
Introduction

Although chemokines have been initially discovered and universally known as
cytokines able to recruit leukocytes to inflamed tissues (chemotactic cytokines) and,
therefore, to play an important role in the context of the immune response, subse-
quent studies have clearly shown that they also act on several other cell types, thus
behaving as multifunctional mediators. The nature and classification of chemokines,
their receptors and signalling pathways, as well as their activity of recruitment on
the cells of the immune system have been discussed in other chapters of this book.
Here, therefore, we will concentrate on the production of chemokines by, and on
their functional activity on, tissue cells, and we will particularly focus on the essen-
tial role of chemokines on the induction and control of angiogenesis.

Chemokines in embryogenesis

Cell migration is an integral component of embryogenesis, particularly since cell
position is a primary determinant of cell fate. Not surprisingly, there are complex
arrays of regulators, which direct cell movement by modulating adhesion, attrac-
tion, and repulsion. Several chemokine receptors have been found to be expressed
in the mouse embryo, the message encoding CXCR4 being the predominant
chemokine receptor detected [1]. CXCR4- and CXCL12-deficient mice [2, 3]
showed defects in the development of neuronal, cardiac, vascular, haemopoietic and
craniofacial systems. Other chemokine receptor messages were also found, but all
of them concordant temporally and spatially with definitive (adult-like)
haematopoiesis. CX3CL1, CXCL10 and CXCL12 are certainly involved in the
development of human kidney, CX3CL1 being strongly expressed during glomeru-
logenesis, while CXCL10 and CXCL12 in developing kidneys were more limited to
focal expression [4]. More recently, CXCL12 has been found to play an essential
role in promoting primordial germ cell transmigration through epithelial-like struc-
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tures, such as the hindgut epithelium in mouse and the endothelium in chick [5]. Of
note, a possible role of interactions between CCR1 and its ligands in the initiation
of trophoblastic invasion of maternal tissue has also been suggested [6]. The impor-
tant role of chemokines in embryogenesis control represented the first evidence that
chemokine receptors might also be expressed by resident cells in different tissues.
Indeed, a large converging evidence has recognised the pivotal role of chemokines
and their receptors in the biology of resident tissue cells largely beyond their chemo-
tactic properties.

Chemokine receptors in epithelial tissues

Although chemokines were originally defined as host defense proteins and their
main role is leukocyte recruitment, they and their receptors have other biological
actions. Furthermore, many environmental stimuli of host of pathogen origin may
lead to the induction of inflammatory chemokines expression and production in tis-
sue cell types.

The expression of multiple chemokines in inflamed tissues, such as in the syn-
ovial lining cells of rheumatoid joints [7], autoimmune lesions in multiple sclerosis
[8], ulcerative colitis and Crohn’s disease [9], lung inflammation [10], sarcoidosis
[11] and asthma [12], and the vascular inflammation that characterises arterioscle-
rosis [13], is well documented. Several receptors for inflammatory chemokines,
CCR1, CCR2, CCR5 and CXCR3 in particular, are regularly detected in such
lesions, while the expression of CCR3 tends to be restricted to allergic pathologies
and the IL-8 receptors, CXCR1 and CXCR2, are more frequent in acute inflamma-
tion.

However, a great number of in vivo and in vitro studies demonstrated also the
constitutive expression of chemokine receptors by resident epithelial cells of differ-
ent tissues. The pattern of chemokines and chemokine receptors expression in
epithelial tissues is summarised in Table 1.

Chemokines affecting vasculature-associated pericytes

Several studies have shown that the pericytes, smooth muscle-like mural cells that
coat the wall of microvessels and are responsible for tissue fibrosis, may both
express chemokines and be targets of the chemokine action [27–30]. In fact, peri-
cytes express chemokine receptors, which, upon activation, elicit biologic actions
that favour the processes of wound healing, including proliferation, migration, and
extracellular matrix synthesis [31–33]. 

Human vascular smooth muscle cells (SMCs) express CCR2 [34], which makes
these cells a likely target for CCL2. In fact, CCL2 can enhance the expression of
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integrins [35] as well as tissue factor [36] on SMCs. More recent findings [37] sug-
gest that CCL2 can also directly induce SMC proliferation by stimulating the bind-
ing activity of activator protein 1. Cultured human arterial SMCs possess CCR5 at
both mRNA and protein levels [33]. CCR5 on SMCs is functionally coupled,
responding to CCL4 with increases in intracellular calcium concentration and tissue
factor activity. CCR5 and CCL4 were also detected in SMCs of the atherosclerotic
arterial wall, where they may play a role in mediating the inflammatory and pro-
thrombotic responses associated with atherosclerosis. On the contrary, as deter-
mined by RT-PCR, human aortic SMCs do not express mRNA for other CCRs,
including CCR1 [38], CCR3 [39], CCR4 [40], and DARC [41]. CXCL10 has been
shown to act as a mitogen and chemoattractant for SMCs. Moreover, SMCs express
CXCL10 in response to IL-1β and TNF-α in conjunction with IFN-γ and also in
response to vascular injury, suggesting a role in pathogenesis of vascular diseases
and injury [28].

Hepatic stellate cells (HSCs) and glomerular mesangial cells (MCs) are tissue-
specific pericytes involved in tissue repair, a process that is regulated by chemokines.
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Table 1 - Expression and function of chemokine receptors in epithelial tissue cells

Type of tissue cells Chemokine receptors Function

Keratinocytes CCR3 [14] Inflammatory modulation
CXCR1/CXCR2 [15] Chemotaxis and proliferation
CXCR3 [16] Chemotaxis

Bronchial epithelial cells CCR2 [17] Proliferation and healing
CCR3 [18] Epithelial cell migration and 

proliferation
CXCR4 [19] Inflammatory modulation

Intestinal epithelium CCR5 [20] Cell migration
CCR6 [21] Cell migration, maintenance 

and renewal of the epithelium
CXCR4 [20] Hepatocytes

Ductular epithelial cell CXCR4 [22] Apoptosis
CX3CR1 [23] Wound healing response

Ectocervical epithelial cells CCR5 [24] Potential targets of HIV-1
infection

Podocyte CCR4, CCR8, CCR9, [25] Release of oxygen radicals
CCR10, CXCR1-CXCR5 [25] Release of oxygen radicals
CXCR3 [26] Induction of nephrin and

podocin



In MCs expression of CCL2, CCL5, CXCL8, and CXCL10 has been repeatedly
demonstrated [41–49]. CCL2 is rapidly upregulated in mouse, rat and human MCs
after their activation by a variety of stimuli [41–43]. CCL5 is expressed 2 h after
TNF-α stimulation by mouse MC [44] and it is also found to be expressed by pri-
mary human MCs [45]. CXCL8 is expressed by rat and human MCs [46, 47] and
the expression of CXCL10 mRNA has been described for both mouse and human
MCs [48, 49].

The expression of the chemokine receptor CXCR3 on human MCs was first
reported by Romagnani P. and colleagues [31]. High expression of this receptor by
MCs was seen by immunohistochemistry in kidney biopsies from patients with
glomerulonephritis, characterised by resident mesangial cell proliferation, such as
IgA nephropathy, membranoproliferative glomerulonephritis or rapidly progressive
glomerulonephritis (also defined as “proliferative glomerulonephrites”). Moreover,
CXCR3 was also found on the surface of cultured human MC (HMC), and
appeared to mediate both intracellular Ca2+ influx and cell proliferation [50]. Fur-
thermore, it was found that in both HMC and other types of vascular pericytes,
CXCL10 and CXCL9 also induce chemotaxis and CXCR3 triggering results in Src
activation, which in turn leads to the recruitment of Ras and activation of the ERK
cascade [50]. In parallel, activation of PI 3-K and Akt can also be observed [50].
Taken all together, these findings may account for at least some mechanisms
involved in the pathogenesis of proliferative GN.

Constitutive expression of the chemokine CCL21 on human podocytes and of its
corresponding receptor CCR7 on MCs was also shown by immunohistochemistry
of human kidney and these findings were confirmed in cultured cells and isolated
glomeruli [51]. CCL21 has a positive effect on the proliferation and migration of
MCs and leads to increased cell survival in Fas-induced apoptosis of human MC
[51]. Moreover, activation of CCR7 on MCs by CCL21 enhances the degree and
firmness of cell adhesion and increases cell spreading and the formation of cell–cell
contacts, including integrin-linked kinase activation and F-actin rearrangements
[52].

Inducible expression of the chemokine receptor CCR1 by human MCs after
stimulation with a combination of the proinflammatory cytokines TNF-α, IL-1β
and IFN-γ, has also been described [32]. In contrast to the effects observed with the
ligands for CCR7 and CXCR3, stimulation of MCs with the CCR1 ligand CCL5
had no effect on cell proliferation and apoptosis. In conclusion, local chemokine
generation and chemokine receptor expression on MCs may play an important role
in the maintenance of glomerular homeostasis and in local remodelling processes.

HSCs express and secrete several CC chemokines, including CCL2 and CCL3
[53, 54]. Several lines of evidence indicate that CCL2 plays a role in the recruitment
and maintenance of the inflammatory infiltrate during liver injury. CCL2 secretion
is upregulated during chronic hepatitis and correlates with the number of cells infil-
trating the portal tract [55]. In vitro and in vivo data indicate that HSCs may con-
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tribute to the expression of CCL2 within the liver during both chronic and acute
injury [53, 54, 56]. On cultured human HSCs, CCL2 stimulates migration in a dose-
dependent fashion and activates intracellular signalling, such as increase in cytoso-
lic calcium concentration, PI3-K activity, protein tyrosine phosphorylation [56].
Cultured HSCs express functional CCR7, the activation of which stimulates cell
migration and accelerates wound healing in an in vitro model. Exposure of HSCs to
CCL21 triggered several signalling pathways, including extracellular signal-regulat-
ed kinase, Akt, and nuclear factor κB, resulting in induction of proinflammatory
genes [57]. HSCs express CCR5, as shown by flow-cytometric analysis and RT-PCR
[57], and respond to CCL5 with an increase in both intracellular calcium concen-
tration and free radical formation. Furthermore, CCL5 induced ERK phosphoryla-
tion and HSC proliferation. Additionally, CCL5 induced focal adhesion kinase
phosphorylation and a substantial increase in HSC migration [58]. HSC expressed
functional CXCR3 receptors on the cells surface, and interaction with CXCR3 lig-
ands resulted in increased chemotaxis, but not proliferation, through the Ras/ERK
signalling cascade. Activation of CXCR3 stimulated Src phosphorylation and kinase
activity and increased the activity of PI3-K [50].

Chemokines control of angiogenesis and wound healing

Tissue repair

Models of skin wound healing mimic inflammatory reactions that might also be rel-
evant to infectious processes in general [59]. In this model, the interplay of CXC
chemokines with growth factors, cytokines and adhesion molecules not only influ-
ences the sequential participation of inflammatory cells but, more importantly, reg-
ulates the inflammatory reaction leading to angiogenesis, tissue repair and new tis-
sue generation [59, 60]. The repair process is initiated immediately after injury of
blood vessels through the release from degranulating platelets of various growth fac-
tors, such as vascular endothelial growth factor (VEGF)-A, platelet-derived growth
factor (PDGF), and several chemokines in large quantities. CXCL1, CXCL5 and
CXCL7 initiate the neutrophil recruitment [59, 61, 62], whereas high amounts of
CXCL4 contribute to the formation of blood clots [63]. This provides a barrier
against invading microorganisms and serves as a matrix for the attachment of
inflammatory cells that are recruited to wound tissue within a few hours of injury.
The initial vessel-associated expression of CXCL1 facilitates neutrophil diapedesis
[64]. Subsequently, the cooperative expression of CXCL1 and CXCL8 in the super-
ficial wound bed supports additional neutrophil migration to the wound surface
[65]. Neutrophils produce a wide variety of proteinases and reactive oxygen species
as a defense against contaminating microorganisms and they are involved in the
phagocytosis of cell debris. CXCR2 is also expressed on neovascularising ECs [65].
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The time course of CXCL8 expression correlates with massive angiogenesis between
days 1–4 [64], leading to the formation of new blood vessels. The newly formed
connective tissue is known as granulation tissue because of the granular appearance
of several capillaries. Accordingly, CXCR2-deficient mice exhibit a defective neu-
trophil recruitment, delayed monocyte recruitment and severe impairment of angio-
genesis at the site of wounding [66]. Neutrophil accumulation is followed by the
immigration of monocytes and macrophages, as a result of CCL2/CCR2 chemokine
system [64, 67]. Interestingly, from days 0–6 after wounding, CXCL12 production
by keratinocytes and fibroblasts is progressively downregulated, because of the
inhibitory effect exerted by IL-1 and TNF. Given the ubiquitous expression of
CXCR4 on both resident and inflammatory cell types, this probably represents a
counter regulatory mechanism to avoid chronic inflammation [68]. High numbers
of lymphocytes are also recruited during the whole period of healing and they rep-
resent the major leukocyte subpopulation on day 14. Between days 1–4, CXCL11,
which is constitutively produced on the surface of human microvascular endothelial
cells (HMVECs) [60] and is highly induced by epithelial monolayer disruption [64],
contributes to the pronounced lymphocyte accumulation. Subsequently, CXCL9
and CXCL10, which are both T cell attractants [69, 70], are highly expressed at
sites of lymphocyte accumulation [64]. Indeed, activated lymphocytes express high
levels of CXCR3 [71]. The fact that vascularity increases until day 4, but remains
constant afterwards, despite the presence of growth factors, such as bFGF and
PDGF, suggests that the angiostatic properties of CXCL9 and CXCL10 can prevent
unlimited vessel growth. In this context, the cell cycle dependence of CXCR3-B
expression by HMVECs is of crucial importance [71]. Indeed, only ‘angiogenic’ ECs
can respond to angiostatic stimuli, and therefore they arrest both migration and
growth through inhibition mediated by CXCL11 present on the surface of adjacent
ECs. This mechanism enables the generation of a finely regulated network of vessels
(see below) without altering the properties and functions of quiescent ECs, which
cannot respond to angiostatic chemokines. Finally, CXCL10, CXCL9 and CXCL11
mediate the migration of CXCR3-A-expressing pericytes and their proliferation
around nascent vessels. The opposite effects of CXCL9, CXCL10 and CXCL11 on
ECs and pericytes could be explained by distinct and sequential steps leading to
angiogenesis. Of note, recruitment of pericytes occurs after the progression phase of
angiogenesis that is determined by EC positioning and proliferation. The association
of pericytes to newly formed blood vessels has been suggested to regulate endothe-
lial cell proliferation, survival, migration, differentiation, and vascular branching.
Therefore, these chemokines could contribute to vessel stabilisation by inhibiting
cell cycle progression in ECs.

Migration and proliferation of keratinocytes at the wound edge are followed by
the recruitment and proliferation of dermal fibroblasts. These cells subsequently
acquire a contractile phenotype and transform into myofibroblasts, which have a
major role in wound contraction. CXCL8 might directly stimulate re-epithelialisa-
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tion, as a result of stimulating keratinocyte proliferation [72]. However, wound con-
traction is diminished by topical application of CXCL8, suggesting that elevated lev-
els of this chemokine might also contribute to retarded wound repair [73]. Finally,
a transition from granulation tissue to mature scar occurs, which is characterised by
continued collagen synthesis and catabolism. CXCL10 and CXCL11 also deliver
signals to the dermal compartment to synchronise the re-epithelialisation process.
Indeed, these chemokines limit EGF-induced fibroblast motility, but promote the
chemotaxis of undifferentiated keratinocytes [74]. A differentiated and strictly reg-
ulated CXCR3-A and CXCR3-B expression on keratinocytes and fibroblasts can be
reasonably hypothesised and contributes to this pathway, but still needs to be
proved. The possible roles of chemokines in the different steps of inflammatory
processes from the starting tissue injury until the healing phase are summarised in
Figure 1.

De novo blood vessel formation

Previous and more recent evidences indicate that ECs express specific receptors,
which can account for an important role of chemokines in angiogenesis (Fig. 2A).
Receptors for angiogenic chemokines expressed by ECs include CXCR1, CXCR2
and CXCR4 [75]. The first angiogenic chemokine receptor identified so far is
CXCR4. CXCR4/CXCL12-deficient mice die prenatally and exhibit defects in the
formation of gastrointestinal tract arteries, as well as defects in vessel development,
haematopoiesis and cardiogenesis [1, 2]. The existence of a regulatory loop between
VEGF-A and CXCL12/CXCR4 further supports the important role of this
chemokine system in the regulation of angiogenesis. Indeed, CXCL12 upregulates
VEGF-A production, and VEGF-A upregulates CXCR4 expression, thus generating
an amplification circuit, which is critically influenced by hypoxia [76, 77]. Subse-
quently, the observation of angiogenesis impairment in CXCR2-deficient mice has
allowed to demonstrate that this receptor mediates the angiogenic activity of
CXCL1, CXCL2, CXCL3, CXCL5, CXCL6 and CXCL7.

The understanding of mechanisms responsible for CXC chemokine-mediated
angiostatic effects (Fig. 2A) has been more difficult, mainly because CXCL4 and
CXCL10 inhibit angiogenesis through both receptor-independent (i.e., competing
with heparan sulfate proteoglycans on the cell surface or directly binding to these
growth factors) and receptor-dependent mechanisms [78–80]. Recently, however,
CXCR3 has been clearly detected in ECs, particularly at level of ECs from small ves-
sels [81]. More importantly, it was found that CXCR3 expression by primary
HMVECs was restricted to the S-phase of the cell cycle [81]. Our studies also led to
the demonstration that CXCL11, the third known CXCR3-binding chemokine, was
able to inhibit EC proliferation [81]. Furthermore, neutralising anti-CXCR3 anti-
bodies blocked the antiproliferative activity induced on ECs by all three known

189

Chemokine receptors in tissue cells and angiogenesis



190

Paola Romagnani et al.

Figure 1 
Role of chemokines in the different phases of inflammatory processes
In different tissues, the wound healing response shares many similarities, involving the
recruitment of inflammatory cells and the deposition of extracellular matrix, to fill the gap
created by the dying cells. Indeed, after tissue damage, chemokines such as CXCL1, CXCL5,
CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CCL2, CCL3, lead to the recruitment of mono-
cytes/macrophages, T cells and neutrophils. The concurrent presence of inflammation and
extracellular matrix deposition is a characteristic of chronic tissue injury, where the persis-
tence of a wound healing response may lead to permanent scarring and end-stage organ fail-
ure, such as in the case of glomerulosclerosis in the kidney, cirrhosis of the liver, atheroscle-
rosis, or pulmonary fibrosis. The pivotal role played by vascular pericytes of different tissues
in the process of wound healing has been clearly recognised in recent years. These cells
become activated in the presence of damage to the specific tissue, proliferate, migrate, and
acquire a myofibroblast-like phenotype, resulting in the production of extracellular matrix
as part of the healing process. Pericytes responsible for tissue fibrosis may express
chemokines such as CCL2, CCL4, CCL5, CXCL8, CXCL10, thus contributing to the patho-
genesis of the inflammatory reaction. Furthermore, pericytes can also be targets of the action
of chemokines, since they express chemokine receptors, such as CXCR3-A, CCR2, CCR5,
CCR7, which, upon activation, elicit biologic actions that favour the wound healing process,
including proliferation, migration, and extracellular matrix synthesis.



CXCR3 ligands, thus definitively proving that CXCR3 is the receptor involved in
CXC chemokine-mediated angiostatic activity [81]. The role of CXCR3 in mediat-
ing the angiostatic activity of CXCL10 has recently been confirmed in vivo by
blocking the angiostatic effects of CXCL10 in the rat cornea micropocket assay with
a neutralising anti-CXCR3 antibody [82].

Some questions, however, still needed to be solved. First, the receptor for
CXCL4, the most powerful angiostatic chemokine, remained unknown, despite the
fact that this chemokine shares many activities with CXCL10. On the other side,
CXCR3-binding chemokines also exhibit powerful chemotactic activity, whereas
the CXCL4-mediated chemotactic effect is modest or absent [83]. Finally, the oppo-
site effects exerted by CXCR3 ligands on HMVECs (inhibition of proliferation) and
on vascular pericytes (increase of proliferation) [31, 84–86] allow to hypothesise the
existence of cell-specific signal transduction pathways or even of distinct CXCR3
receptor variants.

Indeed, a distinct, previously unrecognised receptor, deriving from an alternative
splicing of the CXCR3 gene, was identified, which not only mediates the angiosta-
tic activity of the three already known CXCR3 ligands, but also acts as functional
receptor for CXCL4 [71]. By contrast, the known CXCR3, renamed CXCR3-A,
mediated the proliferation of vascular pericytes in response to CXCL9, CXCL10
and CXCL11, whereas it bound CXCL4 with very low affinity [71]. Finally, mon-
oclonal antibodies, that were selectively developed against CXCR3-B, reacted with
ECs of different human tumour tissues but poorly, or not, with those from their nor-
mal counterparts, consistently with the previously described selective effects of both
CXCL4 and CXCL10 on actively proliferating ECs [71]. Of note, another form of
CXCL4 (CXCL4L1) has recently been isolated from thrombin-stimulated human
platelets, which differed from CXCL4 in only three amino acids, and appeared to
be more potent in inhibiting chemotaxis of HMVECs toward CXCL8 or bFGF [87].
Notably, a third variant of human CXCR3 (CXCR3-alt) resulting from alternative
splicing via post-transcriptional exon skipping has also been identified [88]. How-
ever, the functional activity of this variant is not yet known. 

Tumour formation

The course in angiogenesis usually correlates with the degree of infiltration by
inflammatory leukocytes [59]. The coordination of angiogenesis and inflammation
is due to the ability shared by ECs and leukocytes to respond to chemokines [61]. 

In physiologic processes, such as wound healing, the interplay of CXC
chemokines with growth factors, cytokines and adhesion molecules regulates the
events leading to angiogenesis. The repair process is initiated immediately after
injury of blood vessels through the release of platelets-derived factors as described
above. CXCL8 expression by wounded epithelial cells induces massive angiogene-
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Figure 2 
Role of chemokines in physiologic and dysregulated angiogenesis
(A) On wounding or tissue assault, platelets are activated and form a haemostatic plug, in
which they release vasoactive mediators that regulate formation of the fibrin clot. CXCL1,
CXCL5, CXCL7, derived from activated platelets, initiate the recruitment of neutrophils.
Subsequently, CXCL8 expression by wounded epithelial cells induces massive angiogenesis,
leading to the formation of new blood vessels that exhibit high CXCR2 expression. Con-
versely, expression of the angiostatic chemokines CXCL9, CXCL10, and CXCL11 prevents
unlimited vessel growth, arresting migration and growth of proliferating endothelial cells,
which selectively express CXCR3-B.
(B) An altered balance of CXC chemokines might be crucial in contributing to cancer devel-
opment during chronic inflammatory processes through different mechanisms. Excessive pro-
duction of angiogenic chemokines, such as CXCL8, and their receptor CXCR2, can lead to a
level of inflammation that potentiates angiogenesis. Poor expression of angiostatic
chemokines and of their receptor, CXCR3-B, can lead to a level of inflammation that poten-
tiates angiogenesis or can directly alter the proliferative properties of resident epithelial cells.



sis, leading to the formation of new blood vessels expressing functional CXCR2 [64,
66]. Conversely, expression of the angiostatic chemokines CXCL9 and CXCL10
prevents unlimited vessel growth arresting migration and growth of proliferating
ECs expressing CXCR3-B. CXCL10, CXCL9 and CXCL11 also mediate the migra-
tion of CXCR3-A-expressing pericytes and their proliferation around nascent ves-
sels, thus determining their stabilisation. 

On the other hand, tumours are described as “wounds that never heal” and
appear to lack the appropriate balances between positive and negative control sig-
nals [89]. One of the main features of tumour blood vessels is their failure to become
quiescent, enabling the constant growth of new tumour blood vessels [89]. Conse-
quently, the tumour vasculature develops unique characteristics and becomes quite
distinct from existing capillaries. Furthermore, the inappropriate or decreased ves-
sel association with pericytes in tumours might account for both abnormal vessel
diameters and sensitivity to VEGF inhibition [89].

Overexpression of angiogenic CXC chemokines favours the “tumour angiogen-
esis switch” and ultimately leads to tumour progression [89]. Lung colonisation
and spontaneous metastasis in nude mice are inhibited by treatment with neutral-
ising antibody against IL-8 [90]. Furthermore, CXCL8 expression in astrocytoma
increases during tumour progression, due to reduced microenvironmental oxygen
pressure and promotes angiogenesis by binding to CXCR2 [91]. CXCL8 and
GRO-α are also induced by Kaposi Sarcoma Herpes Virus (KSHV) infection of
endothelial cells and are crucial to the angiogenic phenotype developed by KSHV-
infected ECs in cell culture and upon implantation into SCID mice [92]. A few data
are available on the role of CXCL12 in angiogenesis progression in tumours. How-
ever, CXCL12 can contribute to tumour neovascularisation through vasculogenesis-
mediated by EC precursors. Indeed, locally derived CXCL12 augments vasculogen-
esis and contributes to ischemic neovascularisation in vivo by augmenting the
recruitment and survival of EC precursors [93]. Conversely, angiostatic chemokines
play an important role in fighting tumour development and diffusion. Indeed, over-
expression of CXCL4 and CXCL10 blocks tumour progression and can also induce
regression of metastasis [94, 95]. The possibility that inadequate expression of
CXCR3-B by angiogenic ECs during a chronic inflammatory process might favour
the “tumour angiogenesis switch” might also be hypothesised. In 40 patients affect-
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Resident epithelial cells undergo neoplastic progression and then, following hypoxia, “turn
on” the expression of CXCR4. The production of CXCL12 in sites, such as lymph nodes, bone
marrow, liver, and lung, then facilitates their invasion and migration to secondary sites to
form a productive metastatic lesion and also potentiates angiogenesis, through its interac-
tion with CXCR4. On the other hand, impaired production of CXCL9, CXCL10 and CXCL11
and/or their receptor CXCR3-A can result in impaired recruitment and activation of inflam-
matory cells resulting in escape of the tumour from immune surveillance.



ed by non small cell lung cancer (NSCLC), we observed a significant inverse corre-
lation between CXCR3-B mRNA expression and both tumour stage and rate of
lymph node invasion (Lazzeri E et al. manuscript in preparation). An inverse corre-
lation between CXCR3-B expression and angiogenesis was only observed among
patients with localised tumours and without lymph node invasion, suggesting that
the loss of angiogenesis regulation by CXCR3-B might favour NSCLC diffusion.
Similar findings were found in patients with renal cell carcinoma (Lazzeri E et al.,
manuscript in preparation). Collectively, dysregulation of chemokine production
and/or interaction of chemokines with their receptor(s) appear to play an important
role in the growth of cancer and in the formation of metastases. Figure 2B shows
the possible role of different chemokines in the dysregulation of angiogenesis which
occurs in neoplastic processes.

Chemokines control of other tissue cells

Many cell types in the brain express chemokines and chemokine receptors even
under homeostatic conditions, arguing for a role of these molecules in normal brain
processes. It has indeed been shown that CXCL12 and CCR3-binding chemokines
reversibly inhibit neuronal progenitor cell (NPC) proliferation in isolated cells, neu-
rospheres, and in hippocampal slice cultures [96]. On the other hand, CX3CL1 has
been found to be able to promote survival of NPCs [96].

Cells of the central nervous system

There is also growing evidence for the role of chemokines in the regulation of cen-
tral nervous system (CNS) diseases. Elevated levels of chemokines have been indeed
observed in both experimental autoimmune encephalomyelitis (EAE) and multiple
sclerosis (MS), suggesting that these molecules act as regulators of brain inflamma-
tion [97, 98]. However, chemokines not only function as key mediators which pro-
mote leukocyte infiltration of demyelinating lesions in both EAE and MS, but they
also act on microglia and astrocytes by inducing their migration to sites of inflam-
mation, and their proliferation that could represent the basis of pathological condi-
tions such as gliosis. The major receptors on these cells appear to be CXCR1 and
CXCR3, but also CCR3 [99]. 

Osteoclasts

Although much has been learned of the mechanisms by which the migration and dif-
ferentiation of osteoclasts (OCs) are induced, only recently the essential role of
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chemokines in this process has been recognised. CXCL12 stimulates matrix metal-
loproteinase-9 activity on pre-OCs, thus favouring their recruitment to sites for OC
differentiation and bone readsorption [100]. On the other side, CXCL8 has been
shown to play a direct effect on OC differentiation and activity by interacting with
its specific receptor CXCR1, which appears to be expressed on the surface of these
cells [101]. CCL9 and its receptor CCR1 have also been found on OCs, suggesting
that this chemokine and its receptor may also play a role in the regulation of bone
readsorption [102]. Moreover, high levels of CCL3 have been found in bone mar-
row samples from patients with multiple myeloma, suggesting that it may be one of
the major factors responsible for the increased OC stimulatory activity in patients
with this disease [103]. However, a more recent study, based on the use of gene
array, showed that of all the mediators screened, CCL15 was the most strongly
upregulated in stimulated OC precursors [104]. More importantly, neutralisation of
CCL15 resulted in strongly reduced OC formation and reduced resorptive activity,
since CCL15 also promoted OC survival and prevented OC apoptosis. These results
suggest that OCs can protect themselves from apoptosis through production of
CCL15 as an autocrine survival factor [104].

Conclusions

Chemokines are secretory proteins produced by leukocytes and tissue cells either
constitutively or after induction, and exert their effects locally in paracrine or
autocrine fashion via their binding to heptahelical G-protein coupled receptors. The
increase in the secretion of chemokines during inflammation results in the selective
recruitment of leukocytes into inflamed tissues such as skin, brain, lung, kidneys and
gastrointestinal tract. In these organs many types of cells secrete chemokines, sug-
gesting that, if the appropriate stimulus is given, most cells can secrete chemokines.

Moreover, in organs such as kidney, lung and liver, chemokines may play an
important role in the maintenance of tissue homeostasis, in local remodelling
processes and may modulate the progression of fibrosis by acting on tissue specific
pericytes. Most importantly, chemokines have been found to have a main role in the
regulation of angiogenesis and tumour-related immunity, and in promoting organ-
specific metastases.

Our knowledge on the roles of chemokines in the pathophysiology of disease are
derived from studies utilising animal models of disease and mice with deleted
chemokine receptor genes. The main problems in studying the role of chemokines
in these models might be represented by the great redundancy shown by the
chemokine system (i.e., different chemokines can bind a single chemokine receptor
and a single chemokine can bind more than a receptor) and some differences
between species in the expression of chemokines and chemokine receptors and in
their binding properties. However, there is growing evidence that the neutralisation
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of chemokine activity may have a therapeutic value. Indeed, chemokine analogues
with antagonist or partial agonist activity proved effective in animal models as
inhibitors of inflammatory pathologies. In particular, given the role of chemokines
in excessive fibrosis, novel strategies aimed at preventing fibrotic disease will likely
need to address the early engagement of inflammatory cells by tissue epithelial and
interstitial cells, and possibly modulate the ability of resident tissue cells to generate
and/or recognise profibrotic signals supplied by chemokines. Finally, understanding
the biology of factors that contribute to cancer tumourigenicity, avoidance of host
immunity, metastases and angiogenesis may lead to novel strategies for therapeutic
intervention of this devastating disease.
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