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Aneuploidy, stem cells and cancer
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Summary. Telomeres which protect the individual chromosomes from disintegration, end-to-end
fusion and maintain the genomic integrity during the somatic cell divisions play an important role in
cellular aging. Aging and cancer development are linked with each other because cancer is considered
a group of complex genetic diseases that develop in old cells and, in both, telomere attrition is
involved. Numeric chromosome imbalance also known as aneuploidy is the hallmark of most solid
tumors, whether spontaneous or induced by carcinogens. We provide evidence in support of the
hypothesis that telomere attrition is the earliest genetic alteration responsible for the induction of ane-
uploidy. Dysfunctional telomeres are highly recombinogenic leading to the formation of dicentric
chromosomes. During cell divisions, such complex chromosome alterations undergo breakage fusion
bridge cycles and may lead to loss of heterozygosity (LOH) and gene amplification. Furthermore, we
have provided evidence in support of the hypothesis that all types of cancer originate in the organ- or
tissue-specific stem cells present in a particular organ. Cancer cells and stem cells share many char-
acteristics, such as, self-renewal, migration, and differentiation. Metaphases with abnormal genetic
constitution present in the lymphocytes of cancer patients and in some of their asymptomatic family
members may have been derived from the organ-specific stem cells. In addition, evidence and discus-
sion has been presented for the existence of cancer-specific stem cells. Successful treatment of can-
cer, therefore, should be directed towards these cancer stem cells.

Key words: Aneuploidy, dysfunctional telomeres, fluorescence in situ hybridization, genetic instabil-
ity, stem cell.

Introduction

Cancer is not a single disease. It comprises a group of complex genetic dis-
eases of uncontrolled cell division and is also one of the characteristics of aged
cells. Aging and cancer development, therefore, are linked with each other.
Most cancers are caused by chromosome and gene mutations that accumulate
in a specific tissue or organ during the cellular aging. Genetic instability is
exhibited by aging cells, both in vitro and in vivo, in the form of numerical
(aneuploidy) and structural chromosomal alterations (translocation, deletion,
amplification and inversion) [1]. More than 90% cancers are caused by expo-
sure to environmental carcinogens. The insult inflicted by carcinogens are first
faced by the termini of chromosomes, called telomeres, which are attached to
the inner nuclear wall. Among their many functions, telomeres determine the
domain and stability of individual chromosomes within the nucleus and serve
as guardian of the genome [2]. Functional telomeres are essential for the nor-
mal segregation and maintenance of chromosomes during mitotic and meiotic
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divisions [3]. More recent information has shown that the maintenance of the
telomere depends on interactions with an enzyme, telomerase, with telomeric
proteins, and with some still undiscovered factors regulating the telomeric
functions. Dysfunctional telomeres support the survival of aneuploid cells, a
characteristic of many human and murine cancers.

The single unifying cellular mechanism that influences both aging and can-
cer development is the telomere dynamics [4, 5]. Cancer cells stabilize their
telomere repeats either by a telomerase-dependent pathway or by the telomere-
independent or alternate lengthening of telomere (ALT) pathway [6]. Unlike
the murine somatic cells, human somatic cells lack or have diminished telom-
erase activity. This major difference in human and murine cells can easily
explain why it is difficult to transform normal human cells, but easy to trans-
form mouse cells, in vitro. Mouse and human somatic cells differ in many
other respects, for example, in their responses to oxidative stress [7].

Most hematological neoplasms are known to arise from stem cells, where-
as epithelial malignancies are generally considered to originate in differentiat-
ed organ- or tissue-specific somatic cells. Recently, a hypothesis was proposed
that not only the hematological malignancies but also all solid tumors originate
in organ- or tissue-specific stem cells or their immediate progeny (progenitor)
cells [5, 8, 9]. This hypothesis is based mainly on two recent observations: the
presence of stem cells in each and every human organ or tissue [10—12], and
the presence of poorly differentiated cancer cells signaling a poor prognosis
for patients. Since stem cells, especially embryonic stem (ES) cells, have the
potential to differentiate into all three major tissue lineages, ectoderm, meso-
derm and endoderm and their derivative organs [13—15], it is not unreasonable
to propose that organ- or tissue-specific cancers originate in the organ- or tis-
sue-specific stem cells [2, 8, 9]. Human ES cells have four unique characteris-
tics: (1) self renewal, (2) differentiation into other cell types, (3) migration in
vivo, and (4) cell death under unfavorable conditions [16, 17].

The purpose of this chapter is to discuss, in brief, the relationships between
aneuploidy, stem cells and cancer development. That stem cells and aneu-
ploidy play crucial roles in cancer development and metastasis will also be dis-
cussed in some detail under separate subtitles.

Aneuploidy and carcinogenesis

Mammalian species, in general, contain a diploid (2n) complement of chro-
mosomes in the somatic cells of both sexes. However, cancer cells originating
from the same diploid cells are mostly aneuploid, especially the solid tumors.
Aneuploid constitutions are generally due to random chromosome losses/gains
from non-disjunctions and multipolar mitoses, mostly originating from
tetraploid (4n) cells [18—21]. Tetraploid cells are formed either by fusion of
two diploid (2n) cells or due to the endomitosis of a diploid cell. In addition,
segmental chromosomal losses or gains are due to structural chromosome



Aneuploidy, stem cells and cancer 51

alterations, including translocations, amplifications or deletions of certain seg-
ments. Because of these inherent characteristics, most cancer cells have
genomic heterogeneity. In other words, each cell of a given tumor has its own
chromosomal features except for certain specific common marker chromo-
somes. Inherent chromosomal instability, which can be due to the telomere
erosion, plays a major role in causation of most cancers [22-24].

As early as 1890, von Hansemann [25] first suggested that cancer originates
in an alteration in the genetic content of a cell. Later, Theodore Boveri [18,
26], while working on chromosomes of Ascaris and Paracentrotus sea urchin
eggs, proposed his famous theory of malignancy. According to Boveri’s theo-
ry, the neoplastic properties of a cancer are the consequence of chromosomal
aberrations, and a malignant transformation results from the clonal expansion
of a single genetically altered somatic cell. In our earlier publications we asked
[9], among several questions, ‘Could this somatic cell undergoing neoplastic
transformation be an organ- or tissue-specific stem cell?’. Boveri, who first
introduced the term centrosome [27], postulated that cancer cells are formed
due to abnormal chromosome distribution originating as the consequence of
multipolar mitosis, caused by the formation of multiple centrosomes. Recent
molecular studies have provided strong evidence in support of Boveri’s theory
of malignancy [28—37]. The centrosome is an important actor of the cell divi-
sion machinery. Its malfunction may cause abnormal chromosome segregation
or no segregation at all, resulting in aneuploidy, the hallmark of cancers
[37-46].

The original definition of aneuploidy was deviation of one or more chro-
mosomes from the haploid (1n) state [47], which in the human is 23 chromo-
somes, in mouse 20 chromosomes, in rat 21 chromosomes, in cat 19 chromo-
somes, in Syrian hamster 22 chromosomes and in Chinese hamster 11 chro-
mosomes. Presence of an extra copy (trisomy) or the absence of a chromosome
(monosomy) is generally considered an example of aneuploidy. However,
recently, the term aneuploidy has been used even for the presence of an extra
segment or the deletion of a segment from a chromosome without a gain or
loss in the total chromosome/centromere numbers. Currently, this term is used
ambiguously to encompass all kinds of structural and numerical chromosome
instabilities. Is aneuploidy that is caused by a dysfunctional centrosome, an
early genetic change that initiates cancer formation? Some researchers, includ-
ing the present authors, favor the opinion that aneuploidy indeed is the first
causal step in tumor development. According to the strict classical definition
of aneuploidy, primary leukemia and lymphomas, which do not show numeri-
cal anomalies but are characterized by their specific structural alterations,
including reciprocal translocations and inversions, should not be considered
aneuploid [47]. Presence of t(9;22) in chronic myelogenous leukemia, and
t(8;14) and t(14;18) in different lymphomas are typical examples of human
cancers. Only in the blast phase or at advance stage of the disease have numer-
ical (aneuploidy) and additional structural anomalies been reported.
Practically all cancer types, hematological and solid, contain structural anom-
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alies in their genomes [2, 5, 45, 46, 48, 49]. That structural chromosome anom-
alies precede aneuploidy has even been reported in immortal fibroblast cul-
tures of Li-Fraumani syndromes [50]. The important question is: which comes
first, the numerical alterations (aneuploidy) or the structural modifications in
cancer initiation? The obvious reply is: structural alteration due to telomere
erosion comes first in the multistage carcinogenic process (Fig. 1).
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Figure 1. Pathways for apoptosis, aneuploidy and cancer initiation. Reprinted with permission and
modified after [9].

Telomeres and chromosomal instability

Chromosomal anomalies have long been associated with, and are considered
causal for, congenital birth defects and cancer initiation. The only difference is
that children born with birth defects have minimal chromosomal alteration,
whereas cancer cells and especially epithelial malignancies, have numerous
defects. These abnormalities include numerical as well as structural alterations
of different chromosomes in various neoplasias. This finding was possible due
to the discovery of various chromosome banding techniques in early 1970s and
the fluorescence in situ hybridization (FISH), comparative genomic hybridiza-
tion (CGH) and spectral karyotyping (SKY) procedures later on. These mole-
cular cytogenetic techniques have helped in dissecting break points of translo-
cations, inversions, duplication and deletions, thus providing the pathological
consequences of specific chromosome defects.

As mentioned earlier, the discovery of the Philadelphia (Ph) chromosome,
t(9;22), in chronic myelogenous leukemia (CML) was the first reported can-
cer-specific cytogenetic defect [51, 52]. Since then, a number of cancer-spe-
cific chromosomal lesions (locations of oncogenes) have been identified [45,
46]. Chromosomal breakage and fusion (translocation) have been observed in
all cancer cells. But, why do only certain chromosomes break and rejoin in a
given cancer type? There is no satisfactory and definite answer available to
such a question. We have, recently, hypothesized that only those chromosomes
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that have partially dysfunctional telomeres undergo such genetic changes. In
other words, telomeres serve as the guardian of individual chromosomes and
protect them from cellular challenges [2, 5]. It is also reported that not all chro-
mosomes or both arms of the same chromosome have a similar number of
telomeric repeats [53].

Telomeres are special DNA-protein structures present at the ends of linear
eukaryotic chromosomes. Since the pioneer research of Muller and
McClintock, the telomere has been recognized as protecting the chromosomal
ends from degradation and fusion to other broken ends [54—57]. The telomer-
ic DNA consists of G-rich sequences, for example, To,AG; repeated many
times in all vertebrate species (reviewed in [58]). In humans, all chromosome
ends have approximately 5 kb of telomeric DNA [53]. Telomerase, a ribonu-
cleoprotein reverse transcriptase, is responsible for stabilization of telomeres
in cancer and germ cells. This enzyme is composed of an RNA subunit,
hTERC, and a catalytic protein subunit, h\TERT, in humans.

Chromosome instability and replication senescence

In most mammalian somatic cells, telomeres shorten with each round of cell
division. In normal human somatic cells, the telomere length progressively
decreases owing to an end replication problem, and the cell population under-
goes either senescence or neoplastic transformation depending on the telom-
erase status. Upregulation/activation of the telomerase in human aged somatic
cells may help stabilize the telomeres or cap them as functional. Under such
conditions, these cells with genetic instability may get transformed and initi-
ate cancer development. On the other hand, in the absence of telomerase activ-
ity, aged cells with continued telomere attrition may lead to apoptosis.

As shown diagrammatically in Figure 2, organ- or tissue-specific stem/pro-
genitor cells, when insulted by clastogens, may either readily undergo altruis-
tic apoptosis or may undergo chromosome rearrangements, gene amplification
and aneuploidy, finally resulting in cancer formation, especially solid tumors.
In the case of hematological malignancies, only specific translocations or
inversions are sufficient to activate proto-oncogene(s) and the emergence of
neoplastic cells. Aneuploidy in the strict classical sense may not be the primary
cause of initiation of hematological malignancies. It may, however, be neces-
sary at late stage during the blast phase of the disease. In solid tumors, the clas-
sical aneuploidy definitely plays an important role in initiation/promotion of
the disease in which loss of heterozygosity (LOH) of tumor suppressor gene(s)
is required [59, 60]. The presence of a high degree of aneuploidy is not
uncommon among cancer cells [61]. Approximately 88% of all colon cancers
are characterized by chromosome instabilities [62].

In the absence of telomerase, continued somatic cell division is accompa-
nied by progressive shortening of telomeres. When the telomere lengths reach
a critical stage, cells stop dividing and enter senescence. It was Hayflick who
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Figure 2. Diagram showing cancer formation from organ-specific stem cells.

first suggested that diploid human fibroblasts have a limited number of repli-
cation in culture, after which they stop dividing [63], and reach mortality stage
1 (M1) [64]. However, viral oncogenes, e.g., AgTsv40, may transform such
cells even with critically shortened telomeres. Such cells may enter another
mortality stage, stage 2 (M2), and in the senescent stage may remain metabol-
ically active but without undergoing DNA synthesis. These cells with drasti-
cally changed morphology become large and express -galactosidase activity
[65]. Replicative senescence is also a genetically dominant phenotype [66].
The question here is: What factor(s) are responsible for driving primary
somatic cells to enter replicative senescence? One of the answers lies in telom-
ere erosion and the absence of telomerase. In mTERC ™~ mutant mice, telom-
ere attrition has been shown to cause genomic instability, progressive infertil-
ity and even the induction of epithelial malignancies in late generation animals
[67—69]. Primary murine embryonic fibroblasts (MEFs) from the mTERC ™~
mouse were used to study the mechanism of dysfunctional telomeres and a
number of telomere-associated proteins (Tab. 1). These mice are telomerase
null because they lack the gene that encodes for telomerase RNA. MEFs
derived from such mutant mice, have reduced ability to immortalize sponta-
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Table 1. Localization of telomerase gene and telomere-associated proteins on human chromosomes

Name Interaction Functions Chromosome References
at telomeres localization

Telomerase With T,AG; Telomere elongation 5pl5 [70]
hTERT overhang, RNA subunit
hTERC Telomerase 3q26 [71]
Specific proteins

Potl With G-rich strand Length maintenance 7 [72]

TRF1 T loops Negative length 8q13 [73]

regulator (dependent
on telomerase)

TRF2 T loops Negative length 16q22 [74]
regulator (independent
of telomerase)

TANK1/2 With telomere Positive length regulator ~ 8p23/10q23 [75, 76]

TIN2 With TRF1 Positive length regulator  14q11 [77, 78]

RAPI1 With TRF2 Length regulator 16 [79]

PINX1 With TRF1/Pin2 Telomerase inhibitor 8p23 [80]

Nonspecific proteins
Ku70/Ku86  With telomeric Negative length regulator  2q35/22q11 [81, 82]
repeats

DNA-PKCA  With telomeric DNA  Capping of telomere 8ql1 [83]

Rad50 NSB/ With TRF2 T-loop sterilization 5q31 [84]

MREL!1

Rad51 In ALT cells Recombination in 15q15 [85]
ALT cells

WRN/BLM  With 3' overhang Telomere structure 8p12/15q26 [86, 87]
maintenance

p53 With single-strand Telomere structure 17p13 [88, 89]

T-loop

ATM With TRF1 Telomere chromatin 11q22 [90, 91]

structure

* Reprinted with permission and modified after [92].

neously in culture. These findings indicate that telomere attrition limits the
replicative potential of MEF in vitro. A typical metaphase spread from a fifth
generation (G5) mTERC™ mouse fibroblast revealing a chromosome fusion
product and 41 chromosomal arms is shown in Figure 3.

Stem cell characteristics of cancer and metastatic cells
As listed in Table 2, stem cells and cancer cells have many characteristics in

common. Organ-specific stem cells are known to participate in organ or tissue
homeostasis by constantly replacing differentiated somatic cells lost as a result
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Figure 3. A typical metaphase spread from a fifth generation (G5) mTERC~~ mouse fibroblast show-
ing a fusion product (arrow) and 41 chromosomal arms, an example of aneuploidy.

Table 2. Common characteristics of stem cells and cancer cells”

Stem cells Cancer cells
1 Proliferate indefinitely Proliferate indefinitely
2 Self renewal by similar signals Self-renewal by similar signals
3 Are heterogeneous, with different phenotypes  Are heterogeneous, with different phenotypes
4  Migrate May metastasize (migrate)
5 Express telomerase Express telomerase
6 Have extended telomere repeats Metastatic cells have extended telomeric

]

Differentiate

8 Can be tissue-specific
9 Undergo organogenesis
10 Undergo apoptosis

repeats

Differentiate

Can be tissue-specific
Undergo limited organogenesis
Undergo apoptosis

" Reprinted with permission and modified after [9].

of cellular aging, injury, or disease. A cancer is essentially an aberrant organ
or tissue that acquires the characteristics for unregulated proliferation through
the accumulation of genetic mutations. Like stem cells, cancer cells are able to
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proliferate indefinitely and in some cases may lead to metastasis. Cancer
metastasis, which is analogous to species migration [93], is achieved by a
series of genetic mutations and amplification of telomereic DNA in the cancer
cells [94]. Some of these sequential steps are: dissociation from the primary
tumor mass, extensive vascularization, invasion, detachment, embolization,
extravasation into the organ parenchyma, and, finally, vascularization and pro-
liferation within the organ site [95]. Almost all of these steps involve cell
migration. That stem cells can migrate in vivo explains most of these steps,
once we consider that cancers originate in the stem cells and that the poorly
differentiated cancer cells still retain some characteristics of the stem/progen-
itor cells.

Angiogenesis or the formation of new blood vessels is a pre-requisite for
cancer cell growth and metastasis to distant organs [96]. Cancer cells have the
potential to form not only their own blood channel [97, 98] and mosaic-blood
vessels [99], but also a variety of blood cell types [10]. It is therefore clear that
stem cells are pluripotent and can differentiate into various cell types, includ-
ing lymphocytes. That solid tumors arise from organ- or tissue-specific stem
cells has profound implications for cancer treatment. The target for successful
cancer treatment and chemoprevention must be the cancer-specific stem cells.

Do cancer cells have their own stem cells?

Stem cells, especially the ES cells, have infinite proliferative and develop-
mental potentials. Self renewal, migration and differentiating characteristics of
stem cells make them suitable as a source for organ and tissue regeneration.
We have previously proposed that all cancers originate in organ- and tissue-
specific stem cells [5, 8]. Stem cells, sometimes also called master cells, are
known to participate in organ or tissue homeostasis by replacing aged somat-
ic cells lost as a result of aging, injury or disease. It has been shown that mouse
neural stem cells can differentiate into brain cells (astrocytes, oligodendro-
cytes and neurons) and can form a variety of blood cell types, including
hematopoietic cells [10—12]. Neural stem cells from adult mouse brain are
capable of forming chimeric chick and mouse embryos, and give rise to all
germ layers and cell types [11]. These observations taken together suggest that
adult neural stem cells have a pluripotent phenotype, and may have potential
to produce a variety of cell and organ types for transplantation. Although the
molecular mechanism of the neural stem cell proliferation and differentiation
is not fully resolved, the phosphatase and tensin gene (PTEN) homolog, also
known to be mutated in multiple advanced cancers (MMACI), from human
chromosome 10g22-24 is a candidate tumor suppressor gene implicated in
such cellular phenotypes [100].

The burning question is: Do cancer cells have their own stem cells? As early
as in 1956, a famous cytogeneticist, Sajiro Makino from Japan, proposed that
cancer cells may have their own stem cells [101]. This idea was has received
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further support [102, 103]. Recently, Reya and associates [104] and Kondo et
al. [105] have brought this hypothesis into the limelight by presenting mole-
cular evidence in support of this concept. The later group has isolated “cancer
stem cells”, as a small side population (SP), even from the long-term estab-
lished tumor cell lines including C6 glioma, MCF-7 breast cancer, B104 neu-
roblastoma and HeLa cell lines [105].

Evidence that cancer develops from stem cells, not differentiated somatic
cells

There is plenty of evidence to support the statement that dividing (cycling)
cells are more susceptible than the quiescent (non-dividing) cells to accumu-
late mutations when challenged by the environmental mutagens. Most differ-
entiated somatic cells perform their functions in an organ- and tissue-specific
environment and are then replaced by proliferation of specialized stem or pro-
genitor cells [106]. During wound healing and in disease conditions, organ- or
tissue-specific stem cells or their progenitors divide, migrate and help in repair.
The stem or progenitor cells form one cell that remains a stem cell and anoth-
er cell that differentiates into the specialized function-oriented mature cell.
Fully differentiated somatic cells perform their functions and then undergo
apoptosis (Fig. 2). They are replaced by the newly differentiated somatic cells
in the organ. Since cancer cells originate by the interactions of environmental
carcinogens and the genetic make-up of the person, it is worth considering that
stem cells, being poorly differentiated somatic cells with the phenotypes of
their progenitors, also having telomerase activity, are the target of neoplastic
transformation [104, 105, 107—109]. In a recent book chapter, Sell [110] spec-
ulated that most carcinomas and adenocarcinomas originate in the organ-spe-
cific stem cells. Of course, most hematological malignancies have their origin
in stem cells. In fact, cancer originates from an imbalance between the rate of
cell division and the rate of differentiation and cell death. Also, maturation
arrest of stem cell differentiation has been considered a common pathway for
the origin of teratocarcinoma and epithelial malignancies [111]. Inherently, the
stem cells are characterized by substantial longevity, replication potential and
telomerase activity. In addition, they are also known to have much longer mean
telomere length, which is a survival factor for the cells [2].

There is mounting evidence to suggest that practically every organ has its
own stem cell reservoir. Although these specialized cells are present in a small
pocket in the organ-specific environment, their potential to replace damaged
cells is controlled by the cell requirement. This is analogous to the “Seed and
Soil” hypothesis proposed by Paget [112] for metastatic breast cancer cells.
The presence of organ-specific stem cells has been reported in lung, mamma-
ry gland, liver, pancreas, kidney, heart, retina, muscle, skin and brain of mam-
malian species including human. Even during angiogenesis, angioblasts,
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which are the precursors of endothelial cells, act as progenitor cells with sev-
eral stem cell characteristics.

Are circulating abnormal metaphases derived from organ- or tissue-
specific stem cells of cancer patients?

The initial (primary) genetic (chromosomal) alterations associated with cancer
development do not necessarily occur in every somatic cell [113]. It has been
proposed that predisposed individuals inherit susceptibility traits that makes
their specific chromosomes prone to breaking at a particular loci [49]. The
chromosomes of a cancer-predisposed individual may undergo specific alter-
ations at relatively low frequency in all tissues, including peripheral blood
lymphocytes (PBL). Could this trait be the attrition of telomere in those chro-
mosomes? Clastogens that are able to induce chromosome-specific aberrations
have been described previously in a separate report [2].

Specific cytogenetic alterations were first identified in PBL as being asso-
ciated with chromosome 13 in retinoblastoma, with chromosome 11 in Wilms’
tumor, with chromosome 3 in renal cell carcinoma, with chromosomes 2, 5
and 11 in colorectal cancer, with chromosomes 1, 6 and 9 in melanoma, with
chromosome 1 in endometrial cancer, and chromosomes 5, 7, 8, 10, and 16 in
prostate cancer (see reviews [2, 49]). Subsequent reports have shown specific
chromosomal changes in a small percentage (1-3%) of phytohemagglutinin-
stimulated lymphocytic metaphases of various epithelial malignancies, includ-
ing breast, lung, prostate and other adenocarcinomas [114, 115]. These circu-
lating aberrant metaphases are not cancer cells because: (1) they have mainly
chromatid breaks, simple translocations or deletions; (2) the patients whose
tumor cells and PBL were both analyzed cytogenetically had mainly chro-
matid breaks in the PBL but stable marker chromosomes involving the same
chromosomes in their tumor cells [116]; and (3) such types of chromosomal
alterations are present even in the PBLs of some asymptomatic family mem-
bers [117]. Could these rare abnormal metaphases be coming from the tissue-
or organ-specific stem cells? Undoubtedly, more research in future is required
to substantiate this hypothesis.

Conclusion

In conclusion, we provide evidence for the proposal that telomere attrition
(dysfunction) is the earliest genetic alteration in the organ- or tissue-specific
stem cells, which then is responsible for aneuploidy and is the cause of all
types of cancer. Metaphases with abnormal genetic constitutions present in the
PBL of cancer patients and some of their asymptomatic family members might
be derived from the organ-specific stem cells. Successful treatment of cancer
by different modalities and chemoprevention strategies should be directed
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towards these cancer stem cells. It would be most rewarding to develop isola-
tion procedures for these organ-specific stem cells for their further biological
characterization and to elucidate the mechanism of proliferation, progression
and metastasis of cancer.
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