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Abstract. Epigenetic mechanisms are involved in critical nuclear processes such as transcriptional con-
trol, genome stability, replication and repair. Recent evidence suggests that changes in the epigenetic
repertoire can drive tumorigenesis. This review examines the latest experimental evidence that ques-
tions the mechanisms underlying the consequence of epigenetic changes in gene regulation and can-
cer development.
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Introduction

There are many ways in which genes are regulated, and the field of epigenet-
ics has seen a recent surge of interest in the study of modifications of the
genome and histone tails to explain transcriptional competence. The term epi-
genetics refers to heritable changes in gene expression that are not the result of
changes in the DNA code. DNA methylation is the best studied of these mech-
anisms with CpG methylation recognized as a major component of gene
silencing in cancer [1]. Microinjection experiments using methylated gene
constructs indicate that transcriptional repression occurs once chromatin is
assembled [2]. Nuclease resistance in mammalian nuclei is due to CpG methy-
lation, and this correlated with transcriptional repression mediated by methyl-
CpG binding (MBD) proteins [3, 4]. It is not coincidental then that MeCP2, a
global transcriptional repressor, silences gene activity and binds to chromatin
in a methylation-dependent manner [5]. Before focusing on the impact of
DNA methylation in tumorigenesis, the relevance of epigenetic mechanisms
and transcriptional control is discussed.

DNA methylation influences chromatin function

Recent studies are beginning to provide a molecular explanation as to how
chromatin assembly on methylated DNA can repress transcription. It is well
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established that the capacity of DNA methylation to silence gene activity is
strengthened when operating within a chromatin environment [6]. Methyl-
CpG binding proteins, MeCP1 and MeCP2 repress transcription by binding to
the methyl-CpG moieties within a promoter, thereby occluding regulatory fac-
tors from the transcriptional complex. These results led to the demonstration
that transcriptional silencing is inversely correlated to methylation density [7].
How these observations fit in with gene silencing and chromatin was unclear
at the time. Microinjection experiments showed that methylated and unmethy-
lated DNA have the capacity to form active transcription complexes. It was
only once chromatin was assembled several hours later on methylated DNA
that an eventual loss of DNase I hypersensitivity and inhibition of transcrip-
tional activity was realized [6].

Considerable evidence has now accumulated demonstrating that DNA
methylation represents a major epigenetic mark. DNA demethylation results in
gene activation, whereas methylation of promoter sequences represses gene
activity [2, 8]. Either site-specific CpG methylation interferes with transcrip-
tion factors that would normally bind to the consensus sequence (direct model
of repression), or the methyl-CpG moiety attracts methylation-dependent tran-
scriptional repressors (indirect) to silence gene activity. For example, methy-
lation of the E box sequence site directly inhibits c-myc [9] and Sp1 binding to
the (m)Cp(m)CpG binding site [10]. The capacity to silence gene transcription
would presumably inhibit the assembly of basal transcriptional proteins to core
promoters. However, this silencing mechanism would be limited to a fraction
of sequences within the genome and would not account for transcriptional reg-
ulation at a global level [11].

The methylation-specific repressor MeCP2 has the capacity to repress tran-
scription from methylated promoters [5]. The transcriptional repressor domain
(TRD) binds the co-repressors mSin3A and histone deacetylases. The recruit-
ment of histone deacetylases to methylated DNA provides a means to explain
the silencing phenomenon mediated by CpG methylation, and this is support-
ed by observations that repression can be overcome using deacetylase
inhibitors such as trichostatin A (TSA) [12]. In another set of experiments
involving the microinjection of methylated and unmethylated gene constructs,
Jones and colleagues [13] definitively demonstrated that CpG methylation
could specifically alter chromatin remodeling and gene transcription.
Silencing conferred by MeCP2 could be reversed by inhibition of histone
deacetylase, facilitating the remodeling of chromatin and transcriptional acti-
vation [14].

There are a number of key features that set each MBD protein apart; for
example, MBD1 can repress transcription in a methylation-dependent manner
and this mechanism of repression is sensitive to TSA. However, HDAC1 anti-
bodies do not deplete MBD1 protein, suggesting that the mechanism of repres-
sion is likely to be different when compared to that of MBD2 and MeCP2. The
MBD proteins have a high binding affinity to densely methylated DNA and are
dynamically linked with histone deacetylases [15]. It is plausible that histone
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deacetylases other than HDAC1 may be involved in repression. MBD2 and
MBD3 appear to be part of a larger co-repressor network that includes the
nucleosome remodeling histone deacetylase (NuRD) complex, along with
Mi-2, a member of the SWI2/SNF2 family [16–18]. Although we are begin-
ning to understand how methylation and co-repressors regulate transcription,
we still do not know the molecular components that localize methylation-spe-
cific determinants during gene repression. Recent experimental evidence chal-
lenges the notion that DNA methyltransferases function solely in DNA methy-
lation to reveal remarkable molecular functionality [19]. In this next section I
discuss the capacity of the DNMTs in transcriptional repression and what
seems to be a common theme in tumorigenesis.

DNMTs, methylation and cancer

In mammals, four members of the DNA methyltransferase family have been
identified, three (DNMT1 [20], DNMT3a and DNMT3b [21]) have function-
al methylation activity. All except DNMT2 (no regulatory domain) have a cat-
alytic methyltransferase domain at the C terminus responsible for methyl-
group transfer and an N-terminal region with a putative regulatory domain
[22, 23]. Both N- and C-terminal regions are required for DNMT1 catalysis,
while the C-terminal region is sufficient for DNMT3a and DNMT3b [24, 25].
The notion that DNMT enzymes other than DNMT1 could be responsible for
methylation was confirmed in DNMT1 knockout ES cells which retained de
novo methylation activity [26]. Furthermore, colorectal carcinoma cells lack-
ing DNMT1 had decreased DNA methyltransferase activity, although they
displayed only a 20% decrease in overall genomic methylation [27].
Accumulating evidence reveals that the biological function of DNA methy-
lases extends to cooperation with chromatin remodelling determinants
involved in critical functions, such as transcriptional control, DNA replica-
tion, chromosome segregation and genome stability (summarized in Tab. 1).
These studies are starting to provide some molecular clues to how changes in
genomic methylation precipitate in cancer, and perhaps the mistargeting of
DNMTs explain changes in cancer. DNMT3a and DNMT3b are also tran-
scriptional repressors in a methylation-independent manner [28, 29]. For
example RP58 associates with DNMT3a and is typically found on transcrip-
tionally repressed heterochromatin [29]. In addition, repression by the RP58-
DNMT complex is not methylation dependent, thus expanding the functional
role of DNMTs beyond that of methyltransferase activity. To what extent
DNMT3a/3b are involved in the initiation of gene silencing is not yet clear,
although it is interesting to note there are distinct localization properties
between DNMT1 and DNMT3 enzymes. Unlike DNMT1, which is localized
to replication foci throughout S phase, DNMT3a and DNMT3b target hete-
rochromatic foci in late S phase and proposed to establish transcriptionally
silent heterochromatin independent of replication [28]. Recent observations
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reveal that the DNMT3L protein can mediate transcriptional repression by its
biochemical interaction with histone deacetylase. These observations suggest
the methylation machinery are connected with chromatin remodeling; how-
ever, the biggest challenge in the area is to determine the mechanisms by
which the determinants are localized and segregated on target genes. In the
next section, I discuss possible mechanisms that could explain aberrant DNA
methylation patterns in cancer.

Mistargeting of the DNMT co-repressor complex

A question that has long caused confusion in the cancer-epigenetics field is the
specificity of genomic methylation patterns. Recent studies in the area have
revealed interesting exceptions to the belief that hypermethylation of tumor
suppressor genes is the primary mechanism of cancer development [30].
Indeed, hypomethylation events have been described and attributed to genom-
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Table 1. DNMT associated binding partners that modify chromatin

Binding partner Proposed function Refs

DNMT1

HDAC1 Chromatin remodeling, transcriptional silencing [54]

HDAC2 Chromatin remodeling, transcriptional silencing [55]

DMAP1 Histone deacetylation following DNA replication, [55]
transcriptional silencing

pRB Chromatin remodeling, transcriptional silencing [56]

MBD3 Binds hemi-methylated DNA, transcriptional silencing [57]

PCNA Targeting to replication foci, maintain DNA methylation [58–60]

RUNX1/MTG8 Targeted recruitment and silencing in acute myeloid leukemia [61]

p53 Transcriptional silencing [62]

RGS6 Cooperates with DMAP1 complex, transcriptional silencing [63]

SuV39H1 Histone tail modification at H3K9 [64]

p33ING1 Cooperates with DMAP1 and co-repressor complex, histone [65]
modification

DNMT3a/DNMT3b

RP58 Maintain transcriptionally repressive chromatin in late S-phase [28, 29]

Condensin Mitotic chromosome condensation [66]

hSNF2H Epigenetic regulation [67]

DNMT3L

HDAC1 Transcriptional silencing [68, 69]



ic instability in cancer [31, 32]. Almost two decades ago, studies demonstrat-
ed that reductions in genomic methylation are associated with cancer progres-
sion [33, 34]. One of the best-studied models of cancer development is tumor
suppressor gene silencing and has been studied in different contexts and dis-
eases. For example, the retinoblastoma tumor suppressor gene is silenced by
CpG methylation [35]. Alternatively, demethylating agents such as azacytidine
have been used to induce promoter sequence hypomethylation and derepress
gene silencing [36]. Clearly, experimental evidence suggests that hypomethy-
lation and hypermethylation events can be associated with tumor development.
However, hypermethylation of tumor suppressor genes and transcriptional
repression do not explain how determinants could be mistargeted in cancer
when hypomethylation is believed to be the primary cause of tumorigenesis. In
this section I consider recent advances to our knowledge of methylation-medi-
ated mechanisms in cancer and examine both hyper- and hypo- methylation
events in cancer.

Gene silencing, DNMT recruitment and chromatin disruption

DNA hypermethylation has been described in a number of cancer types includ-
ing retinoblastoma, breast cancer, colorectal carcinoma, melanoma, leukemia
and renal carcinoma [37–43]. Histone deactylase inhibitors such as TSA are
not effective to derepress hypermethylated promoters [12]. The mechanism of
repression is believed to involve the recruitment of a co-repressor complex that
belong to the MBD protein family. Epigenetic modifiers such as 5adC and
TSA reactivate gene activity by promoting DNA demethylation and increased
in histone tail acetylation (see Fig. 1) [44, 45].

Disruption of the DNMT1 gene in colorectal carcinoma cells (DNMT1–/–)
significantly decreases methylatransferase activity, and is correlated with
changes in DNA methylation [27]. By contrast, the tumor suppressor gene
p16INK4A and Alu repeats retained characteristic hypermethylation pattern
and remained transcriptionally repressed. However, when DNMT1–/– cells
were exposed to the demethylating agent 5adC, p16INK4A showed demethyla-
tion and derepression, suggesting other methyltransferase activities could
cooperate with silencing. Recent studies have brought to light additional
enzymes that participate with cancer progression in carcinoma. Depletion of
DNMT1 and DNMT3b show marked reductions in methylation content at
repetitive sequences and derepression of tumor suppressor genes p16INK4a
and TIMP3 (see Tab. 2) [46]. The findings of these experiments suggest that
DNMT cooperativity, transcriptional silencing and methylation could con-
tribute to tumorigenesis. The results do not explain how the DNMT methyl-
transferases and associated co-repressors are specified on focal areas of pro-
moters to silence transcription while the genome experiences global
hypomethylation events. To understand changes in methylation regulating tran-
scription, it is often useful to examine different cancer models. PML-RAR is a

Mechanisms of abnormal gene expression in tumor cells 355



mutant oncogenic transcription factor caused by translocation between
promyelocytic leukaemia (PML) and retinoic acid receptor (RAR). This fusion
protein recruits histone deacetylase and is thought to remodel chromatin and
regulate transcription [47]. Evidence suggests that PML-RAR can recruit
DNMTs to RA target genes with consequential promoter hypermethylation and
transcriptional repression [48]. Chromatin immunoprecipitation experiments
show enrichment of DNMT1 and DNMT3a on the RARβ2 promoter.
Interestingly, TSA and 5adC could partially restore transcriptional competence,
and this was correlated with changes in the methylation status of the RARβ2
promoter (see Fig. 2). A surprising result is that RA treatment could reduce
promoter methylation, suggesting that cooperation of the DNMT methylases
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Figure 1. Model of methylation-mediated transcriptional regulation. Hypermethylation of the pro-
moter sequence is dominant in silencing gene transcription. Methylated CpG sequences become
recruitment sites for methyl-CpG-specific proteins and are associated with HDAC and Sin3 co-repres-
sors. Demethylation by 5adC reduces the silencing potential mediated by methylation and the robust
release of the co-repressor complex. Hyperacetylation of histone tails can be induced using HDAC
inhibitors such as TSA, thereby decondensing chromatin and allowing assembly of activator com-
plexes that drive gene expression.

Table 2. Consequence of DNMT disruption

Gene Enzyme Reduction in Gene expression
activity methylation content

DNMT1–/– 96% 20% None

DNMT3b–/– 87% 3% None

DNMT1/3b–/– 99.9% 95% Expressed



are central to carcinogenesis. Taken together, these results suggest a leukemia-
promoting protein is directly associated with carcinogenesis by inducing gene
hypermethylation and the recruitment of DNMTs. These observations clearly
identify that DNA hypermethylation is associated with silencing of tumor sus-
ceptibility genes in several forms of cancer. However, direct proof that CpG
hypermethylation and transcriptional silencing are the primary mechanisms of
cellular transformation is currently lacking.
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Figure 2. Recruitment model of PML-RAR/methyltransferase silencing on retinoic acid target genes.
The active promoter of RARβ2 gene is targeted by the PML-RAR/DNMT methyltransferase associ-
ated complex and undergoes endogenous CpG methylation before recruitment of a methylation-
dependent co-repressor complex and transcriptional silencing. Epigenetic modification induced by
5adC or RAR can reverse silencing by DNA demethylation.



If DNA methylation is inversely correlated to transcriptional repression, then
recent findings that chromatin remodelling can change genomic methylation
events pose some interesting questions on the antithetical nature of epigenetic
modification [19, 34]. Lymphoid specific helicase (Lsh) belongs to the SNF2
subfamily of ATPase-dependent chromatin remodelling proteins [49, 50].
Results with Lsh–/– mice reveal substantial changes in genomic methylation
levels, suggesting a role in regulating DNA methylation, histone tail modifica-
tion and genetic instability during tumor progression [50–52]. In Arabidopsis
thaliana the ddm1 (decrease in DNA methylation) gene is responsible for sig-
nificant reductions in de novo methylation [53]. The models discussed in this
review are by no means meant to represent the mechanistic riposte, neverthe-
less, the experimental findings expand our understanding of DNA methylation
and highlights the diverse biological nature at a molecular level.

Conclusion

It is clear that the study of epigenetics continues to attract widespread interest,
both within basic and medical research. The future holds great promise and,
given these recent research findings, may lead to the development of new ther-
apeutic tools based on the pharmaceutical reversal of the methylation signal
and/or regulation of the machinery responsible for methylation.
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