

u(x)(f) ≡ 0. In other words,
the Euler operator annihilates divergences, just as the divergence annihilates curls,
and the curl annihilates gradients.

If, for example, u = (u, v) then both L(0)
u(x)(f) and L(0)

v(x)(f) must vanish
identically. For the 1D case, the theorem says that a differential function f is
exact, i.e. there exists an F so that f = DxF, if and only if L(0)

u(x)(f) ≡ 0.
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Example 5.7. To test the exactness of f in (5.1) which involves just one indepen-
dent variable x, we apply the zeroth Euler operator (5.5) to f for each component
of u = (u, v) separately. For component u (of order 2), one computes

L(0)
u(x)(f) =

∂f

∂u
−Dx

∂f

∂ux
+ D2

x

∂f

∂u2x

= 3ux v2 cosu− u3
x cosu + 6v vx sinu− 2ux u2x sin u

−Dx[3v2 sin u− 3u2
x sin u + 2u2x cosu] + D2

x[2ux cosu]
= 3ux v2 cosu− u3

x cosu + 6v vx sinu− 2ux u2x sin u

−[3uxv2 cosu + 6v vx sin u− 3u3
x cosu− 6u u2x sinu

−2ux u2x sin u + 2u3x cosu]
+[−2u3x cosu− 6ux u2x sin u + 2u3x cosu]

≡ 0.

Similarly, for component v (also of order 2) one readily verifies that L(0)
v(x)(f) ≡ 0.

Example 5.8. As an example in 2D, one can readily verify that

f = uxvy − u2xvy − uyvx + uxyvx

from (5.3) is a divergence. Applying (5.7) to f for each component of u = (u, v)
gives L(0,0)

u(x,y)(f) ≡ 0 and L(0,0)
v(x,y)(f) ≡ 0.

5.2. Continuous Higher Euler Operators

To compute F = Div−1(f) or, in the 1D case F = D−1
x (f) =

∫
f dx, we need

higher-order versions of the variational derivative, called higher Euler operators
[28, 33] or Lie–Euler operators [9]. The general formulas are given in [33, p. 367].
With applications in mind, we restrict ourselves to the 1D, 2D, and 3D cases.

Definition 5.9. The higher Euler operators in 1D (with variable x) are

L(i)
u(x) =

∞∑
k=i

(
k

i

)
(−Dx)k−i ∂

∂ukx
, (5.9)

where
(
k
i

)
is the binomial coefficient.

Note that the higher Euler operator for i = 0 matches the variational deriv-
ative in (5.6).

Example 5.10. The explicit formulas for the first three higher Euler operators (for
component u and variable x) are

L(1)
u(x) =

∂

∂ux
− 2Dx

∂

∂u2x
+ 3D2

x

∂

∂u3x
− 4D3

x

∂

∂u4x
+ · · · ,

L(2)
u(x) =

∂

∂u2x
− 3Dx

∂

∂u3x
+ 6D2

x

∂

∂u4x
− 10D3

x

∂

∂u5x
+ · · · ,

L(3)
u(x) =

∂

∂u3x
− 4Dx

∂

∂u4x
+ 10D2

x

∂

∂u5x
− 20D3

x

∂

∂u6x
+ · · · .
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Definition 5.11. The higher Euler operators in 2D (with variables x, y) are

L(ix,iy)

u(x,y) =
∞∑

kx=ix

∞∑
ky=iy

(
kx

ix

)(
ky

iy

)
(−Dx)kx−ix(−Dy)ky−iy

∂

∂ukxx kyy
. (5.10)

Note that the higher Euler operator for ix = iy = 0 matches the variational
derivative in (5.7).

Example 5.12. The first higher Euler operators (for component u and variables x
and y) are

L(1,0)
u(x,y) =

∂

∂ux
− 2Dx

∂

∂u2x
−Dy

∂

∂uxy
+ 3D2

x

∂

∂u3x
+ 2DxDy

∂

∂u2xy
− · · · ,

L(0,1)
u(x,y) =

∂

∂uy
− 2Dy

∂

∂u2y
−Dx

∂

∂uyx
+ 3D2

y

∂

∂u3y
+ 2DxDy

∂

∂ux2y
− · · · ,

L(1,1)
u(x,y) =

∂

∂uxy
− 2Dx

∂

∂u2xy
− 2Dy

∂

∂ux2y
+ 3D2

x

∂

∂u3xy
+ 4DxDy

∂

∂u2x2y
+ · · · ,

L(2,1)
u(x,y) =

∂

∂u2xy
− 3Dx

∂

∂u3xy
− 2Dy

∂

∂u2x2y
+ 6D2

x

∂

∂u4xy
+ D2

y

∂

∂u2x3y
− · · · .

Definition 5.13. The higher Euler operators in 3D (with variables x, y, z) are

L(ix,iy,iz)

u(x,y,z) =
∞∑

kx=ix

∞∑
ky=iy

∞∑
kz=iz

(
kx

ix

)(
ky

iy

)(
kz

iz

)
(−D− x)kx−ix(−D− y)ky−iy(−D− z)kz−iz

∂

∂ukxx kyy kzz
. (5.11)

The higher Euler operator for ix = iy = iz = 0 matches the variational deriva-
tive given in (5.8). The higher Euler operators are useful in their own right as the
following theorem [28] indicates.

Theorem 5.14. A necessary and sufficient condition for a function f to be an rth
order derivative, i.e. ∃F so that f = Dr

xF, is that L(i)
u(x)(f) ≡ 0 for i=0, 1, . . . , r−1.

5.3. Continuous Homotopy Operator

We now discuss the homotopy operator which will allow us to reduce the com-
putation of F = Div−1(f) (or in the 1D case, F = D−1

x (f) =
∫

f dx) to a single
integral with respect to an auxiliary variable denoted by λ (not to be confused
with λ in Section 3). Hence, the homotopy operator circumvents integration by
parts and reduces the inversion of the total divergence operator, Div, to a problem
of single-variable calculus.

As mentioned in Section 5.1, Div−1 is only defined up to a divergence-free
term (a curl term). For example in 3D, Div−1 is represented by an equivalence
class Div−1(f) = F +∇×K where K is an arbitrary vector differential function.
The homotopy operator selects a particular choice of K.

The homotopy operator is given in explicit form, which makes it easier to
implement in CAS. To keep matters transparent, we present the formulas of the
homotopy operator in 1D, 2D, and 3D.
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Definition 5.15. The homotopy operator in 1D (with variable x) [33, p. 372] is

Hu(x)(f) =
∫ 1

0

∫∫ N∑
j=1

IuII j (f)[λu]
dλ

λ
, (5.12)

where uj is the jth component of u and the integrand IuII j (f) is given by

IuII j (f) =
∞∑

i=0

Di
x

(
uj L(i+1)

uj(x)(f)
)

. (5.13)

The integrand involves the 1D higher Euler operators in (5.9).

In (5.12), N is the number of dependent variables and IuII j (f)[λu] means that
in IuII j (f) one replaces u(x) → λu(x), ux(x) → λux(x), etc.

Given an exact function f, the question how to compute F = D−1
x (f) =∫

f dx is then answered by the following theorem [33, p. 372].

Theorem 5.16. For an exact function f, one has F = Hu(x)(f).

Thus, in the 1D case, applying the homotopy operator (5.12) allows one to
bypass integration by parts. As an experiment, one can start from a function F̃ ,
compute f = DxF̃ , subsequently compute F = Hu(x)(f), and finally verify that
F − F̃ is a constant. Using (5.1), we show how the homotopy operator (5.12) is
applied.

Example 5.17. For a system with N = 2 components, u = (u1, u2) = (u, v), the
homotopy operator formulas are

Hu(x)(f) =
∫ 1

0

∫∫
(IuII (f)[λu] + IvII (f)[λu])

dλ

λ
, (5.14)

with

IuII (f) =
∞∑

i=0

Di
x

(
uL(i+1)

u(x) (f)
)

and IvII (f) =
∞∑

i=0

Di
x

(
vL(i+1)

v(x) (f)
)

. (5.15)

These sums have only finitely many nonzero terms. For example, the sum in IuII (f)
terminates at p− 1 where p is the order of u. Take, for example,

f = 3 ux v2 sin u− u3
x sin u− 6 v vx cosu + 2 ux u2x cosu + 8 vxv2x.

First, we compute

IuII (f) = uL(1)
u(x)(f) + Dx

(
uL(2)

u(x)(f)
)

= u
∂f

∂ux
− 2uDx

(
∂f

∂u2x

)
+ Dx

(
u

∂f

∂u2x

)
= 3uv2 sin u− uu2

x sin u + 2u2
x cosu.
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Next,

IvII (f) = vL(1)
v(x)(f) + Dx

(
vL(2)

v(x)(f)
)

= v
∂f

∂vx
− 2vDx

(
∂f

∂v2x

)
+ Dx

(
v

∂f

∂v2x

)
= −6v2 cosu + 8v2

x.

Formula (5.14) gives an integral with respect to λ :

F = Hu(x)(f) =
∫ 1

0

∫∫
(IuII (f)[λu] + IvII (f)[λu])

dλ

λ

=
∫ 1

0

∫∫ (
3λ2uv2 sin(λu)−λ2uu2

x sin(λu)+2λu2
x cos(λu)−6λv2 cos(λu)+8λv2

x

)
dλ

= 4v2
x + u2

x cosu− 3v2 cosu.

which agrees with (5.2), previously computed by hand.

We now turn to inverting the Div operator using the homotopy operator.

Definition 5.18. We define the homotopy operator in 2D (with variables x, y)
through its two components (H(x)

u(x,y)(f),H(y)
u(x,y)(f)). The x-component of the op-

erator is given by

H(x)
u(x,y)(f) =

∫ 1

0

∫∫ N∑
j=1

I(x)
uII j

(f)[λu]
dλ

λ
, (5.16)

with

I(x)
uII j

(f) =
∞∑

ix=0

∞∑
iy=0

(
1 + ix

1 + ix + iy

)
Dix

x Diy
y

(
uj L(1+ix,iy)

uj(x,y) (f)
)

. (5.17)

Analogously, the y-component is given by

H(y)
u(x,y)(f) =

∫ 1

0

∫∫ N∑
j=1

I(y)
uII j

(f)[λu]
dλ

λ
, (5.18)

with

I(y)
uII j

(f) =
∞∑

ix=0

∞∑
iy=0

(
1 + iy

1 + ix + iy

)
Dix

x Diy
y

(
uj L(ix,1+iy)

uj(x,y) (f)
)

. (5.19)

Integrands (5.17) and (5.19) involve the 2D higher Euler operators in (5.10).

After verification that f is a divergence, the question how to compute F =
(F1FF , F2FF ) = Div−1(f) is then answered by the following theorem.

Theorem 5.19. If f is a divergence, then

F = (F1FF , F2FF ) = Div−1(f) = (H(x)
u(x,y)(f),H(y)

u(x,y)(f)).
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The superscript (x) in H(x)(f) reminds us that we are computing the x-
component of F. As a test, one can start from any vector F̃ and compute f = Div F̃.

Next, compute F = (F1FF , F2FF ) = (H(x)
u(x,y)(f),H(y)

u(x,y)(f)) and, finally, verify that

K = F̃− F is divergence free.

Example 5.20. Using (5.3), we show how the application of the 2D homotopy
operator leads to (5.4), up to a divergence free vector. Consider

f = uxvy − u2xvy − uyvx + uxyvx,

which is easily verified to be a divergence. In order to compute Div−1(f), we use
(5.17) to get

I(x)
uII (f) = uL(1,0)

u(x,y)(f) + Dx

(
uL(2,0)

u(x,y)(f)
)

+
1
2
Dy

(
uL(1,1)

u(x,y)(f)
)

= u

(
∂f

∂ux
− 2Dx

∂f

∂u2x
−Dy

∂f

∂uxy

)
+ Dx

(
u

∂f

∂u2x

)
+

1
2
Dy

(
u

∂f

∂uxy

)
= uvy +

1
2
uyvx − uxvy +

1
2
uvxy.

Similarly, for the v component of u = (u, v) one gets

I(x)
vII (f) = vL(1,0)

v(x,y)(f) = v
∂f

∂vx
= −uyv + uxyv.

Hence, using (5.16),

F1FF = H(x)
u(x,y)(f) =

∫ 1

0

∫∫ (
I(x)
uII (f)[λu] + I(x)

vII (f)[λu]
) dλ

λ

=
∫ 1

0

∫∫
λ

(
uvy +

1
2
uyvx − uxvy +

1
2
uvxy − uyv + uxyv

)
dλ

=
1
2
uvy +

1
4
uyvx − 1

2
uxvy +

1
4
uvxy − 1

2
uyv +

1
2
uxyv.

Without showing the details, using (5.18) and (5.19) one computes

F2FF = H(y)
u(x,y)(f) =

∫ 1

0

∫∫ (
I(y)
uII (f)[λu] + I(y)

vII (f)[λu]
) dλ

λ

=
∫ 1

0

∫∫ (
λ

(
−uvx − 1

2
uv2x +

1
2
uxvx

)
+ λ (uxv − u2xv)

)
dλ

= −1
2
uvx − 1

4
uv2x +

1
4
uxvx +

1
2
uxv − 1

2
u2xv.

One can readily verify that the resulting vector

F =
(

F1FF
F2FF

)
=

⎛⎜⎛⎛⎝⎜⎜
1
2
uvy +

1
4
uyvx − 1

2
uxvy +

1
4
uvxy − 1

2
uyv +

1
2
uxyv

−1
2
uvx − 1

4
uv2x +

1
4
uxvx +

1
2
uxv − 1

2
u2xv

⎞⎟⎞⎞⎠⎟⎟
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differs from F̃ = (uvy − uxvy,−uvx + uxvx) by the divergence-free vector

K = F̃− F =
(

K1

K2

)

=

⎛⎜⎛⎛⎝⎜⎜
1
2
uvy − 1

4
uyvx − 1

2
uxvy − 1

4
uvxy +

1
2
uyv − 1

2
uxyv

−1
2
uvx +

1
4
uv2x +

3
4
uxvx − 1

2
uxv +

1
2
u2xv

⎞⎟⎞⎞⎠⎟⎟ .

As mentioned in Section 5.1, K can be written as (Dyθ,−Dxθ), with

θ =
1
2
uv − 1

4
uvx − 1

2
uxv.

The generalization of the homotopy operator to 3D is straightforward.

Definition 5.21. The homotopy operator in 3D (with variables x, y, z) is

(H(x)
u(x,y,z)(f),H(y)

u(x,y,z)(f),H(z)
u(x,y,z)(f)).

By analogy with (5.16),

H(x)
u(x,y,z)(f) =

∫ 1

0

∫∫ N∑
j=1

I(x)
uII j

(f)[λu]
dλ

λ
,

with

I(x)
uII j

(f) =
∞∑

ix=0

∞∑
iy=0

∞∑
iz=0

(
1 + ix

1 + ix + iy + iz

)
Dix

x Diy
y Diz

z

(
uj L(1+ix,iy,ix)

uj(x,y,z) (f)
)

.

The y and z-operators are defined analogously. The integrands I
(x)
uII j (f) involve the

3D higher Euler operators in (5.11).

By analogy with the 2D case the following theorem holds.

Theorem 5.22. Given a divergence f one has

F = Div−1(f) = (H(x)
u(x,y,z)(f),H(y)

u(x,y,z)(f),H(z)
u(x,y,z)(f)).

6. Removing Divergences and Divergence-Equivalent Terms

We present an algorithm to remove divergences and divergence-equivalent which
simplifies the computation of densities.

Definition 6.1. Two scalar differential functions, f (1) and f (2), are divergence-
equivalent if and only if they differ by the divergence of some vector V, i.e. f (1) ∼
f (2) if and only if f (1)−f (2) = Div V. Obviously, if a scalar expression is divergence-
equivalent to zero, then it is a divergence.



Homotopy Operators and Conservation Laws 271

Example 6.2. Functions f (1) = uu2x and f (2) = −u2
x are divergence-equivalent

because
f (1) − f (2) = uu2x + u2

x = Dx(uux).

Using (5.6), note that L(0)
u(x)(uu2x) = 2u2x and L(0)

u(x)(−u2
x) = 2u2x are equal. Also,

f = u4x = Dx(u3x) is a divergence and, as expected, L(0)
u(x)(u4x) = 0.

Example 6.3. In the 2D case, f (1) = (ux − u2x)vy and f (2) = (uy − uxy)vx are
divergence-equivalent since

f (1) − f (2) = uxvy − u2xvy − uyvx + uxyvx = Div (uvy − uxvy ,−uvx + uxvx).

Using (5.7), note that L(0)
u(x,y)(f

(1)) = L(0)
u(x,y)(f

(2)) = (−vxy − vxxy,−uxy + uxxy).

Divergences and divergence-equivalent terms can be removed with the fol-
lowing algorithm.

Algorithm 6.4 (for removing divergences and divergence-equivalent terms).
/* Given is a list R of monomial differential functions */

/* Initialize two new lists S,B */
S ← ∅
B ← ∅
/* Find first member of S */
for each term ti ∈ R

do vi ← L(0)
u(x)(ti)

if vi �=�� 0
then S ← {ti}

B ← {vi}
break

else discard ti and vi

/* Find remaining members of S */
for each term tj ∈ R \ {t1, t2, . . . , ti}

do vj ← L(0)
u(x)(tj)

if vj �=�� 0
then if vj �∈ Span(B)

then S ← S ∪{tj}
B ← B∪{vj}

else discard tj and vj

return S
/* List S is free of divergences and divergence-equivalent terms */

Example 6.5. LetR={u3, u2v, uv2, v3, u2
x, uxvx, v2

x, uu2x, u2xv, uv2x, vv2x, u4x, v4x}.
We remove divergences and divergence-equivalent terms in R by using the above
algorithm. Since v1 = L(0)

u(x)(u
3) = (3u2, 0) = (0�� , 0) we have S = {t1} = {u3}

and B = {v1} = {(3u2, 0)}. The first for-loop is halted and the second for-loop
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starts. Next, v2 = L(0)
u(x)(u

2v) = (2uv, u2) = (0�� , 0). We verify that v1 and v2

are independent and update the sets resulting in S = {t1, t2} = {u3, u2v} and
B={v1,v2}={(3u2, 0), (2uv, u2)}.

Proceeding in a similar fashion, since the first seven terms are indeed inde-
pendent, we have S = {t1, t2, . . . , t7} and

B = {v1,v2, . . . ,v7} = {(3u2, 0), (2uv, u2), . . . , (0,−2v2x)}.
For t8 = uu2x we compute v8 =L(0)

u(x)(uu2x)= (2u2x, 0) and verify that v8 =−v5.

So, v8 ∈ Span(B) and t8 and v8 are discarded (i.e. not added to the respective
sets). For similar reasons, t9, t10, and t11 as well as v9,v10, and v11 are discarded.
The terms t12 = u4x and t13 = v4x are discarded because v12 =v13 = (0, 0). So, R
is replaced by S = {u3, u2v, uv2, v3, u2

x, uxvx, v2
x} which is free of divergences and

divergence-equivalent terms.

7. Application: Conservation Laws of Nonlinear PDEs

As an application of the Euler and homotopy operators we show how to compute
conserved densities and fluxes for the three PDEs introduced in Section 2. The
first PDE illustrates the 1D case (one independent variable), but it involves two
dependent variables u(x) and v(x). The second PDE (again in 1D) has a transcen-
dental nonlinearity which complicates the computation of conserved densities and
fluxes [15]. A third example illustrates the algorithm for a 2D case.

To compute conservation laws, Dt ρ + Div J = 0, of polynomial systems of
nonlinear PDEs, we use a direct approach. First, we build the candidate density ρ
as a linear combination (with constant coefficients ci) of terms which are uniform in
rank (with respect to the scaling symmetry of the PDE). It is of paramount impor-
tance that the candidate density is free of divergences and divergence-equivalent
terms. If such terms were present, their coefficients could not be determined be-
cause such terms can be moved into flux J. We will use Algorithm 6.4 to construct
a shortest density.

Second, we evaluate Dtρ on solutions of the PDE, thus removing all time
derivatives from the problem. The resulting expression (called E) must be a di-
vergence (of the thus far unknown flux). Thus, we set L(0)

u(x)(E) ≡ 0. Setting the
coefficients of like terms to zero leads to a linear system for the undetermined coef-
ficients ci. In the most difficult case, such systems are parametrized by the constant
parameters appearing in the given PDE. If so, a careful analysis of the eliminant
(and solution branching) must be carried out. For each branch, the solution of the
linear system is substituted into ρ and E.

Third, since E = Div J we use the homotopy operator Hu(x) to compute
J=Div−1(E). The computations are done with our Mathematica packages [20].
Recall that J is only defined up a curl. Inversion of Div via the homotopy operator
does not guarantee the shortest flux. Removing the curl term in J may lead to a
shorter flux.
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7.1. Conservation Laws for the Coupled KdV Equations

In (4.5) we gave the first four density-flux pairs. As an example, we will compute
density ρ(4) and associated flux J (4).

Recall that the weights for the cKdV equations are W (∂/∂x) = 1 and W (u) =
W (v) = 2. The parameter β has no weight. Hence, ρ(4) has rank 6. The algorithm
has three steps.

Step 1: Construct the form of the density
Start from V = {u, v}, i.e. the list of dependent variables with weight. Con-

struct the set M which contains all monomials of selected rank 6 or less (without
derivatives). Thus M= {u3, v3, u2v, uv2, u2, v2, uv, u, v, 1}. Next, for each mono-
mial in M, introduce the correct number of x-derivatives so that each term has
rank 6. For example,

∂2u2

∂x2
= 2u2

x + 2uu2x,
∂2v2

∂x2
= 2v2

x + 2vv2x,
∂2(uv)
∂x2

= u2xv + 2uxvx + uv2x,

∂4u

∂x4
= u4x,

∂4v

∂x4
= v4x,

∂61
∂x6

= 0. (7.1)

Ignore the highest-order terms (typically the last terms) in each of the right-hand
sides of (7.1). Augment M with the remaining terms, after stripping off numerical
factors, to get R = {u3, u2v, uv2, v3, u2

x, uxvx, v2
x, u2xv}, where the 8 terms8 are

listed by increasing order
Use Algorithm 6.4 to replace R by S = {u3, u2v, uv2, v3, u2

x, uxvx, v2
x}. Lin-

early combine the terms in S with constant coefficients to get the shortest candi-
date density:

ρ = c1u
3 + c2u

2v + c3uv2 + c4v
3 + c5u

2
x + c6uxvx + c7v

2
x. (7.2)

Step 2: Determine the constants ci

Compute

E = Dtρ =
∂ρ

∂t
+ ρ′(u)[F] =

∂ρ

∂u
ut +

∂ρ

∂ux
utx +

∂ρ

∂v
vt +

∂ρ

∂vx
vtx

= (3c1u
2 + 2c2uv + c3v

2)ut + (2c5ux + c6vx)utx

+ (c2u
2 + 2c3uv + 3c4v

2)vt + (c6ux + 2c7vx)vtx.

Replace ut, vt, utx and vtx from (2.2) to obtain

E = (3c1u
2 + 2c2uv + c3v

2)(6βuux − 6vvx + βu3x)
+ (2c5ux + c6vx)(6βuux − 6vvx + βu3x)x

− (c2u
2 + 2c3uv + 3c4v

2)(3uvx + v3x)− (c6ux + 2c7vx)(3uvx + v3x)x. (7.3)

Since E = Dt ρ = −DxJ, the expression E must be exact. Therefore, apply the
variational derivative (5.6) and require that L(0)

u(x)(E) ≡ 0 and L(0)
v(x)(E) ≡ 0.

8Note that keeping all terms in (7.1) would have resulted in the list R (with 13 terms) given in
the example at the end of Section 6. As shown, the algorithm would reduce R to 7 terms.
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Group like terms and set their coefficients equal to zero to obtain the following
(parametrized) linear system for the unknown coefficients c1 through c7:

(3 + 4β)c2 = 0, 3c1 + (1 + β)c3 = 0, 4c2 + 3c4 = 0, (1 + β)c3 − 6c5 = 0,

β(c1 + 2c5) = 0, βc2 − c6 = 0, (1 + β)c6 = 0, c4 + c6 = 0,

2(1 + β)c2 − 3(1 + 2β)c6 = 0, 2c2 − (1 + 6β)c6 = 0,

βc3 − 6c5 − c7 = 0, c3 + c7 = 0.

Investigate the eliminant of the system. In this example, there exists a solution for
any β �=�� −1. Set c1 = 1 and obtain

c1 = 1, c2 = c4 = c6 = 0, c3 = − 3
1 + β

, c5 = −1
2
, c7 =

3
1 + β

. (7.4)

Substitute the solution into (7.2) and multiply by 1 + β to get

ρ = (1 + β)u3 − 3uv2 − 1
2
(1 + β)u2

x + 3v2
x, (7.5)

which is ρ(4) in (4.5).

Step 3: Compute the flux J

Compute the flux corresponding to ρ in (7.5). Substitute (7.4) into (7.3),
reverse the sign and multiply by 1 + β, to get

E = 18β(1 + β)u3ux − 18βu2vvx − 18βuuxv2 + 18v3vx − 6β(1 + β)u3
x

− 6β(1 + β)uuxu2x + 3β(1 + β)u2u3x − 3βv2u3x − 6vxv4x − β(1 + β)uxu4x

+ 6uvu3x + 6(β − 2)uxv2
x + 6(1 + β)uxvv2x − 18uvxv2x. (7.6)

Apply (5.14) and (5.15) to (7.6) to obtain

J = − 9
2β(1 + β)u4 + 9βu2v2 − 9

2v4 + 6β(1 + β)uu2
x − 3β(1 + β)u2u2x

+ 3βv2u2x − 1
2β(1 + β)u2

2x + β(1 + β)uxu3x − 6βvuxvx

+ 12uv2
x − 6uvv2x − 3v2

2x + 6vxv3x,

which is J (4) in (4.5).
If β = 1

2 , the cKdV equations (2.2) are completely integrable [1, 23] and
admit conserved densities at every even rank.

7.2. Conservation Laws for the Sine-Gordon Equation

Recall that the weights for the sG equation (2.3) are W ( ∂
∂x ) = 1, W (u) = 0,

W (v) = 1, and W (α) = 2. The first few (of infinitely many) densities and fluxes
were given in (4.6). We show how to compute densities ρ(1) and ρ(2), both of rank
2, and their associated fluxes J (1) and J (2).

In contrast to the previous example, the candidate density will no longer
have constant undetermined coefficients ci but functional coefficients hi(u) which
depend on the transcendental variable u with weight zero [3]. Avoiding having to
solve PDEs, we only consider examples where one dependent variable has weight
zero.
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Step 1: Construct the form of the density
Augment the list of dependent variables with α (with nonzero weight) and

replace u by ux (since W (u) = 0). Hence, V = {α, ux, v}. Next, compute R =
{α, v2, u2x, uxv, u2

x} and remove divergences and divergence-equivalent terms to
get S = {α, v2, u2

x, uxv}. The candidate density is

ρ = αh1(u) + h2(u)v2 + h3(u)u2
x + h4(u)uxv, (7.7)

with undetermined functional coefficients hi(u).

Step 2: Determine the functions hi(u)
Compute

E = Dtρ =
∂ρ

∂t
+ ρ′(u)[F] =

∂ρ

∂u
ut +

∂ρ

∂ux
utx +

∂ρ

∂v
vt

= (αh′
1 + v2h′

2 + u2
xh′

3 + uxvh′
4)v + (2uxh3 + vh4)vx

+ (2vh2 + uxh4)(α sin(u) + u2x). (7.8)

where h′
i means dhi

du . Since E = Dt ρ = −DxJ, the expression E must be exact.
Therefore, require that L(0)

u(x)(E) ≡ 0 and L(0)
v(x)(E) ≡ 0. Set the coefficients of like

terms equal to zero to get a mixed linear system of algebraic and ODEs:

h2(u)− h3(u)=0, h′
2(u)=0, h′

3(u)=0, h′
4(u)=0, h′′

2(u)=0,

h′′
4 (u) = 0, 2h′

2(u)− h′
3(u) = 0, 2h′′

2(u)− h′′
3(u) = 0,

h′
1(u) + 2h2(u) sinu = 0, h′′

1(u) + 2h′
2(u) sin u + 2h2(u) cosu = 0.

Solve the system [3] and substitute the solution

h1(u) = 2c1 cosu + c3, h2(u) = h3(u) = c1, h4(u) = c2 (7.9)

(with arbitrary constants ci) into (7.7) to obtain

ρ = c1(2α cosu + v2 + u2
x) + c2uxv + c3α. (7.10)

Step 3: Compute the flux J

Compute the flux corresponding to ρ in (7.10). Substitute (7.9) into (7.8), to
get

E = c1(2u2xv + 2uxvx) + c2(vvx + uxu2x + αux sin u). (7.11)
Since E = Dt ρ = −DxJ, one must integrate f = −E. Applying (5.15) yields
IuII (f) = −2c1uxv − c2(u2

x + αu sinu) and IvII (f) = −2c1uxv − c2v
2. Use formula

(5.14) to obtain

J = Hu(x)(f) =
∫ 1

0

∫∫
(IuII (f)[λu] + IvII (f)[λu])

dλ

λ

= −
∫ 1

0

∫∫ (
4c1λuxv + c2(λu2

x + αu sin(λu) + λv2)
)

dλ

= − c1(2uxv)− c2

(
1
2
v2 +

1
2
u2

x − α cosu

)
. (7.12)
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Finally, split density (7.10) and flux (7.12) into independent pieces (for c1 and c2):

ρ(1) = 2α cosu + v2 + u2
x and J (1) = −2uxv,

ρ(2) = uxv and J (2) = −1
2
v2 − 1

2
u2

x + α cosu.

For E in (7.11), J in (7.12) can easily be computed by hand [3]. However, the
computation of fluxes corresponding to densities of ranks ≥ 2 is cumbersome and
requires integration with the homotopy operator.

7.3. Conservation Laws for the Shallow Water Wave Equations

In contrast to the previous two examples, (2.5) is not completely integrable as far
as we know. One cannot expect to find a complete set of conserved densities and
fluxes (of different ranks).

The first few densities and fluxes were given in (4.7). We show how to compute
densities ρ(1), ρ(3), ρ(4), and ρ(5), which are of rank 3 under the following (choice
for the) weights

W (∂/∂x)=W (∂/∂y)=1, W (u)=W (v)=1, W (θ)=1, W (h)=1, W (Ω)=2. (7.13)

We will also compute the associated fluxes J (1), J (3), J (4), and J (5).

The fact that (2.5) is multi-uniform is advantageous. Indeed, one can use the
invariance of (2.5) under one scale to construct the terms of ρ, and, subsequently,
use additional scale(s) to split ρ into smaller densities. This “divide and conquer”
strategy drastically reduces the complexity of the computations.

Step 1: Construct the form of the density

Start from V = {u, v, θ, h, Ω}, i.e. the list of variables and parameters with
weights. Use (7.13) to get

M = {Ωu, Ωv, . . . , u3, v3, . . . , u2v, uv2, . . . , u2, v2, . . . , u, v, θ, h}
which has 38 monomials of rank 3 or less (without derivatives).

The terms of rank 3 in M are left alone. To adjust the rank, differentiate
each monomial of rank 2 in M with respect to x ignoring the highest-order term.
For example, in du2

dx = 2uux, the term can be ignored since it is a total derivative.
The terms uxv and −uvx are divergence-equivalent since d(uv)

dx = uxv + uvx. Keep
uxv. Likewise, differentiate each monomial of rank 2 in M with respect to y and
ignore the highest-order term.

Produce the remaining terms for rank 3 by differentiating the monomials of
rank 1 in M with respect to x twice, or y twice, or once with respect to x and
y. Again ignore the highest-order terms. Augment the set M with the derivative
terms of rank 3 to get

R = {Ωu, Ωv, . . . , uv2, uxv, uxθ, uxh, . . . , uyv, uyθ, . . . , θyh}
which has 36 terms.
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Instead of applying Algorithm 6.4 toR, use the “divide and conquer” strategy
to split R into sublists of terms of equal rank under the (general) weights

W (∂/∂t) = W (Ω), W (∂/∂y) = W (∂/∂x) = 1,

W (u) = W (v) = W (Ω)− 1,

W (θ) = 2W (Ω)−W (h)− 2, (7.14)

where W (Ω) and W (h) are arbitrary. Use (7.14) to compute the rank of each
monomial in R and gather terms of like rank in separate lists.

For each rank Ri in Table 1, apply Algorithm 6.4 to each Ri to get the
list SiSS . Coincidentally, in this example Ri = SiSS for all i. Linearly combine the
monomials in each list SiSS with coefficients to get the shortest candidate densities
ρi. In Table 1, we list the 10 candidate densities and the final densities and fluxes
with their ranks. These conservation laws were listed in (4.7).

i Rank Ri Candidate ρi Final ρi Final Ji

1 6W (Ω)−3W (h)−6 c1θ
3 0 0

2 3W (h) c1h
3 0 0

3 5W (Ω)−2W (h)−5 c1uθ2+c2vθ2 0 0

4 W (Ω)+2W (h)−1 c1uh2+c2vh2 0 0

5 4W (Ω)−W (h)−4 c1u
2θ+c2uvθ+c3v

2θ+c4θ
2h θ2h

(
uhθ2

vhθ2

)
6 2W (Ω)+W (h)−2 c1u

2h+c2uvh+c3v
2h+c4θh

2 u2h+v2h+θh2 J(4)

7 3W (Ω)−W (h)−2
c1Ωθ+c2uyθ+c3vyθ+c4uxθ

+c5vxθ
2Ωθ−uyθ+vxθ J(5)

8 W (Ω)+W (h)
c1Ωh+c2uyh+c3vyh+c4uxh

+c5vxh
Ωh

(
Ωuh

Ωvh

)

9 2W (Ω)−1
c1Ωu+c2Ωv+c3uyv+c4θyh

+c5uxv+c6θxh
0 0

10 3W (Ω)−3
c1u

3+c2u
2v+c3uv2+c4v

3

+c5uθh+ c6vθh
0 0

Table 1. Candidate densities for the SWW equations

Step 2: Determine the constants ci

For each of the densities ρi in Table 1 compute Ei = Dtρi and use (2.5) to
remove all time derivatives. For example, proceeding withFF ρ7,

E7 = ρ7
′(u)[F]=

∂ρ7

∂ux
utx +

∂ρ7

∂uy
uty +

∂ρ7

∂vx
vtx +

∂ρ7

∂vy
vty +

∂ρ7

∂θ
θt
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= − c4θ(uux + vuy − 2Ωv + 1
2hθx + θhx)x

− c2θ(uux + vuy − 2Ωv + 1
2hθx + θhx)y

− c5θ(uvx + vvy + 2Ωu + 1
2hθy + θhy)x

− c3θ(uvx + vvy + 2Ωu + 1
2hθy + θhy)y

− (c1Ω + c2uy + c3vy + c4ux + c5vx)(uθx + vθy). (7.15)

Require that

L(0,0)
u(x,y)(E7) = L(0,0)

v(x,y)(E7) = L(0,0)
θ(x,y)(E7) = L(0,0)

h(x,y)(E7) ≡ 0,

where, for example, L(0,0)
u(x,y) is given in (5.7). Gather like terms. Equate their coef-

ficients to zero to obtain

c1 + 2c2 = 0, c3 = c4 = 0, c1 − 2c5 = 0, c2 + c5 = 0.

Set c1 = 2. Substitute the solution

c1 = 2, c2 = −1, c3 = c4 = 0, c5 = 1 (7.16)

into ρ7 to obtain ρ7 = 2Ωθ − uyθ + vxθ, which matches ρ(5) in (4.7).
Proceed in a similar way with the remaining 9 candidate densities to obtain

the results given in the third column of Table 1.

Step 3: Compute the flux J

Compute the flux corresponding to all ρi �= 0 in Table 1. For example, con-��
tinuing with ρ7, substitute (7.16) into (7.15) to get

E7 = − θ(uxvx + uv2x + vxvy + vvxy + 2Ωux + 1
2θxhy − uxuy − uuxy

− uyvy − u2yv + 2Ωvy − 1
2θyhx)− (2Ωuθx + 2Ωvθy − uuyθx

− uyvθy + uvxθx + vvxθy).

Apply the 2D homotopy operator in (5.16)–(5.19) to E7 = −Div J7. So, compute

I(x)
uII (E7) = uL(1,0)

u(x,y)(E7) + Dx

(
uL(2,0)

u(x,y)(E7)
)

+
1
2
Dy

(
uL(1,1)

u(x,y)(E7)
)

= u

(
∂E7

∂ux
−2Dx

(
∂E7

∂u2x

)
−Dy

(
∂E7

∂uxy

))
+Dx

(
u

((
∂E7

∂u2x

)
+

1
2
Dy

(
u

((
∂E7

∂uxy

)
= −uvxθ − 2Ωuθ− 1

2
u2θy + uuyθ.

Similarly, compute

I(x)
vII (E7) = −vvyθ − 1

2
v2θy − uvxθ,

I
(x)
θI (E7) = −1

2
θ2hy − 2Ωuθ + uuyθ − uvxθ,

I
(x)
hI (E7) =

1
2
θθyh.
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Next, compute

J
(x)
7JJ (u) = −H(x)

u(x,y)(E7)

= −
∫ 1

0

∫∫ (
I(x)
uII (E7)[λu] + I(x)

vII (E7)[λu] + I
(x)
θI (E7)[λu] + I

(x)
hI (E7)[λu]

) dλ

λ

=
∫ 1

0

∫∫ (
4λΩuθ + λ2

(
3uvxθ +

1
2
u2θy − 2uuyθ + vvyθ +

1
2
v2θy

+
1
2
θ2hy − 1

2
θθyh

))
dλ

= 2Ωuθ − 2
3
uuyθ + uvxθ +

1
3
vvyθ +

1
6
u2θy +

1
6
v2θy − 1

6
hθθy +

1
6
hyθ2.

Analogously, compute

J
(y)
7JJ (u) = −H(y)

u(x,y)(E7)

= 2Ωvθ +
2
3
vvxθ − vuyθ − 1

3
uuxθ − 1

6
u2θx − 1

6
v2θx +

1
6
hθθx − 1

6
hxθ2.

Hence,

J7 =
1
6

(
12Ωuθ − 4uuyθ + 6uvxθ + 2vvyθ + u2θy + v2θy − hθθy + hyθ

2

12Ωvθ + 4vvxθ − 6vuyθ − 2uuxθ − u2θx − v2θx + hθθx − hxθ2

)
,

which matches J(5) in (4.7).
Proceed in a similar way with the remaining nonzero densities to obtain the

fluxes given in the last column of Table 1.
System (2.5) has conserved densities [14, p. 294] of the form

ρ = hf(θ) and ρ = (vx − uy + 2Ω)g(θ),

for any functions f and g. Our algorithm can only find f and g of the form θk

where k ≥ 0 is integer. A comprehensive study of all conservation laws of (2.5) is
beyond the scope of this chapter.

8. Examples of Nonlinear DDEs

We consider nonlinear systems of DDEs of the form

u̇n = G(. . . ,un−1,un,un+1, . . .), (8.1)

where un and G are vector-valued functions with N components. The integer n
corresponds to discretization in space;9 the dot denotes differentiation with respect
to continuous time (t). For simplicity, we write G(un), although G depends on
un and a finite number of its forward and backward shifts. We assume that G is
polynomial with constant coefficients. No restrictions are imposed on the forward
or backward shifts or the degree of nonlinearity in G. In the examples we denote

9We only consider DDEs with one discrete variable.



280 Hereman, Colagrosso, Sayers, Ringler, Deconinck, Nivala and Hickman

the components of un by un, vn, etc. If present, parameters are denoted by lower-
case Greek letters. We use the following two DDEs to illustrate the theorems and
algorithms.

Example 8.1. The Kac–van Moerbeke (KvM) lattice [25],

u̇n = un(un+1 − un−1), (8.2)

arises in the study of Langmuir oscillations in plasmas, population dynamics, etc.

Example 8.2. The Toda lattice [35] in polynomial form [18],

u̇n = vn−1 − vn, v̇n = vn(un − un+1), (8.3)

models vibrations of masses in a lattice with an exponential interaction force.

9. Dilation Invariance and Uniformity in Rank for DDEs

The definitions for the discrete case are analogous to the continuous case. For
brevity, we use the Toda lattice (8.3) to illustrate the definitions and concepts.
(8.3) is dilation invariant under

(t, un, vn) → (λ−1t, λun, λ2vn). (9.1)

Definition 9.1. The weight W of a variable equals the exponent of the scaling
parameter λ [18, 19].

Weights of dependent variables are non-negative and rational. We tacitly
assume that weights are independent of n. For example, W (un−1) = W (un) =
W (un+1), etc.

Example 9.2. Since t is replaced by t
λ we have W ( d

dt ) = W (Dt) = 1. From (9.1)
we have W (un) = 1 and W (vn) = 2.

Definition 9.3. The rank of a monomial equals the total weight of the monomial.
An expression is uniform in rank if all its monomial terms have equal rank.

Ranks must be positive natural or rational numbers.

Example 9.4. The three terms in the first equation in (8.3) have rank 2; all terms
in the second equation have rank 3. Each equation is uniform in rank.

Conversely, requiring uniformity in rank in (8.3) yields W (un) + 1=W (vn),
and W (vn) + 1 =W (un) + W (vn). Hence, W (un)= 1, W (vn)= 2. So, the scaling
symmetry can be computed with linear algebra.

Many integrable nonlinear DDEs are scaling invariant. If not, they can be
made so by extending the set of dependent variables with parameters with weights.
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10. Conserved Densities and Fluxes of Nonlinear DDEs

By analogy with Dx and D−1
x , we define the following operators acting on mono-

mials mn in un, vn, etc.

Definition 10.1. D is the up-shift operator Dmn = mn+1 (also known as the
forward- or right-shift operator). Its inverse, D−1, is the down-shift operator (or
backward- or left-shift operator), D−1 mn = mn−1. The identity operator is de-
noted by I. Thus, I mn = mn, and ∆ = D − I is the forward difference operator.
So, ∆ mn = (D− I)mn = mn+1 −mn.

Definition 10.2. A conservation law of (8.1),

Dt ρn + ∆ JnJJ = 0, (10.1)

which holds on solutions of (8.1), links a conserved density ρn to a flux JnJJ . Densities
and fluxes depend on un as well as forward and backward shifts of un.

To stress the analogy between one-dimensional PDEs and DDEs, we compare
the defining equations in Table 2.

Continuous case (PDE) Semi-discrete case (DDE)

Evolution equation ut =G(u,ux,u2x, . . .) u̇n =G(. . . ,un−1,un,un+1, . . .)

Conservation law Dtρ + DxJ = 0 Dtρn + ∆ JnJJ = 0

Table 2. Defining equations for conservation laws of PDEs and DDEs

Definition 10.3. Compositions of D and D−1 define an equivalence relation (≡) on
monomials. All shifted monomials are equivalent.

Example 10.4. For example, un−1vn+1 ≡ unvn+2 ≡ un+1vn+3 ≡ un+2vn+4. Fac-
tors in a monomial in un and its shifts are ordered by un+j ≺ un+k if j < k.

Definition 10.5. The main representative of an equivalence class is the monomial
with un in the first position [18, 19].

Example 10.6. The main representative in {. . . , un−2un, un−1un+1, unun+2, . . .} is
unun+2 (not un−2un).

For monomials involving un, vn, wn, etc. and their shifts, we lexicographically
order the variables, that is un ≺ vn ≺ wn, etc. Thus, for example, unvn+2 but not
un−2vn is the main representative of

{. . . , un−2vn, un−1vn+1, unvn+2, un+1vn+3, . . .}.
Table 3 shows the KvM and Toda lattices with their scaling invariances,

weights, and a few conserved densities. Note that the conservation law “inherits”
the scaling symmetry of the DDE. Indeed, all ρn in Table 3 are uniform in rank.
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11. Discrete Euler and Homotopy Operators

11.1. Discrete Variational Derivative (Euler Operator)

Given is a scalar function fnff in discrete variables un, vn, . . . and their forward and
backward shifts. The goal is to find the scalar function FnFF so that

fnff = ∆ FnFF = FnFF +1 − FnFF .

We illustrate the computations with the following example:

fnff =−unun+1vn − v2
n + un+1un+2vn+1 + v2

n+1 + un+3vn+2 − un+1vn. (11.1)

By hand, one readily computes

FnFF = v2
n + un un+1 vn + un+1 vn + un+2 vn+1. (11.2)

Below we will address the questions:

(i) Under what conditions for fnff does FnFF exist in closed form?

(ii) How can one compute FnFF = ∆−1(fnff ) ?

(iii) Can one compute FnFF = ∆−1(fnff ) in an analogous way as in the continuous
case?

Expression fnff is called exact if it is a total difference, i.e. there exists an
FnFF so that fnff = ∆ FnFF . With respect to the existence of FnFF in closed form, the
following exactness criterion is well-known and frequently used [4, 22].

Theorem 11.1. A necessary and sufficient condition for a function fnff , with positive
shifts, to be exact is that L(0)

un (fnff ) ≡ 0.

Kac–van Moerbeke lattice Toda lattice

Lattice u̇n = un(un+1 − un−1) u̇n = vn−1 − vn, v̇n = vn(un − un+1)

Scaling (t, un) → (λ−1t, λun) (t, un, vn) → (λ−1t, λun, λ2vn)

Weights W (Dt) = 1, W (un) = 1 W (Dt) = 1, W (un) = 1, W (vn) = 2

Densities ρ
(1)
n = un, ρ

(1)
n = un,

ρ(2)
n =

1
2
u2

n+ unun+1, ρ(2)
n =

1
2
u2

n + vn,

ρ(3)
n =

1
3
u3

n + unun+1(un ρ(3)
n =

1
3
u3

n + un(vn−1 + vn)

+ un+1+un+2)

Table 3. Examples of nonlinear DDEs with weights and densities
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L(0)
un is the discrete variational derivative (discrete Euler operator of order

zero) [4] defined by

L(0)
un

=
∞∑

k=0

D−k ∂

∂un+k
=

∂

∂un
(

∞∑
k=0

D−k) =
∂

∂un
(I+D−1+D−2+D−3+· · · ). (11.3)

A proof of the theorem is given in e.g. [22]. In practice, the series in (11.3) termi-
nates at the highest shift in the expression the operator is applied to. To verify that
an expression E(un−q, . . . , un, . . . , un+p) involving negative shifts is a total differ-
ence, one must first remove the negative shifts by replacing En by Ẽn = DqEn.

Example 11.2. We return to (11.1),

fnff = −un un+1 vn − v2
n + un+1 un+2 vn+1 + v2

n+1 + un+3 vn+2 − un+1 vn.

We first test that fnff is exact (i.e., the total difference of some FnFF to be computed
later). We then apply the discrete zeroth Euler operator to fnff for each component
of un = (un, vn) separately. For component un (with maximum shift 3) one readily
verifies that

L(0)
un

(fnff ) =
∂

∂un

(
I + D−1 + D−2 + D−3

)
(fnff ) ≡ 0.

Similarly, for component vn (with maximum shift 2) one checks that L(0)
vn (fnff ) ≡ 0.

11.2. Discrete Higher Euler and Homotopy Operators

To compute FnFF , we need higher-order versions of the discrete variational derivative.
They are called discrete higher Euler operators or discrete Lie–Euler operators,
L(i)

un , in analogy with the continuous case [33].
In Table 4, we have put the continuous and discrete higher Euler operators

side by side. Note that the discrete higher Euler operator for i = 0 is the discrete
variational derivative.

Example 11.3. The first three higher Euler operators for component un from Ta-
ble 4 are

L(1)
un

=
∂

∂un

(
D−1 + 2D−2 + 3D−3 + 4D−4 + · · · ) ,

L(2)
un

=
∂

∂un

(
D−2 + 3D−3 + 6D−4 + 10D−5 + · · · ) ,

L(3)
un

=
∂

∂un

(
D−3 + 4D−4 + 10D−5 + 20D−6 + · · · ) .

Similar formulae hold for L(i)
vn .

The discrete higher Euler operators are useful in their own right as the fol-
lowing theorem indicates.

Theorem 11.4. A necessary and sufficient condition for a function fnff to be a
forward difference of order r, i.e. ∃FnFF so that fnff = ∆rFnFF , is that L(i)

un(fnff ) ≡ 0 for
i = 0, 1, . . . , r − 1.
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Operator Continuous case Discrete case

Zeroth Euler L(0)
u(x) =

∞∑
k=0

(−Dx)k ∂

∂uk x
L(0)

un
=

∞∑
k=0

D−k ∂

∂un+k

=
∂

∂un

∞∑
k=0

D−k

Higher Euler L(i)
u(x) =

∞∑
k=i

(
k

i

)
(−Dx)k−i ∂

∂uk x
L(i)

un
=

∞∑
k=0

(
k

i

)
D−k ∂

∂un+k

=
∂

∂un

∞∑
k=i

(
k

i

)
D−k

Homotopy Hu(x)(f)=
∫ 1

0

∫∫ N∑
j=1

IuII j (f)[λu]
dλ

λ
Hun(f)=

∫ 1

0

∫∫ N∑
j=1

IuII j,n(f)[λun]
dλ

λ

Integrand IuII j (f)=
∞∑

i=0

Di
x

(
ujL(i+1)

uj(x)(f)
)

IuII j,n(f)=
∞∑

i=0

∆i
(
uj,nL(i+1)

uj,n
(f)
)

Table 4. Continuous and discrete Euler and homotopy operators
in 1D side by side

Also in Table 4, we put the formulae for the discrete homotopy operator
Hun and the continuous homotopy operator side by side. The integrand IuII j,n(f)
of the homotopy operator involves the discrete higher Euler operators. As in the
continuous case, N is the number of dependent variables uj,n and IuII j,n(f)[λun]
means that after IuII j,n(f) is applied one replaces un by λun, un+1 by λun+1, etc.
To compute FnFF , one can use the following theorem [21, 24, 30].

Theorem 11.5. Given an exact function fnff , one can compute FnFF = ∆−1(fnff ) from
FnFF = Hun(fnff ).

Thus, the homotopy operator reduces the inversion of ∆ (and summation
by parts) to a set of differentiations and shifts followed by a single integral with
respect to an auxiliary parameter λ. We present a simplified version [21] of the
homotopy operator given in [24, 30], where the problem is dealt with in greater
generality and where the proofs are given in the context of discrete variational
complexes.

Example 11.6. For a system with components, (u1,n, u2,n) = (un, vn), the discrete
homotopy operator from Table 4 is

Hun(f) =
∫ 1

0

∫∫
(IuII n(f)[λun] + IvII n(f)[λun])

dλ

λ
, (11.4)
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with

IuII n(f) =
∞∑

i=0

∆i
(
unL(i+1)

un
(f)
)

and IvII n(f) =
∞∑

i=0

∆i
(
vnL(i+1)

vn
(f)
)

. (11.5)

Example 11.7. We return to (11.1). Using (11.5),

IuII n(fnff ) = unL(1)
un

(fnff ) + ∆
(
unL(2)

un
(fnff )

)
+ ∆2

(
unL(3)

un
(fnff )

)
= un

∂

∂un

(
D−1 + 2D−2 + 3D−3

)
(fnff ) + ∆

(
un

∂

∂un

(
D−2 + 3D−3

)
(fnff )

)
+ ∆2

(
un

∂

∂un
D−3(fnff )

)
= 2unun+1vn + un+1vn + un+2vn+1,

and

IvII n(fnff ) = vnL(1)
vn

(fnff ) + ∆
(
vnL(2)

vn
(fnff )

)
= vn

∂

∂vn

(
D−1 + 2D−2

)
(fnff ) + ∆

(
vn

∂

∂vn
D−2(fnff )

)
= unun+1vn + 2v2

n + un+1vn + un+2vn+1.

The homotopy operator (11.4) thus leads to an integral with respect to λ:

FnFF =
∫ 1

0

∫∫
(IuII n(fnff )[λun] + IvII n(fnff )[λun])

dλ

λ

=
∫ 1

0

∫∫ (
2λv2

n + 3λ2unun+1vn + 2λun+1vn + 2λun+2vn+1

)
dλ

= v2
n + unun+1vn + un+1vn + un+2vn+1,

which agrees with (11.2), previously computed by hand.

12. Application: Conservation Laws of Nonlinear DDEs

In [16, 22], different algorithms are presented to compute fluxes of nonlinear DDEs.
In this section we show how to compute fluxes with the discrete homotopy oper-
ator. For clarity, we compute a conservation law for (8.3) in Section 8. The com-
putations are carried out with our Mathematica packages [20]. The completely
integrable Toda lattice (8.3) has infinitely many conserved densities and fluxes. As
an example, we compute density ρ

(3)
n (of rank 3) and corresponding flux J

(3)
nJJ (of

rank 4). In this example,

G = (G1, G2) = ( vn−1 − vn, vn(un − un+1) ).

Assuming that the weights W (un)=1 and W (vn)=2 are computed and the rank
of the density is selected (say, R=3), our algorithm works as follows.
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Step 1: Construct the form of the density

Start from V = {un, vn}, i.e. the list of dependent variables with weight. List
all monomials in un and vn of rank 3 or less: M={u3

n, u2
n, unvn, un, vn}.

Next, for each monomial in M, introduce the correct number of t-derivatives
so that each term has rank 3. Using (8.3), compute

d0u3
n

dt0
= u3

n,
d0unvn

dt0
= unvn,

du2
n

dt
= 2unu̇n = 2unvn−1 − 2unvn,

dvn

dt
= v̇n = unvn − un+1vn,

d2un

dt2
=

du̇n

dt
=

d(vn−1−vn)
dt

=un−1vn−1−unvn−1−unvn+un+1vn. (12.1)

Augment M with the terms from the right-hand sides of (12.1) to get R =
{u3

n,unvn−1,unvn,un−1vn−1,un+1vn}.
Identify members belonging to the same equivalence classes and replace them

by their main representatives. For example, unvn−1 ≡ un+1vn, so the latter is
replaced by unvn−1. Hence, replace R by S = {u3

n, unvn−1, unvn}, which has
the building blocks of the density. Linearly combine the monomials in S with
coefficients ci to get the candidate density:

ρn = c1 u3
n + c2 unvn−1 + c3 unvn. (12.2)

Step 2: Determine the coefficients

Require that (10.1) holds. Compute Dtρn. Use (8.3) to remove u̇n and v̇n and
their shifts. Thus,

En = Dtρn = (3c1 − c2)u2
nvn−1 + (c3 − 3c1)u2

nvn + (c3 − c2)vn−1vn

+ c2 un−1unvn−1 + c2v
2
n−1 − c3unun+1vn − c3v

2
n. (12.3)

To remove the negative shift n−1, compute Ẽn = DEn. Apply L(0)
un to Ẽn, yielding

L(0)
un

(Ẽn) =
∂

∂un
(I + D−1 + D−2)(Ẽn)

= 2(3c1 − c2)unvn−1 + 2(c3 − 3c1)unvn + (c2 − c3)un−1vn−1

+ (c2 − c3)un+1vn. (12.4)

Next, apply L(0)
vn to Ẽn, yielding

L(0)
vn

(Ẽn) =
∂

∂vn
(I + D−1)(Ẽn)

= (3c1 − c2)u2
n+1 + (c3 − c2)vn+1 + (c2 − c3)unun+1

+ 2(c2 − c3)vn + (c3 − 3c1)u2
n + (c3 − c2)vn−1. (12.5)

Both (12.4) and (12.5) must vanish identically. Solve the linear system

3c1 − c2 = 0, c3 − 3c1 = 0, c2 − c3 = 0.
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Set c1 = 1
3 and substitute the solution c1 = 1

3 , c2 = c3 = 1 into (12.2)

ρn =
1
3
u3

n + un(vn−1 + vn). (12.6)

Step 3: Compute the flux

In view of (10.1), one must compute JnJJ = −∆−1(En). Substitute c1 = 1
3 ,

c2 = c3 = 1 into (12.3). Then, Ẽn = DEn = unun+1vn+v2
n−un+1un+2vn+1−v2

n+1.

Apply (11.5) to −Ẽn to obtain

IuII n(−Ẽn) = 2unun+1vn, IvII n(−Ẽn) = unun+1vn + 2v2
n.

Application of the homotopy operator (11.4) yields

J̃nJJ =
∫ 1

0

∫∫
(IuII n(−Ẽn)[λun] + IvII n(−Ẽn)[λun])

dλ

λ

=
∫ 1

0

∫∫
(3λ2unun+1vn + 2λv2

n) dλ

= unun+1vn + v2
n.

After a backward shift, JnJJ = D−1(J̃nJJ ), we obtain JnJJ . With (12.6), the final result
is then

ρn =
1
3

u3
n + un(vn−1 + vn), JnJJ = un−1unvn−1 + v2

n−1.

The above density corresponds to ρ
(3)
n in Table 3.

13. Conclusion

Based on the concept of scaling invariance and using tools of the calculus of vari-
ations, we presented algorithms to symbolically compute conserved densities and
fluxes of nonlinear polynomial and transcendental systems of PDEs in multi-spacial
dimensions and DDEs in one discrete variable.

The continuous homotopy operator is a powerful, algorithmic tool to compute
fluxes explicitly. Indeed, the homotopy operator handles integration by parts in
multi-variables which allows us to invert the total divergence operator. Likewise,
the discrete homotopy operator handles summation by parts and inverts the for-
ward difference operator. In both cases, the problem reduces to an explicit integral
from 1D calculus.

Homotopy operators have a wide range of applications in the study of PDEs,
DDEs, fully discretized lattices, and beyond. We extracted the Euler and ho-
motopy operators from their abstract setting and introduced them into applied
mathematics, thereby making them readily applicable to computational problems.

We purposely avoided differential forms and abstract concepts from differen-
tial geometry and homological algebra. Our down-to-earth approach might appeal
to scientists who prefer not to juggle exterior products and Lie derivatives. Our
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calculus-based formulas for the Euler and homotopy operators can be readily im-
plemented in major CAS.
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Partial and Complete Linearization of PDEs
Based on Conservation Laws

Thomas Wolf

Abstract. A method based on infinite parameter conservation laws is de-
scribed to factor linear differential operators out of nonlinear partial differen-
tial equations (PDEs) or out of differential consequences of nonlinear PDEs.
This includes a complete linearization to an equivalent linear PDE (system)
if that is possible. Infinite parameter conservation laws can be computed, for
example, with the computer algebra package ConLaw.
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1. Introduction

With the availability of computer algebra programs for the automatic computation
of all conservation laws up to a given differential order of the integrating factors
(as described in [5, 6]) conservation laws have been found that involve arbitrary
functions, i.e. infinitely many parameters. In this paper we show how based on such
conservation laws a linear differential operator can be factored out of a combination
of the original nonlinear partial differential equations (PDEs) and their differential
consequences. Possible outcomes include

• a complete linearization into an equivalent linear system,
• a partial linearization in the sense that a linear differential operator is fac-

tored out, splitting the problem into a linear one plus a nonlinear problem of
lower order and often fewer independent variables (e.g. ordinary differential
equations (ODEs)),

• the derivation of at least one linear equation from a nonlinear system (with
the possibility of deriving further linear equations for the new mixed linear-
nonlinear system).

An advantage of the procedure to be presented is that conservation laws need
not be given explicitly in terms of the arbitrary functions. It is enough to have
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the conservation law determining conditions solved up to the solution of a system
of consistent and necessarily linear PDEs which have arbitrary functions in their
general solution.

The content of the paper is as follows. After comments are made on the
computation of conservation laws in Section 3, the four computational steps of
factoring out linear differential operators are illustrated using the Liouville equa-
tion in Section 4. Sufficient conditions for complete or partial linearizations are
listed in Section 5, followed by a discussion of computational aspects in Section 6.
A generalization involving the introduction of potentials in terms of which a lin-
earization becomes possible is explained in Section 7. In later sections 8 and 9, an
illustration is given of how the method works when nonlinear equations linearize to
inhomogeneous equations or to triangular linear systems. Further examples where
a complete or at least a partial linearization is possible are given in the appendix.

In this contribution we concentrate on computational aspects of the method
and give examples for all of the above scenarios. An extension of the method
discussing complete and partial linearizability through point and contact transfor-
mations will appear in a future publication [1], with numerous new examples and
a comparison with other linearization methods found in the literature.

2. Notation

We follow the notation in [3] and denote the original nonlinear partial differential
equations as 0 = ∆α, the dependent variables by uβ, α, β = 1, . . . , q and the
independent variables by xi, i = 1, . . . , p. In examples dealing with functions u =
u(x, t) or u = u(x, y), partial derivatives are written as subscripts like uxy =
∂2u/(∂x∂y). If a formula already contains subscripts then ∂i∂∂ will be used for
∂/∂xi. The multi-indices J ,K denote multiple partial derivatives like uα

J which in
our notation include uα. With #J we denote the differential order, i.e. number of
partial derivatives represented by J . Total derivatives with respect to xi will be
denoted as Di. We apply the convention that summation is performed over terms
that involve two identical indices, one subscript and one superscript. For example,
the divergence of a vector field P i would be denoted as DiP

i (≡ ∑i DiP
i). The

procedure to be presented repeatedly uses adjoint differential operators as follows.d
For given functions fA(xi), A = 1, . . . , r, let linear differential expressions Hk be
defined as

Hk = aJ
kA∂JfA, k = 1, . . . , s,

with coefficients aJ
kA = aJ

kA(xi) and summation over A and the multi-index J . The
corresponding adjoint operators H ∗

AkH are computed for arbitrary functions Gk(xi)
by repeatedly reversing the product rule of differentiation for the sum GkHk to
get

GkHk = fAH ∗
AkH Gk + DiP̄

i (2.1)
where

H ∗
AkH Gk = (−1)#J∂J

(
aJ

kAGk
)
. (2.2)
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and P̄ i are expressions resulting from integration by parts with respect to ∂J in
this computation.

3. Conservation Laws with Arbitrary Functions

Conservation laws can be formulated in different ways (see [6] for four different
approaches to compute conservation laws). The form to be used in this paper is

DiP
i = Qα∆α (3.1)

where the components P i of the conserved current and the so-called characteristic
functions Qα are differential expressions involving xi, uα

J . Other forms of conserva-
tion laws can easily be transformed into (3.1). One approach to find conservation
laws for a given system of differential equations 0 = ∆α is to specify a maximum
differential order m of derivatives uα

J on which P i, Qα may depend and then to
solve condition (3.1) identically in xi, uα

J for the unknown functions P i, Qα. Due
to the chain rule of differentiation in (3.1) the total derivatives Di introduce extra
derivatives uα

K with #K = m+1 > m, i.e. derivatives not occurring as variables in
P i, Qα. Splitting with respect to these uα

K results in an overdetermined and linear
system of PDEs for P i, Qα.1

What is important in the context of this paper is that a differential Gröbner¨
basis can be computed algorithmically and from it the dimension of the solution
space can be determined, i.e. how many arbitrary functions of how many vari-
ables the general solution for P i, Qα depends on. In extending the capability of a
program in solving condition (3.1) by not only computing a differential Gröbner¨
basis (for linear systems) but also integrating exact PDEs (see [8]) and splitting
PDEs with respect to only explicitly occurring uα

J (which here act as independent
variables), the situation does not change qualitatively. The result is still either the
explicit general solution or a linear system of unsolved PDEs

0 = Ck(xi, uα
J , fA), k = 1, . . . , r , (3.2)

for some functions fA(xj , uβ
J) where this system is a differential Gröbner basis and¨

allows one to determine algorithmically the size of the solution space. The functions
fA are either the P i, Qα themselves or are functions arising when integrating the
conservation law condition (3.1).

If the conservation law condition (3.1) is solved, i.e. P i, Qα are determined in
terms of xi, uα

J , fA
Kf possibly up to the solution of remaining conditions (3.2) then

it is no problem to use a simple division algorithm to determine coefficients Lk

satisfying
Qα∆α = DiP

i + LkCk (3.3)
identically in xi, uα

J , fA
J . The coefficients Lk are necessarily free of fA

J because (3.1)
is linear and homogeneous in Qα, P i and this property is preserved in solving these

1Note that regarding (3.1) as an algebraic system for unknowns Qα implies division through
∆α and does therefore not produce Qα which are regular for solutions uα of the original system
∆α = 0. For details regarding the ansatz for Qα see [6].
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conditions, so Ck are linear and homogeneous in fA
J as well and Lk must therefore

be free of fA
J . We call relation (3.3) a conservation law identity because it is

satisfied identically in all xi, uα
J and fA

J .

4. The Procedure

The individual steps of our method are shown in detail to demonstrate that all
steps are algorithmic and can be performed by computer. The REDUCE package
ConLaw has the algorithm implemented and performs it whenever a conservation
law computation results in a solution involving arbitrary functions possibly up to
the solution of a linear system (3.2).

Input. Input to the procedure is the conservation law identity (3.3)

Qα∆α = DiP
i + LkCk (4.1)

including expressions for all its constituents Qα, P i, Lk, Ck in terms of xi, uα, fA.
To start the procedure the functions fA have to depend only on the variables

xi. If they depend on uα
J then a linearization will necessarily involve a change of

variables. This case is treated in [1].

Step 1. If all functions fA depend exactly on all p independent variables xi then
proceed to step 2. Step 1 is concerned with the case that not all fA = fA(xi)
depend on all xi. To add the dependence of, say fB on xj , one has to

• compute

Z := (Qα∆α −DiP
i − LkCk)

∣∣∣∣
fB(xi)→fB(xi,xj)

which vanishes modulo 0 = ∂j∂ fB and therefore must have the form

Z = MJ∂J

(
fB
)

with suitable coefficients MJ and summation over the multi-index J ,
• compute the adjoint Z∗

B as in (2.1) and (2.2) to bring Z into the form

Z = DiP̄
i + Z∗

B∂j∂ fB, (4.2)

• rename P i + P̄ i → P i and add a new condition CrCC +1 = ∂j∂ fB and multi-
plier Lr+1 = Z∗

B to arrive at a new version of the conservation law identity
Qα∆α = DiP

i + LkCk where the function fB depends now on xj .

This process is repeated until all fA depend on all xi.

Example 1. We illustrate the steps of the procedure with an investigation of the
Liouville equation

0 = ∆ := uxy − eu. (4.3)

Although it is not completely linearizable, we choose this equation because it
involves computations in each of the first three steps.
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For the Liouville equation a conservation law identity involving an arbitrary
function f(x) is given through

(fxff + fux)∆ = Dx(−feu) + Dy(fxff ux + fu2
x/2), (4.4)

i.e. Q = fxff +fux, P x = −feu, P y = fxff ux+fu2
x/2, Ck = 0. Adding a y-dependence

to f requires to add to the right-hand side of our identity (4.4) the terms

Z = −fxyff ux − fyff u2
x/2

which in adjoint form (4.2) read

Z = Dx(−fyff ux) + (uxx − u2
x/2)fyff ,

giving the new conservation law identity

(fxff + fux)∆ = Dx(−feu − fyff ux) + Dy(fxff ux + fu2
x/2) + (uxx − u2

x/2)fyff . (4.5)

Step 2. As the Qα are linear homogeneous differential expressions for the fA one
can compute adjoint operators Qα∗

A as in (2.1) and (2.2) by expressing

Qα∆α = fAQα∗
A ∆α + DiP̄

i.

After renaming P i − P̄ i → P i the conservation law identity takes the new form

fAQα∗
A ∆α = DiP

i + LkCk. (4.6)

In the case of the Liouville equation we partially integrate

(fxff + fux)∆ = f(ux −Dx)∆ + Dx(f∆)

and get the conservation law identity

f(ux−Dx)∆ = Dx(−feu−fyff ux−f∆) + Dy(fxff ux+fu2
x/2) + (uxx−u2

x/2)fyff

= Dx(−fyff ux−fuxy) + Dy(fxff ux+fu2
x/2) + (uxx−u2

x/2)fyff . (4.7)

Step 3. Because the Ck are linear homogeneous differential expressions in the fA

we can compute the adjoint form of LkCk as in (2.1) and (2.2) by expressing

LkCk = fAC ∗
AkC Lk + DiP̄

i.

After renaming P i + P̄ i → P i the conservation law identity takes the new form

fAQα∗
A ∆α = DiP

i + fAC ∗
AkC Lk. (4.8)

In our example partial integration gives

(uxx − u2
x/2)fyff = Dy((uxx − u2

x/2)f)− f(uxx − u2
x/2)y

and substituted into (4.7) the new conservation law identity

f(ux −Dx)∆ = Dx(−fyff ux − fuxy) + Dy

(
fxff ux + fu2

x/2 + f(uxx − u2
x/2)

)
−f(uxx − u2

x/2)y (4.9)

after simplification.

Step 4. This step does not involve any computation; it merely completes the con-
structive proof how linearizations are achieved.
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By bringing fAC ∗
AkC Lk to the left-hand side of the conservation law identity

(4.8) we get
fA
(
Qα∗

A ∆α − C ∗
AkC Lk

)
= DiP

i (4.10)

which still is an identity for arbitrary functions uα, fA. Applying the Euler oper-
ator with respect to fA (for its definition see e.g. [3, 1]) to the left-hand side of
(4.10) gives the coefficient of fA and on the right-hand side gives zero as it is a
divergence,2 i.e. we get

Qα∗
A ∆α = C ∗

AkC Lk identically in uα for all A. (4.11)

The vanishing of DiP
i on the right-hand side of (4.9) was therefore not accidental.

For the Liouville equation the identity (4.11) takes the form

(ux −Dx)∆ = −DyL = 0 with (4.12)

L = uxx − u2
x/2. (4.13)

Integrating at first (4.12) to L = L(x) leaves the Riccati ODE

uxx − u2
x/2 = L(x) (4.14)

for ux to be solved, for example, through a linearizing transformation u(x, y) =
−2 log(v(x, y)).

Output. The results of the procedure are expressions Qα∗
A , C ∗

AkC and Lk. The relation

C ∗
AkC Lk = 0 (4.15)

is a necessary condition which can be solved by first regarding Lk as dependent
variables and then solving

Lk = Lk(uα
J ) (4.16)

for uα = uα(xi). The system (4.15)–(4.16) is a sufficient condition for the original
system ∆α = 0 if Qα∗

A is an invertible algebraic operator and it is a complete
linearizing point transformation if (4.16) is purely algebraic in uα.

5. Scope of the Procedure

The degree to which the original system ∆α = 0 can be linearized depends on
properties of the conservation law identity that has been computed: the number
of functions fA and the number of variables each fA depends on, the differential
order of derivatives of fA with respect to xi, uα

J in Ck and in Qα. Some properties,
like the size of the solution space of remaining conditions (3.2), are essentially
independent of the extent to which these conditions are solved. Other criteria, like
the number of functions fA and the number of their arguments, do depend on the

2To prove this statement without Euler operator we could choose the fA to be zero outside some
region R such that an integral over a volume with boundary outside R will vanish using Gauss
law on the right-hand side of identity (4.10) as P i are linear homogeneous in the fA. Because the
fA are arbitrary inside R the coefficients of the fA on the left-hand side must vanish identically.
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extent to which conditions (3.2) were solved. The strength of the procedure to be
presented is to be able to handle a wide range of situations.

The following is a list of four scenarios, sorted from most special, fully algo-
rithmic (and most beneficial) to most general, not strictly algorithmic (and less
beneficial). We refer to the computational steps described in Section 4 as “the
procedure”.

• If the following criteria are met:
1. the size of the solution space of 0 = ∆α is equal to the size of the

solution space of 0 = Ck,
2. the conditions 0 = Ck involve q functions fA (equal to the number of

functions uα in ∆α) and all fA depend on p variables (equal to the
number of variables uα depend on),

3. the functions Qα expressed in terms of fA involve fA only algebraically,
i.e. no derivatives of fA, and

4. functions fA do not depend on jet variables uα
J , i.e. fA = fA(xi),

then the procedure will algorithmically provide a linearizing point transfor-
mation of the system ∆α = 0.

Example 2. The Burgers equation in the form

0 = ∆1 := ut − uxx − uux (5.1)

for a function u(x, t) cannot be linearized but in the potential form

0 = ∆2 := vt − vxx − v2
x/2 (5.2)

for v(x, t) a conservation law identity involving a function f(x, t) is given through

fev/2∆ = Dt

(
2fev/2

)
+ Dx

(
2fxff ev/2 − fev/2vx

)
+ 2ev/2(−ftff − fxxff ) (5.3)

and the related linearization is

L = 2ev/2

ev/2∆ = Lt − Lxx = 0.

A proof that every nonlinear PDE (system) that is linearizable through point or
contact transformations can be linearized this way will be given in [1].

• If criteria 1, 2 and 3 are satisfied but not 4 then a linearization is possible but
at the price of a change of variables, which will be a contact transformation if
it is invertible or otherwise it will be a non-invertible transformation depend-
ing on derivatives of uα. Furthermore, in all such cases the transformation
can be derived explicitly from the conservation law identity as will be shown
in [1].

• If criterion 3 is not satisfied then the partially or completely linearized equa-
tions may only be a necessary but not a sufficient condition for ∆α = 0.

• If criterion 1 is satisfied but not 2 then
– if functions fA of fewer than p variables occur then one can add extra

variable dependencies through step 1 of the procedure,
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– if more than q functions fA occur in 0 = Ck or functions fA of more
than p variables occur then one has to integrate more of the conditions
0 = Ck in order to be able to linearize the original system completely
(a full treatment of this case will be given in [1]).

• If criterion 1 is not satisfied but the solution space of Ck involves at least
one arbitrary function of one argument then the method will result in a
differential expression for uα

J which vanishes modulo 0 = ∆α and factorizes
into a linear differential operator acting on a nonlinear differential expression.
Typically this leads to a PDE for uα which is lower in differential order than
∆α for one of the xi. In Example 1 in Section 4 and Examples 8, 9 and 10 in
the appendix an equation in one less variable results, i.e. an ODE.

The algorithmic beauty of the procedure is that the above wide range of situations
is covered by one and the same 4-step algorithm.

The case that a non-local linearization exists in which the Lk depend on inte-
grals of uα is not covered directly as the computer algebra package ConLaw does
not compute non-local conservation laws. On the other hand single conservation
laws (without parametric functions) can be used to introduce potentials such that
the original system re-formulated in these potentials is linearizable. This approach
has been successful in all 6 linearizable evolutionary systems found in [4]. Examples
given in this paper are the system (7.1)–(7.2) in Section 7, the system (9.4)–(9.5)
in Section 9 and the system (10.8)–(10.9) in the appendix.

6. Computational Aspects

Given a nonlinear PDE system 0 = ∆α, what are possible computational hurdles
to be overcome in oder to find a linearization? The method described in Section 4
is algorithmic and does not pose a problem. The formulation of the conservation
law condition (3.1) and its analysis through computing a differential Gröbner basis¨
0 = Ck is algorithmic as well and could only become difficult because of a growing
size of equations.

A first computational challenge lies in the fact that for linearizable systems
0 = ∆α the conservation law condition (3.1) has a general solution involving
arbitrary functions. It is well known that systems of equations with a large solution
space are much harder to solve than systems with only few solutions or no solutions.
To incorporate many solutions, algebraic Gröbner bases for algebraic systems have¨
to be of high degree and differential Gröbner bases for differential systems have to¨
be of sufficiently high differential order. As a consequence, the length of expressions
encountered during the Gröbner basis computation is more likely to explode and¨
exceed available resources.

The second challenge is to integrate a Gr¨bner basis¨ 0 = Ck sufficiently often
to meet criterion 2 in Section 5. Because the general solution of the conservation
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law conditions involves arbitrary functions, any integrations to be done can only
be integrations of PDEs, not of ODEs.

The package Crack that is used to compute the examples in this paper
differs from similar other programs (as listed in [2]) in that it has a number of
modules addressing the above problems. For example, the growth of expressions
is lowered by a module for reducing the length of equations by replacing them
through a suitable linear combination of equations as described in [7]. Integrations
are handled by a module that integrates exact PDEs, that is able to introduce
potentials to integrate certain generalizations of exact PDEs and that determines
monomial integrating factors to achieve integration (see [8]). A relatively new
module applies syzygies that result as a by-product of a differential Gröbner basis¨
computation. This module allows to perform integrations more efficiently and to
avoid a temporary explosion of the number of functions of integration generated
in the process (see [9]). A module that integrates underdetermined linear ODEs
with non-constant coefficients is often useful in the last stages of the computation.
A description of the algorithm and its implementation is in preparation.

7. An Example Requiring the Introduction of a Potential

The following example demonstrates that a linearization of a nonlinear equation
or system may only be possible if it is reformulated in terms of potentials which
in turn might be found by studying conservation laws.

Example 3. The system

0 = ∆1 := ut − uxx − 2vuux − 2(a + u2)vx − v2u3 − bu3 − auv2 − cu, (7.1)
0 = ∆2 := vt + vxx + 2uvvx + 2(b + v2)ux + u2v3 + av3 + bvu2 + cv (7.2)

with u = u(x, t), v = v(x, t) and constants a, b, c results as one of the 15 cases of a
class of generalized nonlinear Schrodinger equations [4]. This system itself does not¨
have conservation laws involving arbitrary functions but it has the zeroth order
conservation law

v∆1 + u∆2 = Dt(uv) + Dx(vxu− uxv + bu2 − av2)

which motivates the introduction of a function w(x, t) through

wx = uv, (7.3)
−wt = vxu− uxv + bu2 − av2.

The remaining system to be solved for r := u/v and w simplifies if we substitute

w =
1
2

log z (7.4)

with z = z(x, t). This substitution is not essential for the following but it reduces
the size of the resulting system for r(x, t), z(x, t) and eases memory requirements
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in the computation of conservation laws of the resulting system ∆3, ∆4:

0 = ∆3 := 2rrtz
2
x + r2

xz2
x + 2ar2rxz2

x − 2brxz2
x + 2r2zxzxxx

− r2z2
xx + 2ar3zxzxx + 2brzxzxx + 4cr2z2

x,

0 = ∆4 := rxzx + rzt − ar2zx + bzx. (7.5)

The program ConLaw finds a conservation law with integrating factors

Q3 = r−5/2z−3/2
x (fr + f̃),

Q4 = r−5/2z−3/2
x

(
−2zxr(fxff r − f̃xff )− rxzx(fr + f̃) + zxxr(fr − f̃)

)
involving two functions f(x, t), f̃(x, t) that have to satisfy the conditions

0 = C1 := −ftff + fxxff + cf − 2af̃xff ,

0 = C2CC := f̃tff + f̃xxff + cf̃ − 2bfxff .

The conservation law identity takes the form

Q3∆3 + Q4∆4 = DtP
t + DxP x + L1C1 + L2C2CC (7.6)

with some conserved current (P t, P x) and coefficients L1, L2 of C1, C2CC

L1 = 4
√√

zxr, L2 = 4
√

zx/r. (7.7)

Derivatives fxff , f̃xff in Q4 can be eliminated by adding total x-derivatives

Dx

(
r−5/2z−3/2

x 2zxr(fr − f̃)∆4

)
to the left-hand site of the identity (7.6) and to DxP x. The modified form of the
identity (7.6) is

0 = z−3/2
x r−5/2

(
2zxr(fr − f̃)Dx∆4 − 2rxzx(fr − f̃)∆4 + (fr + f̃)∆3

)
= Dt

(
4
√

zx/r(rf − f̃)
)

+ Dx

(
2z−1/2

x r−3/2(−2fxff zxr2 − 2f̃xff zxr + rxzxfr − rxzxf̃

+zxxfr2 + zxxf̃ r + 4zxaf̃r2 + 4zxbfr)
)

+ L1C1 + L2C2CC .

Partial integration of L1C1 + L2C2CC until f, f̃ appear purely algebraically makes
necessarily P t = P x = 0. Because f, f̃ are free we obtain the identities

0 = r−3/2z−3/2
x (∆3 + 2rzxDx∆4 − 2rxzx∆4) = L1

t + L1
xx + cL1 + 2bL2

x, (7.8)

0 = r−5/2z−3/2
x (∆3 − 2rzxDx∆4 + 2rxzx∆4) =−L2

t + L2
xx + cL2 + 2aL1

x (7.9)

completing the linearization. For any solution L1, L2 of (7.8), (7.9), equations (7.7)
provide r, zx. With zt from (7.5) we get z as a line integral, w from (7.4) and u, v
from r and equation (7.3).

In the following section the effect of our method on PDEs is investigated that
linearize to inhomogeneous equations.
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8. Inhomogeneous Linear DEs

If the general solution of conservation law determining equations involves a numberaa
of free constants or free functions then individual conservation laws are obtained
by setting all but one to zero. The remaining terms are homogeneous in the surviv-
ing constant or function. The question arises whether our conservation law based
method is suitable to find linearizations that lead to linear but inhomogeneous
equations.

Example 4. For the (ad hoc constructed) equation

0 = ∆ := 2uut + 2uuxx + 2u2
x + 1 (8.1)

the conservation law identity

(fxff + f̃tff )∆ = Dt

(
fxff u2 + f̃tff u2 + f̃

)
+ Dx

(
−fxxff u2 + 2fxff uux − f̃t,xff u2 + 2f̃tff uux + f

)
+ u2(ft,xff − fxxxff − f̃txxff + f̃ttff )

involves functions f(x, t), f̃(x, t) and establishes a conservation law provided f, f̃
satisfy

0 = ft,xff − fxxxff − f̃txxff + f̃ttff .

Our method gives the linear system

0 = Dx∆ = Ltx + Lxxx, (8.2)
0 = Dt∆ = Ltt + Ltxx; (8.3)

L = u2.

The system (8.2)–(8.3) represents the x and t derivatives of the linear equation

0 = Lt + Lxx + 1 (8.4)

which is equivalent to equation (8.1) and is an inhomogeneous linear PDE. Al-
though our linearization method does not quite reach (8.4), it nevertheless pro-
vides L = u2 as the new unknown function which makes it easy to get to the
equivalent linear equation (8.4) through a change of dependent variables in (8.1)
or through an integration of (8.2), (8.3).

The way how homogeneous consequences can be derived from an inhomoge-
neous relation is to divide the inhomogeneous relation through the inhomogeneity,
i.e. to make the inhomogeneity equal 1 and then to differentiate with respect to all
independent variables and to obtain a set of linear homogeneous conditions in the
same way as equations (8.2) and (8.3) are consequences of (8.4). The application
in the following section leads to an inhomogeneous linear PDE with non-constant
inhomogeneity.
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9. An Example of a Triangular Linear System

A generalization of complete linearizability of the whole PDE system in one step
is the successive linearization of one equation at a time.

Example 5. Assume a triangular system of equations, like the (ad hoc constructed)
system

0 = ∆1 := ut, (9.1)
0 = ∆2 := vvt − uvvxx − uv2

x (9.2)

with one equation (9.1) involving only one function, say u = u(x, t), and this equa-
tion being linear or being linearizable and a second nonlinear equation being linear
or linearizable in another function v = v(x, t). How can the method in Section 4
be used to recognize that such a system can be solved by solving successively only
linear equations?

In determining all conservation laws for this system with unknown functions
v, u and with integrating factors of order zero we get apart from two individ-
ual conservation laws with pairs of integrating factors (Q1, Q2) = ( v2

u2 ,− 2
u ) and

(xv2

u2 ,− 2x
u ) only one with a free function f(u, x):

fuff ∆1 = Dtf

which indicates the linearity of ∆1 but not the linearity of ∆2 in v once u(x, t) is
known.

The proper way of applying the method of Section 4 is to compute conser-
vation laws of 0 = ∆2 alone which now is regarded as an equation for v(x, t) only.
The function u(x, t) is assumed to be parametric and given. We obtain the identity

2f∆2 = Dx(fxff uv2 + fuxv2 − 2fuvvx) + Dt(fv2)− v2(ftff + ufxxff + 2uxfxff + uxxf)

which is a conservation law if f satisfies the linear condition

0 = ftff + ufxxff + 2uxfxff + uxxf. (9.3)

This provides the linearization

0 = 2∆2 = Lt − uLxx,

L = v2.

The reason that now a linearization of ∆2 is reached is that in the second try u is
assumed to be known and therefore u, uxx, . . . are not jet-variables and hence the
condition (9.3) has solutions, otherwise not.

Examples where this triangular linearization method is successful are the
systems (17) and (18) in [4]. We demonstrate the method with one of them (system
(17)); the other is similar.

Example 6. The system

0 = ∆1 := ut − uxx − 4uvux − 4u2vx − 3vvx − 2u3v2 − uv3 − au, (9.4)
0 = ∆2 := vt + vxx + 2v2ux + 2uvvx + 2u2v3 + v4 + av (9.5)
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involves functions u(x, t), v(x, t) and the constant a. The single conservation law

0 = v∆1 + u∆2 = Dt(uv) + Dx(uvx − uxv − u2v2 − v3)

motivates the introduction of a function w(x, t) through

wx = uv, (9.6)
−wt = uvx − uxv − u2v2 − v3. (9.7)

Substitution of u from (9.6) brings equations (9.5) and (9.7) in the form

0 = ∆3 := wt − 1
v
(−2vxwx + wxxv + w2

xv + v4), (9.8)

0 = ∆4 := vt + vxx + 2wxxv + 2w2
xv + av + v4. (9.9)

This system obeys conservation laws that involve a function f(x, t) that has to
satisfy ftff = fxxff + af . Our procedure provides the linearization

ew(v∆3 + ∆4) = L1
t + L1

xx + aL1 = 0, (9.10)
L1 := vew.

The second linearized equation can be obtained by
• substituting v = L1/ew into equations (9.8) and (9.9): to get the remaining

condition

0 = ∆5 := wt − wxx − 3w2
x + 2wxL1

x(L1)−1 − (L1)3e−3w, (9.11)

• assuming that L1 has been solved from (9.10) and treating L1(x, t) as a
parametric function when computing conservation laws for equation (9.11)
which turn out to involve two functions that have to satisfy linear PDEs,

• performing the linearization method to find that the remaining equation
(9.11) linearizes with L2 = e3w to

e3w∆5 = L2
t − L2

xx + 2L2
xL1

x/L1 − 3(L1)3. (9.12)

Because the condition (9.12) is inhomogeneous for L2 due to the term 3(L1)3,
actually two homogeneous linear equations are generated which are the x- and
t-derivative of (9.12) divided by 3(L1)3 (see the previous section about linear
inhomogeneous equations). But as the function L2 = e3w results in this process,
it is no problem to find (9.12) from (9.11) directly or from an integration of these
two equations. This completes the linear triangularisation of the original problem
(9.4)–(9.5) to the new system (9.10)–(9.12).

10. Summary

The paper starts with introducing conservation law identities as a natural way to
formulate infinite parameter conservation laws.

Conservation law identities are the input to a four-step procedure that returns
a differential consequence of the original system together with a linear differential
operator that can be factored out.
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Sufficient conditions on the conservation law identity which either guarantee
a complete linearization or at least a partial linearization are discussed.

The possibility to find a non-local linearization arises from the application
of single (finite parameter) conservation laws with the aim to introduce potentials
which satisfy infinite parameter conservation laws and thus allow a linearization.

In examples it is demonstrated how the standard procedure can lead to in-
homogeneous linear PDEs and how a successive linearization of one equation at a
time may be possible when the whole system cannot be linearized at once.

Appendix

In this appendix we list further examples of linearizations and integrations without
giving details of the calculations.

The first example of the Kadomtsev–Petviasvili equation demonstrates what
our method gives when a PDE has p independent variables and the conservation
law involves free functions of less than p− 1 variables. Although the result will be
less useful than in the other examples, we still include it for illustration.

Example 7. The Kadomtsev–Petviasvili equation

0 = ∆ = utx + uxxxx + 2uxxu + 2u2
x − uyy

for u(t, x, y) has four conservation laws with a zeroth order integrating factor and
an arbitrary function f(t) as given in [6]. We comment on one of these four with an
integrating factor ftff y3 + 6fxy as the situation for the others is similar. Omitting
the details we only give the result of our method:

L1 = y
(
utxxxy2 + 2utxuy2 + utty

2 + 2utuxy2

−6utx− 6uxxxx + 6uxx − 12uxux + 6u2
)
,

L2 = −utyy
3 + 3uty

2 + 6uyxy − 6ux,

y(6x∆− y2Dt∆) = −L1
x − L2

y.

The arbitrary function f(t) involves only one independent variable t and the con-
servation law 0 = L1

x + L2
y involves two functions L1, L2 and has derivatives with

respect to two variables x, y and is therefore not as useful as if it would be a single
total derivative.

The three following equations were shown to the author first by V. Sokolov
[10] who obtained their integrations earlier and independently. We add them here
to demonstrate that these results can be obtained in a straight forward procedure.

Example 8. For the equation

0 = ∆ := uxy − eu
√

u2
x − 4, u = u(x, y) (10.1)

a conservation law with an arbitrary function f(x) enables to factor out Dy leaving
an ODE to solve

(ux −Dx)

(
∆√√

u2
x − 4

)
= Dy

(
−uxx + u2

x − 4√
u2

x − 4

)
= 0. (10.2)
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Another conservation law with an arbitrary function g(y) gives(
uy − uxeu√

u2
x − 4

−Dy

)
∆ = Dx

(
−uyy +

1
2
u2

y +
1
2
e2u

)
= 0. (10.3)

Example 9. For the equation

0 = ∆ := uxy −
(

1
u− x

+
1

u− y

)
uxuy, u = u(x, y) (10.4)

a conservation law with an arbitrary function f(x) similarly to the above example
provides

y − x

(u − x)(u − y)
∆ + Dx

(
∆
ux

)
= Dy

(
uxx

ux
− 2(ux − 1)

u− x
− u

(u − x)x

)
= 0. (10.5)

A second conservation law is obtained from an arbitrary function g(y) and is
equivalent to (10.5) after swapping x ↔ y.

Example 10. For the equation

0 = ∆ := uxy − 2
x + y

√
uxuy, u = u(x, y) (10.6)

a conservation law with an arbitrary function f(x) gives

1
(x + y)

(
1√
ux

− 1√√
uy

)
∆ + Dx

(
∆√
ux

)
= Dy

(
uxx√
ux

+
2
√

u
√√

x

x + y

)
= 0. (10.7)

A second conservation law is obtained from an arbitrary function g(y) and is
equivalent to (10.7) after swapping x ↔ y.

The final example shows a linearization of a system that resulted in classifying
nonlinear Schrodinger type systems in [4].¨

Example 11. The system

0 = ∆1 := ut − uxx − 2vux − 2uvx − 2uv2 − u2 − au− bv − c, (10.8)
0 = ∆2 := vt + vxx + 2vvx + ux (10.9)

involves functions u(x, t), v(x, t) and the constants a, b, c. The trivial conservation
law

0 = ∆2 = Dt(v) + Dx(vx + u + v2)

motivates the introduction of a function w(x, t) through

wx = v, (10.10)
−wt = vx + u + v2. (10.11)

Substitution of u, v from (10.10) and (10.11) brings equation (10.8) in the form

0 = ∆3 = wtt + w2
t − wta− wxxxx − 4wxxxwx − 3w2

xx − 6wxxw2
x − wxxa

−w4
x − w2

xa + wxb + c.
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This equation admits a conservation law identity

few∆3 = Dt [(ew)tf − ewftff − ewfa]
+ Dx [−(ew)xxxf + (ew)xxfxff − (ew)xfxxff + ewfxxxff

− (aew)xf + aewfxff + bewf ]
+ ew [fttff + aftff − fxxxxff − afxxff − bfxff + cf ] .

From this follows the linearization

ew∆3 = Ltt − Lta− Lxxxx − Lxxa + Lxb + Lc = 0,

L = ew.
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CONSLAW: A Maple Package to Construct the
Conservation Laws for Nonlinear Evolution
Equations

Ruo-Xia Yao and Zhi-Bin Li

Abstract. An algorithm to explicitly compute polynomial conservation laws
for nonlinear evolution equations (either uniform in rank or not) is introduced
and a software package CONSLAW written in Maple to automate the com-
putation is developed. CONSLAW can construct the polynomial conservation
laws for polynomial partial differential equations automatically. Furthermore,
some new integrable systems can be filtered out by analyzing the compati-
bility conditions which guarantee the existence of the conservation laws for
given parametrized nonlinear evolution equations. The explicit forms of the
conserved densities play an important role in studying the integrability, such
as explicit analytical solutions, bi-Hamiltonian form, one-parameter family of
Backlund transformation, Lax pairs, and the checking of the accuracy of nu-¨
merical integration algorithm. The effectiveness of CONSLAW is illustrated
by applying it to a variety of nonlinear partial differential equations.

Mathematics Subject Classification (2000). Primary 35G25; Secondary 37K05.

Keywords. Nonlinear evolution equation, scaling symmetry, conservation law,
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1. Introduction

Over the past two decades, the two most famous discoveries in nonlinear physics
are soliton and the so-called “chaos theory”, which have radically changed the
thinking of scientists about the nature of nonlinearity. It was in 1895 that Korte-
weg and de Vries derived the equation for water waves in shallow channels, which
confirmed the existence of solitary waves . The stability and particle-like behavior
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of the soliton solutions can only be explained by the existence of many conservation
laws, and as is well known, the obtained explicit forms of the conservation laws
(CLaws) of the celebrated KdV equation lead to the discovery of the Miura trans-
formation given by Miura and Gardner, and the finding of the Lax pair. Maybe
the most important contribution of the discovery of the explicit forms of CLaws
is the development of the famous inverse scattering method, which, up to now,
has proved to be one of the most effective methods for solving nonlinear partial
differential equation (PDEs) or systems of PDEs. The existence of an infinite num-
ber of CLaws indicates the integrability of PDEs, although the nonexistence of a
sequence of CLaws does not preclude the integrability, for example the Burgers
equation. Furthermore, it can make the construction of the bi-Hamiltonian form
of some important nonlinear evolution equations easier. A very extensive study
of CLaws may be found in [10] which includes both Lagrangian and Hamiltonian
formulations. As mentioned previously, the work of the construction of the ex-
plicit forms of CLaws is meaningful, which can expedite the process of the study
of nonlinear PDEs. For the first few CLaws, maybe one can obtain them by hand.
However, with the increase of the degree of the conserved densities, the construc-
tion by hand becomes harder and harder and even impossible. It is exciting that
the great advantage of searching for polynomial conservation laws (PCLaws) lies
in that they can be found by explicit computation. As a matter of fact, possess-
ing such PCLaws is an intrinsic and common property for most of the nonlinear
evolution equations. Furthermore, from the viewpoint of CLaws, a PDE is said
to be “C-integrable” if it possesses infinitely many or lots of CLaws. The most
important thing therefore is how to discover them. Just so, several symbolic pro-
grams have been developed on different platforms of symbolic computation sys-
tems. Sanders and others have developed a software package in Maple and FORM
[11, 13]. They use an extension of the total derivative operator to a Heisenberg
algebra which allows them to invert the total derivatives on its image. Wolf has de-
signed a REDUCE package ConLaw1-4 [14, 15]. His approach is based on solving
over-determined systems of PDEs, which shows up in the computation of Lie-point
symmetries and generalized symmetries. The advantages of the packages by Wolf
include: (i) it can construct the explicit t, x-dependence CLaws, rational ones, as
well as the PCLaws; (ii) it may give CLaws including arbitrary functions. It also
can give the CLaws for PDEs with parameters. However, it needs to specify in
its calls the names of parameters to be computed. Goktas and Hereman [2] have¨
also developed a package condens.m in Mathematica, which is based on the scaling
properties of the PDEs, and aims to search for PCLaws for nonlinear polynomial
PDEs, and the package InvariantsSymmetries which is the successor of condens.m.
The newer version of the code of InvariantsSymmetries [3] allows one to compute
conserved densities (no fluxes) and generalized symmetries of nonlinear evolution
equations and differential-difference equations.

This paper aims to introduce the computer algebraic algorithm and routines
to search for the PCLaws for nonlinear systems of PDEs as well as nonlinear PDEs.
Then a description of the software package CONSLAW to automate the calcula-
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tion is given. Specially, for parametrized PDEs, CONSLAW does not need any
additional processes in advance and any other specific information, and can detect
all the possible parameter constraints (compatibility conditions) automatically, ir-
respective of whether or not which can result in a sequence of PCLaws. After some
necessary substitutions and analysis, it then reports all the corresponding PCLaws,
if exist, under the different parameter constraints successively and automatically.
Importantly, it may lead to the finding of new integrable systems for more general
PDEs. Our package starts from the invariant symmetries of PDEs and is based
on a theorem given in [10]; its basic idea is that Euler operator (variational de-
rivative) acting on an expression gives identically zero, i.e. the Euler–Lagrange
equation must vanish identically, if and only if the expression is a divergence.

It is a pity that our program cannot deal with the t, x-dependence CLaws
directly, which however can be constructed by utilizing the obtained PCLaws for
certain type of PDEs [18]. So far, our package cannot give CLaws which may
include arbitrary functions, although possessing such CLaws is not a very common
property for most PDEs. In addition, our package is incapable in dealing with the
case that the variables with negative weights now.

The paper is organized as follows. In the following section 2, we outline the
algorithm and routines. In Section 3 several examples are given to demonstrate the
effectiveness of CONSLAW and some new results are obtained. Then a summary
is given in the final section 4. The details of the usage of our package will be
explained in the appendix.

2. Computer Algebraic Algorithm and Routines

Before describing the general computer algebraic algorithm, let us start with the
following celebrated KdV equation

ut + uux + u3x = 0, (2.1)

where u = u(x, t), x, t are independent variables and u3x = ∂3u/∂x3, which is
known to have infinitely many CLaws. Before proceeding the computation of the
PCLaws, the following definitions are introduced. The notion λ-homogeneous is
introduced first, which means that there exists a scaling symmetry

t �→ λ−at, x �→ λ−1x, u �→ λbu, (2.2)

which leaves (2.1) invariant. Then (2.1) is transformed to

λa+but = λ2b+1uux + λb+3u3x. (2.3)

Take a = 3 and b = 2 to make (2.1) homogeneous in λ. That is, (2.1) is 2-
homogeneous of weight 3. Here, let w stand for the weight [2, 3] of a variable; then
in view of (2.2), we have

w(u) = 2, w(∂/∂t) = 3, w(t) = −3. (2.4)

Without loss of generality, set w(∂/∂x) = 1. Another definition of the rank of
a monomial is useful, which is defined as the total weight of the monomial M ,
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denoted by Rank(M). It is easy to see that all monomials in (2.1) have the same
rank 5. This property is called uniformity in rank. Once those definitions are at
hand, we can describe the algorithm in detail below. For simplicity and clarity,
we will describe the algorithm in the case of nonlinear polynomial PDEs. As for
systems of nonlinear PDEs, it can be carried out in the same fashion.

Consider nonlinear evolution equation

ut = H(u, ux, u2x, . . .), (2.5)

where H is polynomial of u and uix (i = 1, 2, . . .), uix = ∂iu/∂xi. For now, we
assume that (2.5) is uniform in rank, i.e. it is invariant under some or other scaling
symmetry.

A conservation law for (2.5) is a divergence expression

Qt + JxJJ = 0, (2.6)

where Q, J are named conserved density and conserved flux respectively, which
vanishes for all solutions u = f(x, t) of (2.5). As a matter of fact, for most nonlinear
evolution equations, with few exceptions, the conserved density-flux pairs Q, J
are polynomials in u and uix, and do not depend explicitly on x and t. Such
conservation laws are called polynomial type conservation laws (PCLaws).

The computer algebraic algorithm and routines to construct the PCLaws for
(2.5) are described as follows.

• Determine the scaling symmetry, i.e. obtain the weights of the variables and
parameters in (2.1). It can be easily done by the definition of uniformity
in rank. For example, the ranks of the three terms in (2.1) are w(∂/∂t) +
w(u), 1 + 2w(u) and 3 + w(u) respectively. The requirement of uniformity in
rank leads to w(∂/∂t) + w(u) = 1 + 2w(u) = 3 + w(u), which on solving
yields w(u) = 2, w(∂/∂t) = 3. It is consistent with (2.4). However, there
indeed exists such a case that maybe the equation is not uniform in rank. For
instance, the terms αuux and βu2ux appearing in the KdV–mKdV equation

ut + α uux + β u2ux + u3 x = 0, (2.7)

are not uniform in rank. To process such case congruously, one can treat both
α and β as extra variables with (unknown) weights. Then one has

w(∂/∂t) + w(u) = 1 + w(α) + 2w(u) = 1 + w(β) + 3w(u) = 3 + w(u),

which on solving yields

{w(α) = w(α), w(∂/∂t) = 3, w(u) = −w(α) + 2, w(β) = −2 + 2w(α)}.
Since all the weights should be nonnegative, one can choose w(α) = 1 to get
w(u) = w(α) = 1, w(∂/∂t) = 3. That means that only α, one of the two
parameters, is a weighted parameter, but one should bear in mind that it
still is a parameter.

• Determine the form of the conserved density Q, i.e. find the components
(monomials) in u and its x-derivatives of the polynomial conserved densities
with prescribed rank R. Apparently, the prescribed R should be a multiple of
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the smallest weight of the dependent variables and the weighted parameters.
In detail, the procedure proceeds as follows.

1. Collect the dependent variables and the weighted parameters in a set
V , and sort them in an ascending order by their weights.

2. Form a basis set S. The set S consists of such elements as [M, Rank(M)],
where M is one of the monomials of rank R or less by taking all ap-
propriate combinations of different powers of the elements in the set V ,
and Rank(M) is the rank of the monomial M . Two cases arise:
(a) If at least one of the weight values of the variables is a fraction,

then some of the Rank(M)’s are inevitable fractions. In this case
split S into two parts, denoted by S1 and S2 respectively. In S1,
the value of the second element of its each member is a fraction,
and then S2 is the complement set of S.

(b) If all the obtained weights are integers, then it is not necessary to
split S.

3. Form a set ListH of all monomials in u and the x-derivatives of u with
rank R. To this end, two cases should be considered. For the above case
2(a), one can proceed as follows:
(a) If the given rank R is a fraction, one only needs to process S1. That

is, for each element in S1, compute li = R−Rank(MiMM ) first to form
a list L. Obviously, each element of L is an integer. Compute x-
derivative of MiMM up to li to make the newly generated monomials
exactly have rank R, and then gather them in a set ListH .

(b) If the given rank R is an integer, then perform the same processes
to S2.

For the above case 2(b), likewise, compute li = R−Rank(MiMM ) to form
the list L. Then, compute x-derivative of MiMM up to li to form the set
ListH .

4. Remove the redundant monomials in the set ListH . If some monomi-
als in ListH belong to the same equivalence class, i.e. their conserved
densities are equivalent if they only differ by a total x-derivative, then
identify them. Denote the simplified set as ListP . It is a focal point of
the whole work. In detail, we proceed:
(a) Introduce a temporary set TempSet, and let TempSet = ListH .
(b) Introduce three new sets and initialize them: K1 = {Null}, K2 =

{Null}, ListP = {Null}.
(c) For each element denoted by J1 in TempSet, check whether or not

it is a member of the sets K1 and K2. If not, then check whether
it can be rewritten as

M = -+ [N ]′, (2.8)

where-, N are the newly generated monomials in u and its deriva-
tives, the symbol ′ denotes the derivative of the monomial N w.r.t.
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x. If so, then rewrite it and check whether or not the newly gener-
ated monomial - is a member of K1 and K2. If - is not a member
of K1 and K2, collect - into the sets K2 and ListP simultane-
ously. If J1 cannot be written in the form (2.8), then collect it into
ListP directly. No matter how, collect the processed monomial J1
into the set K1. If J1 is indeed a member of the sets K1 and K2,
then process the next element of TempSet.

(d) Check whether or not TempSet equals ListP . If so, then terminate
the loop and return the set ListP . If not, then go to the next step.

(e) Assign the newly generated set ListP to TempSet, and then go to
step (b).

Finally, the set ListP consists of the basic components which are the
building blocks of the conserved density Q.

5. Linearly combine the terms in the set ListP with constant coefficients
ci’s to yield the form of the polynomial type conserved density Q of
rank R.

Carrying on with (2.1), we compute the form of the conserved density
of rank R = 8. From V = {u} we build the basis set

S = {[u, 2], [u2, 4], [u3, 6], [u4, 8]}.
Easily, we get the list L = [6, 4, 2, 0]. Then compute the various x-derivatives
of u, u2 and u3 up to 6, 4, 2 and 0 respectively to get the newly generated
monomials which exactly have rank 8. Therefore, we have

d6

dx6
u = u6x,

d4

dx4
(u2) = 6u2

2x + 8uxu3x + uu4x,

d2

dx2
(u3) = 6uu2

x + 3u2u2x,
d0

dx0
(u4) = u4.

(2.9)

Gather all the monomials in the right-hand sides of (2.9), we derive the set

ListH = {u6x, u2
2x, uxu3x, uu4x, uu2

x, u2u2x, u4}.
Since

u6x =
d

dx
(u5x), uxu3x =

d

dx
(uxu2x)− u2

2x,

uu4x =
d

dx
(uu3x − uxu2x) + u2

2x, u2u2x =
d

dx
(u2ux)− 2uu2

x,

the term u6x is cancelled, uxu3x and uu4x are both replaced by u2
2x, and

u2u2x is replaced by uu2
x. Then, we obtain the set

ListP = {uu2
x, u2

2x, u4},
and the form of the conserved density of rank 8

Q = c1uu2
x + c2u

2
2x + c3u

4. (2.10)

• Determine the unknown coefficients in the conserved density Q.
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1. Substitute Q into (2.6) and use (2.5) to eliminate all t-derivatives. Note
that, the resulting expression E must be a total x-derivative, which
means that the Euler–Lagrange equation must vanish identically [10],
i.e. Lu(E) = 0, where Lu is the Euler operator (variational derivative)
defined by

Lu =
∞∑

n=0

(−1)nDn
x(

∂

∂unx
). (2.11)

For a given nonlinear evolution equation, by means of determining the
highest order of the x-derivative of the expression E, one can ensure
that the expression Lu(E) truncates.

2. Group the remained terms including the ones in V and all the x-
derivatives of the dependent variables in V . Then set them to zero to get
a linear system for the ci’s and the parameters, which on solving gives
the solution sets. After removing the trivial solutions one can obtain the
conserved densities of rank R.
For example, computing the t-derivative of (2.10) yields

Qt = c1utu
2
x + 2c1uuxuxt + 2c2u2xu2xt + 4c3u

3ut. (2.12)

Replacement of all the t-derivatives in (2.12) by ut = −uux − u3x yields

E = −3c1uu3
x − c1u

2
xu3x − 2c1u

2uxu2x − 2c1uuxu4x − 6c2u
2
2xux

− 2c2uu2xu3x − 2c2u2xu5x − 4c3u
4ux − 4c3u

3u3x. (2.13)

To compute the variational derivative, i.e. apply the Euler operator Lu to E,
one has to substitute uix (i = 1, . . . , 5), not including u, ui, by U [i] first (here,
to make the process convenient in Maple, we use the symbol U [i]), because
here u and the uix’s should be viewed as independents while the operator
∂/∂uix acting on them. To this end, we give the function TransForm1(). Its
algorithm is described as follows.

Input: An expression Expr in the dependent variables and their derivatives
w.r.t. x;

Output: A symbolic expression SymbolExpr corresponding to Expr.
Begin

SymbolExpr := 0;
If Expr does not include ′+′ Then Expr := {Expr} Fi;
Put the number of the terms in Expr into a variable NumExpr;
For i From 1 To NumExpr Do

aa := op(i, Expr);
aaa := 1;
If aa includes ′∗′ Then

Put the number of the terms in aa into nn
Else

nn := 1
Fi;
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For j From 1 To nn Do
If nn <> 1 Then gg := op(j, aa) Else gg := aa Fi;
Compute the degree of gg, and put it into dg;
Compute the differential order of gg, and put it into df ;
If gg does not include x, t Then

aaa := aaa ∗ gg
Elif gg includes dependent variable u Then

If df = 0 Then aaa := aaa ∗ udg

Else aaa := aaa ∗ U [df ]dg

Fi
Fi

Od;
SymbolExpr := SymbolExpr + aaa

Od;
Return(SymbolExpr)

End

After the function TransForm1() is presented, we can proceed. First,
compute the derivative of E w.r.t. u, and put it into a variable summ. Then
compute the derivatives of E w.r.t. U [1], . . . , U [5] respectively, and put the
results into an array sq, which means that sq[i] contains the derivative of E
w.r.t. U [i]. In view of the Euler operator, we must compute the ith deriva-
tives of sq[i], i = 1, . . . , 5, w.r.t. x. However, ui, U [i] in sq[i] are only symbolic
expressions, we cannot compute their derivatives directly. Hence, we should
transform ui into function expression with the form Û(x, t)

i
, and U [i] into

∂iÛ(x, t)/∂xi. To this end, we give another function TransForm2(). Its algo-
rithm is described as follows.

Input: A symbolic expression Expr1;
Output: A Function expression Expr2 corresponding to Expr1.

Begin
Expr2 := 0;
If Expr1 does not include ′+′ Then Expr1 := Expr1 Fi;
Put the number of Expr1 into nn;
For k From 1 To nn Do

aa = op(k, Expr);
Put the number of the terms in aa into n1;
aaa := 1;
For i From 1 To n1 Do

tmp := op(i, aa);
If tmp does not contain U Then

If tmp does not contain u Then
aaa := aaa ∗ tmp

Else
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Compute the degree of tmp, and put it into n;
aaa := aaa ∗ Û(x, t)n

Fi
Elif the degree of tmp equals 1 Then

� Fetch out the differential order of tmp.
m := op(tmp);
ee := Û(x, t);
� Compute the mth order x-derivative of ee.
ee := diff(ee, x$m);
aaa := aaa ∗ ee

Else
� Fetch out the differential order of tmp.
m := op(op(1,tmp));
ee := Û(x, t); ee := diff(ee, x$m);
n := degree(tmp); aaa := aaa ∗ een

Fi
Od;
Expr2 := Expr2 + aaa

Od;
Return(Expr2)

End

The algorithm for the computation of variational derivative is:

Begin
Determine the highest derivative of E, and put it into HighDorder;
TT := TransForm1(E);
Compute the derivative of TT w.r.t. the dependent variable u, and

put it into summ;
For i From 1 To HighDorder Do

Compute the derivatives of TT w.r.t. U [i], and put them into sq[i]
Od;
summ := TransForm2(summ);
For i From 1 To HighDorder Do

tmp := TransForm2(sq[i]);
Compute the ith order x-derivative of tmp, and put it into tmp1;
summ := summ + (−1)i ∗ tmp1

Od
End

After some simple computations, group the remained terms to get

(6c1 + 72c3)uuxu2x − (6c1 + 10c2)uxu4x − (20c2 + 12c1)u2xu3x + (2c1 + 24c3)u2
x.

Setting the coefficients of the above expression to zero leads to

c1 + 12c3 = 0, 3c1 + 5c2 = 0, 5c2 + 3c1 = 0, c1 + 12c3 = 0,
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which on solving gives

c1 = −5
3
, c2 = 1, c3 =

5
36

.

Then the conserved density of rank 8 is

Q = −5
3
uu2

x + u2
2x +

5
36

u4. (2.14)

• Determine the corresponding conserved flux. Once the conserved density Q
is determined, the corresponding conserved flux J can be got from (2.6) by
using the idea of integrating by parts. The idea seems to be quite simple;
however, when Qt includes too many terms the computation will become
considerably complicated. We process as follows.

1. Compute M = −Qt, and let M̂ = M, J = 0.
2. Initialize two new sets, i.e. K1 = {Null} and K2 = {Null}.
3. For each term denoted by tt of M , check whether or not it is a member of

K1 and K2 first. If not, then rewrite it in the form (2.8). The processed
term tt will be collected into K1. If the newly produced monomial - is
not a member of K2 then absorb it. Compute M̂ = M̂ − tt + -, and
set J = J + N .

4. Let M = M̂ .
5. Repeat steps 2, 3 and 4 until M = 0; then J is the conserved flux.

The process of the PCLaws as described above is completely algorithmic,
but it is very tedious by hand. We present a Maple package CONSLAW that fully
automates the computation.

3. Applications to Several Nonlinear PDEs

To exhibit the effectiveness of CONSLAW, PLaws for several PDEs are constructed
in this section.

Example 3.1. Let us first consider the generalized 5th order KdV equation

ut + au2ux + buxu2x + cuu3x + u5x = 0, (3.1)

with constant parameters a, b and c, which includes four well known special cases:
(1) (a, b, c) = (10, 20, 30), (20, 40, 120), (30, 60, 270), the Lax equation [7];
(2) (a, b, c) = (−15, −15, 45), (5, 5, 5), (30, 30, 30), the SK (Sawada–Kotera)

equation [1];
(3) (a, b, c) = (10, 25, 20), (30, 75, 180), the KK equation [6];
(4) (a, b, c) = (3, 6, 2), the Ito equation [5].

To process the various parameters corresponding to different kinds of the
5th order class KdV equation uniformly, by introducing a simple transformation
u = u/a, (3.1) is reduced to

ut + uu3x + αuxu2x + βu2ux + u5x = 0, (3.2)
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where α = b/a and β = c/a2. Specially, the Lax equation is obtained from (3.2) for
α = 2, β = 3/10. The SK, KK, and Ito equations correspond to (α, β) = (1, 1/5),
(5/2, 1/5), (2, 2/9) respectively. Next, we study the PCLaws of (3.2), which are
of interest for its exact solutions, for its understanding and classification, and for
supporting its numerical solutions.

For (3.2), CONSLAW reports the following information first

w(x) = −1, w(t) = −5, w(u) = 2, w(∂/∂t) = 5.

Then, some of the results are listed below.
When R = 2, for any α and β, there exists a CLaw, namely

(u)t + (u4 x + uu2x − 1
2

u2
x +

α

2
u2

x +
β

3
u3)x = 0,

which represents the conservation of momentum.
When R = 4, there also exists a CLaw if α = 2, β is free, namely

(u2)t + (2 u2u2 x +
β

2
u4 + 2 uu4x − 2 uxu3 x + u2

2 x)x = 0,

which represents the conservation of energy.
From now on, as the numbers of terms of the conserved fluxes are more than

20, only the conserved densities are listed. The subscripts of Qm refer to the rank
of the corresponding conserved densities.

When R = 6,

Q6 = u2
x +

1− 2α

15
u3 (β = −1

5
α2 +

7
10

α− 3
10

, α is free).

When R = 8, two CLaws are obtained. The first conserved density is

Q
(1)
8 = u2

2 x +
(

4
675

α2 +
4

675
α +

1
675

)
u4 +

(
−2

5
α− 1

5

)
uu2

x

(β = − 2
45

α2 +
7
45

α +
4
45

).

The second conserved density is

Q
(2)
8 = u2

2 x +
1
6

β u4 − uu2
x (α = 2).

When R = 10, only one conserved density is obtained as

Q10 = −7
5

uu2
2 x +

7
10

u2u2
x + u2

3x −
7

500
u5 (α = 2, β =

3
10

).

When R = 12, CONSLAW automatically reports three branches of parameter
constraints and CLaws one by one.

The first conserved density is

Q
(1)
12 = −7

5
uu2

3 x +
16
25

u2u2
2 x −

17
75

u4
x +

16
15

u3
2 x + u2

4x +
4

5625
u6 − 2

15
u3u2

x

(α = 1, β =
1
5
).
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For the same parameter constraints, Li [8] has obtained the 2-soliton as well as
the 1-soliton solutions.

The second conserved density is

Q
(2)
12 = −2 uu2

3x +
34
25

u2u2
2 x −

31
150

u4
x +

37
15

u3
2 x + u2

4 x +
16

5625
u6 − 28

75
u3u2

x

(α =
5
2
, β =

1
5
).

For the same parameter constraints, Li has also obtained the solitary wave solu-
tions of (3.2) [8].

The third conserved density is

Q
(3)
12 = −9

5
uu2

3 x +
63
50

u2u2
2 x −

7
20

u4
x + 2 u3

2 x + u2
4 x +

21
5000

u6 − 21
50

u3u2
x

(α = 2, β =
3
10

).

Some other results obtained by CONSLAW are listed in the table below.

R P.C. Terms Time

2 no 1/5 1.092s

4 {α = 2, β : free} 1/5 1.203s

6 {β = − 1
5α2 + 7

10α− 3
10 , α : free} 2/20 1.382s

8 {β = − 2
45α2 + 7

45α + 4
45 , α : free}, {α = 2, β : free} 3/20 2.343s

10 {α = 2, β = 3
10} 3/24 1.442s

12 {α = 1, β = 1
5}, {α = 2, β = 3

10}, {α = 5
2 , β = 1

5} 7/41 3.756s

14 {α = 1, β = 1
5}, {α = 2, β = 3

10}, {α = 5
2 , β = 1

5} 10/65 6.799s

16 {α = 2, β = 3
10} 14/96 9.313s

18 {α = 1, β = 1
5}, {α = 2, β = 3

10}, {α = 5
2 , β = 1

5} 22/146 39.637s

20 {α = 1, β = 1
5}, {α = 2, β = 3

10}, {α = 5
2 , β = 1

5} 32/218 120s

22 {α = 2, β = 3
10} 45/319 53.498s

24 {α = 1, β = 1
5}, {α = 2, β = 3

10}, {α = 5
2 , β = 1

5} 67/463 134.694s

26 {α = 1, β = 1
5}, {α = 2, β = 3

10}, {α = 5
2 , β = 1

5} 95/680 448.585s

28 {α = 2, β = 3
10} 134/960 1711.448s

. . . . . . . . . . . .

In the above table, P.C. denotes the parameter constraints which guarantee
the existence of a PCLaw. The third column shows the numbers of the conserved



Conservation Laws for Nonlinear Evolution Equations 319

density-flux pairs. The forth column shows the running time. We state that we
only list the running time under concrete parameter constraints when rank ≥ 22.
From the above table we see that: (i) the Lax equation possesses PCLaws at every
level; (ii) the SK and KK equations possess infinitely many PCLaws but with a
gap. (iii) the Ito equation possesses three PCLaws at ranks 2, 4 and 8. Hence, in
the sense of CLaws, the Lax, SK and KK equations are C-integrable. Furthermore,
for (3.2), the package wkptest presented by our group [16] cannot be used to test
the Painleve property directly. However, if the´ parameter constraints are filtered
out, wkptest can do it under the obtained parameter constraints respectively.

Example 3.2. Consider another classical system of Drinfel’d–Sokolov–Wilson equa-
tions [4] {

ut + pvvx = 0,

vt + qvxxx + ruvx + svux = 0,
(3.3)

where p, q, r, s are arbitrary parameters. System (3.3) has been studied in [4]–[17].
Here, we study its PCLaws, that is its C-integrability.

For (3.3), CONSLAW first outputs

w(x) = −1, w(t) = −3, w(u) = 2, w(v) = 2, w(∂/∂t) = 3,

which shows that (3.3) is uniform in rank. Then we list some results as follows.
When R = 2, we state that without constraints on the parameters p, q, r, s,

(u)t + (
1
2
pv2)x = 0

is a conservation law, and that there exists an additional CLaw if r = s, namely

(u + v)t + (qv2 x +
1
2

pv2 + svu)x = 0,

which are consistent with the results obtained by using the package InvariantsSym-
metries.

When R = 4 and 6, without constraints on the parameters p, q, r, s, system
(3.3) possesses CLaws. They are shown below.

R = 4 : [v2 +
(−r + 2 s)u2

p
]t + (2 sv2u + 2 qvv2 x − qv2

x)x = 0;

R = 6 : [−1
3

(2 s + r) v2u

q
− 2

9

(
2 s2 − sr − r2

)
u3

pq
+

1
3

(−r + s)u2
x

p
+ v2

x]t

+ [−1
6

psv4

q
− 1

12
prv4

q
− 2

3
s2v2u2

q
− 4

3
svuv2 x +

4
3

ruv2
x + 2 svvxux

+ 2 qvxv3 x − 1
3

srv2u2

q
− 2

3
rvuv2 x +

2
3

suv2
x − qv2

2 x]x = 0.
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When R = 8 and R = 10, system (3.3) possesses CLaws if r = 2s. The
conserved densities are

Q8 = −2
p2v4

q2
− 8

psv2u2

q2
+

16
3

s2u4

q2
− 10

pv2u2 x

q
+ 24

pv2
xu

q
− 9

pv2
2 x

s

+ u2
2x − 12

suu2
x

q
,

Q10 = v2
3 x + 4

s2u2v2
x

q2
− 4

sv2
2 xu

q
− 2

3
s2puv4

q3
+ 5

sv2
xu2 x

q
+

7
3

psv2v2
x

q2
− s2u2

xv2

q2

− 2
s2uv2u2 x

q2
+ 2

svu3 xvx

q
.

Other results are no longer listed here, but we see that (3.3) possesses PCLaws
at every level if r = 2s, which means that (3.3) is C-integrable in this case. It is
interesting that (3.3) does not pass the Painlevé test by directly using the package´
wkptest, but if we choose r = 2s, it does. That means that a new integrable system
is given for (3.3) if r = 2s.

Example 3.3. Consider a variant type of system of Boussinesq equations [12]{
ut + vx + uux + suxx = 0,

vt + (uv)x + rvxx + puxxx = 0,
(3.4)

where p, r, s are constant parameters. The solitary wave solutions of (3.4) have
been studied in [17]. Here we also studied its PCLaws.

For (3.4), CONSLAW first outputs

w(x) = −1, w(t) = −2, w(u) = 1, w(v) = 2, w(∂/∂t) = 2.

Then we can get PCLaws for (3.4) in different ranks. The first four PCLaws are

(u)t + (v +
1
2

u2 + sux)t = 0,

(v)t + (rvx + pu2 x + uv)x = 0,

(uv)t + (
1
2

v2 + puu2x + svux + u2v − suvx − 1
2

pu2
x)x = 0,

(v2 + u2v − pux
2 + 2 suxv)t + (pu2u2x + u3v + 2 uv2 + 2 pvu2x

+ 4 suvux − 2 s2uxvx − su2vx − 2 puux
2 − 2 puxvx + 2 s2vu2 x)x = 0,

for which, with the exception of one, the parameter constraint is r = −s. As a
matter of fact, we find that (3.4) possesses PCLaws at every level if r = −s,
which means that (3.4) is C-integrable. Same as Example 3.2, system (3.4) can-
not pass the Painleve test if using´ wkptest directly, but if we set r = −s, it
does. Furthermore, for this filtered integrable system, we get a dependent variable
transformation as

u = −2
√

s2 + p
φx

φ
, v = (2s

√
s2 + p + 2p + 2)(lnφ)xx, (3.5)
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where φ = φ(x, t), by which one can transform (3.4) into a bilinear form, and
maybe can construct its multi-soliton solutions further. This is beyond the work
of this paper.

4. Summary

We have described the computer algebraic algorithm and routines for the compu-
tation of conservation laws. A Maple package CONSLAW has been implemented
to automate the computation. Using CONSLAW, one not only can obtain the scal-
ing symmetries of PDEs, but also can construct the PCLaws of PDEs. Especially,
for given parametrized nonlinear evolution equations, irrespective of whether or
not the given equations are uniform in rank, CONSLAW can determine the scal-
ing symmetries of the differentials, parameters as well as the dependent variables
totally automatically. Importantly, it can detect all the possible integrable sys-
tems by analyzing the parameter constraints which may lead to the existence of
a sequence of CLaws, and then output the explicit forms of the corresponding
CLaws successively. As shown in the above examples a given PDE may not pass
the Painlevé test by using´ wkptest directly. However, if the parameter constraints
are detected, one can test its Painleve property again. The obtained explicit forms´
of the conserved densities play an important role in studying the integrability of
PDEs. More study on how to develop our package and how to develop the appli-
cations of the explicit forms of PCLaws is worthwhile in future.

Appendix. The Usage of CONSLAW

The package CONSLAW can work with Maple 6 and 8, or later versions. Its main
procedure is denoted as CONSLAW. We take a generalized the 7th order KdV
equation as an example of the use of CONSLAW.

To start, one proceeds as follows:

[> with(CONSLAW);

[> ConsLaw([diff(u(x,t),t)+a∗u(x,t)3∗diff(u(x,t),x)+b∗diff(u(x,t),x)3

+z∗u(x,t)∗diff(u(x,t),x)∗diff(u(x,t),x$2)+d∗u(x,t)2∗diff(u(x,t),x$3)
+e∗diff(u(x,t),x$2)∗diff(u(x,t),x$3)+f∗diff(u(x,t),x)∗diff(u(x,t),x$4)
+u(x,t)∗diff(u(x,t),x$5)+diff(u(x,t),x$7)=0],{a,b,z,d,e,f});

For the main procedure CONSLAW, there are two arguments. The first one
is the list of the object PDEs, and the second one is a set of parameters appearing
PDEs. If the parametrized PDE is not uniform in rank, then this argument must
be specified, which means that it is necessary that one or more parameters should
be viewed as special weighted parameters to make it uniform in rank. However, if
the parametrized PDE is uniform in rank even with no such parameters, it is the
same as the case that a PDE with constant coefficients, i.e. the second argument
is an empty set. Hence, for the 7th order KdV equation, we input:
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[> ConsLaw([diff(u(x,t),t)+a∗u(x,t)3∗diff(u(x,t),x)+b∗diff(u(x,t),x)3

+z∗u(x,t)∗diff(u(x,t),x)∗diff(u(x,t),x$2)+d∗u(x,t)2∗diff(u(x,t),x$3)
+e∗diff(u(x,t),x$2)∗diff(u(x,t),x$3)+f∗diff(u(x,t),x)∗diff(u(x,t),x$4)
+u(x,t)∗diff(u(x,t),x$5)+diff(u(x,t),x$7)=0],{NULL});

The input evolution equation is:

∂

∂t
u(x, t) + au(x, t)3

∂

∂x
u(x, t) + b(

∂

∂x
u(x, t))3 + zu(x, t)

∂

∂x
u(x, t)

∂2

∂x2
u(x, t)

+ du(x, t)2
∂3

∂x3
u(x, t) + e

∂2

∂x2
u(x, t)

∂3

∂x3
u(x, t) + f

∂

∂x
u(x, t)

∂4

∂x4
u(x, t)

+ u(x, t)
∂5

∂x5
u(x, t) +

∂7

∂x7
u(x, t) = 0

The weight of x is: -1

The weight of t is: -7

The weights of the variables is (are):

[wu(x,t) = 2, w ∂
∂t

= 7]

Input rank R of the conserved density, it should be a multiple of

the smallest weight of the dependent variables and parameters in

the above list:

[> 12
The number of components forming the conserved density is: 7

The form of the conserved density is:

c1u(x, t)(
∂3

∂x3
u(x, t))2 + c2(

∂4

∂x4
u(x, t))2 + c3(

∂2

∂x2
u(x, t))3 + c4(

∂

∂x
u(x, t))4

+c5(u(x, t))6 + c6(u(x, t))2(
∂2

∂x2
u(x, t))2 + c7(u(x, t))3(

∂

∂x
u(x, t)2

The solution set for the ci’s are:

{{b =
15
28

, a = 0, d =
5
28

, z =
10
7

, f =
7
2
, c2 = c2, c6 =

125
196

c2, c3 =
145
126

c2,

c5 =
15

38416
c2, c7 = − 75

686
c2, c1 = −10

7
c2, c4 = −25

98
c2, e =

25
6
}, {b =

5
14

,

a =
4

147
, d =

2
7
, f = 72, c2 = c2, c1 = −10

7
c2, z =

9
7
, c4 = − 31

294
c2, c6 =

34
49

c2,

c7 = − 20
147

c2, c3 =
37
21

c2, e = 6, c5 =
16

21609
c2}, {d = d, z = z, a = a, b = b,

e = e, f = f, c7 = 0, c1 = 0, c4 = 0, c2 = 0, c6 = 0, c3 = 0, c5 = 0}, {f = −3
2
,

b = 0, e =
5
7
, a = 0, d = 0, z = 0, c2 = c2, c7 = 0, c1 = 0, c4 = 0, c6 = 0, c3 = 0,
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c5 = 0}, {f = 3, e = 5, b =
5
14

, c7 = −15
98

c2, c1 = −9
7

c2, c4 = − 5
28

c2,

c6 =
9
14

c2, c3 =
10
7

c2, c5 =
3

2744
c2, a =

5
98

, z =
10
7

, d =
5
14

, c2 = c2},

{b =
1
7
, e = 3, a =

4
147

, d =
2
7
, z =

6
7
, c5 =

4
21609

c2, c7 = − 50
1029

c2,

c1 = −c2, c4 = − 17
147

c2, c6 =
16
49

c2, c3 =
16
21

c2, c2 = c2, f = 2}}
The 1-th corresponding conserved density of rank 12 including 7
terms is:

− 20
147

u(x, t)3(
∂

∂x
u(x, t))2+ (

∂4

∂x4
u(x, t))2− 31

294
(

∂

∂x
u(x, t))4+

37
21

(
∂2

∂x2
u(x, t))3

+
34
49

(
∂2

∂x2
u(x, t))2u(x, t)2 − 10

7
u(x, t)(

∂3

∂x3
u(x, t))2 +

16
21609

(u(x, t))6

The compatibility conditions are:

a =
4

147
, e = 6, f =

7
2
, d =

2
7
, z =

9
7
, b =

5
14

If you want output the flux please input ‘y’, otherwise press any
key to end.

[> y
The 1-th corresponding flux including 74 terms is: (omitted)
The 2-th corresponding conserved density of rank 12 including 7
terms is:

− 50
1029

u(x, t)3(
∂

∂x
u(x, t))2 + (

∂4

∂x4
u(x, t))2 − 17

147
(

∂

∂x
u(x, t))4 +

16
21

(
∂2

∂x2
u(x, t))3+

16
49

(
∂2

∂x2
u(x, t))2u(x, t)2− u(x, t)(

∂3

∂x3
u(x, t))2+

4
21609

u(x, t)6

The compatibility conditions are:

a =
4

147
, d =

2
7
, f = 2, z =

6
7
, e = 3, b =

1
7

If you want output the flux please input ‘y’, otherwise press any
key to end!

[> y
The 2-th corresponding flux including 74 terms is: (omitted)
The 3-th corresponding conserved density of rank 12 including 7
terms is:

−15
98

u(x, t)3(
∂

∂x
u(x, t))2+ (

∂4

∂x4
u(x, t))2− 5

28
(

∂

∂x
u(x, t))4+

10
7

(
∂2

∂x2
u(x, t))3

+
9
14

(
∂2

∂x2
u(x, t))2u(x, t)2 − 9

7
u(x, t)(

∂3

∂x3
u(x, t))2 +

3
2744

u(x, t)6
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The compatibility conditions are:

b =
5
14

, a =
5
98

, d =
5
14

, f = 3, z =
10
7

, e = 5

If you want output the flux please input ‘y’, otherwise press any
key to end!

[> y
The 3-th corresponding flux including 74 terms is: (omitted here)
There are 3 conserved density-flux pair(s).
Total computing time is 3.756 seconds.
Continue to compute (y/n)?
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Generalized Differential Resultant Systems of
Algebraic ODEs and Differential Elimination
Theory
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Abstract. Generalized differential resultants of algebraic ODEs are introduced
and relations between generalized differential resultant systems and differen-
tial elimination are shown.
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Keywords. Resultant, generalized resultant, differential resultant, generalized
differential resultant, generalized differential resultant system, differential elim-
ination.

1. Introduction

One main problem in many mathematical models is the elimination of some dif-
ferential variables in a system of algebraic ordinary differential equations.

There are many differential elimination procedures, coming from different
theories, for example, the characteristic set theory of Wu–Ritt [29, 24, 34, 35, 32],
the Grobner basis theory together with the characteristic set theory [1, 2, 3, 12,¨
13, 14, 15, 16, 17, 20, 21, 26, 28], the differential resultant theory of algebraic
differential polynomials introduced by the author [8, 9] and the differential Gröbner¨
basis theory for differential polynomial ideals introduced by the author [7] and
Ollivier [27].

The algebraic multivariate resultant theory was recently studied by many
people [18, 22, 23, 30, 31] and different algorithms were implemented for its calculus
in the sparse case [4, 5, 6]. Since a differential resultant is a multivariate algebraic
resultant, all results and algorithms can be properly used in the differential case.
The differential resultant theory allows us to know some upper bounds on the or-
ders of the differential equations in the output of a differential elimination process.

This paper was written with the support of Italian MIUR, PRIN project: Commutative and
Computational Algebra 2003.
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In this paper is introduced the notion of generalized differential resultants
of m + s ordinary algebraic differential equations {fjff = 0 : j = 1, . . . , m + s} in
m + r differential variables with r ≥ 0, s ≥ 1 and ord(fjff ) = nj . Such a notion
extends the analogous one in the algebraic case. In fact generalized resultants
generalize the resultant of n + 1 polynomials in n variables to the case when the
number of polynomials is greater than n+1. The main property of the generalized
resultants is that they are multiples of elements of the corresponding elimination
ideal. The notion of generalized differential resultant system is introduced, as the
system of the generalized differential resultants. In a similar way the notion of
generalized differential resultant ideal is introduced. If n1 ≤ n2 ≤ · · · ≤ nm+s,
then the maximal orders of the differential polynomials in a generalized differential
resultant system is equal to

∑m
i=0 nm+s−i + nm+s. Moreover it is proved that a

multiple of a generalized differential resultant lies in the corresponding differential
elimination ideal.

2. Differential Algebra Preliminaries

Throughout the paper we use the notation as in [29, 24]. Let δ be a derivation and
let R be a differential ring, i.e. a commutative ring with unit and a derivation δ
acting on it, such that Q ⊂ R. CR = {a ∈ R : δ(a) = 0} is the ring of constants
of R and N0 = {0, 1, . . . , n, . . .}.
Remark 2.1. Q ⊆ CR because Q ⊆ R.

Example 2.1. C∞(R), Q(t), R(t) and the field of the meromorphic functions on
a domain of C with the usual derivation δ = ∂

∂t are all differential rings. Cm(R)
for any m in N0 is not a differential ring.

Definition 2.1. S = R{X1, . . . , Xm} = R[δnXi: i = 1, . . . , m and n ∈ N0] is the
differential ring of the differential polynomials in the differential indeterminates
{X1, . . . , Xm} with coefficients in the differential ring R, where δ(δnXi) = δn+1Xi

for all n ∈ N0 and i .

If f ∈S, then the order of f is ord(f) = max{n∈N0: f contains a power prod-
uct in X1, . . . , Xm, δX1, . . . , δXm, . . . , δnX1, . . . , δ

nXm with nonzero coefficient}.
Definition 2.2. An ideal I of S is a differential ideal iff δn(s) ∈ I for all n ∈ N0

and all s ∈ I. If A ⊆ S, then [A] = (δn(s): s ∈ A, n ∈ N0) denotes the smallest
differential ideal containing A.

3. Algebraic Elimination Theory

3.1. Gröbner Bases¨

The Grobner basis theory is very useful in the elimination of variables.¨
Let K be a field. Given k+s polynomials g1, . . . , gk+s in S = K[X1, . . . , Xk+r]

with deg(gj) = dj for all j we want to eliminate the variables X1, . . . , Xk; for
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example, given the ideal I = (g1, . . . , gk+s) we want to find the k-elimination ideal
IkI = I ∩ K[Xk+1, . . . , Xk+r] of I. By the Gröbner basis theory it is sufficient to¨
find a Gröbner basis of the ideal¨ I with respect to an elimination term ordering
τkτ on the set of power products P in {X1, . . . , Xk+s} as in [10].

A general elimination term ordering τkτ is given in the following way. Given
two arbitrary term orderings σ1 on the set of power products P1PP in {X1, . . . , Xk}
and σ2 on the set of power products P2PP in {Xk+1, . . . , Xk+s}, if p, p′ ∈ P1PP and
q, q′ ∈ P2PP then pq <τ p′q′ iff either p <σ1 p′ or p = p′ and q <σ2 q′.

If G is a Gröbner basis of¨ I with respect to τkτ , then

Gk = G ∩K[Xk+1, . . . , Xk+r]

is a Gröbner basis of¨ IkI with respect to σ2.

3.2. Multivariate Algebraic Resultant

Let R be an integral domain and let K be the quotient field of R. Given k +
1 polynomials g1, . . . , gk+1 in S = R[X1, . . . , Xk] with deg(gj) = dj for all j,
Macaulay [25] defines a polynomial Q only in the coefficients of g1, . . . , gk+1, called
the resultant of g1, . . . , gk+1 and denoted as Q = Res(g1, . . . , gk+1), such that a
necessary condition for the system {g1 = 0, . . . , gk+1 = 0} to have a solution in an
algebraic extension of K is Q = 0.

Let D =
∑k+1

j=1 dj − k and let L =
(
k+D

k

)
.

PD
kPP =

{
Xa = Xa1

1 · · ·Xak

k :
k∑

i=1

ai ≤ D, a = (a1, . . . , ak) ∈ Nk
0

}
is the set of all power products in S of degree less than or equal to D. The set PD

kPP

has cardinality equal to L, while P
D−dj

kPP has cardinality equal to Lj=
(k+D−dj

k

)
for all j = 1, . . . , k + 1.

PD
kPP and P

D−dj

kPP are totally ordered using first the degree and then the lexi-
cographic order with X1 < · · · < Xk.

Definition 3.1. M = M(g1, . . . , gk+1) is the (
∑k+1

j=1 Lj × L)-matrix defined in the
following way: for each i such that

∑j
h=1 Lh < i ≤∑j+1

h=1 Lh the coefficients of the
polynomial Xagj+1 are the entries of the ith row for each Xa ∈ P

D−dj+1
kPP that are

written in decreasing order with respect to the power products in PD
kPP .

Definition 3.2. Let gj be a polynomial of degree dj for all j = 1, . . . , k + 1 in
R[X1, . . . , Xk].

Res(g1, . . . , gk+1) = GCD(det(P ): P is an L× L-submatrix of M).

In [25, 11] it is shown that, in the generic case, the resultant of polynomi-
als can be written as det(M0MM )/det(A), where M0MM is a square submatrix of M of
maximal rank and A is a submatrix of M0MM .
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Theorem 3.1. Let gj be a polynomial of degree dj for all j = 1, . . . , k + 1 in
R[X1, . . . , Xk]. There exists a nonzero r in R, such that

r Res(g1, . . . , gk+1) =
k+1∑
j=1

fjff gj ,

where fjff is a polynomial in R[X1, . . . , Xk] with deg(fjff ) ≤ D − dj for all j =
1, . . . , k + 1.

Proof. It follows by definition of resultant as in [25, 11]. In the generic case
det(A)Res(g1, . . . , gk+1) = det(M0MM ) and det(M0MM ) = det(B(M0MM )), where B(M0MM )
is obtained by substituting Xagj to the corresponding element in the last column
and in the corresponding row of M0MM for all j = 1, . . . , k + 1 and i. Since a deter-
minant is multilinear on the columns, det(M0MM ) = det(B(M0MM )) =

∑k+1
j=1 fjff gj. Here

deg(fjff ) ≤ D − dj for all j, because Xa ∈ P
D−dj

kPP in each considered polynomial
Xagj by Definition 3.1. Now if r = det(A) �= 0, then the theorem follows by defi-��
nition of the matrix A. Since M0MM and A depend on a permutation σ ∈ Sk as in [25]
and [11, pp. 96–103], M0MM = M0MM (σ) and A = A(σ). If r = det(A) = det(A(σ)) = 0,
then we can choose another permutation σ′ ∈ Sk, that gives different submatrices
M0MM (σ′) of M and A(σ′) with det(A(σ′) = 0 and det(�� A(σ′))Res(g1, . . . , gk+1) =
det(M0MM (σ′)). Now since the polynomials g1, . . . , gk+1 have coefficients in the inte-
gral domain R, that is not specified, we have a specialization of the generic case
and the theorem is proved. �
Remark 3.1. If R is a field, then Res(g1, . . . , gk+1) ∈ (g1, . . . , gk+1) by Theorem 3.1.

3.3. Resultants and Elimination Ideals

The resultants can be used for the elimination of a set of variables. In fact the
univariate and multivariate resultants can be used for the elimination of the
set of k variables {X1, . . . , Xk} in a set of k + s polynomials g1, . . . , gk+s in
R[X1, . . . , Xk, Xk+1, . . . , Xk+r] with r ≥ 0 and s ≥ 1 as in [19, 36, 10, 11].

Let g∗k+1 =
∑k+s

j=k+1 Ajgj , where Aj are new indeterminates. Let us consider
{g1, . . . , gk, g∗k+1} as a set of polynomials in

R[Ak+1, . . . , Ak+s, Xk+1, . . . , Xk+r][X1, . . . , Xk].

Q = Res(g1, . . . , gk, g∗k+1) is a polynomial in R[Ak+1, . . . , Ak+s, Xk+1, . . . , Xk+r]
by its own definition, and Q =

∑p
i=1 Qipi, where the pi’s are distinct power

products in {Ak+1, . . . , Ak+s} and the Qi’s are polynomials in {Xk+1, . . . , Xk+r}.
The power products pi’s have the same degree, because g∗k+1 is homogeneous in
{Ak+1, . . . , Ak+s} by its own definition.

Definition 3.3. Let s ≥ 1 and let gj and Qi be as above for all j = 1, . . . , k + s
and i = 1, . . . , p. Then Qi is called a generalized resultant of g1, . . . , gk, . . . , gk+s

[10]. The system {Qi = 0 : i = 1, . . . , p} is called a generalized resultant system
of g1, . . . , gk+s, while E = (Q1, . . . , Qp) is called a generalized resultant ideal of
g1, . . . , gk+s.
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Theorem 3.2. Let I = (g1, . . . , gk+s). Let s ≥ 1 and let gj and Qi be as above for
all j = 1, . . . , k + s and i = 1, . . . , p. Then there exists a nonzero element r in
R[Xk+1, . . . , Xk+r], such that rQi is in the k-elimination ideal IkI of I.

Proof. Let Q = Res(g1, . . . , gk, g∗k+1). Then

Q ∈ R[Xk+1, . . . , Xk+r][Ak+1, . . . , Ak+s]

by definition. By Theorem 3.1 and by [11, exer. 7, p. 99] there exist polynomials fjff
in R[X1, . . . , Xk+r, Ak+1, . . . , Ak+s] for all j = 0, . . . , k + 1, such that the equality

f0ff Q =
k∑

j=1

fjff gj + fkff +1g
∗
k+1

holds. Let fjff =
∑rj

hj=1 qhj phj , where phj is a power product in Ak+1, . . . , Ak+s

and qhj ∈ R[X1, . . . , Xk+r] for all hj and j. We have the following equality

f0ff Q =
k∑

j=1

(
rj∑

hj=1

qhj phj )gj +
s∑

h=1

Ak+h(
rk+1∑

hk+1=1

qhk+1phk+1)gk+h =
p′∑

i=1

(
k+s∑
j=1

q′ijgj)p′i,

where p′i is again a power product in Ak+1, . . . , Ak+s and q′ij ∈ R[X1, . . . , Xk+r].
Note that f0ff depends only on the coefficients of g1, . . . , gk by the proof of Proposi-
tion 4.6 in [11, p. 99], so it is a nonzero element of R[Xk+1, . . . , Xk+r]. Furthermore
f0ff Q =

∑p
i=1 f0ff Qipi and p = p′. It follows that f0ff Qi =

∑k+s
j=1 q′ijgj is in I, and

thus it is in IkI , by the definition of elimination ideal for every i. �

Remark 3.2. IkI is not always generated by Q1, . . . , Qp as it is remarked in [10, ex.
12, p. 166]. The generalized resultants and the generalized resultant ideal depend
on which k polynomials come first in the ordered sequence {g1, . . . , gk, . . . , gk+s}.
Remark 3.3. Let I be as above and let I∗ = (g1, . . . , gk, g∗k+1) be the correspond-
ing ideal in R[X1, . . . , Xk+r, Ak+1, . . . , Ak+s] as polynomial ring in the variables
{X1, . . . , Xk} with coefficients in T = R[Xk+1, . . . , Xk+r, Ak+1, . . . , Ak+s].

Let τ be an elimination term ordering on the set of power products in
{X1, . . . , Xk}. By using the Gröbner basis theory let¨ G∗ be a Gröbner basis of¨
I∗ with respect to τ . Since g∗k+1 is homogeneous in Ak+1, . . . , Ak+s, every polyno-
mial in

G∗ ∩R[Xk+1, . . . , Xk+r, Ak+1, . . . , Ak+s]
is homogeneous in the variables Ak+1, . . . , Ak+s. The generalized resultants are in
the ideal generated by the nonzero coefficients of the power products in Ak+1, . . . ,
Ak+s, that appear in some polynomial of G∗.

The generalized resultant system and the generalized resultant ideal extend
the classical notions of resultant system and resultant ideal of a set of k + s poly-
nomials g1, . . . , gk+s in k + r variables.

The resultant system depends on the definite order of elimination of the
variables, while the resultant ideal is independent of such order. The proof is
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usually given in the case k = 1 and then inductively by eliminating one variable
at each time [19].

4. Differential Elimination Theory

4.1. Differential Gröbner Bases¨

Let R be a differential integral domain. Differential Grobner bases [7, 27] can be¨
used for the elimination of the set of m differential variables {X1, . . . , Xm} in a set
of m+s differential polynomials f1, . . . , fmff +s in R{X1, . . . , Xm, Xm+1, . . . , Xm+r}
with r ≥ 0 and s ≥ 1.

In other words, given the differential ideal I = [f1, . . . , fmff +s] we want to find
the differential m-elimination ideal ImII = I∩R{Xm+1, . . . , Xm+r}. By the Gröbner¨
basis theory it is sufficient to a find a differential Gröbner basis of the differential¨
ideal I with respect to a differential elimination term ordering.

Unfortunately there are only partial results. Even differential term orderings
on the set of differential power products, i.e. power products in the variables and
in their derivatives, are not completely classified [33].

Let S = R{X1, . . . , Xm+r} and let

StSS = R[X1, . . . , Xm+r, . . . , δ
tX1, . . . , δ

tXm+r]

for all t ∈ N0. The following are useful examples of differential term ordering.

Example 4.1. Let σt be the lexicographic term ordering on the set of power prod-
ucts PtPP in X1, . . . , Xm+r, . . . , δ

tX1, . . . , δ
tXm+r with

δtX1 >σt · · · >σt δtXm+r >σt · · · >σt X1 >σt · · · >σt Xm+r

for every t ∈ N0. The set {σt : t ∈ N0} defines a differential term ordering σ on
the set of power products in {X1, . . . , Xm+r} and their derivatives by taking its
restriction to PtPP equal to σt. σ is not a differential elimination term ordering.

Example 4.2. Let τtττ be the lexicographic term ordering on PtPP with

δtX1 >τt · · · >τt X1 >τt · · · >τt δtXm+r >τt · · · >τt Xm+r

for every t ∈ N0. The set {τtττ : t ∈ N0} defines a differential term ordering τ on
the set of power products in {X1, . . . , Xm+r} and their derivatives by taking its
restriction to PtPP equal to τtττ . τ is a differential elimination term ordering.

Example 4.3. Let ρt be the lexicographic term ordering on PtPP with

δtX1 >ρt · · · >ρt δtXm >ρt · · · >ρt X1 >ρt · · · >ρt Xm >ρt δtXm+1

>ρt · · · >ρt Xm+1 >ρt δtXm+r >ρt · · · >ρt Xm+r

for every t ∈ N0. The set {ρt : t ∈ N0} defines a differential term ordering ρ
on the set of power products in {X1, . . . , Xm+r} and their derivatives by taking
its restriction to PtPP equal to ρt. ρ is a differential elimination term ordering, that
allows to eliminate the differential variables X1, . . . , Xm.
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4.2. Multivariate Differential Resultant

Let R be a differential integral domain and let K be the differential quotient field
of R. K is a differential field by defining

δ(
r

s
) =

δ(r)s − rδ(s)
s2

for all
r

s
∈ K.

Let fjff be a differential polynomial in R{X1, . . . , Xm} of order nj and degree
dj for each j = 1, . . . , s. Then fjff ∈ R[X1, . . . , Xm, . . . , δnj X1, . . . , δ

nj Xm], which
is a polynomial ring in (nj + 1)m variables.

It is necessary to find an s-tuple of non-negative integers (r1, . . . , rs), such
that fjff , δ(fjff ), . . . , δrj (fjff ), j = 1, . . . , s are

s∑
j=1

(rj + 1) = (
s∑

j=1

rj) + s

polynomials in (
∑s

j=1 rj) + s− 1 variables. So the number of variables is

(nj + rj + 1)m = (nj+1 + rj+1 + 1)m

for all j = 1, . . . , s− 1 and the number of polynomials is

(
s∑

j=1

rj) + s = (nj + rj + 1)m + 1

for some j. If s = m + 1, then N =
∑m+1

j=1 nj and

(r1, . . . , rm+1) = (N − n1, . . . , N − nm+1)

by [9]. The differential resultant δRes(f1, . . . , fmff +1) of f1, . . . , fmff +1 is the Macaulay
algebraic resultant of the mN + m + 1 polynomials

δN−n1(f1), . . . , δ(f1), f1, . . . , δ
N−nm+1(fmff +1), . . . , δ(fmff +1), fmff +1

in SmN+m = R[X1, . . . , Xm, . . . , δNX1, . . . , δ
NXm], which is a polynomial ring in

mN + m variables by [9].

Example 4.4. Let

fjff = δXjX − gj(X1, . . . , Xm), j = 1, . . . , m,

where gj is in R[X1, . . . , Xm] and let fmff +1 be a differential polynomial of order
1 in R{X1, . . . , Xm}. Then ord(fjff ) = 1 for all j, N = m + 1, and the differential
resultant of f1, . . . , fmff +1 is the Macaulay algebraic resultant of the m2 + 2m + 1
polynomials

δm(f1), . . . , δ(f1), f1, . . . , δ
m(fmff +1), . . . , δ(fmff +1), fmff +1

in Sm2+2m = R[X1, . . . , Xm, . . . , δm+1X1, . . . , δ
m+1Xm], which is a polynomial

ring in m2 + 2m variables.
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Example 4.5. Let fjff = δXjX − gj(X1, . . . , Xm+1), j = 1, . . . , m + 1, where gj is
in R[X1, . . . , Xm+1]. The variables {X1, . . . , Xm} can be eliminated. Note that
ord(fjff ) = 1 for all j = 1, . . . , m, while ord(fmff +1) = 0 as differential polyno-
mials in R{Xm+1}{X1, . . . , Xm}. Now N = m, and the differential resultant of
f1, . . . , fmff +1 is the Macaulay algebraic resultant of the m2 + m + 1 polynomials

δm−1(f1), . . . , δ(f1), f1, . . . , δ
m−1(fmff ), . . . , δ(fmff ), fmff , δm(fmff +1), . . . , δ(fmff +1), fmff +1

in R[Xm+1, δXm+1, . . . , δ
m+1Xm+1][X1, . . . , Xm, . . . , δmX1, . . . , δ

mXm].

Remark 4.1. The differential resultant can be used for the elimination of the set
of m differential variables {X1, . . . , Xm} in a set of m + 1 differential polynomials
f1, . . . , fmff +1 in

R{X1, . . . , Xm, Xm+1, . . . , Xm+r} = R{Xm+1, . . . , Xm+r}{X1, . . . , Xm}.
In this case the differential resultant is in R{Xm+1, . . . , Xm+r}.
4.3. Differential Resultants and Differential Elimination

The differential resultant can be used for the elimination of the set of m differential
variables {X1, . . . , Xm} in a set of m + s differential polynomials f1, . . . , fmff +s in
R{X1, . . . , Xm, Xm+1, . . . , Xm+r} with r ≥ 0 and s ≥ 1.

Let f∗
mff +1 =

∑m+s
j=m+1 Ajfjff , where {Am+1, . . . , Am+s} is a set of new differ-

ential indeterminates. Let us consider {f1, . . . , fmff , f∗
mff +1} as a set of differential

polynomials in the differential polynomial ring

R{Am+1, . . . , Am+s, Xm+1, . . . , Xm+r}{X1, . . . , Xm}.
By definition

Q = δRes(f1, . . . , f
∗
mff +1) ∈ R{A1, . . . , Am+s, Xm+1, . . . , Xm+r};

Q =
∑p

i=1 Qimi, where the mi’s are distinct power products in {Am+1, . . . , Am+s}
and their derivatives and the Qi’s are differential polynomials in the differential
variables {Xm+1, . . . , Xm+r}. The power products mi’s have the same degree,
because g∗m+1 and its derivatives are homogeneous in {Am+1, . . . , Am+s} and their
derivatives by its own definition.

Definition 4.1. Let s ≥ 1 and let fjff and Qi be as above for all j = 1, . . . , m+s and
i = 1, . . . , p. Qi is called a generalized differential resultant of f1, . . . , fmff , . . . , fmff +s.
The system {Qi = 0, i = 1, . . . , p} is called a generalized differential resultant
system of g1, . . . , gk+s, while E = [Q1, . . . , Qp] is called a generalized differential
resultant ideal of f1, . . . , fmff +s.

Theorem 4.1. Let s ≥ 1 and let gj and Qi be as above for all j = 1, . . . , m + s and
i = 1, . . . , p. Then there exists a nonzero element r in R{Xm+1, . . . , Xm+r}, such
that rQi is in the differential m-elimination ideal ImII of I = [f1, . . . , fmff +s].

Proof. Let nj = ord(fjff ) for all j = 1, . . . , m + s. Let n′
j = ord(fjff ) for all j =

1, . . . , m + s as differential polynomials in the differential variables {X1, . . . , Xm}.



Generalized Differential Resultant 335

Of course n′
j ≤ nj for all j. Let n∗

m+1 = ord(f∗
mff +1) as a differential polynomial in

the differential variables {X1, . . . , Xm}. We have

n∗
m+1 = max{n′

j : j = m + 1, . . . , m + s} ≤ max{nj : j = m + 1, . . . , m + s}.
Let N∗ =

∑m
j=1 n′

j + n∗
m+1 and let Q = δRes(f1, . . . , fmff , f∗

mff +1). We have

Q = Res(δN∗−n′
1(f1), . . . , f1, . . . , δ

N∗−n′
m(fmff ), . . . , fmff , δN∗−n∗

m+1(f∗
mff +1), . . . , f

∗
mff +1)

by [9]. So Q is the multivariate algebraic resultant of mN∗ +m+1 polynomials in

TmNTT ∗+m = T [X1, . . . , Xm, . . . , δN∗
X1, . . . , δ

N∗
Xm],

which is a polynomial ring in mN∗+m variables with coefficients in the polynomial
ring

T = R[Xm+b, Am+b, . . . , δ
N∗

Xm+b, δ
N∗

Am+b : b = 1, . . . , s].
Q is in R{Xm+1, . . . , Xm+r}{Am+1, . . . , Am+s} by its own definition.

By Proposition 3.2 in [11, p. 89], we have

Q′ = Res(δN∗−n′
1(fjff ), . . . , δ(f1), f1, . . . , δ

N∗−n′
m(fmff ), . . . ,

δ(fmff ), fmff , f∗
mff +1, δ

N∗−n∗
m+1−1(f∗

mff +1), . . . , δ(f
∗
mff +1), δ

N∗−n∗
m+1(f∗

mff +1))
equal to Q up to the sign. By Theorem 3.1, by Definition 10 and Proposition 12
in [9], and by exer. 7 in [11, p. 99], there exist differential polynomials F0FF , FhFF j in
R{X1, . . . , Xm+r, Am+1, . . . , Am+s} for all hj = 0, 1, . . . , N∗ − n′

j, j = 1, . . . , m
and for all hm+1 = 0, 1, . . . , N∗ − n∗

m+1, such that we have the equality

F0FF Q′ =
m∑

j=1

(
N∗−n′

j∑
hj=0

FhFF j δ
hj (fjff )) +

N∗−n∗
m+1∑

hm+1=0

FhFF m+1δ
hm+1(f∗

mff +1).

Let FhFF j =
∑phj

ahj
=1 qahj

mahj
, where qahj

∈ R{X1, . . . , Xm+r} and mahj
is a power

product in

{Am+1, . . . , Am+s, . . . , δ
N∗−n∗

m+1Am+1, . . . , δ
N∗−n∗

m+1Am+s}
for all ahj . We have

F0FF Q′ =
m∑

j=1

(
N∗−n′

j∑
hj=0

(

phj∑
ahj

=1

qahj
mahj

)δhj (fjff ))

+
s∑

b=1

(
N∗−n∗

m+1∑
hm+1=0

(
phm+1∑

ahm+1=1

qahm+1
mahm+1

))δhm+1(Am+bfmff +b)

=
p′∑

i=1

(
m∑

j=1

(
N∗−n′

j∑
hj=0

q′hij
δhj (fjff ))) +

m+s∑
j=m+1

(
N∗−n∗

m+1∑
hj=0

q′hij
)δhj (fjff )m′

i.

F0FF does not depend on the coefficients of δN∗−n∗
m+1(f∗

mff +1) by Proposition 4.6
in [11, p. 99]. By the definition of derivative of a polynomial the coefficients
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of f∗
mff +1 and their derivatives up to order N∗ − n∗

m+1 are among the coeffi-
cients of δN∗−n∗

m+1(f∗
mff +1). It follows that F0FF does not depend on the coeffi-

cients of any derivative of f∗
mff +1 up to order N∗ − n∗

m+1, i.e. F0FF is a nonzero
element of R{Xm+1, . . . , Xm+r}. Furthermore F0FF Q′ =

∑p
i=1 F0FF Qimi and p = p′.

So F0FF Qi =
∑m+s

j=1 q′ij
fjff is in I, and thus it is in ImII , by the definition of elimination

ideal for every i. �

Remark 4.2. ImII could be generated not always by Q1, . . . , Qp as in the algebraic
case and in the following example. In a similar way the generalized differential
resultants and the differential generalized resultant ideal depend on which m poly-
nomials come first in the ordered sequence {f1, . . . , fmff , . . . , fmff +s}.
Example 4.6. Let S = R{X1, X2},

f1 = δX1 − 1, f2ff = X2X1 − 1, f3ff = X2
2X1 + X2X1 + 1

and let I = [f1, f2ff , f3ff ]. We want to eliminate the variable {X1}.
f∗
2ff = (A2X2 + A3X

2
2 + A3X2)X1 + (−A2 + A3).

δRes(f1, f
∗
2ff ) = Res(f1, δ(f∗

2ff ), f∗
2ff )), because f1 and f∗

2ff have order respectively 1 and
0 as differential polynomials in S = R{X2}{X1}. The matrix M = M0MM , because
f1 and f∗

2ff have degree 1 as differential polynomials in S = R{X2}{X1}.
δRes(f1, f

∗
2ff ) = (X2

2 + 2X2)δA2A3 − (X2
2 + 2X2)A2δA3 − (X2

2 + δX2)A2
2

− (2X2
2 + 2X3

2 + 2X2δX2)A2A3

+ (2X2δX2 + δX2 −X4
2 − 2X3

2 −X2
2 )A2

3.

The generalized differential resultants are

Q1 = X2
2 + 2X2, Q2 = −(X2

2 + 2X2), Q3 = −(X2
2 + δX2),

Q4 = −(2X2
2 + 2X3

2 + 2X2δX2), Q5 = (2X2δX2 + δX2 −X4
2 − 2X3

2 −X2
2 )

and the generalized differential resultant ideal E = [Q1, Q2, Q3, Q4, Q5] = [X2].
The differential ideal I = [1]. So I1 = [1] and E ⊂ I1.

Corollary 4.2. Let s ≥ 1 and let gj and Qi be as above for all j = 1, . . . , m+ s and
i = 1, . . . , p. Suppose that n1 ≤ n2 ≤ · · · ≤ nm+s. Then ord(Qi) ≤

∑m
j=1 nj +nm+s

for all i, once the m polynomials {f1, . . . , fmff } come first in the ordered sequence
{f1, . . . , fmff , . . . , fmff +s}.
Proof. By hypothesis on nj for all j = 1, . . . , m+s and by the proof of Theorem 4.1

N∗ =
m∑

j=1

n′
j + n∗

m+1 ≤
m∑

j=1

nj + n∗
m+1.

Since ord(f∗
mff +1) ≤ nm+s, the order of every coefficient of f∗

mff +1 is either less
than or equal to nm+s. In a similar way, since ord(δi(f∗

mff +1)) ≤ nm+s + i for all
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i = 1, . . . , N∗ − n∗
m+1, the order of every coefficient of δi(f∗

mff +1) is either less than
or equal to N∗ − n∗

m+1 + nm+s. Let

Q = δRes(f1, . . . , fmff , f∗
mff +1) =

p∑
i=1

Qimi.

Then ord(Qi) ≤ ord(F0FF Qi) by the definition of differential resultant as the GCD
of determinants. ord(F0FF Qi) is either less than or equal to the maximal order of the
coefficients of δi(fjff ) for all j = 1, . . . , m, i = 0, 1, . . . , N∗ − n′

j and the coefficients
of δi(f∗

mff +1) for all i = 0, 1, . . . , N∗ − n∗
m+1, which is less than or equal to

m∑
j=1

nj + nm+s.
�

Corollary 4.3. Let fjff be a differential polynomial in R{X1, . . . , Xm+r} of order
nj for each j = 1, . . . , m + s and let s ≥ 1. Let Qi be a generalized differential
resultant of f1, . . . , fmff , . . . , fmff +s. If n1 ≤ n2 ≤ · · · ≤ nm+s, then

ord(Qi) ≤
m∑

j=0

nm+s−j + nm+s

for all i and for every ordering of the sequence {f1, . . . , fmff , . . . , fmff +s}.
Proof. Let JmJJ +1 = {j1, . . . , jm+1} ⊆ {1, . . . , m + s} with |JmJJ +1| = m + 1 and let

N∗
JN

m+1
=

m+1∑
h=1

njh
.

Let N = max{N∗
JN

m+1
: |JmJJ +1| = m + 1}. We have N =

∑m
j=0 nm+s−j , and

N∗
JN

m+1
≤ N for every ordering of the sequence {f1, . . . , fmff , . . . , fmff +s}. By hypoth-

esis on nj and by the proofs of Theorem 4.1 and Corollary 4.2

ord(Qi) ≤ max{N∗
JN

m+1
− n′

jh
+ njh

: h = 1, . . . , m + 1} ≤ N + nm+s

for all i . �

Corollary 4.4. Let fjff be a differential polynomial in R{X1, . . . , Xm, Xm+1, . . . ,
Xm+r} of order nj and let s ≥ 1. Let I = [f1, . . . , fmff , . . . , fmff +s] and let ImII be
the differential m-elimination ideal of I. If n1 ≤ n2 ≤ · · · ≤ nm+s, then there are
differential polynomials of order either less than or equal to

∑m
j=0 nm+s−j + nm+s

among the generators of ImII .

Proof. By the proof of Theorem 4.1 the differential polynomials F0FF Qi ∈ ImII for all
i = 1, . . . , p. Now by the proof of Corollary 4.3

ord(Qi) ≤ ord(F0FF Qi) ≤
m∑

j=0

nm+s−j + nm+s − n1

for all i. �
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4.4. Examples

Example 4.7. Let fjff = δXjX − gj(X1, . . . , Xm+r) for all j = 1, . . . , m + r, where gj

is a polynomial in {X1, . . . , Xm, Xm+1, . . . , Xm+r} for all j.
We want to eliminate the variables {X1, . . . , Xm}. nj = ord(fjff ) = 1 for all

j = 1, . . . , m, while nj = ord(fjff ) = 0 for all j = m + 1, . . . , m + r as differential
polynomials in the differential variables {X1, . . . , Xm}. Let Qi be a generalized
differential resultant of f1, . . . , fmff , fmff +1, . . . , fmff +r for all i = 1, . . . , p. By Corol-
lary 4.2, Qi is a differential polynomial in {Xm+1, . . . , Xm+r} with ord(Qi) ≤ m+1
for all i = 1, . . . , p.

If r = 1, then there is only one generalized differential resultant and its order
is either less than or equal to m + 1.

If r = m + 1, then the generalized resultant Q′ = Res(fmff +1, . . . , f2ff m+1)
of fmff +1, . . . , f2ff m+1 is a polynomial of order either less than or equal to 1 in
{Xm+1, . . . , X2m+1}.

If r > m + 1, then the generalized resultants Q′
h of fmff +1, . . . , fmff +r are

polynomials of order either less than or equal to 1 in {Xm+1, . . . , Xm+r} for all
h = 1, . . . , q.

The following example shows the use of algebraic and differential resultants
in differential elimination.

Example 4.8 (n-strain model [28]). Let

fjff = δXjX − gj(X1, . . . , X2n−1, Y1YY , . . . , YnYY 2n−1 , Z1, . . . , ZnZZ )

when j = 1, . . . , 2n − 1,

fjff = δYjYY − gj(X1, . . . , X2n−1, Y1YY , . . . , YnYY 2n−1, Z1, . . . , ZnZZ )

when j = 2n, . . . , n2n−1 + 2n − 1, and

fjff = δZjZ − gj(X1, . . . , X2n−1, Y1YY , . . . , YnYY 2n−1, Z1, . . . , ZnZZ )

when j = n2n−1+2n, . . . , n2n−1+2n+n−1, where gj are polynomials. It is possible
to eliminate the variables XjX ’s and YjYY ’s. ord(fjff ) = nj = 1 for all j = 1, . . . , n2n−1+
2n − 1, while ord(fjff ) = nj = 0 for all j = n2n−1 + 2n, . . . , n2n−1 + 2n − 1 + n as
differential polynomials in

R{Z1, . . . , ZnZZ }{X1, . . . , X2n−1, Y1YY , . . . , YnYY 2n−1}.
So N = n2n−1 + 2n − 1.

If n = 1, it is sufficient to take the algebraic resultant of the polynomials
δ(f1), f1, δ(f2ff ), f2ff , δ2(f3ff ), δ(f3ff ), f3ff in the polynomial ring

R[Z, δZ, δ2Z, δ3Z][X, δX, δ2X, Y, δY, δ2Y ],

which is in R[Z, δZ, δ2Z, δ3Z].
If n > 1, then let

f∗
nff 2n−1+2n =

n2n−1+2n+n−1∑
j=n2n−1+2n

Ajgj ,
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where Aj are arbitrary differential variables.
Now it is possible to eliminate the variables XjX ’s and YjYY ’s from the system

{f1 = 0, . . . , fnff 2n−1+2n−1 = 0, f∗
nff 2n−1+2n = 0}

by using the differential resultants and the generalized differential resultants. As
in the example above the order of each generalized differential resultant is either
less than or equal to n2n−1 + 2n.

The following example shows a procedure for the elimination of differential
variables by using algebraic and differential Gröbner bases.¨

Example 4.9 (n-strain model [28]). Let

fjff = δXjX − gj(X1, . . . , X2n−1, Y1YY , . . . , YnYY 2n−1 , Z1, . . . , ZnZZ )

when j = 1, . . . , 2n − 1,

fjff = δYjYY − gj(X1, . . . , X2n−1, Y1YY , . . . , YnYY 2n−1, Z1, . . . , ZnZZ )

when j = 2n, . . . , n2n−1 + 2n − 1, and

fjff = δZjZ − gj(X1, . . . , X2n−1, Y1YY , . . . , YnYY 2n−1, Z1, . . . , ZnZZ )

when j = n2n−1 + 2n, . . . , n2n−1 + 2n + n− 1, where the gj ’s are polynomials.

{fjff : j = 1, . . . , n2n−1 + 2n + n− 1}
is a differential Gröbner basis of the differential ideal¨

I = [fjff : j = 1, . . . , n2n−1 + 2n + n− 1]

with respect to σ, but it is not in general a differential Gröbner basis of¨ I with
respect to τ .

We want to eliminate the XjX ’s and the YjYY ’s.
Let G01 be the Gröbner basis of¨ I = I01II as an ideal in S1 with respect to τ1ττ

and let G01(Z) = G01 ∩R{Z1, . . . , ZnZZ }. Let I02II = (g, δ(g) : g ∈ I01II ) in the ring S2.
Let G02 be the Gröbner basis of¨ I02II with respect to τ2ττ and let

G02(Z) = G02 ∩R{Z1, . . . , ZnZZ }.
If G02(Z) contains only the differential polynomials in G01(Z) and their deriva-
tives, then stop. Otherwise, let I03II = (g, δ(g) : g ∈ I02II ) in the ring S3.

Let G03 be the Gröbner basis of¨ I03II with respect to τ3ττ and let

G03(Z) = G03 ∩R{Z1, . . . , ZnZZ }.
If G03(Z) contains only the differential polynomials in G02(Z) and their deriva-
tives, then stop. Otherwise, let I04II = (g, δ(g) : g ∈ I03II ) in the ring S4SS and so
on.

If N is the upper bound given by Macaulay’s differential resultant theory,
then N + 1 is an upper bound for the number of steps.

The same procedure can be used if we take ρ instead of τ .
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Abstract. The characteristic set method of polynomial equations-solving is
naturally extended to the differential case, which gives rise to an algorithmic
method for solving arbitrary systems of algebrico-differential equations. The
existence of “good bases” of the associated algebrico-differential ideals is also
studied in this way. As an illustration of the method, the Devil problem of
Pommaret is studied in detail.
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1. Introduction

In the seminar DESC held in Beijing, April 14–16, 2004, the present author gave
a talk bearing the title “On ‘Good Bases’ of Polynomial Ideals” [10]. The present
paper is an extended form of that talk in extending the notion of “good bases” of
polynomial ideals to that of algebrico-differential ideals.

To begin with, let us consider a finite polynomial set PS in the polynomial
ring R = K[x1, . . . , xn], K being a coefficient field of characteristic 0. Then there
are two important problems to be studied, viz:

Problem P1. Determine the totality of solutions of PS = 0 in all conceivable
extension fields of K, to be denoted by Zero(PS ) in what follows.

Problem P2. For the ideal Ideal(PS ) with basis PS , determine some kind of good
basis which will enjoy some good properties to be made precise.

We shall show how to solve Problem 1 in the polynomial case in Section 2,
explain how to extend the solution to the algebrico-differential case in Section 3,
and solve Problem 2 in the polynomial case in Section 4 by using the method
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developed in Section 3. In Section 5 we shall study Problem 2 in the algebrico-
differential case and introduce the notion of probably existing “good basis” for
certain algebrico-differential ideals. Finally in Section 6 we shall provide a solution
to the Devil problem of Pommaret as an illustrative example.

2. Problem 1 in the Polynomial Case

For Problem P1 the present author has given a method for determining Zero(PS )
completely, which may be described briefly as follows.

Arrange the variables x1, . . . , xn in the natural order; then any non-constant
polynomial P ∈ R may be written in the canonical form

P = I0II xd
c + I1x

d−1
c + · · ·+ IdII ,

in which all the IjI are either constants or polynomials in x1, . . . , xc−1 alone with
initial I0II �= 0. With respect to�� class c and degree d, we may introduce a partial
ordering ≺ for all non-zero polynomials in R, with non-zero constant polynomials
in the lowest ordering. Consider now some polynomial set, which either consists
of a single non-zero constant polynomial, or in which the polynomials may be ar-
ranged with classes all positive and steadily increasing. We call such polynomial
sets ascending sets. Then we may introduce a partial ordering ≺ among all such
ascending sets, with the trivial ones consisting of single non-zero constant poly-
nomials in the lowest ordering. For a finite polynomial set consisting of non-zero
polynomials, any ascending set wholly contained in it and of lowest ordering is
called a basic set of the given polynomial set. A partial ordering among all finite
polynomial sets may then be unambiguously introduced according to their basic
sets.

For any finite polynomial set PS ⊂ R, consider now the scheme

PS = PS 0 PS 1 · · · PS i · · · PS m

BS 0 BS 1 · · · BS i · · · BS m = CS
RS 0 RS 1 · · · RS i · · · RS m = ∅.

(S)

In this scheme, each BS i is a basic set of PS i, each RS i is the set of non-zero
remainders, if any, of the polynomials in PS i \ BS i with respect to BS i, and
PS i+1 = PS ∪ BS i ∪ RS i if RS i is non-empty. It may be easily proved that the
sequences in the scheme should terminate at certain stage m with RS m = ∅. The
corresponding basic set BS m = CS is then called a characteristic set (abbreviated
char-set) of the given polynomial set PS . The zero set of PS , Zero(PS ), which is
the collection of common zeros of all the polynomials in PS , is closely connected
with that of CS by the well-ordering principle in the form

Zero(PS ) = Zero(CS /IP ) ∪ Zero(PS ∪ {IP }),
in which IP is the product of all initials of the polynomials in CS and

Zero(CS /IP ) = Zero(CS ) \ Zero(IP ).
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Now PS ∪ {IP } is easily seen to be a polynomial set of lower ordering than
PS . If we apply the well-ordering principle to PS ∪ {IP } and proceed further and
further in the same way, we should stop in a finite number of steps and arrive at
the following

Zero-Decomposition Theorem. There is an algorithm which may compute, from
any finite polynomial set PS and in a finite number of steps, a finite set of ascending
sets CS s with initial-product IP s such that

Zero(PS ) =
⋃
s

Zero(CS s/IP s). (Z)

Now all CS s are ascending sets. Hence all the zero sets Zero(CS s) and all
Zero(CS s/IP s) may be considered as well-determined in some natural sense. The
formula (Z) gives thus actually an explicit determination of Zero(PS ) for all finite
polynomial sets PS , which serves for the solving of arbitrary systems of polynomial
equations. This solves Problem 1 in the polynomial case.

3. Extension to Algebrico-Differential Systems

The above method of solving arbitrary systems of polynomial equations has been
extended to arbitrary systems of algebrico-differential equations, either ordinary
or partial ones, which will be explained below.

Let y, uj, j ∈ J, be infinitely differentiable functions in independent variables
X = {x1, . . . , xn}. A polynomial in various derivatives of y and uj with respect
to xk with coefficients in the differential field of rational functions of X will be
called an algebrico-differential polynomial. Suppose that we are given a finite set
of such polynomials DPS = {DPi | i ∈ I}. Let us consider the associated system
of partial differential equations of y with uj supposed known:

DPS = 0, or DPi = 0, i ∈ I.

Our problem is to determine the integrability conditions in terms of xk, uj for y to
be solvable and in the affirmative case to determine the set of all possible formal
solutions of y.

Criteria and even algorithmic methods for solving the above problem in some
sense were known in quite remote times, for which we may cite in particular the
work of C. H. Riquier, M. Janet, and E. Cartan. The method of Riquier and Janet
was reformulated by J.F. Ritt in his books [5, 6]. In recent years, J. F. Pommaret
has given a systematic formal intrinsic way of treatment and published several vo-
luminous treatises. On the other hand, the present author has given an alternative
method in following essentially the steps of Riquier and Janet as reformulated by
Ritt [7]. The method consists in first extending naturally the notions of ascending
sets, basic sets, remainders, etc. in the ordinary case to the present algebrico-
differential case. Orderings among all derivatives and then partial orderings may
then be successively introduced among all algebrico-differential polynomials, all
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differential-ascending sets, and finally all systems of algebrico-differential polyno-
mial sets, somewhat analogous to the ordinary case.

For any system DPS of algebrico-differential polynomials, we may then form
a scheme (dS) analogous to the scheme (S) in the ordinary case as shown below:

DPS = DPS 0 DPS 1 · · · DPS i · · · DPS m

DBS 0 DBS 1 · · · DBS i · · · DBS m = DCS
DRIS 0 DRIS 1 · · · DRIS i · · · DRIS m = ∅
DCPS 0 ∪ DCPS 1 ∪ · · · ∪ DCPS i ∪ · · · ∪ DCPS m = DCPS .

(dS)
In the scheme (dS), DPS is the given algebrico-differential polynomial set. For

each i, DBS i is a differential basic set of DPS i. The set DRIS i is the union of two
parts: one is the set of all possible non-zero differential remainders in the sense of
Ritt formed from differential polynomials in DPS i \DBS i with respect to DBS i,
while the other is the set of integrability differential polynomials formed from
certain pairs of differential polynomials in DPS i, so far they contain actually y or
its derivatives. Such pairs may be determined by the notions of multiplicativity and
non-multiplicativity due to Riquier and Janet. On the other hand, those containing
no y or its derivatives but containing possibly uj or their derivatives form a set
of compatibility differential polynomials whose vanishing gives the compatibility
conditions under which the given system of equations DPS = 0 has solutions.
In case DRIS i is non-empty, the union DPS ∪ DBS i ∪ DRIS i forms the next
differential polynomial set DPS i+1.

As in the ordinary case the sequences will terminate at a certain stage m with
DRIS m = ∅. The corresponding differential basic set DBS m = DCS is then called
a differential characteristic set (abbreviated d-char-set) of the given differential
polynomial set DPS . The union DCPS of all sets DCPS i, i = 1, . . . , m, will form
the totality of all possible compatibility differential polynomials whose vanishing
forms the compatibility conditions to guarantee the existence of solutions of the
system of partial differential equations DPS = 0.

As in the ordinary case the above will lead finally to the formation of the
totality of formal solutions of the given system of algebrico-differential equations
under suitable initial data for which we refer to the paper [9].

4. Problem 2 in the Polynomial Case

Let us now consider the particular case for which the differential polynomials in
DPS are all linear with constant coefficients. For each tuple of non-negative inte-
gers µ = (i1, . . . , in), let us write ‖µ‖ for i1 + · · ·+ in and make the correspondence

Partial derivative
∂‖µ‖

∂xi1
1 · · ·∂xin

n

←→ Monomial xi1
1 · · ·xin

n .

Then the partial differentiation of a derivative with respect to some xj will corre-
spond to the multiplication of the corresponding monomial with the variable xj .
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In this way a differential polynomial set DPS consisting of only linear differential
polynomials with constant coefficients will become, under the above correspon-
dence, a polynomial set PS in the ordinary sense. The scheme (dS) will then be
turned into some scheme (W) for PS somewhat of the following form:

PS = PS 0 PS 1 · · · PS i · · · PS m

WS 0 WS 1 · · · WS i · · · WS m = WS
IS 0 IS 1 · · · IS i · · · IS m = ∅.

(W)

In the above scheme the WS i are certain subsets of PS i enjoying some well-
arranged properties and each IS i consists of remainders of the polynomials in
PS i \ WS i with respect to WS i as well as those determined from certain pairs
of polynomials in WS i determined by the notions of multiplicativity and non-
multiplicativity of Riquier and Janet. The union of WS i, IS i and eventually PS 0

will then be PS i+1 so far IS i �=�� ∅. It turns out that the final set WS is a basis
of the given ideal Ideal(PS ) and possesses many nice properties. It turns out
too that this basis WS is just the well-known Gr¨bner basis¨ of the given ideal
Ideal(PS ), which may now be found in some way different from the original one
of B. Buchberger. Moreover, many known properties connected with the Gröbner¨
basis which are dispersed in the literature have been proved in some simple and
unanimous manner. We refer to the paper [8] for details. In particular, we have the
following nice property of Gröbner bases which solves the important¨ membership
problem.

MP. A polynomial P in R belongs to the ideal Ideal(PS ) if and only if the remain-
der of P with respect to the Gröbner basis of¨ PS is 0.

It turns out that the Russian mathematician V. P. Gerdt has also found the
Grobner basis of a polynomial ideal essentially in the same way as above. He has¨
used an alternative name of involutive basis and has given also a detailed analysis of
various possible notions of multiplicativity and non-multiplicativity due to Riquier,
Janet, Thomas, and Gerdt himself. For more details we refer to the paper [2] by
Gerdt. At this point the author would like to express his hearty thanks to D. Wang
who pointed out to the author the above-mentioned work of Gerdt.

5. Problem 2 in the Algebrico-Differential Case

Let us consider now Problem 2 of algebrico-differential systems in the general case.
Let DPS be an arbitrary finite algebrico-differential polynomial set as before. The
problem is to find some finite differential basis of the differential ideal dIdeal(DPS )
that enjoys some nice properties as the Gröbner basis in the polynomial case¨
and solves in particular the corresponding membership problem. It is natural to
extend the method of Buchberger in the polynomial case to the present algebrico-
differential case. Unfortunately, in 1986 G. Carrá Ferro showed in a well-known´
remarkable paper [1] that such a finite differential Gröbner basis does not exist in¨
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general. In later years the possibility of existence of such finite differential Gröbner¨
bases was widely studied, notably by F. Ollivier (see [3]).

Now let us try to deal with this problem by our method explained in Section 3.
Consider again the diagram (dS). We suppose naturally that all the compatibility
conditions are verified. It is clear from the constructions that

dIdeal(DPS ) = dIdeal(DPS 0) = dIdeal(DPS 1) = · · · = dIdeal(DPS m).

Suppose that for the final d-char-set DCS the following condition GC is
verified.

GC. The initials and separants of the algebrico-differential polynomials in DCS
are all constants.

By the differential remainder theorem of Ritt, it is readily seen that DCS
is a differential basis of dIdeal(DPS ) and a differential polynomial DP belongs to
dIdeal(DPS ) if and only if the differential remainder of DP with respect to DCS
is 0.

It is thus seen that under the condition GC the final d-char-set DCS will serve
as a finite differential basis of dIdeal(DPS ), which solves the membership problem
in a simple way. The condition GC is clearly less stringent than the condition of
linearity and coefficients-constancy, which leads to the usual Gröbner basis in the¨
polynomial case. On the other hand, the verification of the condition GC can be
seen only after lengthy computations of d-char-set. In any way we may lay down
the following definition.

Definition. An algebrico-differential polynomial set DPS verifying condition GC
is called a good set and the corresponding differential basis formed by the final
d-char-set is called a good basis of dIdeal(DPS ).

In view of the significance and also the weakness of the above notion of good
basis, we suggest now some problems for further study.

Problem 3. Try to find some intrinsic conditions for an algebrico-differential poly-
nomial set to be “good” directly from the given set without passing to the final
d-char-set.

Problem 4. Try to weaken the condition GC such that the differential ideal gen-
erated by the given algebrico-differential polynomials still has a finite differential
basis that verifies some simple membership condition.

Problem 5. Compare our condition GC with other known conditions introduced
by Ollivier and other authors.

6. Example: Pommaret’s Devil Problem

To illustrate our treatment of algebrico-differential polynomial sets, let us consider
the Devil problem of Pommaret, given for example in his paper [4]. We shall treat
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this Devil problem in detail by our method as exhibited in Section 3. For this
purpose let us reproduce the statement of the Devil problem below.

Devil Problem. Let u, v, y be three functions of the Cartesian coordinates x1, x2, x3

in Euclidean spaces related by the following two partial differential equations

DP1 = ∂200y − x2∂002y − u = 0,
DP2 = ∂020y − v = 0,

(D)

with the corresponding algebrico-differential polynomial set DPS = {DP1, DP2}.
Note that here and below we use the notation ∂i∂∂ 3i2i1 for the partial derivative
∂i3+i2+i1

∂xi3
3 xi2

2 xi1
1

.

The functions u, v are supposed to be known. The problem consists in finding
the compatibility conditions to be satisfied by u and v in order to insure the
existence of solutions for y and to see whether the given algebrico-differential
polynomial set DPS is a good one or not.

It turns out that our procedure ends at the stage m = 2 so that the scheme
(dS) in the present case becomes

DPS = DPS 0 DPS 1 DPS 2

DBS 0 DBS 1 DBS 2 = DCS
DRIS 0 DRIS 1 DRIS 2 = ∅
DCPS 0 ∪ DCPS 1 ∪ DCPS 2 = DCPS .

(dS′)

The final d-char-set DCS is found to consist of 4 algebrico-differential poly-
nomials

G1 = ∂004y − z,
G2 = ∂012y − w,
G3 = ∂020y − v,
G4 = ∂200y − x2∂002y − u.

(G)

In (G), w and z are given by

w = 1
2 (∂200v − x2∂002v − ∂020u),

z = ∂200w − ∂012u− x2∂002w.

The compatibility conditions are found to be A = 0 and B = 0 with
1
2A = ∂010w − ∂002v,

B = ∂400∂∂ w − 2x2∂202w + x2
2∂004w − ∂212u + x2∂014u− ∂004u.

(CC)

It may also be shown further that the two compatibility conditions A = 0 and
B = 0 are not independent of each other. They are in fact connected by the
differential identity

∂400∂∂ A− 2x2∂202A + x2
2∂004A− 2∂010B = 0.

Naturally all the above were found by Pommaret by his method and in his
notations, which are different from ours.
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Now we see that the d-char-set DCS consisting of the 4 algebrico-differential
polynomials G1, . . . , G4 verifies the condition GC so that the given algebrico-
differential polynomial set DPS is a good one with a good basis for the corre-
sponding dIdeal(DPS ).
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Abstract. As a consequence of a previous study of algebraic differential geom-
etry ([see WU1]) there may be associated to certain special kinds of differential
ideals some well-behaved basis enjoying some well-behaved properties. If the
differential ideals are further specialized so that they correspond to ordinary
polynomial ideals then such a well-behaved basis will become the usual Groeb-
ner basis of the polynomial ideals while the latter is not known for differential
ideals.
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0. Introduction

Riquier and Janet have created a theory of PDE which has been further developed
by Ritt and Thomas and is closely related to the corresponding theory of E. Cartan.
Based on such a theory the author has shown in a previous paper [WU1] how to
construct a d-char-set DCS of a d-polsetDPS for which their d-zero-sets are closely
connected according to the following decomposition formula:

d-Zero(DPS) = d-Zero(DCS/J) + SUMi d-Zero(DPSiSS ).

In the formula J is the product of all initials and separants of the d-pols in DCS,
and DPSiSS are the enlarged d-polsets of DPS in adjoining to it one of such initials

The present paper is partially supported by NSFC Grant JI85312. It is reprinted, with permission
and with minor editorial changes, from Systems Science and Mathematical Sciences 4/3 (1991):
193–207, originally received on September 4, 1990.
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or separants. In the particular case for which all these initials and separants are
non-zero constants in the basic d-field, the above formula becomes simply

d-Zero(DPS) = d-Zero(DCS).

Moreover, denoting the differential ideal with DPS as a basis by d-Ideal(DPS), we
see from the construction of DCS and theorems proved in that paper that DCS is
also a basis of this ideal, or

d-Ideal(DPS) = d-Ideal(DCS).

Furthermore, this basis DCS possesses the following well-behaved property:
A d-pol DP will belong to the differential ideal d-Ideal(DPS) if and only if

the d-remainder of DP w.r.t. the basis DCS is 0:

d-Remdr(DP/DCS) = 0.

For this reason we shall call the corresponding d-char-set DCS, in the above
particular case, a well-behaved basis of the differential ideal d-Ideal(DPS) with
DPS as a given basis.

Let us consider now the further specialized d-polset DPS with the following
restrictions:

1. The basic d-field is one with trivial differentiations so that it is just an
ordinary field of characteristic 0.

2. The independent variables are still X1, . . . , Xn while there is only one
dependent Y .

3. Each d-pol DP in the d-polset DPS is of the form

DP = SUMtCtCC ∗DERtY,

in which t runs over a finite set of n-tuples of nonnegative integers and CtCC are
non-zero constants in the basic field.

We are thus in the situation of a system DPS = 0 of linear PDE with constant
coefficients. Now to each partial derivative DERtY we may make a corresponding
monomial Xt = X i1

1 ∗ · · · ∗ X in
n in which (i1, . . . , in) is the n-tuple t. Under the

correspondence the d-pols will then be turned into ordinary pols in X1, . . . , Xn

with coefficients in an ordinary field of characteristic 0. The above theory will
then give a well-behaved basis of an ordinary polset PS. It turns out that this well-
behaved basis is, in the present non-differential case, just the usual Groebner basis
of the corresponding polynomial ideal Ideal(PS). This offers thus an alternative
method of constructing a Groebner basis of a polynomial ideal different from that
of Buchberger.

In the present paper we shall consider the last case of ordinary polsets alone.
Our exposition will be so given that it is independent of the Riquier-Janet theory
and the previous paper [WU1], though it will follow closely the steps exhibited in
that paper. In studying the properties of the well-behaved basis of a polynomial
ideal introduced in this way it will follow that this basis is just the Groebner
basis of that ideal. We prove now several well-known beautiful properties of the
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Groebner basis in a way along the line of the thoughts of the previous paper based
on Riquier-Janet theory. The proofs are thus somewhat different from the known
ones scattered in the literature. These proofs may in fact be carried over to the
differential case as stated above for the well-behaved basis, while the Groebner
basis is undefined in that case. We remark in passing that our theory will give a
unique expression for an arbitrary pol w.r.t. such a basis of a polynomial ideal,
while for the usual theory of the Groebner basis such an expression is unique
only modulo the basis in some way. Finally, we give a concrete example for which
the Groebner basis is determined by the present method in using the REDUCE
implemented in our machine SUN3/140. Further examples are yet to be studied
and a complexity study of the present method is required.

1. Tuples of Integers

Let n be a positive integer fixed throughout the present paper.

DEF. An ordered sequence of n non-negative integers

t = (I1, . . . , InII )

is called an n-tuple or simply a tuple. IiII is then called the i-th coordinate of t, to
be denoted by

COORi(t) = IiII .

DEF. The particular tuple with all coordinates = 0 will be called the 0-tuple, to
be denoted as 0.

Notation. For any tuple u and any integer i ≥ 1 and ≤ n, the tuple u′ with

COORi(u′) = COORi(u) + 1,

COORj(u′) = COORjR (u), j �=�� i,

will be denoted by ui or iu.

DEF. For any two tuples u and v, we say u is a multiple of v or v is a divisor of
u, if

COORi(u) ≥ COORi(v), i = 1, . . . , n.

We write then
u � v or v � u.

DEF. For any two tuples u and v, their product uv = vu is the tuple with

COORi(uv) = COORi(u) + COORi(v), i = 1, . . . , n.

We introduce now an ordering among all the n-tuples according to the fol-
lowing

DEF. For any two tuples u and v we say that u is higher than v or v is lower than
u if there is some k > 0 and ≤ n such that

COORi(u) = COORi(v), i > k,

COORk(u) > COORk(v).
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We write then
u > v or v < u.

DEF. A set of tuples T is said to be autoreduced if no t in T is a multiple of anther
t′ in T .

The following two lemmas are already known or easily deduced from known
results.

Lemma 1. Any sequence of tuples steadily decreasing in order is finite.

Lemma 2. Any autoreduced set of tuples is finite.

DEF. For any finite set of tuples T , the maximum of T , to be denoted by Max(T ),
is the tuple defined by

Max(T ) = n-tuple(MAX1(T ), . . . ,MAXn(T )), with
MAXi(T ) = Max{COORi(t)/ t ∈ T }.

DEF. For any finite set of tuples T , the completion of T , to be denoted by Comp(T ),
is the set of tuples defined by

Comp(T ) = {u/ u � Max(T ) and u � t for some t in T }.
DEF. For any finite set of tuples T and any tuple t � Max(T ), the integer

i (≥ 1, ≤ n) is called a multiplier of t w.r.t. T if

COORi(t) = MAXi(T ).

Otherwise i is called a non-multiplier of t w.r.t. T . In that case we have

COORi(t) < MAXi(T ).

Notation. For any finite set of tuples T and any tuple t � Max(T ), we shall set

Mult(t/T ) = set of all multipliers of t w.r.t. T ,
Nult(t/T ) = set of all non-multipliers of t w.r.t. T .

DEF. For t � Max(T ), the set of all multiples tu of t with

COORi(u) = 0 for i in Nult(t/T )

is called the total multiple set of t w.r.t. T , to be denoted by

TMU(t/T ) = {tu/ COORi(u) = 0 for i in Nult(t/T )}.
Lemma 3. Let T be a finite set of tuples. For any tuple v there is a unique tuple
t � Max(T ) such that v is in TMU(t/T ). Moreover, if v is a multiple of some
tuple in T , then t is in Comp(T ).

Proof. t is determined as COORi(t) = Min(COORi(v), MAXi(T )). �

Tuple-decomposition Theorem. For any finite tuple set T the totality of tuples each
of which is a multiple of some tuple in T is the disjoint union of sets TMU(t/T )
with t running over Comp(T ).

Proof. This follows directly from Lemma 3. �
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We shall now introduce an ordering in the totality of autoreduced sets as
follows.

Let us consider any two autoreduced sets AS and AS′ with tuples arranged
in increasing order:

(AS) : t1 < t2 < · · · < tr,

(AS)′ : t′1 < t′2 < · · · < t′s.

DEF. The autoreduced set (AS) is said to be higher than the autoreduced set
(AS)′, or (AS)′ lower than (AS), if either of the two following cases holds true:

(a) There is some k ≤ r and ≤ s such that

ti = t′i for i < k, while tk > t′k.

(b) r < s and ti = t′i for i ≤ r.

In notation, we shall set then

(AS) > (AS)′, or (AS)′ < (AS).

Lemma 4. Any sequence of autoreduced sets steadily decreasing in order is finite.

Proof. Let the sequence be

(S) : AS1 > AS2 > · · ·
and suppose the contrary that it is infinite. For each autoreduced set ASiSS let its tu-
ples be arranged in increasing order. By Lemma 1 the sequence as11, as21, . . . , asi1,
. . . of which asi1 is the first tuple of ASi should consist of the same tuple, say t1,
from a certain stage onwards. Denote the corresponding infinite sequence of au-
toreduced sets from that stage onwards by

(S1) : AS11 > AS12 > · · · .

Again by Lemma 1 the sequence of second tuples in AS1i, should consist of the
same tuple, say t2, from a certain stage onwards. Denote the corresponding infinite
sequence of autoreduced sets from that stage onwards by

(S2) : AS21 > AS22 > · · · .

The above reasoning can be repeated indefinitely so that we get an infinite sequence
of tuples

(T ) : t1 < t2 < · · · ,

which is clearly an autoreduced set. This contradicts however Lemma 2 and hence
(S) is finite. �

From the very definition of the ordering we have also

Lemma 5. Let T be an autoreduced set and u be a tuple which is not a multiple
of any tuple in T . Let T ′ be the autoreduced set obtained by adjoining u to T and
then removing all tuples in T which are multiples of u. Then T ′ is of lower order
than T .
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2. Well-Arranged Basis of a Polynomial Ideal

Henceforth throughout the paper there will be fixed an integer n, a set of variables
X1, . . . , Xn, and a field K of characteristic 0. By a pol will then be meant, unless
otherwise stated, a polynomial in K[X1, . . . , Xn].

By a monom is meant a power-product in Xi of the form

Xt = X in
n ∗ · · · ∗X

ij

jX ∗ · · · ∗X i1
1 ,

in which the tuple t = (i1, . . . , in) will be called the degree-tuple of the monom
Xt. Any non-zero pol P can then be written in the unique normal form

P = A1 ∗Xt1 + A2 ∗Xt2 + · · ·+ Ar ∗Xtr ,

with Ai non-zero in K, and the degree-tuples ti in decreasing order, viz.

t1 > t2 > · · · > tr.

We call A1 ∗Xt1 , Xt1 , A1, and t1 resp. the leading term, the leading monom, the
leading coefficient , and the leading degree-tuple, to be denoted resp. by

Lterm(P ), Lmonom(P ), Lcoef(P ), and Ldeg(P ).

DEF. For two non-zero pols P1PP and P2PP , P1PP is said to be higher than, lower than, or
incomparable to P2PP according as whether the leading degree-tuple of P1PP is higher
than, lower than, or identical to that of P2PP . In notation, we shall write resp.

P1PP > P2PP , P1PP < P2PP , and P1PP <> P2PP .

DEF. For a finite polset PS of non-zero pols the set of leading degree-tuples of
pols in PS will be called the degree-tuple-set of PS to be denoted by DTS(PS).

DEF. A finite polset PS of non-zero pols is said to be autoreduced if its degree-
tuple-set is autoreduced.

DEF. Let AS be an autoreduced polset of non-zero pols and T = DTS(AS) be
its degree-tuple-set. A non-zero pol P is said to be reduced w.r.t. AS if for each
term in P , the corresponding degree-tuple is not a multiple of any tuple in T . The
autoreduced AS itself is said to be reduced if each pol of AS is reduced w.r.t. the
autoreduced polset formed from AS by removing that pol.

For any autoreduced polset AS consisting of non-zero pols FiFF there may be
different ways of putting P into a form

P = SUMiEi ∗ FiFF + R, (2.1)

in which Ei, R are pols and R, if not zero, is reduced w.r.t. AS. We shall now
proceed in the following way to get a unique R from P as follows. Write P in
the normal form. Let c ∗Xt, c in K, be the non-zero term in P , if it exists, such
that t is of highest order with t a multiple of some tuple u in T , u being chosen
to be the highest one in T . Write t = uv and let the pol in AS having u as its
leading-degree-tuple be

FiFF = a ∗Xu + F ′
iFF ,
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with a ∗Xu as its leading term, a �= 0 being in�� K. Set

P1PP = P/c−Xv ∗ FiFF /a.

Then P1PP is such a pol that the term of highest order in P1PP having its degree-tuple
t1 as a multiple of some tuple in T , if it exists, is of lower order than t above. We
can then apply the same procedure to P1PP as above to get a pol P2PP . The procedure
can be continued until we get a pol PsPP which is reduced w.r.t. AS. This pol PsPP will
then be the R required.

DEF. The unique pol R reduced w.r.t. the given autoreduced set AS got from P
in the above manner will be called the rest of P w.r.t. AS , to be denoted by

R = Rest(P/AS).

DEF. The autoreduced polset AS is said to be higher than the autoreduced polset
AS′SS , or AS′ lower than AS if

T = DTS(AS) > T ′ = DTS(AS′).

Given an arbitrary finite polset PS of non-zero pols let us form now a scheme
(SA) below:

PS = PS0SS PS1 · · · PSrSS

AS0 AS1 · · · ASrSS

RS0 RS1 · · · RSrSS = Empty.

(SA)

The scheme is formed in the following manner:
For each i ASi is an autoreduced polset with pols chosen from PSiSS such that

the degree-tuple of any remaining pol in PSiSS is a multiple of the degree-tuple of
some pol in ASi. Each RSiSS is then the polset of all non-zero rests, if it exists, of
the pols in PSiSS −ASiSS w.r.t. ASiSS . The polset PSiSS +1 is just the union of the previous
ASiSS and RSiSS :

PSiSS +1 = ASi + RSiSS .

From the construction we see by Lemma 5 of Sect. 1 that the autoreduced
sets ASi are steadily decreasing in order:

AS0 > AS1 > · · · .

By Lemma 4 of Sect. 1 the sequence is finite so that the procedure has to stop
at a certain stage with its corresponding rest-set RSrSS = Empty as shown in the
diagram (SA).

Theorem 1. The final autoreduced polset ASrSS in the scheme (SA) forms a basis for
the ideal Ideal(PS) with PS as a basis. In other words,

Ideal(PS) = Ideal(ASrSS ).
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Proof. Let AS0 consist of pols PiPP and the other pols in PS0SS be Qj so that Ideal(PS)
has a basis consisting of pols PiPP and Qj. Let Rj = Rest(Qj/AS0). Then by defini-
tion of rest, it is clear that the ideal Ideal(PS0) has also a basis consisting of pols
PiPP and those Rj which are non-zero, or

Ideal(PS) = Ideal(PS0SS ) = Ideal(AS0 + RS0) = Ideal(PS1).

In the same way we have

Ideal(PS1) = Ideal(PS2) = · · · = Ideal(PSrSS ).

Hence Ideal(PS) = Ideal(PSrSS ) = Ideal(ASr) as to be proved. �

DEF. The final autoreduced polset ASr in the scheme (SA) will be called a well-
arranged basis of the ideal Ideal(PS).

3. Well-Behaved Basis of a Polynomial Ideal

Let AS be an autoreduced polset with degree-tuple set T . For any tuple u in
Comp(T ) let u = tv with t the highest tuple in T which is a divisor of u. Let FtFF be
the pol in AS with t as its degree-tuple and let us set HuHH = Xv ∗FtFF . In particular,
if u is itself in T , then u = t and v is the 0-tuple so that HuHH is just the pol FtFF of
AS.

DEF. The pol HuHH defined above will be called the completed pol of AS relative to
u. The polset consisting of all such completed pols will be called the completed
polset of AS.

DEF. A product of the form M ∗HuHH in which HuHH is the completed pol of AS relative
to u in Comp(T ), and M a monom Xw for which each i with COORi(w) �= 0 is a��
multiplier of u will be called an M -product of AS.

DEF. A finite linear combination of M -products of AS with coefficients in K will
be called an M -pol of AS.

Theorem 2. Any pol P can be written uniquely in the form

P = MP + N, (3.1)

in which MP is an M -pol of AS and N is reduced w.r.t. AS.

Proof. Suppose that P is not reduced w.r.t. AS. Then in P there will be a term
a ∗ Xu of highest order with u a multiple of some tuple in T , a �= 0 being in�� K.
By Lemma 3 of Sect. 1 there is a unique t in Comp(T ) with u=vt such that each i
with COORi(v) �= 0 is a multiplier of�� t. Let HtHH be the completed pol of AS relative
to t with leading term Lterm(HtHH ) = b ∗Xt. Set

P1PP = P/a−Xv ∗HtHH /b,

or
P = c1 ∗MP1 + b1 ∗ P1PP , (c1 = a/b, b1 = a)
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with MP1 = Xv ∗ HtHH an M -product. If P1PP is not reduced w.r.t. AS, then there
will be a term a1 ∗ Xu1 of highest order in P1PP with u1 a multiple of some tuple
in T and u1 is of lower order than u. Apply now the preceding procedure to P1PP
and we get a pol P2PP so that P1PP = c2 ∗ MP2 + b2 ∗ P2PP , with b2, c2 in K and MP2

an M -product of lower order than MP1. The procedure can be continued to get
pols P3PP , etc. until we arrive at some pol PrPP which is reduced w.r.t. AS. We may
then write P in the form (3.1) with MP an M -pol and N = br ∗ PrPP reduced w.r.t.
AS as required. That the decomposition of form (3.1) is unique follows also easily
from Lemma 3 of Sect. 1. �

DEF. The pols MP and N in (3.1) will be called resp. the M -part and the N -part
of the pol P w.r.t. AS.

Consider now any u in Comp(T ) with corresponding completed pol HuHH and
any non-multiplier i of u. Then ui = v is also in Comp(T ) and the decomposition
of Xi ∗HuHH into the M - and N -parts can be put in the form

Xi ∗HuHH = a ∗HvHH + MPuiPP + NuiNN , (3.2)

in which a �= 0 is in�� K, MPuiPP is an M -pol with each M -product in it of lower order
than HvHH or Xi ∗HuHH , and NuiNN is the N -part of Xi ∗HuHH . Note that NuiNN is reduced
w.r.t. AS. Owing to its importance we shall lay down the following

DEF. The N -part NuiNN of pol Xi∗HuHH in (3.2) will be called the N -pol of AS relative
to the tuple u in Comp(T ) and the non-multiplier i of u.

Consider now a finite polset PS and let us form the scheme (SB) below:

PS = PS0 PS1 · · · PSs

WS0 WS1 · · · WSs

NS0 NS1 · · · NSs = Empty.

(SB)

The scheme is formed in the following way:
For each i WSi is a well-arranged basis of the ideal Ideal(PSiSS ), determined

from PSiSS as in Sect. 2 with scheme (SA) applied to PSiSS , and NSiSS is the set of all
non-zero N -pols of WSi, if it exists. Finally, the polset PSiSS +1 is the union of the
preceding sets WSi and NSi, or

PSiSS +1 = WSi + NSiSS .

As in the case of scheme (SA), the sequence of autoreduced sets WSi is steadily
decreasing in order so that the above procedure will end in a certain stage with
corresponding NSs = Empty as shown in the diagram (SB).

Theorem 3. The final polset WSs in the scheme (SB) is a basis of the ideal
Ideal(PS), or

Ideal(PS) = Ideal(WSs).
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Proof. By Theorem 1 of Sect. 2 we have Ideal(PS0) = Ideal(WS0). Now each pol
N in NS0 is the N -part of some pol Xi ∗HuHH with HuHH the completed pol of WS0

relative to the tuple u in Comp(T0TT ) where T0TT is the degree-tuple-set of WS0 and
i a non-multiplier of u so that Xi ∗ HuHH = MP + N with MP an M -pol of WS0.
As both HuHH and MP are clearly pols in the ideal Ideal(WS0), the same is for N .
Hence

Ideal(PS0) = Ideal(WS0) = Ideal(WS0 + NS0) = Ideal(PS1).

Proceeding further in the same way we get then successively

Ideal(PS) = Ideal(PS1) = · · · = Ideal(PSs) = Ideal(WSs),

as to be proved. �

DEF. The final autoreduced polset WSs in the scheme (SB) will be called a well-
behaved basis of the ideal Ideal(PS).

In the next section it will be shown that the notion of well-behaved set
coincides with the usual notion of Groebner basis.

4. Identification of Well-Behaved Basis with Groebner Basis

Consider any ideal ID for which the well-behaved basis, say WB, has been deter-
mined as in Sect. 3 so that ID = Ideal(WB).

Theorem 4. Any pol in the ideal ID is an M -pol of its well-behaved basis WB, or
the N -part of any such pol is 0.

Proof. Let T be the degree-tuple set of WB. For any u in Comp(T ) let HuHH be the
corresponding completed pol. It is enough to prove that any product of the form
M ∗HuHH with M a monom and u in Comp(T ) is an M -pol. We shall prove this by
induction on the order of M ∗HuHH as well as on the number of X ’s in the monom
M as follows.

If each i for which Xi appears in the monom M is a multiplier of u, then
M ∗HuHH is already an M -pol and nothing is to be proved. Suppose therefore M =
M ′ ∗Xi with i a non-multiplier of u. As WB is the well-behaved basis of the ideal,
the N -pol relative to u and i is 0 so that (3.2) of Sect. 3 may be written as

Xi ∗HuHH = a ∗HvHH + MP, (4.1)

in which v = ui, and MP is an M -pol of lower order than HvHH or Xi ∗ HuHH . It
follows that M ∗HuHH = a ∗M ′ ∗HvHH + M ′ ∗MP, of which M ′ ∗MP is of lower order
than M ∗HuHH and M ′ has a smaller number of X ’s than M . By induction M ′ ∗HvHH
and each term in M ′ ∗ MP are M -pols and so is M ∗ HuHH . The theorem is thus
proved. �

Theorem 5. The rest of any pol P w.r.t. the well-behaved basis WB coincides with
the N -part of P w.r.t. WB.
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Proof. The rest is determined as the pol R in P = SUMkCk ∗ WkWW + R, in which
WkWW are the pols in WB, Ck are pols too, and R is reduced w.r.t. WB. By Theorem
4 SUMkCk ∗WkWW is an M -pol so that R is the N -part of P , as to be proved. �

From Theorems 4 and 5 we get the following

Theorem 6. A pol P belongs to an ideal ID if and only if its rest w.r.t. the well-
behaved basis WB of ID is 0:

P ∈ ID ⇐⇒ Rest(P/WB) = 0.

The previous results may be further put into a strengthened form as follows.

Theorem 7. A well-behaved basis WB with degree-tuple-set T of an ideal ID pos-
sesses the following well-behaved property:

Any pol P in K[X1, . . .Xn] has a unique expression

P = SUMuau ∗MuMM ∗HuHH + N, (4.2)

in which HuHH are completed H-pols with u running over the completion Comp(T)
of T , MuMM are monoms in these Xi with each i a multiplier of u, au are constants
in K, and N is reduced w.r.t. WB. Moreover, P is in the ideal ID if and only if
N = 0.

From the unique expression (4.2) for any pol in ID w.r.t. WB we get imme-
diately the following theorem due to Macaulay, cf. [M]:

Theorem 8. The Hilbert function of an ideal is completely determined by the degree-
tuple-set of a well-behaved basis of the ideal.

Theorem 9. Let the well-behaved basis WB of an ideal ID consist of the pols
W1WW , . . . , WrWW . For any completed pol HuHH of WB and any non-multiplier i of WB
w.r.t. u let us rewrite (4.1) in the form

SUMiSuij ∗WjWW = 0. (4.3)

Then the sets Sui = (Sui1, . . . , Suir) form a basis of the linear space of possible
solutions (S1, . . . , Sr) in pols for the syzygy equation

SUMjSjS ∗WjWW = 0. (4.4)

Proof. Consider any solution of equation (4.4) in pols SjS . Denote the left-hand
side of (4.4) by S. Then S is a pol belonging to the ideal ID with a well-behaved
basis WB. From the proof of Theorem 4 we see that S can be shown to be 0 by
successive reductions in the form of (4.1) or (4.3). Hence S = 0 is a consequence of
equations (4.3) or S is a linear combination of Sui with pols as coefficients, as to
be proved. We remark only that the solutions Sui are not necessarily independent
ones.

If the ideal ID is given a basis F1FF , . . . FmFF , then each FiFF is a linear combination
with pol-coefficients of WjWW in the well-behaved basis WB and vice versa, which
can be explicitly determined by means of the constructions in schemes (SA) and
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(SB). Hence the above will furnish a method of deriving a basis of the solutions
(S1, . . . Sm) of the syzygy equation

SUMkSk ∗ FkFF = 0. �

Theorem 10. The reduced well-behaved basis WB of an ideal ID = Ideal(PS) with
polset PS as a basis is uniquely determined up to constant multiples by the following
two properties:

(a) WB is a reduced autoreduced basis of ID.

(b) Let T be the degree-tuple-set of WB. Then for any tuple u in Comp(T )
with completed pol HuHH and any non-multiplier i of WB w.r.t. u, the N -part of
Xi ∗HuHH is 0.

Proof. We have shown how to determine from PS by schemes (SA) and (SB), by a
further reduction if necessary, a well-behaved basis WB of ID verifying properties
(a) and (b). From the proofs of Theorems 5 and 6 we see that there will follow also
the following property (c).

(c) The rest of any pol P in the ideal ID w.r.t. WB is 0.

Consider now any polset WB′ verifying the analogous properties (a)′, (b)′

and hence also (c)′. There is no loss of generality in assuming that all the pols in
WB and WB′ have been normalized to have their leading coefficients = 1. We are
to prove that WB′ coincides with WB.

To see this let us arrange the pols in WB and WB′ both in decreasing order,
viz.

(WB) : W1WW > W2WW > · · · > WrWW ,

(WB)′ : W ′
1WW > W ′

2WW > · · · > W ′
sW .

By (c) we have Rest(W ′
1WW /WB) = 0 and by the corresponding rest formula we see

that the leading degree-tuple of W ′
1WW should be a multiple of the leading-degree-

tuple of some pol in WB , say WiWW . In the same way, by (c)′ the leading-degree-tuple
of WiWW should be a multiple of the leading-degree-tuple of some W ′

jWW of WB′. As WB′

is autoreduced it will only be possible that W ′
jWW coincides with W ′

1WW . Then W ′
1WW will

have the same leading-monom as WiWW . Applying the same reasoning to W1WW we see
that W1WW should have the same leading monom as some W ′

kWW of WB′. This is only
possible when WiWW = W1WW , W ′

kWW = W ′
1WW and W1WW , W ′

1WW have the same leading-monoms.
Applying now the same reasoning to W2WW and W ′

2WW we see that they should
have the same leading monoms. Continuing we see then WB and WB′ should have
the same number of pols or r = s and each pair WiWW and W ′

iWW should have the same
leading monoms.

Consider now the last two pols WrWW and W ′
rWW in WB and WB′. As W ′

rWW has the
same leading monom as WrWW and W ′

rWW has rest 0 w.r.t. WB we see that W ′
rWW should

be identical to WrWW . Let us consider the pair WrWW −1 and W ′
rWW −1. As the rest of W ′

rWW −1

w.r.t. WB is 0 we should have an identity of the form

W ′
rWW −1 = WrWW −1 + MrMM ,
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in which MrMM is an M -pol constructed from WrWW . Now W ′
rWW −1 and WrWW −1 have the

same leading monoms and no other monoms in W ′
rWW −1 and WrWW −1 can be multiples of

the leading monom of WrWW . It follows from the Tuple Decomposition Theorem that
this will be possible only when MrMM = 0 or W ′

rWW −1 is identical to WrWW −1. Applying
now the same reasoning to the other pairs of pols in WB and WB′ successively in
the reverse order we see that all the pairs should be identical to each other. The
theorem is thus proved. �

Consider now an ideal ID with a reduced well-behaved basis WB. For m <
n let ID′ be the ideal of all pols in ID in X1, . . . , Xm alone. Let WB′ be the
autoreduced polset consisting of such pols in WB in X1, . . . , Xm alone too. Then
we have the following.

Theorem 11. Let WB be a reduced well-behaved basis of an ideal

ID ⊂ K[X1, . . . , Xn].

Then the autoreduced polset

WB′ = WB ∩K[X1, . . . , Xm]

is a reduced well-behaved basis of the ideal

ID′ = ID ∩K[X1, . . . , Xm].

Proof. Let T be the degree-tuple-set of WB and T ′ that of WB′. Consider now
any pol P in ID′. Let us consider P as a pol in ID and write it in the form (4.2).
By Theorem 6 we have N = 0. By the Tuple Decomposition Theorem we see
that in (4.2) for each term in HuHH we should have COORk(u) = 0 for k > m. Let
Max′(T ) be the m-tuple got from Max(T ) by deleting the last n−m coordinates.
It is clear that Max(T ′) � Max′(T ). It follows that for each HuHH in (4.2) for which
COORk(u) = 0 for k > m, each i with Xi occurring in MuMM which is a multiplier
of u w.r.t. WB should also be a multiplier u w.r.t. WB′. Hence the N -part of P ,
considered as a pol in ID′, is 0 too w.r.t. WB′. This implies in particular property
(b) in Theorem 10 corresponding to WB′ of ID′. By Theorem 10 again WB′ is
thus a reduced well-behaved basis of the ideal ID′. This completes the proof of the
theorem. �

Finally, in comparing with the usual definition of Groebner basis of a poly-
nomial ideal we see readily from Theorem 6 the following.

Theorem 12. Any well-behaved basis of a polynomial ideal ID is a Groebner basis
of ID. If the well-behaved basis is reduced and the leading coefficient of each pol in
the basis is normalized to 1, then the basis is coincident with the reduced Groebner
basis of ID.

The well-behaved basis of a polynomial ideal, being nothing else but the
usual Groebner basis of ID, will enjoy the various already well-known properties
of Groebner basis. Some of such properties have been restated and reproved in the
form of well-behaved basis as given above. The treatments and proofs are however
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done along the line of the thoughts of previous sections, giving thus alternative
proofs of these known theorems about Groebner basis different from the known
ones. Moreover, the proofs are given in order that they may be readily transferred
to the differential case as described in the Introduction for which the corresponding
notion of Groebner basis is non-existent. Furthermore, the above treatment shows
that any pol in K[X1, . . . , Xm] will have a unique expression w.r.t. a well-behaved
basis, i.e. a Groebner basis, of a polynomial ideal in the form of equation (4.2),
which is a property more precise than the corresponding known one for a Groebner
basis under the usual known treatment.

5. An Example

The schemes (SB) and (SA) in the previous sections give an algorithm for the
determination of a well-behaved basis, i.e. a Groebner basis of an ideal Ideal(PS)
with a given basis PS. As an illustrative example (Problem 9(b) in [CG]) let us
consider the following polset PS = {P1PP , P2PP , P3PP } with⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪

P1PP = X2 + Y ∗ Z + D ∗X + 1,

P2PP = Y 2 + Z ∗X + E ∗ Y + 1,

P3PP = Z2 + X ∗ Y + F ∗ Z + 1.

Introduce now an ordering among the various indeterminates by

Z > Y > X > D > E > F.

This amounts to equating these indeterminates to Xi such that Xi > XjX if and
only if i > j. We shall retain however the usual notations of Z, etc. as it will not
cause misunderstandings.

According to the scheme (SB) we form first the well-behaved set (in decreas-
ing order) WS0 consisting of W1WW , W2WW , W3WW with

W1WW = P3PP , W2WW = P1PP , W3WW = P2PP .

The leading-degree-tuple set of WS0 is

T = {(0, 0, 2), (0, 1, 1), (1, 0, 1)}

so that Max(T ) = (1, 1, 2). The completed H-pols arranged in descending order
are thus 7 in number, viz.

H1 = Y ∗X ∗W1WW , H2HH = Y ∗W1WW , H3H = X ∗W1WW ,

H4HH = W1WW , H5HH = X ∗W2WW , H6HH = W2WW , H7HH = W3WW .
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Let the N -part of an H-pol H w.r.t. a non-multiplier i be denoted by N(H/Xi).
Most of the N -parts may be directly seen to be 0 by definition and the only non-
zero N -parts are readily found to be the following ones:

N1 = −N(H5H /Z)
= −Z ∗H5H + H1 − F ∗H5H + X2 ∗H7HH + D ∗X ∗H7HH + H7HH

= 2 ∗ Y 2 ∗X2 + Y 2 ∗X ∗D + Y 2 + Y ∗X2 ∗ E + Y ∗X ∗D ∗ E

+ Y ∗X + Y ∗ E −X3 ∗ F −X2 ∗D ∗ F + X2 + X ∗D −X ∗ F + 1,

N2NN = N(H6HH /Z)
= Z ∗H6HH −H2HH + F ∗H6HH −X ∗H7HH −D ∗H7HH

= Z − 2 ∗ Y 2 ∗X − Y 2 ∗D − Y ∗X ∗ E − Y ∗D ∗ E − Y

+ X2 ∗ F + X ∗D ∗ F −X −D + F,

N3NN = N(H7HH /Y )
= Y ∗H7HH −H5H

= Y 3 + Y 2 ∗ E + Y −X3 −X2 ∗D −X,

N4NN = N(H7HH /Z)
= Z ∗H7HH −H3H − Y ∗H6HH − E ∗H6HH + F ∗H7HH

= Z + Y 2 ∗ F − 2 ∗ Y ∗X2 − Y ∗X ∗D + Y ∗ E ∗ F − Y

−X2 ∗ E −X ∗D ∗ E −X − E + F.

The polset PS1 = WS0 + NS0 thus consists of 7 pols, WiWW and NjN . We proceed to
form a well-arranged basis WS1 of Ideal(PS1) according to scheme (SA) in starting
from QS0 = PS1, viz.

QS0 QS1 . . . QSrS ,

AS0 AS1 . . . ASr,

RS0 RS1 . . . RSrSS .

It is found that for r = 6 the polset QS6SS consists of 4 pols Qi below:

Q1 = Z + Y 2 ∗ F − 2 ∗ Y ∗X2 − Y ∗X ∗D + Y ∗ E ∗ F − Y −X2 ∗ E

−X ∗D ∗ E −X − E + F,

Q2 = Y 2 ∗D ∗ F + Y 2 ∗ F 2 + 2 ∗ Y 2 + · · · ,

Q3 = Y ∗X2 ∗G3 + · · · ,

Q4 = Y ∗X ∗G4 + · · · ,

in which G3, G4 are pols in D, E, and F alone. The number of the terms of Q3

and Q4 are resp. 90 and 314 and Q4 is non-factorizable. To make computations
not too complicated we shall consider the special case of F = E which will not
influence the computations already done. It turns out that in this case of F = E
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the pols Qi will be simplified to the following ones:

Q1 = Z + Y 2 ∗ E − 2 ∗ Y ∗X2 − Y ∗X ∗D + Y ∗ E2 − Y −X2 ∗ E

−X ∗D ∗ E −X,

Q2 = Y 2 ∗D ∗ E + Y 2 ∗ E2 + 2 ∗ Y 2 + 4 ∗ Y ∗X3 + 2 ∗ Y ∗X2 ∗D

− 2 ∗ Y ∗X2 ∗ E − Y ∗X ∗D ∗ E − Y ∗X ∗ E2 + 2 ∗ Y ∗X

+ Y ∗D ∗ E2 + Y ∗ E3 + 2 ∗ Y ∗ E + 2 ∗X3 ∗ E + 2 ∗X2 ∗D ∗ E

− 2 ∗X2 ∗ E2 + 2 ∗X2 − 2 ∗X ∗D ∗ E2 + D ∗E − E2 + 2,

Q3 = F1FF ∗ F2FF ,

Q4 = F1FF ∗ F3FF .

The pols Q3 and Q4 split into factors FiFF with

F1FF = 2 ∗X2 + X ∗D −X ∗ E + 2,

F2FF = Y ∗D ∗ E − Y ∗ E2 − 2 ∗X3 − 3 ∗X2 ∗D −X ∗D2 −X − E,

F3FF = 2 ∗X4 + 3 ∗X3 ∗D + 2 ∗X3 ∗ E + X2 ∗D2 + 2 ∗X2 ∗D ∗ E

+ X2 ∗E2 + X2 + X ∗D ∗ E2 + 2 ∗X ∗ E + E2.

The polset QS6SS is now already an autoreduced one and may be taken as the
corresponding well-arranged set AS6. Let us denote the completed H-pols by

H1ij = X i ∗ Y j ∗Q1, i ≤ 6, j ≤ 2,

H2HH i = X i ∗Q2, i ≤ 6,

H3H i = X i ∗Q3, i ≤ 4,

H4HH = Q4.

The variables corresponding to the non-multipliers are then resp. at most

X, Y for H1ij ,

X, Z for H2HH i,

X, Y, Z for H3H i,

Y, Z for H4HH .

To determine the N -pols let us consider first N(H30H /Y ) where H30H = Q3.
By direct computation we find

(D∗E+E2+2)∗E ∗(D−E)∗Y ∗H30H = P2PP ∗Q4+P3PP ∗Q3+E2∗(D−E)2∗F1FF ∗Q2,

in which P2PP , P3PP are pols in X of degree 2 and 3 resp. As all terms X i∗Qj occurring
in the right-hand side of the above equation are M -products, it follows that

N(H30H /Y ) = 0.

Consider now N(H4HH /Y ) where H4HH = Q4. Write F2FF in the form F2FF = Y ∗E ∗
(D − E)− P with P a pol in X of degree 3. Then by simply rewriting we get

E ∗ (D − E) ∗ Y ∗H4HH = F3FF ∗Q3 + P ∗Q4,
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in which all terms X i ∗Qj on the right-hand side are M -products. We thus again
have

N(H4HH /Y ) = 0.

That other N -pols are all 0 may be deduced from the above ones or directly
by rewriting in a similar way almost without computation. In conclusion it follows
that QS6 is already a well-behaved basis or a Groebner basis GB of the ideal
Ideal(PS).

The zero-set Zero(PS) = Zero(GB) may be determined as follows. As F1FF , F3FF
are easily seen to be prime to each other (D, E are independent indeterminates)
so Q4 = 0 has 6 zeros of X , 2 from F1FF = 0 and 4 from F3FF = 0. For each zero
of F1FF = 0, Q3 will be 0 too and Q2 = 0, Q1 = 0 will give 2 zeros of GB. On the
other hand, for each zero of F3FF = 0 we have F1FF �= 0 and the resultant of�� Q2 and
F2FF is found to be 0, so such a zero of F3FF will be extended to only one zero of GB
determined by F2FF = 0 and Q1 = 0. In all we have 8 zeros of GB or PS. We remark
that in the present case each zero of Q4 = 0 can be extended to at least one zero
of GB. This is however not the case in general. Cf. e.g. [WU2] and [L].
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Écalle, 55
elimination ideal, 329
equilibrium, 109
equivalent, 244, 281
equivalent differential systems, 216
Eremenko, 201
Euler operator, 264, 309, 313, 314

discrete, 283, 284
higher, 265, 266, 283

Euler–Lagrange equation, 309, 313
exactness, 263

criterion, 265, 282
discrete, 282

exterior power, 241

factorization, 213
fast system, 122



Index 371

FGLM algorithm, 32
field of constants, 215
fine focus, 4
first integral, 55, 59

Darboux, 56, 63
Liouvillian, 60

first integral, 67
first order algebraic differential equa-

tion, 201
flux, 261, 272

discrete, 281
focal value, 160
focal values, 4
focus quantities, 71
fold points, 124
FORM, 308
forward difference

invert, 284
forward difference operator, 281
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Poincaré, 201´
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