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Abstract. Oncogenes encoded by human tumor viruses play integral roles in the viral conquest of the
host cell by subverting crucial and relatively non-redundant regulatory circuits that regulate cellular
proliferation, differentiation, apoptosis and life span. Human tumor virus oncoproteins can also dis-
rupt pathways that are necessary for the maintenance of the integrity of host cellular genome. Some
viral oncoproteins act as powerful mutator genes and their expression dramatically increases the inci-
dence of host cell mutations with every round of cell division. Others subvert cellular safeguard mech-
anisms intended to eliminate cells that have acquired abnormalities that interfere with normal cell divi-
sion. Viruses that encode such activities can contribute to initiation as well as progression of human
cancers.
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Viruses and cancer

Viruses are obligatory intracellular parasites and hence their life cycles are
irrevocably coupled to that of their host cells. Due to the limited coding capac-
ity of viral genomes that is imposed by packaging limits, viruses have devel-
oped strategies to target host cellular regulatory structures and reprogram them
for their own purposes. The interplay between a virus and its host cell is a fas-
cinating area of study; during co-evolution host cells have developed intricate
defense strategies to restrict viral replication, whereas the intruding viruses
have evolved to thwart host cellular antiviral defense mechanisms (reviewed in
[1]). Non-productive viral infections can arise if a host cell is intrinsically inca-
pable of supporting the viral life cycle or if the viral genome is mutated and
rendered replication defective. Under such conditions viral functions are aber-
rantly expressed but no infectious progeny is produced, which can have per-
ilous consequences for the host cell (reviewed in [2]).

Approximately 20% of all human cancers may have a viral etiology
(reviewed in [3]). The concept of viral carcinogenesis was originally derived
from studies with animals where infectious entities, many of which were later
identified as retroviruses, were shown to cause formation of malignant tumors.
In some rare cases, retroviruses can contribute to carcinogenesis by insertion-
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al mutagenesis, where integration of the provirus causes high-level dysregu-
lated expression of a cellular proto-oncogene or disruption of a tumor sup-
pressor. More frequently, however, retroviruses “pick up” cellular proto-onco-
gene sequences during their replication cycles. Since this process is generally
associated with concomitant deletion of viral coding sequences, many onco-
genic retroviruses are intrinsically defective for completing the infectious life
cycle, and require normal “helper” viruses for replication. Replication of retro-
viral genomes involves the viral reverse transcriptase enzyme that lacks proof-
reading mechanisms, and thus is considerably more error-prone than host
chromosome replication. Moreover, the acquired host cell-derived sequences
do not contribute to the viral life cycle and are not subject to the same degree
of mutational restriction as the viral genome. Hence they will accumulate
mutations at a significantly higher rate than the remainder of the retroviral
genome. In rare cases, the resulting expression of specific mutated versions of
such retrovirally transduced cellular genes can endow the infected host cell
with a growth advantage relative to the surrounding uninfected cells, and a
tumor may form (reviewed in [4]).

Even though the concept of oncogene activation and transmission by retro-
viruses has not been clearly documented in human cancers, the recognition
that retrovirally transmitted oncogenes represent specifically altered versions
of cellular proto-oncogenes had a major impact on our understanding of car-
cinogenic mechanisms. In human cancers, proto-oncogenes are frequently
mutated and activated through cell intrinsic mechanisms, including point
mutations, gene amplification, gene fusion, or alterations that lead to increased
mRNA or protein stability. Moreover, activating mutations of oncogenes iso-
lated from human cancers are often identical to those originally discovered
with retrovirally activated oncogenes [5].

Oncogenes of human tumor viruses are virally encoded genes that play
integral roles for the viral life cycle. To fulfill their roles in the viral life cycle,
human tumor virus oncogenes target critical cellular regulatory circuits,
including cellular proto-oncogenes and tumor suppressor pathways, and cause
their activation or inactivation, respectively.

Some viral oncogenes also subvert cellular processes that are necessary for
maintaining genomic integrity of the host cell. Hence, some human tumor
viruses also contribute to human carcinogenesis by creating a cellular milieu
that is conducive for the generation and accumulation of activating mutations
of cellular oncogenes and/or inactivating mutations of tumor suppressors in the
host genome. Such viruses contribute not only to initiation but also to pro-
gression of human cancer.

Human papillomaviruses and carcinogenesis

Papillomaviruses are ubiquitous non-enveloped viruses with small 8-kb dou-
ble-stranded DNA genomes. Only one of the DNA strands is actively tran-
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scribed, and the complementary strand does not contain any coding informa-
tion. The papillomavirus genome can be divided into three parts. The early
coding region encodes approximately seven open reading frames (ORFs).
Individual early ORFs are denoted by the letter “E” and a number according
to their relative molecular size. The lower the number, the longer the corre-
sponding ORF. The late coding region consists of two “L” ORFs, which
encode the viral capsid proteins. The non-coding region contains multiple cis
regulatory elements that modulate viral transcription and genome replication
(Fig. 1A) (reviewed in [6]). Approximately 200 different human papillo-
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Figure 1. (A) Schematic depiction of the double-stranded circular genome of high-risk HPV-16. Only
one of the two DNA strands is actively transcribed and contains all the coding information. The dif-
ferent early (E) and late (L) open reading frames are encoded using each of the different possible
phases of translation as indicated by the concentric arcs. The long control region (LCR) does not con-
tain extensive coding potential but contains various cis elements that are necessary for the regulation
of viral transcription and replication. The position of the major early promoter within the LCR is indi-
cated by an arrow. See text for details. (B) Representation of integrated HPV LCR/E6/E7 sequences
in cervical cancer lines. The HPV genes are expressed from the viral promoter within the LCR (indi-
cated by an arrow) expression is dysregulated due to transcriptional and non-transcriptional mecha-
nisms. See text for details.



maviruses (HPVs) have been identified, and additional types likely exist
(reviewed in [7]). HPVs display a pronounced tropism for squamous epithelial
cells, and approximately 30 HPVs specifically infect mucosal epithelia. The
mucosal associated HPVs are classified as “high-risk” and “low-risk” accord-
ing to the propensity for malignant progression of the lesions that they cause.
Low-risk HPVs cause benign warts, which have an extremely low risk for
malignant progression. In contrast, infections with high-risk HPVs account for
more than 99% of all cervical carcinoma. Worldwide, in excess of 470,000 cer-
vical cancer cases are newly diagnosed each year, and cervical cancer remains
a leading cause of cancer death in young women. Since no HPV-specific ther-
apies exist, there are very limited regimens for treatment of late stage invasive
cervical cancer, and the death rate has remained unacceptably high at approx-
imately 30% (reviewed in [8]). Cervical cancer incidence is much lower in
countries where there is broad access to preventive cytology-based screening
programs that allow for detection of potentially pre-cancerous high-risk HPV-
associated squamous intraepithelial lesions (SILs). In the US cervical carcino-
ma accounts for approximately 6% of all cancer cases (13500 per year), and
remains frequent in medically underserved segments of the populations.
Approximately 20% of human oral cancers, particularly oropharyngeal carci-
nomas, are also high-risk HPV positive [9]. A fraction of other anogenital tract
malignancies such as penile cancer in males and vulvovaginal cancers in
females (reviewed in [10]), as well as anal carcinomas that frequently occur in
AIDS patients (reviewed in [11]), are also associated with high-risk HPV
infections. Even though preventive vaccination strategies using recombinant
empty capsid particles yielded promising results [12], it will be decades before
they might have a major impact on the incidence of HPV-associated disease
(reviewed in [13]).

Due to the small size of their genomes, HPVs do not encode key, rate-lim-
iting replication enzymes, and thus these viruses have adopted a parasitic
replication strategy to exploit the cellular DNA replication machinery.
Establishing and maintaining a cellular environment conducive for viral
genome synthesis is paramount since the HPV life cycle is tightly linked to
the differentiation status of the infected keratinocyte. The squamous epitheli-
um is a multilayered organ and only the basal layer contains undifferentiated,
actively dividing cells. These cells are the initial targets for infection, and
HPVs gain access to these cells either through an injury or at the squamo-
columnar transformation zone where basal-like epithelial cells are more read-
ily accessible. Expression of late genes and production of viral capsids, how-
ever, only occurs in differentiated epithelial cells. In a normal squamous
epithelium, cellular differentiation and proliferation are tightly coupled
processes, and cells terminally withdraw from the cell division cycle when
they undergo differentiation. To allow for viral genome replication in these
growth-arrested cells, HPVs encode regulatory proteins that can uncouple
these processes (reviewed in [6]). Consistent with this notion, high-risk HPV
E6 and E7 proteins functionally compromise the p53 and retinoblastoma
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(pRB) tumor suppressors, respectively [14, 15]. In addition, high-risk HPV
E6 can activate transcription of hTERT, the catalytic protein subunit of human
telomerase [16].

Infection of the anogenital tract with high-risk HPVs is through sexual
contact and is quite frequent in the sexually active population [17]. Most
infections with high-risk HPVs are transient and do not cause any clinical
symptoms. Persistent high-risk HPV infections, however, can cause poten-
tially pre-malignant SILs. Malignant progression of such lesions is an overall
rare event that can take decades to occur (reviewed in [18]). An important
hallmark of malignant progression of lesions caused by high-risk HPV infec-
tion is the frequent integration of the viral sequences into the host cellular
genome. HPV genome integration does not cause insertional mutagenesis,
and even though HPVs frequently integrate near common chromosomal frag-
ile sites [19], there are no specific integration HPV sites in the human genome
[20]. Integration disrupts the integrity of the viral genome and causes a cellu-
lar growth advantage due to increased mRNA stability and expression levels
of the remaining viral transcripts [21]. Only the HPV E6 and E7 genes remain
consistently expressed in HPV-positive cervical cancers (Fig. 1B). HPV E6
and E7 encode small proteins of approximately 100 and 160 amino acid
residues, respectively. They lack enzymatic or specific DNA binding activi-
ties and appear to function by associating with cellular protein complexes,
thereby subverting their biological functions (reviewed in [22]). Ectopic
expression of high-risk HPV E6 and E7 in primary human epithelial cells
causes life span extension and permits immortalization [23, 24]. When grown
under organotypic conditions, HPV E6/E7-expressing keratinocytes form
structures that are reminiscent of high-grade pre-cancerous lesions [25].
Moreover, when transgenic mice with expression of HPV-16 E6 and E7 tar-
geted to basal epithelial cells are exposed to continuous low doses of estro-
gen, they develop cervical cancers that mirror the human disease [26].
Sustained expression of E6 and E7 is necessary for maintenance of the trans-
formed phenotype of human cervical cancer-derived cell lines even after they
have been in culture for decades and have accumulated a plethora of genom-
ic alterations (reviewed in [6]).

Since the HPV genome suffers irreversible physical disruption as a conse-
quence of integration into a host chromosome, carcinogenic progression of a
high-risk HPV-infected cell is a terminal event and not part of the normal viral
life cycle. Rather, malignant progression ensues as a result of dysregulated
expression of HPV E6/E7 genes, which normally play essential roles for the
viral life cycle (reviewed in [22]).

Remarkably, the majority of human solid tumors have abnormalities in the
pRB and p53 tumor suppressor pathways and maintain stable telomere length
(reviewed in [27]), illustrating the notion that the signal transduction pathways
targeted by high-risk HPV E6 and E7 oncoproteins are also rendered dysfunc-
tional in many other human solid tumors that are not HPV associated.
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HPVs, genomic instability and malignant progression

Genomic instability is a defining characteristic of human solid tumors, and
human cancer has been described as a disease of genomic instability [28].
There is much debate as to whether genomic destabilization mechanistically
contributes to malignant progression, or if it arises as a consequence of cell
cycle checkpoint abnormalities and/or continued division of cells containing
chromosomes with eroded telomeres. The mutation rate of normal human cells
is exceedingly low, and thus may not suffice to permit accumulation of the
multitude of genetic alterations that are necessary for multistep human car-
cinogenesis (reviewed in [29]). Moreover, human cancer-like cells can be gen-
erated in vitro by targeting a minimal set of critical regulatory pathways
including the pRB and p53 tumor suppressors, protein phosphatase 2A, and
telomerase, all of which are also commonly rendered abnormal in human can-
cers (reviewed in [30]). Such in vitro generated human tumor-like cells retain
a high degree of genomic stability [31]. This result lends powerful support to
the notion that genomic stability does not inevitably ensue in cells with
abnormal patterns of proliferation. Genomic instability may require additional
alterations or a combination of molecular changes to enable an emerging
tumor cell to accumulate the necessary oncogenic mutations, and hence may
represent a vital step for cancer formation in vivo [32].

Multiple cooperating mechanisms likely contribute to genomic destabiliza-
tion in tumors (reviewed in [33]). Subversion of “quality control” functions
such as cell cycle checkpoints and DNA repair functions allow cells that have
accumulated mutations to remain in the proliferative pool. Other oncogenic
hits, however, may directly affect genomic instability by generating a mutator
phenotype, which enhances the mutation rate at every round of DNA synthe-
sis and cell division of an emerging tumor cell [34, 35].

Cervical cancers exhibit both structural and numerical chromosomal aber-
rations and genomic instability is observed in early pre-malignant lesions
(reviewed in [36]). In addition, ectopic expression of high-risk HPV E6 and E7
in primary human cells can each interfere with genomic stability. In experi-
ments where cells were selected for acquiring resistance to the drug N-phos-
phonoacetyl-L-aspartate (PALA), HPV E6-expressing cells accumulated struc-
tural chromosomal abnormalities, whereas numerical chromosomal abnormal-
ities and aneuploidy emerged in HPV E7-expressing cells [37].

Tetrasomy/multinucleation

Morphological examination of HPV-associated cervical lesions revealed the
presence of distinct nuclear abnormalities, including enlarged nuclei as well
as multinucleation (reviewed in [38]). Enlarged nuclei are a hallmark of
increased ploidy and numerical chromosomal abnormalities. Lesions caused
by high-risk HPV infections, but not those associated with low-risk HPV
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infections, showed an increased degree of tetrasomy [39, 40]. Ectopic high-
risk HPV E6 or E7 expression can each independently induce tetraploidiza-
tion both in actively dividing basal and intrinsically growth-arrested
suprabasal cells [41, 42]. The mechanism of tetrasomy induction by HPV
oncoproteins has not been delineated. Expression of high-risk HPV E6 may
cause increased ploidy and multinucleation through inactivation of the p53
tumor suppressor [43]. Interestingly, however, the ability of HPV E7 to
induce tetrasomy is unrelated to the capacity to inactivate the retinoblastoma
tumor suppressor [42].

Tetrasomy is often regarded as a prelude to aneusomy, since, as discussed
in more detail later, such cells are more prone to mitotic errors when they
undergo additional rounds of cell division (reviewed in [44]). Tetraploidy aris-
es in cells that undergo DNA synthesis without completing nuclear and cellu-
lar division, most frequently as a consequence of cytokinesis problems. It is
important to point out that a tetraploid cell will have to be able to successful-
ly complete a subsequent cell division to generate aneuploid progeny. Cells
that re-encounter cytokinesis problems, however, will become polyploid
and/or multinucleated (reviewed in [44]). The emergence of cells with severe
nuclear abnormalities may be of relevance diagnostically, but since such cells
were generated through persistent cytokinesis defects, and thus are incapable
of undergoing full cell division, they represent abortive structures [48, 49] that
do not contribute to malignant progression.

Centrosome duplication errors, multipolar mitoses and aneusomy

Aneuploidy arises as a consequence of chromosome segregation errors during
mitosis. One of the typical mitotic abnormalities that pathologists have
observed in high-risk HPV-associated pre-malignant lesions and cancers are
tri-polar mitotic figures (Fig. 2) [45]. Such abnormalities can arise when cells
contain supernumerary mitotic spindle pole bodies, centrosomes. Centrosomes
consist of two centrioles that are surrounded by a pericentriolar protein matrix,
which functions to anchor microtubules during mitosis. Immediately after cell
division each daughter cell contains a single centrosome, which undergoes
semi-conservative duplication in exact synchrony with the cell division cycle.
Entry into S phase of the cell division cycle is believed to generate a “licens-
ing signal” that renders the centrosome competent for duplication. Once a cen-
trosome is licensed for duplication the two centrioles separate and each serves
as a template for synthesis of a single daughter centriole. Daughter centriole
synthesis is complete at the end of S phase, and the resulting two centrosomes
form the mitotic spindle pole bodies that are critical for bipolar mitosis
(Fig. 3). The mechanistic details of this unique and important cellular process
remain enigmatic (reviewed in [46]).

Abnormal centrosome numbers can arise by two principal mechanisms. As
described in the previous section, a cell that experiences cytokinesis problems

Viral carcinogenesis and genomic instability 185



186 K. Münger et al.

Figure 2. Examples of mitotic abnormalities in HPV-16 oncogene-expressing cells. HPV-16 E7 onco-
gene expression causes centrosome duplication errors, which can give rise to tripolar metaphases (A),
which can undergo anaphase progression (B). Multiple centrosomes (indicated by arrowheads) in
HPV-16 E7-expressing cells can undergo coalescence and form abnormal bipolar metaphases (C) and
anaphases (D). Highly irregular multipolar metaphase in HPV-16 E7-expressing cells (E). HPV onco-
gene-expressing cells also contain centrosome-independent mitotic abnormalities including anaphase
bridges (F). These may be caused by dicentric chromosomes that might have formed as a consequence
of breakage fusion bridge cycles. See text for details.



progresses into a G1-like phase without completing cellular and/or nuclear
division (Fig. 3). Hence, the resulting tetraploid and/or binucleated cell con-
tains two centrosomes. If such a cell re-enters the cell division cycle, it will
also duplicate its centrosomes and enter mitosis with four centrosomes. Each
individual centrosome may then act as a mitotic spindle pole body and a tetrap-
olar mitotic spindle can form. Some centrosomes may not fully separate and
multiple centrosomes may form a single mitotic spindle pole leading to tripo-
lar or bipolar mitosis (Fig. 2). If such cells can complete cell division and do
not re-encounter cytokinesis problems (which caused the formation of the
tetraploid cell during the previous round of the cell division cycle), there is an
increased probability for chromosome missegregation, leading to formation of
aneuploid daughter cells (reviewed in [47]). In this scenario, centrosome
abnormalities are generated through normal duplication cycles and arise as a
consequence of cytokinesis defects and not through aberrant synthesis. In
many cases, however, including in cells lacking p53 tumor suppressor func-
tion, cytokinesis errors persist [48]. Such cells may be able to reduplicate their
chromosomes and centrosomes but remain incapable of successfully undergo-
ing cell division, and acquire progressive nuclear abnormalities including large
multilobulated nuclei, multiple nuclei or micronuclei (Fig. 3). Such abnormal
cells are ultimately removed form the proliferative pool by apoptosis, senes-
cence or other abortive mechanisms, and hence are unlikely to contribute to
carcinogenic progression [48, 49].

Centrosome abnormalities, however, may also emerge as a primary defect
in cells through uncoupling of centrosome duplication from the cell division
cycle. In such a scenario, a single maternal centriole may serve as a template
for the synthesis of more than one daughter centrioles during S phase, or alter-
natively newly formed daughters may be immediately “licensed” to serve as
templates for the synthesis of granddaughters (Fig. 3). In the late 19th centu-
ry, the eminent German embryologist Theodor Boveri performed studies with
polyspermic embryos and recognized that abnormal centrosome numbers gave
rise to abnormal multipolar mitoses [50, 51], which severely compromised the
viability of the resulting embryos. Based on earlier observations that human
cancer cells frequently displayed abnormal multipolar mitotic figures [52], he
first postulated that “a single multipolar mitosis going on in a healthy tissue,
caused perhaps by the simultaneous multiple division of the centrosome, might
produce the primordial cell of a malignant tumor” [53]. This attractive hypoth-
esis, however, remains largely unproven experimentally.

Like many other human tumors, cervical cancers as well as high-risk HPV-
associated pre-malignant lesions contain centrosome abnormalities [49], and
their incidence appears to increase in parallel with malignant progression [54].
In addition to numerical aberrations, high-risk HPV-associated lesions also
display structural centrosome abnormalities, including excess pericentriolar
material [49], but the mechanistic basis of the structural defects has not been
assessed in detail. Cervical cancer is unique among human solid tumors in that
the fundamental carcinogenic insult that causes these tumors, infection with
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Figure 3. Centrosome abnormalities in human tumors can arise by different mechanisms. HPV-16 E7
oncoprotein expression in primary human cells induces centrosome duplication errors that can lead to
mitotic abnormalities, chromosome missegregation and aneuploidy. The retinoblastoma tumor sup-
pressor restricts DNA replication in normal human cells by forming a transcriptional repressor com-
plex with members of the E2F transcription factor family. HPV E7 associates with pRB and induces
its proteolytic degradation. E2F transcription factors now act as activators of gene expression. Cyclin
E is a transcriptional target of E2F and results in increased cdk2 activity. Initiation of DNA synthesis
also generates a “licensing signal” that renders each of the centrioles competent for duplication.
Normal centrosome duplication is coupled to S-phase progression, and each maternal centriole serves
as a template for a single daughter. In addition to inducing aberrant S-phase progression, HPV-16 E7
expression uncouples centrosome duplication from the cell division cycle, either by retaining the
licensed state of the maternal centriole (“persistent licensing”), which causes the formation of multi-
ple daughters from a single maternal template, or the newly synthesized daughters in E7-expressing
cells may be immediately licensed for duplication, causing formation of granddaughters [102]. Cells
that acquired supernumerary centrosomes will either enter a multipolar metaphase or an abnormal
bipolar metaphase when individual centrosomes coalesce and form a single mitotic spindle pole body.
Abnormal metaphase to anaphase progression may be restricted through a checkpoint, as there is an
eight- to tenfold difference between abnormal metaphases and anaphases in HPV-16 E7-expressing
cells. If such abnormal cells can complete nuclear and cellular division, aneuploid progeny may be
formed. There may be an additional checkpoint that constrains cell division of abnormal mitotic cells,
as it has been shown that some tumors remain largely diploid despite the presence of excessive numer-
ical centrosome abnormalities and related mitotic abnormalities [103]. Cells that encounter cytokine-
sis defects may decondense their chromosomes and reenter a tetraploid G1-like state. Alternatively
cells may complete nuclear, but not cellular, division and become binucleated. Tetraploid cells may
reenter the cell division cycle causing additional reduplication of centrosomes. Centrosome abnor-
malities in HPV-16 E6-expressing cells do not arise in diploid cells, but accumulate in parallel ...
(Continued on next page)



high-risk HPVs, is known at a molecular level (reviewed in [22]). Hence it
affords the opportunity to determine whether ectopic expression of HPV onco-
genes in normal human cells could induce centrosome abnormalities.
Populations of primary human epithelial cells with stable expression of high-
risk HPV genomes or HPV E6 or E7 each showed an increased incidence of
numerical centrosome abnormalities [49, 55], and up to 30% of all mitoses in
cells co-expressing E6 and E7 showed evidence of centrosome-associated
mitotic abnormalities. Most notably, expression of low-risk HPV-encoded E6
and/or E7 expression did not affect centrosome homeostasis [49].

Since the high-risk HPV E6 and E7 oncoproteins target distinct albeit coop-
erating oncogenic cellular pathways, the finding that cells expressing HPV E6
or E7 each developed centrosome abnormalities was initially somewhat per-
plexing. More careful analysis of E7-expressing keratinocytes revealed that
centrosome abnormalities were detected in mononuclear, diploid cells. In con-
trast, centrosome abnormalities in HPV E6-expressing cells were mostly con-
fined to cells with overt nuclear abnormalities such as multinucleation or
enlarged, multilobulated nuclei. Hence, centrosome abnormalities in high-risk
HPV E6- and E7-expressing cells arise by different mechanisms. In E6-
expressing cells, centrosomes accumulate as a consequence of persistent
cytokinesis defects that are most likely caused by subversion of p53 tumor
suppressor function. Since such abnormal cells often expressed markers of cel-
lular senescence, they are unlikely to remain in the proliferative pool, and may
not give rise to viable daughters. In contrast, HPV E7 expression triggers cen-
trosome abnormalities in normal diploid cells [56].

Consistent with Boveri’s hypothesis that oncogenic insults may trigger cen-
trosome abnormalities by “the simultaneous multiple division of the centro-
some”, transient expression of HPV-16 E7 was shown to rapidly cause centro-
some abnormalities in normal cells within one or two cell division cycles.
Moreover, expression of HPV-16 E7 in a U2OS human osteosarcoma cell line
with stable expression of GFP-centrin that marks individual centrioles, demon-
strated that E7 expression is sufficient to induce aberrant centriole synthesis.
As expected, expression of the HPV E6 oncoprotein did not cause similar
defects [56].

Diploid human cells with overduplicated centrosomes may undergo multi-
polar mitoses (Figs 2, 3), but it is difficult to envision how daughter cells gen-
erated by multipolar mitosis from a diploid cell may actually gain chromoso-
mal material rather than losing chromosomes and becoming hypodiploid. As
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Figure 3. (Continued from previous page) ... with nuclear abnormalities. This may be related to the
ability of HPV E6 to inactivate the p53 tumor suppressor that is a component of mitotic checkpoint
control, and p53-deficient cells have been shown to develop centrosome and nuclear abnormalities
as a consequence of cytokinesis failure [48]. Cells with persistent cytokinesis defects will accumu-
late progressive nuclear and centrosome abnormalities, but since they are defective for completing
cell division, they are unlikely to undergo clonal expansion and contribute to carcinogenic progres-
sion. Such cells may be of diagnostic significance but they represent abortive structures that are
eventually removed from the replicative pool [48, 49]. See text for detail.



mentioned previously, cells with abnormal centrosome numbers are not neces-
sarily destined to undergo multipolar cell division. Indeed, we observed an
approximately tenfold difference in the incidence of multipolar metaphases
versus multipolar anaphases, suggesting that there may in fact be control
mechanisms that thwart progression of multipolar mitotic processes in diploid
cells (Fig. 3) [56]. As mentioned previously, multiple centrosomes can form a
single mitotic spindle pole body through centrosome coalescence (reviewed in
[57]). Under such conditions, a diploid cell may undergo bipolar, albeit poten-
tially asymmetric, cell division with abnormal chromosome segregation
(Fig. 2). In such a scenario, one of the resulting daughters may gain chromo-
somal material and become aneuploid (Fig. 3). Centrosome coalescence and
associated mitotic abnormalities have indeed been observed in HPV oncogene-
expressing cells [58].

Boveri’s prediction that centrosome duplication errors in normal cells may
contribute to carcinogenesis [53] could not yet be proven in this system; how-
ever, recent studies with transgenic mice that express HPV-16 E6 or E7 sepa-
rately yielded results that are at the very least consistent with his hypothesis.
Mice engineered to express HPV-16 E7 in basal epithelial cells developed
high-grade cervical dysplasia that progressed to frank cervical carcinomas. In
contrast, HPV-16 E6-expressing mice only developed low-grade cervical dys-
plasia, which failed to undergo malignant progression [59]. Not surprisingly, a
similar fraction of cells exhibited centrosome abnormalities in lesions of HPV
E6- or E7-expressing animals [59]. Hence, detection of centrosome abnormal-
ities in a tumor per se cannot be used as a generic predictor of carcinogenic
progression, but the finding that transgenic HPV-16 E7-expressing animals
develop tumors is consistent with Boveri’s model that aberrant centrosome
duplication may contribute to tumorigenesis. In contrast, centrosome abnor-
malities that occur in cells with nuclear abnormalities may represent abortive
events triggered by persistent cytokinesis defects.

Even though pRB inactivation can give rise to mitotic abnormalities and
cytokinesis problems due to mitotic checkpoint abnormalities [60], expres-
sion of HPV-16 E7 can induce centrosome duplication errors in cells that lack
pRB as well as the related pocket proteins p107 and p130 [61]. Hence, this
ability of HPV-16 E7 is at least in part independent of the ability to target pRb
and/or p107 and p130. Strikingly, however, inhibition of cdk2 activity in E7-
expressing cells abrogates the ability of E7 to induce aberrant centrosome
synthesis, whereas it does not similarly affect normal centrosome duplication.
Treatment of E7-expressing cells with the small molecule cdk2 inhibitor
indirubin-3'-monoxime dramatically decreased the steady level of centrosome
abnormalities in E7-expressing cells, and strikingly reduced the degree of
aneuploidy in such cells [62]. Hence, whereas cdk2 activity may not be strict-
ly necessary for cell division and centrosome duplication [63, 64], aberrant
cdk2 activity may cause aberrant centriole synthesis and centrosome abnor-
malities [62].
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Other mitotic abnormalities in HPV oncogene-expressing cells

Examination of mitotic structures in HPV-16 E6- and/or E7-expressing cells
also revealed evidence for mitotic abnormalities in cells with normal centro-
some numbers. A fraction of the bipolar mitoses showed evidence for lagging
chromosomal material [65]. The mechanistic basis has not been investigated in
detail, and it is not clear whether the observed material represents entire chro-
mosomes or sub-chromosomal fragments. Nevertheless, such unattached DNA
structures may be aberrantly segregated during cell division and could con-
ceivably contribute to aneuploidization.

Examination of anaphase cells revealed an increased incidence of anaphase
bridges (Fig. 2), indicative of dicentric chromosomes that may have been gen-
erated by breakage fusion bridge (BFB) cycles [66]. Chromosome fusions can
occur when telomeres are eroded [67], or when mitosis proceeds in the pres-
ence of double-strand DNA breaks. Anaphase bridges were observed in early
passage primary cells that possess long telomeres [65]. Hence, dicentric chro-
mosomes in HPV-16 E7-expressing cells are likely caused by double-strand
DNA breaks. Indeed, staining of HPV E7 oncoprotein-expressing cells with an
antibody specific for phosphorylated histone H2AX (γ-H2AX) revealed the
presence of distinct foci that are indicative of double-strand DNA break repair
[65]. It is not clear whether E7 induces double-strand DNA breaks, whether it
inhibits DNA break repair, or if it somehow stabilizes γ-H2AX-positive chro-
matin structures. The presence of double-strand DNA breaks in E7-expressing
cells could provide for a mechanistic rationalization of the observation that
HPV-16-expressing cells have a higher propensity for integration of plasmid
DNA [68]. This suggests that integration of the HPV genome into a host chro-
mosome, which frequently occurs during malignant progression (Fig. 1B),
might be triggered by expression of the high-risk HPV E7 oncoprotein. The
HPV-16 E6 oncoprotein may interfere with single-strand DNA break repair by
interacting with the repair protein XRCC1 [69].

High-risk HPV E6 and E7 proteins can subvert the functions of multiple
mitotic cell cycle checkpoints [70, 71]. This may be related to the ability of
HPV E6 to target the p53 tumor suppressor protein. HPV E7-induced pRB
destabilization may also be significant, since loss of pRB function compro-
mises the accuracy of mitosis by causing aberrant expression of the mitotic cell
cycle checkpoint protein mad2 through an E2F-dependent pathway [60].
Transcriptional profiling analyses have confirmed dysregulation of mitotic
functions in cervical cancer and high-risk HPV-expressing cell lines [72, 73].

Genomic instability induced by other viruses

Infections with human tumor viruses other than high-risk HPVs also cause
specific aberrations of cellular and nuclear morphology. The human T cell
leukemia virus HTLV-1 causes adult T cell leukemia/lymphomas (ATL),
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which are characterized by the appearance of cells containing characteristic
flower-shaped multilobulated nuclei. The nuclear abnormalities of these
“flower cells” are likely caused by HTLV-1 infection. Comparative genomic
hybridization analysis showed evidence for complex and dynamic aneuploidy,
particularly in highly aggressive ATL [74, 75]. The HTLV-1 tax oncogene can
interact with the mitotic checkpoint protein mad1 [76], and thereby subverts
mitotic checkpoint control. In addition, HTLV-Tax can interfere with cellular
DNA repair by forming a complex with the chk2 checkpoint kinase [77].
Indeed Tax accumulates in discreet nuclear foci, the “Tax speckled structures”
(TSS) [78], which also contain chk2 and the DNA damage response factor
53BP1 [77]. The Tax protein can also form a complex with the chk1 protein
[79]. Hence, similar to HPV oncogenes, HTLV-1 Tax can interfere with DNA
damage repair as well as chromosomal segregation (reviewed in [80]), and Tax
expression in primary human cells causes the emergence of numeric as well as
structural genomic alterations [81].

Expression of the HIV-1 vpr gene was reported to cause multipolar mitotic
spindle formation, centrosome abnormalities and chromosome breaks that lead
to gene amplification and micronuclei formation in some cells [82–84].

Epstein-Barr Virus (EBV) is the only known human member of the γ-1 her-
pesvirus (lymphocryptovirus) family with a large 184-kb double-stranded DNA
genome. EBV infections are very common in the human population and cause
infectious mononucleosis. EBV infections can also contribute to B and T cell
lymphomas, oropharyngeal carcinomas, gastric carcinomas and potentially
other human tumors, often after a lengthy latency period. Immunosuppression
as well as accumulation of cellular mutations may contribute to carcinogenic
progression. EBV encodes a number of genes that have oncogenic activities in
tissue culture systems (reviewed in [85]). It has recently been reported that
expression of the EBV oncoprotein latent membrane protein 1 (LMP-1) in
human epithelial cells inhibits DNA repair processes and induces micronucle-
us formation. This suggests that expression of some EBV oncoproteins may
affect host genomic stability, thereby facilitating malignant progression [86].

Kaposi’s sarcoma-associated herpesvirus (KSHV) alias human herpesvirus 8
(HHV 8) is a recently described member of the γ-2 herpesvirus (rhadinovirus)
family [87]. KSHV infections cause Kaposi’s sarcoma, some forms of multi-
centric Castleman’s disease, as well as other B cell proliferative diseases includ-
ing body cavity-based and primary effusion lymphomas (reviewed in [88]).
KSHV encodes a viral D-type cyclin, cyclin K, that induces hyperproliferation
through subversion of the retinoblastoma tumor suppressor pathway. In the
absence of p53 function, cyclin K-expressing cells can undergo multiple rounds
of S phase (Fig. 3). Due to cytokinesis defects, cells become polyploid and accu-
mulate supernumerary centrosomes, which can result in aneuploidy [89, 90].
Infection of primary human umbilical vein endothelial cells with KSHV causes
marked centrosome-associated mitotic abnormalities, misaligned and lagging
chromosomes, anaphase bridges and pronounced nuclear abnormalities [91],
suggesting that some KSHV proteins can interfere with genomic integrity.
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The large tumor antigen (TAg) of SV40 forms a complex with the Nijmegen
breakage syndrome protein (NBS1) that plays a key role in modulating dou-
ble-strand DNA break repair. This leads to aberrant replication of cellular and
viral genomes, resulting in polyploidy and increased SV40 genome copy num-
bers in infected cells [92]. In addition, SV40 TAg associates with bub-1 and
bub-3 mitotic checkpoint proteins, thereby disturbing mitotic fidelity [93].
Ectopic expression of large tumor antigens encoded by some JC human poly-
omavirus strains were also reported to trigger numeric and structural chromo-
some aberrations [94].

Hepatitis B virus is a human member of the hepadnaviridae family that
causes hepatitis. Chronic hepatitis can progress to cirrhosis and ultimately to
hepatocellular carcinoma. Progression is a slow process that often takes sever-
al decades to occur [95]. BV-associated liver cancers are genomically unstable
and the HBV X protein (Hbx) can induce supernumerary centrosomes and
multipolar spindles that are associated with defective mitoses and abnormal
chromosome segregation as well as formation of multinucleated cells and
micronuclei [96, 97]. Treatment of Hbx-expressing cells with antagonists of
the Ran GTPase interacting nuclear export receptor Crm1 [96] or an inhibitor
of mitogen-activated protein/extracellular signal-regulated kinase (MEK) 1/2,
reduced the incidence of centrosome abnormalities [97]. Interestingly, the ade-
novirus E1A oncoprotein was also reported to induce centrosome abnormali-
ties through a pathway that depends on the integrity of Ran-dependent nucleo-
cytoplasmic transport [98].

Hence, similar to high-risk HPVs, a number of other human tumor viruses
may not only contribute to initiation of tumorigenesis by targeting cellular con-
trol mechanisms such as the retinoblastoma or p53 tumor suppressor pathways
that would normally restrict proliferation in infected host cells, but also con-
tribute to carcinogenic progression through induction of genomic instability.

Induction of genomic instability and “hit-and-run” carcinogenesis

A credible viral etiology of a given human cancer should conform to Koch’s
postulates or some more recent incarnation of these criteria (reviewed in [99]).
The “hit-and-run” model of carcinogenesis is based on the hypothesis that an
infectious agent may contribute to carcinogenesis by providing only a tempo-
rary oncogenic insult that is not required to persist during later stages of car-
cinogenic progression (reviewed in [100]). As a result, the infectious agent may
no longer be detected in an active form in all cells of a cancer. One rationaliza-
tion of this model may include infectious agents whose sole biological activity
is to destabilize the host genome but, unlike the high-risk HPVs, do not direct-
ly target other cellular regulatory pathways. In such a scenario the mutagenic
stimulus may contribute to initiation of carcinogenesis by providing the neces-
sary genomic mutability that allows for inactivation of cellular signal transduc-
tion pathways that normally restrict cellular proliferation or induce a trophic
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sentinel response in aberrantly proliferating cells. Abrogation of cell cycle
checkpoints, particularly those that ensure mitotic fidelity, may be necessary for
perpetuation of genomic instability, and hence it may be argued that at later
stages of carcinogenic progression the mutator activity provided by such infec-
tious entities may no longer be necessary. Since excessive genomic instability
(“error catastrophe”, [101]) may ensue when the initiating mutator activity is
retained there may in fact be a powerful evolutionary advantage for such a stim-
ulus to be removed. Although attractive, such a model will be very difficult to
prove in experimental models or through epidemiological studies.

Concluding remarks

Studies with DNA tumor virus oncogenes have been instrumental in the dis-
covery of critical growth regulatory pathways that control proliferation, apop-
tosis and differentiation in normal human cells. Based in part on these discov-
eries it has been possible to define a minimal set of regulatory nodes that are
rendered dysfunctional in almost any human solid tumor [27]. Tumorigenic
human cell populations can be generated when these pathways are disrupted in
vitro (reviewed in [30]). Unlike naturally occurring human tumors such artifi-
cially generated human tumor-like cells do not exhibit marked genomic insta-
bility [31]. Thus, it appears that genome destabilization may be a necessary
step to set the stage for carcinogenic progression. It is an exciting possibility
that the study of viral oncoproteins will once again be instrumental in discov-
ering cellular pathways that control the genomic integrity, and that these stud-
ies will have important ramifications for our understanding of tumorigenic
pathways. Cellular processes that control genomic instability may also be
attractive targets for development of novel anticancer therapies. Inhibition of
genomic instability in early pre-malignant lesions may restrain malignant pro-
gression, whereas therapeutic interventions that lead to increased genomic
destabilization in later stage tumors may create genomic chaos [101] that
could interfere with clonal expansion and the viability of the tumor [29].
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