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Abstract. Intensive research efforts during the last several decades have increased our understanding
of carcinogenesis, and have identified a genetic basis for the multi-step process of cancer develop-
ment. Tumors grow through a process of clonal expansion driven by mutation. Several forms of mole-
cular alteration have been described in human cancers, and these can be generally classified as chro-
mosomal abnormalities and nucleotide sequence abnormalities. Most cancer cells display a phenotype
characterized by genomic hypermutability, suggesting that genomic instability may precede the acqui-
sition of transforming mutations in critical target genes. Reduced to its essence, cancer is a disease of
abnormal gene expression, and these genetic abnormalities contribute to cancer pathogenesis through
inactivation of negative mediators of cell proliferation (including tumor suppressor genes) and activa-
tion of positive mediators of cell proliferation (including proto-oncogenes). In several human tumor
systems, specific genetic alterations have been shown to correlate with well-defined histopathological
stages of tumor development and progression. Although the significance of mutations to the etiologi-
cal mechanisms of tumor development has been debated, a causal role for such genetic lesions is now
commonly accepted for most human cancers. Thus, genetic lesions represent an integral part of the
processes of neoplastic transformation, tumorigenesis, and tumor progression, and as such represent
potentially valuable markers for cancer detection and staging.
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Cancer: a multi-step genetic disease

Cancer development is a multi-step process through which cells acquire
increasingly abnormal proliferative and invasive behaviors. Cancer also repre-
sents a unique form of genetic disease, characterized by the accumulation of
multiple somatic mutations in a population of cells undergoing neoplastic
transformation [1, 2]. Genetic lesions represent an integral part of the process-
es of neoplastic transformation, tumorigenesis, and tumor progression, and as
such represent potentially valuable markers for cancer detection and staging
[3, 4]. Several forms of molecular alteration have been described in human
cancers, including gene amplifications, deletions, insertions, rearrangements,
and point mutations [2]. In many cases specific genetic lesions have been iden-
tified that are associated with neoplastic transformation and/or tumor progres-
sion in a particular tissue or cell type [1]. Statistical analyses of age-specific
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mortality rates for different forms of human cancer predict that multiple muta-
tions in specific target genes are required for the genesis and outgrowth of
most clinically diagnosable tumors [5]. In accordance with this prediction, it
has been suggested that tumors grow through a process of clonal expansion
driven by mutation [6], where the first mutation leads to limited expansion of
progeny of a single cell, and each subsequent mutation gives rise to a new
clonal outgrowth with greater proliferative potential. The idea that carcino-
genesis is a multi-step process is supported by morphological observations of
the transitions between pre-malignant (benign) cell growth and malignant
tumors. In colorectal cancer (and some other tumor systems), the transition
from a benign lesion to a malignant neoplasm can be easily documented and
occurs in discernible stages, including benign adenoma, carcinoma in situ,
invasive carcinoma, and eventually local and distant metastasis [7]. Moreover,
specific genetic alterations have been shown to correlate with each of these
well-defined histopathological stages of tumor development and progression
[8]. However, it is important to recognize that it is the accumulation of multi-
ple genetic alterations in affected cells, and not necessarily the order in which
these changes accumulate, that determines tumor formation and progression.
These observations suggest strongly that the molecular alterations observed in
human cancers represent integral (necessary) components of the process of
neoplastic transformation and tumor progression.

Mutations and cancer

Mutation is the ultimate source of variability for individual cells (and organ-
isms), and is an essential component of the process of natural selection [9].
Tumorigenesis can be viewed simply as a process of natural selection in which
cells develop a growth advantage that allows them to proliferate and invade
under conditions where other (normal) cells cannot, and the acquisition of this
ability is driven by mutation. In other words, tumor development and progres-
sion represents a form of somatic evolution, at the ultimate expense of the host
organism [10]. The idea that somatic mutation could significantly contribute to
cancer development was suggested by Boveri early in the 20th century [11]. At
about the same time, De Vries proposed that certain forms of radiation
(Röntgen rays) may be mutagenic [10], suggesting that mutation rates could be
influenced by exogenous factors. Evidence from numerous investigations sug-
gests that multiple somatic mutations contribute to the step-wise process of
neoplastic transformation and tumorigenesis. In early studies, the nature of
these mutations and their contributions to tumorigenesis were not at all clear.
Nonetheless, the presence of multiple mutations in cancer cells could be
observed in the form of karyotypic alterations and abnormal chromosome
numbers in tumor cells. More recent studies utilizing comparative genomic
hybridization extended these observations by identifying both gross (cytoge-
netically detectable) and subtle chromosomal abnormalities in different human
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neoplasms [12]. Subsequently, numerous positive and negative mediators
(proto-oncogenes and tumor suppressor genes) of cell growth and differentia-
tion have been identified and characterized, defining the basic role for these
critical genetic elements in neoplastic transformation and tumorigenesis [1,
13]. Recently, microarray-based gene expression studies have provided defin-
itive evidence that cancer is ultimately a disease of abnormal gene expression
[14–16]. Somatic mutations occurring in developing cancers alter gene
expression patterns, resulting in significant changes to cellular physiology,
including unregulated (or abnormally regulated) cell proliferation and acquisi-
tion of invasive behaviors [17, 18]. The gene expression signature of a specif-
ic cancer can be used in differential diagnosis, prognostication, and prediction
of responses to therapy [19, 20].

The exact number of critical mutations required for neoplastic transforma-
tion of normal cells is not known. Investigations involving the statistical analy-
sis of human tumor incidence and natural history in sporadic and inherited
human tumors formed the basis for the two-hit model of cancer development
[21, 22]. In this model, genetic predisposition for a specific type of neoplasm
is conferred on an individual that either inherits or acquires a germline muta-
tion in one allele of a critical target (such as a tumor suppressor gene), consti-
tuting the first “hit”, and the second “hit” represents an acquired somatic muta-
tion in the remaining normal allele. Accumulation of two hits alters (or elimi-
nates) normal gene function in affected cells, which proliferate to form a
tumor. While the kinetics of tumor formation are consistent with this model for
some neoplasms, it is now recognized that neoplastic transformation involves
the mutational alteration or aberrant expression of multiple genes that function
in cell proliferation or differentiation. Furthermore, epigenetic mechanisms
can contribute to the multi-hit model of cancer induction through the silencing
of critical genes [23–25]. In recent years, a re-examination of the number of
critical mutations needed for cancer development led to the suggestion that six
to eight mutations may be necessary for progression to an invasive tumor [5,
26]. These analyses provide estimates of the numbers of mutations involving
genes that control proliferation and differentiation that are necessary for neo-
plastic transformation of a specific cell type. However, numerous lines of evi-
dence suggest that tumors are mutation prone and/or accumulate large num-
bers of mutations [6, 27, 28], and some investigators have estimated that tumor
cells may contain thousands or tens of thousands of mutations [29, 30].

Molecular alterations in cancer

The molecular alterations occurring in cancer typically reflect mutations, and
can be categorized into two major groups: (i) chromosomal abnormalities, and
(ii) nucleotide sequence abnormalities. There has been some debate in the lit-
erature as to which forms of mutation are more prevalent in cancer cells and/or
constitute the foundations of the molecular mechanism of neoplastic transfor-
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mation [31]. However, there is abundant evidence that representations of both
of these major categories of genetic abnormalities exist in most tumor cells,
and that both significantly contribute to neoplastic transformation.

Chromosomal abnormalities

Chromosomal alterations in cancer include the gain or loss of one or more
chromosomes (aneuploidy), chromosomal rearrangements resulting from
DNA strand breakage (translocations, inversions, and other rearrangements),
and gain or loss of portions of chromosomes (amplification, large-scale dele-
tion). The direct result of chromosomal translocation is the movement of some
segment of DNA from its natural location into a new location within the
genome, which can result in altered expression of the genes that are contained
within the translocated region. If the chromosomal breakpoints utilized in a
translocation are located within structural genes, then hybrid (chimeric) genes
can be generated. The major consequence of chromosomal deletion (involving
a whole chromosome or a large chromosomal region) is the loss of specific
genes that are localized to the deleted chromosomal segment, resulting in
changes in the copy number of the affected genes. Likewise, gain of chromo-
some number or amplification of chromosomal regions results in an increase
in the copy numbers of genes found in these chromosomal locations.

Nucleotide sequence abnormalities

Nucleotide sequence alterations in cancer include changes in individual genes
involving single nucleotide changes (missense and nonsense), and small inser-
tions or deletions (some of which result in frameshift mutations). Single
nucleotide alterations that involve a change in the normal coding sequence of
the gene (point mutations) can give rise to an alteration in the amino acid
sequence of the encoded protein. Missense mutations alter the translation of
the affected codon, while nonsense mutations alter codons that encode amino
acids to produce stop codons. This results in premature termination of transla-
tion and the synthesis of a truncated protein product. Small deletions and inser-
tions are typically classified as frameshift mutations, because deletion or inser-
tion of a single nucleotide (for instance) will alter the reading frame of the
gene on the 3' side of the affected site. This alteration can result in the synthe-
sis of a protein that bears very little resemblance to the normal gene product,
or production of an abnormal/truncated protein due to the presence of a stop
codon in the altered reading frame. In addition, deletion or insertion of one or
more groups of three nucleotides will not alter the reading frame of the gene,
but will alter the resulting polypeptide product, which will exhibit either loss
of specific amino acids or the presence of additional amino acids within its pri-
mary structure.
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Are cancer cells prone to mutation?

It is widely accepted that cancer cells accumulate numerous genetic abnor-
malities (consisting of chromosomal alterations and/or nucleotide sequence
mutations) during the protracted interval between the initial carcinogenic
insult and tumor outgrowth. At least a portion of the genetic changes occurring
in neoplasia are related to the underlying molecular mechanism of neoplastic
transformation [26, 32, 33]. Nonetheless, whether the myriad of genetic
lesions found in cancer cells are the causes or consequences of neoplastic
transformation continues to be the subject of debate [34]. Some investigators
have suggested that the intrinsic mutation rate in mammalian cells is insuffi-
cient to account for the numerous genetic changes observed in cancer cells,
leading to the suggestion that an early (essential?) step in neoplastic transfor-
mation is the development of a condition of hypermutability or genetic insta-
bility [35, 36]. In the past, increased rates of mutation in pre-neoplastic or neo-
plastic cells would have been attributed to exposure of these cells to exogenous
mutagenic agents. However, more recent analyses of the nature and frequency
of mutations occurring in human neoplasms suggests that a significant pro-
portion result from spontaneous mutational mechanisms [37]. This observation
strengthens the suggestion that cancer cells may exhibit diminished capacities
for surveillance and repair of DNA lesions, leading to increased rates of spon-
taneous mutation and/or increased susceptibility to mutation following expo-
sure to some exogenous carcinogenic agent. An alternative argument suggests
that increased rates of mutation are not necessary for accumulation of large
numbers of genetic lesions in cancer cells, but that selection of advantageous
mutations is a more important feature of the process of tumorigenesis [36, 38].

Spontaneous mutation rates in normal cells

The measured spontaneous mutation rate of mammalian cells depends upon
the exact experimental conditions employed and the nature of the cells and tar-
get sequence examined [39]. Somatic mutation rates have been determined for
a variety of cultured cell types through examination of the spontaneous muta-
tion frequency at one of several specific loci, such as the hypoxanthine-gua-
nine phosphoribosyltransferase (HPRT) gene, the Na+-K+-ATPase gene, or the
adenine phosphoribosyltransferase (APRT) gene. Using the results from sever-
al of these studies [40–42], the spontaneous mutation frequency at the HPRT
locus can be estimated to be approximately 2.7 × 10–10–1 × 10–9

mutations/nucleotide/cell generation in untransformed human cells. This
mutation rate is sufficient to yield approximately three mutations per cell over
the lifespan of an individual, which may be too low to account for the number
of mutations thought to be required for carcinogenesis. This observation led to
the hypothesis that an early event in neoplastic transformation may involve an
increase in the spontaneous mutation rate in cells that are progressing through
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this multi-step pathway [42]. Cells expressing the “mutator phenotype” accu-
mulate mutations more rapidly than normal cells, and would therefore be more
likely to sustain mutations in critical genes required for enhanced growth and
tumorigenesis [43, 44].

Mutation rates in cancer cells

In many studies, the measured mutation rate in malignant cells is significantly
higher than that of corresponding normal cells. In some cases the elevated
mutation rates were 100-fold higher than in untransformed cells [45, 46].
Tumor cell lines that are deficient for DNA repair exhibit mutation rates that
are 750-fold higher than that displayed by DNA repair-proficient tumor cell
lines [47]. In addition, the rate of gene amplification in malignant cells is much
higher than in normal cells [48]. However, other studies find no difference in
the spontaneous mutation rate between normal and malignant cells [40, 41], or
suggest that selective pressures associated with clonal expansion of altered
cells represent a much more important feature of carcinogenesis than a hyper-
mutational phenotype [38]. Thus, some cancer cells may express a “mutator
phenotype” and exhibit an enhanced mutation rate compared to normal cells
[28], whereas other cancers may exhibit multiple mutations in the absence of
any appreciable increase in mutation frequency. These observations suggest
the possibility that multiple molecular mechanisms are needed to reconcile the
occurrence of multiple mutations in human cancers and the expression of a
mutator phenotype with elevated mutational frequency in only a subset of
these tumors.

Genomic instability in human cancer

An appropriate definition of genomic instability is needed before a complete
understanding of the interconnecting causes and consequences of genomic
instability can be developed, and the contribution of this phenomenon to neo-
plastic transformation can be appreciated. The observation that most cancer
cells contain discernible genetic abnormalities (chromosomal aberrations
and/or DNA sequence abnormalities) suggests that all neoplastically trans-
formed cells have sustained genetic damage and may have experienced some
form of genomic instability. Normal human cells demonstrate a remarkable
degree of genomic integrity, which reflects the combined contributions of
high-fidelity DNA replication processes, and the expression of multiple mech-
anisms that recognize and repair DNA damage. Nonetheless, rare spontaneous
mutations can occur in cells that are proficient for both DNA replication and
repair. The observation that neoplastic cells contain variable numbers of muta-
tions reflecting specific forms of DNA damage, and that tumors develop over
widely variable periods of time, suggests the possible involvement of different
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pathogenic mechanisms that may reflect multiple distinct mutagenic pathways
to neoplastic transformation. Tumors are highly variable with respect to their
growth characteristics; some tumors become clinically evident early in the
human lifespan, while others present later in life. This discrepancy could
reflect individual differences among tumors with respect to the relative rapid-
ity of their development and progression. Consistent with the proposal that
tumors form through clonal expansion driven by mutation [49–51], tumors
displaying early onset and rapid progression may accumulate a critical level of
genetic damage more quickly than tumors with later onset and more indolent
course.

The forms of genetic damage typically displayed by cancer cells (involving
chromosomal alterations and/or DNA sequence alterations) are not mutually
exclusive. However, different mutagenic mechanisms may be involved in the
origins of these genetic abnormalities [52–54]. Nonetheless, it is likely that the
same target genes might be involved in tumorigenesis driven by either form of
genetic damage. Inactivation of the p53 tumor suppressor gene (loss of func-
tion) can be accomplished through point mutation at numerous nucleotide sites
[13, 55] or through deletion of the locus on 17p [56]. Likewise, proto-onco-
gene activation can be accomplished by point mutation, as with the H-ras gene
[57], or by chromosomal translocation, as with the c-myc gene [58].

Based upon these observations, a unifying hypothesis is required to describe
the possible mechanisms of genomic instability that account for the disparate
numbers of mutations (specific loci versus widespread mutation) and diverse
nature of genetic damage (types of mutations) that characterize various human
cancers. We have proposed that at least two broad categories of genomic insta-
bility may exist: (i) progressive (persistent) genomic instability, and (ii)
episodic (transient) genomic instability [59]. Evidence supporting the exis-
tence of these forms of genetic instability has emerged from studies in bacte-
ria [60], and examples of each form of genomic instability have been described
in human cancers. Progressive instability defines an ongoing mutagenic
process, with new mutations occurring in each cell generation, and is associ-
ated with cells that are compromised in their ability to safeguard genomic
integrity. This form of genomic instability would be transmitted from cell gen-
eration to cell generation as a heritable trait [60]. For instance, tumor cells
from patients with hereditary nonpolyposis colorectal cancer (HNPCC) exhib-
it progressive genomic instability, which is manifest as alterations in micro-
satellite sequences [61, 62]. In contrast to progressive instability, episodic
instability describes sporadic genetic damage in cells that are proficient in the
various pathways that govern genomic homeostasis. This form of instability is
associated with tumors that contain specific mutations and/or chromosomal
alterations, in the absence of wide-spread damage to the genome. The transient
mutator state may account for a large portion of adaptive mutations occurring
in cells [60]. For instance, cells exposed to high levels of oxidative stress may
incur and accumulate adaptive mutations that enable the altered cells to thrive
under highly selective conditions [63, 64]. These mutations can occur in the
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absence of cell proliferation [43, 44], but would facilitate clonal expansion of
an altered clone in response to subsequent selection pressures [36]. Numerous
sporadic tumor types exemplify this form of instability, including sporadic col-
orectal tumors of the tumor suppressor pathway [65], or the microsatellite
mutator pathway [64, 66]. It can be envisioned that both chromosomal abnor-
malities and DNA sequence abnormalities could result from the expression of
either of these forms of genomic instability during neoplastic transformation.

Chromosomal abnormalities in cancer

The majority of human cancers (including solid tumors, leukemias, and lym-
phomas) contain chromosomal abnormalities, consisting of either numerical
changes (aneuploidy) and/or structural aberrations [67, 68]. These types of
chromosomal damage may reflect two distinct mechanisms of chromosomal
instability [2, 69]: (i) chromosome number instability, and (ii) chromosome
structure instability. Recent evidence suggests a genetic basis for chromosomal
instability in cancer, involving mutational inactivation of certain types of genes
in aneuploid tumors [70].

Detailed karyotypic studies have been performed on a large number of
tumor types; many of these studies have examined leukemia and lymphoma,
partially reflecting the relative ease with which chromosomes can be prepared
from these cancer cells. Traditional cytogenetic analyses of solid tumors are
more difficult. Nonetheless, a substantial body of literature on the chromoso-
mal aberrations of solid tumors has emerged [12]. Additional methods have
also been applied to examination of chromosomal abnormalities in solid
tumors [68]. Numerous studies have investigated allelic loss of heterozygosity
(LOH) in various human solid tumors using Southern analysis or PCR
[71–75]. While these methods do not provide the same information as kary-
otypic analysis, large-scale deletions can be inferred from the loss of multiple
markers on a specific chromosomal arm [76]. In addition, flow cytometry is
now widely employed for determination of tumor ploidy [77], and fluores-
cence in situ hybridization (or derivative methods) is used to examine specific
chromosome numbers and alterations [78–80]. A detailed review of chromo-
somal alterations in human cancer is beyond the scope of this chapter. Several
excellent reviews are available [12, 81].

Instability of chromosome number

Numerical alterations of chromosomes can involve both loss of entire chro-
mosomes or allelic losses, which may be accompanied by duplication of the
remaining allele. This phenomenon results in the generation of a tumor with
normal karyotype, but an abnormal allelotype [71]. Several studies suggest
that tumors arising in various tissues share a common chromosome number
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instability and may loose a significant number (25–50%) of alleles during neo-
plastic transformation and tumorigenesis [71, 73, 82, 83]. These large-scale
genomic changes may be due to some form of progressive chromosomal insta-
bility [84, 85]. Supporting this suggestion, gains and losses of multiple chro-
mosomes occur in aneuploid colorectal cancer cell lines 10- to 100-fold more
frequently than in diploid cancer cell lines of the same histological subtype
[53, 86]. In other studies, the rate of LOH at marker loci proximal to a selec-
table gene (APRT) was increased 10-fold in colorectal cancer cell lines that
exhibit proficiency of mismatch repair (MMR) compared with cell lines that
lack MMR [87, 88]. In addition, numerous studies combine to show that ane-
uploid cancers exhibit highly variable karyotypes [67, 89], suggesting that new
chromosomal variations are produced in a progressive manner during tumor
outgrowth and evolution.

The absence of chromosomal instability in diploid cancers and/or cancers
that exhibit nucleotide sequence alterations, argues against a nonspecific
mechanism for chromosomal instability related to abnormal properties of neo-
plastic cells [2]. Further, the high rates of numerical chromosomal alterations
in aneuploid cells do not simply reflect the ability of these cells to survive
changes in chromosome number [53]. Tetraploid cells resulting from the
fusion of diploid cancer cells retain a stable tetraploid chromosome number
[53], suggesting that the presence of a nondiploid chromosome number does
not precipitate progressive chromosomal instability. Rather, the evidence sup-
ports the existence of a specific form of genetic instability in cancer cells that
results from dysfunction of normal chromosomal homeostasis producing
numerical chromosomal abnormalities. Several possibilities have been investi-
gated, including the involvement of (i) mutant p53 protein, (ii) abnormal cen-
trosomes, (iii) abnormal mitotic spindle checkpoint function, or (iv) abnormal
DNA-damage checkpoint function [2, 85, 90].

Inactivation of the p53 tumor suppressor leads to abnormalities of
chromosome number

The p53 tumor suppressor protein has long been suggested to play significant
roles in cell cycle progression and cell cycle checkpoint function in response
to DNA damage [91, 92]. The p53 gene is commonly mutated in human can-
cers [37], and these same cancers frequently exhibit abnormalities of chromo-
some number [93–95]. Cells in culture often become aneuploid concurrent
with mutation or inactivation of p53 [96, 97], suggesting that loss of p53 func-
tion leads to abnormal regulation of mitosis and segregation of chromosomes
[98]. However, other lines of evidence do not support a direct role for p53
mutation in chromosomal instability. For example, aneuploidy occurs very
early in the process of neoplastic transformation and tumorigenesis [99], and
p53 mutation typically occurs later in the process [100]. In addition, some
diploid tumor cell lines that exhibit a stable karyotype also contain mutant p53
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[101]. These observations suggest that loss of normal p53 function may con-
tribute significantly to chromosomal instability in certain forms of cancer, but
does not represent the primary cause of this form of genomic instability.

Abnormal centrosome function leads to chromosomal abnormalities

Aneuploid tumors demonstrate significant numbers of chromosomal imbal-
ances, whereas such imbalances are rare in diploid tumors. The abnormalities
of chromosome number observed in aneuploid tumors are consistent with a
mechanism involving dysfunction of chromosome segregation during mitosis.
Several lines of evidence support the idea that the integrity of the centrosome
plays an integral role in the development of aneuploidy. Human tumors and
tumor-derived cell lines have been characterized to contain abnormal numbers
of centrosomes, abnormally sized and shaped centrosomes, and multipolar
spindles in a number of human neoplasms, including tumors of the breast,
lung, prostate, colon, pancreas, head and neck, bile duct, and brain [102, 103].
Aneuploid colorectal carcinoma (CRC) cell lines displayed elevated centro-
some numbers compared to diploid tumor cell lines, which displayed normal
centrosome numbers [86]. Further, centrosome function was impaired in most
aneuploid CRC cell lines examined, whereas centrosome function was found
to be intact in all diploid tumor cell lines [86]. These observations suggest that
abnormal centrosome number and/or function are common among neoplastic
cells that display aneuploidy, and may represent an essential component of
chromosome number instability in human cancers.

The mechanism leading to formation of increased numbers of centrosomes
in cancer cells remains undefined. However, abnormal centrosome number and
function has been linked to the STK15 kinase in some cancers [104, 105], and
to a related kinase (PLK1) in others [106]. The STK15 gene was found to be
amplified in approximately 12% of primary breast cancers, and in cell lines
derived from neuroblastoma and tumors of the breast, ovary, colon, prostate,
and cervix [105]. Overexpression of STK15 was detected (by immunostain-
ing) in 94% of invasive ductal carcinomas of the breast irrespective of
histopathological subtype, suggesting that overexpression of this centrosome-
associated kinase may be a common feature of breast cancers [107]. In addi-
tion, overexpression of STK15 was found in cell lines that lacked evidence of
gene amplification, and ectopic expression of STK15 in near diploid human
breast epithelial cells produced centrosome abnormality accompanied by
induction of aneuploidy [105]. An alternative mechanism suggests that muta-
tional inactivation of p53 or functional inactivation of p53 through binding by
mdm2 results in abnormal centrosome numbers and induction of chromosomal
instability [108, 109]. Furthermore, there is evidence that loss of BRCA1 or
BRCA2 can lead to centrosome amplification and chromosome segregation
dysfunction [110, 111]. These studies combine to suggest that a number of dif-
ferent genes may contribute to centrosome function and homeostasis in normal
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cells, and that inactivation or dysregulation of one or more of them can lead to
abnormal centrosome number/function.

Aberrant mitotic spindle checkpoint function leads to aneuploidy

The mitotic spindle checkpoint governs proper chromosome segregation by
ensuring that chromatid separation does not occur prior to alignment of all
chromosomes along the mitotic spindle [112]. It follows that if the mitotic
spindle checkpoint is defective, chromosome segregation during mitosis will
occur asynchronously, potentially producing an unequal distribution of chro-
matids between the daughter cells [112]. Evidence supporting a role for aber-
rant mitotic spindle checkpoint function in the development of aneuploidy
includes the observation that aneuploid cells respond inappropriately to agents
that disrupt the spindle apparatus, such as colcemid. Normal cells respond to
colcemid treatment by arresting in metaphase, whereas cells that display insta-
bility of chromosome numbers prematurely exit mitosis and initiate another
round of DNA synthesis [54]. The hallmark of mitotic spindle checkpoint
defect is the inability to inhibit entry into S phase when mitosis cannot be com-
pleted due to damage to the mitotic spindle [113]. Mutation or aberrant expres-
sion of genes that encode proteins involved in mitotic spindle checkpoint func-
tion can eliminate proper checkpoint function, contributing to the development
of aneuploidy. A number of these genes have now been identified [114].
Alterations in mitotic spindle checkpoint genes have been documented in sev-
eral human cancers, including decreased expression of hMAD2 in breast can-
cer [115], and mutations in the hBUB1 gene in CRC [54, 116]. However, these
mitotic spindle checkpoint genes are not implicated in all aneuploid cancers.
Some aneuploid breast cancers lack mutations in hBUB1 and exhibit normal
mRNA expression levels [117]. Likewise, cancers of the respiratory tract,
including head/neck cancers, small cell lung carcinoma, and non-small lung
carcinoma, have not been shown to have significant numbers of mutations in
hBUB1 [116, 118, 119], and sporadic tumors of the digestive tract rarely con-
tain mutations of hBUB1 or hsMAD2 [120]. The absence of mutations or sig-
nificant alterations in expression of mitotic spindle checkpoint genes in aneu-
ploid cells suggests that additional genes and/or mechanisms of checkpoint
inactivation are operational in the majority of cancers that demonstrate chro-
mosomal instability. Certain p53 mutations have been described that are asso-
ciated with gain-of-function and relaxed spindle checkpoint function in
response to mitotic inhibitors, suggesting that both mutational inactivation of
p53 and dominant gain-of-function mutations in p53 can contribute to genom-
ic instability and aberrant chromosome segregation [121]. In addition, defec-
tive checkpoint function has been demonstrated in patients with ataxia telang-
iectasia who carry mutations of the ATM gene [122]. These studies combine to
suggest that a variety of genes may function in normal control of the mitotic
spindle checkpoint, and when mutated or aberrantly expressed could con-
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tribute to chromosomal instability through inactivation of the mitotic spindle
checkpoint.

Abnormal DNA damage checkpoint function leads to aneuploidy

The DNA damage checkpoint represents the major cellular mechanism that
guards against the replication of damaged DNA or entry of cells with DNA
damage into mitosis. The types of DNA damage that elicit checkpoint activa-
tion include polymerase errors remaining after DNA replication and other
forms of incompletely repaired DNA, damage resulting from exposure to
exogenous genotoxins (ionizing radiation, chemical mutagens, and others),
and damage related to endogenous genotoxic insult (such as reactive oxygen
species). A number of genes have been implicated in the control of this check-
point, including p53 [92], ATM [123], BRCA1 and BRCA2 [124], and some
others [2]. Functional inactivation of one or more of these genes through
genetic or epigenetic mechanisms could result in a genomic instability related
to the loss of the DNA damage checkpoint. Loss of this checkpoint might lead
to aneuploidy directly resulting from abnormal segregation of damaged chro-
mosomes [2].

Instability of chromosome structure

The majority of human cancers exhibit chromosomal abnormalities, including
marker chromosomes with altered structure. It is generally accepted that many
of the alterations of chromosome structure occurring in cancer cells confer
some selective advantage to the evolving tumor. Thus, accumulation of a crit-
ical number of chromosomal aberrations or development of specific chromo-
somal abnormalities may represent essential steps in the process of neoplastic
transformation. Three general forms of chromosomal alteration are observed
in cancer cells: (i) gene amplifications, (ii) rearrangements and translocations,
and (iii) large-scale deletions.

Gene amplification

The amplification of specific chromosomal segments or genes have been doc-
umented in some cancers and in many cancer cell lines [48, 125], some of
which involve cellular proto-oncogenes, resulting in abnormal expression lev-
els of the proto-oncogene products [126]. In general, gene amplification
occurs late in tumorigenesis associated with tumor progression and is the rec-
ognized mechanism through which many tumors acquire resistance to
chemotherapeutic agents. Thus, gene amplifications can profoundly affect
tumor behavior, and can have prognostic significance for some cancers, but
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may not be involved with early genetic alterations in pre-neoplastic lesions.
The mechanisms governing gene amplification have not been determined with
any certainty. However, several studies suggest that gene amplification occurs
at much higher rates in neoplastic cells than in normal cells [48]. A role for the
p53 tumor suppressor in gene amplification has been suggested by some inves-
tigators. Evidence supporting this suggestion includes the observation that
gene amplification occurs more readily in cells following inactivation of p53
function [127, 128]. However, gene amplification can also occur in cells with
normal p53 [127]. One possibility for the role of p53 in this process is that
amplification of a chromosomal segment in a normal cell may trigger apopto-
sis in response to perceived DNA damage [129], whereas in the absence of
normal p53 function cells would not undergo apoptosis, but would continue to
accumulate amplicons in subsequent rounds of replication [2]. Thus, this form
of chromosomal instability may involve a mechanism (or a mechanistic com-
ponent) that increases the ability of an affected cell to survive the genetic alter-
ation.

Chromosomal rearrangements and translocations

Chromosomal rearrangements can take on several different forms, the most
common of which are translocations. Patterns of chromosomal translocation in
human cancer can be classified as complex or simple [2]. In some human can-
cers no consistent pattern of chromosomal abnormality can be discerned (com-
plex translocations). These tumors exhibit complex type translocations, which
may appear to be random. Among individual tumors of one type, or individual
cells of a single tumor, different chromosomal aberrations may be found. Very
often, these rearrangements are accompanied by large-scale loss of chromoso-
mal segments. While it is possible that some of these chromosomal alterations
are not essential to tumorigenesis, it is unlikely that any chromosomal alter-
ation that does not confer a proliferative or adaptive advantage would be pre-
served in an evolving tumor. In some human cancers specific chromosomal
anomalies are consistently found in a high percentage of tumors (simple
translocations). These recurrent chromosomal abnormalities may reflect mole-
cular alterations that are essential and necessary to the molecular pathogenesis
of the specific tumor type. The discovery of the Philadelphia chromosome
[trans(9;22)(q34;q11)] in the cancer cells of patients with chronic myeloge-
nous leukemia was the first report suggesting the involvement of nonrandom
chromosomal changes in the molecular pathogenesis of the disease [130].
Subsequent studies suggest that the neoplastic cells of 80–90% of leukemia
and lymphoma patients contain some sort of demonstrable karyotypic abnor-
mality, and many of these are uniquely associated with morphologically or
clinically defined subsets of these cancers [67, 89]. Similar relationships
between chromosomal alterations and definable stages of tumor development
and progression have been established for some human solid tumors [8, 26],
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and proposed for others [131, 132]. The role of chromosomal translocation in
cancer pathogenesis is suggested to involve proto-oncogene activation by
repositioning of the gene adjacent to a heterologous genetic control element.
Evidence for this type of proto-oncogene activation includes studies of chro-
mosome translocations in Burkitt’s lymphoma [133]. In this cancer, the c-myc
proto-oncogene is translocated from chromosome 8 to chromosome 14, prox-
imal to the immunoglobulin enhancer sequences, resulting in abnormal con-
stitutive expression of c-myc [58].

Large-scale chromosomal deletions

Large-scale deletions of whole chromosomes or chromosomal arms have been
documented in many cancers. These deletions contribute to the abnormal
allelotype of tumors, and may accompany chromosomal rearrangements
and/or translocations. In most cases, such deletions are thought to be related to
the presence of a tumor suppressor locus on the affected chromosomal arm.
Large-scale deletions affecting several chromosomes have been documented in
sporadic CRC, including deletions of 5q, 17p, and 18q [8]. Each of these chro-
mosomal arms contains a known tumor suppressor locus; the adenomatous
polyposis coli (APC) gene at 5q [134], the p53 gene at 17p [56, 100], and the
DCC (for “deleted in colorectal cancer”) gene at 18q [135].

Microsatellite instability in human cancer

Microsatellite instability (MSI) is characterized by alterations to simple
repeated sequences, including both expansions (insertions) and contractions
(deletions), typically resulting in frameshift mutations. Microsatellites are
repetitive sequences that consist of variable numbers of repeated units of one
to four (or more) nucleotides. Such sequences are numerous and randomly dis-
tributed throughout the human genome. Mutational alterations of numerous
adenine mononucleotide repeat motifs (polyA tracts) was the first characteris-
tic used to define MSI in human tumors [136, 137]. These early studies of spo-
radic CRC suggested that 12% of all tumors harbor these mutations, with as
many as 1 × 105 mutated polyA tracts per tumor [137]. Subsequent studies
demonstrated frequent microsatellite alterations in hereditary CRC [61] and
sporadic tumors [138] when higher order repeated units were examined.

Determination of microsatellite instability in human tumors

Tumors with MSI contain numerous altered microsatellite sequences, but not
all microsatellite sequences are altered in tumors with MSI [59, 139]. In fact
some studies have shown dramatic differences in susceptibility to mutation of
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individual microsatellite loci [140]. In addition, two distinct patterns of micro-
satellite alteration have been described in human cancers that display MSI, and
specific microsatellite markers tend to be altered in a characteristic pattern
[141, 142]. The pattern of alteration observed at a specific microsatellite locus
may reflect the nature of the genomic instability displayed by a tumor. Several
factors influence the probability of mutation at a specific microsatellite locus:
(i) the type of repeated sequence (mononucleotide, dinucleotide, etc.), (ii) the
length of the microsatellite sequence (number of repeated units), (iii) the loca-
tion of the microsatellite sequence within the genome, and (iv) the underlying
molecular lesion. Thus, no single type of microsatellite will be diagnostic for
MSI in all tumors. This is supported by the observation that numerous polyA
repeats are altered in various human cancers [143, 144], but not all neoplasms
that exhibit MSI demonstrate alterations in polyA sequences, and may only
show alterations in higher order repeats [145]. A direct relationship has been
observed between the length of polyA tracts and their mutation frequency
among genetically unstable tumors [146], consistent with the suggestion that
the probability of sustaining a mutation in an individual microsatellite
sequence is proportional to the length of its sequence [147]. Extensive com-
parison of the mutation of dinucleotide versus higher order repeat units (trin-
ucleotide or tetranucleotide) in human tumors suggests that larger alleles are
more susceptible to mutation in genetically unstable tumors [148]. Studies
with cancer cell lines that harbor MMR gene mutations demonstrate instabili-
ty of specific classes of microsatellites. Cells possessing a defect in hPMS2
exhibit instability of trinucleotide repeats [149], while cells deficient for
hMSH3 or hMSH6 demonstrate an inability to correct mismatches in dinu-
cleotide (or higher order) repeats [150]. Furthermore, cells lacking hMSH
demonstrate minimal levels of dinucleotide instability, while cell lines lacking
hMSH2 or hMLH1 demonstrate profound dinucleotide instability [151]. In
addition, specific MMR gene mutations can affect the extent of hypermutabil-
ity at microsatellite sequences [140]. The microsatellite mutation rate in cells
lacking hMLH1 and hMSH3 is tenfold greater than that of cells lacking hPMS2
and hMSH6 [140]. These observations suggest that individual MMR complex-
es exhibit specificity for certain types of mismatches, and that the MSI dis-
played by cancer cells may be directly related to the number [152] and nature
[140] of MMR gene mutations.

Frequency of microsatellite instability in human cancer

A large number of studies have documented the occurrence of MSI in human
cancer [59]. Tumors from patients diagnosed with HNPCC frequently exhibit
MSI (141/159 tumors, 89%), while only 15% (887/5724 tumors) sporadic col-
orectal cancers demonstrate MSI [59]. However, sporadic CRC occurring in
young patients (<35 years of age) and in patients with multiple primary tumors
exhibit MSI at higher frequency (64% and 71%, respectively) than sporadic
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CRC in general [153]. Sporadic gastric cancers exhibit MSI in 19%
(276/1485) of tumors [59], while gastric carcinomas from patients with multi-
ple primary tumors or familial predisposition exhibit an elevated frequency of
MSI (61% and 32%, respectively) compared to sporadic tumors [154, 155].
Several other cancers exhibit MSI in 15–35% of tumors examined. Sporadic
breast cancers demonstrate MSI in 17% (64/372 tumors) of cases, but this per-
centage varies widely between studies [59]. The combined results of six stud-
ies failed to detect MSI at even one locus among 522 tumors examined [59],
suggesting that the actual frequency of occurrence of MSI among breast can-
cers is very low. MSI has been documented in 24% (168/713) of tumors of the
endometrium, 13% (16/123) of ovarian cancers, 27% (25/92) of esophageal
tumors, 28% (25/88) of liver tumors, 29% (78/272) of non-small cell lung can-
cers, and 32% (79/247) of prostate cancers [59]. Hodgkin’s disease and some
forms of leukemia exhibit MSI in a high percentage of cases. However, addi-
tional studies will be needed to determine more precisely the prevalence of this
genetic abnormality in these neoplasms, particularly among the various forms
of leukemia. MSI is rare (<10% tumors) among gliomas, neuroblastomas, and
cancers of the testicles, thyroid, and uterine-cervix. Evidence for the involve-
ment of MSI in some other tumors has been produced, although the numbers
of tumors examined and the numbers of studies conducted are limited.

Mismatch repair defects lead to nicrosatellite instability

The molecular defects responsible for the MSI in human tumors involve the
genes that encode proteins required for normal MMR [156]. These include
hMSH2 [157, 158], hMSH3 [159], and hMSH6/GTBP [160, 161], which are
human homologs of the bacterial MutS gene, and hMLH1 [162, 163], hPMS1
[164], hPMS2 [164], and hMLH3 [165], which are human homologs of the
bacterial MutL gene. One or more of these genes are mutated in the germline
of the majority of individuals with HNPCC [166], and somatic mutations have
been identified in sporadic CRC that display MSI [167]. MMR gene defects
have also been identified in other cancers that exhibit MSI [52, 59, 168, 169].

The proteins involved with MMR operate in concert to recognize mispaired
or unpaired nucleotides, and facilitate their removal and repair [170]. This
mechanism differs from nucleotide-excision repair, which recognizes and
repairs abnormal (adducts) nucleotides [168]. The observation that microsatel-
lite mutations consist of expansion or contraction of the repeated sequence
through insertion or deletion of variable numbers of repeat units suggests that
such mutations arise through a slippage mechanism during replication of these
simple repeat sequences [171]. Strand slippage of the primer at a repetitive
sequence during replication generates a misaligned intermediate that is stabi-
lized by correct base pairing between discrete repeat units on the misaligned
strand. Such a misaligned intermediate is normally repaired through the proof-
reading function of the polymerase complex, or by post-replication repair
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mechanisms [172]. If the intermediate is not repaired, subsequent rounds of
replication will generate insertion or deletion mutations in the newly synthe-
sized DNA strands. The relative location of the unpaired repeat sequence in the
replication intermediate determines whether an insertion or deletion will result
(contraction or expansion of the microsatellite).

Microsatellite mutation rates in DNA repair-proficient and -deficient cells

The spontaneous mutation rate of a dinucleotide microsatellite repeat sequence
in normal human fibroblasts has been estimated to be 12.7 × 10–8 muta-
tions/cell/generation [173], suggesting that dinucleotide repeat sequences are
remarkably stable in normal human cells. MMR-proficient cancer cells exhib-
it a microsatellite mutation rate of 9.8 × 10–6 mutations/cell/generation,
whereas MMR-deficient cells exhibited mutation rates of 1.6 × 10–4 and
3.3 × 10–3 mutations/cell/generation, respectively [174]. The estimated muta-
tion rates at the dinucleotide repeat in MMR-deficient tumor cells were 16-
fold and 337-fold higher than that of the MMR-proficient tumor cells, and
1260-fold and 25984-fold higher than that of normal fibroblasts [173]. These
results highlight the propensity for spontaneous mutation at microsatellite
repeat sequences of tumor cells that are deficient for MMR, and support the
notion that cells displaying MSI harbor sustained lesions in MMR.

Specific mismatch repair genes are responsible for specific forms of
microsatellite instability

Genetic complementation studies have produced direct evidence for the
involvement of specific chromosomal loci or specific genes in MMR-deficient
tumor cells that exhibit MSI. Transfer of human chromosome 2, which con-
tains the hMSH2 and hMSH6 genes, restores genetic stability and MMR-pro-
ficiency to hMSH2-mutant cancer cells [175]. Furthermore, cells containing
chromosome 2 demonstrate microsatellite stability at a trinucleotide repeat
(D7S1794) and a dinucleotide repeat (D14S73), whereas cells containing other
transferred chromosomes (such as chromosome 17) continue to exhibit insta-
bility at these loci [175]. Furthermore, transfer of chromosome 2 restores
genetic stability to cancer cells that carry mutations of both hMSH6 and DNA
polymerase δ [161, 176], suggesting that the DNA polymerase δ defect is not
the primary determinant of genetic instability in these cells [175]. However,
other studies question whether hMSH6 plays a major role in MSI [177].
Transfer of chromosome 3, which contains hMLH1, into tumor cells that are
homozygous for hMLH1 mutation, restores MMR and stability to the D5S107
dinucleotide microsatellite repeat [178]. In similar studies, transfer of human
chromosome 5 (containing hMSH3) or human chromosome 2, into tumor cells
resulted in partial correction of the MMR defect [159]. More recent studies
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have utilized single gene transfer to correct MMR deficiency. Cancer cells that
harbor an hPMS2 mutation and display MMR deficiency [149] show increased
microsatellite stability and reduced mutation rate at the HPRT locus, and cell
extracts can perform strand-specific MMR following transfection with a wild-
type hPMS2 gene [179]. Likewise, transfection of tumor cells with hMSH6
resulted in restoration of MMR, increased stability of the BAT26 polyA tract,
and reduction in the mutation rate at the HPRT locus [180].

Epigenetic silencing of mismatch repair genes leads to microsatellite
instability

Mutational inactivation of MMR genes has been documented in numerous
human tumors that display MSI. However, in many cases the underlying mole-
cular defect in MMR cannot be identified, suggesting that additional MMR
genes exist, or that alternative mechanisms for microsatellite mutation are
operational in these tumors. Several studies have produced strong evidence
that epigenetic regulation of MMR gene expression may be responsible for
loss of MMR function in tumors that display MSI. Initially, a strong correla-
tion between general methylation status and MMR proficiency in CRC cell
lines was noted [181]. Cell lines that were deficient for MMR and showed MSI
demonstrated hypermethylation of endogenous and exogenous DNA
sequences [181]. Subsequently, several laboratories examined expression of
hMLH1, methylation of the hMLH1 promoter, and MSI status among sporadic
CRC [182–184]. Tumors exhibiting high level MSI, no detectable expression
of hMLH1, and no hMLH1 point mutation, also showed hypermethylation of
the hMLH1 promoter region [182–184]. In cell lines that exhibit loss of
hMLH1 and hypermethylation of the hMLH1 promoter, treatment with
5-aza-2'-deoxycytidine resulted in re-expression of hMLH1 and restoration of
MMR capacity [183]. These results suggest that inactivation of hMLH1
through hypermethylation of its promoter may represent the principle mecha-
nism of gene inactivation in sporadic CRC characterized by widespread MSI.
Consistent with this suggestion, the hMLH1 promoter has been shown to be
hypermethylated in 122/167 (73%) CRC with MSI, but in only 20/138 (14%)
of microsatellite stable CRC [59]. Similar relationships between hMLH1 pro-
moter hypermethylation and MSI have been observed in gastric and endome-
trial cancers [185–187]. In contrast to the relationship observed in sporadic
cancers with MSI, tumors from HNPCC patients that harbor mutations in
MMR genes do not show hMLH1 promoter hypermethylation.

Oxidative stress and loss of mismatch repair function

Chronic inflammation is known to contribute to DNA damage related to excess
levels of free radicals. MMR-proficient cells are protected from mutational
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alteration of microsatellite sequences after exposure to low levels of hydrogen
peroxide [66]. However, MMR-deficient cells demonstrate numerous micro-
satellite alterations in response to oxidative stress, and oxygen radical scav-
engers diminish the damaging effects of free radicals in these cells [188].
These observations suggest that DNA damage related to free radical exposure
can contribute to MSI. Many forms of cancer are closely associated with
chronic inflammation, leading to the suggestion that oxidative stress may sig-
nificantly contribute to DNA damage elevating the risk for neoplastic trans-
formation in affected tissues. Ulcerative colitis is an inflammatory bowel dis-
ease associated with increased risk for colorectal cancer [189]. MSI is one of
the features of ulcerative colitis and related pre-neoplastic lesions [190], sug-
gesting a role for MMR defects in this condition. The accumulation of micro-
satellite mutations in ulcerative colitis could be related to a failure of the MMR
pathways to correct the excess damage resulting from elevated levels of free
radicals [191]. Alternatively, MMR function may be disabled through DNA
methylation [192] or directly by oxidative stress [193]. The inactivation of
MMR function in response to oxidative stress is mediated by oxidative dam-
age to MMR complexes, possibly involving hMutSα, hMutSβ, and hMutLα
[193]. This type of mechanism could account for MSI in chronically inflamed
non-neoplastic tissues [194], as well as cancers associated with inflammatory
processes [195, 196].

Molecular targets of microsatellite instability

Numerous simple repeat sequences are found in the human genome. Some of
these occur within the coding regions of structural genes. These genes may be
targets for mutation in cells that display MSI [197, 198]. The TGFβRII gene
contains two simple repeat sequences: (i) a 10-bp adenine mononucleotide
tract and (ii) a 6-bp GT repeat [199]. This gene represents the first recognized
target for inactivation due to microsatellite mutations in human tumors and cell
lines, and both simple repeat sequences are subject to mutation [200].
Mutation of the (GT)3 repeat region in one tumor by insertion of an addition-
al GT repeat unit resulted in a frameshift, which was predicted to significant-
ly alter the C terminus of the receptor protein [200]. Additional mutations were
documented in the (A)10 repeat region of the TGFβRII gene (deletion of one or
two bases), resulting in frameshifts that were predicted to give rise to truncat-
ed receptor proteins [200]. Inactivating TGFβRII mutations involving these
simple repeat regions have now been identified in a significant number of
human tumors that exhibit MSI, including sporadic and hereditary CRC, as
well as cancers of the stomach, endometrium, and acute lymphoblastic
leukemia [59]. However, cancers of the esophagus [201] and gliomas [202]
display no microsatellite mutations involving the TGFβRII gene.

A number of other genes that function in various aspects of normal cellular
homeostasis (growth control and DNA repair) exhibit frameshift mutations at
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microsatellite loci, including APC, BAX, E2F-4, IGFIIR, hMSH3, hMSH6,
TCF-4, BLM, and others [59, 198, 203, 204]. Mutation in these genes have
been identified in a significant percentage (as high as 50–55%) of gastroin-
testinal cancers (HNPCC, sporadic CRC, stomach) that exhibit MSI [59].
However, some other cancers that display MSI do not contain these mutations
[205], suggesting that these genes may be preferential targets in tumors of the
gastrointestinal tract. Other tumors with MSI may mutate different genes from
those that have been identified to be susceptible to this form of genetic event
[198, 204].

Conclusions

A large amount of evidence has now accumulated suggesting a genetic basis
for the development of neoplastic disease in humans. However, the genetic
damage documented in human cancers includes both large-scale alterations
(chromosomal aberrations and ploidy changes) and DNA sequence alterations
(single nucleotide changes or alterations in short segments of DNA). In addi-
tion, the patterns of genetic damage within a single tumor can vary from a few
molecular alterations at specific loci to genome-wide mutations involving a
large number of loci. Several distinct forms of genomic instability may provide
the molecular basis for neoplastic transformation in humans. Cells undergoing
neoplastic transformation may accumulate genetic damage related to progres-
sive genomic instability, or due to episodic genomic instability. Transforming
mutations could arise through either of these mechanisms, involving chromo-
somal alterations or sequence alterations (point mutations and/or MSI).
Although the significance of mutations to the etiological mechanisms of tumor
development has been debated, a causal role for genetic lesions in the genesis
of cancer is commonly accepted. Thus, genetic lesions represent an integral
part of the processes of neoplastic transformation, tumorigenesis, and tumor
progression, and as such represent potentially valuable markers for cancer
detection, diagnosis, staging, and prediction of clinical outcome [3, 4].
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