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Sturm’s Theorems on Zero Sets
in Nonlinear Parabolic Equations

Victor A. Galaktionov and Petra J. Harwin

Abstract. We present a survey on applications of Sturm’s theorems on zero
sets for linear parabolic equations, established in 1836, to various problems in-
cluding reaction-diffusion theory, curve shortening and mean curvature flows,
symplectic geometry, etc. The first Sturm theorem, on nonincrease in time of
the number of zeros of solutions to one-dimensional heat equations, is shown to
play a crucial part in a variety of existence, uniqueness and asymptotic prob-
lems for a wide class of quasilinear and fully nonlinear equations of parabolic
type. The survey covers a number of the results obtained in the last twenty-
five years and establishes links with earlier ones and those in the ODE area.
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1. Introduction: Sturm’s theorems for parabolic equations

In 1836 C. Sturm published two celebrated papers in the first volume of J. Li-
ouville’s Journal de Mathématique Pures et Appliquées. The first paper [125] on
zeros of solutions u(x) of second-order ordinary differential equations such as

u′′ + q(x)u = 0, x ∈ R, (1.1)

very quickly exerted a great influence on the general theory of ODEs. Then and
nowadays Sturm’s oscillation, comparison and separation theorems can be found
in most textbooks on ODEs with various generalizations to other equations and
systems of equations. In general, such theorems classify and compare zeros and
zero sets {x ∈ R : u(x) = 0} of different solutions u1(x) and u2(x) of (1.1) or
solutions of equations with different continuous ordered potentials q1(x) ≥ q2(x).
We refer to other papers of the present volume containing a detailed survey of this
classical theory.
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The second paper [126] was devoted to the evolution analysis of zeros and
zero sets {x : u(x, t) = 0} for solutions u(x, t) of partial differential equations of
parabolic type, for instance,

ut = uxx + q(x)u, x ∈ [0, 2π], t > 0, (1.2)

with the same ordinary differential operator as in (1.1) and the Dirichlet boundary
condition u = 0 at x = 0 and x = 2π and given smooth initial data at t = 0. Two
of Sturm’s results on PDEs like (1.2) can be stated as follows:

First Sturm Theorem: nonincrease with time of the number of zeros (or sign
changes) of solutions;

Second Sturm Theorem: a classification of blow-up self-focusing formations and
collapses of multiple zeros.

We will refer to both of Sturm’s Theorems together as the Sturmian argument
on zero set analysis. Most of Sturm’s PDE paper [126] was devoted to the second
Theorem on striking evolution “dissipativity” properties of zeros of solutions of lin-
ear parabolic equations, where a detailed backward-forward continuation analysis
of the collapse of multiple zeros of solutions was performed. The first Theorem
was formulated as a consequence of the second one (it is a form of the strong
Maximum Principle (MP) for parabolic equations). As a by-product of the first
Theorem, Sturm presented an evolution proof of bounds on the number on zeros
of eigenfunction expansions. For finite Fourier series

f(x) =
∑

L≤k≤M (ak cos kx + bk sin kx), x ∈ [0, 2π], (1.3)

by using the PDE (1.2), q ≡ 0 (with periodic boundary conditions), it was proved
that f(x) has at least 2L and at most 2M zeros.1 Sometimes the lower bound on
zeros is referred to as the Hurwitz Theorem, which was better known than the first
Sturm PDE Theorem. This Sturm-Hurwitz Theorem is the origin of many striking
results, ideas and conjectures in topology of curves and symplectic geometry.

Unlike the classical Sturm theorems on zeros of solutions of second-order
ODEs, Sturm’s evolution zero set analysis for parabolic PDEs did not attract
much attention in the nineteenth century and, in fact, was forgotten for almost a
century. It seems that G. Pólya (1933) [112] was the first person in the twentieth
century to revive interest in the first Sturm Theorem for the heat equation. (The
earlier extension by A. Hurwitz (1903) [71] of Sturm’s result on zeros of (1.3)
to infinite Fourier series with M = ∞ did not use PDEs.) Since the 1930s the
Sturmian argument has been rediscovered in part several times. For instance, a
key idea of the Lyapunov monotonicity analysis in the famous KPP-problem, by
A.N. Kolmogorov, I.G. Petrovskii and N.S. Piskunov (1937) [82] on the stability
of travelling waves (TWs) in reaction-diffusion equations, was based on the first
Sturm Theorem in a simple geometric configuration with a single intersection
between solutions. This was separately proved there by the Maximum Principle.

1Sturm also presented an ODE proof.
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From the 1980s the Sturmian argument for PDEs began to penetrate more
and more into the theory of linear and nonlinear parabolic equations and was found
to have several fundamental applications. These include asymptotic stability the-
ory for various nonlinear parabolic equations, orbital connections and transversal-
ity of stable-unstable manifolds for semilinear parabolic equations such as Morse-
Smale systems, unique continuation theory, Floquet bundles and a Poincaré-
Bendixson theorem for parabolic equations and problems of symplectic geometry
and curve shortening flows. A survey on Sturm’s ideas in PDEs will be continued
in Section 2, where we present the statements of both of Sturm’s Theorems, and in
Section 3, where we describe further related results and generalizations achieved
in the twentieth century.

2. Sturm’s theorems for linear parabolic equations

2.1. First Sturm Theorem: nonincrease of the number of sign changes

Let D and J be open bounded intervals in R. Consider in S = D × J the linear
parabolic equation

ut = a(x, t)uxx + b(x, t)ux + c(x, t)u. (2.1)

Given a constant τ ∈ J , we denote the parabolic boundary of the domain Sτ =
S ∩ {t < τ}, i.e., the lateral sides and the bottom of the boundary of Sτ , by ∂Sτ .
Given a solution u defined on Sτ , the positive and negative sets of u are defined
as follows:

U+ = {(x, t) ∈ Sτ : u(x, t) > 0}, U− = {(x, t) ∈ Sτ : u(x, t) < 0}. (2.2)

A component of U+ (or U−) is a maximal open connected subset of U+ (or U−).
Given a t ∈ J , the number (finite or infinite) of components of {x ∈ D :

u(x, t) �= 0}minus one is called the number of sign changes of u(x, t) and is denoted
by Z(t, u). Alternatively, let K be the supremum over all natural numbers k such
that there exist k points from D, x1 < x2 < · · · < xk, satisfying

u(xj , t) · u(xj+1, t) < 0 for all j = 1, 2, . . . , k − 1,

then Z(t, u) = K − 1.

Theorem 2.1 (First Sturm Theorem: sign changes). Let a, b, c be continuous,
bounded and a ≥ µ > 0 in S for some constant µ. Let u(x, t) be a solution of (2.1)
in S that is continuous on S.

(i) Suppose that on ∂Sτ there are precisely n (respectively m) disjoint intervals
where u is positive (respectively negative). Then U+ (resp. U−) has at most n
(resp. m) components in Sτ and the closure of each component must intersect
∂Sτ in at least one interval.

(ii) The number of sign changes Z(τ, u) of u(x, τ) on D is not greater than the
number of sign changes of u on ∂Sτ .
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The first Sturm Theorem is formulated on p. 431 in [126]. The present proof
of Theorem 2.1 is taken from [118] (similar to that in [105]).

Proof. The proof is based on the strong Maximum Principle.
(i) Let I ⊂ ∂Sτ be a maximal interval where u > 0. Suppose that two open
connected subsets F1, F2 ⊂ U+ intersect ∂Sτ in disjoint open intervals I1, I2 ⊂ I.
Since u is continuous in Sτ , there exists an open set G ⊂ U+ whose closure in
Sτ contains I. Then G must contain points of both F1 and F2 so that these must
belong to the same open component of U+. Thus, at most one component of U+

intersects each of the n open intervals on ∂Sτ where u > 0. The same result holds
for the components of U−. Therefore, it suffices to show that every component of
U+ (or U−) intersects ∂Sτ in one or more intervals.

We can assume that c ≤ 0 in Sτ . Otherwise, we set u = eλtv (U± stay the
same for v), where v then solves equation (2.1) with the last coefficient c on the
right-hand side replaced by c− λ and we can choose the constant λ ≥ sup c.

Let F ⊂ U+ be a component in Sτ . Since u is continuous, it must attain
a positive maximum on F . Then c ≤ 0 implies ut ≤ auxx + bux in F, and, by
continuity, u = 0 at any boundary point of F which is interior to Sτ . By the MP,
u cannot attain its maximum at an interior point of F or on the line {t = τ}.
Hence, F must have a boundary point Q ∈ ∂Sτ such that u(Q) > 0 and by
continuity u is positive in an interval of ∂Sτ about Q.
(ii) is a straightforward consequence of (i). �

The first Sturm Theorem is true for wider classes of linear parabolic equations
that are sufficiently regular (so the strong MP can be applied). An important
example is the radial parabolic equation in RN with continuous coefficients and
a ≥ µ > 0,

ut = a(r, t)∆u + b(r, t)ur + c(r, t)u, (2.3)

where r = |x| ≥ 0 denotes the radial variable and ∆ = d2

dr2 + N−1
r

d
dr is the radial

Laplace operator. Bearing in mind that we consider smooth bounded solutions
satisfying the symmetry condition at the origin, ur(0, t) = 0 for t ∈ J , the MP
applies to equation (2.3) in S = D × J , where D = {r < R} is a ball in RN , and
the first Sturm Theorem holds.

2.2. Second Sturm Theorem: formation and collapse of multiple zeros

Results in the class of analytic functions. We consider parabolic equations with
analytic coefficients admitting analytic solutions. Then any zero of u(x, t) has finite
multiplicity. Under this assumption, the following result is true:

Theorem 2.2 (Second Sturm Theorem: multiple zeros). Let O = (0, 0) ∈ S and
u ∈ C∞(S)∩C(S) be a solution of equation (2.1) with C∞-coefficients a, b, c, where
a ≥ µ > 0 in S. Assume that u(x, t) does not change sign on the lateral boundary
of S, and u(x, 0) has a zero of order m ≥ 2 at the origin x = 0, i.e.,

Dk
xu(0, 0) = 0 for k = 0, 1, . . . , m− 1 and Dm

x u(0, 0) = m!A �= 0. (2.4)
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Then Z(t, u) decreases at t = 0, and for any t1 < 0 < t2 near t = 0, there holds

Z(t1, u)− Z(t2, u) ≥ {m, if m is even; m− 1, if m is odd}. (2.5)

In the proof of Theorem 2.2 we will follow Sturm’s original computations
and analysis in [126], pp. 417–427, which was done for the following semilinear
parabolic equation on a bounded interval

gut = (kux)x − lu, x ∈ (x, X), t > 0, (2.6)

with smooth functions g, k and l depending on x and t. The main calculations
were performed for g, k, l depending on x only. A comment on p. 431 extends the
results to allow dependence on t. Third type (Robin) boundary conditions were
incorporated:

kux − hu = 0 at x = x, kux + Hu = 0 at x = X, (2.7)

where h, H are constants but also can depend on t, see p. 431. (Zero Dirichlet
boundary conditions are also mentioned there.) Sturm’s analysis on pp. 428–430
includes the case of multiple zeros occurring at boundary points x or X.

Proof. By Taylor’s formula near the origin we have

u(x, 0) = Axm + O(xm+1). (2.8)

Using a Taylor expansion in t, we have

u(x, t) = u(x, 0)+ut(x, 0)t+ 1
2! utt(x, 0)t2 + · · ·+ 1

n! Dn
t u(x, 0)tn +O(tn+1), (2.9)

where n = m/2 if m is even and n = (m − 1)/2 if m is odd. Let us estimate
the coefficients. Let dj = m!/(m − 2j)! for j = 0, 1, . . . , n. It follows from the
parabolic equation (2.1) and (2.8) that ut(x, 0) = a(x, 0)uxx(x, 0)+b(x, 0)ux(x, 0)+
c(x, 0)u(x, 0) = a0Ad1x

m−2+O(xm−1), where a0 = a(0, 0) and a(x, 0) = a0+O(x).
Differentiating the equation and using expansion (2.8) again, we obtain, keeping
the leading terms only,

utt(x, 0) = autxx + · · · = a2
0Ad2x

m−4 + O(xm−3),

and finally Dn
t u(x, 0) = Dn−1

t a0uxx(0, 0)+ · · · = an
0Adnxm−2n +O(xm−2n+1). The

Taylor expansion in both independent variables, x and t, takes the form

u(x, t) = A(xm+a0d1x
m−2t+ 1

2! a2
0d2x

m−4t2+· · ·+ 1
n! an

0dnxm−2ntn)+O(·) (2.10)

with the remainder O(·) = O(|x|m+1 + |x|m−1|t|+ · · ·+ |x|m−2n+1|t|n + |t|n+1).
(i) Backward continuation. Consider the behavior for t ≈ 0−. The dimensional
structure of the right-hand side of (2.10) suggests rewriting this expansion in terms
of the rescaled Sturm backward continuation variable

z = x/
√

a0(−t) for t < 0. (2.11)

Substituting x = z
√

a0(−t), we obtain that

A−1a
−m/2
0 (−t)−m/2u(x, t) = Pm(z) + O((−t)1/2(1 + |z|m+1)), (2.12)
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where Pm(z) =
∑n

j=0(−1)j dj

j! zm−2j. The mth order polynomial Pm(z) is the
Hermite polynomial Hm(z) (up to a constant multiplier which we omit in what
follows). Each orthogonal polynomial Hm(z) has exactly m simple zeros {zi, i =
1, . . . , m} with H ′

m(zi) �= 0. Sturm proved this separately on p. 426. This is the
classical theory of orthogonal polynomials, see G. Szegö’s book [128], Chapter 6.

A similar expansion for the derivative ux(x, t) shows that (2.12) can be dif-
ferentiated in x giving the derivative P ′

m(z) in the right-hand side. It follows from
the expansions of u(x, t) and ux(x, t) near the multiple zero that for any t ≈ 0−,
the solution u(x, t) has m simple zeros {xi(t), i = 1, . . . , m}, ux(xi(t), t) �= 0, with
the following asymptotic behavior: xi(t) = zi(−t)1/2 + O(−t) → 0 as t → 0−, so
that exactly m smooth zero curves intersect each other at the origin (0, 0).

(ii) Forward continuation. Following Sturm’s analysis, we consider the behavior of
the solution u(x, t) as t→ 0+. Introducing the heat kernel rescaled variable of the
forward continuation

z = x/
√

a0t for t > 0, (2.13)

instead of (2.12) we obtain another polynomial on the right-hand side

A−1a
−m/2
0 t−m/2u(x, t) = Qm(z) + O(t1/2(1 + |z|m+1)), (2.14)

where Qm(z) =
∑n

j=0
dj

j! zm−2j. The mth order polynomial Qm(z) has positive
coefficients. If m is odd, then it is strictly increasing with Qm(0) = 0. If m is even,
then it has a single positive minimum at z = 0. Therefore, (2.14) implies that for
small t > 0 on compact subsets {|x| ≤ ct1/2} with any c > 0, the solution u(x, t)
has a unique simple zero x̃1(t) = O(t) if m is odd, and no zeros if m is even. This
is Sturm’s analysis on p. 423.

In order to complete the proof, it suffices to observe that if m is even and, say,
A > 0, by continuity and the strong MP, there exists a small interval (−ε, ε) such
that u(x, t) becomes strictly positive on (−ε, ε) for all small t > 0. This means that
at least m zero curves disappear at (0, 0). If m is odd and A > 0, then applying
Theorem 2.1 to the domain S = (−ε, ε)× (0, ε) we have that on (−ε, ε) for t > 0
there exists a unique continuous curve of simple zeros x̃1(t) starting from (0, 0).
In this case at least m− 1 zero curves disappear at the origin as t→ 0−. �

Such a complete analysis of the evolution of multiple zeros in 1D applies
to more general parabolic equations. In particular, in N -dimensional geometry
similar results are true for radial solutions u = u(r, t) of parabolic equations (2.3)
with analytic coefficients; see the next section.

Sturm’s proof, consisting of two parts (i) and (ii), exhibits typical features of
the asymptotic evolution analysis for general linear uniformly parabolic equations:

(i) A finite-time formation of a multiple zero as t→ 0− as a singularity formation
(single point blow-up self-focusing of zero curves);

(ii) Disappearance of multiple zeros at t = 0+, i.e., instantaneous collapse of a
singularity and a unique continuation of the solution beyond the singularity.
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Regarding this part of Sturm’s analysis, we present the result separately as follows.

Corollary 2.1. Under the assumptions of Theorem 2.2, the following results hold:
(i) As t→ 0−, the rescaled solution converges uniformly on any compact subset
{|z| ≤ const.} to the mth order Hermite polynomial with finite oscillations:

A−1a
−m/2
0 (−t)−m/2u(x, t)→ Hm(z). (2.15)

(ii) As t → 0+, the rescaled solution converges uniformly on compact subsets to
the non-oscillating mth order polynomial:

A−1a
−m/2
0 t−m/2u(x, t)→ Qm(z). (2.16)

Phenomena of singularity blow-up formation, collapse and proper solution
extensions beyond singularities are important subjects of general PDE theory. In
applications to semilinear and quasilinear parabolic equations of reaction-diffusion
type, the perturbation techniques for infinite-dimensional dynamical systems plays
a key role; see various examples in [58]. We briefly comment on Sturm’s analysis
using the perturbation theory of linear operators.
(i) Formation of multiple zeros: backward continuation. Using Sturm’s backward
rescaled variable (2.11), we introduce the rescaled solution

u(x, t) = θ(z, τ), z = x/
√

a0(−t), (2.17)

where τ = − ln(−t)→ +∞ as t→ 0− is the new time variable. Substituting (2.17)
into equation (2.1) yields the rescaled equation

θτ = B θ + C(τ)θ, (2.18)

where B is the linear operator

B =
d2

dz2
− 1

2
z

d
dz
≡ 1

ρ

d
dz

(
ρ

d
dz

)
, where ρ(z) = e−z2/4, (2.19)

which is symmetric in L2
ρ(R

N ) (see below). The non-autonomous perturbation in
(2.18) has the form

C(τ)θ =
(

a− a0

a0

)
θzz + e−τ/2 b√

a0
θz + e−τc θ,

where for the regular coefficient a, (a(x, t)−a0)/a0 ≡ (a(z[a0(−t)]1/2, t)−a0)/a0 =
O(e−τ/2). This means that for smooth solutions, the perturbation

C(τ)θ = e−τ/2[θzz O(1) + ba
−1/2
0 θz + e−τ/2c θ]

is exponentially small as τ → ∞. Equation (2.18) is an exponentially small per-
turbation of the autonomous equation

θτ = B θ. (2.20)

The operator B is known to be self-adjoint in the weighted space L2
ρ(R) with

the inner product (v, w)ρ =
∫∞
−∞ ρ(z)v(z)w(z)dz. Its domain D(B) = H2

ρ(R) is a
Hilbert space of functions v satisfying v, v′, v′′ ∈ L2

loc(R) with the inner product
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〈v, w〉ρ = (v, w)ρ + (v′, w′)ρ + (v′′, w′′)ρ and the induced norm ‖v‖2ρ = 〈v, v〉ρ.
Moreover, B has compact resolvent and its spectrum only consists of eigenvalues:

σ(B) = {λk = −k
2 , k = 0, 1, . . .}.

The eigenfunctions are orthonormal Hermite polynomials H̃k(z) = ckHk(z), ck

being normalization constants. These are classical results of the theory of linear
self-adjoint operators in Hilbert spaces. We refer to the first chapters of the book
[22] (see p. 48 on Hermite polynomials in RN ). Using eigenfunction expansions
and semigroup estimates (see Section 3) yields that the exponentially perturbed
dynamical system (2.18) on L2

ρ(R
N ) admits a discrete subset of asymptotic pat-

terns. These coincide with those for the unperturbed equation (2.20) exhibiting the
asymptotic behavior on tangent stable (λm < 0) eigenspaces of B. Hence (2.15)
holds. As τ →∞, uniformly on compact subsets we have

θ(z, τ) = CeλmτHm(z) + O(eλm+1τ ) with a constant C �= 0. (2.21)

(ii) Collapse of multiple zero on the spatial structure of adjoint polynomials: for-
ward continuation. For t > 0, we use the forward rescaled variable (2.13). Similarly,
we deduce that the rescaled function u(x, t) = g(z, s), where the time variable is
s = ln t→ −∞ as t→ 0+, solves the exponentially perturbed equation as s→ −∞

gs = (B∗ − 1
2I)g + C(s)g, (2.22)

where I denotes identity and B∗ is the adjoint differential operator

B∗ =
d2

dz2
+

1
2
z

d
dz

+
1
2
I ≡ 1

ν

d
dz

(
ν

d
dz

)
+

1
2
I with weight ν(z) = ez2/4.

As in the backward analysis, the perturbation term C(s)g = O(es/2) → 0 as
s→ −∞ and is exponentially small for smooth solutions on compact subsets. B∗

is self-adjoint in L2
ν(R), D(B∗) = H2

ν (R), with the point spectrum σ(B∗) = σ(B)
and a complete set of orthonormal eigenfunctions.

Unlike the phenomenon of the evolution blow-up formation of multiple zeros,
in the asymptotic analysis as s→ −∞ spectral properties and eigenfunctions of B∗

play no role. The limit t→ 0+ corresponds to the collapse of the initial singularity
created by the preceding singularity formation as t→ 0−. The behavior of u(x, t)
as t → 0+ is uniquely determined by the initial data u(x, 0). Consider (2.21)
for |z| � 1. Since Pm(z) ≡ Hm(z) = zm + · · · as z → ∞, it can be shown
(a compactness argument is necessary at this step to extend the behavior from
compact subsets {|z| ≤ c} to {0 < |x| � 1}) that passing to the limit t→ 0− gives
u(x, 0) as follows:

u(x, t) = C(−t)−λmxma
−m/2
0 (−t)−m/2 + · · · → Ca

−m/2
0 xm + · · · . (2.23)

The solution g(z, s) of the rescaled equation (2.22) with initial data calculated in
(2.23) has the expansion

g(z, s) = C̃e−λmsQm(z) + · · · , C̃ �= 0, (2.24)
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where Qm is the polynomial solution of the linear equation (B∗− 1
2I)Qm = m

2 Qm.
We thus arrive at the linear problem for the “adjoint” polynomials {Qm}. No-
tice that these have nothing to do with the orthogonal subset of eigenfunctions
{exp(−z2/4)Hm(z)} of the adjoint operator B∗. Moreover Qm �∈ L2

ν(R). In order
to match (2.24) and the initial condition (2.23), by a similar local extension to
{0 < |x| � 1} we have that

g(z, s) = C̃t−λmxma
−m/2
0 t−m/2 + · · · → C̃a

−m/2
0 xm + · · · as t→ 0+.

By matching with (2.23), this uniquely determines the constant C̃ = C in (2.24)
and completes the asymptotic analysis of both the backward and forward evolution
of multiple zeros.
Results in classes of finite regularity. Fix finite T > 0 and let J = (0, T ). If
u(x, t) �≡ 0 is a solution, analytic in x, of the linear parabolic equation (2.1)
with analytic coefficients a, b, c, then for any t ∈ (0, T ), all the zeros of u(x, t) are
isolated and hence the number of sign changes Z(t, u) is finite even if Z(0, u) =∞.
A similar result holds in classes of solutions and equations of finite regularity. We
present without proofs two results by S. Angenent [7]; more references are given
in Section 3. We begin with initial-boundary value problems.

Theorem 2.3. Let u be a bounded solution of (2.1) in S = D × (0, T ) which does
not change sign on the lateral boundary of S. Assume that the coefficients a, b and
c of the equation are such that

a, a−1, ax, axx, b, bt, bx, c ∈ L∞(S).

Then the number of sign changes of u(·, t) satisfies:
(i) Z(t, u) is finite and nonincreasing on (0, T );
(ii) If x = x0 ∈ D is a multiple zero of u(x, t0) for some t0 ∈ (0, T ), then for all

0 < t1 < t0 < t2 < T the strict inequality Z(t1, u) > Z(t2, u) holds, so that
Z(t, u) is strictly decreasing at t = t0.

As a consequence, any global solution u(x, t) defined in S = D × R+ has
only simple zeros for all t� 1. A similar result is valid for parabolic equations in
unbounded domains if we restrict the analysis to classes of functions with a fixed
growth at infinity, similar to Tikhonov’s classes of uniqueness. Let D = R, and
consider the following linear parabolic equation:

ut = uxx + q(x, t)u in S = R× (0, T ). (2.25)

Theorem 2.4. Let q ∈ L∞(S), and let u(x, t) be a solution of (2.25) in the class
{|u(x, t)| ≤ AeBx2

in S} for some positive constants A and B. Then for each
t ∈ (0, T ), the zero set of the solution {x ∈ R : u(x, t) = 0} is a discrete subset of R.

As a direct consequence of this we have that if x = ±∞ are not accumulation
points of zeros of u(x, 0), then statements (i) and (ii) of Theorem 2.3 hold. Theorem
2.4 is true for more general equations like (2.1) in unbounded domains in suitable
classes of uniqueness. Equation (2.1) can be reduced to (2.25) by the Liouville
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transformation. Using the new spatial coordinate y =
∫ x

0
(a(s, t))−1/2 ds, we have

that u = u(y, t) satisfies the equation

ut = uyy + b̃(y, t)uy + c̃(y, t)u.

Substituting v(y, t) = exp{ 1
2

∫ y

0 b̃(s, t) ds}u(y, t), yields equation (2.25) for v(y, t)
with a potential q̃(y, t). Checking necessary properties of q̃(y, t) one deduces that
Sturm’s results are valid in the corresponding uniqueness classes.

3. Survey on Sturm’s theorems and ideas in parabolic PDEs

We begin our survey with those ODE results that fall into the scope of the PDE
theory or can admit a PDE treatment or proof. The rest is devoted to applications
of Sturm’s Theorems in areas where parabolic PDEs occur.

3.1. On some ODE results

Classical Sturm results on zeros for a single second-order ODE like

y′′ + q(t)y = 0, t ∈ (0, 2π), (3.1)

can be stated in a topological form describing rotations in the phase space of
equations (this form is convenient for extensions to higher-order equations). Let

Y (t) =
(

y1(t) y2(t)
y′
1(t) y′

2(t)

)
satisfying Y (0) = E2 =

(
1 0
0 1

)
be a matrix solution of (3.1), where y1(t) and y2(t) are linearly independent solu-
tions. Then the vector z(t) = y1(t)+ iy2(t) moves counterclockwise in the complex
plane. Indeed, since by construction the Wronskian W (y1, y2)(t) = detY (t) ≡ 1,
we have that arg z(t) = tan−1(y2(t)/y1(t)) satisfies d

dtarg z = W (y1, y2)/(y2
1+y2

2) =
1/(y2

1 + y2
2) > 0. Sturm’s theorems follow from this monotonicity property.

The first generalizations of Sturm’s theorems to the case of vector-valued
operators and to systems (3.1) with symmetric matrices q(t) are due to M. Morse
(1930) [101], [102], where variational methods are applied. Oscillatory theorems
for general canonical systems of 2kth order were first established by V.B. Lidskii
(1955) [88] for the equation

y′ = IH(t)y, I =
(

0 Ek

−Ek 0

)
,

where Ek is the k × k identity matrix and H(t) is a 2k × 2k real continuous
symmetric matrix (the Hamiltonian). We present brief comments on these results.
Let Y (t) with Y (0) = E2k be a matrix solution. Then Y (t) is symplectic: Y ∗IY ≡
I. Denote

H(t) =
(

h11(t) h12(t)
h21(t) h22(t)

)
and Y (t) =

(
y11(t) y12(t)
y21(t) y22(t)

)
,

where hij(t) and yij(t) are k × k blocks. Consider the non-singular matrix z(t) =
y11(t) + iy12(t) (cf. the case k = 1 above), and set u(t) = (z(t))−1z(t). Then u(t)
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is unitary and symplectic. The alternation theorem of Lidskii is as follows. Let
h22(t) > 0 (for (3.1) with k = 1, h22 ≡ 1). Then the eigenvalues ρ1(t), . . . , ρk(t) of
u(t) move counterclockwise around the unit circle: d

dtarg ρs(t) > 0 for s = 1, . . . , k.
For ρs(t) = −1 (resp., ρs(t) = +1) the matrix u(t) has the same zero subspace as
y11(t) (resp., y12(t)), i.e., the “zeros” of the matrices y11(t) and y12(t) alternate.
Lidskii also proved an analogue of the Sturm comparison theorem. Consider two
canonical systems

Y ′
1 = IH1(t)Y1 and Y ′

2 = IH2(t)Y2, where H1(t) > H2(t).

Then specially enumerated eigenvalues ρ
(1)
s (t) and ρ

(2)
s (t) of the unitary matrices

u(1)(t) and u(2)(t) satisfy arg ρ
(1)
s (t) > arg ρ

(2)
s (t), s = 1, . . . , k, i.e., ρ

(1)
s (t) moves

“ahead” of ρ
(2)
s (t).

Variational approaches to Sturm’s theorems for self-adjoint linear 2kth order
systems were also developed by R. Bott (1959) [24] and by H.H. Edwards (1964)
[39]. (See the books [115] and [20] for a detailed presentation.) These results were
related to the Maslov index [95]. In 1985 V.I. Arnold [14] characterized this as
follows: “. . . numerous authors writing on the Maslov index, symplectic geometry,
geometric quantization, Lagrangian analysis, etc., starting with [13], have not no-
ticed the earlier works by Lidskii [88], as well as the earlier works of Bott [24] and
Edwards [39], in which a Hermitian version of the theory of the Maslov index and
Sturm intersections were constructed.”

A survey of earlier results concerning distribution and alternation of zeros
for nth order linear ODEs can also be found in [87], where, as well as in the
books mentioned above, various links to other related subjects are described in
detail. These include S.A. Chaplygin’s comparison theorem (1932) [30] closely con-
nected with the theory of positive operators, W.A. Markov’s theorem (1916) [94]
on the conservation of the alternation of zeros of polynomials under differentiation,
C. de la Vallée-Poussin’s theorem (1929) [38] and G. Pólya’s (1924) [111] criterion
on non-oscillation (the first non-oscillation test of best-possible character is due
to N.E. Zhukovskii (1892) [136]), F.R. Gantmakher (1936) [59] and M.G. Krein’s
(1939) [83] theory of oscillating kernels [60] (a direction originated with O.D. Kel-
logg’s work (1922) [78] on symmetric kernels), S.N. Bernstein results (1938) [21]
on connections between Chebyshev and Cartesian systems, etc. See also Hinton’s
survey [69].

Sturmian methods for ODEs can be applied to investigations in the complex
plane, see [68], Chapter 8. The classical Sturm comparison theorem for ODEs
admits special extensions to linear and quasilinear elliptic and parabolic PDEs,
see first results in [108], the book [127] and [2], as well as to ODEs in Hilbert
spaces [75]. More recent extensions of Sturm’s comparison theorems to quasilinear
elliptic equations can be found in [3], [4], where extra references are available.

Sturm’s Theorem on the number of distinct real roots of polynomials by
computing the number of sign changes in Sturm sequences (1835) [124] is well
known in algebra, see, e.g., [86] and [23]. In constructing Sturm sequences the
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first step is differentiation, establishing a link to ODEs (Sturm’s comparison or
oscillation theorems).

As with respect to ODEs, Sturm’s ideas have applications in the classical
problem on zeros of complete Abelian integrals defined by means of a planar Hamil-
tonian flow, which is closely related to Hilbert’s 16th problem (the so-called weak-
ened, infinitesimal or tangential Hilbert problem). Abelian integrals were known
to satisfy a system of Picard-Fuchs ODEs [61], see also [72] for further references.
This is a part of a general problem on zeros of Pfaffian functions and the fewno-
mials theory, [79], [80], where the eventual reduction to polynomial structures is
used. In particular, algorithmic consistency problems for systems of Pfaffian equa-
tions and inequalities occur (with applications to computer sciences); see [50] and
references therein.

Let us return to the Sturm-Hurwitz theorem establishing that the finite
Fourier series (1.3) has at least 2L and at most 2M zeros. On pp. 436–444 of
the PDE paper [126], Sturm presented an ODE proof of the result. Sturm’s ODE
proof, as well as Liouville’s one in [89] published in the same volume, exhibit cer-
tain features of a discrete evolution analysis (to be compared with Sturm’s PDE
proof via parabolic evolution equation with continuous time variable). A. Hurwitz
(1903) [71] extended this result to Fourier series with M =∞.

Further extension is due to O.D. Kellog (1916) [77] who proved oscillation the-
orems for linear combinations of real continuous functions φ0(x), φ1(x), . . . , φn(x)
that are orthonormal in L2((0, 1)). These are not eigenfunctions of a Sturm-
Liouville problem. The main assumption is as follows (we keep the original no-
tation). For any n ≥ 1, let the determinants

D(x0, x1, . . . , xn) =

∣∣∣∣∣∣∣∣
φ0(x0) φ1(x0) . . . φn(x0)
φ0(x1) φ1(x1) . . . φn(x1)

. . . . . . . . . . . .
φ0(xn) φ1(xn) . . . φn(xn)

∣∣∣∣∣∣∣∣
be positive for any 0 < x0 < x1 < · · · < xn < 1 (D0(x0) being understood as
φ0(x0)). Let

Φm,n(x) = cmφm(x) + · · ·+ cnφn(x).

Then, among other results, it is established that:
(i) Φ0,n(x) cannot vanish at n + 1 distinct points in (0, 1) without vanishing

identically;
(ii) φn(x) vanishes exactly n times and changes sign at each zero;
(iii) every continuous function ψ(x) orthogonal to φ0(x), . . . , φn(x) changes sign

at least n + 1 times;
(iv) Φm,n(x) changes sign at least m times and at most n times.
The infinitesimal version of the discriminants with xk+1−xk → 0, k = 0, 1, . . . , n−
1, defines the Wronskians of the given functions. Hence some of the assumptions
are valid for eigenfunctions of regular Sturm-Liouville problems. On the other
hand, Kellogg’s results do not cover those of Sturm, see p. 5 in [77].
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The Sturm-Hurwitz Theorem plays a fundamental role in topological prob-
lems in wave propagation theory (topology of caustics and wave fronts), the ge-
ometry of plane and spherical curves and in general symplectic geometry and
topology, see [14], [16], [17], [19] and references therein. Alternating, oscillating
and non-oscillating Sturm theorems have multi-dimensional symplectic analogues
and describe rotation of a Lagrangian subspace of the phase space [14]. For in-
stance, the Sturm-Hurwitz theorem proves a generalization [129] of the classical
four vertex theorem by S. Mukhopadyaya [103] and A. Kneser [81] asserting that a
plane closed non-self-intersecting curve has at least four vertices (critical points of
the curvature). It is pointed out in [17] that the same minimal number occurs in:

(i) theorems on four cusps of general caustics on every convex surface of positive
curvature (the related conjecture goes back to C.G.J. Jacobi (1884) [74]),

(ii) four cusps of the envelope of the family of perturbed Larmor orbits of given
energy,

(iii) the tennis-ball theorem (a closed curve on the sphere without self-inter-
sections, a smooth embedding S1 → S2, dividing the sphere into two parts of
equal area, has at least four points of spherical inflection with zero curvature),

(iv) the four equilibrium points theorem,
(v) the four flattening points theorem for perturbed convex curves of positive

curvature on a plane lying in three-dimensional space, etc.

Infinitesimal versions of such topological theorems (for infinitely small perturba-
tions of curves) follow from the Sturm-Hurwitz theorem. For finite perturbations,
some of these results can be proved by means of evolution Sturm theorems on
zeros for parabolic PDEs to be discussed later on.

Half of Arnold’s third lecture in the Fields Institute (1997) [18] was devoted
to Sturm’s theory on Fourier series, which “provides one of the manifestations
of the general principle of economy in algebraic geometry” (related to Arnold’s
conjecture (1965) and the symplectification of topology). In particular, the Morse
inequality (in the simplest version it says that the number of critical points of
functions on the circle is at least 2) is the Sturm-Hurwitz theorem with L = 1.

The Sturm-Hurwitz theorem was first proved by the PDE method [126], pp.
431–436, in the general form including any (finite) series composed from eigen-
functions of a Sturm-Liouville problem. These extensions of Sturm’s ideas have
many other applications to be discussed below.

Extensions of Sturm’s results on zeros (nodal sets) of linear combinations
of eigenfunctions to standard self-adjoint elliptic operators (e.g., the Laplacian
∆) in bounded smooth domains Ω ⊂ RN , N ≥ 2, are unknown; see [17] and
[18]. In particular, the so-called Herrmann theorem announced in [37], p. 454: a
linear combination of the first n eigenfunctions divides the domain, by means of
its nodes (piecewise smooth nodal surfaces), into not more than n subdomains,
fails to hold for the spherical Laplacian [18]. Courant’s Theorem on p. 452 asserts
that the nodes of the nth eigenfunction divide the domain into no more than n
subdomains.
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In dimensions N ≥ 2, given a linear combination f(x) of eigenfunctions of
∆, the structure of the nodal set itself N (f) = {x ∈ Ω : f(x) = 0} is not sufficient
to define a kind of a Sturmian “index” of the surface z = f(x), similar to the
number of zeros in 1D, which can inherit a certain numerical property (say, a
lower bound) from the lowest harmonic of the series. Such an index should depend
on global properties of f(x) at all points x ∈ Ω including those far away from
N (f). It seems reasonable that for a proper definition of a Sturmian index, it is
necessary to control the intersections of the graph of the function f with the graphs
of the functions in the finite-dimensional set B = {Vν(x)} containing functions
associated with the operator ∆. Roughly speaking, this would mean that such a
“local” characteristic as the number of zeros of f(x) on an interval from R cannot
work in RN , where any possible nonincreasing property of, say, the number of
maximal connected subdomains of the positivity subset {f(x) > 0} should include
some global properties of the function formulated in an unknown way. In any case,
a proper definition of Sturmian index of surfaces governed by parabolic equations
in RN is not expected to admit a simple formulation or such easy and effective
applications as it has in the 1D case.

3.2. Parabolic PDEs and Sturm’s theorems

The Sturmian argument for 1D parabolic equations turns out to be an extremely
effective technique in the study of different aspects of the theory of nonlinear
parabolic equations. In the twentieth century the argument was partially and in-
dependently rediscovered several times. We will mention some of the papers pub-
lished at least twenty years ago, but of course there are many other interesting
and important papers published more recently, which are not referred to here.

G. Pólya (1933) [112] paid special attention to Sturm’s zero set properties
of periodic solutions to the heat equation. He studied the number of “Nullstellen”
of u(x, t), i.e., the number of x ∈ [0, 2π] such that u(x, t) = 0, on the basis of
Sturm’s approach with a reference to [126]. Radial and cylindrical solutions were
considered and zero properties of convolution integrals were also studied.

The celebrated KPP-paper (1937) [82] was devoted to the stability analysis
of the minimal travelling wave (TW) for a semilinear heat equation

ut = uxx + f(u) in R× R+,

with the typical nonlinearity f(u) = u(1 − u). There the construction of a geo-
metric Lyapunov function in Theorem 11 was based on the following intersection
comparison argument: the initial 1-step function u0(x) = 1 for x > 0 and 0 for
x ≤ 0 intersects any smooth travelling wave profile exactly at a single point and
there exists a unique intersection curve for t > 0. In our notation this means that
the number of intersections Int(t, V ) ≡ 1 for any TW V (x, t) = g(x − λ0t + a)
and any t > 0, where λ0 > 0 is the minimal speed. In general, the number of
intersections can be treated as a discrete nonincreasing Lyapunov function. On
the other hand, it gives a standard monotone Lyapunov function: on any fixed
level {u(x, t) = c ∈ (0, 1)} the derivative ux(x, t) < 0 is monotone increasing in
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t and bounded above. Then passage to the limit t → ∞ establishes the conver-
gence to the minimal TW profile in the hodograph plane {u, ux} or in the moving
coordinate system in the {x, u}-plane.

K. Nickel’s paper (1962) [105] (see also [106]) established nonincrease of the
number of sign changes of solutions of parabolic equations (more precisely, of the
number of relative maxima of a solution profile, i.e., the number of zeros of the
derivative ux(x, t)). Nickel’s results are explained in detail relative to general fully
nonlinear parabolic equations in W. Walter’s books [134] and [133], Section 27.
R.M. Redheffer and W. Walter (1974) [114] extended such results to more general
classes of equations. For particular linear parabolic equations in R, these results
were proved by S. Karlin (1964) [76], whose analysis was based on ideas of total
positivity of Green’s functions and applied to Brownian motion processes. Related
questions and techniques were discussed by I.K. Ivanov (1965) [73] (the number
of changes of sign was considered), by E.K. Godunova and V.I. Levin (1966) [62]
(a proof of existence of a single maximum was based on the theory of probabilis-
tic distributions; eventual single maximum distribution and eventual concavity
of solutions were also established) and by E.M. Landis (1966) [85] (properties of
evolution of level sets for (2.1) were investigated). D.H. Sattinger’s results (1969)
[118] on sign changes for linear parabolic equations are similar to those obtained
by Nickel and Walter. Observe that in the proof of Theorem 7 on exponential de-
cay of total variation, Sattinger uses a reflection technique and studies zeros of the
differences u(x, t) and the reflected solution u(2l− x, t), see p. 88 in [118]. Such a
combination of Sturm’s theorems and A.D. Aleksandrov’s Reflection Principle and
ideas (1960) [1] later became a powerful tool in the asymptotic theory for nonlinear
singular parabolic equations. Papers by A.N. Stokes (1977) [122] and [123] used
the nonincrease of zero number with application to stability analysis of travelling
waves. Here the basic idea of proving a Lyapunov monotonicity property in the
hodograph plane is essentially the same as in the KPP-analysis [82]. A general
stability analysis of TWs in analytic semilinear parabolic equations via zero set
properties was performed in [12].

H. Matano (1978) [96] proved the first Sturm Theorem and applied it to es-
tablishing that the ω-limit set of any bounded solution to a semilinear parabolic
equation ut = (a(x)ux)x + f(x, u) on (0, L)× R+, a ≥ a0 > 0, with smooth coef-
ficients and Robin boundary conditions contains at most one stationary point. At
that time such a result was already known [135] for smooth uniformly parabolic
equations ut = a(x, u, ux)uxx + b(x, u, ux) with general nonlinear boundary con-
ditions. It was proved by constructing a standard (integral) Lyapunov functional
by the method of characteristics, a fruitful idea which applies to 1D quasilinear
parabolic equations. The geometric proof by Matano is more general and can be
applied to fully nonlinear parabolic equations

ut = F (x, u, ux, uxx). (3.2)

More detailed results related to the first Sturm Theorem were published in [97].
A finite difference approach to some of these Sturmian properties was developed
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earlier by M. Tabata (1980) [130]. An application of intersection comparison to
blow-up solutions of quasilinear parabolic equations ut = (k(u)ux)x + Q(u) was
given in [52].

Computations similar to those of Sturm in the proof of Theorem 2.2 in Sec-
tion 2 can be found in [12], Section 5. For radial equations (2.3) with N > 1 such
computations for t < 0 lead to Laguerre polynomials Lγ

m(z) of order γ = N/2,
see Section 3 in [8]. Perturbation techniques for the operator (2.19) were devel-
oped in [65], [7], [32]. Sturm’s backward parabolic rescaling with z = x/(−t)1/2

plays an important role in continuation theorems and topology of nodal sets for
linear parabolic equations in RN [32]. A weak form of the continuation analysis
[113] based on a monotonicity formula and weighted inequalities (this idea goes
back to T. Carleman (1939) [29] with applications to elliptic equations), which
are convolutions with the backward heat kernel, uses the same Sturm backward
variable.

The evolution proof of the Sturm-Hurwitz Theorem on zeros of (finite) linear
combinations of eigenfunctions {Vk(x), k = 1, 2, . . .}, where each Vk has exactly
k− 1 simple transversal zeros, of a Sturm-Liouville operator given by (2.6), (2.7),

Y (x) = CiVi(x) + Ci+1Vi+1(x) + · · ·+ CpVp(x)

is given on pp. 431-444 in [126] and is as follows (we keep the original notation).
Consider the solution

u(x, t) = CiVi(x)e−ρit + Ci+1Vi+1(x)e
−ρi+1t + · · ·+ CpVp(x)e−ρpt (3.3)

of the parabolic equation (2.6) with u(x, 0) ≡ Y (x), where the sequence of eigen-
values {−ρk} is strictly decreasing. Then for t� 1, the first harmonic is dominant
and hence u(x, t) has exactly i− 1 zeros. Since the number of zeros of u(x, t) does
not increase, u(x, t) has at least i−1 zeros for all t ∈ R, and hence at t = 0. On the
other hand, for t� −1 the last harmonic in (3.3) is dominant, u(x, t) has exactly
p−1 zeros, so that by Sturm’s Theorem, u(x, t) has at most p−1 zeros for all t ∈ R.

On p. 436 Sturm compares his proof with that by J. Liouville [89] “. . . with-
out using consideration of the auxiliary variable t . . . ” (by means of an ODE
argument). In Section XXVI Sturm presents his own ODE proof. Corollary 2.1 is
a paraphrase of Sturm’s calculations. The proof of Theorems 2.3 and 2.4 are given
in [7]. Finiteness of Z(t, u) on (0, 1) for t > 0 was also established in [84] for coeffi-
cients a ∈ H1, b ∈ W 1,∞ and c ∈ L∞ depending on x only. The second Sturm The-
orem on formation of multiple zeros remains valid for W 2,1

p,loc solutions (p > 1) from
Tikhonov’s uniqueness class for linear uniformly parabolic equations in RN with
bounded coefficients [32] (the proof uses Sturmian backward rescaling). The ana-
lytic case was treated in [12]. Eventual simplicity of zeros was first observed in [26].

An evolution approach to connections of equilibria for semilinear parabolic
equations was introduced by D. Henry [65], where such a time-dependent Sturm-
Liouville theory was rigorously established (including completeness of asymptotic
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limits in Theorem 4 proved by Agmon’s estimates). This theory was used in com-
pleting the proof that, under some hypotheses, a general semilinear parabolic equa-
tion ut = uxx + f(x, u, ux) in (0, 1) × R+, with Dirichlet or nonlinear boundary
conditions, represents a Morse-Smale system. It is established that given a hetero-
clinic connection ū(x, t) of two hyperbolic (linearly nondegenerate) equilibria φ±,
u(x,−∞) = φ−(x) and u(x, +∞) = φ+(x), the stable manifold W s(φ+) and the
unstable one Wu(φ−) meet transversally at ū(·, t) for each t. See also [6] for the
case f = f(x, u) ∈ C2. This transversality result was used in [65] to describe all
connecting orbits between equilibria for the Chafee-Infante problem with f = f(u),
f(0) = 0. For earlier results on connections for parabolic equations see [64] and
[25]. For more general f ∈ C2 such connections were established in [27]. See also
the survey [44].

A spectrum of Hermite polynomials occurred in the zero set analysis by
D. Henry [65] and S.B. Angenent [7]. Zero set results played a role in the analyticity
study of solutions of the porous medium equation (PME) [8]. A few years after
papers [65], [6] and [7] on parabolic Morse-Smale systems, the same linearized
operators, with eigenfunctions composed from Hermite polynomials, were obtained
in the center and stable manifold behavior in the study of blow-up solutions of
the semilinear parabolic equations from combustion theory ut = ∆u + up, p > 1
and ut = ∆u+eu (the nonstationary Frank-Kamenetskii equation), see [132], [47],
[66], [131] and [99].

Sturm’s Theorems play a key role in the analysis of other aspects of be-
haviour in infinite-dimensional dynamical systems associated with nonlinear par-
abolic equations. These are convergence to periodic solutions and related ques-
tions for periodic equations [33], [28] (results apply to general 1D fully nonlinear
equations), [43], [31] (transversality properties), [109], [67] and [34] (applied to
N -dimensional semilinear parabolic equations by means of symmetrization and
moving plane techniques), [120] (almost periodicity). Zero set analysis is a lead-
ing ingredient of a Poincaré-Bendixson theorem for semilinear heat equations,
[12], [98], [45], and in the construction of G. Floquet bundles (see [48] and re-
sults by A.M. Lyapunov [91]) for linear parabolic equations in periodic and non-
periodic cases (solutions un(x, t) having exactly n zeros for all t ∈ R) [35], [36]
(a generalization of Sturm-Liouville theory to the time-dependent case, results in-
clude exponential dichotomies and other estimates). Such Floquet-type solutions
{un(x, t), t > 0} exist for the semilinear heat equation ut = uxx − |u|p−1u in
R× R+ with exponential decay as t → ∞ depending on n [100]. The nonincreas-
ing number of zeros plays a key role in the problems of Morse decomposition [92]
and connections of Morse sets [46] for the monotone feedback differential delay
equation

u̇(t) = f(u(t), u(t− 1)), u ∈ R.

Nonincrease of the number of zeros per unit interval for such linear equations
was first established by A.D. Myschkis (1955), see Theorem 32 in [104]. It is



190 V.A. Galaktionov and P.J. Harwin

also true for monotone cyclic feedback systems [93] u̇i = fi(ui, ui−1), ui ∈ R,
i mod n.

Sturm’s intersection ideas play a fundamental role in curve shortening or
flows by mean curvature problems for curves on surfaces. For curves on a surface
M with a Riemannian metric g, such a motion is described by the curve shortening
equation

v⊥ = V (t, k), (3.4)

where v⊥ is the normal velocity of the curve, k is the curvature and V is a C1,1

function satisfying ∂V/∂k > 0. The reason that Sturm’s results apply to such
evolution problems (though some of the properties are intuitively obvious for in-
tersections of curves) is that (3.4) reduces to a nonlinear parabolic equation for the
curvature k or, after a suitable parametrization, for a function u(x, t) satisfying
a fully nonlinear parabolic equation (3.2), where F depends on V . [See the first
results in [70], [119] and [51] (a parabolic PDE for curvature kτ = k2(kθθ + k) was
derived for the flow v⊥ = k), and [41], [63].] A general approach to curve short-
ening flows via 1D parabolic equations was developed in [9], [10] (where Sturm’s
intersection theory is described), see also [117]. The mean curvature flows can
generate different types of singularities.

Parabolic properties of a curve shortening evolution can be used in a number
of well-known problems concerning plane curves. As a first example, a Birkhoff
curve shortening evolution was a basic idea in proving the theorem of the three
geodesics (any Riemannian 2-sphere has at least three simple closed geodesics) by
L.A. Lusternik and L.G. Schnirelman (1929) [90]. A smooth evolution via curva-
ture was used in [63] based on Uhlenbeck’s suggestion of using the curvature flow.

Sturm’s evolution PDEs approach on zero sets can give a new insight to a
number of topological problems of plane and spherical curves, caustics, and re-
lated topics of symplectic geometry briefly outlined above. For instance, three of
Arnold’s theorems [15] on the number of inflection points (at least four for any
embedded curve in S2, the “tennis ball theorem”; and at least three for any non-
contractible embedded curve in RP2) and extatic points (at least six for any plane
convex curve) can be proved by using a suitable parabolic mean curvature evolu-
tion (the affine one for extatic points), see [11] and comments in [18]. Namely, the
asymptotic expansion of the solution u(x, t) as t→∞ describing the convergence
to limiting geodesics via a 1D parabolic equation determines a minimally possible
number of critical points. Then the result follows from Sturm’s result on the non-
increase with time of the number of such points (e.g., inflections which are zeros
of the curvature). While the Sturm-Hurwitz theorem can deal with infinitesimal
perturbations of curves (see above), Sturm’s evolution analysis extends the results
to any finite perturbation. It follows that the statements from [17], p. 14, “ The
tennis ball theorem asserts that the result remains true for finite perturbations,
even very large ones,” and “. . . the tennis-ball theorem may be considered as a
generalization of Hurwitz’ theorem to the case of multi-valued functions” are cov-
ered by the first Sturm Theorem on zeros of single-valued functions (solutions of
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the PDE) since a suitable parabolic 1D evolution is available. The case of finite
perturbations reduces via parabolic evolution to the infinitesimal one, and then
Sturm’s Theorem establishes that the number of critical points (zeros, inflections,
extatic points, etc.) cannot be less than the eventual, infinitesimal one for arbi-
trarily small perturbations where a standard linearization applies. If a suitable
parabolic evolution exists, the Sturm-Hurwitz theorem guarantees that the “infin-
itesimal geometric characteristic” of convergence (the number of critical points) is
the optimal lower bound for any finite, arbitrarily large perturbation.

After a suitable surface parametrization, the quasilinear parabolic equation

ut = uxx/[1 + (ux)2]− (N − 2)/u

describes the evolution of cylindrically symmetric hypersurfaces moving by mean
curvature in RN , N ≥ 3, [42], [121], [5]. A similar singular lower-order term occurs
in the Prandtl boundary layer equations, which by von Mises non-local transfor-
mation reduce to the PME with an extra term ut = (uux)x + g(t)/u where g
depends on the velocity of the potential flow (though in the original setting no
singularities occur); see Section 30 in [134].

It is known that the first Sturm Theorem cannot be generalized to parabolic
equations in RN in the sense that such a general “order structure” does not exist;
see [49] and the detailed survey [110].

The Sturmian classification of multiple zeros holds for a system of parabolic
inequalities. Rescaling by Sturm’s backward variable shows that Sturm’s Theorems
are true for W 2,1

p,loc solutions (from Tikhonov’s class) of a system of parabolic
inequalities

|ut − uxx| ≤M1|ux|+ M0|u|, x ∈ R, t ∈ J.

See [32], where such rescaling detailed analyses of nodal sets were carried out for
equations in RN , namely the heat equation:

ut = ∆u in RN × (−∞, 0).

In terms of Sturm’s backward variable z = x/(−t)1/2 this reduces to the rescaled
equation

uτ = Bu in RN × R+, where τ = − ln(−t)→∞ as t→ 0−, (3.5)

with the symmetric second-order operator

Bu = ∆u − 1
2 z · ∇u ≡ 1

ρ ∇ · (ρ∇u), ρ(z) = e−|z|2/4. (3.6)

It is self-adjoint in L2
ρ(RN ) with the domain H2

ρ(RN ) and a point spectrum σ(B) =
{λβ = −|β|/2, |β| = 0, 1, . . .} (β = (β1, . . . , βN ) is a multiindex, |β| = β1 +
· · · + βN ) and the eigenfunctions Φ = {Hβ(z) = ρ−1(z)Dβρ(z)} are Hermite
polynomials in RN ; see [22], p. 48. The asymptotic structures CeλβτHβ(z) with
any eigenvalue λβ < 0 describe for τ → ∞ all possible types of multiple zeros of
the heat equation in RN . This makes it possible to study general properties (e.g.,
Hausdorff dimension) of nodal sets of general solutions [32].
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The main principles of Sturm’s evolution analysis of multiple zeros also re-
main valid for 2mth order linear parabolic equations. Since the analysis is essen-
tially local in a shrinking neighborhood of zero (according to Sturm’s variable
z = x/(−t)1/2), without loss of generality, we consider the canonical 2mth order
parabolic equation with constant coefficients

ut = −(−∆)mu in RN × (−∞, 0).

Sturm’s backward variable takes the form

z = x/(−t)1/2m

and we arrive at the equation (cf. (3.5))

uτ = Bu, where B = −(−∆)m − 1
2m z · ∇, τ = − ln(−t). (3.7)

For any m > 1, this operator is not self-adjoint in any weighted space L2
ρ(R

N )
unlike the second-order case m = 1. We introduce the space L2

ρ(R
N ) with the ex-

ponential weight ρ(z) = e−a|z|α > 0 in RN , where α = 2m/(2m− 1) ∈ (1, 2) and
a = a(m, N) > 0 is a sufficiently small constant. For m = 1 we have α = 2, a = 1/4
and ρ(z) = e−|z|2/4 is the rescaled Gaussian kernel as in (3.6). In L2

ρ(RN ) the oper-
ator B, with domain H2m

ρ (RN ) being a weighted Sobolev space, admits the point
spectrum σ(B) = {λβ = −|β|/2m ≤ 0, |β| = 0, 1, . . . }. The subset of eigenfunc-
tions {ψβ(z)} (Kummer’s polynomials in RN of order |β|) is complete in L2

ρ(RN )
[40], [54]. For m = 1, these are the Hermite polynomials. In view of completeness
of polynomials, in the existence class {|u(x, t)| ≤ Aea|x|α}, a, A > 0, any solution
of (3.5), (3.7) has the eigenfunction expansion u(z, τ) =

∑
Cβeλβτψβ(z). As a

consequence, the complete subset of polynomials {ψβ(z)} describes in the rescaled
form possible types of formation of multiple zeros occurring for this higher-order
parabolic equation and describing local properties of nodal sets, [55]. Of course,
the first Sturm Theorem in 1D (nonincrease of the number of zeros) is no longer
available for 2mth order equations, where new zeros can occur with evolution.

Finally, we notice that Sturm’s zero-set ideas often play a crucial role in the
asymptotic analysis of nonlinear parabolic PDEs admitting finite-time singularities
or free boundaries of different types. A large amount of mathematical literature
was devoted to these subjects during the last twenty years. An extensive list of ref-
erences on geometric Sturmian approaches to nonlinear parabolic equations with
applications to singularity formation phenomena (like blow-up, extinction or fo-
cusing) and regularity analysis of free-boundary problems are available in books
[58] and [56] and in the survey papers [57] and [53].
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[28] P. Brunovský, P. Polácik and B. Sandstede, Convergence in general periodic para-
bolic equations in one space dimension, Nonlinear Anal. TMA 18 (1992), 209–215.

[29] T. Carleman, Sur un problème d’unicité pour le système d’équations aux dérivées
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