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NPY family of peptides in neurobiology,
cardiovascular system and metabolism: genes,
diseases and therapeutics

Zofia Zukowska1 and Giora Z. Feuerstein2

1 Georgetown University Medical Center, Department of Physiology and Biophysics, 3900 Reservoir
Rd NW, Washington, DC 20057, USA

2 Translational Sciences, Wyeth Research, Collegeville, PA 19426, USA

Neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP)
have been the subject of intense research for over two decades. The genes for
all three members of the family and for several receptors have been cloned, and
multiple activities discovered. The high degree of conservation of structure of
these peptides among species, and their ancient origin, appear to suggest they
serve essential physiological roles in the animal kingdom. NPY emerged as a
prominent neurotransmitter and neuromodulator in the central and peripheral
nervous system, while PYY and PP, originally identified as gut peptides,
emerged as powerful paracrine and endocrine regulators of not only the gas-
trointestinal system but also many neuroendocrine networks. The peptides have
been heralded as potent vasoconstrictors and appetite stimulants, and implicat-
ed in diseases such as hypertension, ischemic heart disease and obesity. While
in many instances specific receptors responsible for the peptides’ activities
have been identified and selective small molecule ligands developed – their
therapeutic applications are still under investigations.

This book is the second of two volumes that comprehensively review and
analyze the frontiers in research and drug development in the area of NPY
peptides. The first book dealt with the newly discovered role of these peptides
as autocrine and paracrine regulators of the body’s host-defense responses,
and tissues’ adaptations to injury, ischemia or infection. The present book
presents the state-of-the-art in more classical fields of research on NPY pep-
tides, and reviews their role in the nervous, endocrine and cardiovascular sys-
tems, and metabolism. While many good reviews have been written on these
topics in the past, a thorough analysis of evidence for the role of these pep-
tides in diseases and potentials for clinical applications and therapeutics in
this field has been missing. Therefore this perspective – from genes and struc-
ture-function, to diseases and therapeutics – has been interwoven into most of
the chapters of this book.
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Section II provides a thorough introduction to subsequent disease- and ther-
apy-oriented chapters by reviewing current knowledge on the distribution and
molecular pharmacology of NPY/PP peptides and their receptors, and their
interactions with specific ligands. The core of the book presents a comprehen-
sive overview of major systems and disease processes in which NPY, PYY and
PP appear to play important roles. Special emphasis is placed on previously
neglected areas of NPY science such as congestive heart failure, renal failure,
and cerebrovascular diseases. A large portion of the book is devoted to well
recognized activities of the peptides in regulation of obesity and metabolism,
alcoholism, epilepsy, neurodegenerative disorders and anxiety. New insights
into the mechanisms of action, specific receptors involved, and novel strategies
for therapeutic interventions in these diseases are presented.

A special place in this book is also reserved for the newest frontiers of NPY
peptide science such as their role in bone remodeling, neuroplasticity and neu-
rodegeneration, as well as post-traumatic stress disorder. Closing this volume
is a chapter reviewing epidemiology of NPY gene polymorphism, the first
functional genetic mutation with potentially wide implications for many of the
diseases reviewed in this book.

4 Z. Zukowska and G.Z. Feuerstein



NPY family of peptides, receptors
and processing enzymes



An overview of neuropeptide Y: pharmacology to
molecular biology and receptor localization

Yvan Dumont and Rémi Quirion

Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 Boul.
LaSalle, Montreal, QC H4H 1R3, Canada

Introduction

Neuropeptide Y (NPY) is a 36 amino acid residues peptide that was first iso-
lated in 1982 from porcine brain [1]. The same group also isolated another
peptide from porcine intestine that has high sequence homology with NPY and
named it peptide YY (PYY) [2]. Furthermore, both peptides possess structur-
al elements similar to those of the pancreatic polypeptides (PPs) [3]. They have
thus been included in the same peptide family, called the Y family or NPY
family [4] (Tab. 1). These peptides have 36 amino acid residues, contain sev-
eral tyrosine residues, have a polyproline type II helix (amino acid residues 1
to 9), a beta-turn (amino acid residues 10–13), an amphiphilic alpha-helix
(amino acid residues 14–30) and a C-terminal area that appears to adopt a flex-
ible structure [5, 6]. Theses structural elements are likely to confer a hairpin
like-structure, in which N- and C-terminal amino acid residues are in closed
proximity as previously shown for avian PP [7, 8].

Soon thereafter, antibodies were raised against NPY and immunohisto-
chemical techniques revealed the presence of NPY-like immunoreactive (ir)
materials in the central nervous system of mammals, including human [9–12].
Interestingly, NPY-like ir was found to be widely distributed not only in the
central nervous system (CNS), but also in peripheral nervous tissues, and rep-
resents one of the most abundant peptide in the CNS [13–15]. In contrast,
PYY and PP are mostly found in endocrine cells of the intestine [16].
However, PYY-like ir was also shown to be present in the brainstem and vari-
ous hypothalamic nuclei [17].

These peptides, especially NPY and PYY, are among the most highly con-
served peptides during evolution (Tab. 1) [18–20], suggesting their significant
roles in insuring basic physiological functions. In fact, this peptide family pos-
sesses a broad range of biological effects including increased food and water
intake [21, 22], facilitated learning and memory processes [23], inhibition of
glutamatergic excitatory synaptic transmission [24–26], modulated locomotor
behaviours [27, 28], hypothermia [27, 29–31], decreased sexual behaviour
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[32], modulated cardiorespiratory parameters [33], shifted circadian rhythms
[34], produced anxiolytic-like [35] and antidepressant-like [36] effects, modu-
lation of the release of luteinizing hormone releasing hormone (LHRH) [37],
and of corticotrophin releasing factor (CRF) [38] and implication in alcohol
consumption [39]. In the periphery, NPY is a potent vasoconstrictor [40, 41].
Several of these effects appear to be physiologically relevant, based on data
obtained using NPY antibodies, receptor antagonists, antisense oligonu-
cleotides, knockout mice and transgenic animals (for reviews see [42–49]).
Moreover, NPY, PYY and PPs as well as their receptors likely have direct
implication in some pathological disorders including obesity, depression and
anxiety-related behaviors, epilepsy, memory impairments, alcohol consump-
tion and bone formation [42–52]. It has also been shown that depending on the
cell type, the stimulation of NPY receptors induced various second messenger
responses including the inhibition of adenylate cyclase [53, 54], synthesis of
inositol phosphates [55], increased intracellular calcium [54], inhibition of cal-
cium channels [56, 57] and inhibition of nicotinic cholinergic currents [58].
The various biological effects of NPY and its homologues are mediated by the
activation of at least five classes of receptors known as the Y1, Y2, Y4, Y5 and
y6 subtypes [4, 59], all of which have been cloned and pharmacologically char-
acterized using several agonists and antagonists (Tab. 2).

Molecular characterization of NPY receptors

The human gene coding for NPY is located on chromosome HSA7q15.1 in
proximity to the HOXA cluster (HSA7q15–q14) [60], whereas PYY and PP
genes are located only 10 kb apart from each other on chromosome
HSA17q21.1 close to the HOXB cluster (HSA17q21–22) [61]. The human
NPY gene is divided into four exons and three introns coding for a 97 amino
acids precursor peptide [62]. The pre-pro NPY is then proteolytically
processed to generate the C-terminal peptide of NPY (CPON) and NPY.
Although, it has been shown that CPON and NPY are co-stored and co-
released, no biological activity has been reported thus far for CPON [63]. The
genomic organization of PYY and PP genes is highly similar to that of NPY
[63] as well as the structural organization of the precursor protein [64, 65].

Y1 receptors

The first NPY receptor to be cloned was initially reported as an orphan recep-
tor isolated by screening a rat forebrain cDNA library [66]. Upon transfection
into a cell line, this clone demonstrated a ligand selectivity profile typical of
the Y1 receptor [67] (Tab. 2). The human Y1 receptor is located on chromosome
HSA4q31.3–q32 and is coding for a 384 amino acid protein that has all the
characteristics of the G-protein coupled receptor (GPCR) family including
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potential glycosylation sites in the N-terminal portion and in the second extra-
cellular loop, four extracellular cysteines in positions 33, 113, 198 and 296
which may form two disulfide bridge (Cys 33 and 296 and Cys 113 and 198),
the presence of an intracellular cysteine in the C-terminal portion at position
338 that may be used for the attachment of palmitate residues into the cell
membrane and possible phosphorylation sites in the intracellular domain. All
mammalian Y1 receptors cloned thus far display 90–95% homology with the
human Y1 receptor [20, 68]. Additionally, two variants of the mouse Y1 recep-
tors have been identified. Both isoforms bind NPY but the shorter one (307
amino acids) does not initiate second messenger responses [69].

As observed for many GPCR, the Y1 receptor is rapidly internalized togeth-
er with its ligand into endosomes and recycled to the cell surface within 60 min
upon agonist stimulation [70–73]. Additionally, it has been shown that ago-
nists induce rapid association of β-arrestin 2 with the Y1 receptor protein [74].
Interestingly, the pseudopeptide Y1 receptor antagonist, GR231118, can induce
long-lasting disappearance of cell surface Y1 receptors through a pathway dis-
tinct from the classical endocytotic/recycling pathway followed by stimulation
with an agonist [73]. This suggests that chronic treatment with Y1 antagonists
such as GR231118 may induce cell surface Y1 receptor losses, leading to
apparent conditional knockout of Y1 receptor activity and possibly being of
clinical significance. Additionally, using fluorescence resonance energy trans-
fer (FRET) and fluorescence microscopy, it has been shown that Y1 receptors
are able to form homodimers [75].

Y2 receptors

Expression screening from cDNA libraries of neuroblastoma cells known as
SMS-KAN [76], human hippocampus [77] or human brain [78] lead to the iso-
lation of a human cDNA receptor clone which demonstrated a pharmacologi-
cal binding profile similar to the Y2 receptor (Tab. 2). This receptor has been
cloned from various species and revealed 90–95% homology between species
[20, 68]. However, the overall homology between the Y1 and Y2 subtypes is
only 31%, which represents one of the lowest homology for the same receptor
family. The human Y2 receptor gene is located in close proximity to the Y1 and
Y5 genes on chromosome HSA4q31 and has a single intron of approximately
4.5 kb located in the 5'-untranslated region [79]. The human Y2 receptor gene
codes for a 381 amino acid protein and possesses the typical seven transmem-
brane helix receptor structure, including a single glycosylation site in the
N-terminal region, two extracellular cysteines in positions 122 and 203 that
may form a disulphide bridge, a single cysteine in the C-terminal region at
position 342 that could serve as attachment site for palmitate and phosphory-
lation sites in the intracellular domain.

In contrast to the Y1 receptor, the Y2 subtype does not appear to be internal-
ized following agonist stimulation [70] or if it does so, it is according to a very
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slow process. These data have been confirmed using bioluminescence reso-
nance energy transfer 2 (BRET2) technique by measuring interaction between
Y2 receptors and β-arrestin 2. In fact, after agonist stimulation, very slow asso-
ciation rate was observed between the Y2 receptor protein and β-arrestin 2
[74]. Additionally, as also seen for the Y1 subtype using FRET techniques, Y2

receptors can form homodimers [75].

Y4 receptors

Sequence homology screening with the Y1 receptor probe lead to the isolation
of a new human NPY receptor cDNA [80–82]. After transfection in cell lines,
the expressed protein demonstrated very high affinity for PP-related peptides
(Tab. 2). Sequence homology between human and other species Y4 receptors
is one of the lowest (less than 75%) reported for orthologous GPCR of differ-
ent mammalian species [20]. Additionally, the human Y4 receptor protein has
higher homology with the human Y1 (43%) than Y2 (34%) receptor [83]. The
human Y4 receptor is located on chromosome HSA10q11.2–q21 [84] and is
coding for a 375 amino acid residue protein. As for all members of this pep-
tide family, the Y4 receptor protein has all the characteristics of a GPCR
including four glycosylation sites, a seven transmembrane helix structure, four
extracellular cysteines in positions 34, 114, 201 and 298, an intracellular cys-
teine in position 340 and the presence of several serines and threonines in the
C-terminal and the intracellular loops which may serve as phosphorylation
sites for various protein kinases.

The Y4 subtype has been shown to be internalized following agonist stimu-
lation [70]. However, another group failed to observe Y4 receptor internaliza-
tion [85]. On the other hand, using BRET2 technique, it was shown that after
agonist stimulation, the Y4 receptor interacts with β-arrestin 2, but at a slower
rate than observed for Y1 and Y5 receptors in the presence of agonists [74].
Additionally, using the same technique and Western blot with antibodies
directed against GFP, it have been shown that Y4 receptors constitutively form
homodimers that dissociate after agonist stimulation [86]. However, no het-
erodimers were observed when the Y4 receptor cDNA is co-transfected with
other NPY receptor cDNAs [86].

Y5 receptors

NPY is one of the most potent orexigenic agent and this effect was proposed to
be mediated by an atypical Y1 or ‘feeding receptor’ [87, 88]. The pharmaco-
logical profile of a NPY receptor cloned from human and rat tissues was found
to be similar to that of this atypical feeding receptor (Tab. 2) and classified as
the Y5 subtype [89, 90]. The human Y5 receptor gene is transcribed in opposite
direction to the Y1 gene from a common promoter region on chromosome
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HSA4q31–q32, suggesting at least partial coordinated transcriptional regula-
tion [91]. This gene is coding for a protein of 446 amino acids, and has the
usual characteristics of a GPCR including glycosylation sites in the N-terminal
region and possible cysteine disulphide bridge in the extracellular domain (Cys
114 and 198), a cysteine residue at the C-terminal segment (which could serve
as attachment for palmitate) and phosphorylation sites in the intracellular
domain. In comparison with other NPY receptor subtypes, the Y5 receptor pro-
tein has a very long third intracellular loop (more than 130 amino acids) and an
unusually short C-terminal tail. Additionally, sequence homology between the
Y5 and other NPY receptor subtypes is very low (30%) [20, 68].

Using FRET techniques, it was shown that human Y5 receptor subtypes are
able to form homodimers [75]. When Y1 and Y5 receptors are co-transfected,
they appear to form heterodimers, and the ligand selectivity profile of Y1–Y5

heterodimers is highly similar to results obtained in homogenates containing a
mix population of Y1 and Y5 receptors [92]. Additionally, agonist stimulation
of the rhesus Y5 receptor induced a rapid association of β-arrestin 2 with the
receptor protein, suggesting that this subtype is also internalized [74].

y6 receptors

Three groups have reported the cloning of another NPY receptor in different
species [93–95], and has been designated as y6 [4]. Rather surprisingly, upon
transfection of the mouse and rabbit y6 receptor clone into cell lines, distinct
pharmacological profiles have been reported, either Y2-like [94], Y4-like [93]
or Y5-like [95] (Tab. 2). Furthermore, transfection of the human y6 receptor
cDNA failed to be fully translated and to generate a functional receptor. In fact,
the y6 receptor is not expressed in rat [96], while in human and primates the
cDNA contains a single base deletion resulting in the expression of a non-
functional NPY receptor protein which is truncated from the sixth transmem-
brane domain [93, 94].

Site directed mutagenesis of Y1 receptors

Several groups have generated mutants of the Y1 receptor in order to identify
key amino acids responsible for the interaction of NPY with this receptor
[97–103]. Overall, 68 positions of the human Y1 receptor have been mutated,
in most cases by alanine. For example, it was shown that replacing Asp
residues in positions 104 (first extracellular loop), 194 (second extracellular
loop), 200 (second extracellular loop) and 287 (Top TM7) of the Y1 receptor
protein resulted in the complete loss of detectable [125I]NPY binding [97].
These results suggested that bridges formation between positively and nega-
tively charged amino acid residues of NPY and the Y1 receptor, respectively.
Additionally, computer-assisted modeling suggested that the C-terminal tyro-
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sine amide moiety of NPY might dock at a pocket formed by hydrophobic
amino acids of transmembrane domains 1, 2, 6 and 7 of the Y1 receptor protein
[97]. Further studies revealed that Tyr100 in TM2, Phe286 in TM 6 and His298
at the top of TM7 are also critical for the interaction of NPY with the Y1 recep-
tor protein [98]. However, in order to potentially distinguish between direct and
indirect effects of mutants (conformational changes that will affect the three-
dimensional structure of the receptor), several ligands must be used. In that
regard, it was shown that alanine mutants in position Tyr100, Asp104, Trp288
and His 298 of the human Y1 receptor had no effect on specific antagonist bind-
ing using either [3H]BIBP3226, [125I]GR231118 or [3H]J-104870, while no or
low levels of specific [125I]NPY or [125I]PYY binding were detected [99, 103].
On the other hand, alanine substitution of Tyr211 in TM5 markedly reduced
specific [3H]BIBP3226 binding, but had no effect on specific [125I]NPY,
[125I]PYY, [125I]GR231118 and [3H]J-104870 binding [99, 101, 103].
Furthermore, mutation of Phe173 in TM4 by Ala resulted in the loss of specif-
ic [3H]J-104870 binding whereas an Ala mutant of Lys303 in TM7 decreased
specific [125I]GR231118 binding without affecting [3H[BIBP3226, [125I]NPY
or [125I]PYY binding [99, 103]. Contradictory results have also been reported.
For example, while Du et al. have reported that mutation of Phe173 in TM4,
Phe286 in TM6 and His 298 at the top of TM7 resulted in a decrease in
[3H]BIBP3226 binding while [125I]PYY was not affected [101], Sautel and col-
laborators found that both [125I]NPY and [3H]BIBP3226 bindings were affect-
ed by mutation of Phe286, while mutation of His298 resulted in a decrease in
[125I]NPY but not [3H] BIBP3226 binding [99]. Overlaps between different
radioligands have also been reported, revealing that different radioligands
interact with the same amino acid residues of the Y1 receptor, especially Trp163
in TM4 and Asp 287 at the top of TM6 [99, 103]. Additionally, it has been
shown that glycosylation sites in the N-terminus are crucial for correct expres-
sion of the Y1 receptor at the cell surface, especially Asn11 [102], while hav-
ing no effect on its binding properties [100], suggesting that glycosylation sites
are required for receptor trafficking in mammalian cells. Deletion of the C-ter-
minal tail of the Y1 receptor had no effect on its binding property [97]. Finally,
since it has been suggested that NPY preferentially binds at the surface of the
transmembrane segment [98], it is surprising that substitution of Trp163, which
is located deep in the fourth transmembrane domain abolished binding of all
radioligands [103]. It may be that this substitution induces a change in the tri-
dimensional conformation of the Y1 receptor. This may also apply for mutation
of Asp85 located in deep TM2 by either Asn, Ala or Glu abolished [3H]NPY
binding [102]. Taken together, these data indicate that Y1 receptor agonists and
antagonists share overlapping binding sites, but each ligand also interacts with
specific amino acid residues of the Y1 receptor.

As to other subtypes, considering that the Y2 receptor antagonist, BIIE0246
has been found to be inactive on the cloned chicken Y2 receptor [104], com-
parative sequence between the chicken and human Y2 receptor lead to the iden-
tification of three amino acid residues that could be responsible for BIIE0246
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binding to the Y2 receptor subtype namely Gln 135, Leu227 and Leu284 [105].
Of these three amino acids, Leu227 in the TM5 appears to be the most impor-
tant in the direct interaction between BIIE0246 and the Y2 receptor protein
[105]. Additionally, no data is currently available regarding the interaction of
NPY and its homologues with the Y4 and Y5 receptor proteins.

Neuropeptide Y receptor ligand profile

Endogenous ligands

NPY and PYY have low nanomolar affinities for Y1, Y2, Y5 and y6 receptors
while PPs are much less potent (over 100 nM; except human PP for the Y5 sub-
type) [4] (Tab. 3). In contrast, PPs are more potent on the Y4 subtype than NPY

An overview of neuropeptide Y: pharmacology to molecular biology and receptor localization 15

Table 3. List of agonists and antagonists of the NPY family that display nanomolar affinities for a
given NPY receptor subtype

Subtype Agonists Antagonists

Y1 NPY [67] BIBP3226 [125]
PYY [212] BIBO3304 [126]
[Leu31, Pro34]NPY [67] GR231118 [138]
[Leu31, Pro34]PYY [213] GR231118-OMe [146]
[Arg6, Pro34]NPY [116] GI264879A [131]
[Phe7, Pro34]NPY [116] LY357897 [127]

Y2 NPY [76, 77] BIIE0246 [147]
PYY [77] JNJ-5207787 [151]
NPY(2–36) [77]
NPY(3–36) [77]
PYY(3–36) [77]
C2–NPY [77]
CycloS-S [Cys20, Cys24]NPY [116]
Truncated NPY [119, 120]

Y4 rPP [81, 106]
hPP [81, 106]
GR231118 [142]
[Leu31, Pro34]PYY [175]

Y5 NPY [89, 90] CGP71683A [152]
PYY [89, 90] JCF 109 [153]
NPY(3–36) [89, 90] NPY5RA [154]
PYY(3–36) [89, 90] GW438014A [156]
[Leu31, Pro34]NPY [89, 90] L-152,804 [157]
[Leu31, Pro34]PYY [89, 90] CP732925 [155]
hPP [188, 189]
[hPP(1–17), Ala31, Aib32]NPY [122]
[cPP(1–7), NPY(19–23), Ala31, Aib32, Gln34]hPP [122]



and PYY [80–82, 106] (Tab. 3). These endogenous peptides are processed at
their N-termini by a dipeptidyl peptidase IV enzyme which remove the first
two amino acid residues to generate C-terminal fragments, 3–36 [107–109].
These fragments, especially NPY(3–36) and PYY(3–36) demonstrate marked
decreases in affinity for the Y1 subtype while being as potent as the native pep-
tide on the Y2 and Y5 receptors [4] (Tab. 3). Interestingly, it has recently been
shown that circulating PYY(3–36) and PPs that are released after a meal can
inhibit food intake [110, 111]. In addition, the NPY fragment NPY(1–30) has
been isolated from the rat brain [112] and that both NPY [113] and PYY [114]
can be hydrolyzed by neutral endopeptidase-24.11 to generate this fragment.
The physiological relevance of this fragment is unknown but could be related
to the termination of NPY and PYY effects, since N-terminal fragments have
very poor affinities for a variety of NPY receptors [115]. On the other hand, it
has been reported that NPY(1–30) could decrease spontaneous locomotor
activity and induce hypothermia, suggesting limited activities in some para-
digms [30].

Synthetic agonists

Recently, more selective Y1 receptor agonists have been developed. In contrast
to [Leu31, Pro34]PYY or [Leu31, Pro34]NPY which bind to Y1, Y4 and Y5 recep-
tor subtypes with similar affinities, [Arg6, Pro34]NPY and [Phe7, Pro34]NPY
were shown to be 100 to 1000 times more potent on Y1 than Y2 and Y5 recep-
tors [116, 117]. However, their affinity for the Y4 subtype has not been inves-
tigated yet. Interestingly, substituted analogues of [Pro34]PYY in position 6 or
7 (by Arg and Phe, respectively) may represent highly selective radioligands
for the Y1 subtype. Truncated analogues of NPY [118–121] revealed to be
potent and selective Y2 receptor agonists. Recently, a new highly selective Y2

receptor agonist, cycloS-S[Cys20, Cys24]NPY was shown to interact with Y2

receptors in low nanomolar affinity while being almost inactive in Y1 and Y5

(Ki of 1500 and 6250, respectively) assays [116]. This peptide represents a
major advantage over other truncated NPY analogues. Additionally, the devel-
opment of highly selective Y5 receptor agonists have been reported including
[Ala31, Aib32]NPY, [hPP(1–17), Ala31, Aib32]NPY and [cPP(1–7),
NPY(19–23), Ala31, Aib32, Gln34]hPP [122, 123].

Synthetic antagonists

A number of non-peptide receptor antagonists for the Y1 receptor (Tab. 3) have
been reported thus far including SR120819A [124], BIBP3226 [125],
BIBO3304 [126], LY357897 [127], J-104870 [128], diaminoalkyl substituted
benzimidazole [129], 1-substituted-4-methylbenzimidazole [130], GI264879A
[131], N-[3-(4-methylphenyl)-3-(2-pyridyl)propyl]-N’-[3-(1H-imidazole-4-
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yl)propyl]guanidine [132], J-115814 [128], H409/22 [133] and benzazepines
derivatives [134, 135]. Some of these antagonists have been used either as radi-
oligands [136] or blockers to investigate the autoradiographic distribution of
the Y1 subtype and to establish in greater details their ligand selectivity pro-
files. Most of these molecules demonstrated better selectivity and specificity
for the Y1 versus other NPY receptor subtypes as compare to most Y1-prefer-
ential agonists [49, 59, 137].

The peptidergic Y1 antagonist, homodimeric Ile-Glu-Pro-Dpr-Tyr-Arg-Leu-
Arg-Tyr-CONH2 known as GR231118 or 1229U91 [138, 139] has been radio-
labeled and use as radioligand to target Y1 receptor sites [140, 141]. Most spe-
cific [125I]GR231118 labelling is sensitive to Y1 receptor antagonist [140, 141].
However, low levels of labelling to the Y4 subtype cannot be excluded, since
GR231118 has potent agonistic properties on Y4 receptors [142, 143] and its
radiolabeled form binds with low nM affinities to cells transfected with the Y4

receptor cDNA [140].
The difference between [125I]GR231118 and [125I][Leu31, Pro34]PYY to

label Y1 sites is that [125I]GR231118 can target Y1 binding sites in their high
and low affinity states while [125I][Leu31, Pro34]PYY recognizes only the high
affinity state. On the other hand, using both agonist ([Leu31, Pro34]PYY) and
antagonist (GR231118) as radiolabeled probes may provide valuable informa-
tion as it is well known that antagonists bind to GPCR in low and high affini-
ty states with similar affinities whereas agonists are able to discriminate
between affinity states. Interestingly, competition binding experiments using
human brain tissues revealed that most Y1 receptors are in the low affinity state
in this preparation [144]. Under these conditions, [125I]GR231118 could prove
more useful as it can target all affinity states of the receptor. Moreover, com-
parison between specific [125I][Leu31, Pro34]PYY/BIBO3304-sensitive and
[125I]GR231118/BIBO3304-sensitive sites following drug treatment or under
pathological conditions could provide more detailed information on Y1 recep-
tor dynamics as we recently demonstrated in p-chlorophenylalanine (PCPA)
treated animals [145]. Interestingly, replacing the amide by a O-methyl ester
residue (OMe) in GR231118 resulted in an analogue that conserved its affini-
ty for the Y1 receptor subtype but has markedly reduced affinity for the Y4

receptor [146]. This could represent a good radioligand for the Y1 receptor.
A Y2 receptor antagonist, BIIE0246 has been developed [147] and revealed

to be highly selective for the Y2 versus Y1, Y4 and Y5 subtypes in various assays
[148–150]. Recently, the characterization of a second Y2 receptor antagonist
has been reported, JNJ-5207787 [151]. This new antagonist is apparently ten
times less potent than BIIE0246, but has the main advantage to be able to cross
the blood brain barrier [151].

The characterization of several Y5 receptor antagonists have been reported
thus far (Tab. 3) including CGP71683A [152], JCF109 [153], NPY5RA-972
[154], 3-[2-[6-(2-tert-butoxyethoxy)pyridin-3-yl]-1H-imidazol-4-yl]benzoni-
trile hydrochloride salt [155], GW438014A [156], L-152,804 [157], pyrrolo
[3, 2-d] pyrimidine derivatives [158], 2-substituted 4-amino-quinazolin deriv-
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atives [159], alpha-substituted N-(sulfonamino)alkyl-beta aminotetralins
[160–162]. With their wide distribution to academic laboratories, it should
help to establish better the role of the Y5 receptor in the organism.

On the possible existence of other NPY receptor subtypes

Various groups have proposed the existence of a receptor that possesses high
affinity for NPY, but not PYY, in several assays including the rat brain [163],
rat colon [164], rat lung [165] and rat and bovine adrenals [166]. However, evi-
dence for the existence of this subtype is still circumstantial and this receptor
has not been cloned yet. High levels of Y1 receptors were found to be
expressed in bovine chromaffin cells [167]. Additionally, Y2 and Y4 mRNA are
known to be expressed in the rat colon [168] and brainstem nuclei [169]. It
thus appears that the atypical pharmacological profile “(Y3)” observed in these
tissues may in fact result from the expression of multiple known subtypes of
NPY receptors. Accordingly, a more detailed study using NPY receptor antag-
onists have demonstrated that the contractile effects induced by NPY and relat-
ed molecules in the rat colon was due to the activation of both Y2 and Y4 recep-
tors [170].

Using either [125I]hPP [171], [125I]rPP [42] or [125I]bPP [172–174], moder-
ate to very high levels of specific binding were seen in the medial preoptic
area, paraventricular hypothalamic nucleus, interpeduncular nuclei, nucleus
tractus solitarius, area postrema and dorso vagal nucleus of the rat brain. The
detailed ligand selectivity profile of those sites has not been clearly established
and may represent more than a single population of sites. In agreement with
this hypothesis, quantitative receptor autoradiography demonstrated that the
labelling seen with [125I]rPP (a Y4 ligand with low affinity for the Y5 receptor)
was similar albeit not identical to that of specific [125I]hPP sites. Indeed, some
rat brain nuclei are enriched with specific [125I]hPP binding but not [125I]rPP
binding (Tab. 4) [42]. Furthermore, considering that GR231118 [142, 143] and
[Leu31, Pro34]PYY [175] as well as their iodinated counterparts [140, 172] pos-
sess high affinities for the Y4 receptor subtype, it was surprising that only very
low specific [125I]GR231118 [140, 141] and [125I][Leu31, Pro34]PYY [172,
176–178] binding was detected in rat brain areas such as the medial preoptic
area, paraventricular hypothalamic nucleus and interpeduncular nuclei. Taken
together, those results suggest that [125I]hPP could recognize additional popu-
lation of NPY-related binding sites. These specific sites may represent the Y5

subtype as hPP is known to possess high affinity for this receptor [89, 178]. On
the other hand, if they were of the Y5 subtype, it should have been possible to
detect them using [125I][Leu31, Pro34]PYY in the presence of Y1 receptor antag-
onist, but this was not the case [178]. Furthermore, binding sites characterized
as Y5 receptors in the rat brain [178, 179] may in fact include more than one
population of sites. Accordingly, further studies using highly selective Y4 and
Y5 receptor agonists and antagonists as well as molecular approaches will be
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required to resolve this issue. In that regard, we have recently demonstrated the
existence of specific [125I][Leu31, Pro34]PYY sites resistant to blocking con-
centrations of Y1, Y4 and Y5 agonists and antagonists as well as specific bind-
ing labelled by [125I]hPP that is insensitive to Y4 and Y5 agonists and antago-
nists [180]. Moreover, Herzog and collaborators have recently demonstrated
the existence of specific [125I]PYY sites that were resistant to Y5 agonists in Y1,
Y2 and Y4 triple-knockout mice [181]. Those sites unlikely represent y6 recep-
tors, since in situ hybridization did not revealed positive signal for y6 receptor
mRNA in the hippocampus of the triple knockout mice [181].

NPY receptor localization

Various techniques are presently available to determine the distribution and
localization of NPY receptors. These techniques include in vivo and in vitro
bioassays, receptor binding assays, receptor autoradiography, in situ
hybridization and immunohistochemistry. However, to be fully effective these
techniques required highly selective and specific tools. Over the past 15 years,
considerable efforts have been done in order to develop selective and specific
agonists, antagonists and antibodies to characterize and visualize each NPY
receptor subtypes [137].
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Table 4 Quantitative autoradiographic analysis of [125I]hPP and [125I]rPP in various regions of the rat
brain

Brain regions [125I]hPP [125I]rPP

External plexiform of the olfactory bulb 15 ± 2* 5 ± 1
Anterior olfactory nucleus 27 ± 2* 13 ± 1
Frontal cortex 8 ± 2 11 ± 2
Parietal cortex 9 ± 1 8 ± 2
Caudate putamen 19 ± 2 23 ± 2
Ventral hippocampus 24 ± 2* 16 ± 1
Medial preoptic area 11 ± 1 10 ± 1
Paraventricular hypothalamic nucleus 10 ± 1 9 ± 1
Thalamus 32 ± 2 31 ± 3
Interpeduncular nucleus 100 100
Cerebellum 3 ± 1 3 ± 1
Nucleus tractus solitarius 34 ± 3* 22 ± 2
Area postrema 205 ± 15* 150 ± 13
Dorsal vagal nuclei 109 ± 9 98 ± 8

Comparative quantitative autoradiographic data represented as percentage of specific binding (total
binding being substracted from the nonspecific binding obtained on adjacent coronal sections) quan-
tified in the interpeduncular nucleus (100%) for both [125I]hPP and [125I]rPP. Values are the
mean ± SEM of 3 to 5 determinations. * p < 0.01



NPY receptor binding sites have been characterized and their differential
distribution investigated using various radioligands including [125I]NPY [182],
[125I]PYY [183, 184], [125I][Leu31, Pro34]NPY [185], [125I][Leu31, Pro34]PYY
[177, 186], [125I]NPY2–36 [187], [125I]PYY3–36 [177, 186], [125I]bPP [172],
[125I]hPP [171], [125I]GR231118 [140, 141], [3H]BIBP3226 [136],
[125I][hPP1–17, Ala31, Aib32]NPY [188] and [125I][cPP(1–7), NPY(19–23),
Ala31, Aib32, Gln34]hPP [189]. Additionally, the distribution of functional NPY
receptors have been addressed by evaluating the exchange of guanosine
diphosphate (GDP) for guanosine triphosphate (GTP) using stable GTP ana-
logues ([35S]GTPγS) following agonist stimulation [190, 191]. However, most
agonists used in those studies are known to recognize more than one receptor
subtypes and/or radiolabeled molecules possess signal/noise ratio that are too
high for detailed receptor binding studies. The development of iodinated non-
peptide Y1, Y2, Y4 and Y5 receptor antagonists will prove most useful to char-
acterize and establish the detailed distribution of each NPY receptor in the
CNS and peripheral tissues, since NPY receptor antagonists display better
selectivity than agonists for a given NPY receptor subtype.

In parallel, the development of selective and specific NPY receptor anti-
bodies should be most useful to investigate in detail the discrete localization of
NPY receptors at the light and electron microscopic level in a variety of tis-
sues. In that regard, it was recently demonstrated that Y1 receptor antibody
directed against its C-terminal region was highly selective [192, 193] as no sig-
nal was observed in Y1 knockout (KO) mice [192]. This was not the case for
other Y1 antibodies directed against the N-terminal or extracellular loop of the
Y1 receptor [192]. Additionally, Y5 receptor antibodies have recently been
developed and used to study the anatomical distribution of this receptor class
in the brain [193–195]. To our knowledge, Y2 and Y4 receptor antibodies have
yet to be reported and/or fully characterized yet.

Among the various NPY receptors, the Y1 and Y2 subtypes are the most
abundant proteins expressed in all species studied thus far [59, 179, 191]. In
peripheral tissues, the Y1 and Y2 subtypes are expressed in various tissues
including blood vessels, heart, airways, adrenal and pancreatic glands, kidney,
urogenital and gastrointestinal tracts [13]. In blood vessels, Y1 receptors medi-
ate vasoconstriction [196, 197]. The Y2 receptor subtype is predominantly
found at the pre-synaptic level, and is involved in the inhibition of neurotrans-
mitter release, especially noradrenaline [198, 199]. However, post-synaptic Y2

receptors have also been reported to exist in blood vessels [200].
In the rat CNS, Y1 receptors are predominantly expressed in the olfactory

nuclei, cerebral cortex, claustrum, thalamus, medial geniculate nucleus, brain-
stem nuclei and lamina 1 and 2 of the spinal cord [42]. Overall, the distribu-
tion pattern of Y1 receptors obtained using different techniques such as recep-
tor autoradiography [140, 177], [35S]GTPγS-associated Y1 receptor activation
[191], in situ hybridization [169] and immunohistochemistry [192] is highly
similar. Additionally, there is evidence that the Y1 receptor subtype may act as
an autoreceptor in the CNS [201, 202] in addition to its better established post-
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synaptic localization. The recent development of highly specific and selective
Y1 receptor antibodies [192] will be very useful to evaluate the distribution of
Y1 receptors at the electron microscopic level, and to determine the cellular
phenotype(s) that express this subtype. Already, there is some evidences that
Y1 receptors are not limited to neuronal cells but can also be expressed in glia
[203].

The distribution seen for Y2 receptor is markedly different from that
observed for Y1 receptors in the CNS [42]. High levels of Y2 receptors are
expressed in the lateral septum, hippocampus, septofimbrial nucleus, stria ter-
minalis, brainstem nuclei and lamina 1 and 2 of the spinal cord, while moder-
ate levels are detected in various hypothalamic nuclei and substantia nigra,
pars compacta. Moreover, as also seen for the Y1 receptor subtype, the overall
distribution of Y2 receptors established using radiolabeled probes such as
[125I]PYY(3–36) [148, 177], [35S]GTPγS in the presence of C2-NPY to acti-
vate Y2 receptors [191] or in situ hybridization [169, 191] is rather similar.
However, species differences exist in the level of expression of Y1 and Y2

receptor proteins [42, 179, 204].
The expression of the Y4 and Y5 receptor mRNAs and proteins has also been

reported in both central and peripheral tissues. However, levels are usually
lower than that of the Y1 and Y2 subtypes. Northern blot analysis revealed the
presence of Y4 receptor mRNA in the brain, lung, gastrointestinal tract and
testis [81], while in situ hybridization demonstrated only low levels of expres-
sion of the Y4 receptor mRNA in the rat brain [169].

The distribution of Y4-like receptor binding protein has been investigated
using [125I]PP [171, 172, 174]. A very discrete labeling was obtained with
these probes with moderate to very high amounts of binding found in the medi-
al preoptic area, paraventricular nucleus of the hypothalamus, interpeduncular
nucleus, nucleus tractus solitarius and area postrema. Interestingly, the medial
preoptic area, paraventricular nucleus of the hypothalamus and interpeduncu-
lar nucleus contained much lower amounts of specific [125I][Leu31, Pro34]PYY
[172, 177] and [125I]GR231118 [140, 141] binding sites even if these two radi-
oligands possess high affinities for the Y4 receptor subtype [142, 175].
Moreover, it was recently been shown that agonist-stimulated [35S]GTPγS
failed to detect Y4 receptor activation with rPP, GR231118 and [Leu31,
Pro34]NPY [191]. This could be taken as evidence for the existence in these
regions of yet another receptor that is preferentially recognized by PP-related
molecules (see above).

In situ hybridization signals of the Y5 receptor mRNA were observed in the
external plexiform layer of the olfactory bulb, anterior olfactory nuclei, olfac-
tory tubercle, piriform cortex, hippocampus, suprachiasmatic and arcuate
nuclei of the rat brain [169, 205, 206]. In human, strong in situ hybridization
signals of Y5 receptor mRNA have been found at the level of the arcuate nucle-
us, while low levels were observed in most other human brain structures [207].

A few years ago, we reported that [125I][Leu31, Pro34]PYY specifically
bound to at least two different populations of sites (Y1 and Y5) in the rat brain
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using either BIBP3226 [178] or BIBO3304 [176], two Y1 receptor antagonists
[126, 208] as blocking agents. Competition binding assays of sites labelled by
[125I][Leu31, Pro34]PYY in the presence of Y1 blockers revealed a ligand selec-
tivity profile similar to that reported for Y5 receptors and those sites were
found to be located in the external plexiform layer of the olfactory bulb, lat-
eral septum, dentate gyrus, nucleus tractus solitarius and area postrema [178].
However, under these conditions, the possible labelling of the Y4 receptor
could not be fully excluded as [125I][Leu31, Pro34]PYY also possesses a rather
high affinity for this subtype [175]. Most recently, we have developed
[125I][hPP(1–17), Ala31, Aib32]NPY as the first Y5 radioligand [188].
However, this probe displayed rather high non-specific binding rendering it
less than optimal for autoradiographic studies. We have thus radiolabeled
[cPP(1–7), NPY(19–23), Ala31, Aib32, Gln34]hPP and characterized its bind-
ing properties in rat brain homogenates and transfected cell lines. Our results
demonstrated that [125I][cPP(1–7), NPY(19–23), Ala31, Aib32, Gln34]hPP
binds with high affinity to the Y5 receptor, but not to the Y1, Y2 and Y4 sub-
types. Furthermore, receptor autoradiography studies have shown that signif-
icant amounts of specific [125I][cPP(1–7), NPY(19–23), Ala31, Aib32,
Gln34]hPP binding sites are found in the lateral septum and area postrema of
the rat brain, while very low levels of specific sites were observed in other
brain structures [189]. This receptor distribution is somewhat distinct from
that previously reported using [125I][Leu31, Pro34]PYY under blocking condi-
tion. Additionally, while significant amounts of specific [125I][Leu31,
Pro34]PYY/Y1-insensitive sites (Y5-like) were found in the nucleus tractus
solitarius [178], we were unable to detect significant amounts of specific
[125I][cPP(1–7), NPY(19–23), Ala31, Aib32, Gln34]hPP binding sites in this
nucleus [189]. Moreover, Shaw and collaborators were not able to observe
any increase in [35S]GTPγS binding using [cPP(1–7), NPY(19–23), Ala31,
Aib32, Gln34]hPP in the rat brain [191]. It thus appears that the distribution of
sites previously reported for the “Y5-like subtype” may in fact represents a
heterogeneous population of sites.

Messenger RNA for the y6 receptor is expressed in the hypothalamus and in
the kidney of the mouse [95]. However, there is no conclusive evidence that
the y6 receptor protein in indeed expressed in mouse, rabbit or dog. The fact
that mice may express functional y6 receptor protein is one of the major con-
cerns for the interpretation of results obtained in this species, especially in
regards to receptor knockout studies.

General Conclusion

The recent development of selective agonists and antagonists for the various
NPY receptor subtype family has greatly facilitated the characterization of the
subtype(s) involved in a given effect of NPY, PYY and the PPs. On the other
hand, some of these molecules still lack full selectivity and specificity. For
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example, BIBP3226 and BIBO33034, two Y1 receptor antagonists without sig-
nificant affinity for Y2, Y4 and Y5 receptors were shown to display some affin-
ity (100 nM) for NPFF receptors [209, 210]. Additionally, CGP71683A, a Y5

antagonist devoid of significant affinity for Y1, Y2 and Y4 receptors [176] was
reported to display high affinity for muscarinic and adrenergic receptors, and
serotonergic uptake carrier proteins [211]. Accordingly, extra care must be
taken in the interpretation of results obtained using these molecules, especial-
ly in vivo assays. Furthermore, data obtained in mice should take into account
the possible involvement of the y6 receptor usually expressed in this species
[93]. It is expected that over the next few years, use of selective NPY receptor
subtype agonists and antagonists, receptor antibodies, knockout and transgenic
animals (rat and mice) will help to delineate the precise role of this family of
peptide in the organism.
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Introduction

The three peptides neuropeptide Y (NPY), peptide YY (PYY) and pancreatic
polypeptide (PP) sharing a similar structure belong to the NPY hormone fam-
ily and activate G-protein coupled NPY receptors including several subtypes,
namely Y1, Y2, Y3, Y4, Y5 and y6. Structure-affinity and structure-activity rela-
tionship studies of peptide analogues gave an insight in the individual require-
ments concerning the bioactive conformation of the ligand at the various
receptors and supplied important information for the development of subtype
selective compounds with function as agonists but also as antagonists. Based
on these results initial receptor mutagenesis investigations were performed
leading to the identification of some key residues of the ligand-receptor inter-
action. This will help to evolve reliable 3D models of NPY receptors and can
be further used for NPY docking studies. To understand the complex mecha-
nism of G-protein-coupled receptor (GPCR) activation the role of receptor
dimerization in this process has to be clarified. Recently, also for NPY recep-
tors homo- such as heterodimerization has been shown. In this article, we sum-
marize characteristic features of the subtype specific ligand-receptor interac-
tion elaborated so far.

NPY, PP and PYY a peptide ligand family

Neuropeptide Y (NPY) represents together with peptide YY (PYY) and the
pancreatic polypeptide (PP) a ligand family of neuroendocrine hormones
(NPY family) which has been of increasing interest in the last 20 years. These
peptides are formed by proteolytic processing of preprohormones [1, 2]. The
almost exclusively in endocrine pancreas and intestinal cells expressed PP was
the first member of this peptide family that was identified and sequenced after
finding as a contamination in extracts of chicken insulin [3, 4]. Evolution stud-
ies concerning the NPY peptide family revealed PP as the most rapidly evolv-
ing neuroendocrine peptide among tetrapods with only 50% identity between
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mammals, birds and amphibians [5]. Only seven residues (Pro5, Pro8, Gly9,
Ala12, Tyr27, Arg33 and Arg35) are invariant among species studied so far [6]
(Fig. 1). PP mainly acts as hormone which is released in response to meals and
thereby regulates pancreatic and gastric secretion [7, 8]. Beside this metabolic
function the existence of PP binding sites in several rat and human brain
regions also suggests an effect on brain. An important role with respect to con-
trolling the secretory function of the cortex in a paracrine manner was proven
[9]. PYY was first isolated from porcine intestine and is similar to PP, a hor-
mone that is released in the gastrointestinal tract for the regulation of meal
digestion [10, 11]. Additionally, PYY could be found in neurons, which also
indicates a neuronal function for PYY [12]. Compared to PP, PYY is less vari-
able between different species, particularly in mammals that have nine differ-
ences to the gnathostome ancestor [5]. NPY was first characterized from
porcine brain [13, 14] and has remained extremely well conserved during evo-
lution with no gnathostome species differs from the ancestral gnathostome
sequence at more than five positions [5, 15]. It is widely distributed within the
central and peripheral nervous system. NPY represents one of the most abun-
dant neuropeptides in the brain [16] and plays an important role in the regula-
tion of many physiological mechanisms, such as food intake [17–19], thermo-
genesis [20], memory [18, 21] and reproduction [22]. The latter results from
the stimulatory effect of NPY on luteinizing hormone (LH) secretion. In the
periphery, NPY could be proven in sympathetic nerves, co-stored and co-
released with norepinephrine [23], and in nonsympathetic neurons of several
organs. For example NPY, like PYY, has an influence on blood pressure, which
is exerted through vasoconstriction in skeletal muscles [24], heart [25], kidney
[26] and brain [27]. As common structural features NPY, PYY and PP consist
of 36 amino acids (except chicken PYY, which is 37), are C-terminally ami-
dated, show several tyrosine residues and have a considerable amino acid
homology [28]. Seven residues are constant between all species of NPY, PYY
and PP; these are Pro5, Pro8, Gly9, Ala12, Tyr27, Arg33 and Arg35.
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Figure 1. Alignment of the human neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypep-
tide (PP) amino acid sequence. Constant positions in all species for the three peptides are underlined.
The seven constant residues within the NPY-family are indicated (boxed). The schematic structure
shown at the bottom corresponds to the x-ray structure of avian PP [30].



Structure of the ligand

Corresponding to the high degree of amino acid homology between the pep-
tides of the NPY family it was assumed that they are able to adopt similar sec-
ondary structures [29]. The first structural idea is based on X-ray crystallogra-
phy using crystals of symmetric dimers of avian (turkey) PP (aPP). It com-
prises an extended type II polyproline helix (residue 1–8) that is followed by
a turn (residue 9–13) and an ambiphatic α-helix (residue 14–31) [30]. The
well defined tertiary structure is characterized by a typical hairpin-like fold,
also named PP-fold, which is stabilized by hydrophobic interactions between
residues of the N-terminal part and the α-helix. The five most carboxy-termi-
nal residues are less structurally defined and oriented in opposite direction
with respect to the α-helix. Nuclear Magnetic Resonance (NMR) studies sup-
port a similar model for human NPY, a polyproline stretch (residue 1–10) fol-
lowed by a tight hairpin structure (residue 11–14) and two short α-helices
(residues 15–26 and 28–35). Hydrophobic interactions promote the packing of
the two helices in a typical β-hairpin fold. Other NMR studies suggest a dimer-
ization of NPY that is characterized by an antiparallel, hydrophobic packing of
two helical units with the N-terminal segment poorly defined [31–34]. Latest
results indicate that NPY exists as dimer only at high, millimolar concentra-
tions. Dimer stabilization results from intermolecular hydrophobic interactions
whereas the α-helical segments are in parallel and antiparallel orientation. As
NPY is active in vivo at nanomolar concentration a shift of the dimerization
equilibrium occurs towards the monomeric form. Based on fluorescence reso-
nance energy transfer studies a folding back of the N-terminal tail onto the
C-terminal α-helix (PP-fold) could not be confirmed for monomeric NPY. The
monomeric structure of NPY in the presence of micelles reveals a flexible
N-terminal segment (residue 1–13) and an α-helical C-terminus (residue
14–36) that is orientated parallel to the micelle surface. Accordingly, the C-ter-
minal residues 32–36 become α-helical in the membrane bound state in con-
trast to the flexibility in solution [35–37].

The Y Receptors

NPY, PYY and PP bind to a network of receptor subtypes that belong to the
rhodopsin-like superfamily of G-protein coupled receptors. Currently five dif-
ferent receptor types have been cloned in mammals (Y1, Y2, Y4, Y5 and y6) that
can be distinguished by their affinity for NPY, PYY and PP. They have been
described pharmacologically indicating an overlapping binding pattern for the
three peptide ligands. Since the Y1, Y2 and Y5 receptor differ more from each
other than any other G-protein coupled receptors with only 27–31% overall
identity and 40–43% in the transmembrane (TM) helices this partly common
binding profile is surprising [38]. An additional Y3 receptor has been postulat-
ed from pharmacological studies using various tissue preparations. The y6
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receptor is expressed functionally in rabbit and mice whereas in primates only
mRNA for the truncated form of y6 is present. In rat, this receptor subtype is
absent as well [39–41].

Activated NPY receptors stimulate inhibition of intracellular cAMP accu-
mulation via pertussis toxin-sensitive G-proteins (Gi/Go) [42–44].
Investigations in smooth muscle identified a co-expression of Y1, Y2 and Y4

receptors that exhibited distinctive patterns of coupling to G-proteins [45]. All
three subtypes were negatively coupled to adenylyl cyclase via one or more
isoform of Gi (mainly Gi2) and it was shown for the first time that Y2 and Y4

are able to couple to Gq and stimulate IP3 formation and intracellular Ca2+

mobilization, additionally. Furthermore also for the Y1 receptor a coupling to
phosphotidylinositol hydrolysis could be shown depending on the cell type in
which the receptor is expressed [42, 46, 47]. Other signaling pathways such as
activation of mitogen-activated protein kinase in gut epithelial cells [48], inhi-
bition of K+ and Ca2+ channels have been observed in the vasculature [49] and
in neurons [50], respectively [51].

The Y1 receptor

The Y1 receptor was the first NPY receptor that has been cloned [52] and it
displays 90–96% overall identity across mammals [38]. The human Y1 con-
sists of 384 amino acids [43] and three splice variants were characterized that
yield multiple promoters with tissue specific expression patterns [53]. In con-
trast to the other NPY receptors, the coding region of Y1 harbors an intron of
about 100 base pairs in all species investigated so far. Interestingly, this intron
has been shown to enhance the expression of the Y1 and Y5 receptor in vitro
[54]. The Y1 receptor is expressed in vascular smooth muscle cells [55–57],
cerebral cortex [58, 59], colon [60] and human adipocytes [61]. The cellular
receptor distribution provides hints about its function. Most of the vascular
[62–64] and antinociceptive effects [65, 66] of NPY contribute to the Y1 recep-
tor. In addition, this subtype is involved in the feeding response [67–69],
together with the Y5 receptor. Several physiological functions, such as
decreased anxiety [70] and depression [71] underlay the regulation by Y1

receptors. Recent studies emphasize the importance of NPY in the consump-
tion of ethanol and confirmed a Y1 receptor participation in this process [72,
73]. Studies using radioligand binding [74], confocal microscopy with fluo-
rescent ligands [75] or green fluorescent protein tagged receptor [76] showed
rapid Y1 receptor internalization upon agonist stimulation. In agreement with
the high internalization rate it was furthermore proven that agonists induce a
rapid Y1 receptor association with β-arrestin 2 that is known to mediate inter-
nalization of GPCRs [77]. The human cell lines SK-N-MC [78, 79] and ery-
throleukemia (HEL) cells [80, 81] stably express Y1 receptors such as the rat
cell line PC12 [82].
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The Y2 receptor

The Y2 receptor gene was first cloned from human SMS-KAN cells [83] and
is also available in a human astrocytoma cell line, LN319 [84], as well as in
CHP234 [85, 86]. The human Y2 receptor consists of 381 amino acids. Like
Y1, the Y2 receptor shows a high conservation in mammals with more than
90% identity [87–90] and about 80% identity when comparing mammalian
and chicken Y2 [91]. The Y2 receptor is located in sympathetic and parasym-
pathetic nerve fibres [92, 93], hippocampus [94, 95], intestine [96] and certain
blood vessels. The typical responses associated with this receptor are enhanced
memory retention [97] and presynaptic inhibition of neurotransmitter release,
e.g., noradrenaline [57, 98]. The latter may give an explanation for some
opposing relationships between generally postsynaptic Y1 and presynaptic Y2

receptor. For example Y1 specific agonists are anxiolytic [99] whereas Y2 ago-
nists seem to be anxiogenic [99, 100]. Additionally, vascular effects are medi-
ated via Y2 receptors and this receptor subtype is also involved in angiogene-
sis [101] as well as in effects related to the circadian rhythm [102, 103]. In
contrast to Y1, the Y2 receptor does not appear to internalize after prolonged
agonist stimulation or does so only very slowly [74, 76]. This is in agreement
with a extreme slow and slight association with β-arrestin 2 [77].

The Y3 receptor

Despite a variety of attempts, the Y3 receptor has not been cloned until now.
This receptor subtype has only been suggested from pharmacological studies
of many tissues characterized by its at least 10-fold lower affinity for PYY
than for NPY [104, 105]. Since no specific agonists or antagonists have been
identified controversial discussions about the real existence of such a “Y3

receptor site” were induced. The Y3 receptor is supposed to be expressed in the
nucleus tractus solitarius (NTS) of the rat brain stem in which it should be
responsible for hypotension and bradycardia [105]. Furthermore, a localization
of the Y3 receptor was suggested in the human adrenal medulla [106], in rat
cardiac membranes [107] and in bovine chromaffin cells [108–110].
Additional effects associated with this receptor are inhibition of catecholamine
release [110] and modulation of the arterial blood pressure [111].

The Y4 receptor

The Y4 receptor was the third NPY receptor that was cloned (after Y1 and Y2).
As it is characterized by a high affinity for PP it was originally designated as
“PP1” receptor [112, 113]. The human Y4 receptor consists of 375 amino
acids. Based on the lower degree of overall sequence identity between differ-
ent species (74–86%) the Y4 receptor represents one of the most evolving
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GPCRs known so far [38]. In addition, seven silent polymorphisms have been
found in the Y4 receptor. Summarizing, there is a system comprising three of
the most conserved receptors (Y1, Y2, Y5) binding a very conserved peptide
(NPY) and one of the least conserved receptors (Y4) interacting with one very
rapidly evolving peptide (PP). Y4 receptor existence could be proven in a vari-
ety of tissues, e.g., brain, hypothalamus, skeletal muscle, thyroid gland, heart,
prostate, stomach, small intestine, colon and pancreas [112, 113]. The effects
that are transmitted via this receptor subtype might be these described for PP,
such as inhibition of pancreatic secretion, gall bladder contraction [114, 115]
and stimulation of LH secretion [116]. Concerning the ability of Y4 receptor
internalization upon agonist stimulation controversy results are available [74,
117]. Investigations of Y4 receptor association with β-arrestin 2 showed an
intermediate behavior compared to Y1 and Y2 [77].

The Y5 receptor

The Y5 receptor was first cloned from a hypothalamic rat cDNA library [118].
There its receptor gene encodes for a 456 amino acid protein whereas in anoth-
er report a 445 amino acid protein was identified [118, 119]. Concerning the
human Y5 receptor also different numbers of amino acids are described (see
Tab. 1). However, the Y5 receptor is much larger than the other NPY receptors.
The chromosomal localization of the human Y5 receptor is overlapping and in
the opposite orientation to the Y1 receptor, suggesting a co-regulation of these
two subtypes [120, 121]. An interesting structural feature of the Y5 receptor
represents its large third cytoplasmic loop with about 100 residues more than
the other NPY receptors. However, the C-terminus is much shorter than in Y1,
Y2 and Y4 receptor subtype. The Y5 receptor shows a lower overall identity
with 82–95% between different mammals compared to Y1 and Y2 [38, 121].
This is mostly due to the great variability in the third intracellular loop that
may induce differences between species in the preference or regulation of
G-protein coupling [38, 121, 122]. The Y5 receptor is expressed in the hypo-
thalamus where it is involved in the stimulation of appetite, together with Y1

[118]. Borowsky could show that the Y5 receptor is widely distributed in the
human brain, especially in the cortex, putamen and caudate nuleus [120]. In
the periphery this subtype can be found in the intestine, ovary, testis, spleen,
pancreas, skeletal muscle and liver. Some effects that are transmitted via the
Y5 receptor are reproduction through inhibition of LH secretion [123], regula-
tion of brain seizures [124] and a possible involvement in the regulation of cir-
cadian rhythm [102, 125]. A human endometrial cancer cell line stably
expressed this receptor after transfection, HEC-1B-hY5 [126]. Also for Y5

receptor internalization after agonist stimulation could be shown but it was
much slower compared to the internalization of the Y1 receptor [127].
Concerning association with β-arrestin 2 the Y5 receptor showed a rapid
response [77].
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Structural properties of Y receptors

Several modeling studies of the Y1 receptor and one model of the Y2 receptor
revealed a counter-clockwise arrangement of the seven transmembrane helices
when viewed from extracellular side [128–131]. Furthermore TM1 and TM4
were most frequently exposed to the lipid bilayer. The helical packing is guar-
anteed by interactions between residues of different helices. Some of these
residues that were identified by mutagenesis could be confirmed by modeling,
e.g., a direct interaction between Asp86 (TM2) and Asn316 (TM7). Further con-
tacts include a hydrophobic interaction between Tyr47 (TM1) and Leu303

(TM7) such as a hydrophilic interaction between Thr212 (TM5) and Asn282

(TM6) [128, 132]. The structure of bovine rhodopsin is characterized by an
additional α-helix immediately after TM7 that is located on the inside of the
membrane [133]. Sequence comparison revealed that this helical element is
also present in the Y receptors. Like many rhodopsin-like receptors the NPY
receptors display two conserved extracellular cysteines in the first two extra-
cellular loops (ELCs). It is supposed that they are involved in the formation of
a disulfide bond as it is known from the X-ray crystallography structure of
bovine rhodopsin [133, 134]. In the hY1 receptor models the disulfide bond
was made between Cys113 that is close to the extracellular end of TM3 and
Cys198 in the second extracellular loop [128, 129, 132]. This disulfide bridge
may be important for receptor stabilizing in the correct conformation for lig-
and binding and receptor activation. Interestingly, the Y1, Y4 and y6 receptor
might have an additional cysteine bridge, formed by one cysteine residue in the
N-terminus and the other in EC3 [135]. One cysteine in the C-terminal part
anchors the tail to the inside of the membrane by palmitoylation in a similar
fashion as bovine rhodopsin.

Molecular characterization of ligand-receptor interactions

Structure-affinity/activity-relationship studies (SAR)

Structure-affinity relationship studies supply helpful information on the com-
ponents involved in a specific ligand-receptor interaction and the conforma-
tional requirements of the ligand that are necessary for a successful binding.

Structure-affinity/activity-relationship studies for peptide ligands to Y1

receptors

The Y1 receptor is characterized by a high affinity for NPY and PYY whereas
PP shows only moderate binding at this receptor subtype [43]. To determine the
minimal ligand sequence that is required to elicit activity truncated analogues
were tested. N-terminal truncations of NPY and PYY resulted in a decrease of
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binding affinity at Y1 receptor. Shorter segments, like NPY(3–36), NPY(13–36)
and NPY(18–36) have only micromolar affinities that identifies the N-terminal
region to be essential for Y1 interaction [136]. Furthermore all C-terminally
truncated analogues were completely inactive, e.g., NPY(1–12) and NPY(1–24)
[137]. This suggests that several ligand parts are involved in binding at the Y1

receptor. Furthermore, the replacements of large segments in the central region
led to a significant loss of affinity. The connection of N- and C-terminal frag-
ments through a spacer for instance 6-amino hexanoic acid (Ahx) indicated the
peptide [Ahx8–20]-pNPY as most potent among a series of centrally truncated
analogues [138]. Another possibility to link N- and C-terminal segments is
given by the introduction of a disulfide bridge. Optimizing such analogues by
the exchange of the chirality of the cysteine residues, the spacer and the posi-
tion of cyclization resulted in the peptide [Cys2, Cys27]-NPY showing an
improved affinity at the Y1 receptor [139, 140]. Replacement of Gln34 of NPY
and PYY by proline had no effect on Y1 affinity [141]. Consequently, disrup-
tion of the C-terminal helix favors the bioactive conformation of the ligand.
However, the introduction of D-Pro34 resulted in a lower affinity at the Y1 recep-
tor compared to the corresponding alanine mutant indicating that the orientation
of the induced turn is crucial [136, 140]. The facts that Pro34 was accepted and
that modifications at position six and seven showed only moderate influence on
affinity at Y1 were used for the development of Y1 receptor selective ligands
such as [Phe7, Pro34]-NPY, [Arg6, Pro34]-NPY and [Leu31, Pro34]-NPY [78,
142]. Since substitution of Arg33 and Arg35 for alanine provoked the most sig-
nificant loss of affinity these two basic residues represent the most sensitive
amino acids in the C-terminal decapeptide. Replacements of Tyr36 by alanine
and D-Tyr36 resulted in a loss of affinity. Modification of the C-terminus of
NPY by the exchange of Tyr36 by various amines, alcohols and modified tyro-
sine residues turned out that the C-terminal tyrosineamide of NPY plays an
important role for Y1 affinity [143]. The most efficient binding revealed
pNPY(1–36)-thioamide and pNPY(1–35)-tyrosinol with a 10- to 100-fold bet-
ter affinity compared to pNPY(1–36)-methylester. This suggests that the amino
part is more involved in binding than the carbonyl group. Consequently, the
C-terminal region of NPY is playing a major role in receptor recognition. Based
on this many low molecular mass Y1 antagonists were developed that mimic the
C-terminal portion of NPY, e.g., BIBP3226 and SR120819A [144, 145].

Structure-affinity/activity-relationship studies for peptide ligands to Y2

receptors

In accordance with Y1, the Y2 receptor subtype displays high affinity for NPY
and PYY [98]. However, one can distinguish both through their different affini-
ties for specific NPY analogues. A feature of the Y2 receptor is its resistance to
N-terminal deletions in contrast to Y1 [29, 98, 136]. Thereby the removal of
Tyr1 and Pro2 showed no effect on binding at Y2 and NPY(13–36), NPY(18–36)
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as well as NPY(22–36) still interact with an only 10 times less efficiency. This
indicates that the N-terminal part of NPY is not involved in the recognition by
the Y2 receptor. The introduction of certain central truncations (NPY 1–4,
31–36) resulted in a loss of affinity and activity, whereas another analogue
[Ahx5–24]-NPY was able to bind at the Y2 receptor [146, 147, 171]. The results
of the L-Ala scan showed less effects compared to Y1. Pro5 is the only amino
acid in the N-terminal part that showed a severely changed affinity after substi-
tution by alanine. Like for the Y1, the guanidino groups of Arg33 and Arg35 are
important for the ligand-receptor interaction. The C-terminal localization of the
most critical residues suggests that the α-helix is a stringent requirement for Y2

binding [140]. This was confirmed by the loss of Y2 affinity after the introduc-
tion of the turn inducing proline at position 34 [34, 148]. Another feature that
is in contrast to Y1 is the high affinity of the analogue [D-Tyr36]-NPY indicat-
ing that the side chain orientation of this residue is not very important [139].

Structure-affinity/activity-relationship studies for peptide ligands to Y4

receptors

The Y4 receptor is characterized by a preferential binding of PP compared to
NPY and PYY [28, 149]. Structure-affinity and activity relationship studies
revealed species specific variations for the Y4 receptor that are the result of dra-
matic differences in receptor sequence [112, 135, 150]. Accordingly, the guinea
pig Y4 receptor resembles more the human Y4 than does the rat and mouse one
with respect to mRNA distribution and pharmacological profile [135]. The
guinea pig, human and rat Y4 receptor bind gpPP, hPP, rPP and cow PP in the
low picomolar range, whereas pNPY and pYY display one or two orders of
magnitude lower affinities (Ki = 30–700 pM). Previous studies showed only
very weak binding of NPY and PYY to the rY4 (Ki > 150 nM) [112].
Explanations for such discrepancies may be differences between used radioli-
gands and variations between the properties of several cell lines. Deletion of the
N-terminal tyrosine of pNPY resulted in a decrease of affinity at gpY4, hY4 and
rY4, in which gpY4 seems to be slightly more sensitive [135]. Also when the
first four residues of bovine PP were removed binding at the hY4 was reduced
[151]. Bard et al. could see no effect on binding at hY4 after the truncation of
hPP to PP(2–36) [113]. However, further N-terminal deletion of hPP was dis-
ruptive for hY4 affinity. This is in agreement with a 12- to 40-fold reduction in
binding of pNPY(13–36) at the Y4 receptor of guinea pig, human and rat [135,
151]. Deletion of Tyr36amide induced a substantial reduction in affinity at hY4

[151]. Alanine substitution in position 34 of pNPY was tolerated by rY4 while
affinity for hY4 and gpY4 decreased about 50-fold [149]. Replacement of Ile31

or Gln34 in pNPY and pPYY by leucine and proline, respectively ([Leu31,
Pro34]-pNPY; [Leu31, Pro34]-pPYY) lead to an unchanged affinity at hY4 and
gpY4 compared to pNPY and pPYY. At the rY4 receptor these analogues turned
out to be even better ligands than the natural peptides [112, 135]. Other studies
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also described a modestly increase of [Pro34]-NPY and [Pro34]-PYY binding
for the hY4 [113, 151]. All three receptors don’t accept alanine in position 33,
35 and 36 while Ala33 substitution had the largest effect with 2,000- to 15,000-
fold lower affinity than NPY [149]. Consequently, the C-terminal hexapeptide
LTRPRY-amide present in almost all mammalian PPs seem to be an important
region in the interaction with Y4 receptors. Together with the reduced affinity
of N-terminal truncated peptides it indicates that both the C- and N-terminus
are required for full potency. This is similar to the Y1 receptor suggesting a
comparable binding domain between these two subtypes.

Structure-affinity/activity-relationship studies for peptide ligands to Y5

receptors

Together with Y1 and Y2, the Y5 receptor displays a higher affinity for NPY and
PYY than for PP [119]. Comparable to Y2 the removal of the first amino acid
of NPY (NPY(2–36)) and two N-terminal residues of PYY (PYY(3–36)) had
no effect on affinity at gpY5 and rY5 [118, 152]. However, deletion of the
N-terminal residues 1–21 from NPY influenced binding profoundly with an
affinity in the low micromolar range. Among a series of truncated analogues
this one with the longest N- and C-terminal fragment ([Ahx9–17]-pNPY)
showed the highest affinity but still displayed 14-fold reduction compared to
NPY [153]. This is in agreement with a more than 1,000-fold decrease of Y5

receptor binding of truncated hPP analogues ([Ahx5–24]-hPP, [Ahx5–20]-hPP,
[Tyr5–20]-hPP). The L-Ala scan revealed that the three N-terminal located pro-
line residues (Pro2, Pro5, Pro8) are necessary for hY5 affinity with an increas-
ing importance from position 2 to 8 [153]. A similar pattern was obtained for
substitutions of the tyrosine residues indicating that Tyr20 Tyr21 and Tyr27 are
involved in binding whereas the exchange of Tyr27 has the most significant
effect of a 600-fold reduced affinity. The replacement of Arg25 and Arg33 and
especially Arg35 by L-Ala resulted in a very low affinity in the micromolar
range [153]. In contrast, [D-Trp32]-NPY, [D-Trp34]-NPY, [Leu31, Pro34]-NPY,
[Ala31, Aib32]-NPY represent potent Y5 agonists [118, 152–155]. As C-termi-
nal fragments containing Ala31,Aib32 (e.g., [Ala31, Aib32]-NPY(18–36))
showed high affinity at the Y5 receptor it is suggested that this motif is able to
induce and stabilize the required bioactive conformation of the C-terminal lig-
and part. Biophysical investigations of this analogue revealed a structure com-
posed of an α-helix ending with a 310-helical turn of the residues 28–31, fol-
lowed by a not well defined structure of the last five residues.

Receptor mutagenesis

The Y1 receptor is the only NPY receptor subtype that was intensively investi-
gated by site-directed mutagenesis until now. Thereby a variety of residues of
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the human and rat Y1 receptor were substituted, in most of the cases to alanine,
in order to identify the key ligand-receptor binding points. Based on the find-
ing that positively charged residues close to the joint N- and C-terminal ends
of NPY are essential for ligand binding an electrostatic ligand-receptor inter-
action was postulated. Initially, the negative charged residues in the N-termi-
nal region (5 residues) and the EC-loops of the hY1 receptor (EC1: 2; EC2: 6
and EC3: 1 residue) were screened for possible binding partners of NPY.
Mutations in the N-terminus (E10A, E20A, E29A, D31A, D32A) had no effect
on NPY affinity suggesting that these residues are not involved in ligand bind-
ing through ionic interaction. The substitution of four amino acids located in
the extracellular loops resulted in a loss of ligand affinity, thus they were pro-
posed to interact with NPY (hY1: Asp104 (EC1); Asp194, Asp200 (EC2) and
Asp287 (EC3)) [131]. Later studies confirmed the results of the mutation
D104A and D287A [156] and also for the homologous residues in the rat Y1

receptor an involvement in ligand binding was proven [132]. Whereas the
investigation of the mutants D104A and D287A expressed in E. coli resulted
in an identical binding pattern, the substitution of Asp194 and Asp200 to alanine
displayed a wild-type-like character [157]. Re-expression of these mutants in
mammalian cells could confirm their functionality. Binding of PYY at the hY1

mutant D194A is only slightly affected [158] and the corresponding substitu-
tion in the rat Y1 receptor only led to a 2.7-fold NPY decreased affinity, too
[132]. Additionally, Sautel and colleagues reported that D200A bound NPY
with the same affinity as the human wild-type receptor [156] and the homolo-
gous mutation in the rat Y1 receptor supplied a slightly reduced binding
(5.2-fold) [132]. However, Du et al. showed a loss of PYY binding for D200A
[128]. Another discrepancy concerns Asp205 that after replacement by alanine
revealed no PYY binding [128] or only a 8.5-fold reduction in NPY affinity
[131, 156]. Consequently, solely Asp104 and Asp287 could be identified from
several groups as essential receptor residues for ligand binding. However, type
of interaction and ligand binding partner so far could not be identified. Recent
mutagenesis studies of the hY2, hY4 and hY5 receptor revealed the homolo-
gous aspartic residue of hY1-D287 as being essential for ligand interaction of
all receptor subtypes and accordingly to play a general role in ligand binding
(unpublished data).

Further mutagenesis experiments tried to confirm docking studies of NPY
in a hY1 model that hypothesized a hydrophobic pocket formed by side chains
of amino acids in TM1, 2, 6 and 7 for binding of the amidated C-terminal Tyr36

of NPY [131]. Thereby Tyr100 in TM2, His298 at the top of TM7 and Phe286 in
TM6 were identified as essential binding partners for this NPY residue
through the formation of two hydrogen bonds and one aromatic interaction,
respectively. Tyr100 and His298 were replaced by a variety of amino acids but no
substitution could regain complete binding [159]. Other studies also using the
mammalian system confirmed these results [156–158]. Expression of H298A
in E. coli resulted in a loss of NPY affinity, too [157]. Although no NPY bind-
ing was detected for F286A, Du and colleagues showed an unaffected PYY
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affinity at this mutant. Additionally, substitution of His298 for glycine was com-
bined with wild-type-like PYY binding [128]. Alanine replacement of Trp163

(TM4), Phe173 (TM4), Gln219 (TM5), Asn283 (TM6) and Trp288 (TM6) dis-
played a loss of 125I-NPY binding, suggesting that these residues are also
involved in the interaction with NPY [156]. In contrast, the introduction of
F173A mutation had no effect on PYY binding [128]. Additionally, for the
mutations W106A, D86A, C113S and F221A no PYY affinity was detected. It
has to be pointed out, however, that the loss of affinity of some mutants can be
due to an overall change in receptor conformation. Especially, mutated
residues located deep in the transmembrane region like Trp163 can induce such
structural changes. That is supported by the fact that a peptide ligand is sug-
gested to bind preferentially at the top of the transmembrane segments.

In conclusion, despite the many contradictions in the various mutagenesis
studies one can summarize that the binding domains for NPY and PYY can be
found in loops such as upper TM regions and also appear to be very similar for
both peptide ligands (Fig. 2). The discrepancies between the described muta-
genesis studies may be the result of several factors, including transfection of
different cell lines (HeLa versus COS-7, HEK293), utilization of different
tracers (125I-NPY, 3H-NPY versus 125I-PYY) and assay conditions. It is also
possible that the molecular environment shows some differences in the used
cell lines and thereby affects the pharmacological profile of the same receptor
in different ways.

Receptor mutants can not only be used to determine the binding of an ago-
nist but also information about the antagonist binding site are helpful for
understanding of receptor interaction and activation mechanism. A compre-
hensive study investigated the affinity of the nonpeptide antagonist BIBP3226
at a variety of hY1 receptor mutants [156]. Thereby it was recognized that the
residues Trp163, Phe173, Gln219, Asn283 and Asp287 are not only essential for 125I-
NPY binding but also for 3H-BIBP3226 affinity that indicates a partial over-
lapping of agonist and antagonist binding site. The only mutation showing a
loss of BIBP3226 binding and wild-type affinity for NPY and PYY was
Y211A (TM5) [128, 156]. The mutant F286A had a five-fold decreased affin-
ity for BIBP3226 whereas it did not display any NPY binding. In contrast to
the identified binding sites of NPY, Tyr100, Asp104, Trp288 and His298 are not
involved in the interaction of the antagonist BIBP3226. Two recent neuropep-
tide Y1 antagonists are J-104870 and 1229U91 [158]. Identically to BIBP3226,
affinity of the nonpeptide J-104870 was influenced by W163A, F173A,
N283A and D287A mutation. The peptide 1229U91 was designed to mimic
the C-terminal regions in NPY and PYY and showed a partially different bind-
ing site at the hY1 receptor with a reduced affinity for the mutants Y47A
(TM1), N299A (TM7) and L303A (TM7). Similar to BIBP3226 the antagonist
1229U91 displayed a decreased binding when Trp163 and Asp287 were mutated
to alanine. Since the mutation of hY1:Trp163 has a negative influence on the
binding of NPY and on several Y1 selective antagonists and as this well con-
served receptor residue is located in the lower site of TM4 according to Y1
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models, this position might be important for maintaining a precise overall
receptor conformation [156, 158].

The first mutagenesis study of the Y2 receptor also defined the binding site
of a selective Y2 antagonist called BIIE0246 [130]. It was based on the sur-
prising result that the human Y2 and the chicken Y2 receptor (chY2) showed
significant differences in their pharmacological profile. Accordingly, the chY2

receptor was characterized by an affinity as well as activity for the selective
Y1-like receptor agonist [Leu31, Pro34]-NPY and displayed no binding of
BIIE0246 in contrast to hY2 receptor [91]. A combined replacement of three
residues of the hY2 receptor by the homologous amino acids of the chY2

sequence resulted in a decreased affinity for BIIE0246 as low as chY2. The
reciprocal mutagenesis revealed that in all mammalians conserved residues
Gln135 in TM3 (His139 in chY2), Leu227 in TM5 (Gln231 in chY2) and Leu284 in
TM6 (Phe288 in chY2) of the hY2 receptor are responsible for BIIE0246 bind-
ing [130].

One additional characteristic feature of G-protein coupled receptors that can
be investigated by receptor mutagenesis is the importance of receptor glyco-
sylation for the recruitment to the cell surface and for ligand binding. The dele-
tion of all three putative sites for N-linked glycosylation (Asn2, Asn11, Asn17)
in the N-terminus of the rY1 receptor ([rY1del(Asn2–Glu20)]) led to a com-
plete loss of binding and a strongly impaired membrane surface localization
[132]. Other biochemical studies could confirm NPY receptor glycosylation.
Photoaffinity labeling and receptor solubilization resulted in a 70 kDa glyco-
protein for Y1 [160], a 40–60 kDa glycoprotein for the Y2 receptor [160–163]
and a 60–80 kDa protein for the Y4 receptor [117, 164]. The calculated mole-
cular weight of the Y receptors corresponding to the receptor amino acid
sequence deduced from the translated cloned cDNA nucleotide sequence is in
most cases significantly lower than the experimentally determined value con-
firming NPY receptor glycosylation. The large range in the molecular mass of
some Y receptors is probably caused by differences in tissues and species that
were investigated [165].

Furthermore a direct influence of the N-terminal receptor region in the bind-
ing process was concluded after finding that the introduction of the FLAG-epi-
tope (DYKDDDDK) epitope between residue 2 and 3 of the hY1 receptor led
to a complete loss of affinity [131]. The addition of the N-terminal haemag-
glutinin (HA) sequence following the initial methionine, however, had no
influence on rY1 receptor binding [166]. Whereas the N-terminus seems to
contribute to a certain degree to ligand binding, the complete C-terminus could
be deleted without any negative influence on NPY affinity to the hY1 receptor
[131]. When the FLAG epitope was positioned at the receptor C-terminus also
no effect on binding was detected [130, 132, 158, 159] such as for the addition
of six histidine residues [131]. Furthermore it was possible to functionally
express Y receptors as C-terminal fusion proteins with the green fluorescent
protein and its variants [54, 167]. However for the rhesus Y4 receptor tagged
with GFP lower affinities compared to wild-type receptors and no signal trans-
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duction was found [164]. This indicates that the attachment of the large GFP
molecule consisting of 239 amino acids can have a negative effect on G-pro-
tein coupling in some cases.

Modifications in the intracellular receptor part like the mutation of the
palmitoylation site (Cys337) in the hY1 receptor resulted in a mutant with
unchanged affinities for Y1 agonists and antagonists, but without the incorpo-
ration of palmitic acid a dramatic reduction in coupling to G-protein was found
[166]. Based on this result, it is postulated now that receptor acylation repre-
sents a significant mechanism for the regulation of G-protein activation effi-
ciency and receptor desensitization.

Receptor dimerization

Homodimerization

Another interesting feature of GPCRs that has advanced rapidly in the recent
past is their ability to form dimers or higher-order oligomers [168–170]. Since
most current methods are not able to distinguish between dimers and larger
oligomers we refer to the term dimer. Thereby homo- such as heterodimeriza-
tion is described for GPCRs. Several investigations suggest that dimerization is
important for receptor maturation, folding and surface expression. This is based
on results that many GPCRs form dimers during biosynthesis as early as in the
ER, and are then called constitutive dimers [171–174]. By dimerization specif-
ic ER retention signals or hydrophobic patches can be covered and this will
guarantee a proper folding and ER export [175, 176]. In contrast, there are also
examples for agonist mediated dimerization [177–179]. Thereby agonist bind-
ing may have an increasing or decreasing effect on dimerization itself.
However, many investigations have come to the conclusion that dimerization is
not influenced by ligand binding [167, 180, 181]. Consequently, no general
consensus has yet been established. Furthermore an involvement of dimeriza-
tion on receptor function was proven. Thereby ligand binding properties [182,
183] or signalling specificities [190, 191] can be changed in the oligomeric
receptor state compared to the monomer. There still is much work to be done
concerning receptor oligomerization, e.g., the identification of a conserved
dimerization interface and the role of oligomeric assembly. Currently, a variety
of methods are available to detect receptor dimerization including affinity label-
ing, chemical cross-linking, co-immunoprecipitation and Western blotting.

First speculations about dimerization of Y receptors are based on studies
with the Y1 receptor antagonist and Y4 receptor agonist GR231118, a homod-
imeric peptidergic compound, showing 250-fold higher affinity than the
monomer [184, 185]. Additionally, truncated NPY analogues ([P30, C31, F32,
L34]-NPY(28–36), [P30, C31, W32, L34]-NPY(28–36)) bind to the hY1 receptor
after dimerization with a 10-fold increased affinity. Dimerization of NPY
receptors has been investigated by fluorescence and bioluminescence reso-
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nance energy transfer (FRET/BRET) [164, 167]. The FRET technique is based
on a non-radiative energy transfer between two different chromophores [188].
Thereby one fluorescent probe (donor) emits light at a certain wavelength pos-
sible to excite the other fluorescent probe (acceptor). Then emission of the
acceptor at its characteristic emission wavelength can be determined and rep-
resents FRET. Prerequisites for such an energy transfer are that the two fluo-
rescent molecules are in close proximity (10–100 Å) and are favorably orien-
tated (Fig 3). Additionally, there has to be an overlap between the emission
spectra of the donor and the excitation spectra of the acceptor. Since FRET
depends on the distance between two fluorescent molecules it is a useful tech-
nique to determine protein–protein interactions. Therefore the chromophores
only have to be attached to the proteins of interest. BRET is another method
used to identify interactions of two partners. It is a process that also occurs in
many organisms that emit light (e.g., Renilla reformis) [186]. In contrast to
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Figure 3. Summary of dimerization studies performed at Y receptors. Two different methods using
resonance energy transfer (FRET/BRET) are indicated. The influence of agonists, antagonists and
Gα-protein on dimerization is shown (arrows).



FRET, the BRET technique uses the enzyme luciferase (Firefly or Renilla
luciferase) as donor catalyzing a substrate conversion (D-Luciferin or
Coelenterazine) that is associated with emission of blue light. This again
excites GFP (or YFP) as acceptor resulting in the re-emission of light in the
green spectra (or yellow) that can be measured to determine the BRET level.
Similar to FRET bioluminescence energy transfer is only possible when
luciferase and chromophore are in close proximity (10–100 Å; [190]).

To investigate Y receptor homodimerization by FRET, NPY receptors were
C-terminally fused to green fluorescent protein (GFP) or its spectral variants
(CFP, YFP, DsRed) [167]. Thereby GFP and DsRed such as CFP and YFP rep-
resent so-called FRET pairs. By using fluorescent microscopy and spec-
troscopy homodimerization of Y receptors was proven and found to depend on
the subtype. Quantification based on a hY2 receptor construct fused to a FRET
positive control (YFP-CFP tandem) revealed 26% dimerization for hY2, but
44% and 41% for hY1 and hY5, respectively. Another approach showed
homodimerization for the rhesus Y4 receptor (rhY4) by BRET. Thereby the Y
receptor was C-terminally fused to Renilla luciferase (Rluc) or a mutant vari-
ant of GFP (GFP2) [164]. Furthermore a modified version of the Rluc sub-
strate (DeepBlueC) was used to increase the spectral resolution. Receptor
homodimerization measured by BRET was confirmed by cross-linking com-
bined with Western blotting. Concerning the influence of the natural ligand
and Gα-protein binding on dimerization FRET studies of hY1, hY2 and hY5

revealed no effect [167]. Based on this it was speculated that Y receptors
already assemble as dimeric units in ER and are then transported to cell mem-
brane as homodimers. However, investigations of rhY4 showed a concentration
dependent decrease of BRET ratio after incubation with the specific ligands
hPP and 1229U91 indicating agonist induced homodimer dissociation [164].
Since this phenomenon could not be seen with low affinity Y4 ligands it might
be a receptor mediated response. Another possibility for the ligand decreased
BRET response could be conformational changes in predimerized receptors.

Heterodimerization

Unlike this, heterodimerization of rhY4 with the rhY1, rhY2 and rhY5 receptor
could not be detected. However, investigations using rhY1 together with rhY5

produced a significant BRET ratio (unpublished data, 7th International NPY
Meeting, Coimbra, 2004). Additionally, heterodimerization of rhY1 and rhY5

was decreased by Y1-selective antagonists (BIBP3226, LY366258) and
increased by Y5 agonists (PP(1–17)NPY(18–36)), whereas NPY and PYY
showed no effect. Differences with regard to interference of homodimerization
by ligands can be the result of variations in experimental set-up, such as the
applied detection method and a different cellular system. In particular, the vari-
ation of expression in different cells, of numerous scaffold and adaptor pro-
teins can modify GPCR trafficking and signaling specificity [191]. Another
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aspect that influences dimerization studies might be the level of receptor
expression. It has been pointed out that receptor expression level can alter
dimerization level [192]. Furthermore overexpression of a recombinant protein
in a cell line can force the receptor contact in a non-natural fashion [193].
Taken together, corresponding controls are necessary to confirm that the
experimental conditions reveal reliable results. This can be done by corre-
sponding controls, e.g., for FRET/BRET co-expression of two less related
receptors where a dimerization is unlike as negative control [164] and a tan-
dem construct of the acceptor and donor as positive control [164, 167].
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Modulator role of neuropeptide Y in human
vascular sympathetic neuroeffector junctions
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Applied Biology, Dept. Physiology, Neurohumoral Regulation Unit, Faculty of Biological Sciences,
P. Catholic University of Chile, P.O. Box 114-D, Santiago, Chile

Modulator role of NPY in sympathetic co-transmission

Shortly after its discovery, the physiology of NPY was linked to blood pres-
sure regulation and peripheral resistance control. NPY antibodies revealed its
co-localization with catecholamines in the central and peripheral nervous sys-
tem [1–4]. Neuro-anatomical NPY localization preceded functional studies.
Immunostaining revealed a dense network of NPY-ergic nerve terminals sur-
rounding mammalian and human blood vessels [5–8], where NPY co-local-
ized with either catecholamines or the noradrenaline (NA) synthesizing
enzymes, tyrosine hydroxylase or dopamine β-hydroxylase [6, 9, 10]. As a
logical extension of these findings, pharmacologists at the Karolinska
Institutet and Lund’s Medical School labored ardently with bioassays search-
ing for a role of NPY in vascular tone regulation [8, 11–13]. Soon it was rec-
ognized that the long-lasting pressor effect of NPY was lost by the simple
cleavage of the amide at the COOH terminus of NPY, i.e., NPY free acid [14],
an indication that the peptide likely mediates its pressor effect by the activa-
tion of a specific receptor different from the adrenoceptors [15].

Two years after NPY’s discovery, it was clear that NPY increased vascular
resistance by a direct effect on microvessels, while its modulator role evi-
denced as an augmented vascular contractility to exogenous NA, an effect that
occurred without NPY causing per se a rise in vascular tone [8]. Years later,
the modulation was extended to adenosine 5' triphosphate (ATP)-evoked vaso-
constrictions [16], implying that the modulator role of NPY was exerted on
ATP and NA, the two sympathetic co-transmitters. These findings established
the notion of NPY as a postjunctional modulator of sympathetic nerve activi-
ty. Simultaneously, pharmacological, biochemical and molecular biology
grounds concurred to identify the Y1 receptor in the modulator role of NPY,
providing the cell biology framework to study ultimately, its mechanism of
action. At about the same time, it was recognized that NPY, together with pep-
tide YY and pancreatic polypeptide, conform a novel family of brain peptides,
which act on a set of at least five cloned receptors, Y1, Y2, Y4, Y5 and Y6, each
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with differential affinities for these peptides [17]. All together, these receptors,
as well as their endogenous ligands, were found widely distributed in the brain
and in the periphery [18, 19].

The release of NPY from human vascular biopsies supports its integrand
role in sympathetic vascular reflexes

Critical to the classification of NPY as a modulator of the vasomotor action of
ATP and NA as sympathetic co-transmitters, was the demonstration that NPY
is released from human perivascular sympathetic nerve endings. NPY is syn-
thesized from a precursor protein, which is then packed in secretory granules
in the Golgi and travels, via axonal transport, to the sympathetic nerve termi-
nals [20, 21]. Likely, the precursor protein is cleaved to mature NPY during
axonal transport to the nerve terminal where in addition, vesicular transporters
dynamically load the synaptic vesicles with recycled NA and nucleotides
[22–24]. Using human saphenous biopsies, Rump and von Kugelgen [25]
were among the first to demonstrate the functional role of ATP as a sympa-
thetic co-transmitter. A few years later, Racchi et al. [26] determined, using
human saphenous vein biopsies, that NPY facilitated the ATP, the NA, and the
vasomotor responses elicited by electrical depolarization of perivascular sym-
pathetic nerve terminals. This was about the first evidence that NPY may par-
ticipate in the physiology of human sympathetic vascular reflexes enhancing
venous return. However, in view of prevailing technical difficulties, few labo-
ratories approached the direct quantification and analytical identification of the
peptide released by transmural electrical nerve terminal depolarization, a cri-
terion required to establish the modulator role of NPY in human vascular sym-
pathetic reflex co-transmission.

In a series of laborious studies, our laboratory described and characterized
the content and release of hNPY from the perivascular nerve endings sur-
rounding human saphenous vein segments [27] or mammary and radial vessels
[28] obtained from patients programmed for myocardial revascularization sur-
gery. These studies detailed the chromatographic identification of hNPY
extracted from human vascular biopsies and documented its release to the tis-
sue media, which depends essentially on extracellular calcium, the frequency
of nerve terminal depolarization, and the duration of the electrical stimulation
period. Using a combined radioimmunoassay plus high performance liquid
chromatography (HPLC) procedure, Donoso et al. [27, 28] identified an oxi-
dized byproduct of NPY which has the same biological potency as native
NPY, as a modulator of ATP and NA-elicited contractions. This NPY and its
metabolite act on the Y1 receptor, as identified by the tissue expression of its
mRNA. The release protocols established that the procedure used to electri-
cally depolarize the tissue nerve endings evoked the release of a small fraction
of the tissue-stored NPY, a finding that added to functional results highlight-
ing the role of NPY as a modulator of human vascular sympathetic reflexes.
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Relevant to the physiology of human vasomotor reflexes, our findings indicate
that both arteries and veins are modulated by NPY to a similar extent, imply-
ing that NPY may participate in the regulation of both human blood flow dis-
tribution and venous return. In support of this notion, Figure 1 illustrates a
HPLC-RIA chromatogram that exemplifies the analytical procedure used to
chemically identify and quantify the released material from these biopsies. In
addition, Figure 1 summarizes a set of experiments showing that the release of
ir-NPY from segments of human mammary artery or saphenous biopsies
depends on the frequency of nerve terminal depolarization.

Multiple NPY receptors in human blood vessels

Out of the five known NPY receptor clones, human blood vessels express the
Y1 and the Y2 receptor subtypes. All NPY receptors belong to the family of
G-protein coupled receptors; the Y1 and Y2 receptors are coupled to Gi/o pro-
teins, which means that the intracellular transduction mechanism is exerted by
regulation of the cyclic adenosine monophosphate (cAMP) content. In vascu-
lar sympathetic neuroeffector junctions, endogenous or exogenous NPY mod-
ulates sympathetic vasomotor reflexes by acting on vascular smooth muscles
through the Y1 receptor, while the Y2 receptor subtype is a presynaptic recep-
tor that regulates the release of sympathetic co-transmitters.

Within the past decade, relatively selective agonists/antagonists have
become available and have greatly assisted in the Y1 and Y2 receptor identifi-
cation. The first tools that guided NPY receptor classification were synthetic
NPY structural analogs, or truncated fragments with preferential affinity for
the Y2 receptor [29, 30]. While [Leu31, Pro34]-NPY is the prototype Y1 recep-
tor structural analog, the endogenous NPY3–36 or PYY3–36 fragments, and other
truncated peptide fragments were instrumental as selective Y2 ligands. Non-
peptide competitive antagonists with nanomolar affinity and selectivity for the
Y1 receptor, include BIBP 3226 and BIBO 3304 [31–33], and peptide Ile-Glu-
Pro-Dapa-Tyr-Arg-Leu-Arg-Tyr-NH2, cyclic(2,4')diamide (1229U91), which
is commercially available with a similar, though less, affinity than the non-
peptide compounds [34, 35]. Likewise, BIIE0246, was described as a compet-
itive, high affinity, and selective Y2 non-peptide antagonist [36]. These com-
pounds are valuable tools to assess the role of the Y1 and Y2 receptors in human
blood vessel physiology.

Y1 receptor, a postjunctional modulator of sympathetic vascular reflexes

In humans, as in experimental animals, two distinct and complementary mech-
anisms account for the rise in vascular resistance elicited by NPY, which are
mediated by Y1 receptor activation. In resistance vessels, and likely in the
microcirculation, NPY ensues a direct vasocontractile action [37]. The intra-
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venous administration of NPY significantly increases human vascular resist-
ance, an effect likely interpreted as due to direct contraction of small resistance
vessels; however, this effect may be compounded by the facilitation of the
vasomotor effect of ATP and NA. In other conductance vessels, vasoconstric-
tion ensues as a consequence of its modulator action on sympathetic co-trans-
mitters, as illustrated in the tracings shown in Figure 2, and the studies by
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Figure 1. Chemical identification of the electrically evoked ir-NPY released from the sympathetic
nerve terminals of human vascular biopsies. Panel A: Combined HPLC-RIA chromatogram of the
material released by electrical depolarization of the nerve terminals of mammary vein biopsies (n = 2)
and saphenous vein biopsies (n = 3). The retention time of standard peptides identified in the released
material native NPY plus a by-product, which corresponds to oxidize-NPY (ox-NPY). Panel B: The
extracellular release of ir-NPY depends on the frequency of nerve depolarization as evidenced by the
graded peptide release elicited by transmural electrical nerve stimulation (60 V, 1 msec). Columns
indicate the mean values; bars SEM (n = 4–6) per protocol. The correlation coefficient between the
amount of extracellular ir-NPY released and frequency of nerve stimulation in the mammary artery
was r = 0.58 (P < 0.043) and r = 0.77 (P < 0.003) in saphenous vein biopsies respectively.



Racchi et al. [26] and Donoso et al. [27, 28]. In the latter human biopsy stud-
ies, NPY acted indirectly, modulating the vasomotor action evoked by sympa-
thetic co-transmitters. Several arguments support the view that the modulator
action of NPY is due to the activation of the Y1 receptor. Consonant with the
pharmacology of the Y1 receptor, BIBP 3226 reduced the modulator action of
exogenous NPY (see tracing B in Figure 2), as was also observed by Racchi et
al. [26] and Mezzano et al. [38]. Moreover, RT-PCR identified the mRNA cod-
ing for the Y1 receptor (Fig. 3) in these prototype blood vessels, as was also
detected in other human blood vessels [27, 28, 39, 40].

In vivo studies with BIBP 3226 are scarce, since BIBP 3226 administration to
experimental animals in several models of hypertension did not yield clinically
relevant results. However, Doods et al. [41] observed that Y1 receptor antago-
nism had no major influence on the basal blood pressure but resulted in an atten-
uation of the stress-induced hypertension, a finding that strongly supports the
view that NPY is mainly released during intense sympathetic nervous system
activation. Although Erlinge et al. [42] demonstrated a significant rise in plasma
ir-NPY in patients with severe hypertension, the administration of a Y1 receptor
antagonist did not result in a lowering of systemic blood pressure, a finding that
complicated the determining role of NPY in primary hypertension [43].

The presynaptic Y2 receptor in vascular neuroeffector junctions

The Y2 receptor has received less experimental attention in contrast to the Y1

receptor, which has been investigated in functional control studies, in animal
models of vascular diseases, as well as in human clinical research. On the basis
of pharmacological studies with peptide fragments truncated at the amino ter-
minal, which lacked a direct vasomotor effect, Grundemar and Hakanson [29]
concluded on the existence of a second, separate NPY receptor, named Y2.
This receptor was postulated to be of presynaptic origin and to regulate the
release of sympathetic transmitters at the nerve endings, explaining its effica-
cy to block neurotransmission in several bioassays, including the vas deferens
neurotransmission [44]. Specific antibodies soon evidenced its brain distribu-
tion [45]. Assessing directly or indirectly transmitter release, it became possi-
ble to evaluate the functionality of the Y2 receptors. We assessed the influence
of human Y2 receptors by recording isometric muscular contractions elicited
by electrical nerve terminal depolarization of rings of human saphenous vein
or radial arteries. A prototype of these experiments is shown in Figure 3, where
the frequency-dependent contractions elicited by electrical depolarization of
the tissue nerve terminals is reduced by NPY, a finding that may be interpret-
ed as an indication that the activation of a presynaptic Y2-operated mechanism,
reduces co-transmitter release. This interpretation is consonant with the view
that the BIBP 3226-induced blockade of Y1 receptors also reduces the magni-
tude of the electrically evoked contractions (Fig. 3), but by an entirely distinct
mechanism; further validating the notion that the modulator role of NPY in
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humans is also mediated by pre- and post-junctional receptor-operated mech-
anisms. The identification of the mRNA coding for the Y2 receptor in human
thoracic and saphenous veins (Fig. 3) further supports the role of this receptor
in human vascular sympathetic reflexes.

Vascular role of NPY in health and disease

The rather subtle role of NPY in the physiology of vascular tone maintenance
may be exacerbated under intense sympathetic discharges [46] or pathophysi-
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Figure 2. Postjunctional modulator role of NPY evidenced by the facilitation of the vasomotor effect
of ATP and NA; activation of Y1 receptors. Representative tracings show isometric contractions of the
circular layer from human saphenous vein biopsy rings (panels A, B) or a human radial artery seg-
ment (panel C). 10 nM NPY potentiated the NA, or the NA plus α,β-methylene ATP (α,β-mATP);
BIBP 3226 reduced the facilitator action of NPY on NA-evoked contractions.



ological conditions that imply prolonged sympathetic discharges, which may
be extended chronically, e.g., in stress or pain [47]. This concept may be a
determinant in severe cardiac and/or vascular disease, as suggested by reports
that patients with cardiac infarction [48], eclampsia [49], pheochromocytoma
[50, 51], or pathologies characterized by a sudden surge of circulating ir-NPY
plasma levels.

Consistent with the significance of NPY to vascular sympathetic reflexes,
several studies measured ir-NPY in human plasma under a variety of physio-
logical and pathophysiological conditions, such as eclampsia and pre-eclamp-
sia [49, 53], or strenuous exercise [54, 55], including stressful conditions [52].
Childbirth is among the most potent stimuli to increase circulating human
plasma ir-NPY [56]. Likewise, hypoxia, a stimulus that ensues strong and per-
sistent sympathetic reflex activation, is characterized by an important rise in
plasma levels of ir-NPY [55].

A bias common to all these studies is that the rise in the plasma peptide is
derived from nerve terminals, and is therefore an indication of repetitive and
intense sympathetic tone, or secreted from the adrenals, since the gland is a
rich source of NPY [57]. The paroxysmal episodes of high blood pressure
characteristic to pheochromocytoma might be compounded to the NPY facili-
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Figure 3. Presynaptic modulator role of NPY, activation of Y2 receptors. Representative tracings of iso-
metric contractions from the circular layer of human saphenous vein (panel A, B) or radial artery
(panel C) biopsies subjected to transmural electrical nerve depolarization with frequencies of pulses
varying from 2–20 Hz. Each train was delivered for 30 s. Panel D shows RT-PCR that allowed the
identification of the mRNA coding for the Y1 and the Y2 receptors in human mammary vessels and a
segment of the human saphenous vein. Total RNA was extracted from the biopsies upon the human
biopsies reached our laboratory, and the material was processed as described by Donoso et al. [27, 28].



tation of sympathetic co-transmitter vasoconstriction. Interestingly, Tabarin et
al. [58] detected NPY fragments in the plasma of humans suffering from
pheochromocytoma; likewise, Hegbrant et al. [59] also found NPY fragments
in the plasma of hemodialyzed patients, indicating that NPY is metabolized in
vivo and that the truncated peptide forms may have pathophysiological rele-
vance. Grundemar and Hakansson [29] first reported that synthetic truncated
NPY fragments are biologically active and possess a defined Y2 receptor phar-
macology.

An integrated overview of sympathetic intracellular events

The prevailing view that sympathetic transmission relies on the sole basis of
NA as the sympathetic transmitter is no longer accepted. Recent editions of
classical physiology/pharmacology textbooks [60] put forward the notion that
sympathetic co-transmission involves the concerted postjunctional action of
ATP plus NA, and its modulation by NPY [47]. Consonant with this hypothe-
sis, vascular smooth muscles are equipped with a collection of ionic channels
gated by extracellular ATP [61] and belong to the P2X family of purinoceptors,
which lead to cell depolarization. Moreover, several adrenoceptors and their
subtypes are expressed in vascular smooth muscle, including isoforms of the
α1 and α2-adrenoceptors, which activate essentially G proteins, linked to the
intracellular mobilization of calcium stores via the activation of endoplasmic
reticulum inositol triphosphate (IP3) receptors. The vascular neuroeffector
junctions combine fast excitatory P2X receptors with the metabotropic
α-adrenoceptors; the combination of which mobilizes ions and metabolic
reservoirs, causing a fast and modulated vasomotor response. Therefore, while
ATP results in the depolarization of the smooth muscle within milliseconds,
NA mobilizes intracellular calcium stores plus the activation of protein kinase
C, elements necessary to boost contractile events. These dual and complemen-
tary mechanisms, orchestrated within a defined temporary sequence and dis-
tinctive time frame, establish the foundations for co-transmission.
Consonantly, the co-application of ATP plus NA, mimicking sympathetic co-
transmission, results in a synergic muscular response, highlighting the physi-
ological implications of co-transmission; recordings in Figure 2 illustrate this
principle. In this synaptic scenario, the co-release of NPY facilitates further,
by as yet unknown mechanisms, the contractility of the vascular smooth mus-
cle ensued by either ATP or NA alone, or the orchestrated action of these co-
transmitters.

Concluding remarks

The modulator role of NPY as a functional integrand of sympathetic reflexes
is firmly established. There is consensus that NPY acts on pre- and post-junc-
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tional mechanisms and that it regulates the strength of sympathetic signalling
pathways. The clinical relevance of NPY in sympathetic co-transmission, and
its eventual role in the regulation of human vascular sympathetic reflexes, par-
ticularly following strong and maintained sympathetic discharges, awaits a full
understanding of the molecular basis underlying its signalling transduction,
thus defining eventual therapeutic strategies of clinical relevance.

Summary

Reverse transcription polymerase chain reaction (RT-PCR) studies identified
the mRNA coding for the Y1 and Y2 receptors in human mammary artery/vein
and saphenous vein biopsies. Y1 receptors are expressed in vascular smooth
muscles and potentiate the contractile action of sympathetic co-transmitters,
adenosine triphosphate (ATP) and noradrenaline (NA); BIBP 3226, a compet-
itive Y1 receptor antagonist, blocked the neuropeptide Y (NPY)-induced mod-
ulation. The Y2 receptor is expressed in sympathetic nerves terminals and mod-
ulates the pool of sympathetic co-transmitters released at the neuroeffector
junction. NPY plays a dual role as a modulator of sympathetic co-transmis-
sion; it facilitates vascular smooth muscle reactivity and modulates the presy-
naptic release of ATP and NA. Sympathetic reflexes regulate human vascular
resistance, where NPY plays a modulator role of paramount importance fol-
lowing increased sympathetic discharges, such as stress and vascular disease.
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Endocardial endothelium

The endocardial endothelial cells (EECs) constitute a uniform and continuous
layer of flat polygonal cells that line the cavity surface of the heart (Fig. 1) [1].
The luminal surface of the majority of EECs has a variety of microappendages
or microvilli which project into the heart cavities [1, 2]. The very large contact
surface area of the endocardial endothelium (EE) offers a very high ratio of cav-
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Figure 1. (Left panel) Slice of a 20 week-old human fetal heart at the level of the ventricle labeled
with hNPY coupled to fluorescein. Please note that the density of the NPY receptors is higher at the
level of the endocardial endothelium when compared to the adjacent cardiomyocytes. (Right panel)
Schematic representation of the endocardial endothelial cell layer, extracellular matrix and adjacent
cardiomyocytes. The endocardial endothelium forms a continuous monolayer of cells that line the
cardiac cavities. These cells are separated from the adjacent cardiomyocytes by an extracellular
matrix that contains a basement membrane consisting of a thin basal lamina and reticular lamina with
fine collagen fibers. Adjacent to the basement membrane is a dense subendocardial fibroelastic layer
that contains collagen, elastic fibers, fibroblasts, blood vessels as well as a nerve plexus. The white
scale bar in the left panel represents 5 µm.



ity surface area to ventricular volume, particularly in the right ventricle, sug-
gesting an important sensor role for the EE [2–4]. The presence of structured
contractile proteins within EECs indicates the possibility of shape changes as
well as some degree of motility [4–5]. Gap junctions are present between EECs
[6] where they play a role in rapid intercellular electrochemical coupling. EECs
also have tight junctions (zonula occludens), which are simple with one or two
junctional contact points that serve as a selective barrier to the diffusion of mol-
ecules and limit the paracellular transport through the intercellular spaces or
clefts [3, 7]. EECs’ Golgi apparatus and endoplasmic reticulum are well devel-
oped with a high number of mitochondria that surround the nucleus [6, 8] sug-
gesting that these cells are highly active metabolically. Endothelial markers
such as von Willebrand’s factor and a secreted form of vimentin identified by
the PAL-E antibody [9] are also abundant in EECs [1, 6].

Cardiac endothelial cells of the myocardial capillary (MCEs) and the EECs
share many common features, such as regulating normal cardiac growth
[10–13], contractility performance and rhythmicity which must be clearly dis-
tinguished from the functional role of coronary vascular endothelial cells in the
heart [13]. However, even if similarities exist between MCEs and EECs, dif-
ferences between these two endothelial cell types also do exist such as eNOS
expression and gap junctions are very important in EECs but very limited in
MCE cells [3, 13]. Furthermore, EECs differ from all other cardiac and vas-
cular endothelial cells (VECs) by their higher sensitivity to circulating factors
such as angiotensin II (Ang II) [14], endothelin-1 (ET-1) [15] and neuropep-
tide Y (NPY) [8], as well as by their key localization at the entrance and exit
of the pulmonary circulation [13]. The subendocardial space or extracellular
matrix located between the EECs and the cardiomyocytes provides additional
interactions for the EECs with the subendocardial nerve plexus, which com-
prises sympathetic nerve fascicles and fibers that are able to release various
peptides including NPY [8, 16] (Fig. 1). For more information on the endo-
cardial endothelium and its role in the regulation of heart function, please refer
to a recent review by Brutsaert [13].

EECs and heart function

EECs as well as coronary blood vessels, can exercise substantial control over
the contractility of cardiomyocytes by releasing various factors such as ET-1
[13], nitric oxide (NO) [13, 17, 18] and NPY [8]. Thus, EECs may act as an
intermediate for neurotransmitters and humoral agents regarding their contri-
bution to the control of heart muscle contraction [13, 16]. There has been in
vitro evidence that EECs participate in the inotropic response to several circu-
lating and locally released factors such as atrial natriuretic peptide (ANP) [19],
phenylephrine [13] or reactive oxygen radicals [20]. Thus, an indirect dialogue
between EECs and cardiomyocytes in the heart is more widespread than was
originally thought. In addition, only in the presence of EECs (but not VECs or
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fibroblasts), can cardiomyocytes maintain their adult phenotype [13, 21]. This
highly suggests a difference between EECs and VECs in directly regulating,
not only the cardiac function, but also the remodeling of heart cells. We thus
cannot extrapolate from our large knowledge concerning VECs to EECs.
These later cell types seem to be unique since they are able to release a high-
ly important regulator of excitable cells such as NPY.

Ca2+ transport in EECs

Similar to VECs [22–24], EECs do not possess T or L-type Ca2+ channels. The
resting influx of Ca2+ seems to be carried in through the voltage dependent
steady-state nifedipine insensitive, but PN200-110 sensitive, R-type Ca2+

channel [22–24]. The biphasic increase in [Ca]i due to humoral stimulation is
the most crucial step of the signal transduction pathway in many cell types
including EECs. In EEC monolayers of rabbit cardiac valves, a biphasic
increase in [Ca]i was observed with acetylcholine, bradykinin, histamine and
adenosine triphosphate (ATP) but not with thrombin [25]. Also, in our labora-
tory, in EECs isolated from 20 week-old fetal human heart, NPY, ET-1 and
Ang II seem to induce an increase in [Ca]i via the stimulation of resting R-type
Ca2+ channels. In addition, the secretory process of EECs seems to be Ca2+-
dependent [26]. Even more recently, it was shown that in smooth muscle cells
isolated from the rabbit stomach, the Y2 and Y4 receptor types are coupled to
Gq suggesting that in this specific tissue, the NPY-induced change in intracel-
lular Ca2+ is IP3-dependent [27].

Neuropeptide Y and its receptors

NPY and structurally related peptide YY (PYY) and pancreatic polypeptides
(PPs) are abundant and ubiquitous [28, 29]. Indeed, many investigators have
suggested that NPY is one of the most abundant mammalian neuropeptides
identified to date in the heart and brain [28, 30]. The structure and parts of its
precursors are well conserved throughout evolution, suggesting an important
role(s) in cell function. NPY has been known as a sympathetic co-transmitter,
vasoconstrictor stress mediator, neuroendocrine modulator [31] and stimulator
of obesity [32]. It is also found in platelets of some species and immune cells
[31]. NPY activates multiple heptahelical Gi/o-coupled receptors, termed
Y1–y6. Rat, murine and human Y1 [33, 34], Y2 [35–37], Y4 [38], Y5 [39] and y6

[40, 41] receptors have been cloned, while the Y3 receptor has not. All the NPY
receptors, except for the y6 receptor, which is only functional in the mouse, are
linked to the inhibition of adenylyl cyclase [35]. Few studies have also shown
that NPY activates mitogen-activated protein kinase [42] and protein kinase C
[43]. The main functions of these receptors are reviewed in details elsewhere
(please refer to Dumont et al. [29, 30]). The receptor types responsible for the
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major effect of the peptide in the cardiovascular system possesses potent vas-
cular mitogenic and angiogenic activities and are the Y1, Y2 and Y5 [31, 44–47]
receptors.

NPY and cardiac muscle

The hearts of several species, including humans, have been shown to contain
high amounts of NPY immunoreactivity; this peptide being more abundant in
the atria than in the ventricles [48]. In rodents, NPY immunoreactivity has
been reported to be present in sympathetic nerve fibers that innervate coronary
arteries and cardiomyocytes [48–51]. High concentrations of NPY were also
found in nerve fibers near the sinus and atrioventricular node conductive tis-
sues and in the endocardial layer [48–50]. It is important to mention that NPY
is not only present in sympathetic nerve fibers, but also in intrinsic cardiac
nerves [52].

Binding studies demonstrated that both the Y1 and the Y2 receptors are pres-
ent in rat ventricular membranes [53]. Opposing effects on contraction of rat
cardiomyocytes were observed when these cells were subjected to [Leu31,
Pro34]NPY and NPY13–36, suggesting the presence of both the Y1 and the Y2

receptors in this preparation [54]. Y1 and Y2 receptor immunoreactivities were
observed on both the atrial and ventricular cardiomyocytes [55]. However, the
Y1 receptors had a higher density in subendocardial, as compared to subepi-
cardial vessels of the left ventricular wall [55].

NPY can alter cardiac function indirectly, via central effects by causing
changes in afterload due to its own vasoconstrictory activities or by potentiat-
ing those of other vasoconstrictors [56]. NPY can also modify cardiac function
directly by inducing coronary constriction as well as potentiation of noradren-
aline-induced constriction [57].

The reported effects of NPY on cardiac contraction vary depending on the
species and the tissue used. For example, in whole isolated heart from guinea
pig, rabbit and rat, the infusion of NPY decreased contractile force and blood
flow [58–61]. However, NPY had no effect on inotropy in papillary muscles
from cat, guinea pig and rat [49, 62]. On the other hand, in isolated atria or
strips of atrial tissue, NPY had negative inotropic effects in the dog and rat
[61, 63], whereas positive inotropic effects were obtained in guinea pig [60,
64]. Furthermore, inotropy was not affected by NPY in human right atrial
strips [63]. NPY was found to induce negative inotropic effects in rat car-
diomyocytes [65, 66], whereas both inhibitory and stimulatory effects were
observed in guinea pig cardiomyocytes [65, 67]. In spontaneously contracting
single ventricular cardiomyocytes isolated from 10 day-old embryonic chicks,
NPY (10-10 M) increased the frequency of calcium transients during sponta-
neous contraction which was mainly mediated by the Y1 receptor [68].
However, in resting non-contracting cardiac cells, NPY induced a dose-
dependent increase of steady-state resting cytosolic and nuclear calcium that
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was partially blocked by BIBP3226, a selective Y1 receptor antagonist, imply-
ing the presence of other receptor types such as the Y2 and/or Y5 receptors in
these cells [68].

NPY is also able to stimulate hypertrophy of adult ventricular cardiomy-
ocytes [69]. NPY was also proposed to be a marker for determining the con-
dition of patients suffering from heart diseases. Indeed, high levels of NPY in
the plasma were reported in patients with hypertension, cardiac hypertrophy
and congestive heart failure suggesting that overstimulation of myocardial
NPY receptors can be one cause of pathological myocardial growth [69–71].
Recently, a common single nucleotide polymorphism in the signal peptide of
the NPY gene was found in humans, that makes the peptide more releasable
and associates with elevated total and LDL cholesterol as well as accelerated
atherosclerosis [72]. In addition, recent work by Michalkiewicz’s group [73]
showed that transgenic rats overexpressing NPY (2 times higher than normal)
in many tissues, including the heart, exhibited higher total vascular resistance
and blood pressure compared to their non-transgenic siblings [73].

Localization of Neuropeptide Y and the Y1 receptor in EECs as well as
their role in the regulation of intracellular calcium

Our recent work showed that right ventricular EECs isolated from 20 week-old
fetal human and adult rat hearts also express NPY and the Y1 receptor [8]. This
peptide is present not only at the cytosolic level, but also at the level of the
nucleus of human and rat right ventricular EECs (Fig. 2A). Similar to NPY, Y1

receptor immunostaining is also present in EECs and exhibits the same distri-
bution; higher fluorescence labeling being observed at the level of the nucle-
us, and more particularly at the perinucleoplasm and nuclear membranes lev-
els, while lower levels were detected in the cytoplasm and the plasma mem-
brane (Fig. 2B). Thus, NPY was found to be present near its receptor suggest-
ing that this peptide can be made available to stimulate its receptors at the plas-
ma membrane and nuclear membranes levels. Similar to what was reported for
HUVECs [74] and rabbit vascular endothelial cells [75, 76], it was recently
demonstrated that not only NPY is present in the cytosol of EECs, but also the
Y1 receptor [8]. In accordance with the nuclear localization of NPY and the Y1

receptor, there is plenty of evidence in the literature reporting the presence of
enzymes, channels, exchangers, pumps, hormones such as ET-1 and Ang II as
well as G-protein coupled receptors (for detailed review please refer to Bkaily
et al. [77]). Furthermore, several studies demonstrate that nuclear G-protein
coupled receptors such as the prostanglandin E2 EP3 [78] and ET-1 receptors
[79, 80] are functional. Based on these facts, it seems that NPY can act, not
only on its receptors at the plasma membrane level, but also on its receptors
present at the nuclear membranes’ level. Thus, some of the effects of NPY in
EECs could also be mediated via its receptors at the level of the nuclear enve-
lope membranes, something which offers the possibility that NPY could mod-
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ulate the expression of certain genes, as was reported for the prostaglandin E2

EP3 receptors [78]. In addition, like AT1 [81, 82] and ET-1 receptors [79, 80,
82], nuclear envelope membranes’Y1 receptors may also have a higher sensi-
tivity to their ligand and may exert specific functions that are different from Y1

receptors present on the plasma membrane. In addition, it was shown that the
NPY-induced increase in [Ca]c and [Ca]n was partially blocked by the selective
Y1 receptor antagonist, BIBP3226, suggesting that the Y1 receptor is indeed
implicated in this effect without excluding the possibility of the participation
of other NPY receptors [8]. It is clear from these results that NPY plays an
important role in the regulation of intracellular free Ca2+ in EECs. This may
suggest that upon an increase of nucleoplasmic free Ca2+ levels, nucleoplasmic
NPY can be released inside the nuclear envelope space (perinucleoplasm) by
Ca2+-dependent exocytosis to activate NPY receptors present at the inner
nuclear envelope membrane level. Along the same line, following an increase
in nuclear envelope free Ca2+, NPY present in the nuclear envelope space (per-
inucleoplasm) can also be released into the cytosol to activate NPY receptors
present on the outer nuclear envelope membrane. The activation of NPY recep-
tors, both at the outer and inner nuclear envelope membranes, can contribute
to the regulation of perinucleoplasmic and nucleoplasmic free Ca2+ levels [23].
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Figure 2. Confocal microscopic top view 3D images of anti-NPY (A) and anti-Y1 receptor (C)
immunoreactivities in 20 week-old human fetal ventricular endocardial endothelial cells showing
higher labeling of NPY and the Y1 receptor in the nucleus compared to the cytosol. For both NPY and
the Y1 receptor, note the labeling at the level of the nuclear envelope membranes. (B and D) Nuclear
staining of the cells using Sytox green (100 nM). In A and C, the color scale represents the level of
fluorescence intensity of the NPY and the Y1 receptor antisera from 0 to 255, respectively. In B and
D, the colors have no meaning. The white scale bar represents 5 µm.



In addition, this high increase of cytosolic and nuclear Ca2+ could contribute
to angiogenesis [74].

Our recent results demonstrate that the excitation-secretion coupling state of
these cells can be modulated by an increase in intracellular Ca2+ and confirm
that EECs do not only secrete ET-1, NO and prostanoids, but also NPY. Thus,
this latter peptide may also be considered an EEC-derived factor. In accordance
with these results, it was demonstrated that HUVECs can also release NPY
during cell growth by yet unidentified factors [75] confirming that under cer-
tain conditions, NPY can be released from endothelial cells. Thus, EECs may
contribute to local as well as systemic release of factors via a Ca2+-dependent
mechanism that can alter the excitation-secretion state of these cells as well as
excitation-contraction coupling of cardiomyocytes [18, 68].

Discussion and conclusion

There is not doubt today that NPY does play a role in regulating cytosolic and
nuclear Ca2+ in heart cells including ventricular cardiomyocytes and EECs.
The recent work in the literature including ours, agree that the major effect of
NPY in both ventricular cardiomyocytes and EECs is mediated primarily by
the activation of the Y1 and Y2 receptors. However, other NPY receptors may
also contribute to the peptide’s effect on cardiomyocytes and EECs such as the
Y5 receptors. The mechanisms by which these effects take place could be via
indirect activation of the voltage dependent resting R-type Ca2+ channels. One
important aspect that should be mentioned is that EECs could be an important
source of NPY which may highly contribute to both circulating NPY as well
as locally released NPY. Furthermore, the presence of different types of NPY
receptors in the nuclear membranes may suggest that these receptors may also
contribute to the modulation of nuclear function and more particularly to the
regulation of nucleoplasmic Ca2+ metabolism which is known to modulate
nuclear function and transport. It is very likely that overactivation of different
NPY receptors in both cardiomyocytes and EECs and more particularly the Y1

and Y5 receptors could be implicated in hypertrophy and cardiac heart failure.
We are quite sure that future work in the field of NPY and cardiac function will
help us to better understand the implication of this peptide in cardiac phys-
iopathology.
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Introduction

It is now well accepted that sympathetic nerves express as many as three neu-
rotransmitters: norepinephrine (NE), neuropeptide Y (NPY) and adenosine-5'-
triphosphate (ATP) [1–4]. Evidence for the existence of these three co-trans-
mitters has come from studies showing that they are located in sympathetic
nerves, that they can be released under appropriate conditions, that the appli-
cation of each mimics a phase of sympathetic nerve stimulation, and that each
phase can be blocked with an appropriate antagonist. NPY is known to be co-
localized with NE and ATP in perivascular nerves innervating a variety of
blood vessels. NPY exerts prejunctional modulatory effects on transmitter syn-
thesis and release [5]. The peptide is also involved in cardiovascular regulato-
ry mechanisms. Studies with selective NPY-Y1 antagonists provide evidence
that the principal postjunctional receptor that produces direct contractile
effects or potentiation of the contractile effects of other vasoactive substances
is of the Y1 subtype. Similarly, studies with selective Y2 antagonists suggest
that the principle prejunctional receptor is of the Y2 subtype, both in the
periphery and central nervous system (CNS) [5]. Other NPY receptor subtypes
may also be involved in the prejunctional and postjunctional actions of NPY
although information is incomplete.

It appears well accepted that essential hypertension is a multifactorial dis-
ease involving many alterations in the nervous system and endocrine system as
well as alterations in vascular smooth muscle function. Despite the complex
nature of the pathophysiological mechanisms contributing to hypertension,
there is considerable evidence for an involvement of increased sympathetic
nerve activity in various experimental hypertensive models as well as human
hypertension [6–11].

For instance, a study by Esler has demonstrated that NE release from renal
nerves is elevated in young borderline hypertensive patients and they also have
altered spillover of central monoamines from subcortical regions of the brain
[12]. Neonatal sympathectomy of the Spontaneously Hypertensive Rat (SHR)
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produces long-term reductions in blood pressure [13]. Moreover, interruption
of brain neurotransmitters or lesions of specific areas involved in sympathetic
regulation prevents hypertension in the SHR as well as DOCA-salt hyperten-
sion [14–16]. The purpose of the present paper is to discuss and summarize
data suggesting an involvement of NPY and sympathetic control of vascular
tone in hypertension. The reader is also referred to several recent reviews
which address various aspects of the topic [17–22].

Evidence for a role of NPY in the development and/or maintenance of
essential hypertension and experimental hypertensive models

NPY tissue levels and innervation

There have been numerous reports of a denser innervation of NPY containing
nerves in both prehypertensive as well as adult SHR compared to normoten-
sive controls. This has been demonstrated in cerebral blood vessels [23, 24]
mesenteric arteries [25–28] the caudal artery [28] and intralobar and interlo-
bar arteries in rat pancreatic islets [29]. In several cases the increased innerva-
tion increased with age in the SHR although the hyperinnervation preceded
hypertension or associated medial hypertrophy. It was observed that there is a
co-segregation of NPY hyperinnervation of the vasculature with the hyperten-
sive phenotype, evident as early as one month of age in the hypertensive strains
[28].

There have been similar reports of higher NPY levels in several tissues such
as the median preoptic and arcuate nucleus [30]; ventromedial hypothalamic
nucleus and locus coeruleus [31]; mesenteric and femoral artery, jugular vein
and vena cava [22]; urinary bladder, urethra and prostate [32] of SHR com-
pared to Wistar-Kyoto (WKY). On the other hand, there have also been reports
of lower NPY levels compared to normotensive controls, especially in the
CNS and spinal cord. For instance, NPY-ir in the cortex, cervical and thoracic
spinal cord of SHR was less than WKY [33]. Similar lower concentrations of
NPY were seen in the pons/medulla oblongata [34]. Lower levels of NPY have
also been seen in the atria, kidney and adrenals of SHR compared to WKY
[35]. Moreover aortic co-arctation induced hypertension resulted in a decrease
in NPY-ir fibers in the kidney and renal artery as well as in mesenteric arteries
[36]. Experimental hypertension using the 2 kidney 1 clip model decreased
NPY mRNA in both kidneys while there was no change in DOCA-salt hyper-
tension [37].

Plasma NPY levels

Although there are reports of no significant differences in plasma concentra-
tions in hypertensive patients [38, 39] a large number of studies have reported
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that plasma NPY levels are elevated in patients with essential hypertension
[40–46] and in pheochromocytoma [47–49]. Moreover, plasma NPY is ele-
vated in hypertensive patients undergoing various stressors or exercise [43, 50,
51]. Although these results are consistent with a role of NPY in contributing
to the maintenance/development of hypertension one caveat is that circulating
levels of NPY have been reported to be still elevated more than controls
despite a marked reduction in blood pressure [40, 46]. In contrast, treatment of
SHR with nitrendipine, captopril or both drugs, in doses which lowers blood
pressure, also decreased serum NPY levels [52].

Platelet NPY is also higher in hypertensive patients [53] and in SHR
[54–56]. Higher plasma levels of NPY have also been reported in stroke prone
SHR [57] as well as SHR [52] and both NE and NPY plasma levels increased
significantly in parallel with blood pressure during DOCA-salt hypertension
[58]. Moreover tissue NPY content was decreased in the mesenteric artery and
heart ventricle after 1–3 weeks of DOCA-salt treatment, but the content in the
adrenal gland was not significantly different. It was concluded that in the
DOCA-salt hypertensive rat, increased plasma NPY-li levels originate prima-
rily from sympathetic nerves since those levels were correlated exclusively
with circulating NE levels and were associated with a reduction in NPY-ir in
heart and mesenteric artery. Basal plasma concentration of NPY-ir in arterial
blood was also higher in renal hypertensive rabbits compared to normotensive
controls [59].

Functional NPY responsiveness

Exaggerated contractile responses to NPY in various experimental hyperten-
sive models have been well documented. For instance, pressor responsiveness
to NPY increased in parallel with the development of hypertension in the SHR
[60, 61] and infusion of NPY led to greater increases in blood pressure in this
model relative to several control strains. The ability of NPY to potentiate
nerve-induced or agonist induced increases in perfusion pressure of the per-
fused mesenteric arterial bed is enhanced in beds obtained from 8–10 week old
SHR compared to normotensive controls [62–65]. Moreover the pressor
response to microinjections of NPY into the posterior hypothalamic nucleus
was potentiated in the SHR [64, 66].

Similar enhanced pressor responses to central injections of NPY have been
seen in the SHR. It has been reported that the intracereboventricular injection
of NPY had an increased potency associated with a longer duration of the pres-
sor response in SHR compared to WKY. This was accompanied by an
increased density of Y2 receptors (vasopressor effects) in the nucleus tractus
solitarius (NTS). This suggests a dominance of the Y2 over Y1 receptor in the
SHR [67]. A similar increase in Y2 receptor mRNA was observed in the NTS
2 h after aortic co-arctation hypertension and correlated with the rapid increase
in blood pressure in this model [68].
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In other systems where NPY has been shown to produce depressor respons-
es there is an attenuation of the effect of NPY in SHR. The intrathecal (Int)
administration of NPY into conscious or anesthetized rats at the level of T4 or
T10 produced a decrease in blood pressure accompanied by a decrease in total
peripheral resistance, a decrease in renal sympathetic nerve activity without a
change in baroreflex sensitivity [62, 69–71]. The depressor effect of Int NPY
was significantly reduced when examined in 10-week-old SHR in contrast to
WKY, Sprague Dawley or DOCA-salt hypertensive rats [69]. Injections of
NPY into the NTS also induced a depressor effect that was also attenuated in
SHR compared to WKY [72].

The use of selective NPY Y1 antagonists has provided evidence for an
important role of NPY in the activity of the sympathetic nerve activity. For
instance, the long-lasting vasoconstriction induced by high frequency stimula-
tion of sympathetic nerves of the guinea pig vena cava in vitro was signifi-
cantly attenuated in the presence of SR 120107 [73] or BIBP3226 (both selec-
tive NPY-Y1 antagonists) [74, 75]. It was also observed that sympathetic nerve
stimulation (NS) produced concomitant vasoconstriction and NPY-ir release in
the isolated perfused mesenteric arterial bed. The NS, as well as NE and ATP,
induced vasoconstriction was potentiated by a NPY-Y1 agonist and attenuated
by BIBP3226 [76]. Similar results have been seen in vivo, where BIBP3226
inhibited the vasoconstrictor response to high frequency stimulation of sym-
pathetic nerves in nasal mucosa, hindlimb and skin [74]. These results clearly
suggest that endogenous NPY, acting on a Y1 receptor, plays a role in produc-
ing long-lasting vasoconstriction in these organs or tissues.

As already mentioned, NPY is well known to potentiate the contractile
response to electrical stimulation or vasoactive agents in isolated blood ves-
sels. Administration of NPY antiserum to tissues not previously exposed to
NPY significantly reduced the response to field stimulation. The antiserum
depressed the response to field stimulation in caudal arteries from SHR but not
those from WKY. This suggests that the enhancement of the response to field
stimulation is enhanced in hypertensive animals [77].

With this in mind, it has been disappointing that several groups have report-
ed that acute or short-term administration of the NPY selective Y1 antagonist
BIBP 3226 does not lower blood pressure in the Goldblatt Hypertensive rats
[78] or SHR [78, 79] although it clearly antagonizes the contractile or pressor
effects of NPY. In contrast the infusion of the more potent and selective Y1

antagonist BIBO3304 for 4 weeks blunted development of hypertension in the
2 kidney, 1 clip renovascular hypertensive model [80] as well as attenuating
the acute pressor response to NPY. There are no reported studies in which Y1

antagonists have been continuously administered over a similar or longer time
period in the SHR model. Therefore the fact that acute or short-term treatment
of Y1 antagonists does not decrease basal blood pressure in the SHR must be
viewed with caution and shouldn’t be interpreted as a lack of a role for NPY
in the development or maintenance of hypertension in this model. An addi-
tional explanation for the failure of the acute administration of BIBP3226 to
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lower basal blood pressure in the SHR is there might be an atypical (non Y1)
NPY receptor subtype that mediates the vascular effects of endogenously
released NPY [79, 81]. It is also possible that the NPY receptor could be locat-
ed intrajunctionally whereas the classical NPY-Y1 receptor could be located
extrajunctionally and respond to exogenous administration of NPY and
BIBP3226 as is thought to exist for the α1 adrenoceptor.

Modulation by NPY or NE release in hypertensive models

Neuropeptide Y negatively modulates NE release from sympathetic neurons as
well as central monoaminergic neurons [5]. In contrast to the potentiation of
nerve stimulation induced vasoconstrictor responses mentioned previously, the
ability of NPY to decrease the evoked release of NE from nerve stimulation
induced release of NE from the perfused mesenteric arterial bed was signifi-
cantly attenuated in preparations obtained from the SHR compared to WKY or
Sprague Dawley (SP) age matched normotensive rats [62–65]. A similar atten-
uation of the ability of NPY to inhibit NE release has also been observed in the
CNS. The electrical stimulation of NE from slices of hypothalamus and
medulla oblongata obtained from SHR was greater than in WKY [82–84].
NPY produced an inhibition of the evoked release of NE from slices obtained
from both brain regions and this inhibition was attenuated in slices obtained
from SHR compared to normotensive controls [82–84]. Using microdialysis
or push–pull cannulae, it has been observed that there was a greater sponta-
neous or stimulation induced release of NE from the paraventricular nucleus
of SHR or aortic banded rats compared to WKY or SD controls [85, 86]. The
ability of NPY to decrease the release of NE from the PVN of SHR was atten-
uated in the SHR and aortic banded rats compared to normotensive controls
[86].

Genetic studies

The NPY gene locus has been shown to be co-segregated with elevated blood
pressure in the SHR, specifically in chromosome 4 [87]. This suggests that the
NPY locus may be a candidate for a hypertensive effect in the SHR and that
using a genomic screening approach may be valuable is clarifying the differ-
ence in blood pressure between SHR and WKY. More recently, studies on the
NPY gene in humans have been carried out and it has been observed that a
polymorphism exists in the coding region for the NPY gene [89]. It is known
that the human NPY gene is located on chromosome 7p15.1 [88] and there is
a polymorphism that includes a thymidine (1128) to cytosine (1128) polymor-
phism (T1128C) which results in a substitution of leucine (Leu 7) to proline
(7) in the signal part of prepro NPY [89]. A recent study investigated the sig-
nificance of the NPY T1128C polymorphism for cardiovascular and cere-
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brovascular outcome in a cohort of hypertensive patients, that is, is it associat-
ed with development of myocardial infarction and stroke in a prospective
cohort of hypertensive patients [90, 92, 93]. The frequency of the NPY
T1128C polymorphism was found to be 8.4% among patients with a myocar-
dial infarction (MI) or stroke as compared to 5.1% in the control group
(p = 0.040). The difference remained significant after adjustment for the car-
diovascular risk factors: age, sex, smoking status, body mass index, systolic
and diastolic blood pressure, presence of diabetes, total cholesterol, HDL,
LDL and triglycerides. The authors concluded that this study indicates that the
NPY T1128C polymorphism is an independent predictor for MI and stroke in
a Swedish hypertensive population.

The Leu(7)-to-Pro(7) polymorphism has been linked to both type 1 [106]
and type 2 diabetes [107, 108] atherosclerosis [109] and coronary heart disease
[110]. These studies suggest that the NPY T1128C polymorphism may be a
strong independent risk factor for various cardiovascular diseases. The overall
significance of this finding is unclear however since the frequency of the
T1128C polymorphism shows a geographic distribution with most of the pos-
itive associations found largely in Nordic countries such as Finland, Sweden
and the Netherlands [91]. Moreover in a recent retrospective study Yamada et
al. [111] were unable to find an association between NPY T1128C polymor-
phism and MI in Japanese subjects although the frequency of T1128C poly-
morphism is low in that country.

A recent editorial in the Journal of Hypertension states: “Identification of
an association between the T1128C polymorphism and cardiovascular risk fac-
tors may only be the initial step towards understanding the physiological and
pathological roles of NPY in humans” [91].

More translational and basic studies are required to focus on the genetic
impact of this polymorphism on normal cardiovascular and blood pressure
control and the development of cardiov ascular disease, as well as the cel-
lular and molecular mechanisms involved.

Role of NPY in stress induced hypertension

There is clear evidence that various forms of stress can induce transient eleva-
tions of blood pressure. Folkow [95] has long maintained that repetitive
(stress-induced) sympathetic stimulation which is able to induce transient
increases in blood pressure, heart rate and cardiac output will lead to structur-
al adaptation of the blood vessels and the heart (for review see [94]). The ques-
tion of whether stress can lead to persistently elevations of blood pressure is
still unclear, however.

We and others have obtained results clearly implicating NPY in stress-
induced hypertension. Zukowaska-Grojec has demonstrated that NPY plays a
role in the pressor response to cold-water pressor test [96]. These investigators
observed that there was an increase in plasma NPY-ir in rats exposed to cold-
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water stress (COLD). Administration of BIBP3226 tended to decrease the
stress-induced pressor response and significantly attenuated the post COLD
elevation of blood pressure. The COLD induced fall in the superior mesenteric
artery blood flow and the increase in the mesenteric vascular resistance was
either reduced or eliminated by BIBP3226.

Chronic cold stress (4 °C, 1–3 weeks) has been shown to produce hyper-
tension in rats [97, 98]. We observed that chronic cold stress (4 °C) produced
a sustained increase in mean arterial pressure in both normotensive and bor-
derline hypertensive rats (BHR) [99]. The high blood pressure in BHRs was
also significantly reversed by the Y1 selective antagonist BIBP3226. Chronic
cold stress potentiated the pressor response to rats to subsequent acute stress
(the cold water stress).

Chronic cold stress (4 °C, 1–3 weeks) also induced a marked increase in
gene expression (adrenal medulla; superior cervical ganglia), tissue content
(mesenteric arterial bed) and nerve stimulation induced overflow of NPYir
from the perfused mesenteric arterial bed [99, 100]. These results suggest that
chronic cold stress-induced hypertension is mediated by elevated NPY release
and vascular tone as a result of increased NPY gene expression and storage.

Since insulin-induced hypoglycemia has been shown to produce increased
sympathetic output and elevated blood pressure, the role of NPY in the hyper-
tensive response to insulin was investigated [101]. Subcutaneous injection of
insulin to rats produced a sequential increase in plasma NPYir, NPY mRNA
abundance in the adrenal and superior cervical ganglia and adrenal NPYir,
strongly suggesting that NPY release, biosynthesis and storage are elevated
following hypoglycemic stress. These results are consistent with an important
role for NPY in insulin-induced hypertension. NPY has also been implicated
in other types of stress. For instance, the effect of BIBP3226 and its inactive
enantiomer, BIBP3435, on a mental stress paradigm was investigated in SHR.
The stress (air jet) induced maximum increase in heart rate was significantly
reduced by BIBP 3226. These results suggest a role for NPY in the response
to mental stress [102]. Odar-Cederlöf and colleagues investigated the role of
NPY in fluid overload induced hypertension in hemodialysis patients [103].
They observed that the plasma concentrations of NPY correlated well with the
degree of fluid overload and the mean arterial pressure. In stepwise multiple
regression analysis, NPY alone explained blood pressure elevation when ana-
lyzed with fluid overload and angiotensin II, renin, NE and epinephrine levels.
These investigations hypothesize that fluid overload in dialysis patients is a
stress-inducing state that activates the sympathetic nervous system and releas-
es NPY. They further conclude that over hydration is a stress situation that cre-
ates a vicious cycle through the release of NPY. NPY exacerbates hypertension
and increases cardiac load and thus the risk of heart failure. This in turn
increases the stress and further sympathetic nerve stimulation.

Studies examining the role of central NPY neurons following stress have
also been carried out [104–105]. Activation of brainstem and arcuate nucleus
(ARC) NPY neurons and levels of NPY mRNA in the ARC were measured in
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response to restraint stress in adult SHR and two normotensive controls [104].
FOS immunohistochemistry and NPY in situ hybridization to identify activat-
ed NPY neurons were examined in the NTS, ventrolateral medulla (VLM) and
ARC. In the NTS and VLM of restrained rats approximately 33% and 75%,
respectively of NPY neurons were activated, but no differences among strains
was found. In the ARC about 36% of neurons activated by restrain contained
NPY mRNA. NPY mRNA levels were significantly elevated in SHR’s com-
pared to controls. Restraint led to significant decreases in mRNA levels. These
results suggest that NPY likely participates as a neurotransmitter in the auto-
nomic pathways utilized during stress and originating in the NTS, VLM and
ARC. The decrease in NPY gene expression in the ARC which was measured
following restraint stress argues against a role for NPY from the ARC in acti-
vating sympathetic activity or the hypothalamo-pituitary adrenal (HPA) axis.
Others have observed that exposure to restraint results in significant changes
in prepro-NPY mRNA expression in specific nuclei of both WKY and SHR
that are components of not only the central circuitry regulating the stress
response, but also the neural network modulating autonomic function [105].

Evidence consistent with or suggestive of a role for NPY in the
development and/or maintenance of hypertension or stress induced
hypertension in humans or experimental hypertensive models

Taken together there is considerable evidence implicating peripheral and cen-
tral NPY in the development and/or maintenance of hypertension in humans
and experimental animal models of hypertension. The evidence supporting this
is summarized below:

• The NPY gene locus is co-segregated with elevated blood pressure in the
SHR

• Evidence exists that the NPY T1128C polymorphism is associated with
development of myocardial infarction and stroke in a prospective cohort of
Swedish hypertensive patients

• There is a co-segregation of NPY hyperinnervation of the vasculature which
precedes the development of hypertension in many cases

• There is elevated NPY levels in certain central nuclei associated with pres-
sor responses and lower NPY levels in areas associated with depressor
responses in hypertensive models

• There are elevated plasma as well as platelet levels in patients with essential
hypertension and in animal models of hypertensions including SHR, stroke
prone SHR, DOCA-salt hypertensive rats and renal hypertensive rabbits

• Exaggerated vascular responsiveness to NPY exists in various experimental
hypertensive models; moreover vascular and pressor responsiveness to NPY
increase in parallel with the development of hypertension in certain models
such as SHR
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• Enhanced pressor responses to NPY are also seen following central admin-
istration in experimental hypertension; in contrast in areas mediating
depressor responses to NPY, there is an attenuation of the depressor
response

• The selective Y1 antagonist BIBO3304 blunted the development of hyper-
tension in 2 kidney, 1 clip hypertensive models; NPY antiserum depressed
the neurogenic response to field stimulation in caudal arteries obtained from
SHR but not WKY

• The prejunctional inhibitory effect of NPY on sympathetic neurotransmis-
sion in blood vessels is attenuated in SHR compared to normotensive rats;
a similar attenuation of NPY’s inhibitory effect on NE release was seen in
brain slices (medulla oblongata; hypothalamus) or central pressor regions
(paraventricular hypothalamic nucleus) in the SHR

• NPY is clearly implicated in contributing to the development of stress-
induced hypertension in both animals and humans

• In the SHR, NPY has been shown not only to potentiate adrenergic respons-
es but attenuates the development of compensatory adrenergic desensitiza-
tion, thus perhaps promoting the maintenance of elevated blood pressure

Evidence inconsistent with a role for NPY in the
development/maintenance of hypertension and future directions

Despite a great deal of evidence in favor of a role for NPY in contributing to
the development or maintenance of hypertension in humans and animal mod-
els, definitive proof is still lacking. It is not clear if the elevation of plasma
NPY and tissue levels is the cause or result of elevated blood pressure,
although in some cases the increased levels precede elevations of blood pres-
sure. It is not clear why specific NPY Y1 antagonists do not reduce blood pres-
sure in the SHR and why plasma NPY levels remain elevated despite blood
pressure reaching normotensive levels. Further studies are needed where NPY
antagonists are administered for longer periods of time and in additional
hypertensive models other than the SHR. Clearly more translational and basic
studies are required to focus on the genetic impact of the NPY T1128C poly-
morphism on normal cardiovascular and blood pressure control and the devel-
opment of cardiovascular disease as well as the cellular and molecular mech-
anisms involved.

The following schema is an attempt to integrate much of the information
discussed above. The figure depicts the vascular sympathetic neuroeffector
junction (sympathetic terminals containing NE, NPY and vascular smooth
muscle) with connections from the CNS. ATP has been left out for simplicity
but is also an important player. Large lines depict increased activity, small lines
normal activity and dotted lines decreased activity. In animals or patients who
become hypertensive, it is hypothesized that there is an enhancement of sym-
pathetic outflow mediated centrally. In central pressor areas such as the rostral
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ventrolateral medulla and posterior hypothalamus there is a greater response to
NPY due to enhanced NPY levels or increased NPY activation as well as the
action of other mediators. In contrast there is an attenuation of responses from
depressor areas such as the nucleus tractus solitarius, caudal ventral lateral
medulla and spinal cord with a decrease in sympathetic outflow. An increase
from pressor areas coupled with a decrease from depressor areas would result
in an increase in nerve impulses arriving at the sympathetic nerve terminals.
The increase in nerve impulses coupled with an attenuation of negative feed-
back modulation would result in enhanced release of both NE and NPY (and
perhaps ATP). This increased release would contribute to the elevated plasma
levels of NPY and NE commonly reported. Increased levels of NE and NPY
at the vascular neuroeffector junction plus enhancement of NPY’s ability to
potentiate contraction would result in an enhancement of the contraction of
vascular smooth muscle and contribute to the hypertensive state.
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Neuropeptide Y and the cerebral circulation
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Introduction

Neuropeptide Y (NPY) is one of the most abundant neuropeptides in both the
peripheral and the central nervous systems. In addition, NPY is found in blood
and cerebrospinal fluid (approximately 100 pmoles/L). Immunohistochemical
studies show NPY to be widely distributed in sympathetic nerves supplying
the cardiovascular system including the cerebral arteries. In general [1, 2]
perivascular NPY-containing fibers are more abundant around arteries than
veins. Larger cortex pial arteries tend to be more densely innervated by NPY-
positive sympathetic fibers than smaller arteries; and rostral arteries receive
more NPY fibers than caudal vessels. NPY-positive nerve fibers also are close-
ly associated with penetrating arterioles and intraparenchymal microvessels of
the brain.

In sympathetic nerve terminals, NPY is packaged with norepinephrine in
large, dense core synaptic vesicles, whereas adenosine 5' triphosphate (ATP) is
co-stored with norepinephrine in both small and large dense core vesicles.
Consistent with this general scheme, NPY immunogold labeling is associated
with large granular vesicles in the varicosities of nerves innervating human
brain vessels [3].

NPY receptor subtypes

NPY acts on a family of G-protein coupled receptors (Y1–Y6) [4]. So far, five
distinct NPY receptors have been cloned, and a sixth receptor (Y3) has been
characterized pharmacologically. All of the subtypes appear to act through
similar signaling pathways mediated by pertussis toxin-sensitive G proteins
(Gi and Go). The Y1, Y2, and Y5 subtypes preferentially bind NPY and the relat-
ed endogenous peptide YY (PYY). Y2 receptors, which were first described as
presynaptic receptors, are uniquely activated by C-terminal fragments of NPY,
e.g., NPY3–36, NPY13–36 and PYY13–36, which do not affect Y1 receptors.
Specific agonists that are more potent at Y1 than Y2 receptors have been syn-
thesized, e.g., [Leu31, Pro34]-NPY and [Pro34]-PYY, which contain a proline
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residue instead of glutamine at position 34 of the molecule [4]. The Y3 and Y4

receptor subtypes preferentially bind NPY and another related peptide, pan-
creatic polypeptide (PP), while the pharmacological profile of the Y6 subtype
is still controversial. The cerebrovascular actions of NPY appear to involve pri-
marily Y1 and Y2 receptors; there is no evidence at this time that Y3, Y4, Y5 and
Y6 subtypes are present in cerebral blood vessels.

The Y1 receptor, which is the predominant vascular receptor mediating
vasoconstriction [5] is the best studied and understood of the NPY receptor
subtypes. The presence of Y1 receptor protein and mRNA has been demon-
strated in human and rat cerebral arteries [6, 7]. Using reverse transcriptase-
polymerase chain reaction (RT-PCR), mRNA for the Y1 receptor is found in
isolated human pial vessels and intracortical microvessels as well as cere-
brovascular smooth muscle cells in culture. In situ hybridization localized Y1

mRNA to the smooth muscle layer of pial vessels. Neither RT-PCR nor in situ
hybridization techniques were able to detect mRNA for Y2, Y4 or Y5 receptors,
suggesting that these receptor subtypes are absent or expressed in very low
concentrations in cerebral vessels. As discussed below, functional studies,
however, indicate a role for both the Y1 and Y2 subtypes.

Using immunohistochemistry, Y1 receptor protein can be visualized in
smooth muscle cells of rat pial arteries and arterioles [8]. The intensity of
immunostaining is highest in arterioles, especially those with a diameter of
15–30 µm, with fewer receptors observed in the arteries on the basal surface
of the brain. Y1 receptor immunostaining is found on all sides of the vascular
smooth muscle cells with the highest concentration on the abluminal surface.
It is somewhat surprising that, in the rat, NPY-positive fibers are mainly found
around the larger arteries exhibiting low levels of Y1 receptors, while few NPY-
positive fibers are observed around Y1 receptor-rich arterioles [8]. In contrast,
other species such as cat and man exhibit dense NPY innervation around pial
vessels of all sizes.

NPY-induced constriction

Exogeneous NPY produces a long-lasting response [1, 2, 7, 9], and it potent-
ly constricts cerebral arteries in all species that have been examined, includ-
ing human. For example, in isolated rat cerebral arterioles, NPY causes a pro-
found constriction, to 81% of control diameter; and the concentration of NPY
eliciting a half-maximum response is 6 × 10-10 M [10]. In isolated cat middle
cerebral artery and pial arteries, constriction to NPY is about half as strong as
that produced by K+ [11]. In situ, cat pial arteries constrict markedly follow-
ing perivascular application of NPY at concentrations of 7 nM or more [12].
The maximum NPY-induced constriction of cat pial arteries in situ is about
35%, which is equivalent to or exceeds that of other cerebrovascular con-
strictor agents such as norepinephrine or angiotensin II. In contrast, the iso-
lated basilar artery of the rabbit responds to NPY with weak contraction. In
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general, the ability of NPY to induce arterial vasoconstriction increases as
vascular diameter decreases with the greatest effects on small resistance ves-
sels. Pial veins of the cat also respond to perivascular NPY, but much larger
concentrations of the peptide are required to produce a significant reduction
in diameter [12].

Vasoconstrictor mechanisms

In cerebral arteries, constrictor responses to NPY appear to be mediated by
changes in smooth muscle membrane potential [11] and influx of extracellular
calcium. In guinea pig basilar artery, NPY evokes a slow, long lasting depo-
larization (up to 8 mV) of the smooth muscle that is directly correlated with
constriction [13]. NPY is known to inhibit ATP-sensitive K+ channels, causing
depolarization of arterial smooth muscle, but this has yet to be demonstrated
in cerebral arteries. Membrane depolarization produced by NPY likely acti-
vates voltage-operated calcium channels (VOCC). NPY-induced vasoconstric-
tion of cerebral arteries is dependent on the influx of calcium since it is
blocked by either removal of extracellular calcium or addition of VOCC block-
ers, e.g., nifedipine, nimodipine, verapamil and diltiazem [1, 11, 14].

NPY inhibits cyclic adenosine monophosphate (AMP) formation in cere-
bral arteries, as it does in other tissues [4]. This effect is expected for Gi/Go-
coupled receptors; and it likely contributes to the vasoconstrictor effects of
NPY since cyclic AMP is considered a vasodilator. In cat and guinea pig cere-
bral vessels, NPY decreases basal cyclic AMP content as well as forskolin-
induced cyclic AMP production [15].

Inhibition of vasodilatation is another way that NPY increases vascular tone
in various vascular beds. Interestingly, NPY inhibits vasodilator responses to
acetylcholine, adenosine, norepinephrine (in the presence of phentolamine),
substance P, and VIP without affecting calcitonin gene-related peptide
(CGRP)-mediated dilation. In pre-contracted basilar arteries from guinea pig,
acetylcholine or substance P induces relaxation, and this response is signifi-
cantly inhibited by NPY. The inhibitory effect of NPY is reversed by the
inhibitor α-trinositol. NPY-induced inhibition of adenylate cyclase, decrease
in Na+-K+ pump activity, or membrane depolarization have been postulated as
mechanisms underlying inhibition of relaxation by NPY [16, 17].

NPY-induced dilatation

Although NPY is best known for its ability to increase vascular tone, this pep-
tide can also cause direct vasodilatation in vivo and in vitro [17]. Injection of
NPY into the carotid artery of the cat produces a transient, but significant,
increase in cerebral blood volume and flow. Administration of NG-
monomethyl-L-arginine (L-NMMA), a nitric oxide synthase (NOS) inhibitor,
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prevents the volume increase, thus implying that NPY elicits transient vasodi-
latation via production of NO [18]. In isolated guinea pig cerebral arteries,
NPY also causes a transient vasodilatation that is correlated with increased
cyclic GMP levels [19]. When applied selectively to the lumen of rat middle
cerebral artery segments, NPY, [Leu31, Pro34]-NPY, and NPY13–36 all produce
a concentration-dependent vasodilatation [17]. Pretreatment of the artery with
a NOS inhibitor or removal of the endothelium prevents the dilatory response
to NPY. In fact when the endothelium is removed, intraluminal NPY agonists
produce constriction instead, no doubt by direct action on the smooth muscle
[17]. Together, these studies indicate that NPY acts on the endothelium to
release NO that in turn stimulates smooth muscle guanylate cyclase leading to
relaxation.

There is some evidence for the presence of NPY receptors on endothelial
cells. In cerebral arteries, the functional NPY antagonist α-trinositol attenuates
NPY-stimulated increases in cyclic GMP formation without affecting basal
cyclic GMP levels [19]. BIBP 3226, however, does not affect vasodilatation in
response to intraluminal NPY or [Leu31, Pro34]-NPY [17] indicating that Y1

receptors are not involved. It is hypothesized that endothelial Y2 receptors are
responsible for NPY-induced dilatation; however, other NPY receptor sub-
types cannot be ruled out until more discriminating agents, e.g., a selective Y2

receptor antagonist, are tested. Within the brain, NPY is often co-localized in
NOS-containing nerves that appose intracerebral blood vessels [20]. While the
functional consequences have never been demonstrated, it is possible that NPY
and NO act synergistically to produce local vasodilatation.

Neuropeptide Y and the cerebral circulation

The influence of in vivo NPY administration on the cerebral circulation was
first examined in the rat. Allen and colleagues [21] reported that a bolus injec-
tion of NPY into the carotid artery produced profound reductions in cortical
blood flow. Decreases in flow were large in magnitude (up to 98%) and long
in duration (at least 2 h). Although an identical protocol was used in another
study, such a dramatic or prolonged reduction in cerebral blood flow was not
seen [22]. The administration of 1 nM and 5 nM of NPY as a bolus into the
internal carotid artery of the rat resulted in a dose-dependent decrease in ipsi-
lateral striatal local blood flow as measured with the hydrogen clearance
method. The decrease developed slowly and persisted for at least 2 h without
affecting blood pressure. A bolus injection of NPY into the vertebral artery of
anesthetized dogs resulted in a concentration-related reduction in vertebral
blood flow as measured by electromagnetic flowmetry [23]. The decrease in
vertebral blood flow produced by NPY reached its maximum at 3 min and
remained depressed for up to 30 min.
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Effect of neuropeptide Y on regional blood flow and metabolism

The importance of NPY in the regulation of regional cerebral blood flow
(CBF) has been investigated in the rat striatum using quantitative autoradi-
ographic techniques [24, 25]. Since NPY may influence local CBF either by a
direct vasomotor action or by directly altering cerebral metabolism with sec-
ondary changes in blood flow, the effect of NPY on both striatal blood flow
and striatal glucose use was examined [25]. Intrastriatal administration of NPY
produced significant reductions of CBF within a limited number of regions of
the CNS. The majority (30 of 40) of the regions investigated, however, did not
exhibit changes in CBF or in glucose use.

In the caudate nucleus into which NPY had been administered, tissue per-
fusion was markedly reduced [24, 25]. Reduction in striatal blood flow extend-
ed from the most rostral to the most caudal portion of the caudate nucleus. In
contrast, the overall rate of glucose utilization in the striatum was only mini-
mally altered by the administration of NPY. Thus, the increase in striatal cere-
brovascular resistance occurred independently of local changes in metabolism,
indicating that NPY directly alters striatal blood flow. This is a relatively
unusual observation, since changes in CBF are generally correlated with alter-
ations in cerebral oxidative metabolism. Arteries that supply blood to the stria-
tum (the middle cerebral and lenticulostriate arteries) also are innervated by
NPY-like immunoreactive fibers and respond to neuropeptide Y with a dose-
dependent contraction [24]. Together these observations further support a role
for NPY in regional cerebrovascular regulation.

It is surprising that NPY caused profound reductions in CBF with minimal
changes in glucose utilization in several brain regions far removed from the
striatal injection site, e.g., the entorhinal cortex, amygdala, and perirhinal cor-
tex [23–25]. The cause of the marked alterations in blood flow in these extras-
triatal regions is uncertain. Since their distance from the injection site (greater
than 2 mm) makes simple diffusion of NPY into these regions unlikely, it is
improbable that blood flow changes in these regions resulted from a direct
vasoconstrictor effect of NPY. It may be that constriction originating in the
striatal arteries and arterioles is propagated to regions remote from the injec-
tion site. Another intriguing possibility is that the injection of peptide produced
alterations in neuronal activity within intracerebral pathways involved in cere-
bral circulatory control. Thus, the dissociation between local CBF and local
glucose may be evidence of a functional role played by cerebrovascular fibers
originating within the CNS itself.

Modulation of autoregulation

Direct proof for involvement of NPY in cerebrovascular physiology comes
from two sets of results. In the cat, Goadsby and Edvinsson [26] examined cor-
tical microcirculation in conjunction with activation of the sympathetic nerves.
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The NPY blocker α-trinositol was found to shift the autoregulation curve to
the left, thus showing that part of the protective effect of the sympathetic sys-
tem was mediated by NPY.

The second study was carried out by Vraamark et al. [27] who studied
whole cerebral blood flow in rat using the Kety-Schmidt method. A marked
influence on the upper limit of the autoregulation was also observed with the
NPY blocker α-trinositol. Evidence now exists that both NPY and norepi-
nephrine participate in protecting the brain against breakthrough of the upper
limit of autoregulation in conditions of high blood pressure.

Neuropeptide Y in stroke

The possibility that NPY contributes to the development of cerebral
vasospasm has been examined in experimental subarachnoid hemorrhage
(SAH) [28, 29]. In the first study Abel et al. [28] observed that NPY in cere-
brospinal fluid was markedly increased after injection of autologous blood. In
these studies NPY was observed to be a strong vasoconstrictor. Depending on
experimental conditions the responses to NPY were modified following SAH.
NPY-like immunoreactivity (NPY-LI) also has been measured in CSF from
patients with aneurysmal SAH [30, 31]. Both studies found that NPY was not
significantly higher in SAH than in controls. However, Juul et al. [30]
observed that in some patients there was a correlation between the degree of
severity of spasm as studied with transcranial Doppler ultrasound and the con-
tent of NPY-LI in the external jugular vein. The possibility that NPY plays a
role in a particular subset of SAH patients needs to be explored further.

Further support for a deleterious role of NPY in stroke has appeared [32].
There was increased immunoreactivity for neuropeptide Y (NPY) within the
perilesional cortex following experimental middle cerebral artery occlusion
(MCAO) or focal excitotoxic damage. NPY administration increased the rela-
tive infarct volume and reduced rCBF as observed during reperfusion. These
results indicate that peripheral or central administration of NPY impairs reper-
fusion following experimental MCAO and worsens the outcome of focal cere-
bral ischemia [32].

Concluding remarks

The presence of NPY receptors on both endothelial and vascular smooth mus-
cle cells indicates that blood-borne NPY as well as NPY stemming from sur-
rounding nerves can affect contractile responses of cerebral vessels. In addi-
tion, endothelial cells may themselves be a source of NPY as well as a site of
NPY metabolism. Understanding the roles of NPY in cerebrovascular regula-
tion is complicated by multiple receptor subtypes, signalling pathways and cel-
lular responses. Vasodilatory effects and vascular remodeling actions under-
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score the fact that NPY cannot just be classified as a potent vasoconstrictor.
NPY is an important sympathetic transmitter, but it clearly acts via intracere-
bral nerves as well to regulate local CBF.
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Neuropeptide Y and the heart: implication for
myocardial infarction and heart failure

Giora Z. Feuerstein and Edward W. Lee

Translational Sciences, Wyeth Research, Collegeville, PA 19426, USA

Introduction

Neuropeptide Y (NPY) is a 36 amino acid peptide first isolated from porcine
brain in 1982 [1]. Shortly thereafter another peptide was isolated from porcine
intestine that showed high sequence homology with NPY and hence named
peptide YY (PYY) [2]. NPY and PYY possess structural elements similar to
those of the pancreatic polypeptides (PPs) [3] and thus been included in the
same peptide family, called the Y family or NPY family [4] (for further review
see Dumont and Quirion, in this book). All these peptides have 36 amino acids,
contain several tyrosine residues, have a polyproline type II helix, a beta-turn
(amino acid residues 10–13), an amphiphilic alpha-helix (amino acid residues
14–30) and a C-terminal area that appears to adopt a flexible structure [5, 6].
These structural elements are likely to confer a hairpin like-structure, in which
N- and C-terminal amino acid residues are in closed proximity as previously
shown for avian PP [7, 8].

Localization studies of NPY by immunohistochemical techniques using
highly potent and selective antibodies established the abundance of NPY-like
immunoreactive (ir) in the central nervous system of mammals, including
human [9–11] as well as the peripheral nervous system [12–14]. Other mem-
bers of the family such as PYY and PP are primarily found in endocrine cells
of the intestine [15]. However, PYY-like ir was also shown to be present in the
brainstem and various hypothalamic nuclei [16]. For in-depth review of NPY
family of peptides, their receptors and fundamental molecular signaling, the
reader is advised to refer to the NPY biochemical chapters in this book.

Heart Failure and NPY

Epidemiology

Heart failure is a common clinical syndrome that has enormous impact on the
prognosis and lifestyle of the patients. In the USA, more than 4 million people
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have heart failure and more than 400,000 new cases are diagnosed each year.
The worldwide heart failure patient population is estimated to be over 10 mil-
lion in developed countries with the forecast for aggressive increase in disease
incidence in developing countries. The diagnosis of heart failure is associated
with high mortality, about 50% in 5 years and the morbidity of the syndrome
has major effects on the quality of life and individual productivity. The overall
management and costs of heart failure is one of the most significant factors in
healthcare fiscal and management burden with steady growth of prevalence
and hospitalization volume. Heart failure has become a primary diagnosis of
adult patients discharged from hospitals (for review see [17, 18]).

Pathophysiology

The clinical syndrome of heart failure likely represents summation of multiple
anatomic, functional and biologic alterations that interact in a complex man-
ner and in different environments and genetics backgrounds over chronic and
variable periods. Heart failure occurs when “abnormalities of cardiac function
causes the heart to fail to pump blood at a rate required by the metabolizing
tissues”. The main cause associated with heart failure is ischemia due to coro-
nary artery diseases, myocardial infarction, hypotension or toxic conditions.
Cardiac myopathies, either following inflammatory/infectious (viral, bacteri-
al) conditions or immune reactions or idiopathic (of unknown) can also con-
tribute significantly to chronic heart failure (for review see [18, 19]). Cardiac
rhythm disturbances such as chronic atrial flutter and atrial fibrillation also
drive cardiac remodeling and exacerbate heart failure. Regardless of the con-
ditions that trigger cardiac damage, progression of heart failure invariably
leads to progressive morbidity and ultimately, death.

The neurohormonal model of heart failure

The process of cardiac remodeling following cardiac injury, considered as a
main mechanism that leads to heart failure and death, is believed to be driven
by multiple factors derived from peripheral and central neuronal elements,
immune and inflammatory cells and the endocrine system. These factors
include catecholamines (noradrenaline, adrenaline), angiotensin II, vaso-
pressin, prostaglandins, natriuretic peptides, cytokines (TNF alpha, IL-1beta),
vasodilator peptides (CGRP, substance P), aldosterone and others. The activa-
tion of numerous neurohormonal factors believed to contribute to progression
of heart failure have lead to the “neurohormonal model” [19] of heart failure
progression that underwrites therapeutic strategies to combat the relentless
progression of heart failure. Several important and medically beneficial drugs
have been discovered and developed based on current understanding of the
“neurohormonal model” such as angiotensin II receptor antagonists and
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angiotensin II converting enzyme inhibitors [20], adrenergic beta receptors
blockers [21], atrial natriuretic peptide (ANP) agonists [22], and aldosterone
antagonists [23].

It is however well recognized nowadays that contemporary drugs that block
neurohormonal factors have limited benefits and in fact result in diminished
efficacy over time possibly due to: 1) inability to achieve adequate levels of
neurohormonal antagonism, 2) ceiling of neurohormonal antagonism, 3) neu-
rohormonal independent mechanism.

In recent years NPY emerged as an additional possible neurohormonal fac-
tor that could play a role in cardiac function in health and disease. In this brief
review, the case for a role of NPY and related peptides in cardiac function and
dysfunction will be reviewed and analyzed. The potential for NPY modulators
to join the heart failure therapeutics arsenal is attractive in view of the rapid
discovery and development of highly selective NPY receptor agonists and
antagonists.

NPY and NPY receptors localization and function in the heart

NPY is found in sympathetic nerve endings of the human heart as well as in
many other species [24, 25]. NPY containing sympathetic nerve ending are
localized in both the coronary vasculature and within cardiac myocytes. The
heart contains also NPY receptors and especially the NPY Y1 and NPY Y2.
The cardiac NPY Y1 receptors have been identified by immunocytochemistry
in the cardiac vasculature but their presence in normal cardiac human
myocytes is less clear [26]. However, pharmacological studies with various
NPY agonists suggest that both NPY Y1 and NPY Y2 receptors are likely to
be present and functional in cardiac myocytes, at least in rodents [27].

The NPY Y2 receptor is believed to be primarily located on pre-junctional
sympathetic nerves where it serves as a negative feedback regulation mecha-
nism for norepinephrine release [28]. More recent studies using specific anti-
bodies rose against extracellular parts of the NPY 1 and 2 receptors have been
studied in human post mortem cardiac specimens from individuals of no his-
tory of cardiac diseases [29]. This study provided strong indication on the
presence of both NPY Y1 and especially NPY Y2 receptors in both the atrial
and ventricle myocytes and surprisingly, also present on conducting fibers.
This study also identified differential densities of Y1 versus Y2 receptor dis-
tribution on cardiac microvessels with greater fractional Y1 receptor densities
in sub-endocardial than the sub-epicardial vessels while the Y2 distribution
seemed to be more evenly distributed. These authors also confirmed the pres-
ence of Y2 receptors on cardiac nerves in accord with the animal data where
NPY is believed to mediate a negative feedback loop on both sympathetic and
parasympathetic neurotransmitter release [30]. In rats and guinea pigs, vagal
bradycardia was attenuated by Y2 receptor partial agonist [31] while a selec-
tive non-peptide Y2 receptor antagonist attenuated Y2 receptor mediated inhi-
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bition of cholinergic transmission in these species heart [32, 33]. These data
suggest the potential of the Y2 receptors to regulate autonomic input to the
heart especially upon sympathetic and baroreceptor activation.

The pathophysiological role of NPY and Y1/2 receptors in the heart is not
entirely clear. Y1 receptor stimulation is expected to induce coronary vessel
constriction with the potential of inducing ischemia. This possibility is based
on studies in patients with angina pectoris where intra-coronary injections of
NPY induce myocardial ischemia with typical chest pain and electrocardio-
graph (ECG) changes [34]. Also, positive correlation between plasma NPY
levels and the degree of ST- segment depression after exercise in patients with
coronary artery disease has been demonstrated [35].

Taken together, animal and human data regarding the localization and func-
tion of the NPY system in the heart suggest a regulatory role on autonomic
tone (sympathetic and parasympathetic), spatial regulation of cardiac contrac-
tility, microcirculation, angiogenesis and remodeling (for further review see
[36, 37]).

NPY and heart failure

As pointed out (vide supra, neurohormonal model of heart failure) numerous
neurohormonal mediators have been implicated in the pathogenesis of heart
failure. It is therefore of no surprise that NPY has also been a subject of inves-
tigation in this condition especially since NPY co-localization and release with
the adrenergic neurotransmitters suggested excessive co-release with norepi-
nephrine from the activated peripheral sympathetic system. Indeed, several
reports have demonstrated elevated plasma levels of NPY of patients with
heart failure, regardless of the etiology of the disease [37–39]. Furthermore, it
appears that plasma levels of NPY correlate with the severity of the progres-
sion of heart failure and therefore, NPY might serve as an independent prog-
nostic factor for heart failure severity and outcome [40]. Regarding the levels
of NPY in the heart of patients with heart failure, little information is available
at this time. It appears however, that NPY levels are not elevated and in fact
might be rather lower than normal as is also the case with norepinephrine, sug-
gesting that NPY depletion might follow the state of the sympathetic nervous
system in general [41]. However, periodic regional ischemic events might con-
tribute to heart failure via release of norepinephrine and NPY as shown in
experimental models (pig) where coronary ligation elicited local release of
these mediators monitored by microdialysis [42]. The functional significance
of elevated local or systemic levels of NPY in the circulation of patients with
heart failure are not entirely clear and can only be speculated upon at this time.
The complex physiological actions of NPY may suggest potential regulatory
actions that may alleviate or exacerbate the heart failure condition depending
on the receptor types that NPY activates.
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Recent studies by groups of Haramati and Zukowska have brought new
insight into the role of NPY receptors in chronic heart failure (CHF). Using an
arterio-venous fistula model of heart failure in rats, the investigators have
found that cardiac Y1 receptor gene expression decreases in proportion to
severity of cardiac hypertrophy and decompensation [43]. Interestingly, at the
same time, the Y2 receptor expression increases immensely in failing hearts
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[43]. Similar patterns of receptor changes were observed in kidneys, and were
also proportional to the degree of renal failure [43]. Since Y1 receptor appear
to mediate known NPY’s growth-promoting activities in blood vessels [44, 45]
and myocytes [46] – this receptor may play a pathogenic role in development
of cardiac hypertrophy in failing hearts. In contrast, Y2 receptor is strongly
implicated in NPY’s angiogenic activity [47] suggesting that upregulation of
this receptor may play an important compensatory role aimed at improving
angiogenesis of the ischemic heart.

NPY may play also a role in mitigating excessive renin-angiotensin system
(RAS) challenges by decreasing plasma renin and angiotensin II [48–50].
Likewise, NPY may antagonize excessive adrenergic impact on the failing
heart by reducing the release of norepinephrine from pre synaptic nerves ter-
minals [51]. Furthermore, NPY was shown in experimental models to exert
diuretic and natriuretic properties [52] and to increase the release of ANP [53]
thereby facilitating water and electrolyte clearance and reducing congestion.

Since the RAS and the sympathetic nervous system play an important role
in progression of heart failure, as evidenced by the substantial medical bene-
fits of angiotensin II receptor type 1 antagonists, angiotensin I converting
enzyme inhibitors and beta-adrenergic receptor blockers, the higher circulat-
ing levels of NPY could be considered as a counteracting mechanism and
hence of potential benefit in slowing the progression of heart failure.
However, NPY, via NPY Y1 receptors, is also a potent vascular constrictor
mediator which could contribute to increase in vascular resistance, including
coronary vessels constriction which could compromise cardiac blood flow
and other essential to essential organs. Furthermore, NPY was shown to exert
hypertrophic actions on cardiac myocytes [46, 54] which are likely to be
mediated via the Y1 or Y5 receptors. However, NPY was argued to directly
mitigate cardiac myocytes hypertrophy induced by beta adrenergic receptors
stimulation by norepinephrine [55]; thus, the role of NPY in cardiac remod-
eling in vivo needs to be elucidated. Finally the role of NPY in cardiac func-
tion and remodeling in heart failure is further complicated by experimental
data suggesting that NPY vascular effects mediated via the Y1 receptor are
significantly reduced in heart failure condition [56]. Taken together, evidence
in support for a potential role of NPY in heart failure progression and remod-
eling via actions on vascular and cardiomyocyte function exerted via multiple
receptors (Y1, Y2 and Y5) calls for further investigation using more selective
and potent research tools.

Perspectives on NPY and cardiac diseases

The presence of NPY and several of its receptors in the normal heart and
changes in expression of NPY and NPY receptors in pathophysiological states
such as heart failure suggest that this neuropeptide has a local role in normal
and pathological states of the heart. Further support for the possibility that the
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local cardiac NPY system might influence cardiac function can be derived
from demonstration such as increased release of NPY from cardiac tissue
stressed by ischemia and the ability of higher than normal levels of NPY to
induced cardiac stress condition such as coronary syndrome. In addition, the
positive correlation between plasma levels of NPY and the extent of progres-
sion of heart failure along with the capacity of this peptide to promote cardiac
cell hypertrophy, implicate NPY in cardiac remodeling associated with chron-
ic heart failure and other post-cardiac injury conditions. Also, as a co-trans-
mitter of the sympathetic noradrenergic nerves, ‘cross talk’ between norepi-
nephrine and NPY in governing cardiac function and dysfunction is an attrac-
tive possibility. Finally, NPY is potently angiogenic and its ability to revascu-
larize ischemic tissue via Y2 receptors has been shown in rodent hindlimbs
[47, 57]. These receptors are also markedly upregulated by tissue ischemia,
including rat heart failure model [43]. Thus, Y2 receptor agonists may become
useful as revascularization therapy of ischemic myocardium.

NPY has also discrete and complex biological functions which make inter-
pretation of its precise role in cardiac function quite challenging.
Amplification loops as well as modulatory actions shown in isolated or high-
ly regulated systems are difficult to extrapolate into the highly complex in vivo
conditions. Moreover, condition such as heart failure are associated with
numerous, complex and varying systemic and local biochemical changes
which render any postulation on the specific role of NPY in such conditions
highly speculative. Progress in understanding the diverse role of NPY in car-
diac function and dysfunction and translation of this knowledge into thera-
peutics will require clear advances in the following fronts: 1) better in vivo
models where NPY and its receptors are genetically modulated locally (in a
cell specific manner) so that single elements are manipulated in in vivo con-
text and especially during stress and disease conditions; 2) potent and selec-
tive NPY receptors agonists/antagonists are critical to assess the potential of
any of the NPY receptors to become subject of manipulation in view of real-
izing therapeutic benefits. It is hoped that such tool reagents will be generat-
ed in the near future so that critical testing in experimental and clinical trials
can be conducted.
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Role of neuropeptide Y in the regulation of kidney
function
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Introduction

Neuropeptide Y (NPY), a 36-residue peptide is a sympathetic co-transmitter
stored and released together with noradrenaline by adrenergic nerve terminals
of the sympathetic nervous system. Structurally, NPY shares high homology
with two other members of the pancreatic polypeptide family, Peptide YY
(PYY) and pancreatic polypeptide (PP). These two closely related peptides
are produced and released by the intestinal endocrine cells and pancreatic
islet cells respectively, and acts as hormones [1, 2]. Although NPY was orig-
inally isolated from the brain and is highly expressed in the central nervous
system (CNS), it has been clearly demonstrated that NPY exhibits a wide
spectrum of biological activities in peripheral organs such as the cardiovas-
cular system, the gastrointestinal tract and the kidney [3–9]. The following
chapter will focus primarily on the kidney and summarize shortly our knowl-
edge on the role of NPY in the regulation of renal function. Two excellent
reviews on the subject have been published in the past by Presson et al. [8]
and Bischoff and Michel [9].

NPY and the kidney

NPY localization in the kidney

Shortly after its original identification in the early eighties by Tatemoto et al.
[10], NPY was reported to exist in the dense plexus of nerve fibers around the
renal juxtaglomerular apparatus, by immunohistochemical staining [11]. Since
then, numerous studies have confirmed the presence of the peptide in the kid-
ney of man, rat, monkey, mouse, hamster and guinea pig [11–14]. The peptide
has been localized to adrenergic nerve endings in all segments of the renal
arterial system [15, 16], including the juxtamedullary regions, and afferent and
efferent arterioles at the vascular pole of the glomeruli [14]. Moreover, using
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specific antibodies against the C-flanking region of NPY, positive staining was
found in the renal tubules but not in glomeruli of the human kidney [17]. This
suggests that the peptide may also be generated in the nephron itself and not
only in sympathetic terminals innervating the kidney.

NPY receptors and signaling

The biological actions of NPY are mediated through G-protein coupled recep-
tors that are also activated by the two other peptides family members, PYY
and PP [9, 18]. Six receptor subtypes (denoted Y1–5 and y6) have been identi-
fied in mammalian tissues [18, 19]. There is convincing evidence for the pres-
ence of the Y1 receptor subtype in the kidney, based on mRNA expression
studies by Northern blotting, reverse transcriptase polymerase chain reaction
(RT-PCR), and in situ hybridization [20, 21]. In addition to the expression in
renal blood vessels, media and intima, mRNA of Y1 was also localized to the
renal collecting ducts, loop of Henle, and juxtaglomerular apparatus [21].
Radioligand binding studies as well as pharmacological characterization with
selective NPY agonists/antagonists provided further evidence for the exis-
tence of the Y1 and probably Y2 in the kidney of various species [9]. However,
it appears that considerable heterogeneity exists in this regard. Thus, some
studies have demonstrated abundant NPY binding in the rabbit kidney and sig-
nificantly less or negligible binding in the human and rat kidney [9]. In the
renal papilla, high-affinity binding sites to the related peptide PYY were iden-
tified, and are thought to be of the Y2 subtype in the rabbit kidney, and of the
Y1 subtype in the rat kidney [22]. Finally, the natriuresis and diuresis caused
by NPY in rats have been suggested to be mediated in part by Y5 receptor,
based on pharmacological characterization [23, 24]. Yet, several studies failed
to detect mRNA expression of Y5 outside of the CNS [24, 25]. This might sug-
gest the existence of a novel, currently unidentified, Y5-like receptor in the
kidney, or alternatively, that these effects of NPY could be mediated indirect-
ly by the actions of the peptide in extra-renal tissue [24].

As pointed out earlier, all NPY receptors belong to the family of seven
transmembrane domains of the G-protein coupled receptors. Renal NPY
receptors preferentially act through the pertussis toxin-sensitive Gi/G0 family,
and are predominantly linked to inhibition of adenylate cyclase [9]. In addi-
tion, there is evidence that NPY receptors may be positively linked to intra-
cellular calcium [Ca2+]i through stimulation of Ca2+ channels, stimulation of
phospholipase C, and mobilization of Ca2+ from intra-cellular stores [18].
Finally, in the isolated kidney preparation, NPY has been reported to stimu-
late prostaglandin E2 and I2 production in a Ca2+ calmodulin-dependent man-
ner, suggesting a possible coupling between the NPY receptor and phospholi-
pase A2 [26].
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Effects of NPY on renal function

Renal blood flow and renal vascular resistance

Renal vasoconstriction associated with an increase in mean arterial pressure
(MAP) is perhaps the best documented and most consistent finding following
exogenous administration of NPY [8, 9]. Numerous studies utilizing both in
vivo and in vitro techniques have demonstrated the capacity of the peptide to
reduce renal blood flow (RBF) and increase renal vascular resistance (RVR)
in various species including rat, rabbit, pig and man [23, 26–34]. Compared
with other blood vessels, such as the mesenteric and hindlimb vascular beds,
the kidney appears to be uniquely sensitive to the vasoconstrictor effect of the
peptide [31]. Intrarenal infusion of NPY reduced RBF to a greater extent than
systemic infusion of the peptide [29]. In the split hydronephrotic rat kidney,
systemic infusion of low non-pressor doses of NPY produced a non-uniform
pattern of vascular reactivity, causing a significant constriction of the proxi-
mal and distal parts of the arcuate artery with all doses [35]. No constriction
was seen at the interlobular artery or the larger part of the afferent arteriole.
The very distal part of the afferent arteriole adjacent to the glomerulus and the
proximal efferent arteriole responded in a similar way to the arcuate arteries
[35]. This pattern suggests a differential sensitivity of various segments of the
renal vasculature to the vasoconstrictor effect of the peptide. The NPY-
induced increase in RVR appears to be mediated by the Y1 receptor subtype,
since it could be mimicked by the Y1-agonist [Leu(31), Pro(34)] NPY, and
blocked by the selective Y1-receptor antagonist BIBP 3226 in various species
[36, 37]. Moreover, studies in the isolated perfused kidney of rat demonstrat-
ed that NPY-induced vasoconstriction could be inhibited by pertussis toxin
treatment [38], by the Ca2+ channel blockers, diltiazem and nifedipine and
also by removal of Ca2+ from the perfusates [26]. Additional studies by
Bischoff et al. [9] also suggested that release of Ca2+ from intracellular stores
may be responsible for the sustained phase of vasoconstriction during contin-
uous infusion of the peptide. Taken together, these findings suggest that both
inhibition of adenylate cyclase and alterations in [Ca2+]i may be involved in
mediating the renal vasoconstrictor effect of NPY. The [Ca2+]i dependence of
NPY mediated vasoconstriction may also explain the finding that in various
vascular beds including the kidney, NPY can potentiate the effects of other
vasoconstrictor agents [4]. In particular, studies in the isolated perfused rat
kidney demonstrated that the renal vasoconstriction elicited by norepineph-
rine, arginine vasopressin, and by angiotensin II was enhanced by NPY [26].
Similarly, NPY potentiated the renal vasoconstricting effect of the α1-agonist
methoxamine, and this effect could be blocked by the Y1 antagonist BIBP
3226 [39]. This phenomenon may be of importance in pathophysiological sit-
uations with high sympathetic outflow and increased demand for vasocon-
striction.

Role of neuropeptide Y in the regulation of kidney function 125



Glomerular filtration rate

Despite the potent vasoconstrictor effect of NPY on renal vasculature, it
appears that this effect is not associated with a similar reduction in glomerular
filtration rate (GFR). Indeed, most of the studies in which this parameter was
evaluated show only minor or no alterations in GFR in response to NPY
administration [23, 29, 30, 40]. In the study of Evequoz et al. [41] it was shown
that NPY infusion in the rat did not alter GFR when given alone. However,
when GFR was increased by prior administration of the β-receptor agonist iso-
proterenol, NPY caused a significant reduction in GFR [41]. The finding that
GFR was minimally affected by the same doses of NPY that caused a sub-
stantial reduction in RBF might suggest that the peptide has a greater vaso-
constricting effect on the efferent than on the afferent arteriole. Indeed, this
notion is compatible with the finding of Dietrich et al. [35] in the split
hydronephrotic kidney that NPY constricted only the very distal part of the
afferent arteriole but not its larger more proximal part. Recently, it has been
shown that the sympathetic innervation of the glomerulus consists of two dis-
tinct populations of axons, type I and II [42]. Type I axons almost exclusively
innervate the afferent arteriole, whereas type II axons are equally distributed
on the afferent and efferent arterioles. Interestingly, NPY was located only in
type II but not type I axons [42]. The functional significance of this finding and
whether it may account for the preservation of GFR in the face of reduced RBF
remain to be elucidated.

Effects of NPY on renal electrolytes excretion

Considering the potent renal vasoconstrictor action of NPY, a decrease in
electrolyte and water excretion could be expected following the administra-
tion of the peptide. However, the available data at present suggest that NPY
may exert either a natriuretic [23, 28–30, 43] or an antinatriuretic [40, 44]
action, depending on the experimental conditions and the species utilized.
While in early studies, conducted in dogs and primates, NPY tended to
decrease sodium and water excretion, studies in the rat kidney demonstrated
clearly an increase in the excretion of sodium, water, calcium and perhaps
potassium [9, 29, 45]. The natriuretic/diuretic effect was observed in rats dur-
ing systemic infusion of the peptide, central intracerebroventricular adminis-
tration, as well as in the isolated perfused kidney [28, 29, 46]. Studies in
humans with the related PYY peptide also revealed a significant increase in
urinary sodium excretion following intravenous administration of the peptide
[34]. While an antinatriuretic response can be easily explained on the basis of
the potent vasoconstrictor properties of the peptide and its effect on renal
hemodynamics, the natriuresis/diuresis appears to be mediated by a tubular
action that deserves additional explanation. Several mechanisms were offered
to explain this finding [9]. A potential mechanism that could account for the
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NPY-induced natriuresis is the phenomenon of pressure natriuresis, second-
ary to the NPY-related increase in MAP [47]. However, controlling renal per-
fusion pressure by a supra-renal aortic clamp and renal decapsulation did not
block the NPY-induced diuresis [29]. This suggests that pressure natriuresis
is not the predominant factor in mediating the natriuresis/diuresis caused by
systemic NPY administration [9, 29]. An interesting observation in the origi-
nal study of Bischoff et al. [29] was that systemic infusion of NPY produced
a greater natriuretic response compared with intrarenal infusion of the peptide
at equal doses. In an additional study, the same group demonstrated that the
natriuretic effect of NPY could be mimicked by the Y5 agonist PYY3–36, and
not affected by the classical Y1 antagonist BIBP 3226 [23]. Since the Y5

receptor is not expressed in the kidney, the authors hypothesized that Y5-like
receptors in extra-renal tissues may be involved in the mediation of NPY-
induced natriuresis and diuresis [24]. In an attempt to identify the mediator
pathways linking the extrarenal NPY receptors to the increase in renal sodi-
um, water and calcium excretions, additional experiments were performed.
Thus, acute renal denervation did not alter the tubular actions of NPY, sug-
gesting that the putative mediator acts as a hormone rather than a neurotrans-
mitter [48]. Moreover, the NPY-induced diuresis and natriuresis were
enhanced by the angiotensin II-converting enzyme inhibitor ramiprilat, not
modified by the angiotensin II receptor antagonist losartan, and strongly
inhibited by the bradykinin B2 receptor antagonist icatibant [48]. Based on
these findings the authors concluded that bradykinin could be the mediator of
the tubular effects of NPY. However, more recent experiments by the same
group failed to support this conclusion [49]. Thus, infusion of NPY that
caused a four-fold increase in sodium excretion did not increase urinary
bradykinin excretion. Furthermore, intrarenal infusion of bradykinin did not
alter the urine flow rate or sodium excretion [49]. Other potential mediators
of the tubular action of are the cyclooxygenase-derived vasodilatory/natri-
uretic prostaglandins. It has been reported that treatment with indomethacin
did not affect NPY-induced alterations in systemic and renovascular hemody-
namics, but completely abolished NPY- and PYY3–36-induced diuresis and
natriuresis, indicating that cyclooxygenase derivatives may be involved in this
action [50]. Finally, although initial studies did not report an increase in
potassium excretion following NPY administration, analysis of the data
demonstrated a kaliuretic response under several experimental conditions
[45]. Both kaliuresis and diuresis were slow in onset (requiring > 45 min to
develop fully) and blocked by the cyclooxygenase inhibitor indomethacin
[45].

In summary, in addition to its potent renal vasoconstrictor effect, NPY may
exert distinct tubular actions. These are species dependent and in the rat are
characterized by a slow onset natriuresis, diuresis, calciuresis and kaliuresis.
The cellular mechanisms of, as well as the nephron sites at which the tubular
actions of NPY are exerted have not been thoroughly elucidated and remain to
be determined.
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Effects of NPY on renin secretion

The juxtaglomerular apparatus is richly supplied by nerve endings containing
immunoreactive NPY [11]. In addition, Y1 receptor mRNA was detected in the
juxtaglomerular apparatus of murine kidney by in situ hybridization [21].
However, in a more recent study, Y1-immunoreactive staining was detected by
immunohistochemistry in the juxtaglomerular apparatus of the mouse but not
in rats [51]. Indeed, several studies in the past have suggested that NPY may
negatively regulate renin secretion via a pressure-independent, pertussis-sensi-
tive mechanism, involving the Y1-receptor [23, 34, 38, 52–54]. Such an
inhibitory effect was reported in the rat, cat, and humans, but not in dogs or
primates [40, 44]. Moreover, NPY was able to lower plasma renin in patho-
physiological situations characterized by increased activity of renin-
angiotensin system, such as renal artery stenosis and postmyocardial infaction
[54, 55]. Further support for an inhibitory action of NPY on renin release
emerged from recent reports in Y1 receptor knockout mice. Thus, plasma renin
concentrations were significantly increased in Y1 knockout mice [56].
Furthermore, using the 2 kidney 1 clip (2K1C) model of renovascular hyper-
tension in mice, it was shown that renin secretion was higher in Y1-deficient
mice than in wild type controls [56]. These findings provide further evidence
that renin secretion is controlled in part by NPY via the Y1 receptor subtype,
and that this receptor acts preferentially as an inhibitor of renin release. It is
possible that such an NPY-related decrease in plasma renin activity may medi-
ate in part the natriuretic/diuretic effect of the peptide in the rat [9].

Miscellaneous renal effects

In 1989 Dillingham and Anderson demonstrated that NPY significantly
decreased arginine vasopressin (AVP)-stimulated water transport in perfused
rat cortical collecting tubules [57]. Either α-2-adrenergic receptor blockade
(yohimbine) or pretreatment of CCT with pertussis toxin abolished the NPY
action on AVP-stimulated water transport, suggesting that NPY acts via an
α-2-adrenergic receptor coupled to a pertussis toxin-sensitive protein to inhib-
it AVP-stimulated cAMP formation and water permeability in the collecting
duct [57]. It is possible that such an interaction could contribute to the diuret-
ic effect of NPY in the rat.

Studies by Ohtomo and co-workers [58, 59], using isolated permeabilized
rat renal proximal convoluted tubule cells, demonstrated that NPY was able to
stimulate Na+, K+,-ATPase activity. Removal of extracellular Ca2+, addition of
nifedipine the L-type Ca2+ blocker, or CaMKII-Ala286[281–302] a blocker of
Ca2+/calmodulin-dependent protein kinase II, inhibited the NPY-stimulated
Na+, K+,-ATPase activity, indicating that this effect was Ca2+-dependent [59].
Additional data from this laboratory suggest that NPY may modulate the renal
sympathetic tone by shifting the equilibrium between the α- and β-adrenergic
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tonus in the regulation of Na+, K+,-ATPase activity [60]. The physiological rel-
evance of this phenomenon remains controversial since in the rat NPY has
been shown to exert a natriuretic rather than an antinatriuretic effect.

Studies in genetically-manipulated animals

In recent years, studies using genetic approaches in which the gene of NPY or
its receptors were deleted or overexpressed have been published. These inves-
tigations, in knockout mice and transgenic mice and rats, provided exciting
information unraveling novel biological activities of NPY and its receptors
[56, 61, 62]. Interestingly, no major impairments or alterations in renal func-
tion have been reported in these genetically-modified models [61]. With the
exception of the data of Pedrazzini [56] on the elevated plasma renin activity
in Y1 receptor knockout mice, alluded to in the previous section, noticeable
alterations in renal hemodynamics or electrolyte excretion have not been
reported. It might be argued that renal function has not been thoroughly and
specifically studied in these models. However, given the complex and redun-
dant control of renal hemodynamics and sodium excretion, it is also possible
that additional regulatory pathways are activated to compensate for the miss-
ing renal action of NPY.

Summary

The presence in the mammalian kidney of NPY and at least one of its recep-
tor subtypes has been proven by several independent methodologies. Also,
numerous studies using physiological and pharmacological approaches indi-
cated that this peptide has the capacity to alter renal function. In particular,
these studies suggest that NPY may exert renal vasoconstrictor and tubular
actions that are species dependent, and may also influence renin secretion by
the kidney. The question whether NPY plays an important role in the physio-
logical regulation of renal hemodynamics and electrolyte excretion, remains
largely unanswered at present. No major impairments in renal function have
been reported in genetically models deficient in NPY or its Y1 receptor. Thus,
additional studies are required to elucidate the role of NPY in the physiologi-
cal and pathophysiological regulation of renal function.

References

1. Hazelwood RL (1993) The pancreatic polypeptide (PP-fold) family: gastrointestinal, vascular, and
feeding behavioral implications. Proc Soc Exp Biol Med 202: 44–63

2. Larhammar D (1996) Evolution of neuropeptide Y, peptide YY and pancreatic polypeptide. Regul
Pept 62: 1–11

Role of neuropeptide Y in the regulation of kidney function 129



3. Balasubramaniam A (2002) Clinical potentials of neuropeptide Y family of hormones. Am J Surg
183: 430–434

4. McDermott BJ, Millar BC, Piper HM (1993) Cardiovascular effects of neuropeptide Y: receptor
interactions and cellular mechanisms. Cardiovasc Res 27: 893–905

5. Zukowska-Grocec Z, Wahlestedt C (1993) Origin and actions of neuropeptide Y in the cardiovas-
cular system. In: The Biology of Neuropeptide Y and Related Peptides. Colmers WF, Wahlestedt C
(Eds) Humana Press, Totowa, 315–388

6. Cox HM (1998) Peptidergic regulation of intestinal ion transport. A major role for neuropeptide
Y and the pancreatic polypeptides. Digestion 59: 395–399

7. Playford RJ, Cox HM (1996) Peptide YY and neuropeptide Y: two peptides intimately involved in
electrolyte homeostasis. Trends Pharmacol Sci 17: 436–438

8. Persson PB, Gimpl G, Lang RE (1990) Importance of neuropeptide Y in the regulation of kidney
function. Ann NY Acad Sci 611: 156–165

9. Bischoff A, Michel MC (1998) Renal effects of neuropeptide Y. Pflugers Arch 435: 443–453
10. Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y – a novel brain peptide with structural

similarities to peptide YY and pancreatic polypeptide. Nature 296: 659–660
11. Ballesta J, Polak JM, Allen JM, Bloom SR (1984) The nerves of the juxtaglomerular apparatus of

man and other mammals contain the potent peptide NPY. Histochemistry 80: 483–485
12. Chevendra V, Weaver LC (1992) Distributions of neuropeptide Y, vasoactive intestinal peptide and

somatostatin in populations of postganglionic neurons innervating the rat kidney, spleen and intes-
tine. Neuroscience 50: 727–743

13. Knight DS, Fabre RD, Beal JA (1989) Identification of noradrenergic nerve terminals immunore-
active for neuropeptide Y and vasoactive intestinal peptide in the rat kidney. Am J Anat 184:
190–204

14. Norvell JE, MacBride RG (1989) Neuropeptide Y (NPY)-like immunoreactive nerve fibers in the
human and monkey (Macaca fascicularis) kidney. Neurosci Lett 105: 63–67

15. Reinecke M, Forssmann WG (1988) Neuropeptide (neuropeptide Y, neurotensin, vasoactive intes-
tinal polypeptide, substance P, calcitonin gene-related peptide, somatostatin) immunohistochem-
istry and ultrastructure of renal nerves. Histochemistry 89: 1–9

16. Allen JM, Polak JM, Rodrigo J, Darcy K, Bloom SR (1985) Localisation of neuropeptide Y in
nerves of the rat cardiovascular system and the effect of 6-hydroxydopamine. Cardiovasc Res 19:
570–577

17. Grouzmann E, Alvarez-Bolado G, Meyer C, Osterheld MC, Burnier M, Brunner HR, Waeber B
(1994) Localization of neuropeptide Y and its C-terminal flanking peptide in human renal tissue.
Peptides 15: 1377–1382

18. Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, Quirion R, Schwartz
T, Westfall T (1998) XVI. International Union of Pharmacology recommendations for the nomen-
clature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 50:
143–150

19. Malmstrom RE (2002) Pharmacology of neuropeptide Y receptor antagonists. Focus on cardio-
vascular functions. Eur J Pharmacol 447: 11–30

20. Nakamura M, Sakanaka C, Aoki Y, Ogasawara H, Tsuji T, Kodama H, Matsumoto T, Shimizu T,
Noma M (1995) Identification of two isoforms of mouse neuropeptide Y-Y1 receptor generated by
alternative splicing. Isolation, genomic structure, and functional expression of the receptors. J Biol
Chem 270: 30102–30110

21. Wharton J, Gordon L, Byrne J, Herzog H, Selbie LA, Moore K, Sullivan MH, Elder MG, Moscoso
G, Taylor KM et al. (1993) Expression of the human neuropeptide tyrosine Y1 receptor. Proc Natl
Acad Sci USA 90: 687–691

22. Blaze CA, Mannon PJ, Vigna SR, Kherani AR, Benjamin BA (1997) Peptide YY receptor distri-
bution and subtype in the kidney: effect on renal hemodynamics and function in rats. Am J Physiol
273: F545–F553

23. Bischoff A, Avramidis P, Erdbrugger W, Munter K, Michel MC (1997) Receptor subtypes Y1 and
Y5 are involved in the renal effects of neuropeptide Y. Br J Pharmacol 120: 1335–1343

24. Bischoff A, Michel MC (1999) Emerging functions for neuropeptide Y5 receptors. Trends
Pharmacol Sci 20: 104–106

25. Gerald C, Walker MW, Criscione L, Gustafson EL, Batzl-Hartmann C, Smith KE, Vaysse P,
Durkin MM, Laz TM, Linemeyer DL, Schaffhauser AO, Whitebread S, Hofbauer KG, Taber RI,
Branchek TA, Weinshank RL (1996) A receptor subtype involved in neuropeptide-Y-induced food

130 J. Winaver and Z. Abassi



intake. Nature 382: 168–171
26. el Din MM, Malik KU (1988) Neuropeptide Y stimulates renal prostaglandin synthesis in the iso-

lated rat kidney: contribution of Ca++ and calmodulin. J Pharmacol Exp Ther 246: 479–484
27. Chen H, Bischoff A, Schafers RF, Wambach G, Philipp T, Michel MC (1997) Vasoconstriction of

rat renal interlobar arteries by noradrenaline and neuropeptide Y. J Auton Pharmacol 17: 137–146
28. Allen JM, Raine AE, Ledingham JG, Bloom SR (1985) Neuropeptide Y: a novel renal peptide with

vasoconstrictor and natriuretic activity. Clin Sci (Lond) 68: 373–377
29. Bischoff A, Erdbrugger W, Smits J, Michel MC (1996) Neuropeptide Y-enhanced diuresis and

natriuresis in anaesthetized rats is independent of renal blood flow reduction. J Physiol 495 (Pt 2):
525–534

30. Bischoff A, Stickan-Verfurth M, Michel MC (1997) Renovascular and tubular effects of neu-
ropeptide Y are discriminated by PP56 (D-myo-inositol 1,2,6-triphosphate) in anaesthetized rats.
Pflugers Arch 434: 57–62

31. Minson R, McRitchie R, Chalmers J (1989) Effects of neuropeptide Y on the renal, mesenteric and
hindlimb vascular beds of the conscious rabbit. J Auton Nerv Syst 27: 139–146

32. Minson RB, McRitchie RJ, Morris MJ, Chalmers JP (1990) Effects of neuropeptide Y on cardiac
performance and renal blood flow in conscious normotensive and renal hypertensive rabbits. Clin
Exp Hypertens A 12: 267–284

33. Pernow J, Lundberg JM (1989) Release and vasoconstrictor effects of neuropeptide Y in relation
to non-adrenergic sympathetic control of renal blood flow in the pig. Acta Physiol Scand 136:
507–517

34. Playford RJ, Mehta S, Upton P, Rentch R, Moss S, Calam J, Bloom S, Payne N, Ghatei M,
Edwards R et al. (1995) Effect of peptide YY on human renal function. Am J Physiol 268:
F754–F759

35. Dietrich MS, Fretschner M, Nobiling R, Persson PB, Steinhausen M (1991) Renovascular effects
of neuropeptide-Y in the split hydronephrotic rat kidney: non-uniform pattern of vascular reactiv-
ity. J Physiol 444: 303–315

36. Modin A, Malmstrom RE, Meister B (1999) Vascular neuropeptide Y Y1-receptors in the rat kid-
ney: vasoconstrictor effects and expression of Y1-receptor mRNA. Neuropeptides 33: 253–259

37. Lundberg JM, Modin A (1995) Inhibition of sympathetic vasoconstriction in pigs in vivo by the
neuropeptide Y–Y1 receptor antagonist BIBP 3226. Br J Pharmacol 116: 2971–2982

38. Hackenthal E, Aktories K, Jakobs KH, Lang RE (1987) Neuropeptide Y inhibits renin release by
a pertussis toxin-sensitie mechanism. Am J Physiol 252: F543–F550

39. Bischoff A, Freund A, Michel MC (1997) The Y1 antagonist BIBP 3226 inhibits potentiation of
methoxamine-induced vasoconstriction by neuropeptide Y. Naunyn Schmiedebergs Arch
Pharmacol 356: 635–640

40. Persson PB, Ehmke H, Nafz B, Lang R, Hackenthal E, Nobiling R, Dietrich MS, Kirchheim HR
(1991) Effects of neuropeptide-Y on renal function and its interaction with sympathetic stimula-
tion in conscious dogs. J Physiol 444: 289–302

41. Evequoz D, Aubert JF, Nussberger J, Biollaz J, Diezi J, Brunner HR, Waeber B (1996) Effects of
neuropeptide Y on intrarenal hemodynamics, plasma renin activity and urinary sodium excretion
in rats. Nephron 73: 467–472

42. Denton KM, Luff SE, Shweta A, Anderson WP (2004) Differential neural control of glomerular
ultrafiltration. Clin Exp Pharmacol Physiol 31: 380–386

43. Smyth DD, Blandford DE, Thom SL (1988) Disparate effects of neuropeptide Y and clonidine on
the excretion of sodium and water in the rat. Eur J Pharmacol 152: 157–162

44. Echtenkamp SF, Dandridge PF (1989) Renal actions of neuropeptide Y in the primate. Am J
Physiol 256: F524–F531

45. Bischoff A, Michel MC (2000) Neuropeptide Y enhances potassium excretion by mechanisms dis-
tinct from those controlling sodium excretion. Can J Physiol Pharmacol 78: 93–99

46. Smyth DD, Wilson JR, Seidlitz E, Thom SL (1989) Effects of central and peripheral neuropeptide
Y on sodium and water excretion in the rat. Physiol Behav 46: 9–11

47. Granger JP, Alexander BT, Llinas M (2002) Mechanisms of pressure natriuresis. Curr Hypertens
Rep 4: 152–159

48. Bischoff A, Rascher W, Michel MC (1998) Bradykinin may be involved in neuropeptide
Y-induced diuresis, natriuresis, and calciuresis. Am J Physiol 275: F502–F509

49. Bischoff A, Neumann A, Dendorfer A, Michel MC (1999) Is bradykinin a mediator of renal neu-
ropeptide Y effects? Pflugers Arch 438: 797–803

Role of neuropeptide Y in the regulation of kidney function 131



50. Bischoff A, Limmroth V, Michel MC (1998) Indomethacin inhibits the natriuretic effects of neu-
ropeptide Y in anesthetized rats. J Pharmacol Exp Ther 286: 704–708

51. Matsuda H, Brumovsky PR, Kopp J, Pedrazzini T, Hokfelt T (2002) Distribution of neuropeptide
Y Y1 receptors in rodent peripheral tissues. J Comp Neurol 449: 390–404

52. Aubert JF, Walker P, Grouzmann E, Nussberger J, Brunner HR, Waeber B (1992) Inhibitory effect
of neuropeptide Y on stimulated renin secretion of awake rats. Clin Exp Pharmacol Physiol 19:
223–228

53. Corder R, Vallotton MB, Lowry PJ, Ramage AG (1989) Neuropeptide Y lowers plasma renin
activity in the anaesthetised cat. Neuropeptides 14: 111–114

54. Zelis R, Nussberger J, Clemson B, Waeber B, Grouzmann E, Brunner HR (1994) Neuropeptide Y
infusion decreases plasma renin activity in postmyocardial infarction rats. J Cardiovasc
Pharmacol 24: 896–899

55. Waeber B, Evequoz D, Aubert JF, Fluckiger JP, Juillerat L, Nussberger J, Brunner HR (1990)
Prevention of renal hypertension in the rat by neuropeptide Y. J Hypertens 8: 21–25

56. Pedrazzini T (2004) Importance of NPY Y1 receptor-mediated pathways: assessment using NPY
Y1 receptor knockouts. Neuropeptides 38: 267–275

57. Dillingham MA, Anderson RJ (1989) Mechanism of neuropeptide Y inhibition of vasopressin
action in rat cortical collecting tubule. Am J Physiol 256: F408–F413

58. Ohtomo Y, Meister B, Hokfelt T, Aperia A (1994) Coexisting NPY and NE synergistically regu-
late renal tubular Na+, K+-ATPase activity. Kidney Int 45: 1606–1613

59. Ohtomo Y, Ono S, Zettergren E, Sahlgren B (1996) Neuropeptide Y regulates rat renal tubular
Na,K-ATPase through several signalling pathways. Acta Physiol Scand 158: 97–105

60. Holtback U, Ohtomo Y, Forberg P, Sahlgren B, Aperia A (1998) Neuropeptide Y shifts equilibri-
um between alpha- and beta-adrenergic tonus in proximal tubule cells. Am J Physiol 275: F1–F7

61. Lin S, Boey D, Herzog H (2004) NPY and Y receptors: lessons from transgenic and knockout
models. Neuropeptides 38: 189–200

62. Costoli T, Sgoifo A, Stilli D, Flugge G, Adriani W, Laviola G, Fuchs E, Pedrazzini T, Musso E
(2005) Behavioural, neural and cardiovascular adaptations in mice lacking the NPY Y1 receptor.
Neurosci Biobehav Rev 29: 113–123

132 J. Winaver and Z. Abassi



NPY and neuron–adipocyte interactions in the
regulation of metabolism

L. Christine Turtzo1 and M. Daniel Lane2

Department of Neurology1 and Department of Biological Chemistry2, Johns Hopkins University
School of Medicine, Baltimore, Maryland, MD 21205, USA

Introduction

Adipose tissue and the brain are intricately connected for the regulation of
energy metabolism and thermogenesis. The brain consolidates signals from
elsewhere in the body to ascertain the overall energy balance of an organism,
and then determines whether the body’s resources will be utilized for energy
conservation or expenditure [20]. Adipose tissue is responsible for the storage
of triglycerides during energy excess and the release of free fatty acids to meet
the energy needs of the body during times of increased energy demand (for
review, see [1]). The stored triglycerides in white adipose tissue (WAT) are
hydrolyzed by hormone-sensitive lipase to free fatty acids and glycerol to pro-
vide metabolic fuel for other tissues. The lipid in brown adipose tissue (BAT)
is used instead predominantly for heat production. The sympathetic nervous
system (SNS) innervates both BAT and WAT, and is in part responsible for
their thermogenesis or metabolic responsiveness, respectively, by relaying sig-
nals from the central nervous system (CNS) [2–4].

One of the key molecules implicated in the regulation of energy metabolism
is neuropeptide Y (NPY), a 36-amino acid α-amidated peptide produced by the
posttranslational processing of preproNPY, which consists of a signal
sequence, NPY, and a carboxyl-terminal peptide [5–7]. NPY is widely distrib-
uted in both the central and autonomic nervous systems, and is often found in
norepinephrine-secreting neurons [8–10]. In the peripheral nervous system,
neurons containing NPY innervate vascular smooth muscle, the heart, gas-
trointestinal system, spleen, and adrenal glands [7, 11–14]. In human coronary
arteries, NPY can trigger potent dose-dependent vasoconstriction [15, 16]. In
small cutaneous arteries in vivo, NPY acts as a co-transmitter with norepi-
nephrine to trigger vasoconstriction [17]. A similar role for NPY as a co-trans-
mitter with norepinephrine exists in some veins [18]. NPY also functions as a
co-transmitter with norepinephrine in mediating the interaction between the
sympathetic nervous system and macrophages [19]. NPY is believed to play a
role in mediating many of the long-term nonadrenergic actions of sympathetic
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neurons [8]. In the CNS, NPY is a potent orexigenic agent, with actions antag-
onistic to those of leptin [20–22]. Leptin itself is capable of inhibiting the syn-
thesis and release of NPY [23].

NPY’s actions are mediated via the NPY receptor family, which currently
contains six members isolated by molecular cloning: Y1, Y2, Y3, Y4, Y5, and
Y6 receptors [24, 25]. All of the Y receptors are members of the G protein-cou-
pled receptor superfamily, and have been implicated in a wide variety of phys-
iological responses [24]. The Y receptors can be activated by a family of func-
tionally diverse but structurally related peptides, including NPY, pancreatic
polypeptide (PP or PPY), and peptide YY (PYY), all of which are synthesized
from prepropeptides [26]. The tissue distribution of the Y receptors is broad,
with expression both in the central nervous system and in peripheral tissues
[24, 26].

Y1 receptors are important in the periphery in the mediation of vasocon-
striction [27], and along with Y5 receptors are thought to contribute to the reg-
ulation of food intake [24]. In addition, gene knockout experiments have
implicated a role for the Y1 receptor in feeding [28] and in antinociception by
inhibiting the release of pain neurotransmitters such as substance P [29]. The
Y2 receptor is believed to be a presynaptic receptor that suppresses neuro-
transmitter release [24, 30], and has been implicated as having a role in angio-
genesis [31]. The Y4 receptor is the same as the pancreatic polypeptide recep-
tor (PP1), but its specific functions are poorly characterized at the present time
[26]. The Y5 receptor has been implicated in mediating feeding behavior [21],
although whether it is the sole receptor responsible for NPY’s orexigenic
actions is still under debate [32, 33]. Whether or not the Y6 receptor has any
function in vivo has yet to be determined [26, 34]. Pharmacological character-
ization indicates that there may be more members of this class that have not
yet been successfully cloned and characterized [21, 24].

NPY’s role in the central nervous system

When injected into the cerebral ventricles or directly into hypothalamic nuclei,
NPY results in pronounced hyperphagia [35]. There is also an associated
decrease in thermogenesis via inhibition of sympathetic outflow from the cen-
tral nervous system to brown adipose tissue [36]. With respect to the central
nervous system’s influence on metabolism and energy balance, the role of
NPY is best understood in the hypothalamus.

The majority of neurons containing NPY are located in the arcuate nucleus,
and project both within and outside of the hypothalamus, as well as within the
arcuate nucleus itself [25, 37, 38]. Hypothalamic NPY expression and release
are elevated in states of starvation and other forms of energy deficit, such as
diabetes [39–41]. NPY gene expression in the arcuate nucleus is inhibited by
leptin and/or insulin [42], the circulating levels of which are both low in star-
vation states. Administration of insulin and/or leptin either peripherally or in
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the central nervous system ordinarily results in the inhibition of feeding and
increased energy expenditure [43]. Animal obesity models which lack the lep-
tin molecule (ob/ob mouse) or have a mutation in the leptin receptor (db/db
mouse and fa/fa rat) display elevated amounts of NPY activity in the hypo-
thalamus [25, 44]. Administration of leptin to the ob/ob mouse results in inhi-
bition of this NPY expression [44].

The predominant hypothalamic receptors by which NPY is thought to medi-
ate hyperphagia are the Y1 and Y5 receptors [25]. Hypothalamic Y2 receptors,
affected by its agonist the gut hormone PYY3–36, are thought to restrain feed-
ing in a feedback system, since the majority of NPY neurons in the arcuate
nucleus co-express the Y2 receptor [45]. Knockouts of the hypothalamic Y2
receptors in mice result in increased food intake [46].

NPY’s role in the sympathetic nervous system

The central nervous system communicates to the rest of the body via output
tracts which include the autonomic nervous system as well as via motor and
sensory neuronal pathways. The central effects of NPY are in particular
thought to be mediated by the sympathetic branch of the autonomic nervous
system. The NPY-containing neurons of the arcuate nucleus project promi-
nently to the paraventricular nucleus and the dorsomedial hypothalamic nuclei
[25], both of which are prominent in the outflow of information to the sympa-
thetic nervous system [47].

Experimental evidence strongly implicates an important role for sympa-
thetic nervous system innervation in the regulation of white adipose tissue (see
[48] for review). The exact nature of the innervation is still under investigation.
Several possibilities exist for the innervation of white adipose tissue: 1) en pas-
sant innervation of adipocytes as the sympathetic fibers traverse adipose tissue
on their way to other target tissues; 2) direct innervation of adipocytes with
clear pre- and post-synaptic units directly to adipose tissue; and 3) innervation
of the vasculature of white adipose tissue only, resulting in control of
adipocytes via regulation of their perfusing microenvironment [49, 50]. Any of
these mechanisms in isolation or in combination could account for the
enhancement of white adipose tissue lipolysis that is observed with increased
sympathetic nervous system stimulation [4]. In addition, the sympathetic
innervation of white adipose tissue may play a key role in the responses of spe-
cific fat pads in terms of lipid mobilization and cellularity [50, 51], and may
be crucial in understanding why different types of white fat depots have dif-
ferent metabolic responses [49, 52].

By immunocytochemistry, approximately two-thirds of all principal neu-
rons in the adult rat superior cervical ganglion (SCG) contain NPY, most often
in conjunction with tyrosine hydroxylase staining [53]. In dissociated cultures
of rat neonatal SCG grown under defined conditions, NPY biosynthesis
increases 30-fold over a 3 week period, in parallel with increases in norepi-
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nephrine production [11, 54]. Levels of both NPY and norepinephrine border
on undetectable after 1 week in culture of SCG neurons cultured alone, with
increased levels of both developed during the second to third week in culture
under serum-free conditions [11]. In SCG cultures incubated with heart cell
conditioned medium, the amount of norepinephrine synthesis decreased while
NPY biosynthesis remained unchanged [11]. Increasing neuronal density in
culture results in decreased levels of NPY expression, as does co-culture with
non-neuronal ganglion cells [55]. Addition of nerve growth factor (NGF) to
culture conditions induces NPY expression in PC12 cells [56], whereas
leukemia inhibitory factor (LIF) decreases NPY expression [57, 58].

To bridge the gap between entirely in vivo whole animal models and ex vivo
studies of adipocytes and neurons in isolation, a co-culture system was devel-
oped to provide another model for the study of the innervation of white adi-
pose tissue [59]. In the co-culture system, primary sympathetic neurons are
isolated from the SCG of newborn to 2 day old rat pups, then plated onto 3T3-
L1A adipocyte monolayers which are 3 days post-induction of adipocyte dif-
ferentiation. For the first 6 days after initial co-culture plating, cytosine
β-D-arabinofuranonucleoside (Ara-C) is included in the medium to eliminate
contamination by non-adipocyte, non-neuronal cells.

SCGs in co-culture are capable of secreting the neurotransmitter NPY after
1 and 2 weeks in co-culture [59]. Adipocytes co-cultured with SCG neurons
markedly stimulate NPY secretion. When the neurons and adipocytes are co-
cultured in the same media, but with a co-culture insert providing a membrane
barrier to cell–cell contact, the level of NPY secretion is greater than that seen
in SCG cultured alone, although somewhat less than by co-cultures in which
cell–cell contact is permitted. Conditioned medium from Day 8 adipocytes,
which should be fully differentiated, did not induce the response in SCG neu-
rons cultured alone. These results indicate that the answer is likely to be a
complex one, perhaps involving a combination of cell–cell interactions and
circulating factors. Elucidation of the nature of the factor would be of interest,
since little is known of what specifically induces NPY secretion in sympa-
thetic neurons.

The decreased secretion of NPY in co-cultures in response to insulin treat-
ment [59] is consistent with the reported effect of intracerebroventricular
injections of insulin on NPY gene expression in rat hypothalamus [60]. The
decreased levels of secretion observed after addition of insulin to the medium
are consistent with an effect on the level of NPY mRNA. It has not yet been
conclusively established that the insulin effect observed in co-culture is medi-
ated via the adipocytes’ signaling to the neurons, although the available evi-
dence suggests that this is the case. While a statistically significant difference
is seen between co-culture controls and those which have been treated with
insulin, no such difference exists when SCG neurons alone are treated with
insulin [59]. The low level of NPY secretion in the SCG neurons cultured
alone may make observation of a direct effect on SCG neurons difficult, how-
ever. If the insulin signal is communicated to the neurons via the adipocytes,

136 L.C. Turtzo and M.D. Lane



as opposed to via direct action on the neurons, this is further evidence of recip-
rocal interactions between the adipocytes and neurons in co-culture.

The SNS and the adipocyte: Evidence of a local feedback loop involving
NPY

Classically, the role of the sympathetic nervous system in the regulation of adi-
posity has been viewed in terms of norepinephrine release and the subsequent
stimulation of lipolysis by this agent. The existence of other neurotransmitters
within the sympathetic neuron complicates this picture. Considerable investi-
gation has demonstrated a role for NPY in the central nervous system’s regu-
lation of energy metabolism and feeding behavior [20, 61, 62], but its impor-
tance in metabolism elsewhere in the body is still unknown. Evidence exists
that NPY may act to modulate the effects of norepinephrine, with activation-
dependent dosing [17]. Centrally, NPY is thought to inhibit the activity of the
sympathetic nervous system in general [63]. In the CNS, NPY appears to have
a role in preventing starvation, by increasing the drive to eat while decreasing
depletion of existing energy stores [25]. This effect appears to be mimicked in
the periphery as well. NPY is expressed by sympathetic neurons both ex vivo
and in vivo, and has an antagonistic effect on lipolysis [59]. The specific cir-
cumstances under which sympathetic neurons release NPY to adipocytes in
the periphery are as yet unknown.

The results from the adipocyte/sympathetic neuron co-culture system indi-
cate that NPY released from sympathetic nerves in the periphery may con-
tribute to the effects observed, thus resulting in a direct effect of sympathetic
nerves on the adipocytes. The neurons appear to regulate the level of leptin
secretion and the degree of β-adrenergic-stimulated lipolysis in the co-cultured
adipocytes. Preliminary evidence indicates that the agent responsible for this
effect is most likely NPY, although another factor has not been ruled out.

Likewise, the adipocytes themselves may regulate the actions of the sym-
pathetic neurons via a local feedback loop. In co-culture studies, the secretion
of NPY by neurons in co-culture was diminished when insulin was added to
the medium [59]. This effect was not demonstrated by neurons cultured in iso-
lation, which suggests that an agent or condition in the co-culture environment
mediated the insulin effect. These results are indicative of crosstalk between
adipocytes and neurons responsive to the metabolic state of the adipocyte. If
the antilipolytic agent insulin is present, the requirement for additional
antilipolytic agents such as NPY from the neuron is diminished, resulting in a
signal from the adipocyte to the neuron to modulate this factor.

Few studies to date have addressed the issue of whether such a local feed-
back loop is in place. One group of investigators found that while NPY itself
had an antilipolytic effect, leptin stimulated lipolysis in isolated rat primary
adipocytes [64]. When adipocytes were exposed to equimolar concentrations
of both NPY and leptin, the lipolytic rate was equivalent to the basal rate.
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These findings were interpreted as evidence of a local homeostatic mechanism
between leptin and NPY [64]. This evidence is consistent with the results of
the co-culture system to date.

Evidence derived from the co-culture system supports a role for crosstalk
between adipocytes and sympathetic neurons in the periphery (Fig. 1). In the
absence of strong signals arising from elsewhere in the body, adipocytes in the
biosynthetic/adipogenic state would stimulate NPY production by sympathet-
ic neurons and thereby inhibit lipolysis locally. Likewise, centrally acting NPY
would inhibit the sympathetic nervous system’s release of norepinephrine.
When the body senses a need to switch from a fed to a fasted state, the CNS’s
activation of the sympathetic system to release large amounts of norepineph-
rine would override the effects of NPY release, and trigger lipolysis by the
adipocyte. Likewise, the release of a bolus of the antilipolytic hormone insulin
from the pancreas would indicate that local antilipolytic agents were not
immediately necessary, resulting in decreased NPY secretion while insulin
levels in the bloodstream were high. At intermediate stages, the adipocyte and
the sympathetic neuron would communicate to find the optimal balance
between energy conservation in the two cell types and energy release for the
needs of the rest of the body.
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Figure 1 The brain-adipose tissue axis. Interactions among the central nervous system, sympathetic
nervous system, the adipocyte, and the pancreas regulate metabolism and feeding behavior. NPY
plays a key role in the hypothalamus, and is hypothesized to play an important role in the periphery
as part of the sympathetic nervous system’s communication with adipose tissue.
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Introduction

Obesity is one of the most daunting health challenges of the 21st century; left
unabated, the increasing rates of obesity in the world will place a severe bur-
den on national healthcare systems. Obesity is a major, chronic health problem
which decreases the quality of life and life expectancy and is a strong risk fac-
tor for diseases such as type 2 diabetes, heart disease, and stroke, and is asso-
ciated with certain cancers, osteoarthritis, liver disease, urinary incontinence,
sleep apnea, and depression [1]. In the past two decades, the hypothalamus has
become a focus to understand the mechanisms underlying energy homeostasis.
With the demonstration that neuropeptide Y (NPY) injected into the hypothal-
amus causes a very potent orexigenic response, and the discovery that leptin
acts in the hypothalamus, an assortment of hypothalamic modulators have
been described that affect energy homeostasis [2, 3].

Despite the explosion in knowledge about the role of the hypothalamus in
regulating energy homeostasis, NPY remains the most potent orexigenic pep-
tide known, with maximal effect when injected into the paraventricular nucle-
us (PVN) of the hypothalamus [2, 4]. These effects are observed in both sati-
ated and hungry rodents. Moreover, the loss of appetite seen in rats with
reduced NPY due to antisense or antibody treatment indicates NPY is an
endogenous orexigenic compound [5, 6]. Indeed, chronic intracerebroventricu-
larly (ICV) or PVN injection of NPY leads to hyperphagia, obesity, and hyper-
insulinemia [7–10]. However, it should be pointed out that injection of NPY
into other brain regions also affects food intake, and NPY may not just affect
hunger but the motivation to eat and the rewards of eating [11]. NPY’s role in
energy homeostasis affects energy output as well as food intake. NPY reduces
stimulation of the sympathetic system in adipose tissue, and acts directly as an
anti-lipolytic agent, leading to reduced fatty acid oxidation, while stimulating
lipid accumulation and de novo fatty acid synthesis [12, 13].

NPY, along with pancreatic polypeptide (PP) and PYY, are a family of 36
amino acid ligands that, in both rodents and man, functionally interact with
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four NPY receptors: Y1, Y2, Y4 and Y5 [14]. All three ligands, and all four
receptors, have roles in energy homeostasis acting centrally, peripherally, or
both. Table 1 summarizes the role of the NPY pathway in energy homeostasis.

The hypothalamus modulates energy balance, by responding to adipokines
(factors released from adipose tissue, such as leptin), gut peptides that modu-
lating satiety and hunger (such as PYY3-36, PP, ghrelin) and acute fuel levels
(circulating glucose, free fatty acids). Two prominent hypothalamic neuronal
pathways have been elucidated in which signaling is inversely related (for a
review see [15]). Leptin inhibited neurons in the arcuate nucleus (ARC)
release NPY and AgRP, resulting in an increase in food intake and a decrease
in energy output. Counterbalancing this pathway are leptin activated pro-opio-
melanocortin (POMC) neurons that inhibit food intake and increase energy
expenditure. In addition to endogenous hypothalamic NPY, circulating levels
of PYY3-36 and PP also affect energy homeostasis via hypothalamic signal-
ing (see Fig. 1). As will be detailed below, almost every aspect of the NPY
pathway, its four ligands NPY, PP, PYY, and PYY3-36 and its four receptors
Y1, Y2, Y4, and Y5, provide an opportunity to modulate energy homeostasis.
However, the pharmacological potential of modulating the NPY pathway
remains unproven for two reasons. First, complex modulation of multiple NPY
receptors may be needed to cause significant body weight reduction. Second,
both NPY and its receptors are widely distributed in the brain, and NPY has
been associated with a variety of behaviors, thus the tolerability of NPY ther-
apeutics remains to be established [11].

NPY and its pathway in the hypothalamus

Within the brain, the concentration of NPY is highest in the hypothalamus
where it is found mainly in interneurons located in the ARC that project to the
PVN [16]. The ARC responds to neuronal inputs from other brain regions, in
particular the brain stem, but also to circulating factors that permeate the medi-
um eminence, a region adjacent to the ARC that lacks an intact BBB. The NPY
neurons in the ARC have a variety of receptors that can regulate their action.
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Table 1. NPY ligands and receptors affect energy homeostasis

Ligand Function Receptor and site of action

NPY Orexigenic peptide Y1/Y5 in the hypothalamus

Modulates FAO/lipolysis Activates SNS decreases energy expenditure

Antilipolytic actions Y1 on adipocytes

PYY3-36 Gut peptide/satiety signal PYY from the gut converted to PYY-3-36
activates arcuate Y2 decreasing NPY release

PP Pancreatic satiety signal Activates brain stem Y4, signals hypothalamus



Growth hormone secretagogue receptors on NPY neurons are activated by
ghrelin released from the stomach, while activation of the leptin, insulin,
melanocortin 3, or Y2 receptors inhibits the NPY neurons [17].

The neuronal circuits through which the hypothalamus signals, including
the leptin-R containing NPY neurons and the POMC containing neurons, can
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Figure 1. Arrows indicate the positive or negative effects of NPY ligands on energy homeostasis.
Ligands include peripheral gut peptides PP and PYY3-36 and hypothalamic neuropeptide NPY, which
act on various NPY receptors located in the brain stem or hypothalamus.



under go rapid rewiring when animals are cycled from energy excess (low lep-
tin) to energy restriction (high leptin) [18]. Leptin induces c-Fos activation of
ARC neurons containing POMC, but not NPY, consistent with a role of leptin
to inhibit NPY neurons [19]. The NPY containing ARC neurons project to the
ventromedial (VMH), paraventricular (PVH) and dorsomedial nuclei (DMH)
of the hypothalamus [20].

Regulation of NPY pathway by energy state

In addition to the potent orexigenic effect of NPY, changes in the levels of
endogenous NPY and its receptors by energy state are strong evidence for
involvement of the NPY system in energy homeostasis. Although a long line
of evidence has accumulated thus far, these changes might occur directly (acti-
vation, inactivation, etc.) or indirectly (compensation, desensitization, etc.).

CNS changes (NPY)

Food deprivation and pregnancy/lactation are spontaneous conditions which
stimulate food intake and reduce energy expenditure. Increased immunoreac-
tivity of NPY in the hypothalamic region of rodents after food deprivation [21,
22], and during lactation [23, 24], support a physiological role for endogenous
NPY in energy homeostasis. In addition, increased NPY secretion in the PVN
during food restriction supports activation of the NPY systems in physiologi-
cal energy states [25, 26]. Moreover, increased NPY levels return to normal
levels after re-feeding and pup-removal [26–28], indicating that hypothalamic
NPY is a physiological signal for energy homeostasis.

Additional evidence for a key role of NPY in energy homeostasis comes
from analysis of various pathophysiological conditions. The expression levels
of NPY in diet-induced obese (DIO) mice positively correlate with the degree
of obesity [29]. Moreover, increased levels of NPY were reported in geneti-
cally obese models, such as ob/ob, Ay, MC4R knockout (KO) and tubby mice
[29–31]. However, interestingly, expression patterns of NPY in the hypothal-
amic region varied among these obese mice. In ob/ob mice, a significant
increase of NPY in the ARC was observed, but no detectable expression in the
DMH [31]. In contrast, Ay and MC4R KO mice, which are obese due to dis-
ruption of melanocortinergic signaling, showed increased expression levels in
the DMH and no changes in the ARC [31]. Furthermore, DIO and tubby mice
had reduced levels of NPY in ARC, but showed increased levels in DMH [29,
30]. In an anorectic mouse model, anx/anx mice which have a poor appetite,
immunoreactivity for NPY was increased in cell bodies of ARC and decreased
in terminals in the hypothalamus [32, 33].
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CNS changes (NPY receptors)

NPY-induced changes in metabolic states are mediated by multiple types of
NPY receptors [34–44]. Activation of CNS Y1 and Y5 receptors by injection
of NPY related peptides stimulates food intake and reduces energy expendi-
ture [34–38]. In contrast, activation of Y2 and Y4 receptors by peripherally
injected agonists reduce food intake and also increase energy expenditure
[39–44]. Changes in the level of each NPY receptor may also be informative
about the role of NPY in energy homeostasis.

In several animal models, the Y1 receptor expression varied with energy
state. A 48 h fast reduced Y1 receptor-imunoreactivity and Y1 mRNA in the
ARC of rats [45]. In mice transgenic for a Y1 receptor/LacZ fusion, 72 h fast-
ing reduced expression of the transgene in the PVN, while supplementing the
drinking water with glucose increased the transgene expression in the PVN
and ARC [46]. Pregnancy, reduced transgene expression in the VMH, but
increased it in the PVN and ARC [47]. In contrast, no significant changes of
the Y1 receptor were detected in DIO, Zucker fatty, or food restricted lean rats
[48, 49].

Changes in Y2 and Y5 expression have also been observed. A significant
reduction of Y2/Y5 receptor-like binding sites were detected in DIO and
Zucker fatty rats [48, 49], and an increase was observed in food restricted lean
rats [49]. Y5 mRNA was down regulated in ob/ob mice [50], and expression
levels of Y2 and Y5 mRNA were low in DIO-resistant mice when compare to
DIO mice [51].

Peripheral role of NPY ligands

Three NPY family ligands are produced by the gut: PP, PYY and a PYY
metabolite, PYY3-36. PP and PYY3-36 are both satiety signals released from
the gut in response to a meal.

PP is primarily found in the pancreas, but PP cells are also found in other
areas of the gastrointestinal (GI) tract. PP is released into circulation by the
islets of Langerhans where PP containing cells are located in the periphery of
the islet. The amount of PP released is proportional to the caloric intake and
studies in rodents have shown this release dependent on a vagal tone, since
vagotomy abolishes post-prandial PP release [52]. PP is a selective ligand for
the Y4 receptor, though some forms of PP also activate the Y5 receptor [35].
PP is unable to cross the blood:brain barrier (BBB), but cFos studies indicate
PP activates neurons in the area postrema, a region deficient in the BBB and a
region containing Y4 receptors [52].

Studies in mice have shown a significant role for PP in regulating food
intake [42, 53]. Peripherally administered PP to fasted lean mice reduced food
intake in a dose dependent manner over 4 h [53]. A more comprehensive study
in ob/ob mice confirmed the anorectic effects of PP extend to 24 h, and found
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that the peptide also increased oxygen consumption and delayed gastric emp-
tying; while chronic administration of PP led to weight loss [42]. The mecha-
nism of PP action in fasted lean mice involved decreases in orexigenic peptides
(NPY, orexin, ghrelin), an increase in anorectic peptide urocortin, and activa-
tion of a vagovagal reflex arc [42]. Transgenic mice overexpressing PP in pan-
creatic islets had PP levels elevated 20-fold, resulting in reduced food intake,
lower bodyweight and less adiposity than littermate controls [41].

Recently PP was shown to also affect appetite and food intake in normal
weight humans [43]. A 90 min infusion of PP caused PP levels to rise 10-fold,
resulting in decreased hunger (as measured by a visual analog scale). Actual
food intake decreased by 21% at a measured buffet meal, and a 23% decrease
in 24 h food intake as measured by analysis of food diaries [43].

The gut peptide PYY is produced in the enteroendocrine cells in the ileum
and colon where it is secreted in proportion to the size of the meal and, through
the action of dipeptidyl peptidase-IV, PYY is converted to its major circulat-
ing form PYY3-36; which is elevated within 15 min of a meal [54]. In rodents,
PYY3-36 injected peripherally inhibited food intake and reduced weight gain
[40, 54, 55], although this claim is controversial. Unlike PP, PYY3-36 does
penetrate the BBB and PYY3-36 appears to act within the ARC, since arcuate
cFos levels increases after peripherally administered PYY3-36 [40, 56].
Although PYY3-36 is a potent ligand for multiple NPY receptors, the anorec-
tic actions of PYY3-36 are thought to be mediated via the Y2 receptor since,
PYY3-36 does not affect food intake in Y2 KO mice [40]. Indeed, direct intra-
arcuate injections of PYY3-36 causes a decrease in food intake [40], in con-
trast to ICV injection of PYY3-36 which cause the opposite effect, possibly
through the actions of Y1 and Y5 [35, 57]. Thus, it was suggested that PYY3-
36 acts via the Y2 receptors on NPY neurons in the ARC to reduce NPY
release [40].

PYY3-36, like PP, is effective in reducing appetite and food intake in
humans [40, 58]. Hunger, as measured by a visual analog score, decreased in
lean humans after a 90 min infusion of PYY3-36 that raised circulating levels
five-fold; and food intake at a buffet meal deceased by 36% [40]. Although
obese subjects had 50% lower PYY3-36 at base line, infusion of PYY3-36,
which increased plasma levels five-fold, resulted in a decrease in the buffet
meal by 26% and a decrease in hunger score by 29% [58].

Phenotype of KO mice deficient in components of the NPY pathway

To further elucidate the role of the NPY system in energy homeostasis, mice
deficient in NPY, as well as the Y1, Y2, Y4, and Y5 receptors have been made
(for a review see [59]). Surprisingly, the phenotype of the knockout mice has
not always been consistent with pharmacology studies described above.

Considering the potent orexigenic effects of ICV NPY, and the major orex-
igenic role postulated for NPY neurons in the hypothalamus, the NPY KO
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mice, on a mixed genetic background, had normal weight and a normal
response to fasting and refeeding [60]. When the mice were backcrossed to the
C57BL/6 background, the Npy–/– mice had a mild deficit in fasting induced
refeeding, but more surprisingly, they were slightly obese by 16 weeks of age
[61]. Compensation by other hypothalamic pathways might account for the
lack of a lean phenotype in the Npy–/– mice. However, Npy–/–;Agrp–/– double
knockout mice were not lean either, nor resistant to fasting induced refeeding
[62]. More surprisingly, mice deficient in two orexigenic peptides NPY and
galanin, were dramatically more sensitive to diet induced obesity, than their lit-
termate controls [63]. Indeed, the only model in which NPY deficiency
reduced body weight was the ob/ob; Npy–/– double mutant, which was about
30% leaner, with a 42% reduction in hyperphagia, than the ob/ob [64].

Since studies suggest hypothalamic NPY acts via the Y1 and Y5 receptors,
mice lacking either of those receptors were expected to be hypophagic, resist-
ant to fasting induced refeeding, and lean. One line of Npy1r–/– mice did dis-
play a marked reduction in fasting induced refeeding, and were marginally
hypophagic [37], though another line of Npy1r–/– mice had no change in feed-
ing [65]. In contrast, the Npy5r–/– mice had a normal refeeding response to
fasting but were hyperphagic [36]. Surprisingly, both Y1 and Y5 deficient mice
developed moderate obesity [36, 37, 65]. Both receptors appear to mediate the
actions of NPY, since ICV injections of NPY into either Npy1r–/– or Npy5r–/–

mice resulted in an acute increase in food intake, compared to vehicle, and
chronic ICV injections of NPY led to rapid obesity [8, 60]. As was observed
with ob/ob; Npy–/– double mutant mice, ob/ob; Npy1r–/– mice have a signifi-
cantly reduced body weight compared to ob/ob mice, but ob/ob; Npy5r–/– mice
do not have reduced weight compared to ob/ob mice [36, 66]. Taken together,
the mouse genetic data suggests NPY’s physiological actions are primarily
mediated by Y1.

Compared to the other NPY receptors, the Y2 receptor is located predomi-
nantly presynaptically and is thought to control the release of NPY and other
neurotransmitters [67]. As noted previously, Npy2r–/– mice are resistant to the
anorectic effects of i.p. administered PYY3-36, a Y2, Y5 agonist [40]. Thus
Npy2r–/– mice were predicted to be hyperphagic and obese. However, the phe-
notype of the two independently constructed lines, on different genetic back-
grounds, was quite different [39, 68]. One Npy2r–/– line had a normal refeed-
ing response to fasting, but was hyperphagic leading to obesity [68]. However,
the other line of Npy2r–/– mice was leaner than littermate controls, perhaps
because PP was elevated 3–5 fold [39]. Compared to ob/ob mice, ob/ob;
Npy2r–/– mice had no change in food intake or body weight, however the dou-
ble mutant did have reduced hyperinsulinemia and hyperglycemia [69].

Since PP is selective for the Y4 receptor, deletion of Npy4r should provide
insights into the role of PP in regulating energy homeostasis. Npy4r–/– mice are
significantly hypophagic, have lower adiposity and are leaner than their litter
mate controls, again somewhat surprising for a deficiency in a gut hormone
thought to limit food intake [70]. In addition, the ob/ob; Npy4r–/– mice have no
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change in food intake or body weight [78]. As might be expected Npy2r–/–;
Npy4r–/– which lack the targets for the satiety gut peptides PP and PYY3-36,
were hyperphagic, but surprisingly were markedly lean with reduced adiposi-
ty, leptin, and insulin [44].

Taken together, the NPY ligand and receptor transgenic mice indicate a sig-
nificant role for the NPY system in modulating energy homeostasis. However,
the phenotypes of mice with alterations in the NPY pathway are clearly more
complex than our simple models of PP and PYY3-36 acting as satiety gut hor-
mones, and NPY acting in the CNS via Y1 and Y5 receptors as a major orex-
igenic pathway (see Fig. 1).

Pharmacological effects of NPY agonism

As discussed previously, NPY is highly concentrated within the hypothalamus
and the concentrations of NPY and its mRNA in the hypothalamus are
markedly changed by energy status. These observations clearly suggest criti-
cal roles of endogenous NPY in energy homeostasis. Central administration of
NPY stimulates feeding behaviors in several species including non-human pri-
mate [80–85], while chronic administration of NPY into the brain results in
obesity accompanied with hyperphagia [7, 76, 77].

ICV studies with selective and non-selective peptides

Several types of selective agonists for Y1 and Y5 receptors have been identi-
fied [78–83] and found to be orexigenic. For instance, both a Y1 selective ago-
nist, [D-Arg25]NPY and a Y5 selective agonist, [D-Trp34]NPY cause signifi-
cant hyperphagia after ICV-injection, and the stimulated feeding is inhibited
by Y1 and Y5 antagonists, respectively [79, 84]. However, the Y1 and Y5
receptors seem to have distinct roles. NPY-induced feeding in the Y1 deficient
mice is significantly reduced, but the feeding is not changed in the Y5 deficient
mice significantly [60].

In contrast to the Y1 and Y5 receptors, central roles for Y4 receptors as an
orexigenic receptor is controversial. ICV-injection of rPP, a highly selective Y4
agonist, has little or no significant effect on feeding behavior [60, 85, 86].
However, recent investigation shows that Y4 receptors are expressed in orexin
neurons, and direct administration of rPP into lateral hypothalamus causes sig-
nificant food intake with c-Fos expression in orexin neurons [87]. Thus, the Y4
receptor might play a role as an orexigenic receptor through activation of orex-
in neurons.

ICV-injection of Y2 selective agonists has almost no effects on feeding in
satiated rodents [85, 86]. However, central injection of a Y2 agonist inhibits
fasting-induced feeding [40]. It has been reported that the Y2 receptor is pre-
dominantly expresses pre-synaptically and works as an auto-receptor [88].
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Therefore, the central Y2 receptor could act as an anorectic receptor through
the inhibition of NPY release in the hypothalamus.

It is difficult to explain all the orexigenic effects of NPY and related pep-
tides with the known subtypes of NPY receptors. Y5 preferring agonists,
PYY3-36, bPP and hPP have similar efficacy for the Y1 and Y5 receptors,
while these three peptides have different efficacy to affect feeding behaviors
[60]. Although the differences in efficacy might be due to differential peptide
stability or receptor heterodimerism, a novel NPY subtype is another possibil-
ity. Interestingly, unknown binding sites for [125I]PYY remain in the brain of
Npy1r–/–; Npy2r–/–; Npy4r–/– deficient mice treated with Y5 compounds [89].

Chronic infusion NPY causes obesity with hyperphagia as well as a reduc-
tion in energy expenditure [7, 87, 88]. Interestingly, chronic infusion of Y5-
selective agonist, [D-Trp34]NPY also causes obesity [84]. Furthermore, there
is no significant change between NPY-induced obesity in Y1-deficient and Y5
deficient mice [8]. Future studies using combinations of selective agonists and
several receptor deficient mice, could be useful to address the central function
of NPY receptors in feeding regulation more precisely.

Peripheral dosing of peptide agonists

As noted above, it has been reported that peripheral injection of Y2 agonist,
PYY3-36 and Y4 agonist, hPP cause feeding reduction in humans as well as
rodents [40, 43, 58]. These are the first evidence revealing the involvement of
the NPY systems in regulation of human appetite. In addition, the anorectic
efficacies as well as the anti-obese efficacies of Y2 and Y4 agonists are also
observed in rodents [42, 90, 91]. However, abdominal vagotomy abolishes the
anorectic effects of PYY3-36 in rats [91]. Furthermore, ICV-injected rPP
increased feeding behavior [87]. Therefore, anorectic effects of peripheral
PYY3-36 and PP are presumably caused by the activation of peripheral Y2 and
Y4 receptors, or a subset of brain receptors, but not all the central NPY recep-
tors.

Opportunities for NPY therapeutics to treat obesity

Extensive physiological, neuroanatomical, genetic, transgenic, and pharmaco-
logical data supports a major role for the NPY family of peptides and recep-
tors in the regulation of energy homeostasis. However, most strikingly as
detailed in this review, the data sets give conflicting guidance for how best to
modulate the NPY pathway to treat obesity. For example, chronic infusion of
NPY leads to obesity, but the NPY KO mice appear normal. Similarly, chron-
ic infusion of a Y5 selective agonist leads to obesity, while the Y5 KO is also
obese. The Y2/Y5 agonist PYY3-36 injected ICV is a more potent orexigen
than NPY, but peripherally it is an anorectic. More puzzling, the two lines of
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Y2 KO mice are inconsistent: one is lean and the other obese. Thus, a consis-
tent picture has not developed pointing to a key NPY receptor or molecular
target to modulate as a treatment for obesity. However, the various data dis-
cussed in this chapter do provide support for Y1 and Y5 brain-penetrant antag-
onists to treat obesity. Indeed, we have shown that structurally diverse Y1 and
Y5 antagonists are effective in several acute food intake models [92–95]. But
while one study has confirmed the ability of a Y1 antagonist dosed chronical-
ly to reduce obesity, another study has found no effect of a Y5 antagonist dosed
chronically [96, 97]. Further studies are needed to confirm these results, but
either a centrally acting, Y1 antagonist, or perhaps a dual Y1 and Y5 antago-
nist, may be an effective anti-obesity agent. In addition, Y2 (such as PYY3-36)
and Y4 (such as PP) agonists are potent satiety factors with demonstrated acute
anorectic effects in humans suggesting selective single, or perhaps dual, ago-
nists could be effective for treating obesity.
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Summary

An interactive network comprised of neuropeptide Y (NPY) and cohorts is
obligatory in the hypothalamic integration of appetite and energy expenditure
on a minute-to-minute basis. High or low abundance of NPY and cognate
receptors dysregulates the homeostatic milieu engendering hyperphagia,
decreased energy expenditure, obesity and attendant metabolic syndrome clus-
ter of dyslipidemia, glucose intolerance, insulin resistance and hyperinsuline-
mia, risk factors for type II diabetes and cardiovascular diseases. Increasing
the supply of the endogenous repressor hormone leptin locally in the hypo-
thalamus with the aid of leptin gene therapy, blocked age-related and dietary
obesities, and the sequential development of dyslipidemia, hyperglycemia, and
insulin resistance. Thus, sustained repression of NPY signaling with increased
leptin selectively in the hypothalamus can avert environmental obesity and the
risks of metabolic diseases.

Introduction

A major challenge for the medical and scientific communities worldwide is to
decelerate the escalating prevalence of obesity and thus curtail the soaring med-
ical costs of treating obesity-associated afflictions among all segments of the
population, regardless of age, race and socio-economic status [1–4]. The obesi-
ty burden includes the metabolic syndrome, dyslipidemia, glucose intolerance,
insulin resistance and hyperinsulinemia of type II diabetes, and hypertension.
An abnormal rate of fat accumulation is also a risk factor in the etiology of neu-
ral diseases (e.g. Alzheimer’s disease), infertility, sleep apnea, kidney and liver
dysfunction, and several forms of cancers [5–10]. Clinical evidence also impli-
cates morbid obesity as a risk factor for shortened life expectancy [4, 8, 11].

Excess energy intake is stored as fat in the white adipose tissue (WAT) for
accessible fuel to accommodate the daily needs and to tide over periods of
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food-scarcity [1, 3, 4, 7, 12]. Apart from a small percentage of the population
predisposed to genetic factors, the current obesity pandemic has been attrib-
uted to the technological advances of the 20th century that improve the quality
of daily life but simultaneously promote fat storage. This incessant positive
energy balance, an outcome of calorie-enriched foods and sedentary lifestyles,
precipitates fat storage either gradually as a function of age, or at an acceler-
ated rate due to abrupt life-style modifications [1, 3, 4, 7, 12, 13]. Thus, the
two immediate paramount questions are: Is it possible to slow the progression
of the age-related and the calorie enriched diet-driven adiposities? Will the
incidence of metabolic syndrome disease cluster, e.g., glucose intolerance,
hyperinsulinemia and insulin resistance, decrease contemporaneously to con-
tain dyslipidemia and diabetes type II? To address these issues, this article col-
lates novel research endeavors of the bidirectional communication between the
hypothalamus and WAT for energy homeostasis [12, 14, 15]. We also elaborate
on crosstalk between the hypothalamic effector network of neuropeptide Y
(NPY) and cohorts and adipocyte-derived leptin which has been targeted for
therapeutic interventions to curb the rate of fat deposition and thereby, allevi-
ate the attendant cluster of metabolic disorders of dyslipidemia, hyperinsu-
linemia, insulin resistance, and diabetes type II [4, 15–20].

WAT-hypothalamus cross-talk and energy homeostasis

White adipose tissue (WAT)

WAT is an unique endocrine organ that secretes hormones, lipids and proin-
flammatory cytokines, each of which plays an important role in the regulation
of various physiological functions [21, 22]. An imbalance in the circulating lev-
els of these signal molecules with increasing adiposity has been correlated with
the genesis of metabolic syndrome, disruption in immune responses, neuroen-
docrine disorders and diseases of bone, kidney and liver [3–6, 21, 22]. Although
leptin is produced primarily by WAT, additional contributions from the stomach
and hypothalamus are also important in integration of the bidirectional com-
munication between WAT and hypothalamus for daily meal patterning [3, 12,
15, 21–23]. Leptin is secreted episodically with regularly paced short secreto-
ry bursts that are interrupted post-prandially by high amplitude protracted
secretion [24–28]. Leptin pulse amplitude increases only gradually with age but
rises rapidly in response to a high fat diet [27]. Leptin hypersecretion is an
important predicator of metabolic disorders because the onset of metabolic dis-
ruptions correlate temporally with the rise in circulating leptin levels and severe
hyperleptinemia sustained over extended periods is a common denominator in
coalescence of obesity-driven health problems [3–6, 21, 22].
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Hypothalamus

Among the various neural effector pathways identified to date, the network of
NPY and cohorts in the hypothalamus is central in integration of energy
homeostasis (Fig. 1) [12, 16–19]. NPY is an endogenous appetite transducer

Subjugation of hypothalamic NPY 159

Figure 1. Schematic representation of the feedback circuitry involved in integration of appetite and
energy expenditure. The primary components of the appetite regulating network, the orexigenic NPY
and co-expressed GABA and AgRP, in an interplay with the anorexigenic pathway compassing the
POMC and cocaine- and amphetamine regulating transcript (CART) neurons, stimulate and terminate
appetite. The synthesis and release of these peptides in the ARC–PVN axis is regulated by two func-
tionally apposed afferent hormonal signals – leptin from adipocytes (fat tissue) and ghrelin from
stomach. Also, depicted in the feedback relationship is the fat–stomach–pancreas axis in the periph-
ery. (+) stimulatory, (–) inhibitory, IIIV = third cerebroventricular (modified with permission from
reference [4]).



and participates in daily meal patterning in various ways. Timely release of
NPY in the paraventricular nucleus (PVN) from nerve terminals extending
from NPY producing perikarya in the hypothalamic arcuate nucleus (ARC)
and brainstem, stimulates appetite [12, 16–19]. Enhanced episodic NPY
release in the PVN, as that induced by short or long-term food deprivation
[29], or observed in genetic and experimental models of obesity in rodents [30,
31], elicits relentless appetite via activation of Y1/Y5 receptors in the magno-
cellular PVN [12, 16–20]. The NPY-induced excess energy intake gradually
eventuates in abnormal rates of weight gain [12, 18, 19].

Intriguingly, even low abundance of NPY in the ARC–PVN axis, induced
pharmacologically with neurotoxins and lesions, or surgically by interruption
of NPY supply in the PVN from ARC or brainstem, evokes hyperphagia
(Fig. 2) [16, 18, 32, 33]. Furthermore, a deficiency in NPY Y1 or Y5 receptors
or an increase in Y1 receptor abundance induced by diminished supply of NPY
at these receptors augments food intake and promotes fat accretion [16, 18, 32,
33]. Thus, both low abundance and high abundance of NPY disrupts NPY sig-
naling in the hypothalamus, disturbs meal patterning and causes hyperphagia,
obesity and attendant metabolic disorders [12, 16, 18–20].

Besides stimulating appetite on its own, NPY integrates daily meal pattern-
ing in various additional ways (Fig. 1). In the PVN, in concert with the co-
expressed orexigenic γ-aminobutyric acid (GABA) and agouti-related peptide
(AgRP), NPY synergistically mounts a robust appetitive drive [4, 12, 14].
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Figure 2. A model showing two disparate ways high and low NPY abundance in the ARC–PVN axis
culminates in obesity and metabolic syndrome (with permission from reference [16]).



When released locally in the ARC these three neurotransmitters activate dis-
tinct cellular pathways to suppress the anorexigenic melanocortin and initiate
feeding [4, 12, 14, 16].

Regulation of NPYergic signaling by leptin

Leptin is a major peripheral afferent hormonal signal that tonically restrains the
appetitive drive encoded by NPY and cohorts in the ARC–PVN axis (Fig. 1).
The tonic restraint on feeding during inter-meal intervals is a synergistic con-
sequence of suppressed orexigenic NPY, and enhancement of the inhibitory
anorexigenic melanocortin signaling in the ARC–PVN axis [4, 12, 15–19].
Leptin has recently been shown to counteract the orexigenic effects of ghrelin,
the gastric afferent hormonal signal to the ARC NPY effector network [15, 34,
35]. Leptin inhibits ghrelin induced stimulation of NPY release in the
ARC–PVN axis and peripherally it suppresses ghrelin secretion from the stom-
ach [34, 35]. This tonic leptin restraint on the hypothalamic effector pathways
is indispensable for energy homeostasis because in the absence of either leptin
or leptin receptors in the hypothalamus, orexigenic NPY signaling is upregu-
lated and anorexigenic melanocortin signaling is diminished [4, 12, 16, 19, 30,
31]. These disturbances jointly trigger hyperphagia culminating sequentially in
abnormal rate of fat accumulation and metabolic syndrome disease cluster [4,
12, 15].

Regulation of energy expenditure by the NPY and cohorts signal relay

In addition to coordinating the periodic appetitive drive, the communication
between hypothalamic NPY and cohorts and leptin reciprocally controls non-
shivering thermogenic energy expenditure [4, 36, 37]. Whereas enhanced
hypothalamic NPYergic signaling decreases, leptin enhances thermogenic
energy expenditure by activating the diffuse sympathetic nervous system
brown adipose tissue (SNS-BAT) pathway extending from the rostral medial
preoptic area to BAT in the periphery [4, 38–40].

Repression of hypothalamic NPY and cohorts with central leptin gene
therapy

The insight that leptin normally exerts a tonic restraint on the hypothalamic
network of NPY and cohorts on a minute-to-minute basis and that diminution
in this restraint concomitantly promotes increased hyperphagia, decreased
energy expenditure and obesity, led us to hypothesize that it is the insufficien-
cy of this powerful tonic leptin restraint on the hypothalamic effector pathways
that impels both age- and dietary adiposities. If true, then restoration of leptin
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restraint should reinstate weight homeostasis and prevent fat accretion and the
attendant metabolic syndrome cluster of diseases [3, 4, 15, 36]. To validate this
hypothesis, we engineered a replicative deficient, non-immunogenic and non-
pathogenic recombinant adeno-associated virus vector encoding the leptin
gene (rAAV-lep) for stable expression of leptin at focal neural sites [13, 41,
42]. In the initial study, an intravenous rAAV-lep injection in leptin-deficient
ob/ob mice increased circulating leptin levels, suppressed hyperphagia, and
decreased weight and adiposity. This normalization of food intake and weight
was conferred by decreased hypothalamic NPYergic and increased
melanocortin signalings in these mice [13]. In subsequent experiments, the
well-documented deleterious effects of severe hyperleptinemia on various
physiological functions in the periphery and concomitant development of cen-
tral leptin insufficiency were circumvented by increasing the supply of leptin
locally in the hypothalamus following either intracerebroventricular injection
(icv) or intraparenchymal microinjection of rAAV-lep in various hypothalam-
ic sites [34, 36, 38, 43–51].

Indeed, central rAAV-lep administration rapidly and reliably transduced
leptin gene expression that was sustained for the lifetime of rodents [43–51].
Increased transgene expression occurred in various hypothalamic sites inner-
vated by the two networks regulating appetite and energy expenditure.
Importantly, ectopic leptin expression was confined to hypothalamic sites as it
was detected neither in the central cerebrospinal fluid nor in systemic circula-
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Figure 4. The effects of rAAV-green fluorescent (rAAV-GFP control) or rAAV-lep treatment on
abdominal fat deposits in rats maintained on HFD (45% kcal) (with permission from reference [50])



tion. The stable expression of leptin in the hypothalamus simultaneously sup-
pressed the orexigenic NPY and enhanced the anorexigenic melanocortin sig-
naling, without affecting AgRP, in the ARC–PVN axis (Fig. 3).

Long-term benefits of repressing NPY signaling with central leptin gene
therapy

Obesity

A remarkable long-lasting consequence of the sustained repression of hypo-
thalamic NPY and cohorts by central leptin gene therapy was the complete
suppression of gradual age-related as well as rapid high fat diet (HFD)-
induced weight gain, adiposity and hyperleptinemia. Suppression of weight
resulted solely from deceleration of fat accretion (Figs 4 and 5). This long-
term efficacy was seen in prepubertal, young adult and old wild-type rodents

164 S.P. Kalra and P.S. Kalra

Figure 5. The effects of rAAV-GFP and rAAV-lep administration (arrow) on body weight, food intake,
serum leptin, triglycerides, free fatty acids, ghrelin, insulin and glucose levels. For comparison, an
additional untreated group consuming rat chow diet (RCD) is also depicted. P < 0.01 versus controls
or “0” week values and a. p < 0.05 versus other groups (with permission from reference [50]).



and leptin-deficient obese ob/ob mice [34, 36, 38, 43–51]. Thus, central leptin
gene therapy re-orchestrated with marked facility the neurochemical sequalae
that averted leptin insufficiency. Evidently, stable ectopic leptin expression in
physiological amounts can reinstate weight homeostasis for the life-time of
rodents by selectively repressing the hypothalamic NPY and cohorts signal
relay and enhancing energy expenditures.

Dyslipidemia

Compelling clinical and experimental evidence links increased visceral adi-
posity with the syndrome of dyslipidemia characterized by triglyceridemia,
increased free fatty acids (FFA), cholesterol and other circulating lipids [3–6,
13, 21, 22, 34, 36, 38, 43–51]. Repression of hypothalamic NPY and cohorts
signal relay in rodents expressing ectopic leptin in the hypothalamus was
accompanied by a severe suppression of circulating levels of triglycerides,
FFA and other adipokines (Fig. 5) [34, 38, 43–51].

Hyperinsulinemia and diabetes type II

Glucose intolerance, hyperglycemia, hyperinsulinemia and insulin resistance
invariably accompany the increased rate of fat accumulation [5, 6, 21, 22]. In
most obese patients, these pathophysiological derangements of the adipoinsu-
lar axis on a long-term basis increase the risk of diabetes type II [5, 21, 22].
Indeed, current clinical surveys show a close correlation between the increas-
ing prevalence of obesity and diabetes type II in adolescents and adults [1–7,
22]. The results of our long-term gene therapy investigations demonstrated that
central leptin expression completely suppressed the age-related and HFD-
induced hyperinsulinemia and restored normoglycemia by reinstating insulin
sensitivity (Fig. 5) [13, 34, 36, 43–51]. Further, the prevalence of hypoleptine-
mia in these rodents supports the hypothesis that hyperleptinemia not only dis-
rupts the adipoinsular axis in the periphery but it also causes leptin insuffi-
ciency in the hypothalamus. Additionally, our demonstration that hyper-
glycemia and hyperinsulinemia in insulin-2 gene mutant Akita mice also were
abrogated by central leptin gene therapy extends our postulate that leptin, inde-
pendent of its central action on weight homeostasis, engages the SNS and/or
yet to be identified neural pathways, to impose glucose–pancreatic insulin
homeostasis in the periphery [4, 34, 51].

Lifespan

Recent clinical surveys also link overt obesity and the attending metabolic
syndrome and degenerative diseases with reduced lifespan [1–11]. Given the
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fact that repression of the NPY and cohorts signal relay with central leptin
gene therapy suppressed the rate of weight gain, adiposity and endocrine and
metabolic markers of metabolic syndrome (Tab. 1), we assessed the impact of
these beneficial effects of central leptin gene therapy on the lifespan of overt-
ly obese ob/ob mice. A single icv injection of rAAV-lep in ob/ob mice nor-
malized food intake, weight and adiposity, augmented energy expenditure and
suppressed hyperinsulinemia and hyperglycemia and the adipocyte-derived
hormones – leptin, adiponectin and tumor necrosis factor-α, the etiologic fac-
tors in the pathophysiology of insulin resistance and diabetes type II [34, 51].
A remarkable consequence of the long-term amelioration of these hormonal
and metabolic markers was decreased mortality and increased life expectan-
cy [52]. Seemingly, optimal leptin restraint on NPY and cohorts in the hypo-
thalamus can avert the adverse effects of obesity and metabolic syndrome on
longevity.

Concluding remarks

The hypothalamic network of NPY and cohorts integrates neural, hormonal
and metabolic signals by coordinating energy intake and expenditure on a
moment-to-moment basis (Fig. 1). The expanding knowledge of the precise
working of NPY and cohorts has uncovered two underlying causes of the cur-
rent pandemic of obesity and metabolic syndrome. 1) progressive disturbances
in the afferent metabolic signaling that impels both high abundance and low
abundance of hypothalamic NPY and cohorts, accelerates fat accretion and
genesis of a constellation of metabolic risk factors. 2) These very derange-
ments in internal metabolic factors engender central insufficiency of leptin
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Table 1. Beneficial effects of repression of the NPY and cohorts signal relay with central leptin gene
therapy on metabolic and endocrine biomarkers of age-related and dietary obesities

Obesity NPY Repression with

Aging Dietary
Leptin Gene Therapy

Weight ↑ ↑ ↓
Adiposity ↑ ↑ ↓
Energy Intake ↑ ↑ ↓
Energy Expenditure ↓ ↓ ↑ 
Leptin ↑ ↑ ↓
IGF-1 ↑ ↑ ↓
Insulin ↑ ↑ ↓
Glucose ↑ ↑ ↓
Triglycerides ↑ ↑ ↓
Free Fatty Acids ↑ ↑ ↓

↑ = increased, ↓ = decreased



restraint thus disrupting the dynamics of the bidirectional crosstalk between
WAT and hypothalamus. Implementation of leptin gene transfer technology
was highly successful in ameliorating the adverse impacts of central leptin
insufficiency on NPY and cohorts signal relay in the hypothalamus.
Repression of NPY signaling on a long-term basis reversed the life-shortening
effects of obesity and metabolic ailments. Finally, attempts to reinforce leptin
restraint with gene therapy have unraveled a novel role of leptin in the hypo-
thalamus in regulating ultradian secretion of leptin from adipocytes and insulin
from pancreatic β-cells. Apparently, efferent inhibitory signals from the hypo-
thalamus traverse a distinct pathway to regulate rhythmic hormonal discharge
from peripheral endocrine glands. This novel insight has yielded a new vul-
nerable locus in the hypothalamus for designing therapeutic interventions to
stem the rising tide of the metabolic syndrome cluster of diseases.
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Introduction

The classic role of Neuropeptide Y (NPY) is as a major regulator of food con-
sumption and energy homeostasis, however, recent analysis of Y receptor
knockout models has revealed a novel and important role for NPY receptors in
the regulation of bone metabolism.

There are five Y receptors known to mediate the actions of NPY and its two
other family members, peptide YY (PYY) and pancreatic polypeptide (PP).
The large number of Y receptors and their similar pharmacological profiles has
made it difficult to delineate their individual contributions to the numerous
physiological processes regulated by members of this family. However, recent
studies analyzing Y receptor knockout models have started to unravel some of
the individual functions of these Y receptors. In particular the use of condi-
tional knockout models has made it possible to pinpoint a specific functional
contribution of an individual Y receptor in a particular location. From these
studies the predominantly pre-synaptically-expressed Y2 receptor in the arcu-
ate nucleus has emerged as a prime candidate for mediating the regulation of
bone formation.

The skeleton is a major contributor to body weight, with bone tissue repre-
senting approximately 15% of the human body weight. The loss of bone mass
resulting from an imbalance in the process of bone resorption and formation,
can have severe consequences. Osteoporosis is particularly prevalent in post-
menopausal women and in the elderly, and is characterized by low bone den-
sity and increased risk of fracture.

Recently we have shown that specific deletion of hypothalamic Y2 recep-
tors results in a two-fold increase in cancellous bone volume, resulting from
an elevation in the rate of bone formation [1]. These findings, therefore, have
revealed a novel anabolic bone response, resulting from a central signal
processed within the hypothalamus, and as such, opens up exciting new possi-
bilities for osteoporosis treatment.

A second anabolic pathway also mediated through a hypothalamic relay
was revealed in the ob/ob and db/db mice [2], which are deficient in function-
al leptin, and its receptor, respectively. Leptin and Y2 receptors on hypothala-
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mic NPY neurons mediate leptin’s effects on energy homeostasis, suggesting
these two systems may also interact in the modulation of bone formation.
Similarities in the bone phenotypes and neuropeptide expression profiles of the
ob/ob and Y2 knockout models also suggests a mechanistic link between lep-
tin and Y2 receptors in the regulation of bone physiology. This chapter sum-
marizes the current body of knowledge on the central antiosteogenic pathways
mediated by leptin and the Y receptor systems, and assesses the possibility that
their activity in the regulation of bone formation occurs by functionally dis-
tinct pathways.

The central control of bone metabolism

In the normal skeleton, bone is not a static tissue, but is rather constantly
remodeled with the removal of small volumes of bone by bone-resorbing
osteoclasts, then replaced by bone-forming osteoblasts. This process of remod-
eling maintains both mechanical integrity and mineral homeostasis. The bal-
ance between these two processes, and the rate at which they occur, is tightly
coupled, such that the rate of bone resorption equals the rate of bone forma-
tion, ensuring that a constant volume of bone remains present during adult life.

Disturbances in the balance between resorption and formation results in a
change in net bone turnover and is responsible for many bone diseases includ-
ing osteoporosis. Osteoporosis is a common disease in which low bone mass
and damage to bone microarchitecture leads to increased risk of fracture with
minimal trauma. Following menopause in women, loss of the protective effects
of estrogen leads to increased osteoclastic activity, resulting in greater bone
resorption [3]. In addition, osteoblast function decreases with age in both
women and men [4]. These factors destabilize the coupling of bone remodel-
ing resulting in a net loss of bone and contributing to the development of
osteoporosis [5–7]. Currently available treatments for osteoporosis act only to
inhibit further bone resorption. These agents, therefore, are of somewhat lim-
ited use for treating severe osteoporotic patients already suffering from a major
loss of bone scaffolding, or in male osteoporotic patients, whose loss of bone
is generally not the result of altered osteoclastic activity, but rather due to a
loss of osteoblast activity.

The mechanisms controlling the regulation of bone remodeling have been
extensively studied. It has long been thought that the regulation of bone
turnover is primarily controlled by endocrine, autocrine and paracrine factors
such as vitamin D, calcitonin, parathyroid hormone or cytokines. However,
recently it has become apparent that the regulation of bone formation is also
controlled by centrally-mediated neural pathways.

It is well established that both sensory and autonomic nerve fibers are pres-
ent in bone tissues, predominantly associated with blood vessels [8–12]. A
number of neuropeptides have also been identified in bone, including sub-
stance P (SP), calcitonin-gene related peptide (CGRP), vasoactive intestinal
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peptide (VIP), and neuropeptide Y (NPY), as well as neurotransmitters such as
serotonin (5-HT), noradrenaline, and glutamate [13]. More recent studies have
proposed that such signaling molecules within the nervous system may actu-
ally participate in the control of bone metabolism, through the existence of a
neuro-osteogenic signaling network [14].

Receptors for CGRP have been identified on osteoblasts [15–17], and their
activation increases bone colony formation in vitro [18]. Transgenic mice over-
expressing osteoblast-derived CGRP have a high bone mass phenotype with
increased indices of bone formation, indicating a possible anabolic role for
CGRP in bone [19].

Receptors for SP have been identified on osteoclasts, while receptors for
VIP have been identified on both osteoblasts and osteoclasts [17, 20]. VIP may
have a pleiotropic role, stimulating bone formation in vitro possibly through a
cAMP-mediated mechanism, in addition to regulating osteoclast activity [14,
21]. Stimulation of SP receptors has been shown to stimulate calcium influx
and bone resorption in vitro [22].

Transporters for neurotransmitters are also expressed in bone, for example,
the glutamate/aspartate transporter (GLAST) is expressed by osteoblasts and
embedded osteocytes [23]. Glutamate receptors are also expressed in bone
cells and a role for glutamate in the regulation of osteoclast activity has been
proposed [24, 25]. Serotonin transporters and receptors have also been identi-
fied in osteoblasts, and may be involved in the process of bone formation and
mineralization [26, 27].

The presence of these neural components suggest there may be direct sig-
naling between the brain and bone, and furthermore, that these signals may be
involved in the regulation of bone remodeling. The presence of neurotransmit-
ter transporters and receptors would enable the osteoblast to both respond to,
and regulate neurotransmitter activity. However, as there is not much known of
potential synapses between nerve and bone cells, it is uncertain how these
transporters would operate.

The Y receptor knockout models

Recently, an important role for the Neuropeptide Y (NPY) receptors in the reg-
ulation of bone formation was revealed. NPY is one of the most abundant neu-
ropeptides in the central and peripheral nervous system and in addition to its
strong stimulatory effect on food consumption it also regulates numerous other
physiological functions. At least five different Y receptors (Y1, Y2, Y4, Y5,
and in the mouse y6), are known to mediate the action of NPY and its two
other family members, peptide YY (PYY) and pancreatic polypeptide (PP)
[28–33]. NPY and PYY have identical affinity for all Y receptors, with PP pre-
ferring the Y4 receptor. The lack of a full complement of selective pharmaco-
logical tools for the Y receptors has made it difficult to determine which Y
receptors are responsible for the different effects of NPY. In order to investi-
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gate the specific roles of each of the receptors, and to further understand the
mechanisms and pathways involved in these diverse physiological effects,
germline knockouts have been generated for each of the Y-receptors.

A potential role for NPY in the regulation of bone formation was first
revealed in germline Y2 receptor knockout (KO) mice. These mice displayed
a two-fold increase in cancellous bone volume, due to an elevated bone for-
mation and mineralization rate (Fig. 1) [1]. These increases occurred despite
no change in the actual number of osteoblasts present, indicating that the
change in bone volume was the result of altered osteoblast activity. The
absence of detectable levels of Y2 receptor mRNAs in bone tissue suggests
that this effect of Y2 deletion was occurring via an indirect, and potentially
centrally-mediated, mechanism [1].

Conditional Y2 receptor deletion studies, whereby hypothalamic Y2 recep-
tors were specifically deleted in adult mice, demonstrated that this two-fold
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increase in bone volume could be achieved within only 5 weeks [1], illustrat-
ing the Y2 receptor pathway to be a potent and rapid-acting bone anabolic
pathway, acting via a centrally controlled mechanism. Thus deletion of hypo-
thalamic Y2 receptors acts to release a tonic inhibition of trabecular osteoblast
activity, increasing the rate of bone mineralization and formation, and result-
ing in an increase in trabecular bone volume.

The specificity of this modulation of osteoblast activity by the Y-receptor
system has been demonstrated by analysis of the other germline Y receptor
knockout mice. Unpublished data from our group shows that deletion of Y1
receptors results in a similar high trabecular bone mass phenotype as the Y2
knockout model. However, while the increase in bone volume in the Y2 knock-
out model is solely attributed to increased bone formation, the increase in bone
volume in Y1 knockout mice is the result of altered bone turnover, with
increased indices of both osteoblast and osteoclast activity. Therefore, while
the net result of both the Y1 and the Y2 knockout models is an increase in bone
formation, the differences in bone cell activity between these two models sug-
gests they may be acting via alternate pathways.

In contrast to the Y1 and Y2 knockout models, germline deletion of the Y4
receptor does not result in a bone phenotype, but rather similar levels of bone
volume to wild type mice. Interestingly, double deletion of the Y2 and Y4
receptors results in a gender-specific synergistic three-fold increase in bone
volume in male mice [34]. This will be discussed in further detail later.

Relationship between obesity and bone

The principle role of NPY is in the regulation of food intake and the mainte-
nance of energy homeostasis. It has long been known that a link or relation-
ship exists between body weight and bone density. Obesity, caused by an
imbalance in energy homeostasis, can protect against osteoporosis [35, 36].
This protective effect of obesity is partially explained by mechanical (weight-
bearing) effects, but also by the fact that the sex steroid hormone estrogen,
which has protective effects on bone, is produced in adipose tissue. More
recently, a potential role for adipose-secreted factors in the regulation of bone
turnover has been a subject of increasing interest.

Leptin is one such hormone secreted by adipocytes, which is then trans-
ported to the hypothalamus where it acts on specific receptors to regulate ener-
gy homeostasis. Serum leptin levels are positively correlated to fat mass, and
deficiency of leptin or its receptor, as seen in the natural occurring mouse
mutants, the ob/ob and the db/db mouse, respectively, leads to massive obesi-
ty [37, 38]. Hypothalamic levels of NPY mRNA and the secretion of NPY are
strongly elevated in these mice [39], and contribute to the massive obesity,
hypercortism, and reproductive defects characteristic of this model [40]. NPY
ablation in ob/ob mice attenuates all these defects [41], further demonstrating
that NPY is a major downstream mediator of leptin’s central effects.
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Surprisingly, ob/ob and db/db mice display a similar increase in cancellous
bone mass as the Y1 and Y2 receptor knockout models [2], despite the hypog-
onadism and the hypercortisolism associated with leptin deficiency; both situ-
ations which would normally favor a reduction in bone. Investigation of other
mouse models of obesity which are not related to leptin signaling, and the use
of heterozygous ob+/– mice, or young ob/ob mice fed a low fat diet, have
demonstrated this increase to be independent of the presence of fat, indicating
that obesity is not the effector involved. In line with this, the A-ZIP/F-1 mouse,
which has no white adipose tissue and thus has reduced levels of leptin, also
has the high bone mass phenotype, further supporting the concept that the
increase in bone volume is due to an absence of leptin signaling, and not due
to fat mass [2].

Hypothalamic regulation of energy homeostasis and bone formation

Although leptin receptors have been identified in cultured osteoblasts from rat
[42], and human [43, 44], there are no leptin receptors detectable on mouse
osteoblasts [45] inconsistent with any possible autocrine, paracrine, or
endocrine mechanism of regulation in the ob/ob model. The majority of leptin
receptors are found in the arcuate nucleus of the hypothalamus, suggesting that
leptin might control bone formation in these mice via the same central mech-
anism as it regulates body weight. The arcuate nucleus is located in an area
with a permeable blood brain barrier and is therefore accessible to circulating
hormones such as insulin and leptin [46]. Furthermore, intracerebroventricular
(icv) infusions of leptin into both ob/ob and wildtype mice, despite causing
significant weight loss, also promotes a rapid reduction in bone mass [2].
Taken together, these results suggest that the regulation of energy homeostasis
is an integral process not limited to controlling fat and muscle tissue mass, but
also includes bone tissue as a major storage component, with leptin acting via
the central nervous system as an inhibitor of bone formation.

NPY synthesis is particularly high in neurons of the arcuate nucleus, with
many of these neurons also expressing leptin receptors [48]. A high percent-
age of these arcuate NPY-ergic neurons co-express the Y2 receptor [49]
thought to act as an auto-receptor which can modulate the expression and
secretion of NPY and other neurotransmitters [50]. It is possible that the puta-
tive action of the co-localized pre-synaptic Y2-receptors to inhibit NPY release
is augmented by leptin. Since leptin receptors and Y2 receptors are present on
NPY-expressing neurons of the arcuate nucleus and are likely to share some
common signaling pathways [39, 47–50], the Y2 receptor is the prime candi-
date to be involved in the central regulation of energy homeostasis.

It is not clear whether the increased hypothalamic NPY expression common
to mice deficient in leptin action or Y2 receptors is causally related to the high
bone density, because 28-day ICV NPY infusion (albeit, probably resulting in
hyperleptinemia) actually decreases bone density [2].
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Evidence for a distinct mechanism in leptin and Y receptor
antiosteogenic pathways

The similar bone anabolic phenotype present in both the Y2 receptor knockout
and ob/ob models, both resulting from signals processed within the hypothal-
amus, suggest a mechanistic link between these two pathways in the regulation
of bone. This hypothesis is supported by comparable changes in the expression
of certain neuropeptides, in particular, strongly elevated levels of hypothalam-
ic NPY, present in both models [1, 2]. It is known that leptin and Y2 receptors
interact in the regulation of adipose tissue, with the deletion of Y2 receptors
attenuating the obese phenotype of the ob/ob model [51, 52]. The known inter-
actions of the NPY and leptin systems in the regulation of energy balance, and
the co-localization of leptin and Y2 receptors on NPY-ergic neurons within the
hypothalamus suggest these two models may share a common mediator in
their regulation of the bone anabolic response. Recent studies have investigat-
ed the extent to which the leptin and the Y receptor systems interact in the reg-
ulation of bone.

Several lines of evidence suggest the leptin deficient and Y2 receptor bone
anabolic pathways to be somewhat independent.

Firstly, despite the similar bone mass phenotypes of the ob/ob and Y2 recep-
tor knockout models, there are differences in the bone cell activity of these
models. Leptin deficient ob/ob mice exhibit a marked increase in osteoclast
number as a result of their hypogonadism [2], while in contrast, osteoclast
number in the Y2 receptor knockout model is reduced [1], suggesting a differ-
ence in the regulation of the osteoclast in the two models. However, osteoclast
surface is not affected by Y2 deletion, suggesting an increase in osteoclast size
in these knockouts. A change in osteoclast morphology as seen in these knock-
outs is consistent with an increase in resorptive activity per cell [53, 54].

Secondly, chemical ablation studies of particular brain regions indicate that
leptin’s control of antiosteogenic and anorexigenic networks differ, with dif-
ferent neuropeptide populations responsible for the regulation of anorexic
function and bone [45]. The specificity of chemical ablation studies makes
them difficult to interpret, however, these findings suggest that leptin may not
work through the classic NPY pathway to regulate its bone anabolic response.

More recently, genetic studies have been utilized to investigate the degree
of commonality between the leptin deficient and Y receptor anabolic path-
ways, by investigating the effects of specific Y receptor deletion on a leptin
deficient background. This was achieved by crossing the different Y receptor
knockout mice onto the ob/ob background, to determine whether leptin and Y
receptor deficiency have additive effects. Interestingly, both the Y1ob and the
Y2ob double knockout models showed a decrease in bone volume relative to
the single Y1 knockout or Y2 knockout models, respectively, suggesting there
may be some degree of interaction or interdependence between the leptin and
Y receptor pathways (unpublished observations and [56]). Interestingly, analy-
sis of the bone cell activity of these models also provided supporting evidence
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for differential regulation of the Y1 and Y2 receptor anabolic pathways from
each other. In the case of the Y2ob model, the reduction in bone volume was
attributed to an increase in osteoclast activity, likely due to the hypogonadism
associated with leptin deficiency [56]. However, in the case of the Y1ob dou-
ble knockout model, there was no alteration in osteoclast surface. Rather, the
reduction in bone volume in this model actually resulted from a reduction in
the rate of bone mineralization. That is, deletion of leptin signaling actually
abolished the anabolic bone formation activity of the Y1 receptor knockout
model. While these alterations in the bone cell activity of the Y receptor and
ob/ob double knockout models suggest possible interaction between the two
pathways, evidence for an independent component of these pathways also
exists. The interaction between leptin excess and Y receptor deletion was
examined by central administration of recombinant viral NPY to produce
weight gain and thus leptin excess in adult Y receptor knockout mice. Both
wild type and Y2 knockout mice exhibited a marked elevation in adipose tis-
sue accumulation, and hence leptin expression. The antiosteogenic effects of
leptin acted to reduce osteoblast activity in both wild type and the Y2 knock-
out model. However, despite an overall reduction in bone volume, the Y2
receptor knockout model maintained it’s two-fold elevation in bone formation
activity, thereby acting in an opposite direction to the antiosteogenic effects of
leptin, and providing strong evidence for an independent or functionally dis-
tinct component of the Y2 receptor and leptin deficient anabolic pathways [56]
(Fig. 2).

Further evidence of distinct leptin and Y2 pathways stems from the Y2Y4
double knockout model. The synergistic increase in bone volume observed in
male mice is associated with a significant reduction in serum leptin compared
with wild type or Y2 knockout mice [34]. Both the synergistic effect on bone
and the reduced leptin levels are absent in female mice, suggesting that the
gender specificity of the bone response may arise from a stimulation of bone
formation, due to both reduced levels of leptin, as well as that induced by Y2
receptor deletion.

While the leptin antiosteogenic pathway has been linked to alterations in
sympathetic nervous system (SNS) activity [45], possibly by direct actions
though β2-adrenergic receptors expressed on osteoblast cells, the mechanisms
behind the anabolic activity of the Y2 receptor knockout pathway remains to
be determined. The above studies suggest that the Y2 receptor anabolic path-
way is distinct from the leptin response, indicating that alternate regulatory
mechanisms may be involved.

Germline or hypothalamus-specific Y2 receptor knockout does not induce
any obvious endocrine imbalances that would impact on bone homeostasis [1].
No significant changes from controls were detected in the plasma concentra-
tions of total calcium, leptin, free T4, IGF-1, and testosterone. Furthermore,
fertility is not impaired [55]. These findings suggest that Y2 receptor deficien-
cy does not influence bone formation via modulation of humoral factors.
However, it is as of yet unknown how a central nervous system mechanism
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would interact with autocrine/paracrine or other factors to regulate bone
remodeling and adapt to the mechanical stresses of the environment.

Concluding remarks

Genetic models such as Y receptor knockout and leptin knockout mice have
begun to reveal some of the individual functions of the different Y receptors.
The finding that some of these receptors appear to be involved in the regula-
tion of bone formation via a hypothalamic relay, has revealed not only a pre-
viously unknown and novel function of the Y receptors, but also a novel exam-
ple of the regulation of bone formation by a very potent, centrally-mediated
mechanism.

The rapid increase in bone mass in adult mice following central deletion of
Y2 receptor function suggests new possibilities for the prevention and anabol-
ic treatment of osteoporosis. The Y2 receptor pathway appears to be distinct
from the antiosteogenic pathway regulated by leptin, and therefore supports
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Figure 2. Proposed pathways for the central regulation of bone metabolism by Y2 receptors and lep-
tin. Leptin is secreted by adipocytes and transported to the hypothalamus where it binds its receptor
(Ob-Rb). Leptin and Y2 receptors are co-expressed on NPY neurons of the hypothalamus, and the Y2
receptor is likely to be involved in leptin’s regulation of energy homeostasis, and thus adipose depo-
sition, acting to modulate NPY levels. Leptin and Y2 receptors also regulate bone formation. A com-
ponent of this regulation may be via a common pathway shared by the leptin and Y2 receptors.
However, another component of this regulation utilizes distinct mechanisms, whereby the actions of
leptin and the Y2 receptors can be separated.



the Y2 regulated pathway as a novel target for anabolic bone therapy.
Furthermore, the area of the arcuate nucleus where the Y2 receptors are locat-
ed is accessible without the need to cross the blood brain barrier, and is there-
fore potentially an ideal target for drug intervention. The additional advantage
of this particular sub-population of arcuate Y2 receptors is that their specific
inhibition will not influence any other central functions of the Y2 receptor such
as effects on seizure susceptibility, anxiety, or memory, therefore limiting the
possibility of side effects associated with such a treatment for osteoporosis.
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NPY in affective disorders

Symptoms of anxiety and depression commonly co-exist and both disorders
are thought to reflect maladaptive changes in stress-responsive systems [1].
Known genetic factors increase vulnerability for both anxiety and depression
[2]. It has furthermore been suggested that the present classification of depres-
sive and anxiety disorders may be artificial, and that for a large proportion of
subjects with affective symptoms, a more appropriate categorization would be
“major depression – generalized anxiety disorder” [3]. Thus, the role of NPY
in these two conditions is dealt with jointly.

In rodent models, injections of nanomolar doses of NPY have been shown
to decrease anxiety-like responses in a variety of tasks, including the elevated
plus-maze [4, 5], social interaction task [6], fear potentiated startle and fear
conditioned responses [4, 5, 7, 8]. In addition, intracerebroventricular (icv)
administration of NPY to a large extent prevented gastric ulceration induced
by water restraint, a strong stressor [9]. Mutant mice lacking NPY show
increased anxiety-like behavior [10]. Although a transgenic mouse overex-
pressing NPY has been developed, only a limited phenotypic characterization
for this line is available [11]. However, transgenic rats overexpressing NPY in
hippocampus were shown to be resistant to stress-induced increases in anxi-
ety-like behavior [12, 13].

These studies together indicate that pharmacological or transgenic activa-
tion of NPY signaling is stress reducing. The physiological involvement of
endogenous NPY in mediation of stress responses and anxiety related behav-
ior was demonstrated in two studies showing that NPY gene expression in
amygdala and cortex is regulated by stress. Acute stress downregulates NPY-
IR and NPY mRNA expression within 1 h, with mRNA levels returning to nor-
mal levels within 10 h and peptide levels within 2 h [14]. This stress has been
shown to be anxiogenic on the elevated plus-maze. Interestingly, with repeat-
ed stress exposure, leading to a behavioral habituation, this effect is reversed.
Under these conditions, NPY expression is instead upregulated [15]. On the
basis of these pharmacological and expression studies, it was proposed that an
upregulation of NPY expression may contribute to successful behavioral adap-
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tation to stress. This extends a previously introduced hypothesis that NPY may
act to “buffer” behavioral effects of stress-promoting signals such as CRF [16].

For depression, a differential NPY expression has been detected in a genet-
ic animal model, the Flinders Sensitive rats (FSL) [17–20]. This is in agree-
ment with the finding that chronic cocaine reduces NPY expression in the pre-
frontal cortex [21], since clinical hallmarks of cocaine withdrawal and
dependence are symptoms of depression. Treatment with clinically effective
antidepressants was early reported to increase NPY expression in several brain
regions in rats, with frontal cortex being the most consistent region [22]. Initial
attempts to replicate the effects of chronic antidepressant treatment and extend
them to mRNA level were unsuccessful [23, 24] for reasons which remain
unclear but may be related to assay specificity or, more likely, the half life of
the drugs used being insufficient to maintain adequate plasma concentrations.
Subsequently, a region-specific regulation of NPY and Y1 receptor expression
was reported following chronic treatment with the serotonin-selective reuptake
inhibitor (SSRI) fluoxetine, both in the “depressed” (FSL) line and the corre-
sponding control line (FRL) [17, 25]. In these studies, fluoxetine elevated
NPY-IR in the hypothalamic arcuate nucleus and anterior cingulate cortex, and
increased Y1 binding sites in the medial amygdala and occipital cortex in both
lines. In agreement with these findings, an increase in the NPY mRNA was
found in the arcuate nucleus in both lines. In other brain regions, fluoxetine
treatment caused a differential effect on the induction of NPY-related genes in
these two rat strains: in hippocampus, NPY mRNA expression was increased
in the “depressed” (FSL) subjects, but decreased in the “non-depressed” (FRL)
line. In contrast, Y1 mRNA levels tended to decrease by fluoxetine in the
nucleus accumbens of the FSL rats, but increased in the FRL. On the basis of
these findings, an involvement of NPY was suggested in the antidepressant
effect of fluoxetine.

Another established and effective antidepressive treatment, electroconvul-
sive shock (ECS), has been much more consistent in upregulating brain NPY-
levels, with hippocampus as a seemingly central target. An elevated NPY level
was demonstrated after repeated, but not single ECS, paralleling the require-
ments for clinical effect in depressed subjects [26–28]. These data has been
both replicated and extended [29–31] and this effect seems robust in both
“normal” laboratory rats and in the genetically selected FSL and FRLs. The
mechanism is an upregulation of preproNPY expression which leads to an
increased extracellular availability of the NPY peptide. Against the back-
ground of our behavioral finding in the transgenic rat model [12], upregulated
hippocampal NPY-expression might be of importance both for therapeutic and
amnesic effects of ECS.

The anti-anxiety and anti-depressive actions of NPY appear to be predomi-
nantly mediated via the Y1 receptor system. This was initially based on the
observation that full length NPY peptide produced an anti-anxiety effect in
elevated plus-maze, Vogel test [5] and Geller-Seifter test [7], while the C-ter-
minal, presumably Y2-selective fragment, NPY13–36, did not generate this
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action. The in vivo use of intracerebral antisense oligonucleotides targeting Y1
receptor transcript made it possible to demonstrate a selectively lowered den-
sity of Y1 binding sites, with an outcome of decreased behavioral effects on
the elevated plus-maze [32]. With the development of more selective pharma-
cological tools, Y1 mediation of anti-stress effects of NPY appears to have
been confirmed.

Y2 receptors may also play a role in the regulation of emotionality. NPY-
Y2 receptors are located presynaptically on NPY-ergic neurons, and control
the release of endogenous NPY [33, 34]. Antagonizing this receptor is expect-
ed to potentiate the release of NPY and through this mechanism offer an
“NPY-mimetic” effect without developing an Y1 agonist. This mechanism
would therefore be an attractive target in the drug development efforts. Studies
of NPY Y2 receptor knockout mice have supported this idea [35, 36] and
results are consistent with the anxiogenic-like effects of intra-amygdala treat-
ment of Y2-preferring agonists in the rat social interaction test [37, 38].
Another more direct involvement of Y2 receptors has been suggested within
the locus coeruleus, where an anxiolytic-like effect was detected after a
10 pmol NPY microinjection into this structure, mimicked by NPY13–36 but not
by [Leu31, Pro34]NPY, a “non-Y2” ligand [39].

The amygdala has so far been the most prominent region of interest with
regard to emotionality. Central amygdala was initially suggested to be the
mediating site of anxiolytic NPY actions [40]. However, subsequent microin-
jection studies using smaller injection volumes have prompted a re-evaluation
of the data, suggesting that the lateral/basolateral complex in fact mediates
anti-stress effects of NPY within the amygdala [6]. Periaqueductal grey mat-
ter (PAG) is involved in the behavioral output of fear responses, with subcom-
partments that are differentially involved in defensive behaviors [41, 42]. Its
dorsolateral compartment (DPAG) has been suggested to tonically inhibit the
amygdala. Microinjections of Y1 antagonists within DPAG produced an anx-
iogenic effect in elevated plus-maze [43] and social interaction task [44].

Septum has been implicated to be part of another important “behavioral
inhibition system” but septal lesion that studies demonstrated effects on anxi-
ety-like behaviors most likely reflected effects on fibers passing through this
structure, probably belonging to hippocampal output through fornix fimbriae
[45]. Hippocampus is an important component of neuronal circuitry control-
ling anxiety-related behaviors and stress responses, and in particularly dorsal
hippocampus [46, 47], and septo-hippocampal circuits are likely to be impor-
tant for fear related behaviors. NPY microinjections into lateral septum repro-
duced anxiolytic-like actions of intracerebroventricular administration of NPY,
and reversed the anxiogenic action of corticotrophin releasing factor (CRF).
This was clearly mediated by the Y1 receptor, since a highly selective Y1
receptor antagonist, BIBO 3304, blocked this anxiolytic-like action [48].

Human studies support an involvement of NPY in depression and anxiety
disorders. An early study stated decreased levels of NPY in the cerebrospinal
fluid (CSF) of patients with major depression [49], which could reflect a
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decrease in central availability of NPY. Low levels of NPY in brain tissue were
also reported in suicide victims [50]. These studies were followed by reports
which failed to replicate their results [51, 52], although issues of assay speci-
ficity are particularly likely to complicate matters in this case. In a recent re-
examination of this issue in a large number of therapy-refractory depressed
patients, a highly significant, 30% reduction of CSF NPY was found [53].
Interestingly, postmortem studies have meanwhile shown a decreased NPY
mRNA expression which is most prominent in bipolar disorder [54]. It is a
well-known fact that a proportion of patients diagnosed with unipolar disorder
in fact has a genetic vulnerability for bipolar disorder, but has not yet present-
ed with their first manic episode, and may never do so. It is therefore possible
that the involvement of NPY is primarily related to bipolar traits and that the
discrepant CSF results are partly due to varying proportion of this patient cat-
egory in the different clinical populations.

In summary, compelling evidence exists for a role of NPY as an endogenous
anti-stress compound, which is physiologically recruited to cope with pro-
longed stress. Dysfunction of this system seems to be present in affective ill-
ness. Targeting the NPY system, possibly through antagonism at presynaptic
Y2 autoreceptors, offers an attractive strategy to develop novel antidepressant
and anti-anxiety treatments.

NPY in alcoholism

In addition to involvement in mood disorders such as depression and anxiety
syndromes, NPY has been demonstrated to have a role in alcohol intake,
dependence, and withdrawal. The effect profile of NPY shows numerous sim-
ilarities with not only that of established anti-anxiety compounds, but also that
of alcohol. Furthermore, in clinical studies of alcohol dependence a correlation
between initial anxiety and subsequent alcohol abuse, possibly due to the anx-
iolytic action of alcohol, has been demonstrated [55, 56]. While this may only
be true for a subgroup of alcoholics, it may partially explain some of the
changes and effects seen for NPY in alcoholism.

A direct link between NPY signaling and regulation of alcohol consumption
was first shown in a study where mice with a transgenic overexpression of
NPY consumed less alcohol, while mice with a null-mutation, i.e. inactivation,
in the NPY gene had an increased alcohol consumption [11]. Genetic studies
in both experimental animals and humans provide tentative support for a role
of NPY in regulation of ethanol intake. Within the genome of a genetic rat
model of high alcohol drinking state, the P-rat (see below), a quantitative trait
locus was identified which spans the locus for the NPY gene [57, 58].
Furthermore, associations between alcoholism and polymorphisms within the
NPY gene have been suggested. A substitution (Pro7 for Leu7) in the signal
peptide region of the NPY precursor, prepro-NPY, leads to increased plasma
NPY in response to stress compared to control subjects without the substitu-
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tion [59, 60]. A 34% higher average alcohol consumption was reported in
Finnish men with this substitution compared to matched control subjects [59].
Another report showed alcoholic European/American men had a 5–5.5% Pro7
allele frequency while the frequency in the non-alcoholic control group was
2% [61]. However, this polymorphism has also been reported to be of lower
frequency in alcoholics or to not be significantly different between alcoholics
and controls [61, 62]. We have recently reanalyzed this issue by reconstructing
the haplotype structure of the preproNPY – gene using five polymorphic mark-
ers. This has yielded two preliminary insights: The coding Leu7Pro 1128 SNP
is in strong linkage disequilibrium with a novel promoter polymorphism, and
is present almost exclusively on a common haplotype. The frequency of this
haplotype differs significantly between alcohol dependent subjects and nor-
mals. All of this difference can be attributed to type I alcoholics, i.e., patients
with late onset of alcohol problems. Interestingly, this clinical subtype is char-
acterized by high trait anxiety, which makes the association of particular inter-
est considering the established role of NPY in anxiety. Finally, another poly-
morphism, a C-to-T substitution at the 5671 locus of the NPY gene, was
reported to be more frequent in a Japanese alcoholic patient population [63].

In animals, selective breeding for ethanol consumption or preference has
created several lines of mice and rats which have been well characterized with
regards to numerous behavioral, pharmacological, and biological traits. Mouse
lines include the high-alcohol-preference (HAP) and low-alcohol-preference
(LAP) line, and rat lines include the Sardinian preferring (SP) and non-prefer-
ring (SNP) lines, the Indiana alcohol-preferring (P) and non-preferring (NP)
lines, the Alko alcohol (AA) and Alko non-alcohol (ANA) lines, as well as the
high-alcohol drinking (HAD) and low alcohol drinking (LAD) lines [64]. Each
high drinking/preferring line consumes sufficient amounts of alcohol to
achieve pharmacologically significant blood levels (50–250 mg%), is motivat-
ed by ethanol’s pharmacological properties rather than smell, taste, or caloric
content, and develops physiological tolerance after long term access to alco-
hol. NPY and NPY receptor expression patterns have been examined in these
‘genetic models of alcohol dependence’. For example, P rats have been shown
to have low levels of NPY in amygdala, frontal cortex, and hippocampus com-
pared to the non-preferring NP-line, but higher levels in the paraventricular
nucleus, arcuate nucleus, and cingulate cortex [65, 66]. In the HAD line NPY-
IR was decreased in central nucleus of the amygdala, paraventricular nucleus
of the hypothalamus, and the arcuate nucleus as compared to LAD rats [67].
In the AA/ANA, a different pattern was seen, with lower hippocampal NPY
mRNA expression compared to the non-preferring line [68]. The NPY Y2
receptor subtype was also found to be reduced in the medial amygdala of the
AA line as compared to the ANA line.

The effect of NPY on alcohol consumption appears to be in part dependent
on the individual’s history and state of alcohol consumption. In animal stud-
ies, central administration of NPY into the lateral ventricles, central nucleus of
the amygdala, or the third ventricle leaves level of ethanol intake unaffected in
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normal, out-bred rat strains [69–72]. However, a significant suppression of
alcohol intake was found in the P-line as compared to NP and normal Wistar
rats, and in the HAD rat line [73, 71]. The lack of effect in states of low intake
but efficacy in the preferring lines which consume ethanol for its pharmaco-
logical properties is key to understanding a basic distinction, which is further
highlighted by experiments in animals with or without a history of depend-
ence. Thus, a basal component of ethanol consumption seems to be unrelated
to the pharmacological/rewarding actions of ethanol, but might instead be
related to its properties as caloric nutrient, regulated by factors modulating
appetite. This component is not suppressed by NPY; in contrary, it is stimulat-
ed by hypothalamic NPY injections, as would be expected from NPYs well
established effect to stimulate appetite [74]. In contrast to the suppressive
effects of NPY on ethanol intake in high-preferring animals, the modulation of
the low level intake component appears to be the same in rats genetically
selected for low and high preference, making it further unlikely that it is relat-
ed to the addictive properties of ethanol [75].

Further evidence for the dichotomy between effects of NPY on ethanol con-
sumption related to addictive properties of this drug, versus effects on low
level intake, has been provided using animals in which dependence and high
alcohol preference was induced using 8 weeks exposure to intermittent ethanol
vapor (14 h on/10 h off per day; target BAL 200 mg%). This models chronic
alcohol consumption and leads to similar clinical manifestations as well as
long-term changes in neurochemistry and increases in alcohol intake [76]. In
this model, NPY was shown to significantly suppress alcohol intake in
exposed animals as compared to saline treatment. Notably, consumption was
reduced back to but not below pre-vapor exposure levels [77].

Thus, the NPY system may offer an attractive target for developing novel
therapies for alcohol dependence. The likelihood of this has been strengthened
by recent findings that mice in which the Y1 receptor gene as been inactivated
consume increased amounts of ethanol [78]. Furthermore, icv administration
of the selective Y2 antagonist BIIE0246 lead to decreased ethanol intake in
non-dependent rats, and a sensitization to this effect was shown in post-
dependent (vapor exposed) rats [79, 80].

Conclusion

The NPY system may well be one of the most interesting target systems for
development of treatments for alcohol dependence as well as mood disorders
such as depression and anxiety syndromes. NPY is an endogenous anxiolytic
compound, functions as an antidepressant, and is effective in modifying alco-
hol intake in high drinking states. Through receptor subtype specific com-
pounds, the NPY system offers an interesting and innovative future approach
for treatment designs. Selective Y2 receptor antagonists and/or Y1 agonists
that are peripherally available and effectively penetrate the CNS are possible
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candidates. In conclusion, the NPY system offers attractive targets for devel-
opment of future treatments for depression, anxiety, and alcohol dependence.

References

1. Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychophar-
macology 23: 477–501

2. Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ (1992) Major depression and general-
ized anxiety disorder. Same genes, (partly) different environments? Arch Gen Psychiatry 49:
716–722

3. Sullivan PF, Kendler KS (1998) Typology of common psychiatric syndromes. An empirical study.
Br J Psychiatry 173: 312–319

4. Broqua P, Wettstein JG, Rocher MN, Gauthier-Martin B, Junien JL (1995) Behavioral effects of
neuropeptide Y receptor agonists in the elevated plus-maze and fear-potentiated startle procedures.
Behav Pharmacol 6: 215–222

5. Heilig M, Soderpalm B, Engel JA, Widerlov E (1989) Centrally administered neuropeptide Y
(NPY) produces anxiolytic-like effects in animal anxiety models. Psychopharmacology (Berl) 98:
524–529

6. Sajdyk TJ, Vandergriff MG, Gehlert DR (1999) Amygdalar neuropeptide Y Y1 receptors mediate
the anxiolytic-like actions of neuropeptide Y in the social interaction test. Eur J Pharmacol 368:
143–147

7. Heilig M, McLeod S, Koob GK, Britton KT (1992) Anxiolytic-like effect of neuropeptide Y
(NPY), but not other peptides in an operant conflict test. Regul Pept 41: 61–69

8. Tovote P, Meyer M, Beck-Sickinger AG, von HS, Ove OS, Spiess J, Stiedl O (2004) Central NPY
receptor-mediated alteration of heart rate dynamics in mice during expression of fear conditioned
to an auditory cue. Regul Pept 120: 205–214

9. Heilig M, Murison R (1987) Intracerebroventricular neuropeptide Y protects against stress-
induced gastric erosion in the rat. Eur J Pharmacol 137: 127–129

10. Bannon AW, Seda J, Carmouche M, Francis JM, Norman MH, Karbon B, McCaleb ML (2000)
Behavioral characterization of neuropeptide Y knockout mice. Brain Res 868: 79–87

11. Thiele TE, Marsh DJ, Ste ML, Bernstein IL, Palmiter RD (1998) Ethanol consumption and resist-
ance are inversely related to neuropeptide Y levels. Nature 396: 366–369

12. Thorsell A, Michalkiewicz M, Dumont Y, Quirion R, Caberlotto L, Rimondini R, Mathe AA,
Heilig M (2000) Behavioral insensitivity to restraint stress, absent fear suppression of behavior
and impaired spatial learning in transgenic rats with hippocampal neuropeptide Y overexpression.
Proc Natl Acad Sci USA 97: 12852–12857

13. Carvajal CC, Vercauteren F, Dumont Y, Michalkiewicz M, Quirion R (2004) Aged neuropeptide Y
transgenic rats are resistant to acute stress but maintain spatial and non-spatial learning. Behav
Brain Res 153: 471–480

14. Thorsell A, Svensson P, Wiklund L, Sommer W, Ekman R, Heilig M (1998) Suppressed neu-
ropeptide Y (NPY) mRNA in rat amygdala following restraint stress. Regul Pept 75–76: 247–254

15. Thorsell A, Carlsson K, Ekman R, Heilig M (1999) Behavioral and endocrine adaptation, and up-
regulation of NPY expression in rat amygdala following repeated restraint stress. Neuroreport 10:
3003–3007

16. Heilig M, Thorsell A (2002) Brain neuropeptide Y (NPY) in stress and alcohol dependence. Rev
Neurosci 13: 85–94

17. Caberlotto L, Fuxe K, Overstreet DH, Gerrard P, Hurd YL (1998) Alterations in neuropeptide Y
and Y1 receptor mRNA expression in brains from an animal model of depression: region specific
adaptation after fluoxetine treatment. Brain Res Mol Brain Res 59: 58–65

18. Caberlotto L, Jimenez P, Overstreet DH, Hurd YL, Mathe AA, Fuxe K (1999) Alterations in neu-
ropeptide Y levels and Y1 binding sites in the Flinders Sensitive Line rats, a genetic animal model
of depression. Neurosci Lett 265: 191–194

19. Jimenez-Vasquez PA, Overstreet DH, Mathe AA (2000) Neuropeptide Y in male and female brains
of Flinders Sensitive Line, a rat model of depression. Effects of electroconvulsive stimuli. J
Psychiatr Res 34: 405–412

NPY in alcoholism and psychiatric disorders 189



20. Jimenez Vasquez PA, Salmi P, Ahlenius S, Mathe AA (2000) Neuropeptide Y in brains of the
Flinders Sensitive Line rat, a model of depression. Effects of electroconvulsive stimuli and
d-amphetamine on peptide concentrations and locomotion. Behav Brain Res 111: 115–123

21. Wahlestedt C, Karoum F, Jaskiw G, Wyatt RJ, Larhammar D, Ekman R, Reis DJ (1991) Cocaine-
induced reduction of brain neuropeptide Y synthesis dependent on medial prefrontal cortex. Proc
Natl Acad Sci USA 88: 2078–2082

22. Heilig M, Wahlestedt C, Ekman R, Widerlöv E (1988) Antidepressant drugs increase the concen-
tration of neuropeptide Y (NPY)-like immunoreactivity in the rat brain. European Journal of
Pharmacology 147: 465–467

23. Heilig M, Ekman R (1995) Chronic parenteral antidepressant treatment in rats: unaltered levels
and processing of neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH). Neurochem
Int 26: 351–355

24. Bellman R, Sperk G (1993) Effects of antidepressant drug treatment on levels of NPY or prepro-
NPY-mRNA in the rat brain. Neurochemistry International 22: 183–187

25. Overstreet DH, Pucilowski O, Rezvani AH, Janowsky DS (1995) Administration of antidepres-
sants, diazepam and psychomotor stimulants further confirms the utility of Flinders Sensitive Line
rats as an animal model of depression. Psychopharmacology (Berl) 121: 27–37

26. Mathe AA, Gruber S, Jimenez PA, Theodorsson E, Stenfors C (1997) Effects of electroconvulsive
stimuli and MK-801 on neuropeptide Y, neurokinin A, and calcitonin gene-related peptide in rat
brain. Neurochem Res 22: 629–636

27. Mathe AA, Jimenez PA, Theodorsson E, Stenfors C (1998) Neuropeptide Y, neurokinin A and neu-
rotensin in brain regions of Fawn Hooded “depressed”, Wistar, and Sprague Dawley rats. Effects
of electroconvulsive stimuli. Prog Neuropsychopharmacol Biol Psychiatry 22: 529–546

28. Wahlestedt C, Blendy JA, Kellar KJ, Heilig M, Widerlov E, Ekman R (1990) Electroconvulsive
shocks increase the concentration of neocortical and hippocampal neuropeptide Y (NPY)-like
immunoreactivity in the rat. Brain Res 507: 65–68

29. Husum H, Gruber SH, Bolwig TG, Mathe AA (2002) Extracellular levels of NPY in the dorsal
hippocampus of freely moving rats are markedly elevated following a single electroconvulsive
stimulation, irrespective of anticonvulsive Y1 receptor blockade. Neuropeptides 36: 363–369

30. Husum H, Mikkelsen JD, Hogg S, Mathe AA, Mork A (2000) Involvement of hippocampal neu-
ropeptide Y in mediating the chronic actions of lithium, electroconvulsive stimulation and citalo-
pram. Neuropharmacology 39: 1463–1473

31. Zachrisson O, Mathe AA, Stenfors C, Lindefors N (1995) Limbic effects of repeated electrocon-
vulsive stimulation on neuropeptide Y and somatostatin mRNA expression in the rat brain. Brain
Res Mol Brain Res 31: 71–85

32. Wahlestedt C, Pich EM, Koob GF, Yee F, Heilig M (1993) Modulation of anxiety and neuropep-
tide Y-Y1 receptors by antisense oligodeoxynucleotides. Science 259: 528–531

33. King PJ, Williams G, Doods H, Widdowson PS (2000) Effect of a selective neuropeptide Y Y(2)
receptor antagonist, BIIE0246 on neuropeptide Y release. Eur J Pharmacol 396: R1–R3

34. King PJ, Widdowson PS, Doods HN, Williams G (1999) Regulation of neuropeptide Y release by
neuropeptide Y receptor ligands and calcium channel antagonists in hypothalamic slices. J
Neurochem 73: 641–646

35. Redrobe JP, Dumont Y, Herzog H, Quirion R (2003) Neuropeptide Y (NPY) Y2 receptors mediate
behaviour in two animal models of anxiety: evidence from Y2 receptor knockout mice. Behav
Brain Res 141: 251–255

36. Tschenett A, Singewald N, Carli M, Balducci C, Salchner P, Vezzani A, Herzog H, Sperk G (2003)
Reduced anxiety and improved stress coping ability in mice lacking NPY-Y2 receptors. Eur J
Neurosci 18: 143–148

37. Sajdyk TJ, Schober DA, Gehlert DR (2002) Neuropeptide Y receptor subtypes in the basolateral
nucleus of the amygdala modulate anxiogenic responses in rats. Neuropharmacology 43:
1165–1172

38. Sajdyk TJ, Schober DA, Smiley DL, Gehlert DR (2002) Neuropeptide Y-Y2 receptors mediate
anxiety in the amygdala. Pharmacol Biochem Behav 71: 419–423

39. Kask A, Eller M, Oreland L, Harro J (2000) Neuropeptide Y attenuates the effect of locus
coeruleus denervation by DSP-4 treatment on social behaviour in the rat. Neuropeptides 34: 58–61

40. Heilig M, McLeod S, Brot M, Heinrichs SC, Menzaghi F, Koob GF, Britton KT (1993)
Anxiolytic-like action of neuropeptide Y: mediation by Y1 receptors in amygdala, and dissocia-
tion from food intake effects. Neuropsychopharmacology 8: 357–363

190 A. Thorsell et al.



41. Brandao ML (1993) Involvement of opioid mechanisms in the dorsal periaqueductal gray in drug
abuse. Rev Neurosci 4: 397–405

42. Fendt M, Fanselow MS (1999) The neuroanatomical and neurochemical basis of conditioned fear.
Neurosci Biobehav Rev 23: 743–760

43. Kask A, Rago L, Harro J (1998) Anxiogenic-like effect of the NPY Y1 receptor antagonist
BIBP3226 administered into the dorsal periaqueductal gray matter in rats. Regul Pept 75–76:
255–262

44. Kask A, Rago L, Harro J (1998) NPY Y1 receptors in the dorsal periaqueductal gray matter regu-
late anxiety in the social interaction test. Neuroreport 9: 2713–2716

45. Lee Y, Davis M (1997) Role of the septum in the excitatory effect of corticotropin-releasing hor-
mone on the acoustic startle reflex. J Neurosci 17: 6424–6433

46. Andrews N, File SE, Fernandes C, Gonzalez LE, Barnes NM (1997) Evidence that the median
raphe nucleus–dorsal hippocampal pathway mediates diazepam withdrawal-induced anxiety.
Psychopharmacology (Berl) 130: 228–234

47. Gonzalez LE, Ouagazzal AM, File SE (1998) Stimulation of benzodiazepine receptors in the dor-
sal hippocampus and median raphe reveals differential GABAergic control in two animal tests of
anxiety. Eur J Neurosci 10: 3673–3680

48. Kask A, Nguyen HP, Pabst R, von HS (2001) Neuropeptide Y Y1 receptor-mediated anxiolysis in
the dorsocaudal lateral septum: functional antagonism of corticotropin-releasing hormone-
induced anxiety. Neuroscience 104: 799–806

49. Widerlov E, Lindstrom LH, Wahlestedt C, Ekman R (1988) Neuropeptide Y and peptide YY as
possible cerebrospinal fluid markers for major depression and schizophrenia, respectively. J
Psychiatr Res 22: 69–79

50. Widdowson PS, Ordway GA, Halaris AE (1992) Reduced neuropeptide Y concentrations in sui-
cide brain. J Neurochem 59: 73–80

51. Berrettini WH, Doran AR, Kelsoe J, Roy A, Pickar D (1987) Cerebrospinal fluid neuropeptide Y
in depression and schizophrenia. Neuropsychopharmacology 1: 81–83

52. Ordway GA, Stockmeier CA, Meltzer HY, Overholser JC, Jaconetta S, Widdowson PS (1995)
Neuropeptide Y in frontal cortex is not altered in major depression. J Neurochem 65: 1646–1650

53. Heilig M, Zachrisson O, Thorsell A, Ehnvall A, Mottagui-Tabar S, Sjogren M, Asberg M, Ekman
R, Wahlestedt C, Agren H (2004) Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients
with treatment refractory unipolar major depression: preliminary evidence for association with
preproNPY gene polymorphism. J Psychiatr Res 38: 113–121

54. Caberlotto L, Hurd YL (1999) Reduced neuropeptide Y mRNA expression in the prefrontal cor-
tex of subjects with bipolar disorder. Neuroreport 10: 1747–1750

55. Pandey SC (2003) Anxiety and alcohol abuse disorders: A common role for CREB and its target,
the neuropeptide Y gene. Trends Pharmacol Sci 24: 456–460

56. Pandey SC, Carr LG, Heilig M, Ilveskoski E, Thiele TE (2003) Neuropeptide y and alcoholism:
Genetic, molecular, and pharmacological evidence. Alcohol Clin Exp Res 27: 149–154

57. Bice P, Foroud T, Bo R, Castelluccio P, Lumeng L, Li TK, Carr LG (1998) Genomic screen for
QTLs underlying alcohol consumption in the P and NP rat lines. Mamm Genome 9: 949–955

58. Carr LG, Foroud T, Bice P, Gobbett T, Ivashina J, Edenberg H, Lumeng L, Li TK (1998) A quan-
titative trait locus for alcohol consumption in selectively bred rat lines. Alcohol Clin Exp Res 22:
884–887

59. Kauhanen J, Karvonen MK, Pesonen U, Koulu M, Tuomainen TP, Uusitupa MI, Salonen JT
(2000) Neuropeptide Y polymorphism and alcohol consumption in middle-aged men. Am J Med
Genet 93: 117–121

60. Karvonen MK, Pesonen U, Koulu M, Niskanen L, Laakso M, Rissanen A, Dekker JM, Hart LM,
Valve R, Uusitupa MIJ (1998) Association of a leucine(7)-to-proline(7) polymorphism in the sig-
nal peptide of neuropeptide Y with high serum cholesterol and LDL cholesterol levels. Nature
Medicine 4: 1434–1437

61. Ilveskoski E, Kajander OA, Lehtimaki T, Kunnas T, Karhunen PJ, Heinala P, Virkkunen M, Alho
H (2001) Association of neuropeptide y polymorphism with the occurrence of type 1 and type 2
alcoholism. Alcohol Clin Exp Res 25: 1420–1422

62. Zhu G, Pollak L, Mottagui-Tabar S, Wahlestedt C, Taubman J, Virkkunen M, Goldman D, Heilig
M (2003) NPY Leu7Pro and alcohol dependence in Finnish and Swedish populations. Alcohol
Clin Exp Res 27: 19–24

63. Okubo T, Harada S (2001) Polymorphism of the neuropeptide Y gene: An association study with

NPY in alcoholism and psychiatric disorders 191



alcohol withdrawal. Alcohol Clin Exp Res 25: 59S–62S
64. Li TK, Lumeng L, McBride WJ, Murphy JM (1987) Rodent lines selected for factors affecting

alcohol consumption. Alcohol and Alcoholism Suppl 1: 91–96
65. Murphy JM, Stewart RB, Bell RL, Badia-Elder NE, Carr LG, McBride WJ, Lumeng L, Li TK

(2002) Phenotypic and genotypic characterization of the Indiana University rat lines selectively
bred for high and low alcohol preference. Behav Genet 32: 363–388

66. Ehlers CL, Li TK, Lumeng L, Hwang BH, Somes C, Jimenez P, Mathe AA (1998) Neuropeptide
Y levels in ethanol-naive alcohol-preferring and nonpreferring rats and in Wistar rats after ethanol
exposure. Alcohol Clin Exp Res 22: 1778–1782

67. Hwang BH, Zhang JK, Ehlers CL, Lumeng L, Li TK (1999) Innate differences of neuropeptide Y
(NPY) in hypothalamic nuclei and central nucleus of the amygdala between selectively bred rats
with high and low alcohol preference. Alcohol Clin Exp Res 23: 1023–1030

68. Caberlotto L, Thorsell A, Rimondini R, Sommer W, Hyytia P, Heilig M (2001) Differential expres-
sion of NPY and its receptors in alcohol-preferring AA and alcohol-avoiding ANA rats. Alcohol
Clin Exp Res 25: 1564–1569

69. Katner SN, Slawecki CJ, Ehlers CL (2002) Neuropeptide Y administration into the amygdala does
not affect ethanol consumption. Alcohol 28: 29–38

70. Katner SN, Slawecki CJ, Ehlers CL (2002) Neuropeptide Y administration into the third ventricle
does not increase sucrose or ethanol self-administration but does affect the cortical EEG and
increases food intake. Psychopharmacology (Berl) 160: 146–154

71. Badia-Elder NE, Stewart RB, Powrozek TA, Roy KF, Murphy JM, Li TK (2001) Effect of neu-
ropeptide Y (NPY) on oral ethanol intake in Wistar, alcohol-preferring (P), and -nonpreferring
(NP) rats. Alcohol Clin Exp Res 25: 386–390

72. Slawecki CJ, Betancourt M, Walpole T, Ehlers CL (2000) Increases in sucrose consumption, but
not ethanol consumption, following ICV NPY administration. Pharmacol Biochem Behav 66:
591–594

73. Badia-Elder NE, Stewart RB, Powrozek TA, Murphy JM, Li TK (2003) Effects of neuropeptide Y
on sucrose and ethanol intake and on anxiety-like behavior in high alcohol drinking (HAD) and
low alcohol drinking (LAD) rats. Alcohol Clin Exp Res 27: 894–899

74. Kelley SP, Nannini MA, Bratt AM, Hodge CW (2001) Neuropeptide-Y in the paraventricular
nucleus increases ethanol self-administration. Peptides 22: 515–522

75. Gilpin NW, Stewart RB, Murphy JM, Badia-Elder NE (2004) Neuropeptide Y in the paraventric-
ular nucleus of the hypothalamus increases ethanol intake in high- and low-alcohol-drinking rats.
Alcohol Clin Exp Res 28: 1492–1498

76. Rimondini R, Arlinde C, Sommer W, Heilig M (2002) Long-lasting increase in voluntary ethanol
consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol.
FASEB J 16: 27–35

77. Thorsell A, Slawecki CJ, Ehlers CL (2005) Effects of neuropeptide Y and corticotropin-releasing
factor on ethanol intake in Wistar rats: Interaction with chronic ethanol exposure. Behav Brain Res
161: 133–140

78. Thiele TE, Koh MT, Pedrazzini T (2002) Voluntary alcohol consumption is controlled via the neu-
ropeptide Y Y1 receptor. J Neurosci 22: 1–6

79. Thorsell A, Rimondini R, Heilig M (2002) Blockade of central neuropeptide Y (NPY) Y2 recep-
tors reduces ethanol self-administration in rats. Neurosci Lett 332: 1–4

80. Rimondini R, Thorsell A, Heilig M (2005) Suppression of ethanol self-administration by the neu-
ropeptide Y (NPY) Y2 receptor antagonist BIIE0246: Evidence for sensitization in rats with a his-
tory of dependence. Neurosci Lett 375: 129–133

192 A. Thorsell et al.



Plasticity of neuropeptide Y in the dentate gyrus
after seizures, and its relevance to seizure-induced
neurogenesis

Helen E. Scharfman1 and William P. Gray2

1 Columbia University and Helen Hayes Hospital, New York, USA
2 University of Southampton, Southampton, UK

Introduction

Neuropeptide Y (NPY) has a multitude of functions in peripheral organs, so it
is no surprise that the same appears to be the case in the brain. One of the rea-
sons why NPY potentially contributes to so many functions may be due to its
plasticity, meaning the ability to change its level of expression and pattern of
expression. This makes NPY a potentially useful tool to modulate the behav-
ior of an organism in response to the challenges of the external environment.
Thus, NPY mRNA, protein, and receptors can change dramatically not only in
their level of expression but also their location in different types of neurons
and neuronal processes. This occurs in response to perturbations of the envi-
ronment, and also in pathological conditions, suggesting a role not only in the
normal condition, but also in disease.

This plasticity is well exemplified in the dentate gyrus of rat hippocampus,
and this review will focus on NPY in the dentate gyrus to illustrate the strik-
ing plasticity of NPY in the brain. We will specifically address the changes that
occur after seizures because the changes in NPY and its receptors after
seizures are robust and dramatic. Furthermore, they could have important
functional implications. Thus, the excitability of neurons in the hippocampus
change after seizures, and these changes may be initiated, or at the very least
influenced, by the alterations in NPY and its receptors. In addition, there are
additional functional implications for dentate granule cell neurogenesis,
because NPY appears to be a key regulator of dentate granule cell neurogene-
sis. This chapter first explains the pattern of expression of NPY and its recep-
tors in the normal rat dentate gyrus, and then describes the changes in expres-
sion after seizures. Functional implications are subsequently considered,
including effects on excitability, as well as neurogenesis.
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Overview of the cell types and circuitry in the normal rat dentate gyrus

The adult rat dentate gyrus consists of a dense layer of granule cells, and many
other types of neurons and glia that are dispersed throughout all strata (Fig. 1).
The somata of granule cells are tightly packed, and form the so-called granule
cell layer (also referred to as stratum granulosum). Granule cells are oriented
in a stereotypical fashion, with a spiny arbor of dendrites that begins at the cell
body and extends unilaterally to the hippocampal fissure (Fig. 1). The area
where the dendrites are located also contains scattered non-granule cells, and
is referred to as the molecular layer (stratum moleculare). It is divided into
three sublayers: the inner, middle and outer molecular layers (Fig. 1). These
layers contain numerous afferents from nuclei extrinsic to the hippocampus,
and axons from neurons that lie within the dentate gyrus such as various
GABAergic neurons (inhibitory interneurons) and the glutamatergic “mossy”
cells. The middle and outer molecular layer are the primary sites of termina-
tion for the major cortical input to the dentate gyrus from the medial and lat-
eral entorhinal cortex, respectively. A hallmark of the extrinsic afferents is the
specificity for each particular sublayer, with axons from one system rarely
crossing the borders to adjacent substrata.
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Figure 1. Schematic of the adult rat dentate gyrus. A transverse section through the rat dentate gyrus
in the horizontal plane illustrates its location in the hippocampus. The inset diagrams the locations of
the different cell types and lamination of the dentate gyrus.



On the opposite pole of the granule cells from their dendrites lie the gran-
ule cell axons or “mossy fibers.” These axons are a major component of the
large region just beneath the granule cell layer, called the hilar region or hilus
(Fig. 1). The mossy fibers primarily target the proximal apical dendrites of
CA3 pyramidal cells of hippocampus, but also form a complex array of col-
laterals that terminate on hilar cells. These hilar cells can be divided into the
mossy cells, which innervate the inner third of the ipsilateral and contralateral
granule cell layer, and also have local collaterals. There also are hilar cells that
are GABAergic, and these neurons are highly diverse in morphology and pro-
jection. The somata and axons of GABAergic neurons are located throughout
the dentate gyrus.

All of the cells in the dentate gyrus, both glutamatergic and GABAergic,
contain secondary chemicals and proteins that are thought to be neuromodula-
tors. Different cell types are often selective for the expression of distinct neu-
romodulators. For example, granule cells contain several peptides such as
enkephalin, the calcium binding protein calbindin D28K, as well as other sub-
stances such as zinc, but these are only weakly expressed, if at all, in other
types of dentate gyrus neurons [1–3]. Mossy cells preferentially express calci-
tonin gene-regulated peptide (CGRP; [4]). GABAergic neurons contain a vari-
ety of unique substances that are not normally expressed in other dentate gyrus
neurons, such as somatostatin, cholecystokinin, the calcium binding protein
parvalbumin, and vasoactive intestinal polypeptide, to name a few [5].

Normal localization of NPY and its receptors in the rat dentate gyrus

The normal expression pattern of NPY protein and its receptors in the rat den-
tate gyrus are shown in Figures 2 and 3. NPY is normally expressed very
specifically in GABAergic neurons and not other cell types [6, 7]. Fiber sys-
tems that innervate the dentate gyrus do not appear to express NPY.

Only a subset of the GABAergic neurons in the dentate gyrus express NPY.
Many of these cells co-localize NPY with other peptides, including somato-
statin and cholecystokinin, but this is not always the case. Thus, immunocyto-
chemistry reveals some neurons that are NPY-immunoreactive but lack
somatostatin-immunoreactivity, whereas in others the two peptides are co-
localized. Depending on the antibodies, laboratory, and other variables, the
percentages of GABAergic neurons that are NPY-ergic can vary substantially.
However, there are some general rules that can be concluded. First, most of the
cell bodies are located in the hilus and in the granule cell layer [7]. In addition,
these neurons appear mostly to be “local circuit neurons” because their axon
typically arborizes in the hippocampal lamella where the cell body is located.
There is only one report of NPY-immunoreactive neurons that have a con-
tralateral projection, and they were estimated to be only 2% of the total popu-
lation of NPY containing neurons [6]. The axon contributes to the innervation
of granule cells, hilar cells, and also contributes to fibers innervating process-
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es in the outer two-thirds of the molecular layer [6–8]. Most NPY-immunore-
active terminals appose molecular layer dendrites, including dendrites of gran-
ule cells as well as other non-granule cells [6, 8]. NPY-immunoreactive termi-
nals do appear to appose other terminals in the outer molecular layer [8], but
there does not appear to be a strong influence of exogenous NPY on the per-
forant path input to the molecular layer [9, 10]. NPY terminals also appose
astrocytic processes [11], suggesting an interaction with glia [12].
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Figure 2. Normal NPY expression in the adult dentate gyrus. TOP: A schematic shows the normal dis-
tribution of NPY protein is in various inhibitory neurons. BOTTOM: A micrograph showing expres-
sion of NPY in a normal male adult rat. The neurons that are NPY-immunoreactive have somata main-
ly in the granule cell layer (GCL) and hilus (HIL), and co-express GABA. DG = dentate gyrus.
MOL = molecular layer.



Of the five NPY receptors known to be expressed in the brain, Y3 and Y4
are relatively weakly expressed in the hippocampus. In the adult rat dentate
gyrus, Y3 mRNA is not detectable in the normal adult rat, and Y4 mRNA lev-
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Figure 3. The distribution of NPY receptors in the normal and epileptic rat dentate gyrus. NPY recep-
tor distribution of a normal adult rat (A) and an adult rat that has had severe continuous seizures (sta-
tus epilepticus; B) are shown. The distributions appears similar regardless of the methods to induce
status, and seizures last for 1 or more hours. Methods that are commonly used to induce status include
the convulsant pilocarpine or kainic acid, or electrical stimulation. After status epilepticus, sponta-
neous repetitive seizures develop within weeks, and persist for the life of the animal (i.e., epileptoge-
nesis occurs). For further explanation and references, see text.



els are low [13]. In contrast, Y1, Y2, and Y5 mRNA is robust [13]. mRNA for
Y1, Y2, and especially Y5 receptors appear to be expressed primarily on hilar
neurons and in granule cells [13]. Receptor protein appears to have a different
expression pattern, with Y2 and Y5 receptors primarily on mossy fibers and
and Y1 receptors primarily in the molecular layer ([14]; Fig. 3A). The local-
ization of Y2 and Y5 receptors to mossy fibers suggests a presynaptic action of
NPY. This is also suggested by electrophysiological studies, which have shown
that NPY influences mossy fiber transmission by a presynaptic mechanism
[10]. Both Y2 and Y5 receptors have been implicated in these effects [15, 16].

The role of the molecular layer Y1 receptor is less clear. Studies of Y1
receptor agonists reveal inhibitory effects on Ca2+ entry into dendrites of gran-
ule cells [16]. Other studies suggest a potentially proconvulsant effect [17].
Studies in mouse slices indicate that Y1 receptors regulate the G-protein
inwardly rectifying potassium (GIRK) potassium channel [18]. To date, no
studies have examined the hypothesis that transmission from the entorhinal
cortex is modulated by Y1 receptors, although such actions are suggested by
the evidence that boutons of NPY-immunoreactive neurons appear to innervate
non-NPY-immunoreactive boutons in the outer two-thirds of the molecular
layer [8]. However, these could be other boutons besides those of the perforant
path, because NPY itself seems to do little to perforant path transmission (see
above). Interestingly, another potential role of Y1 receptors is regulation of
neurogenesis, because granule cell progenitors express Y1 receptors, and neu-
roproliferation increases in response to NPY (see below).

NPY and dentate gyrus neurogenesis

Neurogenesis occurs primarily in three locations in the adult brain, the olfac-
tory bulb, the subventricular zone, and the dentate gyrus. In the dentate gyrus,
there is a 50–100 µm layer in the hilus just beneath the granule cell layer called
the subgranular zone (SGZ), where it is thought that the precursors of granule
cells are located (Fig. 4). These progenitors appear to spontaneously divide at
a slow rate throughout life, and their progeny develop into neurons (neuroge-
nesis). Primarily the new neurons become granule cells, but there are reports
that other neuronal types, such as GABAergic neurons, may also develop [19].
In addition, these precursors may develop into non-neuronal cells. Indeed,
their development may arise entirely from radial glia, dividing into one or
more daughter cells that become neurons, as well as additional cells that ulti-
mately become mature astrocytes [20, 21].

The regulation of adult neurogenesis has become a topic of substantial inter-
est because several studies have implicated dentate gyrus neurogenesis in
important functions, such as learning [22, 23]. Thus, it is possible that new
neurons must be continually supplied to the dentate gyrus granule cell layer to
maintain the ability of the hippocampus to mediate or modulate learning and
memory. In addition, it has been observed that many factors that influence
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behavior also influence neurogenesis in the dentate gyrus, such as the hor-
mones estrogen and prolactin, exercise, administration of growth factors, etc.
[24]. Increased neurogenesis in the adult dentate gyrus has typically been asso-
ciated with beneficial effects, and decreased neurogenesis with the opposite,
such as psychiatric disorders and learning deficits. For example, decreased
neurogenesis in the dentate gyrus has been suggested to underlie depression
[25]. Indeed, stress and glucocorticoids, which are elevated in depressed indi-
viduals, decrease neurogenesis in laboratory animals [26, 27]. Neurological
disorders such as Alzheimer’s disease, autism, or schizophrenia may be a
result of altered neurogenesis in the adult brain also [28–31].

Interestingly, it has been shown that various types of insults to the brain, as
well as seizures, lead to a rapid increase in the rate of dentate gyrus neuroge-
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Figure 4. Seizure-induced neurogenesis in the rat dentate gyrus. A. A schematic illustrates the area of
the dentate gyrus where progenitors are located in the adult rat, the subgranular zone. B. A schemat-
ic illustrates the increase in progenitors, labeled by the mitotic marker bromodeoxyuridine (BrdU),
after seizures. As discussed in the text, NPY appears to facilitate this process.



nesis (Fig. 4). Remarkably, this period of increased neurogenesis can be long
lived, lasting weeks in the case of some of the most severe seizures, such as
status epilepticus [32–34]. This is remarkable because status epilepticus typi-
cally leads to substantial neuronal cell death. This phenomenon raises the pos-
sibility that neurogenesis may increase when the organism is threatened,
injured, or damage occurs. In other words, a regulatory mechanism is present
that provides compensation for the damage, and part of that mechanism
includes increasing dentate gyrus neurogenesis. This is consistent with the
general consensus that injury and seizures may be followed by a period when
the brain begins to express proteins similar to those that are produced during
development, a so-called “recapitulation of development” that is an effort by
the brain to re-grow and hence repair itself. Interestingly, the increase in neu-
rogenesis after status epilepticus may not necessarily be beneficial, because
some of the new neurons appear to migrate to abnormal locations and disrupt
the normal circuitry of the hippocampus [34, 35].

A role for NPY in dentate gyrus neurogenesis has only recently been iden-
tified. Initial studies hinted at such a role by showing that NPY was implicat-
ed in neurogenesis in the olfactory bulb [36]. This led to studies in the dentate
gyrus, and it has now been shown that NPY facilitates dentate gyrus neuroge-
nesis also. These studies have identified that Y1 receptors are present on the
progenitors of the dentate gyrus that are located in the SGZ. This may explain
part of the role of the Y1 receptor. It also suggests a potential “division of
labor” among NPY receptors: Y2 and Y5 may primarily influence synaptic
transmission, whereas Y1 may be dedicated to other types of functions, such
as neurogenesis. The actions of Y1 receptors on the regulation of calcium entry
may actually work in part to modulate neurogenesis and proliferation indirect-
ly, since it is likely that intracellular calcium will influence the cell cycle and
associated events [37, 38].

NPY protein and receptor expression after seizures

It was first shown in the 1990s that NPY expression in the rat dentate gyrus
dramatically increases after seizures. Subsequent studies from many different
laboratories showed the reproducibility and robust nature of these changes
[39–41], and the upregulation of NPY in the dentate gyrus has become an
accepted marker of seizure activity.

One of the reasons why NPY expression after seizures has been studied so
much is that it changes in a very interesting and yet robust manner, depending
on the degree and duration of seizures. After acute seizures (lasting minutes),
there is an elevation of expression in many non-granule cells, particularly
those in the hilus and granule cell layer (Fig. 5). Acute studies have used, for
example, pentylenetetrazol-induced seizures [42], electroconvulsive shock
[43], and kindled seizures [44]. After more severe seizures, such as status
epilepticus following electrical stimulation, kainic acid or pilocarpine admin-
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Figure 5. Changes in NPY expression after seizures. A. A diagram is used to illustrate where NPY
protein increases in the adult rat dentate gyrus after seizures. It appears to increase in inhibitory neu-
rons, and also develop in neurons such as granule cells and mossy cells that do not normally express
the protein (de novo expression). B. The increase in NPY protein in the dentate gyrus is shown using
an antibody to NPY. Left: Saline control. Right: 1 day after status epilepticus. C. Increased NPY in
mossy fibers is illustrated after chronic seizures. Left: Saline control. Right: 2 months after status
epilepticus. Spontaneous seizures were observed in the animal that had status epilepticus.



istration [39], this acute upregulation also occurs, but in addition some of the
NPY cells die due to excitotoxicity [45].

After status epilepticus, it appears that NPY expression can also develop in
some of the hilar neurons that normally do not express the protein (Fig. 6).
This can be appreciated by comparing the immunoreactivity of sections from
animals that had status and those that did not (Fig. 6). The normal, small hilar
cells that are NPY-immunoreactive appear to be lost after status, but the hilus
does not appear devoid of cells as a result. Instead, other cells that are quite
large appear to express NPY. These large NPY-immunoreactive cells are not
apparent in the normal tissue, so it is likely that they have developed de novo
expression. They appear to be either large GABAergic neurons or the gluta-
matergic mossy cells. The latter is surprising, because mossy cells are not
thought to express NPY normally or after seizures. However, this may be due
to the fact that most periods of status epilepticus induce substantial mossy cell
loss. We have found that if status epilepticus is abbreviated by diazepam
administration after 1 h, mossy cells can survive [46]. When our tissue is
examined for NPY expression, cells with the morphology of mossy cells are
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Figure 6. De novo expression of NPY in hilar cells after seizures. NPY immunoreactivity in the den-
tate gyrus of a pilocarpine-treated rat that had no behavioral seizures (A-C) compared to a pilo-
carpine-treated rat that had 1 h of status epilepticus and subsequently had spontaneous seizures (D-F).
Both animals were killed 2 months after pilocarpine treatment. A-C. The normal pattern of NPY
immunoreactivity includes NPY expression in many hilar cells and fibers, as well as fibers in the outer
molecular layer (A). B and C show NPY-immunoreactive hilar cells at higher magnification.
GCL = granule cell layer; HIL = hilus. D-F. NPY immunoreactivity in the epileptic rat shows
increased immunoreactivity in hilar cells and in fibers (D; same magnification as A). In addition, a
novel band of staining in the inner molecular layer is present, a reflection of mossy fiber sprouting. E
and F show higher magnification of hilar cells that are NPY-immunoreactive. Note the large size of
these cells and irregular, large primary dendrites (arrows) relative to the normal NPY-immunoreactive
cells shown in E and F (magnification is the same in B, C, E, F). It is assumed from these changes in
immunoreactivity that the cells in the normal hilus die due to seizure-induced neuronal death, and the
residual surviving cells, including some mossy cells, develop NPY immunoreactivity.



immunoreactive (Fig. 6). Thus, they are large, multipolar, and have large-
diameter primary dendrites. Furthermore, the area where the primary dendrites
join the soma is uneven or “ruffled”, rather than smooth. One would expect
this characteristic of mossy cells, which have complexes of large spines
(thorny excrescences) on their primary dendrites, especially at the junction
with the cell body. Other hilar neurons do not have thorny excrescences, and
the initial portion of their primary dendrites is relatively smooth.

When seizures occur chronically, for example in animals that have status
epilepticus, and then are examined months later, NPY expression is also
abnormal, but the changes are distinct from the pattern observed after acute
seizures (Fig. 5C) [46–48]. There continues to be an increase in NPY expres-
sion in non-granule cells, but in addition, NPY is apparent in the granule cells
and their axons [42, 49]. NPY immunolabeling becomes distributed through-
out the mossy fiber axon plexus. Another change that occurs in many
GABAergic neurons that survive seizures is sprouting of their axons [50]. This
sprouting also appears to occur for the NPY-immunoreactive GABAergic neu-
rons that survive seizures [51]. It may allow compensation for the loss of some
of the original NPY-containing neurons.

Another interesting change in expression of NPY after seizures relates to
the presence of NPY in mossy fibers, and the fact that many chronically seiz-
ing animals develop collateralization of mossy fibers into the inner molecular
layer. This “mossy fiber sprouting” may serve to increase recurrent excitation,
because the new collaterals innervate granule cells [52–55]. But the new col-
laterals also innervate GABAergic neurons, which would potentially negate
any increase in recurrent excitation [56, 57]. What is significant for the pres-
ent discussion is that the parent and sprouted mossy fibers are indistinguish-
able in NPY immunoreactivity; the new fibers appear identical in NPY expres-
sion as the parent axons. Thus, epileptic animals demonstrate a novel band of
NPY immunoreactive fibers in the inner molecular layer that is not present in
normal rats (see Fig. 6).

There are substantial changes in NPY receptor expression after seizures
(Fig. 3B), although no evidence of a distinct pattern of expression, as appears
to be the case for NPY protein. After acute and chronic seizures, Y2 receptors
increase expression in mossy fibers, but do not appear to change elsewhere
[57]. The data for Y5 receptors are less clear [59], but it appears that they also
change in mossy fibers [60]. Regarding Y1 receptors, it appears that molecu-
lar layer expression of Y1 receptors diminishes after seizures [61].

In summary, acute seizures increase NPY expression of many non-granule
cells. There also may be cell death of NPY-expressing neurons, especially if
seizure activity is severe. After chronic seizures, additional NPY expression
develops in the mossy fiber axons of dentate granule cells, and possibly sur-
viving mossy cells. Regarding receptors, Y2/Y5 receptors mainly increase and
Y1 receptors appear to decrease. These changes are summarized in Figure 7.
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Functional implications of seizure-induced changes in NPY and its
receptors

Synaptic transmission

Why might the changes in NPY, and its receptors, occur in the epileptic brain?
The increased expression in non-granule cells, as well as mossy fiber NPY
expression, is an inherent compensatory reaction that serves to decrease the
possibility of subsequent seizure activity. This follows logically from studies
showing that NPY depresses mossy fiber transmission. This would blunt any
ability of seizures to propagate through the major pathway that seizures take
through the hippocampus, the trisynaptic circuit. Depression of excitatory
mossy fiber transmission might also be neuroprotective because the transmit-
ter is glutamate, and the targets of mossy fibers (hilar cells, pyramidal cells)
are quite vulnerable to seizure-induced damage [51, 62].

Consistent with the hypothesis that the changes in NPY protein after
seizures may suppress further seizures, there is an increase in the receptors that
mediate actions of NPY to depress synaptic transmission of the mossy fibers.
Taken together, the increased mossy fiber NPY, coupled with the increased
Y2/Y5 receptors, should serve to dampen excitability very effectively in the
epileptic rat dentate gyrus.

However, the anticonvulsant and neuroprotective effects discussed above
assume that NPY receptor-mediated actions are equivalent in the normal and
epileptic brain. One cannot necessarily assume they are identical, and in fact
there appears to be little effect of NPY on perforant path-evoked transmission
to granule cells in normal rat brain [9, 10], but a potent inhibitory effect in
epileptic human brain [63].

There are at least a few other reasons to suspect that the increase in NPY
and NPY receptors after seizures may not necessarily have the same effects on
synaptic transmission as it does in the normal brain. One of the factors that
could be complicating is that other peptides and receptors of the mossy fibers
change after seizures. They may interact with NPY in a way that does not
occur normally. Metabotropic glutamate receptors are a prime candidate,
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Figure 7. Summary of NPY plasticity in the rat dentate gyrus after seizures. A summary of the changes
that occur in protein and receptor expression after acute seizures and further changes after chronic
seizures. A. Normal condition B. After acute seizures, NPY protein increases in inhibitory neurons,
although some may also be lost due to seizure-induced neuronal death, and some may sprout collat-
erals, making the new NPY interneurons network potentially novel. In addition, some hilar cells that
do not normally express NPY protein may begin to do so, such as surviving mossy cells. C. After
chronic seizures, granule cells and their axons, the mossy fibers, express NPY and sprout into the
inner molecular layer. Y2, and possibly Y5 receptors, increase in mossy fibers, and Y1 receptors in the
molecular layer appear to decrease. In addition, seizures increase the proliferation of granule cells
from progenitors in the subgranular zone which express the Y1 receptor; this is likely to occur during
a window between day 3–4 and 30 after status epilepticus, at least in the case of pilocarpine-induced
status epilepticus [32, 34]. This coincides with the period when spontaneous seizures are beginning to
occur, suggesting a role for seizure-induced neurogenesis in epileptogenesis [33].



because they normally modulate mossy fiber transmission, these receptors
change after seizures, and they influence NPY [64]. Another complication is
that the expression of GABA increases in mossy fibers after seizures [65]. It
appears that this pool of GABA can be released and inhibit the target cells of
mossy fibers [66], although the net effect is not clear, because GABA and glu-
tamate are released at similar times from mossy fiber boutons. Nevertheless, if
NPY depresses mossy fiber transmission, it may not only depress glutamater-
gic transmission (as has been assumed) but also GABAergic components of
mossy fiber transmission. Indeed, in thalamus, NPY does depress GABA
release [67]. If this is the case, NPY might actually have a partially disin-
hibitory effect by blocking the GABAergic component of mossy fiber trans-
mission. This potential disinhibition could be greater after seizures, because
under these conditions the GABAergic component of mossy fiber transmission
appears to increase greatly.

Neurogenesis

One of the aspects of seizures that is perhaps as robust as the induction of NPY
expression is the ability to increase neurogenesis of granule cells [33, 35]. This
may not be a coincidence: it is possible that the increase in NPY mediates the
increase in neurogenesis of granule cells. Thus, NPY may serve to protect the
epileptic brain from further seizures by modulating synaptic transmission (see
above), and at the same time contribute to its repair by promoting the genesis
of new granule cells.

What is the evidence for the hypothesis that increased NPY after seizures
mediates seizure-induced neurogenesis? First of all, experimental seizure
models which have demonstrated that seizures increase neurogenesis are mod-
els that have also shown an increase in NPY. Second, the increase in NPY is
rapid, and occurs before neurogenesis begins. Such timing would be necessary
if neurogenesis is dependent on NPY. Third, NPY facilitates neuroproliferation
in the olfactory bulb [36], providing a precedent.

Much more direct evidence has been obtained recently by studying the
influence of NPY exposure on cultures of granule cell precursor [68]. NPY
facilitated neuroproliferation, and did so at very low concentrations, similar to
what would be expected to occur in situ. In addition, mice that lacked NPY had
a lower basal level of neurogenesis [69]. Interestingly, the effect appeared to
be due to the Y1 receptor, based on pharmacology [68]. In addition, cultures
from mice that lack the Y1 receptor failed to demonstrate an effect of NPY on
neurogenesis [70]. Furthermore, the precursors appear to be immunoreactive
to a Y1 receptor antibody [68]. Thus, NPY appears to modulate neurogenesis
and does so by acting at Y1 receptors.

How NPY modulates neurogenesis in vivo is still somewhat unclear. One
question is how NPY from NPYergic neurons is made available to precursors
in the SGZ. This is an issue because most of the axon projection of NPY con-
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taining cells is thought to project far from the SGZ, in the outer molecular
layer. Only a small number of collaterals are thought to terminate in the SGZ.
If the role of NPY is to modulate neurogenesis, why would the axons not ter-
minate entirely in the SGZ? Perhaps the answer is that Y1 receptors have two
functions in the dentate gyrus, one to modulate excitability by actions of ion
channels (in the molecular layer and hilar neurons) and the other to influence
progenitor division (in the SGZ). The innervation of the molecular layer would
allow NPY neurons to influence dendritic function, and the innervation of the
SGZ would allow them to influence neurogenesis.

Another puzzle is that the Y1 receptors that appear to mediate the actions of
NPY on neurogenesis exist primarily in the molecular layer, and furthermore,
they decrease after seizures. This is not logical if a function of NPY is to con-
tribute to seizure-induced neurogenesis in the SGZ. One would expect that
NPY receptors, and specifically Y1 receptors, would be necessary in the SGZ.
However, it is likely that the Y1 receptors are located in the SGZ, but are sparse
enough not to generate a large signal, at least relative to other lamella. This is
because physiological evidence indicates they are present [17]. And some Y1
binding is apparent in hilus, although it may be associated with mossy fibers
[71]. And perhaps the SGZ Y1 receptors do not decrease after seizures,
although those in the molecular layer do. Indeed, there was a transient increase
in Y1 receptor binding in the dentate gyrus molecular layer after seizures, but
this was not significant [61]. Higher resolution techniques will be needed to
clarify these issues. It is important to add that it is not yet clear how NPY-con-
taining cells would influence SGZ progenitors specifically, because synapses
have not been revealed, and release onto progenitors has not yet been exam-
ined. One possibility is that there is diffusion from the processes of NPY-
expressing neurons, analogous to the diffusion of dynorphin from granule cell
dendrites to its target receptors in the molecular layer [72]. Although long
range diffusion would be unlikely in light of the ability of proteases to cleave
NPY extracellularly, there have been suggestions that NPY could potentially
function over long distances nevertheless [73].

Summary

In summary, NPY is clearly an important peptide in the adult rat dentate gyrus
because it has the potential to influence synaptic transmission and neurogene-
sis. It may even have other functions, as yet undiscovered, mediated by glia or
vasculature [74]. The remarkable plasticity of NPY puts it in a position to
allow dentate gyrus function to be modified in a changing environment. The
importance of this plasticity in the context of epilepsy cannot be emphasized
enough. It could help explain a range of observations about epilepsy that cur-
rently is poorly understood. For example, rapid increases in NPY could medi-
ate postictal depression, the period of depression that can last for several hours
after generalized seizures. It may mediate the “priming effect,” which is a
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reduction in seizure threshold following an initial period of seizures [75–77].
Finally, it could contribute to the resistance of dentate granule cells to degen-
eration after seizures [78]. However, despite the focus in this review on
seizure-induced changes, the changes described here also appear to occur after
other types of manipulations [79–82], which considerably broadens the scope
of NPY’s role in the brain.
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Introduction

Posttraumatic stress disorder (PTSD) is a psychiatric condition that results
from exposure to an extreme traumatic stressor event or experience [1].
According to the Diagnostic and Statistical Manual of Mental Disorders
(DSM-IV) [1], the traumatic stressor must meet two criteria: 1) the person
experienced, witnessed, or was confronted by an event or events that involved
actual or threatened death or serious injury, or a threat to the physical integri-
ty of self or others; 2) the person’s response involved intense fear, helpless-
ness, or horror [1]. Frequently studied types of traumatic stressors include mil-
itary combat [2], rape and domestic violence [3], natural disasters [4, 5] and
childhood abuse [6]. PTSD symptoms are defined by three categories: 1) intru-
sions such as nightmares and flashbacks; 2) avoidance symptoms including
both emotional numbing and behaviorala; and 3) hyperarousalb. PTSD is a rel-
atively common disorder in the general population. The National Comorbidity
Survey (NCS) showed that lifetime PTSD occurred in 7.8% of the population
[7], with a current (12 month) rate of 3.85% [8].

This chapter presents a brief review of the literature concerning psychoso-
cial and biological aspects of PTSD, and then discusses an emerging evidence
for the role of NPY in this condition (Fig. 1).

Psychological aspects of PTSD

PTSD can substantially impair various aspects of both psychological and bio-
logical functioning [9]. Trauma takes a heavy toll on mental health, resulting in
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a e.g., feeling detached, restricted range of affect or emotion (numbing) and efforts to avoid thoughts,
feelings, or conversations associated with the trauma (avoidance)

b e.g., hypervigilance, exaggerated startle response



a wide variety of mental and physical health problems. For example, the like-
lihood of an episode of depression is significantly increased among trauma-
exposed individuals who develop PTSD, relative to those who do not [10].
Nearly all of the veterans with PTSD in the National Vietnam Veterans
Readjustment Study had other lifetime disorders [11]. Breslau [10] concluded
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Figure 1. Interactions between central and peripheral NPY with cortisol and catecholamines in elab-
oration of stress-induced cardiovascular, immune and behavioral/psychological changes. Adapted
from Schnurr PP, Green BL (2004) Understanding relationships among trauma, PTSD, and health out-
comes. In: PP Schnurr, BL Green (eds): Trauma and Health: Physical health consequences of expo-
sure to extreme stress. American Psychological Association, Washington, DC



from data based on a large sample of young adults in Michigan that these dis-
orders do not arise from separate vulnerabilities. Yet, research has yet to
address adequately the specificity of PTSD as a reaction to trauma exposure.
For example, biological studies of PTSD have tended to compare individuals
with PTSD to those who have experienced trauma but do not have a psychiatric
disorder. Thus, findings in these studies are not necessarily specific to PTSD
and may reflect outcomes for other disorders or combinations of disorders.

An increased cognitive appraisal of threat following exposure to violent
traumatic experiences is also associated with PTSD. In one study of New York
City workers exposed to violence in the September 11 attacks [12], greater
worry about future attacks (threat appraisal) was associated with higher levels
of PTSD. Increased appraisals of threat [13] are hypothesized to predict
intense fear and anxiety characteristic of PTSD.

Traumatic exposure also affects the way victims think about themselves and
others. In a study of victims of intimate partner violence [14], individuals with
comorbid PTSD and Major Depressive Disorder had more depressogenic cog-
nitive styles than those without PTSD. However, these maladaptive schemas
did not contribute to the identification of psychiatric co-morbidity caseness. A
study of journalists [15] found an association between a higher level of work-
related traumatic exposure and PTSD symptoms including negative cognitive
schemas. In this study, negative cognitive schemas only partially mediated the
relationship between trauma exposure and PTSD. Hostility is another cogni-
tive correlate of PTSD [16].

Finally, PTSD and related trauma disorders have been associated with high-
risk health behaviors, such as substance abuse [17] and compulsive eating [18].

Biological aspects of PTSD

A growing research literature has emphasized the impact of PTSD on human
pathophysiology, including its association with a number of non-psychiatric
diseases. Patients with the history of PTSD have been shown to have higher
rates of a heart disease, osteoarthritis, diabetes, comorbid depression, obesity,
and elevated lipid levels [19]. This is likely related to significant alterations
observed in the two primary neurobiological systems of the stress response
pathways have been documented in patients with PTSD: the locus
coeruleus/norepinephrine-sympathetic (LC/NE) system and the hypothalamic-
pituitary-adrenal (HPA) axis [20].

The HPA axis

The HPA axis is one of the major endocrine components of the stress-response
system [20, 21]. Chronic stressors are associated with sustained abnormalities
in the HPA axis [22]. Individuals with PTSD also appear to have dysregulation
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of the HPA axis, altered cortisol levels, increased number of glucocorticoid
receptors and increased receptor sensitivity. Findings pertaining to increased
levels of cortisol among those with PTSD have been variable, however. For
example, greater elevations in evening salivary cortisol of a community sam-
ple with PTSD compared to trauma-exposed and no PTSD groups [23] were
no longer found when lifetime comorbidity with Major Depressive Disorder
was included in the analyses. A recent study examined the HPA response to
stress in PTSD among individuals with a history of childhood sexual abuse
[24] suggesting that persons with PTSD appeared to have an increased corti-
sol response in anticipation of a cognitive challenge relative to controls. In a
recent review [25], authors suggested that an adrenal neurosteroid dehy-
droepiandrosterone (DHEA) serves as a mediator of HPA axis adaptation –
specifically upregulation – to extreme stress and the psychiatric symptoms
associated with PTSD, and thus explains some of this variability.

The sympatho-adrenomedullary system (SAS): catecholamines and
neuropeptide Y (NPY)

The other arm of stress reactions is activation of the sympatho-
adrenomedullary system (SAS), which release catecholamines, norepineph-
rine (NE) and epinephrine (EPI), and a co-transmitter/hormone, NPY. A large
body of evidence confirms that stress, both acute and chronic, elevates plasma
catecholamine levels in a stress-intensity-dependent manner [26]. Adrenergic
activation is also known to be a major determinant of vascular tone and cardiac
function, responsible for vasoconstriction, high blood pressure, and tachycar-
dia during stress. Individuals with PTSD appear to also have altered adrener-
gic activity demonstrated by elevations in basal catecholamine levels and
adrenergic reactivity in some individuals [27].

Evidence for the role of the non-adrenergic neurotransmitter, NPY, in PTSD
is only recently emerging but its role in stress is well supported by both exper-
imental and human studies. NPY is a 36-amino acid peptide found both in
peripheral sympathetic nerves and in brain structures where it is co-localized
with norepinephrine [28–30]. It is a potent vasoconstrictor [28–30]. By acti-
vating its Y1 receptors, the peptide causes a prolonged vasoconstriction and a
hypertensive response, particularly in males (humans and rats), due to andro-
gen-driven regulation of NPY expression [29, 30]. Although NPY is often co-
released with NE, the regulation of its release differs from that of cate-
cholamines. While even a mild acute stressor can elevate plasma cate-
cholamines, more intense and prolonged stress is required to release NPY into
the circulation [29, 30]. Increased plasma NPY levels may also persist longer
than that of NE, which is quickly metabolized, and thus, be a better marker of
chronic stress. In addition, our recent experimental data suggests that platelets
may take up the peptide from the bloodstream and store it for prolonged peri-
od of time, as a kind of “memory” of stress experienced in the past [31].
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Interactions of HPA axis and SAS in stress and PTSD

Each of these HPA- and SAS-derived stress mediators exerts multiple physio-
logical and pathological consequences, some of which are synergistic, other
antagonistic. For example, all three classes of mediators, catecholamines, NPY
and cortisol, synergize to elevate blood pressure but have contrasting effects on
the immune system [29]. Different stressors have differential effects on the
release of these mediators and hence cause differential effects on the body.
These varied neurohormonal cocktails often persist in both HPA and SAS as
“memory” of previous stressors and set a stage for exaggerated or pathological
responses to new stressors. In addition, the predominant type of the released
stress mediators and their physiological effects depend also on duration and
intensity of stress. For example, acute stress enhances immune functions of the
organism, while chronic, physiologically exhausting stress results in immuno-
suppression [32]. Although the primary function of stress mediators is protec-
tion of the organism, their excessive and prolonged release can also lead to
development of other stress-related conditions, such as cardiovascular diseases.

The stress mediators described above – cortisol, NE, EPI and NPY – are
commonly used as markers of stress and an index of its intensity [33], with
NPY indicating chronicity and severity of stress. For example, when compared
with non-abused control women, women exposed to physical and psychologi-
cal IPV had higher levels of evening cortisol as measured with saliva samples
[34]. This relationship remained significant even when factors such as age,
smoking status, pharmacological treatment, and lifetime trauma history were
controlled. Importantly, biological alterations associated with chronic stress
have been implicated in adverse health consequences [20, 21].

Compared to trauma-exposed individuals without PTSD, those with a cur-
rent diagnosis of PTSD have been found to produce larger physiological
responses, including heart rate, skin conductance, and facial electromyogram,
in response to reminders of their traumatic event(s) (e.g., personalized trauma
scripts) as well as standardized aversive stimuli (e.g., startling tones, distress-
ing pictures) [35]. This heightened responsiveness has been demonstrated
among individuals with PTSD resulting from a wide range of traumatic events,
including combat veterans [36–38], women with a history of childhood sexual
abuse [39], female veterans witnessing injury or death while serving as a mili-
tary nurse [40], and motor vehicle accident survivors [41]. In fact, a number of
these studies have demonstrated that psychophysiological responsiveness accu-
rately classifies 60% to 90% (sensitivity) of individuals who meet DSM crite-
ria (see Posttraumatic Stress Disorder, Definition and Prevalence above) for
current PTSD and 80–100% (specificity) of those who never had PTSD [35].
In addition to elevated reactivity, PTSD has been implicated in heightened
tonic/baseline levels of psychophysiological activity. In their meta-analysis of
34 studies that measured baseline or ambulatory cardiovascular activity,
Buckley and Kaloupek [42] found that relative to individuals without PTSD,
those diagnosed with PTSD have elevated resting heart rate and diastolic blood

NPY and extreme stress: lessons learned from posttraumatic stress disorder 217



pressure levels. They also found evidence to suggest that basal heart rate may
be highest among individuals with chronic, as compared to acute PTSD, indi-
cating that elevated psychophysiological activity may result from cardiovascu-
lar adaptation to repeated stress responses over many years [35].

PTSD and NPY

NPY is of particular interest in the study of PTSD for two reasons. As a sym-
pathetic neurotransmitter and a stress mediator, it can mediate some of the bio-
logical symptoms of PTSD, and be a marker of chronic and extreme stress, as
described above. However, NPY, derived from the brain, can play an opposite
role – anxiolytic and enhancing stress resilience in humans. Experimental data
clearly show that central NPY is an anti-stress system, although it uses the
same type of NPY receptors, the Y1, which in the periphery are pro-stress and
vasoconstrictive [43] (see chapter by Thorsell et al. in this book).
Unfortunately, there are limitations on how to study the central NPY system
since plasma peptide levels may not reflect changes in activity of the brain
NPY-ergic neurons.

In humans, plasma NPY levels were shown to increase in response to stan-
dard stress tests such as cold pressor test and treadmill exercise [30, 44].
Exercise-induced NPY increases in plasma were also augmented by hypoxia
[45] and by an α2 antagonist, yohimbine [46] suggesting inhibitory influence
of the presynaptic adrenergic system. The reciprocal interaction of NPY on NE
release also exists, as shown in rats overexpressing NPY gene which have
reduced plasma catecholamine and pressor responses to stress [47].
Interestingly, these rats also have insensitivity to anxiogenic stress, supporting
major role central NPY plays in anxiolysis [43].

Few studies have examined peripheral plasma NPY levels in relation to nat-
urally occurring stress in humans and most of these are by a single group of
investigators. To test the hypothesis that NPY may buffer the effects of stress,
Morgan and colleagues [48] compared plasma NPY levels in active duty male
soldiers at baseline versus 24 h following survival training in one group and
baseline versus during exposure to a military interrogation in a second group.
Increases in NPY were associated with a robust increases in both salivary and
serum cortisol. NPY was significantly increased by the acute stress of military
interrogation, as previously shown in laboratory stress tests. Interestingly,
plasma NPY levels were significantly reduced in a subset of individuals (non-
Special Forces) 24 h after the cessation of stress. The investigators suggest that
this reduction of NPY may illustrate the effect of prolonged exposure to high-
intensity stress in these individuals and reflect mal-adaptation. Interestingly,
this study found that “stress hardy” individuals (i.e., Special Forces) had high-
er NPY levels immediately after stress exposure and that their NPY levels had
returned to baseline within 24 h compared to non-Special Force soldiers. This
suggests individual differences in ability to upregulate NPY, suggesting the
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importance of examining genetic factors and prior history of trauma exposure
as potentially important in understanding the role of NPY in stress reactions.
Further, it is worth noting that the stressor experience involved primarily acute
psychological, rather than physical, stress, thus pointing to the important role
of threat appraisal for understanding the human stress response. Finally, high-
er levels of NPY were associated with lower levels of psychological symptoms
of dissociation during stress. These data were replicated with a sample of sol-
diers in the US Navy [33] suggesting that NPY, presumably derived from the
brain but reflected in the plasma levels, played an anti-stress, anxiolytic effect
in “hardy” individuals.

One of the first studies to examine the relationship between NPY and PTSD
[49] found that combat veterans who met diagnostic criteria for PTSD had
lower baseline plasma NPY levels and blunted yohimbine-stimulated increas-
es in plasma NPY compared to healthy controls. This study was designed to
investigate the possibility that NPY may contribute to sympathetic system
hyperreactivity in PTSD, including elevation in heart rate, blood pressure, and
plasma catecholamines in response to stimuli associated with prior traumatic
events. Interestingly, there was no effect of depression on plasma NPY level
within the PTSD group. However, in another study of depressed patients [45]
without PTSD, platelet-poor- plasma levels of NPY were also decreased
although they were actually higher in platelet fraction of plasma. This intrigu-
ing observation may suggest that in humans like in rodents [29, 30], NPY may
be taken up from the blood stream, at sites of increased NPY release, and
buffer the changes in NPY activity over a longer period of time, i.e., the life
cycle of the platelets. Thus, platelet NPY in addition to its plasma levels may
be a better marker of chronic stress.

The finding of a dose-response in terms of the negative relationship between
level of traumatic exposure and baseline plasma NPY levels suggest that
stress-induced alterations in NPY may be one biologic mechanism that con-
tributes to the development of PTSD. Results also showed that stress-induced
elevations of NPY were associated with elevations in systolic blood pressure
in individuals with PTSD, consistent with peptide’s role in the cardiovascular
system [29, 30]. The authors suggest that this may result in more persistent
ischemic risk to the heart and brain and thus account for increased rates of
stroke and other circulatory diseases in persons with trauma histories.

While virtually all previous studies have involved soldiers, one recent study
focused on a small sample of female victims of intimate partner violence (IPV)
with and without lifetime/current PTSD and healthy, non-abused controls [50].
Results found no significant differences in NPY levels with and without
PTSD, although mean cortisol levels were lower in those with IPV exposure
compared to controls. Authors suggest that NPY and cortisol may be markers
of exposure to stress, rather than PTSD per se.

Indeed, one of the most recent studies of NPY and PTSD tested the hypoth-
esis that baseline plasma NPY and NPY response to yohimbine might be asso-
ciated with trauma exposure rather than PTSD [33]. Results showed that plas-
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ma NPY was negatively associated with trauma exposure, but not PTSD.
Baseline plasma NPY levels were lower for combat veterans both with and
without PTSD, compared to non-traumatized individuals. Further, a dose
effect was found in that the greater number of life-threatening traumatic events
was negatively associated with baseline plasma NPY levels. This study left
unanswered the question of whether a stress-induced release or baseline levels
of NPY play a role in the maladaptive responses to stress.

Conclusions

NPY is a mediator and a marker of chronic stress in humans, including
extreme trauma and PTSD, but its actions are complex. In the periphery, as a
sympathetic neurotransmitter, it exerts excitatory effects on the cardiovascular
system and modulates immune responses. In contrast, in the central nervous
system, NPY-ergic neurons are powerful inhibitory, anti-stress and anxiolytic
system. In PTSD, stress-induced elevations of plasma NPY are associated with
increases in cortisol, catecholamines and blood pressure, consistent with pep-
tide’s actions in the cardiovascular system. However, lower plasma NPY lev-
els, baseline, stress-induced, and/or post-stress are associated with poorer
behavioral performance under stress – suggesting that reduced activity of the
central NPY system diminishes individual’s stress resilience. Many of the
peripheral pro-stress and central anti-stress actions of NPY appears to be
mediated by the same subtype of receptors, the Y1, which complicates the case
of using Y1 antagonists for treatment of stress-related cardiovascular and
immune symptoms, unless drugs which do not penetrate the blood–brain-bar-
rier are used. Future studies should determine more precise mechanisms of
NPY’s actions and type of receptors involved in psychological, behavioral,
cardiovascular and immune consequences of chronic stress, particularly
PTSD, where peptide’s role appears to be quite compelling.
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Introduction

The role of NPY in chronic neurodegenerative diseases such as Alzheimer’s
disease (AD), Parkinson disease (PD) and Huntington’s disease (HD) has not
been well defined. After a flurry of initial studies on NPY levels in brain sec-
tions and in cerebral spinal fluid (CSF) from individuals with AD in the 1980s,
the research into NPY and its involvement in chronic neurodegeneration has
slowed. However, the intense expression of NPY and NPY receptors in those
central nervous system (CNS) regions associated with AD or PD and the
potential importance of NPY as a neuromodulator of synaptic events suggest
that NPY pathophysiology may be an under explored, but basic component of
the degenerative disease process. In this review, we will examine the specific
expression patterns of NPY and NPY receptors in those regions of the CNS
that are closely related to the main pathological outcomes of neurodegenera-
tive diseases. We will summarize the current knowledge on changes in NPY in
AD, PD and HD and examine potential roles for NPY in the pathophysiology
associated with chronic neurodegenerative disease.

NPY in the CNS

NPY is one of the most common peptides in the central nervous system (CNS)
[1, 2] and is widely distributed throughout the brain where it serves as a neu-
rotransmitter and/or a modulator of neuronal function. The functional out-
comes which are regulated by NPY include food and water intake, blood pres-
sure, the innate immune response to infection, motor activity, learning and
memory and the emotional and physical response to stress [3–9]. As predict-
ed by these functional outcomes, NPY is readily observed in the cortex, hip-
pocampus, amgydala, basal ganglia and the hypothalamus [10–15]. In this
review, however, we will focus on those CNS areas of particular importance to
chronic neurodegenerative diseases such as Alzheimer’s disease (AD),
Parkinson’s disease (PD) and Huntington’s disease (HD). For AD, although
multiple brain regions are ultimately affected by the neurodegenerative
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process, the earliest stages (Braak stages I, II) are confined to the transen-
torhinal region of the cortex [16, 17]. Neural degeneration then spreads to the
adjacent limbic regions which include the hippocampus (Braak stages III, IV)
and eventually extend into association areas of the neocortex (Braak stages V,
VI). By stage IV, significant damage to the hippocampal CA1 region is
observed and is commonly associated with memory loss and dementia [16,
18]. For neurodegenerative diseases like PD and HD that are associated with
movement disorders as well as cognitive changes, primary neuropathological
lesions are observed in the striatum and substantia nigra. Loss or dysregulation
of NPY in the hippocampus or striatum, thus, may directly impact the chron-
ic neurodegenerative disease processes observed in AD, PD and/or HD.

NPY in the hippocampus and entorhinal cortex

A number of studies have examined the distribution of NPY containing neurons
in the hippocampus using in situ hybridization to detect NPY mRNA and
immunocytochemistry to detect NPY protein [14, 19–23]. In general, the lev-
els of mRNA expression for NPY parallel the level of NPY protein immunore-
activity [24]. As depicted in Figure 1A, NPY expression in the hippocampus is
found within the soma and processes of interneurons and is distributed in a rel-
atively regional specific manner. The greatest density of NPY-immunoreactive
(NPY+) neurons in the normal adult hippocampus is observed in the hilus of the
dentate gyrus and in the stratum oriens of the CA1 and CA2 region. Other
regions such as the molecular layer of the dentate also demonstrate strong
immunoreactivity for NPY in both cell bodies and in fibers. Adjacent cortical
areas such as the subiculum and the entorhinal cortex demonstrate a low densi-
ty (approximately 1–2% of the total cells) of NPY neurons. This value is typi-
cal of most regions in the cortex [14, 25, 26]. Similar staining patterns are
observed in rodent (mouse and rat), primate and human brain, although scat-
tered regional differences in the distribution and density of NPY neurons and
NPY receptors between primate and rodent brain are observed [13, 27, 28].

At least four different subtypes of NPY+ interneurons have been described
and are differentiated by morphology and by their co-transmitter profile [14,
19, 20, 29]. NPY containing interneurons in the hippocampus (and throughout
the CNS) express multiple neurotransmitter/neuromodulator substances
including GABA, other peptidergic neurotransmitters such as somatostatin
(also known as somatotropin release inhibitory factor, SRIF), nitric oxide syn-
thase (the enzyme that generates NO) and various calcium binding proteins
such as calbindin [3, 30]. The pattern of co-transmitter expression or other
characteristics of NPY interneuron subpopulations for each hippocampal
region has not been fully characterized. It is clear, however, that specific sub-
types of NPY neurons are more or less vulnerable to pathological insults. For
example, a subpopulation of NPY neurons in the central hilar region is lost
with age or with chemical lesion of the cholinergic afferent innervation using

224 C.A. Colton and M.P. Vitek



192 IgG saporin, a specific cholinergic neuron toxin [19]. Other subtypes of
NPY immunoreactive neurons are apparently resistant to lesioning and to dis-
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Figure 1. Location of NPY interneurons and NPY receptors in the hippocampus and entorhinal cor-
tex. A: NPY interneurons are located throughout the hippocampus and entorhinal cortex but are most
dense in the hilar and molecular layer of the dentate gyrus and in the stratum oriens (s.or) layer of the
CA1 and CA3 regions. B. Interconnections between NPY interneurons and afferent or efferent path-
ways. Also shown are the locations of Y1, Y2 and Y5 NPY receptors. The larger type reflects the larg-
er density of the receptor compared to other NPY receptors. Abbreviations: alv = alveus; s. or = stra-
tum oriens; s. pyr = stratum pyramidale; s. rad. = stratum radiate; s.l. mol = stratum lacunousum mol-
eculare; gc = granule cells; polym = polymorphic; gr = granule; mol = molecular



ease processes in the hippocampus [31]. Differences in experimental outcomes
that are observed throughout the NPY literature may be due to the distinct dif-
ferences between individual NPY subpopulations. This may explain why stud-
ies, using similar lesioning of the septohippocampal cholinergic afferents to
the hippocampus, have not observed changes in hippocampal NPY levels as
determined by radioimmunoassay on hippocampal lysates [32].

For NPY interneuons in the dentate gyrus, afferent input arises from three
main sources; the perforant path from the entorhinal cortex, commissural
afferents via the fimbria/fornix and mossy fiber collaterals [20]. In turn, the
NPY interneurons located in the molecular layer of the dentate gyrus form
extensive synaptic contacts with the granule cell dentritic trees in the molecu-
lar layer and with the soma of granule cells (Fig. 1B). NPY interneurons locat-
ed in the polymorphic layer of the dentate gyrus make synaptic contacts with
axon terminals of mossy fibers emanating from the granular cells. They also
form synapses with the soma and dendrites of CA3 pyramidal cells and with
excitatory interneurons located in the hilar/CA3 region. As predicted, recep-
tors for NPY are found in the corresponding synaptic regions (Fig. 1B). Five
NPY receptors have been identified by cloning to date (Y1, Y2, Y4, Y5 and
Y6). Of these, the Y1 receptor is the most common receptor expressed by the
granule cell and is located on dendrites in the molecular layer. Y5 receptors,
and to a lesser extent, Y2 receptors, have also been observed in the granule cell
layer [33–35]. The Y2 receptor is predominantly found in the dense fiber net-
work associated with the mossy fiber-pyramidal cell dentritic synapses and on
the cell bodies of the pyramidal neurons. Y5 receptors are also widely
expressed in the CA3 region while Y1 receptors appear to be more sparsely
represented and are more localized to cell bodies in that region [34–36]. Wolak
et al. [35] have reported frequent co-expression of Y1 and Y5 receptors with-
in the same neuron in the pyramidal cell layer of CA1-CA3.

In the CA1 region of the hippocampus, NPY interneurons in the stratum
lacunosum-moleculare (s.l-mol.) receive input from the entorhinal cortex and
collaterals from commissural and other afferent paths while interneurons in the
stratum oriens receive input from numerous collaterals arising from both effer-
ent and afferent neurons passing through the alveus and stratum oriens
(Fig. 1B). The synapse between the Schaffer collateral axon and the pyramidal
neuron apical dendrite is a primary target of NPY interneurons in this region.
Numerous NPY-immunoreactive dense core vesicles are localized to axon ter-
minals at this synapse [29]. In addition, the NPY immunoreactive axon termi-
nals impinge upon unlabeled axons, providing the anatomical basis for a pre-
synaptic action of NPY in this region. Strong electrophysiological data further
support the idea that NPY released from interneurons acts to alter pre-synaptic
release of transmitter at its target cell [37, 38]. The distribution and subtype of
NPY receptors in CA1 are similar to those observed in CA3. Y2 and Y5 recep-
tors are expressed in the fiber network formed by the Schaffer collateral axon
terminals and the pyramidal cell dendrites [7, 35, 36, 39]. Immunoreactivity for
Y1 receptors is generally low in this region of the hippocampus [35].
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NPY in memory and learning

The expression of NPY in interneurons and the localization of NPY-
immunoreactive cells and NPY receptors in the entorhinal cortex and hip-
pocampus suggest that NPY may regulate hippocampal function. However,
unlike seizures where a direct role for NPY has been observed [22, 23, 36, 40],
the involvement of NPY in hippocampal-based learning and memory process-
es has been suggested, but not fully substantiated. Behavioral studies on
rodents support a role for NPY in memory. Early experiments by Flood et al.
[41, 42] demonstrated that injection of NPY into the 3rd ventricle or the rostral
hippocampus of mice promoted retention of memories. In addition to
enhanced performance on learning and memory behavioral assays, NPY also
blocked the amnesic effect of a protein synthesis inhibitor. Furthermore, NPY
mRNA expression in the hippocampus of adult rats was increased in associa-
tion with the induction of long term potentiation (LTP) in CA3 pyramidal neu-
rons [43]. The strongest data supporting a role for NPY in memory and learn-
ing is derived from studies on Y2 receptor knockout mice. NPY Y2–/– mice
were tested using an object recognition test which assesses the differential
exploration of familiar or novel objects. Normal mice recognize objects placed
into their environment and retain memory of those objects [44, 45]. However,
NPY Y2 knockout mice were unable to retain the memory of objects for the
same duration of time as control mice, indicating that genetic deletion of the
Y2 receptor altered memory [45]. These data clearly support the initial exper-
iments by Flood showing enhanced memory retention with NPY injection and
suggest that NPY and interneuron function may be intimately involved in
memory processes.

A number of other experiments have provided conflicting results. For exam-
ple, studies using cholinergic lesioning have questioned the role of NPY in
memory. It is well known that lesions to the basal forebrain/septal cholinergic
neurons induced either experimentally or by diseases such as AD result in
impairment to memory processes. These experiments demonstrate that the
cholinergic input to the hippocampus is important for memory formation and
retention [46–48]. As mentioned above, NPY levels in the hippocampus were
not changed from the contralateral sham lesioned controls when the basal fore-
brain cholinergic neurons were destroyed by placing the immunotoxin, 192-
IgG-saporin in the lateral ventricle [49]. Both cortical and hippocampal
choline acetyltransferase (ChAT) levels were significantly reduced, however,
indicating loss of cholinergic neurons. In addition, significant impairment in
Morris water maze performance was observed and demonstrated that learning
and memory was severely impaired in the IgG-saporin-lesioned rats. Although
alternative explanations exist for the above data, dissociation between NPY
levels and learning and memory is further supported by studies on aged rats.
Cadiacio et al. [19] have demonstrated that hippocampal NPY interneurons in
the hilus of the dentate gyrus decreased in number with age but these changes
were not correlated with learning index scores. These data suggest that, at least
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this subpopulation of NPY interneurons, may not be directly associated with
the cholinergic control of cognition.

Tests for memory acquisition also do not show a significant difference
between NPY Y2–/– and control mice. In this case, mice were placed into a
Morris water maze with a hidden fixed platform followed by a probe trial with
the platform removed. The fixed platform section of the Morris water maze
tests the ability of the mouse to move toward and to find a hidden platform on
repeated trials. This test is used to detect changes in working memory and is
trial dependent [50, 51]. Knockout mice were not significantly different from
the control mice in the hidden platform task, indicating that acquisition and
spatial reference memory that is used to detect the location of the hidden plat-
form is unaffected by the loss of the Y2 receptor [45]. However, the probe trial
which tests the spatial accuracy of the mouse when searching for a platform
after its removal resulted in a significant difference between the NPY Y2
knockout and control mice. Thus rather than a direct role, NPY’s effects on
memory and learning may be more subtle. Overexpression of NPY in rats also
have complex effects on memory. In this case, young rats demonstrated a
reduction in both acquisition and spatial memory while NPY transgenic mice
aged to 52 weeks did not show any defects in learning and memory [8, 52].
Interestingly, both ages of the NPY-overexpressing rat showed a decreased
response to stress, indicating that the anxiolytic effect of NPY is independent
of effects on learning and memory [52].

NPY in Alzheimer’s disease

With over 4,000,000 individuals affected currently in the United States,
Alzheimer’s Disease (AD) is the leading cause of dementia and a leading
cause of death in the aging population [53]. Over a typical 10–20 year course,
AD is characterized by progressive memory loss and the eventual death of the
patient [18, 54]. The associated dementia caused by damage to key hippocam-
pal and cortical regions of the brain has been linked to the formation of neu-
rofibrillary tangles (NFTs) and senile (amyloid) plaques. NFTs are intraneu-
ronal accumulations of insoluble paired helical filaments of tau, a microtubule-
associated protein that helps to stabilize the cytoskeleton. Extracellular amy-
loid plaques are composed of fibrillar deposits of Aβ peptides, the proteolytic
cleavage products of amyloid precursor protein (APP), dystrophic neurites and
activated glia. The formation of tangled neurons in the entorhinal cortex and
the perforant path of the hippocampus is significantly associated with the cog-
nitive decline of individuals with AD [16, 55].

Numerous biochemical mechanisms have been proposed to explain the
changes in neuronal function that lead to the deficits in memory observed in
AD. Clearly, physiological mechanisms or cytoactive factors that affect learn-
ing and memory are of great interest. From the conflicting data presented
above on NPY’s potential roles in learning and memory, it is difficult to pre-
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dict if alteration of NPY is a factor in the hippocampal damage observed in
Alzheimer’s disease (AD). Opposing data and viewpoints are prevalent. A
number of studies have assessed the level of NPY in cerebral spinal fluid
(CSF) as a surrogate marker of NPY levels within the brain. These experi-
ments have used antibodies to screen CSF samples from healthy aged match
control individuals and individuals diagnosed with AD. The results from these
studies show that CSF NPY levels were significantly reduced [56, 57] or
remained unchanged [58–60]. The large variation observed in these experi-
mental studies hinders a clear interpretation of the results. Part of the problem
is the small number of individuals in each study. In addition, CSF proteolysis
of peptides such as NPY may have also contributed to the varied results
observed in the analysis of CSF [61]. The large experimental variation has
reduced the potential usefulness of CSF levels of NPY or other neuropeptides
as a diagnostic indicator of AD.

Immunocytochemistry on brain sections has provided a more direct
approach to examine changes in NPY in AD. Chan-Palay et al. [31, 62] have
characterized NPY immunoreactive neurons and fiber networks in selected
regions of autopsied brain from individuals with AD and normal aged matched
controls. Hippocampal NPY –immunoreactive neurons were severely reduced
in number in the hilus, CA1, subiculum and entorhinal cortex. Both the mor-
phology of the NPY interneuron was altered and the total cell number was
reduced in AD sections, suggesting that NPY interneuron function is damaged
[63]. However, when radioimmunoassays were used to detect NPY in cortical
or whole brain lysates from postmortem AD brain, NPY levels were not
changed compared to aged matched brains from unaffected individuals [11,
13, 64]. Somatostatin levels in the same samples were significantly decreased.

Transgenic mice overexpressing amyloid precursor protein (APP) and that
demonstrate amyloid plaques have also been used in studies on NPY [21, 65].
To date, two different mouse models have been used; the PDAPP-109 line that
overexpresses a mutated APP (APP717V → F) driven by a platelet derived
growth factor-b (PDGF-b) promoter [66] and the APP23 line that overex-
presses human APP751 with the Swedish double mutation (K670M/N671L)
driven by a murine Thy-1 promoter fragment [67]. Essentially a similar pattern
of changes in NPY neurons was observed in both models. Increased
immunoreactivity for NPY was observed in the hippocampus and entorhinal
cortex in aged (18–26 months) mice. Strongly immunoreactive fibers were
observed in the stratum lacunosum moleculare and in the polymorph layer of
the dentate gyrus. In addition, NPY as well as dynorphin and enkaphalin stain-
ing was increased in the mossy fibers. NPY immunoreactivity was also
observed in aberrant, swollen fibers in close apposition to amyloid plaques.
Double staining demonstrated that NPY-immunoreactive cell bodies or fibers
frequently co-localized with amyloid deposits. Since both mouse models
demonstrated similar upregulation of NPY immunoreactivity, the changes are
likely due to Abeta production, the toxic peptide cleavage product of APP,
and/or amyloid deposition.
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The striking differences between the data derived from human AD brain and
the data derived from mouse models of AD are interesting and unresolved.
Clearly there are multiple potential reasons why NPY is consistently decreased
in human AD brain but is consistently increased in brains from mouse models
of AD. Severity of disease is one likely critical difference between humans and
mice. Also, mouse models of AD generated by overexpression of mutated APP
do not faithfully recapitulate the neuropathology associated with human AD
brain. For example, neuronal loss is minimal in mouse models although the
APP23 mouse model is one of the few AD models to demonstrate moderate
neuronal death [67–69]. Importantly, tau pathology is limited to regions sur-
rounding plaques and neurofibrillary tangles, one of the hallmark neuropatho-
logical lesions of AD, are not observed in APP overexpressing mice [67,
69–72]. Newer mouse models that co-express amyloid plaques and neurofib-
rillary tangles such as those developed by Oddo et al. [73, 74] may demon-
strate altered NPY levels that are more consistent with AD in humans.

NPY in the basal ganglia-striatum and substantia nigra

NPY neuronal distribution, the type and location of synaptic contacts and the
axonal targets have been analyzed in detail for the basal ganglia (see Parent et
al. for an extensive review) [28, 75, 76]. NPY immunoreactivity and/or mRNA
expression is observed in the striatum (caudate nucleus and putamen) where it
is localized to a discrete subset of neurons [28, 75, 77]. Parent et al. [28] have
clearly demonstrated that NPY neurons form contacts only within the striatum
and are thus, interneurons (Fig. 2). Based on morphology, NPY neurons have
been termed medium aspiny interneurons and are one of four different subsets
of interneurons in the striatum [75, 78, 79]. NPY+ neurons comprise 1–2% of
all neurons in this region and are characterized by a small cell body (approxi-
mately 15 microns diameter), low dendritic spine density and short, highly
branched axons [30, 75]. In rat striatum, interneurons that express NPY invari-
ably co-express neuronal nitric oxide synthase (nNOS) and somatostatin [76,
80]. As discussed previously, co-localization of NPY, nNOS and somatostatin
is found in other regions of the human and rodent CNS such as the cortex and
hippocampus [63, 81, 82]. Although frequently observed, it is not yet clear if
these three modulators are always expressed together. In a large number of
studies, co-localization experiments have not evaluated the presence of all
three and instead have examined two of the three. From these studies it is like-
ly that NPY is co-expressed in the CNS with other peptide neuromodulators
such as vasoactive intestinal peptide (VIP) and may not be expressed with
nNOS in certain regions of the hippocampus and cortex [25]. The co-localiza-
tion of NPY and NOS is of interest because of the regulation of NPY by NO.
Recent studies by Espey (unpublished data) have demonstrated that NPY
activity can be changed if critical tyrosines within NPY’s structure are nitrat-
ed. Nitrotyrosine formation is a typical reaction for NO [83]. These data sug-
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gest that the production and outcomes of NPY’s activity may be modified if
NO is present at the same time and in the same location.

Similar to hippocampal NPY interneurons, striatal NPY neurons inhibit
their target neurons. In contrast to hippocampal NPY+ neurons, however, it is
not clear if GABA is commonly co-expressed with NPY in striatal interneu-
rons [30]. Immunoreactivity for glutamic acid decarboxylase (GAD), the
enzyme that catalyzes the production of GABA, is difficult to detect within the
cell bodies of NPY+ interneurons. However, GABA has been localized to the
nerve terminals, indicating that the NPY+ interneurons most likely produce
and release GABA [75]. NPY Y1, Y2 and Y3 receptors are expressed in the
localized target fields of the NPY interneurons within the striatum. Recent
studies using highly specific antagonists also indicate the presence of Y5
receptors [84]. NPY immunoreactivity or NPY receptor binding is not
observed in other regions of the basal ganglia such as in the globus palladius
or is only expressed at low levels such as in the substantia nigra or subthalam-
ic nuclei [28, 34]. These structures are the target areas for the major efferent
outflows from the striatum.

The afferent input to the striatum in general, and to the NPY interneurons
in the striatum is extensive. As shown diagrammatically in Figure 2, neurons
from the cortex, the substantia nigra, the thalamus, the subthalamic nucleus
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Figure 2. Interconnections of NPY interneurons in the striatum. + = excitatory input; – = inhibitory
input



and the globus pallidus send afferent fibers to the striatum, many of which
synapse with NPY interneurons [26, 28, 75, 77, 79, 85]. Direct input from the
cortex and substantia nigra afferent neurons to NPY interneurons has been
determined using selective deafferentation techniques. These experiments
demonstrated that the loss of the cortical or nigral input produced characteris-
tic degenerative nerve terminal boutons close to the NPY immunoreactive
interneurons [79]. In addition, a specialized subset of acetylcholine-secreting
neurons localized within the striatum and local interneurons that release
GABA also form synaptic contacts with NPY neurons [28, 30, 86].

The importance of dopaminergic regulation of NPY interneurons in the
striatum was recognized a number of years ago. Kerkerian et al. [87] and
more recently, Obuchowicz et al. [86] demonstrated that lesioning and the
subsequent loss of the dopaminergic input to striatal interneurons increased
NPY expression. Thus, dopamine tonically downregulates the expression
level of NPY. In turn, NPY regulates activity of the dopamine neurons.
Adewale et al. [84] have used highly selective Y2 (BIIE0246), Y1
(BIBO3304) and Y5 (CGP71683) antagonists to dissect NPY’s effects on
dopamine production in the striatum. Essentially, they showed that KCl-medi-
ated-dopamine production is inhibited by NPY via Y1 and Y5 receptors and
stimulated via Y2 receptor activation. This study confirms and extends previ-
ous findings on KCl-mediated dopamine accumulation and electrically-stim-
ulated dopamine release [88, 89]. Thus, NPY produced by interneurons in the
striatum differentially modulates dopamine synthesis and/or dopamine input
to the striatum.

NPY in HD and PD

Huntington’s disease (HD) and Parkinson’s disease (PD) are two of the chron-
ic neurodegenerative diseases that are largely associated with deficits in motor
function and neuronal loss in the basal ganglia. Huntington’s disease (HD) is
an autosomal dominant, fatal neurodegenerative disease that displays charac-
teristic abnormal motor activity in addition to behavioral changes and loss of
cognition [90]. HD is one of at least eight neurodegenerative diseases that are
based on the expression of a pathological protein within cells in which a CAG
repeat within the coding region of the gene is translated to a polyglutamine
repeat domain within that specific protein [90]. For HD, the affected protein is
huntingtin (Htt) and the pathological repeat length varies from 36–120 gluta-
mines. Medium spiny neurons in the striatum are the most susceptible to the
damage caused by overexpression of the pathological length Huntingtin pro-
tein [91, 92]. Loss of these projection neurons that are the main outflow of the
striatum (Fig. 2) is a direct component of the motor abnormalities of HD.
Importantly, NPY-expressing interneurons have been reported to be the least
vulnerable of the striatal neurons in HD [28, 76, 93, 94]. Consistent with the
retention of NPY in the striatum, levels of striatal immunoreactive NPY were
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found to increase in both mild and severe cases of HD compared to aged
matched control brain [95]. A similar increase was observed in the cortex [96].
However, analysis of a key mouse model for HD yields different results. Gene
array experiments have identified genes that are downregulated or upregulated
in specific brain regions from the R6/2 HD model compared to a wild type
control mouse [97]. In the R6/2 mouse striatum, NPY mRNA, as well as
mRNA for somatostatin and enkephalin, is significantly lower compared to
wild type control mice. Other rodent models for HD that involve quinolinic
acid-mediated induction of HD pathology demonstrate both increased and
decreased vulnerability of NPY-expressing interneurons [80, 94, 98, 99].

Parkinson’s disease is the most common neurodegenerative disease associ-
ated with motor function and is also characterized by the loss of a specific
population of cells. In PD, dopamine neurons in the substantia nigra (A9
dopamine cells) are severely damaged by the disease process. The loss of
dopamine input to the striatum (Fig. 2) and other regions of the basal ganglia
directly leads to the hypoactivity (loss of motor function) observed in PD [28,
100, 101]. In contrast to HD where a single gene defect is central to the dis-
ease, multiple genes and multiple environmental factors have been associated
with PD [101, 102]. Protein inclusions composed of alpha-synculein are found
within affected neurons and are increased by dominant mutations of the gene
encoding alpha-synculein. Recently other genes which appear to be independ-
ent of alpha-synuclein- based inclusions have been implicated in the nigral
dopamine neuronal loss [102].

Analysis of cerebral spinal fluid and basal ganglia levels of NPY
immunoreactivity have failed to produce a consensus on the changes in NPY
associated with PD. Either no change or an increase in NPY mRNA expres-
sion or immunoreactivity has been observed using in situ hybridization or
immunochemistry in tissue lysates from PD brain [77, 103]. CSF levels of
NPY decreased in HD individuals compared to unaffected individuals [56].
But, as discussed previously for AD, the reliability of data acquired from
radioimmunoassay of human CSF samples may be questionable. Since no
unequivocal genetic mouse model for PD currently exists, studies using model
systems have focused primarily on lesioning of the substantia nigra using 1
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone or 6-hydroxy-
dopamine. Using radioimmunoassay, Obuchowicz et al. [86] measured striatal
NPY-like immunoreactivity in lysates from MPTP- treated mice. NPY levels
increased after 2 weeks and remained high for 6 weeks after MPTP treatment.
However, the increase in NPY was delayed in time with respect to the MPTP-
mediated fall in striatal dopamine levels. To establish a direct connection
between the increased striatal NPY levels and the loss of dopamine induced by
MPTP, Obuchozicw et al. also treated the mice with deprenyl for 30 min
before MPTP lesioning. Deprenyl, a monoamine oxidase B (MAO-b)
inhibitor, blocked the loss of dopamine and prevented the increase in NPY. A
similar increase in NPY immunoreactivity was shown in 6-hydroxy dopamine
lesioned rats [104]. Thus although controversial, the loss of dopamine input
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from the loss of substantia nigral dopamine neurons in PD, results in increased
NPY. These data suggest that NPY expression in the striatum is generally
down-regulated by dopamine and that this down-regulation of NPY may be
lost in PD. Alternatively, independent factors such as inflammatory signals
override dopamine regulation of NPY.

Table 1 summarizes the changes in NPY that are observed in autopsied brain
samples derived from individuals with AD, HD or PD. In general, the data sug-
gest that NPY levels more commonly decrease in brain regions of individuals
with AD and either don’t change or increase in specific brain regions of indi-
viduals with HD or PD. These findings, however, remain controversial because
of the discrepancies between experimental findings and the lack of clear con-
firmation in genetic mouse models that mimic chronic neurodegenerative dis-
eases such as AD. The data also demonstrate that NPY levels may change inde-
pendently of other neuropeptides, even those known to co-localize with NPY.
For example, long term cerebroventricular infusion of Abeta peptide in rats has
been shown to decrease the overall levels of somatostatin immunoreactivity but
does not change NPY immunoreactivity [49]. A similar dissociation between
somatostatin and NPY levels was shown in AD brain [57, 105]. However, the
fact that some areas of the brain demonstrate an associated decrease in NPY and
somatostatin levels in AD while other areas do not underscores the uniqueness
of the interneuron populations. Careful immunocytochemical analysis using
double labeling techniques unequivocally demonstrate that cortical somato-
statin neurons that also express NPY in AD brain do not show similar atrophy
or cell loss as those cortical neurons that are immunoreactive for somatostatin
or NPY alone [81, 106]. This is also true if the somatostatin neuron co-express-
es nNOS compared to neurons expressing somatostatin alone. Thus, the specif-
ic neuropeptide profile of interneuron subpopulations is a critical factor in
determining the functional integrity and survival of NPY-immunoreactive
interneurons in the hippocampus and cortex during AD. A similar relationship
exists for NPY interneurons in the basal ganglia.
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Table 1. Summary of the changes in NPY immunoreactivity in CSF, brain sections or tissue lysates in
AD, PD, and HD. ↓ = increased levels; ↑ = decreased levels

Human Rodent models

Alzheimer’s disease In CSF- no change or ↓ APP23 – ↑
In brain tissue- no change or ↓ PDAPP-109 – ↑
Number of NPY+ neurons – ↓
Altered morphology of NPY 
neurons- yes

Parkinson’s disease In CSF – ↓ MPTP lesioned – ↑
In brain tissue – ↑ 6-OH DOPA-lesioned- ↑

Huntington’s disease In brain tissue – ↑ R6/2 – ↓
Number of NPY+ neurons – no change



Potential mechanisms of action of NPY in chronic neurodegenerative
diseases

The expression of NPY mRNA and protein within many interneurons clearly
implies that NPY participates in the complex regulation of brain circuitry that
is associated with interneuron function. In general, NPY serves as an inhibito-
ry neurotransmitter and reduces neuronal excitation. However, experiments
using the NPY knockout mouse (NPY–/–) provide strong evidence that NPY is
not a classical neurotransmitter such as glutamate or GABA. Genetic removal
of NPY does not produce any physiological differences in synaptic activity at
two different regions in the hippocampus where NPY-immunoreactive neurons
are known to exist, specifically CA1- Schaffer collateral synapses and per-
forant pathway-granule cell synapses. When compared to wild type, mice lack-
ing NPY did not demonstrate any change in population spike amplitude, the
input/output relationship, paired pulse facilitation or typical EPSP/IPSP pat-
terns at both low and high stimulation frequencies [33].

Although not a classical neurotransmitter, NPY fulfills the criteria used to
identify neurotransmitter substances. NPY is stored within neuronal terminals
in dense core vesicles, it is released upon activation of the presynaptic neu-
ron, it acts on specific receptors and alters the response of post-synaptic cells
[3, 25, 37, 107]. For example, exogenous application of NPY to hippocampal
CA1 pyramidal neurons reduces the amplitude of population spikes inde-
pendently of GABA or other classical neurotransmitters [37]. The reduction
in spike amplitude is also observed in the NPY–/– mouse hippocampus when
NPY is exogenously added to the cells [33]. A direct action of endogenous
NPY has also been clearly confirmed. Sun et al. [107] have demonstrated that
repetitive stimulation of NPY-containing neurons generates a slow IPSP in
thalamic slice preparations from wild type mice that is not observed in prepa-
rations from NPY–/– mice. Since these experiments were done in the presence
of GABA receptor blockade, the inhibitory signal cannot be due to GABA.
Despite the above data, the slow release of NPY, it’s co-localization with
other more well defined neurotransmitters such as GABA and its coupling to
G-protein signaling has led to the classification of NPY as a neuromodulator
[3]. In fact, the distinction between neurotransmitter and neuromodulator are
blurred for NPY as well as for other non-classical neurotransmitters such as
nitric oxide.

The outcome of NPY’s actions can be neuroprotective. Numerous studies
have now shown that NPY inhibits glutamate-mediated synaptic activity in the
hippocampus and striatum as well as other brain regions [36, 39]. This action
is primarily presynaptic, results in reduction of calcium entry into the nerve
terminal and is mediated primarily by the Y2 receptor, although Y1 and Y5
receptors are also implicated in presynaptic inhibition [37, 38, 108–110]. As a
consequence of this activity, NPY decreases limbic seizures, reduces kainic
acid induced epilepsy and protects against glutamate-mediated neuronal death
[33, 36, 40, 111, 112]. Interestingly NPY mRNA and protein expression
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increases after seizures, particularly in the mossy fibers of the hippocampus
[112]. This ectopic level of NPY is thought to reduce glutamate release, and
thus decrease the abnormally high glutamate activity observed during seizures.

For AD, then, the relative lack of NPY or the failure to upregulate NPY in
the hippocampus may be a contributing factor to the neurodegenerative disease
process. Since NPY promotes memory retention, changes in NPY during AD
are likely to impact cognition. Furthermore, the potential failure of the
interneuronal network to appropriately regulate glutamate-mediated synaptic
transmission is an important factor in the excitotoxic-neuronal loss in AD hip-
pocampus [85, 113, 114]. Loss of NPY’s control over glutamate release is like-
ly to further facilitate excitotoxic damage.

A similar case can be made for neuronal loss in the striatum in HD. As men-
tioned previously, the striatal interneurons and the striatal projection neurons
(medium spiny neurons) receive direct glutaminergic input from layers 5 and
6 of the cortex [92]. Both cell types express ionotropic and metabotropic glu-
tamate receptors, although the density of glutamate receptors is less for
interneurons compared to the high glutamate receptor density observed on
medium spiny neurons [115]. Medium spiny neurons, thus, can be killed by
agents that act at glutamate receptors including glutamate itself and glutamate
receptor agonists such as quinolinic acid or kainic acid [116]. The idea that
excitotoxic neuronal death occurs in HD is supported by chemical lesioning
using quinolinic acid. Injection of quinolinic acid into the striatum induces
neuropathology that closely resembles HD [117]. Since NPY inhibits gluta-
mate presynaptic release, then the presence of NPY is likely to regulate the
overall level of glutamate in the striatum, thus reducing the loss of medium
spiny neurons. The observed increase in NPY immunoreactivity in brain
lysates from humans with HD are consistent with a neuroprotective action for
NPY and is similar to the increase in NPY associated with seizure activity in
the hippocampus. However, despite the increased NPY in human striata, the
large loss of medium spiny neurons continues unabated in HD. Thus, unless
NPY or the NPY receptors have changed their functional characteristics, the
effects of NPY in the striatum are more complex than predicted. NPY may not
play a dominant role in controlling the level of glutamate activation in the
striatum as it does in the hippocampus. Interestingly, nNOS mRNA and pro-
tein levels decrease in HD [118, 119]. The subsequent loss of NO and of nitrat-
ing species may alter NPY nitrotyrosine formation and hence, its activity. The
consistent loss of NPY in mice models of HD underscores the differences in
striatal function between humans with HD and rodent models of HD which
have yet to be reconciled.

PD is associated with hyopactivity produced by the initial loss of dopamine
afferent input into the striatum. The loss of dopamine inhibition over the pro-
jection neurons allows unabated activity to occur in the efferent pathway to the
globus pallidus. The unabated activity, in turn, is inhibitory to neurons in the
globus pallidus and leads to reduction in motor activity [28]. NPY would
appear to mimic the loss of dopamine input to the striatum since injection of
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NPY directly into the striatum results in decreased motor activity. Since NPY
is increased in PD or when the dopamine afferents are removed, this change
would be predicted to worsen the outcome of the disease. However, Adewale
et al. [84] have described opposing actions of NPY which are dependent on
specific subtypes of NPY receptors. Y2 receptor activation leads to facilitation
of striatal dopamine synthesis and release whereas Y1 and Y5 receptor activa-
tion leads to inhibition of dopamine. If this is true for humans, then activation
of Y2 receptors or conversely, inhibition of Y1 and Y5 receptors in individuals
with PD could lead to restoration of a more normal motor output in face of the
loss of dopamine input to the striatum.

NPY in neuroinflammation

Part of the disease process in chronic neurodegenerative disease is the seque-
lae initiated by neuroinflammation. In AD, the innate immune response is ini-
tiated, at least in part, by the accumulation of amyloid and in HD and PD, by
dying cells in the striatum and substantia nigra [120–125]. The cells that medi-
ate the innate immune response in the brain are microglia, the CNS
macrophage, and astrocytes [126]. In the CNS microglia play the predominant
role in producing and releasing factors that initiate a proinflammatory envi-
ronment while astrocytes both potentiate and later slow the inflammatory
process. Interestingly, an interrelationship between NPY and peripheral
macrophage activation has been recently shown and which is likely to apply to
microglia in the brain. For example, monocyte derived macrophages isolated
from human blood express NPY mRNA when stimulated with phorbol myris-
tate acetate (PMA), a phorbol ester that is commonly used as an induction sig-
nal for macrophage activation [127]. Macrophages also respond to NPY.
Induction of superoxide anion production, a component of the respiratory burst
responsible for the bactericidal action of macrophages, is increased by NPY
[4, 5]. Other macrophage functions such as chemotaxis, the directed move-
ment of macrophages toward a target, and phagocytosis are inhibited by NPY
[128]. Dimitrijevic et al. [5] have recently shown that NPY induced upregula-
tion of macrophage function is mediated by Y1 and Y2 receptors while the
reduction in activation is initiated by Y2 and Y5 receptors. This dual regulation
by combinations of NPY receptors provides at least a partial explanation for
the opposing actions of NPY on macrophage function. Since NPY receptors
have been localized to human and mouse astrocytes [129], it is likely that
microglia also express NPY and respond in a similar, if not identical, manner
to NPY. Microglia have been shown to produce a respiratory burst and to
migrate in a directed fashion [130, 131]. Thus, NPY via Y1, Y2 and Y5 recep-
tors may contribute to the regulation of neuroinflammation during AD, PD and
HD. Whether inflammation is increased or decreased by the increased expres-
sion of NPY as seen in HD and PD or by the loss of NPY as seen in AD
remains to be experimentally resolved.
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NPY’s “other” effects

NPY’s importance to chronic neurodegenerative diseases can extend beyond
protection of neurons via regulation of glutamate release and beyond regulation
of neuroinflammation. As discussed previously, NPY affects multiple systems
in the brain as well as throughout the body. NPY is now well known to alter the
secretion of hormones that impact energy homeostasis. Its overall effect is to
promote lipoprotein lipase activity thus increasing cellular stores of lipid, to
alter cholesterol balance by raising circulating cholesterol levels and to increase
appetite and food intake [6, 132, 133]. Although this may adversely affect nor-
mal individuals, patients with chronic neurodegenerative disease may benefit
from these effects of NPY. Individuals with AD, HD and PD lose significant
amounts of weight as the degenerative diseases progress despite robust
appetites and large caloric intakes [134, 135]. Failure to supply adequate nutri-
tion reduces the brain’s ability to repair or to regenerate. How NPY participates
in this aspect of chronic neurodegenerative disease is essentially unknown.

The regulation of energy expenditure in the brain can also occur at the cel-
lular level. Mitochondrial production of ATP by oxidative phosphorylation is
critical to the maintenance of normal cellular functions. When compromised,
changes in mitochondrial membrane potential, calcium influx and ATP pro-
duction occur and can lead to induction of cell death pathways [136, 137].
Dysregulation of mitochondria has been implicated for each of the major neu-
rodegenerative diseases and is thought to be a major factor in the death of neu-
rons in AD, HD and PD [138–140]. Interestingly, NPY immunoreactivity has
been recently localized to mitochondria [141]. Furthermore, oxygen consump-
tion by mitochondria in brown fat cells is depressed by NPY. This effect, how-
ever, is dependent on thyroid hormone (T3). This emerging interrelationship
between mitochondria and NPY may lead to a better understanding of how the
observed changes in NPY that occur in neurodegenerative disease may lead to
either neuronal protection or neuronal loss.

Final thoughts

The fact that NPY is the most abundant peptide in the CNS implicitly implies
an importance to the CNS that has not been fully explored. In addition, the
wide range of systems affected by NPY further underscores the need to under-
stand how this peptide carries out its functions and how these functions are
altered by neurodegenerative disease. As new molecular tools such as NPY
knock out and NPY transgenic mice emerge, they can be readily applied to
study the role of NPY in AD, PD and HD by crossing the mouse models of dis-
ease with mouse models of NPY. These types of experiments as well as the
continued development of reliable outcome measures of NPY and its action
will provide new inroads to our understanding and potential treatment of these
devastating diseases.
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Introduction

The neuropeptide Y (NPY; MIM 162640) gene is located on 7p15.1 and exists
as a single copy [1]. The transcription sequence spans approximately 8 kb
pairs, containing: one exon with only non-translated DNA, three exons with
translated DNA, and three introns ranging approximately from 900 to over
4000 bp [2]. NPY is part of the structurally highly conserved PP-fold peptide
family, which are probably evolved by gene duplications of the ancestral gene
sequence [3]. NPY itself is the most conserved neuroendocrine peptide
throughout evolution [3]. Although mature NPY has a highly conserved pep-
tide sequence, the signal peptide sequence and the carboxy-terminal peptide of
NPY (C-PON) has a lower degree of identity [4].

There are many association studies which connect NPY and NPY receptors
to a condition or disease. Table 1 lists some of the positive association studies,
but it should be remembered that there are usually as many negative as positive
association studies published in different populations. Also the publication bias
of negative studies distorts the results published. To date, NCBI dbSNP data-
base (http://www.ncbi.nlm.nih.gov/SNP) reports only two nonsynonymous
sequence variants in the NPY gene: GenBank NM_000905.2:c.20T > C
(p.L7P; amino acid 7 of the preproNPY, leucine, is changed to proline;
rs16139) and c.64C > A (p.L22M; amino acid 22 of the preproNPY, leucine, is
changed to methionine; rs5571), which both are located in the signal sequence
part of the NPY gene. In a recent publication Ding et al. (2005) screened, by
direct sequencing, a part of the promoter region, the complete human NPY cod-
ing sequence, and neighboring intronic sequences in a population of 30 ran-
domly selected Swedes. They found one nonsynonymous (L7P) and two syn-
onymous sequence variants in the coding part in addition to several in the
intron or untranslated sequences. For the L22M polymorphism dbSNP data-
base reports an average allele frequency of 0.021 for the A allele (M22), but
there are no published reports on this variant in any populations [10]. We have
typed a Finnish population according to this sequence variant, but did not find
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any carriers (n = 60, Pesonen et al., unpublished results). The dbSNP is known
to contain 15–17% false positive alterations [5], so the existence of this non-
synonymous sequence variant remains to be confirmed. Additionally, there
seems to be a functional sequence variant in the promoter region of the NPY
gene (GenBank AC004485:154841C > T), which putatively destroys the SP1
consensus motif. This alteration has been reported to change the transcription-
al activity of the gene by greater than five-fold in in vitro studies [6, 7]. The
implication of this polymorphism on cardiovascular and metabolic parameters
is not currently studied.

In 1998, we published the identification of a common L7P sequence variant
in the signal peptide part of NPY, which is so far the only non-synonymous
alteration in the NPY gene. The carrier frequency of the P7 allele varies from
6% to 15% in the Caucasian populations, and it seems to be totally absent or
extremely low in some populations, including Mexican, African American and
oriental populations [8, 9]. Since our original landmark publication, it has been
linked to several other cardiovascular and metabolic phenotypes (Tab. 1). In
this review, I am going to present current knowledge on the effects of the
human NPY gene L7P polymorphism and cardiovascular and metabolic dis-
eases and their well known risk factors obesity and lipid balance.

Functional consequences of the L7P alteration

The L7P alteration is a consequence of a single base substitution, c.20T > C,
in the signal peptide part of preproNPY. Although this amino acid change
causes a significant change in the tertiary structure of the signal peptide, as
predicted by molecular modeling programs (Fig. 1), it has been difficult to find
any exact functional consequence at the molecular level. In vitro translation
and subcellular processing studies have so far resulted in negative findings
(Pesonen et al., unpublished results, [10]). However, there has been a report on
the NPY signal peptide and an action of its own after being cleaved from the
nascent NPY. This action seems to be different for the wild type signal peptide
than for the mutant signal peptide [10]. This is a totally new concept and goes
beyond the current concept of a signal sequence being responsible only for tar-
geting and translocating the secretory proteins and membrane proteins through
the ER membrane into the ER lumen to the secretory pathway. At the cellular
level, the mutation causes a different distribution of NPY-related immunoreac-
tivity in primary cultured human umbilical vein endothelial cells. With double-
labeling techniques, it has been demonstrated that in human endothelial cells
carrying the p.P7 allele, the amount of mature NPY without C-PON was
prominent. Homozygous [p.L7]+[p.L7] endothelial cells contained almost
exclusively not fully processed proNPY, i.e., NPY with C-PON [11]. This
strongly suggests a difference in cellular storage and processing of the proNPY
between the genotypes.
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In studies with healthy volunteers who are carefully matched according to
their genotype, we have shown that heterozygous [p.L7]+[p.P7] subjects have
lower basal NPY secretion at rest, but greatly increased NPY release with sym-
pathetic stimulation [11, 12]. This indicates that the L7P alteration has differ-
ent effects on the plasma NPY kinetics during rest versus exercise. Because
circulating NPY is derived mainly from perivascular sympathetic nerve bun-
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Figure 1. Molecular modeling of L7P variant of human NPY signal peptide. Upper panel represents
the 28 amino acid signal peptide of preproNPY with L7, and the lower panel the same signal peptide
with the P7 substitution. The consensus sequence for signal peptides is not evident, but they share a
central hydrophobic region as a common structural feature. Leucine, which has a hydrophobic aliphat-
ic side chain, is known to favor formation of a-helices. Proline, which has a cyclic structure that con-
siderably influences protein secondary and tertiary architecture, does not favor formation of a-helices.
Instead, proline introduces breaks and kinks into a-helical parts of the peptide backbone, as seen in
the modeling in the lower panel. The signal peptides are modeled with Composer Program and the
graphics with SYBYL 6.7 Program (Courtesy of Professor Antti Poso, University of Kuopio, Kuopio,
Finland.



dles, the mechanisms may be related to changed intraneuronal kinetics of NPY.
It is possible that during the resting state the L7P alteration leads to impaired
release and intracellular retention of NPY, followed by an exaggerated release
of NPY during high-intensity sympathetic stimulation. Also, the elimination of
NPY from plasma by degradation or excretion through the kidneys could be
affected differently during rest versus exercise in subjects carrying the P7
allele. However, changed intracellular kinetics of NPY synthesis and process-
ing seems to be a more plausible mechanism on the basis of known functions
of signal peptides and the cellular studies. It has also been proven by others
that NPY is regulated at the level of neuronal neurotransmitter content and
release [13]. This hypothesis is supported by the cellular studies showing that
there is increased intracellular storage of mature NPY, which is the secreted
form and more easily released by sympathetic stimulation. There is a smaller
mean NA/NPY ratio in plasma from heterozygous [p.L7]+[p.P7] study sub-
jects as compared with the group of homozygous [p.L7]+[p.L7] study subjects
during exercise. This may reflect the greater amount of NPY in the storage
vesicles and a different ratio of NA to NPY which is released during sympa-
thetic stimulation [11]. In conclusion, it seems that the L7P substitution caus-
es altered synthesis, processing, and release of the active, mature NPY.

Lipid levels and atherosclerosis

In the landmark study in 1998, we associated the P7 allele with high serum
cholesterol and low-density lipoprotein (LDL) cholesterol levels in Finnish
and Dutch obese non-diabetic persons [14]. Before this study there was only
one publication on NPY and serum cholesterol levels [15]. Our work provid-
ed the first genetic evidence that NPY may be linked to altered cholesterol
metabolism and that the P7 allele in the NPY signaling peptide may be one of
the strongest genetic factors influencing serum cholesterol and LDL levels in
obese subjects. It also started a new era in NPY research and changed the focus
from a systemic sympathetic neurotransmitter to a neuromodulator on a local
vascular level.

After the initial study we examined the association in different study popu-
lations. Since elevated serum cholesterol and triglyceride (TG) concentrations
in youth are considered important determinants for future coronary fatty streak
formation and atherosclerosis, we studied pre-school aged children at the ages
of 5 and 7 years in the follow-up study [16]. The L7P alteration was not asso-
ciated with serum total or low density lipoprotein (LDL) cholesterol values in
boys or in girls. However, P7 substitution was constantly associated with
14–17% higher mean serum TG values in the boys at the ages of 5 and 7 years
(P = 0.023). The L7P alteration may thus be linked with serum TG concentra-
tions, but not with serum cholesterol concentrations, in a gender-specific man-
ner in preschoolers. These findings were further evaluated in a large popula-
tion-based sample of 966 elderly men (aged 42–60 years) in Finland [17]. The
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P7 substitution was associated with an accelerated 4-year increase in the mean
and maximal common carotid intima-media thickness (IMT). Men with P7
substitution had a 31% greater increase in the mean IMT and a 20% greater
increase in the maximal IMT than homozygous [p.L7]+[p.L7] men. In this
study, the P7 substitution was also related to increased serum total cholesterol
and LDL cholesterol in obese (body mass index (BMI) > 30 kg/m2) men. The
association of the P7 substitution and atherosclerosis was further confirmed in
an independent population study where the P7 substitution was associated with
increased carotid IMT in type 2 diabetic patients, as well as with the acceler-
ated progression of carotid atherosclerosis during a 4-year observation period
in middle aged men [18].These studies suggest that the P7 substitution in
preproNPY is an important risk factor for accelerated atherosclerotic progres-
sion and increased serum cholesterol in humans.

Most of the above mentioned positive association studies have been done in
Finnish populations, but there are also negative reports in different popula-
tions. In the Brazilian population, non-diabetic individuals of European
descent, P7 carriers had a tendency to have lower total cholesterol values, but
the number of subjects with a P7 substitution was very low (n = 18) to reach
any statistical power [19]. In recent reports, the researchers could not find
associations of plasma TG, total cholesterol, VLDL cholesterol, LDL choles-
terol, and HDL cholesterol with the L7P sequence variation in Swedish sub-
jects nor in subgroups of obese and non-obese subjects analyzed separately
[10] or in a Polish family study [20]. Some of the later studies on healthy, nor-
mal weight Finnish cohorts [11, 21, 22] have also suggested that a P7 substi-
tution might carry a risk factor of elevated plasma lipid levels only in combi-
nation with another major metabolic or environmental risk factor, like older
age, obesity or a diet rich in dairy products, which is very common in Eastern
Finnish populations [23].

Free fatty acids (FFA) are mainly derived from the TG rich lipoprotein par-
ticles and their main purpose is to transport energy between the blood circula-
tion and tissues. The liver takes up the released FFAs in the blood, where hepat-
ic lipoprotein lipase (LPL) turns FFA to TGs, causing hypertriglyceridemia.
Insulin decreases plasma FFA concentrations by stimulating endothelial LPL
in fat tissue to remove FFA from plasma to fat cells, and by inhibiting the hor-
mone-sensitive LPL in fat cells, which inhibits the release of FFAs from the fat
cells. Although in physiological states, chronic elevation of FFA is restricted to
a number of specific situations, like prolonged fasting, FFAs are considered as
a link between lipid metabolism and insulin resistance, which is in turn a risk
factor for atherosclerosis [24]. In the study with carefully matched pairs of dif-
ferent L7P genotypes exposed to strenuous exercise, the group with heterozy-
gous [p.L7]+[p.P7] had clearly lower post-exercise FFA values [11]. Generally,
during exercise, plasma levels of catecholamines, growth hormone (GH) and
FFA increases and insulin decreases. Catecholamines and NPY increases intra-
cellular cyclic adenosine monophosphate (cAMP) concentration, which leads
to phosphorylation of hormone-sensitive LPL and raises the plasma FFA con-
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centrations. Catecholamines are especially strong stimulants of lipolysis and
can overcome the inhibitory effect of insulin on FFA release in humans [25].
The inhibition of lipolysis in human adipocytes by NPY has been shown to be
dose-dependent [26], and therefore higher NPY release during exercise in sub-
jects with the [p.L7]+[p.P7] genotype may explain the difference in FFA con-
centration between the genotypes. Since the catecholamine levels were similar
in this study, it is possible that higher NPY secretion is capable of overcoming
the stimulatory effect of catecholamines on lipolysis, as shown in in vitro stud-
ies [27]. Low levels of FFAs in subjects with the P7 variant of preproNPY was
observed in the presence of both low and high insulin levels, which indicates
that this effect is independent of insulin’s anti-lipolytic action. This notion is
also supported by our observations that the activities of LPL and hormone sen-
sitive LPL, which are regulated by insulin, are not changed in subjects with the
[p.L7]+[p.P7] genotype [28]. Most likely, insulin and NPY, independent of
each other, lower cAMP levels which in turn leads to inactivation of hormone-
sensitive LPL and lower serum FFAs.

NPY reduction of intracellular cAMP concentrations in human adipocytes
can inhibit lipolysis and increase liver and white adipose tissue lipogenesis
[29]. It has also been shown that central administration of NPY increases the
expression of LPL and white fat LPL enzymatic activity [30, 31]. There is no
significant difference between the L7P genotypes in the magnitude of post-
prandial lipemia induced by an oral fat tolerance test. In homozygous
[p.L7]+[p.L7] genotype subjects the hormone sensitive LPL-to-LPL ratio cor-
relates with the area of total plasma VLDL and chylomicron TG, but not in sub-
jects with the heterozygous [p.L7]+[p.P7] genotype [28]. This suggests that
there might be a compositional difference in the lipid particles affecting post-
prandial lipid metabolism and the relationship of hormone sensitive LPL and
activities to lipid metabolism may differ between the L7P genotype groups.

Blood pressure, heart rate and sympathetic activity

Since enhanced sympathetic nerve activity seems to play a role in the patho-
genesis of hypertension and NPY is one of the most potent vasoconstrictor
peptides isolated to date, it is natural to connect NPY to high blood pressure.
A major source of circulating NPY is the perivascular sympathetic nerve end-
ings, but a minor fraction of NPY is also derived from endothelial cells. The
blood vessels have a dense concentration of nerve fibers containing NPY, espe-
cially in the arterial walls [32]. NPY and NA are co-localized in sympathetic
neurons both in the peripheral and central nervous system, and are co-released
into the circulation during sympathetic activation. NPY has three major
actions that are important in the modulation of blood pressure homeostasis.
First, when released from sympathetic neurons innervating the cardiovascular
system, NPY causes long-lasting vasoconstriction via a direct stimulatory
effect on smooth muscle cells (SMC). Second, NPY pre-synaptically inhibits
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the release of NA and other neurotransmitters and third, NPY potentiates the
action of NA and other pressor agents on SMC. In addition to its potent vaso-
constrictor capacity, NPY seems to have a dual direct effect on blood vessels:
the Y1 receptors on SMC mediate vasoconstriction and the Y2 receptors on
endothelial cells mediate vasodilatation [33].

Although monogenic forms of blood pressure dysregulation exist, hyper-
tension is a complex quantitative trait that is affected by varying combinations
of genetic and environmental factors. NPY is listed among the candidate genes
in humans for blood-pressure homeostasis and hypertension [34, 35]. There
are many studies on the effects of L7P substitution on blood pressure [10–12,
18, 21, 22, 36]. Only in one study, an independent relationship between the P7
substitution and slightly increased blood pressure has been observed [17]. The
L7P substitution has been reported to be an independent predictor for myocar-
dial infarction and stroke in a Swedish hypertensive population [36]. It seems
that altered NPY regulation by L7P substitution is not a major component in
the pathogenesis of hypertension in general. Instead, it may contribute to aber-
rant regulation of blood pressure in major stressful situations [37], during
extreme conditions [38–40], or with a concomitant disease like hyperlipidemia
[41]. This could lead to NPY hypersensitivity and circus vicious, where L7P
substitution may also increase the risk of more severe complications related to
elevated blood pressure [36, 42].

NPY released during stimulation of cardiac sympathetic nerves reduces the
activity of cardiac parasympathetic neurons via NPY Y2 receptors. This
reduces acetylcholine release and attenuates the parasympathetic negative
inotrophic and chronotrophic effects in the heart [43, 44]. On the other hand,
central administration of NPY increases the mean arterial pressure and heart
rate probably via NPY Y1 receptors in non-adrenergic, non-cholinergic nerves
[45, 46]. Although the regulation of autonomic nervous system control of the
cardiovascular system seems to be very complex and may show some con-
flicting results, as a very general rule in normal healthy subjects’ heart rate,
NPY and NA are all increased proportionally during a sympathetic stimula-
tion. This correlation may be lost with altered NPY balance, like in the pres-
ence of a functional L7P substitution. During exercise, healthy heterozygous
[p.L7]+[p.P7] subjects have significantly higher NPY concentrations and sig-
nificantly increased heart rates compared with homozygous [p.L7]+[p.L7]
subjects, but no difference in the plasma NA levels or blood pressure [11]. In
contrast, during rest, healthy heterozygous [p.L7]+[p.P7] subjects have lower
plasma NPY and NA concentrations, but significantly higher heart rates dur-
ing the daytime and no change in blood pressure [47, 48]. Again, we can see
that the regulation of sympathetic balance and heart rate are highly complex
systems probably including a central and peripheral component and depends
clearly on the intensity of the sympathetic activation.

The different ratio of NPY/NA and correlation to heart rate in heterozygous
[p.L7]+[p.P7] subjects suggests that these subjects may have altered cardio-
vascular autonomic regulation [47, 48]. The power spectral analysis of heart
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rate variability (HRV) is a noninvasive method to assess cardiac autonomic
modulation, and gives quantitative and qualitative data about sympathetic and
parasympathetic control as well as sympathovagal interactions of cardiovascu-
lar functions. The arterial baroreflex is an important negative, mainly vagal,
feedback system which rapidly adjusts the blood pressure to its physiological
set point. Baroreflex sensitivity (BRS) has been suggested to provide inde-
pendent prognostic values in predicting cardiovascular mortality [49]. During
rest, healthy subjects have increased cholinergic and decreased adrenergic car-
diovascular reactivity assessed by HRV measurements, which reflects that
parasympathetic vagal control of heart function is dominant. The total HRV
and sympathetic as well as parasympathetic HRV were significantly increased
in the healthy subjects with heterozygous [p.L7]+[p.P7] genotype compared to
matched homozygous [p.L7]+[p.L7] subjects [48]. Also in type 2 diabetic
patients, L7P substitution is an independent determinant of altered sympatho-
vagal balance [18]. Additionally, the BRS was significantly higher in the
healthy subjects with heterozygous [p.L7]+[p.P7] genotype than in the
matched subjects with the homozygous [p.L7]+[p.L7] genotype [48]. This
data suggests that subjects with the heterozygous [p.L7]+[p.P7] genotype have
increased autonomic cardiovascular regulation.

In the subjects with the [p.L7]+[p.P7] genotype, there is a significant nega-
tive correlation of NA concentrations with sympathetic HRV and with the
baroreflex sensitivity, which is not the case with [p.L7]+[p.L7] genotype sub-
jects. It seems that the cardiovascular autonomic regulation is much more sen-
sitive to changes in plasma NA concentrations in the subjects with
[p.L7]+[p.P7] genotype than in the control subjects. It also seems that the sub-
jects with this genotype are likely to be more prone to the undesired effects of
NPY when it is released during sympathetic activation and thus predisposes
the individual to cardiovascular disease if they develop hypertension or type 2
diabetes later in life [18, 36].

Myocardial infarction

NPY is the most abundant peptide in the mammalian heart [50]. Since NPY is
a potent vasoconstrictor, the direct cardiac effects of the peptide are difficult to
distinguish from the vascular effects. In vitro studies with isolated myocytes
suggest that NPY has inotropic and chronotropic effects and stimulates cardiac
myocyte hypertrophy [51, 52], although there are some contradictions in these
experimental data. As a potent vasoconstrictor, NPY causes contraction of
coronary arteries, which can induce myocardial ischemia [53]. There are some
clinical studies which suggest that high plasma NPY levels could correlate
with myocardial ischemia and infarction [42, 54] and that the NPY levels after
myocardial infarction could be used as a prognostic factor for increased mor-
tality [55]. This evidence justifies the listing of NPY gene as a candidate gene
for the risk of myocardial infarction [56]. Indeed, the L7P variant is an inde-
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pendent predictor for myocardial infarction together with systolic blood pres-
sure, TG and LDL for myocardial ischemia and stroke in hypertensive patients
[36]. Since the severity of carotid IMT is currently recognized as an independ-
ent predictor of transient cerebral ischemia, stroke, and coronary events such
as myocardial infarction, the association of L7P substitution with enhanced
increase in carotid IMT future emphasizes the connection between myocardial
infarction and altered NPY balance [17, 18]. It may be that the unbalanced
autonomic nervous system activity leads to adverse cardiovascular events in
special circumstances, like in mental stress or in pathophysiological stress
involved in a disease. In such cases, the enhanced release of NPY, caused by
the L7P substitution, and possibly enhanced responsiveness to NPY could
increase the risk of fatal cardial events.

Vascular function and vascular growth

Endothelial cells play a crucial role in the development of atherosclerosis and
its thrombotic consequences. Endothelial dysfunction is a feature of most car-
diovascular risk factors and disease conditions that are associated with athero-
sclerosis, like dyslipidemia, type 2 diabetes, hypertension, cerebrovascular dis-
eases, and heart diseases. In response to various mechanical (shear stress) or
chemical (hypoxia, humoral factors) stimuli, endothelial cells produce nitric
oxide, which dilates the vessel, inhibits monocyte and leukocyte adhesion to
the vessel wall, inhibits the activation and aggregation of platelets, and inhibits
SMC proliferation. In endothelial dysfunction, all these responses are dis-
abled, which destroys the vascular homeostasis and predisposes to vascular
complications. NPY is a known vasoconstrictor, endothelial growth factor, and
enhancer of vascular permeability. NPY acts as a SMC mitogen and stimulates
attachment, migration, DNA synthesis, and the formation of capillary tubes by
human endothelial cells [57]. NPY increases nitric oxide release [58] and
NPY-induced vasodilatation is endothelium- and nitric oxide-dependent [59].
In response, nitric oxide inhibits the NPY-induced vasoconstriction [60] and
decreases Y1 receptor binding and expression [61], which is one of the recep-
tors mediating the potent vascular growth-promoting activity of NPY, leading
to neointima formation [62].

Ultrasound techniques are noninvasive methods to study endothelial func-
tion by measuring endothelium-dependent vasodilator responses to various
stimuli. The most frequently used method is flow-mediated, endothelial-
dependent vasodilatation (FMD) of the brachial artery, where increases in fluid
shear stress stimulate endothelial cell release of nitric oxide, causing a dilation
of the blood vessel. Our studies indicate that L7P substitution is associated
with enhanced endothelial-dependent vasodilatation, in two independent study
cohorts of middle-aged men and in healthy 9–11 year old children [21]. Study
subjects with P7 variant had approx. 50% higher FMD than subjects with
[p.L7]+[p.L7] genotype, which indicates enhanced systemic endothelial func-
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tion. The finding of enhanced endothelial function in the carriers of P7 substi-
tution is opposite to what was expected, as previous studies have linked the P7
substitution with increased risk of atherosclerosis and following cardiovascu-
lar complications, indicating endothelial dysfunction. However, this may not
be surprising, if we consider the multifaceted role of NPY: a systemic neuro-
transmitter and a local neuromodulator, the potent vasoconstrictor and a
vasodilator [33, 63]. It is possible that the cuff occlusion test produces a local
shear stress, which increases the local endothelial release of NPY in the carri-
ers of the P7 substitution. This may stimulate Y2 receptors on the endothelial
cells and dilate the SMC by releasing nitric oxide.

Restenosis is a complication of 30–40% of patients undergoing coronary
angioplasty [64]. It is derived by vascular responses, such as neointimal hyper-
plasia due to vascular SMC migration and proliferation, neointimal inflamma-
tion, and increased neoangiogenesis at the site of the injury. NPY is potential-
ly involved in the process of restenosis: it is a mitogen for human SMCs, high-
ly angiogenic, and promotes inflammatory responses [57]. Consequently, sub-
jects with L7P substitution and increased secretion of NPY during sympathet-
ic activation could release more NPY after endothelial cell damage, thus
exposing the SMCs to the mitogenic, angiogenic, and pro-inflammatory
effects of NPY. We tested the association of L7P substitution with restenosis
after coronary stenting in a large German cohort and find no association [65].
The study was primarily designed to detect a putative association between the
NPY polymorphism and acute restenosis (<6 mo); therefore, it does not eluci-
date the long-lasting vasoconstrictive and remodeling effect of NPY after
angioplasty. Elevated levels of NPY may cause chronic coronary artery spasm
and increase in peripheral vascular resistance, which may maintain ischemia
during the recovery phase, as suggested by others [55].

Retinopathy and nephropathy

Diabetic retinopathy (DR) is a retinal neovascularization process which can
lead to blindness. DR is associated with progressive retinal ischemia, with
resulting microangiopathy that affects retinal pre-capillary arterioles, capillar-
ies, and venules [66–68]. Ischemia, in turn, activates a number of angiogenic
and mitogenic growth factors leading to increased vasopermeability, tissue
edema, endothelial cell proliferation, and retinal neovascularization. Since
NPY stimulates endothelial cell adhesion, migration, proliferation, capillary
tube formation, and aortic sprouting [63, 69], it is justified to propose a role
for NPY in the pathophysiology of retinopathy. Additionally, experimental
data in Y2–/– -mice lacking the functional Y2-receptor gene and in rats treated
with the Y2-receptor mRNA targeted antisense oligonucleotide, show that
inhibition of the Y2-receptor functions, significantly limits retinal neovascu-
larization [70]. These findings are in agreement with the data showing that
angiogenic effects of NPY are mediated primarily via the Y2-receptor subtype
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and are particularly linked to angiogenesis during ischemia [69, 71, 72]. The
functional L7P substitution is associated with progression and development of
DR in type 2 diabetes patients [70, 73]. The L7P substitution is not linked with
type 2 diabetes itself, since the carrier frequency is identical between the type
2 diabetes patients not having DR and the population control, or with DR type
1 diabetes patients. The P7 variant seems to be a significant risk factor for
development of DR, especially in type 2 diabetes patients. This data suggests
pathophysiological mechanisms underlying type 2 diabetes together with reti-
nal ischemia and enhanced stress-induced NPY release in patients with P7
variant activate the noxious angiogenic cascades in retinal endothelial cells.
This may be mediated by local NPY overproduction and signaling via the Y2-
receptor, since it is known that during ischemia, expression of NPY, Y2-recep-
tors, and DDP IV, which converts NPY1–36 to Y2/Y5-receptor selective peptide
NPY3–36, are markedly increased in the endothelium [69, 74]. Furthermore, the
Leu7Pro polymorphism may promote retinopathy indirectly via alterations in
the regulation of stress-related GH [12], as well, since GH is an additional eti-
ological factor in ischemia-induced retinal neovascularization [75]. NPY and
the Y2-receptor could be considered as important molecular mechanisms that
are involved in the pathophysiology of retinal neovascularization diseases and
as possible drug discovery targets.

The nephropathy is a serious long-term complication of diabetes and the
development of persistent proteinuria predicts renal failure and early death.
There seems to be a link between albuminuria (nephropathy) and atheroscle-
rosis in coronary arteries, but albuminuria is also a predictor of microangiopa-
thy in other organs than the kidneys, like in the retina. Evidence suggests that
a genetic predisposition is involved in the pathogenesis of diabetic nephropa-
thy, both in type 1 and 2 diabetes. Plasma NPY and urinary excretion of NPY
are higher in patients with advanced nephropathy than in the control subjects
[76]. The L7P substitution is independently associated with diabetic nephropa-
thy in a cohort of Finnish type 1 diabetic patients [77]. The P7 variant was
more common in patients with nephropathy in comparison to the patients with
normoalbuminuria. The molecular mechanisms behind this association may be
similar as speculated for L7P substitution and retinopathy (see above).

BMI and obesity

NPY plays an important role in the central regulation of food intake. NPY has
been since its discovery the most potent and probably most studied neuropep-
tide which stimulates appetite, inhibits thermogenesis and lipolysis, all aiming
to an enhanced body weight gain and obesity. Although the role of NPY in reg-
ulation of human feeding and energy balance is not totally clear, there are sev-
eral human linkage studies which connect NPY to human obesity and suggest
the NPY gene is a candidate gene for obesity related phenotypes [35, 78]. The
most widely studied genetic variant of NPY gene, which has been used in asso-
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ciation studies, is the L7P substitution. Although there are several negative
studies, there are also many positive associations. The largest study, which
found a positive association, was done in a Swedish population. Subjects with
the P7 substitution had higher mean BMI values both in men and women.
However, this effect was only observed in non-obese subjects, which suggests
that other genetic or environmental factors might be involved and might over-
ride the effect in obese subjects [10]. There are also some subpopulations
where a positive association has been found. L7P substitution of the NPY gene
is independently associated with BMI in type 1 diabetics [77] and a higher
birth weight in boys [16]. There is a conflicting result where the L7P substitu-
tion is associated with lower BMI in premenopausal women, but this may be
due to a very low number of subjects with P7 variant (n = 7) in the study [19].

There are also studies testing the association between obesity-related phe-
notypes and other variations of NPY gene. A two base pair TG insertion/dele-
tion (I/D) variant at the position –968 (c.–968_-969delTG) in the promoter
region of NPY gene was found to be associated with BMI and body fat pat-
terning in non-obese subjects [79]. In this study, they did not observe any L7P
substitution, which may have depended on the population studied
(Mexican–Americans). In a recent study with a Swedish population, no asso-
ciation of BMI and c.-968_-969delTG variations was observed [10].

Endocrine and hormonal changes

NPY modulates centrally, the feeding and energy balance. One of the periph-
eral energy store signals integrated in hypothalamus by NPY-containing nerves
is insulin. In experimental animals, central NPY administration leads to hyper-
insulinemia and peripheral insulin resistance [80], but a tonic central effect of
NPY is needed with these metabolic abnormalities [81]. Insulin and NPY may
also have direct peripheral interactions, since liver contains NPY-ergic neu-
rons, which are involved in the regulation of hepatic function and hemody-
namics. NPY administration reduces splanchnic glucose production, i.e., NPY
inhibits adrenaline-induced glycogenolysis by inhibiting stimulated renin
release and increasing insulin [82]. The L7P polymorphism is associated with
decreased insulin, increased glucose concentrations, and a decreased
insulin/glucose ratio after meals and oral glucose-tolerance test [11, 47, 48].
There are also opposing results: in a large, heterogenous group of middle-aged
subjects, standard intravenous or oral glucose tolerance tests did not reveal any
differences in insulin secretion or in insulin sensitivity between the L7P geno-
types [83]. If there is a true difference in the insulin levels, it could due to a
central component regulating autonomic balance (see above) or peripherally
increased local NPY levels in the pancreas, where NPY has been shown to
inhibit insulin secretion [84]. There is also a clear central interplay between
NPY and insulin: downregulation of hypothalamic NPY by insulin is a pre-
requisite for its acute inhibitory effect [85]. Also, in the periphery, NPY and
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insulin interact: insulin downregulates the secretion of NPY by neurons co-
cultured with adipocytes, but not alone [27]. The primary mechanism leading
to decreased insulin levels in subjects having the L7P substitution is not known
and this difference definitely needs further research.

Ghrelin is a gut-originating growth hormone secretagogues, which stimu-
lates eating and release of GH from the pituitary. Eating and glucose intake is
followed by suppression of ghrelin concentrations in the blood. It seems that
insulin is a key regulator of the postprandial ghrelin-suppression response.
Ghrelin has a dual role in maintaining GH release and in relaying the periph-
eral signal of energy homeostasis to the CNS. There is a delayed ghrelin
response in the subjects with L7P substitution during oral glucose-tolerance
test, without any difference in the mean plasma ghrelin concentrations [48].
This is not due to a different leptin concentration, since there are no differences
in diurnal leptin levels between L7P genotypes [47]; instead, it could be due to
a different feedback signal from altered GH secretion between the two L7P
substitution genotypes [12].

Hypothalamic Y2-receptors are shown to regulate bone formation and Y2
knockout mice have increased trabecular bone volume and thickness [86].
NPY receptors are involved in the local regulation of human bone metabolism
in human osteoblasts and human osteogenic sarcoma cells [87]. There is an
association between the L7P substitution and higher femoral neck bone min-
eral density, measured by dual X-ray absorptiometry in postmenopausal
women [88]. This could be due to the increased growth hormone release [12],
which is a known stimulus for bone formation, or it could be due to an altered
balance of the autonomic nervous system, which could centrally regulate the
bone metabolism. This is an interesting finding and needs further studies to
find out the relevance of NPY in human osteoporosis.

Genetically determined changes in NPY levels lead to widespread conse-
quences in the control of sympathoadrenal, metabolic, and hormonal balance
in healthy subjects.

Diabetes

There are no studies associating NPY gene variants to prevalence or incidence
of diabetes per se. There are, however, studies linking lower plasma NPY in
diabetics to sympathetic nerve failure [89], which could be considered as an
independent predictor of cardiovascular mortality in patients with type 2 dia-
betes. There is a study where L7P substitution associates with an earlier onset
of type 2 diabetes [100] or with the worse glycemic balance in type 1 diabetic
patients, as measured with HbA1c [77]. However, most of the association stud-
ies found previously positive in healthy study subjects, have resulted in nega-
tive associations when studied in diabetic patients. There is no association with
serum lipid levels [18, 70] or with plasma NPY levels [77] between the
[p.L7]+[p.L7] genotype and [p.L7]+[p.P7] genotype in diabetic patients.
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Instead, many studies have shown that diabetic patients with P7 variant are
more prone to serious complications of the disease (see above). It seems that
diabetes alters the metabolic status of the body in such a way, that the ‘normal’
interactions of NPY are disturbed and the altered NPY balance further com-
promises the metabolic balance of the body. This may again happen at the cen-
tral autonomic level or at the peripheral, local level or at both levels.

Conclusions

Endothelial dysfunction and impaired cardiovascular autonomic nervous sys-
tem regulation are both markers for increased cardiovascular disease risk.
Sympathetic nerves and vascular endothelial cells balance to maintain appro-
priate blood vessel tone, and alterations in sympathetic activity and endothe-
lial cell function are both observed early in the development of cardiovascular
disease. This may result from an unbalance of these two systems and further
contribute to disease development [90]. NPY has long been recognized as a
major transmitter of sympathetic nervous system, and its neuro-modulatory
cardiovascular effects are well characterized. Recent data, however, emphasize
the effects of NPY as a local transmitter and trophic factor on endothelial cells.
Since NPY seems to be involved in regulation of sympathetic tone and vascu-
lar function, it is an interesting candidate for studies on cardiovascular and
metabolic homeostasis. There are many association studies between the NPY
gene variants and cardiovascular and metabolic disease. Most are done by
using p.L7P substitution as a marker, and these studies suggest that the L7P
substitution may be a strong independent risk factor for various cardiovascular
diseases. Although there is now clear evidence that the L7P substitution alters
the NPY secretion in humans, the exact cellular and molecular mechanism and
the functionality of this variation is not yet known. The problem with the cel-
lular studies is that the substitution changes an amino acid in the hydrophobic
signal sequence part of the preproNPY. We and others have attempted but
failed several times to raise antisera to the NPY signal peptide, for possible use
in localization and release studies. But this is very difficult because of high
hydrophobicity (Pesonen et al., unpublished; [10]).

Another problem with the association studies with L7P substitution is that
there is a considerable variation in allele frequencies in different populations.
The P7 allele is found mostly in populations of Caucasian descent, and there
seems to be a geographical north-east to south-west gradient from 7–14% in
Europe (Pesonen et al., unpublished; [8]). The African–American, Mexican–
American, and Oriental populations have a very low frequency of the P7 vari-
ant. Therefore, the effects of the L7P substitution on cardiovascular regulation
and diseases are not likely to be relevant in populations other than those of
European descent. This does not, however, inhibit drawing conclusions of phys-
iological and/or pathological roles of NPY in cardiovascular control and devel-
opment of diseases, since the study of DNA sequence variants that contribute
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to common disease risk offers one of the best opportunities for understanding
the complex cause of disease in humans.

Sequence variations within genomes are responsible for individual pheno-
typic characteristics, including a predisposition to complex disorders such as
cardiovascular disease. Most frequently used of these variations are SNPs or
small-scale multi-base deletions or insertions (also called deletion insertion
polymorphisms or DIPs). The usual approach for using SNPs for the investi-
gation of the genetics of a disorder is to examine a single diagnostic syndrome
or variables relating to a cluster of symptoms and do an association study.
Difficulties can arise from the diagnosis and phenotype classification, sample
size and heterogeneity, which are all likely to account for variability between
studies. Also, the environmental factors can modify biological processes and
responses in diseases. The ultimate goal in clinical correlation studies is to
identify causative SNPs – those that produce alterations in gene expression or
in the expression or function of the gene product – because such SNPs will be
most predictive of a possible clinical phenotype or of pharmacogenetic
responses. Although each SNP can be analyzed independently of other SNPs,
it is much more informative to analyze SNPs in a region of interest, simulta-
neously. Alleles of SNPs that are closer together (e.g., SNPs within the same
gene) tend to be inherited together, a phenomenon called linkage disequilibri-
um (LD) or allelic association. When a new mutation occurs and is spread to
the next generation, the mutated allele will be co-inherited with the alleles at
the neighboring loci and all these loci will be in LD with each other. SNP can
also serve as surrogates for unrecognized, neighboring, functional SNPs that
may be identified by disease-marker linkage disequilibrium studies. The block
of co-inherited alleles is called a ‘haplotype’, and haplotype analysis has more
power than traditional single SNP association study design. The NPY gene has
very few common variants (Tab. 1), which could be used in haplotype analy-
sis in all populations. However, haplotype analysis would greatly enhance the
association studies on NPY variants and cardiovascular and metabolic studies.

Although single SNP association studies have many pitfalls, they can guide
functional studies. A well-designed association study requires a significant
number of cases to be adequately powered to study disease genetics. It has
been shown that carefully matched, moderate-sized case-control samples in
Caucasian populations are unlikely to contain levels of structure that would
result in significantly inflated numbers of false-positive associations. There
also might be a replication problem, which is mostly due to extreme differ-
ences in power among studies, since there is variation in sample size and risk-
allele frequency between the study cohorts [91].

In conclusion, SNP association studies, or preferably haplotype analysis, on
NPY gene can be used to guide functional studies and elucidate the pathophys-
iological NPY related mechanisms behind cardiovascular and metabolic disor-
ders. At the moment it seems that L7P substitution of preproNPY protein caus-
es altered NPY secretion, which leads to haemodynamic disturbances caused
by sympathetic hyperactivity, and to vascular dysfunction and trophic effects,
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caused by altered local signaling by NPY. The clinical relevance of L7P genet-
ic variant in cardiovascular regulation and clinical prediction, and the treatment
of cardiovascular and hypertensive diseases, remains to be determined.
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The science presented and analyzed in this book provides powerful evidence
of the importance of the NPY family of peptides in a variety of human dis-
eases. Why then have 20 years of research in this area not produced any ther-
apeutics? Part of the reason may be the redundancy of the system: one peptide
may compensate for the loss of another, and multiple receptors may serve sim-
ilar functions. The field, however, remains replete with promise. Novel leads
for therapeutic applications are provided by the discovery of new activities of
these peptides and their specific receptors, such as neuroregeneration and bone
remodeling. Other well-known actions of NPY/PYY/PP such as regulation of
appetite and anxiety still remain attractive targets. At the same time other
activities, such as Y1 receptor-mediated vasoconstriction, appear to have lost
their place as potential therapeutic targets, although new evidence of the role
of Y1 receptors in vascular remodeling may require reevaluation of their utili-
ty in cardiovascular diseases: hypertension and ischemic vascular diseases.
The same receptor but in the central nervous system appears to be involved in
neuroregeneration, anxiety and stress disorders – suggesting therapeutic
potential of drugs such as Y1 agonists or NPY-elevating drugs such as Y2
antagonists, which presynaptically increase peptide release. Y2 antagonist also
emerged as new targets for osteoporosis therapy, and agonists for Y2 (and Y4)
are being tested in treatment of obesity as peripherally acting appetite sup-
pressants. Most recently, successful manipulation of the NPY system was
reported via gene transfer of the leptin gene, which shuts down the brain NPY
hypothalamic activity – opening possibilities of gene therapy for obesity.

This overview of NPY peptide-dependent diseases and potential therapeu-
tics should provide a foundation for better understanding of the accomplish-
ments and challenges that this vast field presents. Such periodic integrative
analysis is necessary to critically evaluate the therapeutic potentials and clini-
cal implications of the continually growing scientific data. The editors hope
that this book will inspire cross-fertilization between distant and not so distant
fields of NPY research, and serve as a reference for further scientific pursuit
and drug discovery.
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