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Abstract. A conceptual shift has occurred in recent years from considering cancer as simply a disease
of deregulated cell proliferation to a view that incorporates the aberrant control of apoptosis into the
equation. Apoptosis is an organized, genetically programmed cell death process by which multicellu-
lar organisms specifically destroy, dismantle and dispose of cells. In cancer cells, this tightly con-
trolled process is suppressed by genetic lesions, allowing cancer cells to survive beyond their normal
life span even in hostile environments that are prone to hypoxia and lack many trophic factor supports.
In the last two decades, cancer researchers have made great strides in our understanding of the under-
lying molecular mechanism of apoptosis in chemoresistance generation and tumorigenesis. This
tremendous increase in our knowledge of apoptosis in tumors has greatly impacted our perspective on
carcinogenesis. Key regulators of apoptosis such as members of the Inhibitors of Apoptosis family and
Bcl-2 family have been shown to play a pivotal role in allowing most cancer cells to escape apopto-
sis. The identification of specific targets involved in the suppression of apoptosis in cancer cells has
facilitated the design and development of therapeutic strategies based on rational molecular approach-
es that aim to modulate apoptotic pathways. Many promising apoptosis-dependent strategies have
been translated into clinical trials in the continued assessment of regimens that can effectively eradi-
cate cancers.
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Background

In the 1960s, Lockshin and Williams introduced the term “programmed cell
death” to refer to a gene-directed form of cell death [1]. The term “apoptosis”
was coined in 1972 by Kerr, Wyllie and Currie to describe a form of ischemia-
induced hepatic cell death. The term comes from the Greek (apo + ptosis) for
“falling off” and depicts a distinct morphology of dying cells characterized by
cell shrinkage, membrane blebbing, chromatin condensation and nuclear frag-
mentation [2]. The realization that apoptosis is a genetically invoked form of
cell death has impacted our understanding of proliferative and degenerative dis-
eases because of the implication that tissue homeostasis can be controlled by
factors that regulate cell survival and death, as well as those that affect prolif-
eration and differentiation. The fact that apoptosis is controlled by genetic pro-
grams renders it susceptible to disruption by mutations, and the acquired abili-
ty of cancer cells to evade apoptosis is one of the hallmarks of cancer [3, 4]. In
this chapter, we first delineate the unique morphology of apoptotic cells.
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However, since the process of apoptosis is very much dictated by genetic pro-
grams, the main thrust of this chapter is on the discussion of apoptosis in terms
of the underlying molecular mechanisms. We also address the various
approaches currently in use and under consideration to reactivate apoptosis for
use in anticancer therapy. Our objective is that readers will gain a greater appre-
ciation of the importance of apoptotic mechanisms underlying cancer patho-
genesis, and thereby appreciate the subsequent impact this may have on newer
modes of the medical management of tumors.

Introduction: apoptosis

Apoptosis is a gene-directed mechanism in which unnecessary or dangerous
cells are triggered to undergo self-destruction without injuring neighboring
cells or eliciting any associated inflammatory response [5]. The core apoptot-
ic pathway was first described through genetic analysis in the nematode
Caenorhabditis elegans and subsequently found in species as diverse as
Drosophila melanogaster and humans [6]. In these multicellular organisms,
the apoptotic process is crucial for normal development, differentiation, tissue
physiology and defense against pathogens. The dysregulation of apoptosis is
intricately involved in the etiology and pathogenesis of many diseases, includ-
ing AIDS, autoimmune disorders, neurodegenerative diseases and cancer.

In general, apoptosis can be divided into the initiation phase, the effector
phase, and the degradation phase [7]. In the initiation phase, a stimulus, either
extrinsic or intrinsic to the cell, triggers the apoptosis process. This stimulus
may arise from a variety of sources and some general inducers include radia-
tion, UV, growth factor withdrawal and cytotoxic agents such as chemothera-
peutic drugs. The potency of each of these stimuli to induce apoptosis, how-
ever, is cell-type dependent. Despite the differences in the initiation of apop-
tosis, the effector phase in which the apoptotic machinery is activated shares
common biochemical features (see the section ‘The apoptotic machinery’).
Once cells have committed to apoptosis, the degradation phase begins and the
process becomes irreversible. At this late stage, double-stranded breakdown of
DNA into nucleosomal segments is manifested as DNA laddering in gel elec-
trophoresis [5]. This DNA laddering is a defining feature of apoptotic cell
death that contributes to the unique morphology of apoptotic cells.

Morphology of apoptotic cells

Apoptosis is characterized by a series of well-documented morphological
changes that can be detected by light and electron microscopy [2, 8–12]. The
most characteristic morphological change is seen within the nucleus, as com-
paction of nuclear chromatin leads to sharply delineated, uniformly granular
masses marginated against the nuclear envelope followed by nuclear fragmen-
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tation. As the nuclear outline convolutes, the cytoplasm also condenses and
blunt blebs or protrusions appear on the plasma membrane. While the cyto-
plasm continues to condense, the cell disintegrates into the characteristic mem-
brane-bound apoptotic bodies enclosing fragments of the nucleus. The integri-
ty of the membrane encasing the apoptotic fragments is retained during the
course of apoptosis until they are engulfed by phagocytes in a “contained”
manner without eliciting an inflammatory response that might be harmful to
the surrounding tissues [2, 13].

The apoptotic machinery

Apoptosis is first and foremost defined by its morphological features.
Apoptotic cells confer a distinctive constellation of biochemical changes that
underlie the structural changes. Given that diverse cell types across species
exhibit morphological similarity when subjected to various death-inducing
stimuli, an intuitive suggestion would be that there exists a common apoptotic
mechanism operating in most cells of an organism [8]. The core of the apop-
totic machinery is, in fact, composed of a set of conserved molecules operat-
ing within metazoan cells [14], and is induced by a cascade of molecular
events that may be initiated in a distinct manner, culminating in the activation
of caspases. For the purpose of this chapter, we focus on the molecular path-
ways that have been defined in mammals, and in particular, humans (see Fig. 1
for a schematic overview).

Caspases and apoptotic pathways

The central component of the apoptotic machinery is a proteolytic system
involving a family of aspartate-specific cysteine proteases, termed caspases,
which cleave many vital cellular proteins and proteolytically activate enzymes
that contribute to the disassembly of a cell, such as the DNase DFF40/CAD
[15]. Caspases exist as zymogens in cells, but can become activated in
response to apoptotic stimuli. They are organized in a cascade and can be
divided functionally into two groups: initiator and effector caspases, with
upstream initiator caspases being responsible for the activation of downstream
effector caspases [16]. Although caspases share distinct similarities in amino
acid sequence and structure, they are highly specific in their substrate prefer-
ences [17, 18]. The specificity of caspases allows them to function in an
orchestrated fashion that guides the apoptotic cell to sever contacts with sur-
rounding cells, reorganize the cytoskeleton, shut down DNA replication and
repair, destroy DNA, disrupt the nuclear structure and eventually induce the
cell to display signals that mark it for phagocytosis [15].

Initiation of apoptosis occurs by signals from two distinct but convergent
pathways: the extrinsic and intrinsic pathway. These two pathways make use
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of largely distinct molecular interactions and utilize different caspases, but are
also interconnected at numerous steps and ultimately converge at the level of
effector caspase activation [19]. However, for the sake of simplicity, we shall
initially treat the two as being mutually exclusive.

Intrinsic pathway

The intrinsic pathway is activated in response to intracellular stress, such as
DNA damage, hypoxia, growth factor deprivation and some chemotherapeutic
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Figure 1. Apoptotic pathways. Key regulators in both the extrinsic and the intrinsic apoptotic signal-
ing pathways are highlighted. See text for details.



drugs [20]. This pathway is sometimes referred to as mitochondrion-mediated
cell death, and results in increased mitochondrial permeability, defined by
mitochondrial outer membrane permeabilization (MOMP) that is executed by
proteins from the Bcl-2 family [21] (see section ‘Bcl-2 family’ below). The
increase in permeability leads to the release of proteins normally found in the
space between the inner and outer mitochondrial membranes [22]. A pivotal
protein released into the cytosol is cytochrome c, well known for its role in
mitochondrial respiration and recognized as an essential component of a high
molecular weight caspase-activating complex known as the apoptosome [23].
Apoptosome formation is caused by cytochrome c binding to Apaf-1, which in
the presence of dATP facilitates the association and the activation of initiator
caspase-9 [24]. Subsequently, effector caspase-3 is recruited to the apopto-
some, where it is activated by caspase-9, leading to the degradation phase of
apoptosis. It should be noted, however, that recent research has also pointed to
the endoplasmic reticulum (ER) as an important modulator of both mitochon-
drion-mediated apoptosis [25], as well as an ER-specific, unique pathway for
caspase activation and apoptosis [26–30].

Extrinsic pathway

The extrinsic pathway, also known as the death receptor-induced pathway, is
initiated by the ligation of death receptors belonging to the tumor necrosis fac-
tor receptor (TNF-R) superfamily, such as Fas/APO-1/CD95 and TNF-R1
found on a variety of cells [19]. Members of the TNF-R family are character-
ized by a cytoplasmic death domain (DD) involved in protein-protein interac-
tions that is essential for delivering apoptotic signals [31, 32]. Binding of lig-
ands promotes oligomerization of the death receptors, and their cytoplasmic
domains then recruit DD-containing adaptor proteins FADD and TRADD via
DD-DD interactions, leading to the formation of a death-inducing signaling
complex (DISC) [33–35]. FADD then causes the sequestration of the proen-
zyme forms of caspase-8 and -10 through the homotypic interaction of DDs
known as death effector domains (DEDs) to DISC [36, 37]. The proximity-
induced activation of multiple caspase-8 molecules by DISC [38] in turn acti-
vates effector pro-caspase-3 [39], at which point the intrinsic and the extrinsic
pathways converge [40].

Evidently, caspases occupy a central role in the regulation of apoptosis in
both the intrinsic and the extrinsic pathways. The apoptotic process is, thus,
also tightly controlled by regulators of caspases. An important family of
endogenous caspase inhibitors, termed the inhibitors of apoptosis (IAPs), was
identified as a central regulatory factor that blocks the execution of apoptosis.
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Inhibitors of apoptosis

Although other proteins have been identified that inhibit initiator caspases,
only the IAPs (see Fig. 2) have been demonstrated to be endogenous direct
repressors of the terminal caspase cascade [41, 42]. In humans, members of
this family of proteins include neuronal apoptosis inhibitory protein (NAIP),
X-linked inhibitor of apoptosis (XIAP/hILP), cellular IAP1 (c-IAP1/HIAP2),
cellular IAP2 (c-IAP2/HIAP1), Survivin, Livin, testis-specific IAP (Ts-IAP)
and Apollon/BRUCE. The anti-caspase activity of IAPs may be attributed to
their characteristic 70–80-amino acid baculoviral IAP repeat (BIR) domains.
XIAP, arguably the most potent IAP identified, possesses three BIR domains,
of which BIR3 is an inhibitor to the initiator caspase-9 and BIR2 an inhibitor
to effector caspase-3 and -7 [43, 44]. Moreover, some IAPs also contain a
RING domain that functions as E3 ubiquitin ligase, capable of recruiting tar-
get proteins to a complex containing an E2 enzyme for ubiquitin conjugation
and proteasomal degradation [45]. In particular, c-IAP2 and XIAP can trigger
the ubiquitination of caspase-3 and -7 [46, 47], suggesting that targeting of
caspases to the proteasome may be another anti-apoptotic mechanisms of the
IAPs. During the course of apoptosis, the caspase-inhibitory function of IAPs
is negated by antagonists Smac/DIABLO and Omi/Htra2, which normally
reside in mitochondria but are proteolytically processed and released into cyto-
plasm once a cell receives an apoptotic stress [48]. In addition, XIAP-associ-
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Figure 2. Domain structure of the IAP family. BIR, baculovial IAP repeat; CARD, caspase recruit-
ment domain; RING, RING zinc-finger; NOD, nucleotide-biding oligomerization domain.



ated factor 1 (XAF1) has been identified as an antagonist of XIAP that pro-
motes apoptosis by allowing unrestricted caspase activity [49].

Thus, the determination of whether a cell commits to the apoptotic process
is tightly regulated, and is essentially a function of the severity and not mere-
ly the specificity of the apoptotic stimulus. As we shall see, it is this function
that researchers are aiming to exploit in making cancer cells more susceptible
to current modes of therapy (see section ‘Therapeutic opportunities’).

Bcl-2 family

The Bcl-2 family proteins may regulate apoptosis by altering the integrity of
the mitochondria and by controlling calcium homeostasis [50–52]. Members
of the Bcl-2 family can be divided into three classes: (1) anti-apoptotic (Bcl-2,
Bcl-XL, Bcl-w and Mcl-1); (2) pro-apoptotic Bax-like (Bax, Bak, Bok/Mtd
and Bcl-XS); and (3) pro-apoptotic BH3-only (Bad, Bid, Bik/Nbk, BimL/Bod,
Hrk/DP5, PUMA/Bbc3, BNIP3, Noxa and Bmf) [51] (see Fig. 3). Through
interactions between various pro- and anti-apoptotic Bcl-2 family members,
calcium and mitochondrial protein release, including that of cytochrome c, is
regulated.

The reader will note that we mentioned earlier that the two apoptotic path-
ways would be treated as mutually exclusive. However, at this point we must
digress from that statement to provide a clearer picture of the complexity of
cross-talk between the two pathways, and how certain members of the Bcl-2
family play a significant and vital role in bridging the two. For example, in
response to Fas signals, these two death pathways might cross-talk via the
function of cytosolic Bid. The full-length p22 Bid is inactive and is a substrate
of caspase-8. Cleavage of p22 Bid gives rise to truncated p7/p15 Bid, expos-
ing a glycine that is N-myristoylated, which enables the targeting of a complex
of p7 and myristoylated p15 fragments of Bid to the mitochondria [53]. Upon
activation, Bid induces intramembranous oligomerization of mitochondrion-
resident Bak [54], as well as oligomerization and integration of cytosolic Bax
in the outer mitochondrial membrane [55]. Multimers of Bak and Bax form a
proposed pore on the mitochondria for cytochrome c efflux, thereby inducing
caspase activation through the formation of apoptosomes [54, 56–58]. It is,
thus, possible for an apoptotic stimulus acting through the extrinsic pathway to
induce activation of the intrinsic pathway as well. By contrast, Bcl-2 inhibits
apoptosis by preserving mitochondrial membrane integrity. Bcl-2 inserted into
the outer mitochondrial membrane may, by a mechanism that has yet to be elu-
cidated, prevent Bax/Bak oligomerization and subsequent release of apopto-
genic molecules from the mitochondria [59].

In addition to controlling mitochondrial apoptotic process, Bcl-2 family
proteins also regulate apoptosis by affecting calcium homeostasis. The ER is a
major organelle involved in intracellular calcium homeostasis and calcium sig-
naling [50]. Calcium released from the ER can induce a prolonged increase in
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mitochondrial calcium concentration followed by swelling of the mitochondria
and rupture of the mitochondrial network [60]. This increase in mitochondrial
free calcium may also be responsible for the release of cytochrome c into the
cytosol [61]. Released cytochrome c can in turn translocate back to the ER
where it selectively binds InsP3R, resulting in sustained, oscillatory cytosolic
calcium increases, creating a feed-forward loop, amplifying the apoptotic sig-
nal [62]. The effect of Bcl-2 on calcium concentration within the lumen of the
ER is controversial. Conflicting studies indicating that Bcl-2 overexpression is
associated with a decrease in ER luminal calcium contrast with those report-
ing that Bcl-2 either does not decrease luminal calcium or increases luminal
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Figure 3. Classification of the Bcl-family. BH refers to Bcl-2 homology domain. The BH3 domain in
the pro-apoptotic members is a ligand for the hydrophobic groove formed by the BH1-BH3 domains
of the anti-apoptotic members. The hydrophobic C terminus consists of a 17–23-amino acid α-helix
that anchors the protein in intracellular membranes.



calcium [50]. However, mouse embryonic fibroblasts deficient of pro-apoptot-
ic proteins Bax and Bak have a much reduced calcium concentration in the ER
and are resistant to a variety of apoptotic stimuli [25], suggesting that the Bcl-2
family proteins may play a role in regulating the ER-mitochondria amplifica-
tion loop of apoptotic signals.

Evading apoptosis: a hallmark of cancer

In malignant tumors, the balance between proliferation and cell death is lost,
and defects in apoptosis mechanisms allow neoplastic cells to survive beyond
normal levels of stress. Under normal circumstances, defects in DNA repair
and chromosome segregation would lead to apoptosis as a defense mechanism
for the removal of unstable cells. Clearly, defects in apoptosis would allow
these unstable cell populations a survival advantage, providing opportunities
for selection of progressively aggressive clones [63] with additional genetic
alterations that further deregulate cell proliferation, interfere with differentia-
tion, accelerate angiogenesis, and increase cell motility and invasiveness dur-
ing tumor progression [64]. Anticancer treatments usually utilize cytotoxic
agents and radiation to kill cancer cells causing irreparable cellular damage
that, in turn, triggers apoptosis [65]. A major hurdle in cancer therapies is
therefore quite apparent: inherent defects in apoptotic pathways render incipi-
ent cancer cells resistant to drugs and radiation, thereby requiring higher, more
toxic doses for tumor killing, and ultimately contributing to the undesirable
side effects of cancer therapy. In recent years, strategies aiming to overcome
the aberrant control of apoptosis in cancer cells have become the focus of well-
designed, rational anticancer regimens in an effort to increasing the sensitivi-
ty of these cells to conventional cytotoxic agents, thereby lowering the toxici-
ty and burden on normal cells. Delineating the underlying mechanisms that
cause cancer cells to escape from the apoptotic machinery has therefore been,
not surprisingly, the subject of intense research.

p53

p53 is a multi-faceted tumor suppressor gene that is capable of inducing tem-
porary growth arrest and DNA repair, irreversible growth arrest, terminal dif-
ferentiation, or apoptosis in response to potentially oncogenic cellular stress
such as DNA damage [66]. Therefore, it is imperative that functional p53 be
present in vivo for tumor growth suppression [67]. The function of the p53
gene is lost by mutation in over 50% of human cancer and a loss of heterozy-
gosity often accompanies tumor progression [68, 69]. Unlike many other
tumor suppressor genes, more than 85% of p53 mutations result in single
amino acid substitutions rather than deletions or frame shifts [70]. Most of the
missense mutations occur in the DNA binding core domain (amino acids
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102–292) region of p53 that is evolutionarily conserved between p53 and its
homologues from Drosophila and C. elegans. In human tumors, amino acid
residues that are essential for contact with DNA target sequence (two repeats
of PuPuPuC(A/T)(A/T)GpyPyPy; in which Pu is a purine and Py is a pyrimi-
dine) are frequently found to be mutated [69]. In addition, mutations of
residues that do not contact DNA directly but are required for structural main-
tenance also cause disruption of the p53-DNA interaction. Frequently, muta-
tions in one allele are sufficient to interfere with p53-dependent apoptosis by
a dominant negative mechanism since in most cases mutant p53 negates wild-
type p53 function through heteromerization.

Under normal conditions, p53 has a short half-life and is maintained at very
low levels by Mdm2-mediated degradation [71]. However, in response to
stress by DNA damage, hypoxia, oxidative stress and oncogene activation, p53
is stabilized and activated by post-translational modification [69]. In tumor
cells, transcriptionally inactive mutant p53 is unable to induce the expression
of the Mdm2 protein which would normally provide a feedback mechanism
that downregulates p53 protein levels [72]. Moreover, some p53 mutants
exhibit lower affinity for association with Mdm2 [73]. Hence, mutant p53 pro-
teins that are impervious to these negative regulations accumulate to high lev-
els in cancer cells and negate the functions of the wild-type protein.

Pathways through which p53 induces apoptosis may involve both transcrip-
tional transactivation and transrepression of multiple p53-target genes, as well
as transcription-independent mechanisms that engage the mitochondrial-apop-
totic pathways [70]. In general, apoptotic target genes of p53 may be divided
into two major categories: (1) proteins acting at the level of receptor signaling
for apoptosis, and (2) proteins acting downstream by activating apoptotic
effector proteins [74]. The former includes the insulin-like growth factor-1-
binding protein 3 (IGF-BP3), which induces apoptosis by blocking the IGF-1
survival signal [75] and Fas/APO-1/CD95, which functions in the T cell killing
triggered by anticancer drugs [76]. Essential downstream p53-targeted apop-
totic effector proteins are primarily associated with mitochondrial changes,
including caspase-9 and its cofactor Apaf-1 in myc oncogene-induced apopto-
sis [77], and Bax, necessary for p53-mediated cell death in brain tumors [78].
In addition to acting as a regulatory gene coordinating the expression of many
proteins involved in apoptosis, recent research also suggests that p53 is
involved in mediating apoptosis at the mitochondrial level by directly and
physically interacting with the Bcl-2 member Bak, resulting in the release of
cytochrome c from the mitochondria [79, 80].

Bax, Bak and Bcl-2

The pro-apoptotic proteins Bax and Bak are mediators of mitochondrial mem-
brane damage that are mutated or downregulated in gastric and colorectal can-
cers [81–83]. In particular, combined mutation of p53 and Bax results in an
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extremely aggressive tumor progression and poor clinical prognosis [83]. Bax
and Bak were found to be sufficient but not necessary for drug-induced apop-
tosis [84]. By contrast, increased copy numbers of the anti-apoptotic Bcl-XL

occurs in breast carcinoma, glioblastomas, and Hodgkin lymphoma and other
specific tumor types [52]. Similarly, the anti-apoptotic Bcl-2 protein is fre-
quently overexpressed in many tumors including acute lymphoblastic
leukemia (ALL), precursor B-lymphoblastic leukemia/lymphoma and diffuse
large B cell lymphoma [52]. Bcl-2 is an antagonist to Bax and Bak and inhibits
mitochondrial membrane disruption, a mechanism that likely accounts for
drug resistance in Bcl-2-overpressing lymphomas [85].

Akt, PI3K and PTEN

The pro-apoptotic Bad is a substrate for Akt/protein kinase B [86] and acts as
a negative regulator for other anti-apoptotic family members. Upon phospho-
rylation by Akt, Bad dissociates from anti-apoptotic Bcl-XL, allowing it to hin-
der the progression of apoptosis [87, 88]. Amplification of akt has been found
in ovarian, pancreatic, breast and gastric malignancies [89, 90] and hyperacti-
vation of Akt is known to induce resistance to a range of apoptotic stimuli
including chemotherapeutic drugs [91, 92]. Akt activity can be induced indi-
rectly by Ras in various growth factor receptor-initiated signaling cascades
[93]. This Ras-mediated survival signal is connected to the effector phos-
phatidylinositol 3-kinase (PI3K), a lipid kinase responsible for the activation
of Akt [94, 95]. Ras and PI3K are deregulated in many cancers, and the inhi-
bition of PI3K enhances chemotherapeutic drug-induced apoptosis [94, 95].
The PI3K-Akt pathway is negatively regulated by PTEN (phosphatase and
tensin homologue deleted on chromosome 10), a lipid phosphatase that
inhibits PI3K-induced signaling by dephosphorylating PI3K-generated 3'-
phosphorylated phosphatidylinositides [96, 97]. PTEN is frequently mutated
in advanced stages of several human tumors, notably in glioblastoma, endome-
trial and prostate cancers [97], and some PTEN mutations are associated with
a higher risk in the development of malignant breast tumors [98].

Death receptors

Fas/APO-1/CD95 and TRAIL-R1/R2 are sensors on the cell surface that, upon
binding to their respective ligands, initiate the extrinsic apoptotic pathway (see
above). Fas ligand and TRAIL are components of a tumor surveillance mech-
anism that partakes in the killing of cancer cells by cytotoxic lymphocytes [99,
100]. Tumorigenic disruptions, found in the intrinsic pathway, may also occur
in the extrinsic pathway, albeit far less frequently. Fas is observed to be mutat-
ed and downregulated in lymphoid and solid tumors [101], whereas TRAIL-
R1/R2 is mutated in metastatic breast cancers [102]. Suppression of the death
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receptor pathway could allow immune escape and provide a survival advan-
tage to tumor cells. This loss of function is also associated with resistance to
drug-induced cell death.

Caspases and non-IAP regulators

Caspase-8 is the initiator caspase for the extrinsic apoptotic pathway, and it is
also the mediator for cross-talk between the extrinsic and the intrinsic path-
ways (see the ‘Bcl-2 family’ section above). Caspase-8 is silenced through
DNA methylation as well as through gene deletion in childhood neuroblas-
tomas, rendering these cancers resistant to apoptosis triggered by death-recep-
tor ligation and by doxorubicin, a chemotherapeutic drug [103]. The expres-
sion level of c-FLIP, an endogenous inhibitor to caspase-8, is upregulated in
some cancers, thus preventing caspase-8-mediated apoptosis induced by some
chemotherapeutic drugs [104]. In the intrinsic pathway, Apaf-1 is necessary
for activation of caspase-9 following cytochrome c release for the early ampli-
fication of apoptotic signals. In malignant melanoma and leukemia cell lines,
Apaf-1 is mutated and transcriptionally silenced. Notably, Apaf-1-negative
melanomas are chemoresistant, failing to execute typical apoptosis in response
to p53 activation [105, 106].

Inhibitors of apoptosis and antagonists

As the only known endogenous proteins that function as direct, physiological
inhibitors of both initiator and effector caspases, the IAPs occupy a central
position in the apoptotic cascade, representing an important survival factor in
resistant cancer [42, 107]. The IAPs, especially XIAP, are frequently overex-
pressed in the NCI 60 cell line panel of cancer cells as well as in cancer tissues
compared to normal tissues [108–112]. Interestingly, at least in breast, colon
and pancreatic cancers, a strong positive correlation was found between the
levels of XIAP and caspase-3 [113, 114], suggesting that opportunities exist in
which the downregulation of XIAP might release caspase-3 inhibition and pro-
mote the execution of apoptosis in cancer cells. Indeed, the inhibition of XIAP
by antisense oligonucleotides, peptide inhibitors or small-molecule antago-
nists has been shown to sensitize cancer cells to apoptosis in chemoresistant
tumors [108, 115, 116].

The potential therapeutic utility of IAP suppression for cancer treatment
had sparked an explosion of research into finding and identifying endogenous
IAP antagonists. As discussed in the section ‘Inhibitors of apoptosis’ above, to
date, Smac/DIABLO, Omi/Htra2 and XAF1 are the three negative regulators
of IAPs activity. The expression of Smac is decreased in various types of can-
cer, including lung, prostate and hepatocellular carcinomas [117, 118].
Recombinant adenovirus carrying Smac is able to sensitize ovarian carcinoma
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cells to chemotherapeutic drugs cisplatin and paclitaxel [119], whereas the
combination of TRAIL and cell-permeable peptides that mimic Smac activity
has been shown to eradicate established malignant glioma in mice [120].
Conversely, the elimination of endogenous Omi by RNA interference increas-
es resistance to TRAIL-induced apoptosis [121]. While XAF1 is ubiquitously
expressed in normal tissues and cells, it is found at less than 1% of control lev-
els in the majority of the NCI 60 cell line panel of cancer cells [109].
Furthermore, overexpression of XAF1 by adenoviral vector transduction is
capable of inducing apoptosis by unblocking caspase-3 and -9 inhibitions in
certain pancreatic and colon cancer cell lines [114].

NF-κB

The nuclear factor of κB (NF-κB) family is composed of a number of het-
erodimeric transcription factors that regulate the expression of over 200 genes
that are involved in the control of immune, inflammatory and stress responses,
as well as growth and apoptosis [122, 123]. The activity of NF-κB is deregu-
lated in many cancers, notably in B cell lymphomas [124]. Although NF-κB
transcriptionally activates both anti- and pro-apoptotic genes, on a balance,
NF-κB activation favors the suppression of apoptosis [123]. Key anti-apoptot-
ic genes activated by NF-κB include the IAPs and the anti-apoptotic members
of the Bcl-2 families [124, 125]. Since the IAPs and the anti-apoptotic mem-
bers of the Bcl-2 families are crucial inhibitors to both the extrinsic and intrin-
sic death pathways, as expected, active NF-κB can inhibit these pathways and
induce drug resistance in cancer cells [124].

Therapeutic opportunities

Given that apoptosis suppression is fundamental to cancer cell survival, it is
not surprising that components of the apoptotic pathway have emerged as
important therapeutic targets. A variety of antisense oligonucleotides, tradi-
tional small molecules, biologically active peptides, peptidomimetics, mono-
clonal antibodies and gene therapy pay loads have been incorporated into
strategies that target apoptotic pathways in cancer cells [64, 126–130].
Although factors such as unexpected toxicities, poor pharmacokinetics, stabil-
ity and oral bioavailability may limit the use of these compounds in anticancer
treatment, these apoptosis-based antitumor agents might still serve as precur-
sor molecules for the development of more effective therapies.

The importance of Bcl-2 in tumor cells resistant to most cytotoxic anti-
cancer drugs has propelled this anti-apoptotic gene to the forefront as a candi-
date for antisense oligonucleotides (ASONs)-based therapies. ASONs are
short pieces of DNA that hybridize to a specific target mRNA, thereby block-
ing its translation to a functional protein. In vitro experiments and xenograft

Abnormalities of cell structures in tumors: apoptosis in tumors 213



models have demonstrated that Bcl-2 ASONs chemosensitizes human cancer
cells [131, 132]. In a phase I clinical trial, a combination of Bcl-2 ASON and
mitoxantrone has been shown to be well tolerated in combination [133]. In
fact, ASONs targeting the Bcl-2 mRNA have advanced to phase II clinical tri-
als for a variety of solid tumors, and phase III for melanoma, myeloma, chron-
ic lymphocytic leukemia and acute myeloid leukemia [64]. One concern for
targeting Bcl-2 alone is the ability of some tumor cells to switch expression
from Bcl-2 to Bcl-XL, thereby potentially retaining their apoptosis resistance
[134]. Therefore, the simultaneous inhibition of Bcl-2 and Bcl-XL expression
in tumors by a single bi-specific ASON [135] or by small-molecule antago-
nists [136] may represent an appealing approach in certain cancers.
Alternatively, inducing the expression of pro-apoptotic Bax with p53 aden-
ovirus is a potentially useful gene therapy, particularly in human brain tumors
[137]. In addition, short peptides that represent the BH3 domains of Bid or
Bim have been shown to be capable of inducing oligomerization and activation
of Bak and Bax, promoting killings of leukemic cells [138].

By virtue of their anti-caspase activity, the IAPs serve as pivotal regulators
of the core apoptotic machinery, thereby representing another promising target
for enhancing the re-activation of the death program. Numerous proof-of-prin-
ciple studies have demonstrated that the downregulation of XIAP leads to
enhanced chemotherapy sensitivity in various types of cancer cells [42, 64,
139]. For example, in both in vitro and in vivo xenograft human lung cancer
models, ASONs targeting XIAP induce apoptosis and enhance chemotherapeu-
tic activity [140]. These validations for XIAP as an important gate keeper to the
apoptosis cascade have led to the launching of phase I clinical trials of an
XIAP-specific ASON designed to stimulate apoptosis in cancer cells [141]. An
alternative approach to suppress IAP function utilizes short peptides or small
molecules that mimic IAP antagonists. In an intracranial malignant glioma
xenograft model in vivo, synthetic peptides that mimic IAP antagonists Smac
and HtrA2 are able to induce complete regression of the tumors caused by
TRAIL-mediated apoptosis without detectable toxicity to normal brain tissue
[120]. Similarly, non-peptidyl small-molecule XIAP antagonists screened from
combinatorial chemical libraries have been shown to sensitize cancer cells to
chemotherapeutic drugs and to suppress growth of established tumors in
xenograft models in mice, while displaying little toxicity to normal tissues [116,
142]. Clearly, the effective tumor suppression activities of these IAP antago-
nists warrant further studies into their applicability in anticancer regimens.

Conclusions

Cancer is the consequence of parallel pathways that lead to both inappropriate
cell proliferation and aberrant control of apoptosis. The inherent suppression
of apoptosis in cancer cells has emerged to be a fundamental mechanism of
tumor formation, progression and resistance to therapy. Advances made in elu-
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cidating the underlying mechanisms for the inhibition to apoptosis in tumor
cells have identified important therapeutic targets and facilitated the develop-
ment of novel strategies for resensitizing cancer cells to apoptosis. As evident
in the leaps and bounds made in our understanding of apoptosis in cancer, clin-
ical trials in progress are employing new approaches that are designed to
directly modulate key apoptosis regulators. We anticipate that future advances
will continually be made to these rational molecular approaches, such that
apoptosis-based cancer therapies will match the diversity of the disease itself.
Although much remains to be learned regarding apoptosis in cancers as well
as other aspects of resistance and tumorigenesis, progress made to date indeed
justifies our optimism that eradicating this disease will be a reality.
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