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Abstract. The first joint publication by Sturm and Liouville in 1837 intro-
duced the general theory of Sturm-Liouville differential equations.

This present paper is concerned with the remarkable development in the
theory of Sturm-Liouville boundary value problems, which took place during
the years from 1900 to 1950.

Whilst many mathematicians contributed to Sturm-Liouville theory in
this period, this manuscript is concerned with the early work of Sturm and
Liouville (1837) and then the contributions of Hermann Weyl (1910), A.C.
Dixon (1912), M.H. Stone (1932) and E.C. Titchmarsh (1940 to 1950).

The results of Weyl and Titchmarsh are essentially derived within clas-
sical, real and complex mathematical analysis. The results of Stone apply to
examples of self-adjoint operators in the abstract theory of Hilbert spaces and
in the theory of ordinary linear differential equations.

In addition to giving some details of these varied contributions an at-
tempt is made to show the interaction between these two different methods
of studying Sturm-Liouville theory.
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1. References

The early papers of Sturm on ordinary linear differential equations, and their
initial value and boundary value problems, date from 1829 to 1836; see [21], [22]
and [23].

The first joint paper by Sturm and Liouville on boundary problems is given
in [24]; the results from this remarkable paper are discussed in Section 2 below.

The place and significance of these Sturm and Liouville results in the his-
tory of mathematics in the 19th century are considered in detail in the paper of
Lützen [16].

In this present paper there are detailed discussions of contributions to Sturm-
Liouville theory from: Weyl [32], [33] and [34]; Dixon [5]; Stone [20]; Titchmarsh
[26], [27], [28], [29] and [30].

There are later accounts of the Titchmarsh-Weyl theories in the works of
Coddington and Levinson [4]; Everitt [6]; Hellwig [9]; Hilb [10]; Hille [11]; Jörgens
[12]; Kodaira [14]; Titchmarsh [30]; Yoshida [36].
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The theory of Sturm-Liouville differential operators in Hilbert function spaces
is developed in the works of Akhiezer and Glazman [1]; Hellwig [9]; Jörgens and
Rellich [13]; Naimark [17]; von Neumann [18]; Stone [20].

In view of the significance for Sturm-Liouville theory of the 1910 paper [33]
by Weyl special mention is made of the M.Sc. thesis of Race, see [19]. This thesis
contains a translation from the German into English of the major part of the Weyl
paper; in particular, there is a complete translation of Chapters I and II, together
with the translation of the more significant results and remarks from the remaining
Chapters, III and IV.

The numerical treatment of Sturm-Liouville boundary value problems has
been extensively developed; a summary of results, references together with infor-
mation on the SLEIGN2 computer code, is given in [2].

Finally there is an epilogue from Weyl in his paper of 1950 [35].
This work is not to be counted as a history of Sturm-Liouville theory for

the period 1900 to 1950; such a history should contain reference to many more
individual contributions from mathematicians, other than those named at the end
of this paper. This paper is an attempt to view the development of Sturm-Liouville
theory in the light of advancing techniques in mathematical analysis over this
period: the theories of real and complex functions, measure and integration, and
linear operators in function spaces.

2. Sturm and Liouville and the paper of 1837

As mentioned in the previous section the history of Sturm-Liouville theory is
presented in detail in the scholarly paper of Lützen [16]. The main Sturm and
Liouville contributions listed in the references are:

(i) The Sturm papers [21], [22] and [23].
(ii) The Sturm and Liouville paper [24].

For a discussion of the results in the three papers listed in (i) see [16].
The Sturm and Liouville paper [24] in (ii) is totally remarkable; it is four

pages long but, in almost modern notation, presents the essentials of a Sturm-
Liouville boundary value problem on a compact interval, with separated boundary
conditions.

The boundary value problem studied by Sturm and Liouville in [24], see also
[16, Introduction], is, in their notation,

− d

dx

(
k

dV

dx

)
+ lV = rgV on the interval [x,X] (2.1)

with the imposed separated boundary conditions
dV

dx
− hV = 0 for x = x (2.2)

dV

dx
+ HV = 0 for x = X. (2.3)
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Here the coefficients k, l, g are positive on the interval [x,X], h and H are given
positive numbers and r is a real-valued parameter.

It is shown that the initial value problem at the endpoint x, determined
by the differential equation (2.1) and the initial boundary condition (2.2), has a
non-null solution V for all values of the parameter r.

This boundary value problem (2.1), (2.2) and (2.3) only allows for non-null
solutions (now called eigenfunctions) for certain values (now called eigenvalues) of
the parameter r in (2.1); these values are determined in [24, Page 221] as roots of
a transcendental equation, involving the solutions of the equation,

ω(r) = 0; (2.4)

namely the equation obtained by inserting the general solution V of (2.1) and (2.2)
into the remaining boundary condition (2.3). In the earlier Sturm papers [21], [22]
and [23] it is shown that the transcendental equation (2.4) has an infinity of real
simple roots which are positive and denoted in [24, Page 221] by r1, r2, . . . , rn, . . .
arranged in increasing order of magnitude. These are the eigenvalues of the bound-
ary value problem; likewise the associated solution functions (eigenfunctions) are
denoted by V1, V2, . . . , Vn, . . .

It is remarked that the transcendental function ω in (2.4) has the property
that ω′(rn) �= 0 for all n ∈ N; in fact it is shown that∫ X

x

g(x)V 2
n(x) dx = −k(X)Vn(X)ω′(rn) (2.5)

where the numbers k(X) and Vn(X) are both non-zero; it is this result that yields
the proof that the zeros of the transcendental function ω are all simple. (Note the
use of the prime ′ notation in (2.5) for the derivative of the function ω; this is the
Lagrange notation for the derivative, see [16, Introduction, Page 310].)

The formulae given also show, in effect, that the solution functions

V1, V2, . . . , Vn, . . .

have the orthogonality properties∫ X

x

g(x)Vm(x)Vn(x) dx = 0 (2.6)

for all m, n ∈ N with m �= n.
Given a function f defined on the interval [x,X] the following formulae are

obtained (recall that V is the solution of the initial value problem (2.1) and (2.2))∫ X

x

g(x)V (x)f(x) dx =
∞∑

n=1

{∫X

x
g(x)V (x)V n(x) dx ·

∫X

x
g(x)Vn(x)f(x) dx∫X

x
g(x)V 2

n(x) dx

}
,

(2.7)
and if F on [x,X] is given by

F (x) =
∞∑

n=1

{
Vn(x)

∫X

x
g(y)Vn(y)f(y) dy∫X

x
g(y)V 2

n(y) dy

}
(2.8)



Sturm-Liouville Theory 1900 to 1950 49

then∫ X

x

g(x)V (x)F (x) dx =
∞∑

n=1

{∫X

x g(x)V (x)V n(x) dx ·
∫X

x g(x)Vn(x)f(x) dx∫X

x g(x)V 2
n(x) dx

}
.

From these results it follows that∫ X

x

g(x)V (x)[F (x) − f(x)] dx = 0 (2.9)

and leads to the conclusion that

F (x) − f(x) = 0 for all x ∈ [x,X]. (2.10)

Finally then the series expansion is obtained

f(x) =
∞∑

n=1

{
Vn(x)

∫X

x g(y)Vn(y)f(y) dy∫X

x g(y)V 2
n(y) dy

}
for all x ∈ [x,X]. (2.11)

Remark 2.1. We enter three remarks:
(a) We have followed the outline details of the proof of the critical result (2.10)

from the paper [24]; however there seems to be a difficulty in deducing (2.10)
from (2.9), since the function V may not be of one sign on the interval [x,X];
for clarification on this point see the remarks by Lützen [16, Section 49, Page
348].

(b) At the end of the Sturm and Liouville paper [24, Page 223] there is a foot-
note written by Liouville indicating that complete details of the analysis of
the results announced are to be published in a following mémoire; however,
Lützen remarks in his paper [16, Section 49, Page 349, Line 5] that this work
has been lost.

(c) In modern terminology this last result (2.11) is then the eigenfunction ex-
pansion of a continuous function f in terms of these eigenfunctions, within
the weighted Hilbert function space L2([x,X]; g).

Sturm, in his first large paper wrote, see [22, Page 106] and [16, Section II,
Page 315],

“La résolution de la plupart des problèmes relatifs à la distribution de la
chaleur dans des corps de formes diverses et aux petits mouvements oscillatoires
des corps solides élastiques, des corps flexibles, des liquides et des fluides élastiques,
conduit à des équations différentielles linéaires du second ordre. . . ”.

As an example Sturm discussed heat conduction in an inhomogeneous thin
bar; in this case the temperature is governed by the linear partial differential
equation

g
∂u

∂t
=

∂

∂x

(
k

∂u

∂x

)
− lu. (2.12)

Applying the method of solution by separation of variables leads to ordinary
boundary value problems of the form (2.1), (2.2) and (2.3) with the coefficients
g, k, l. The expansion in terms of the solution functions of these boundary value
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problems, as given above, then led to formal solutions of boundary and initial
value problems associated with partial differential equations of the form (2.12).

Remark 2.2. With the advantage of hindsight the following remarks can be made:

(i) As to be expected, given the period when these early results were obtained
there are no continuity or differentiability conditions on the three coefficient
functions k, l, g.

(ii) Essentially, in the earlier results of Sturm, see [21], [22] and [23], there are
underlying assumptions of continuity needed to obtain the existence of the
real, simple roots {rn : n ∈ N} of the transcendental equation (2.4).

(iii) The sign convention in the differential equation (2.1), in particular the neg-
ative sign in the derivative term, comes from consideration of the separation
of variables technique applied to such partial differential equations as (2.12).

(iv) The positivity of the coefficients k, l and g in the differential equation (2.1),
and the positive values of the boundary numbers h and H , are responsible for
the parameter values of r, obtained from the transcendental equation (2.4),
being all non-negative and so bounded below on R.

3. Notations

The symbols N and N0 represent the positive and the non-negative integers, re-
spectively.

The real and complex number fields are denoted by R and C respectively.
Lebesgue integration is denoted by L; the Hilbert function space L2((a, b); w),
given the interval (a, b) and the weight w, is the collection (of equivalence classes)
of complex-valued, Lebesgue measurable functions f defined on (a, b) such that∫ b

a

w(x) |f(x)|2 dx < +∞. (3.1)

The class of Cauchy entire (integral) complex-valued functions defined on C
is denoted by H.

The Sturm and Liouville differential equation in [24] may be rewritten in the
form, in modern notation,

− d

dx

(
k(x)

dV (x)
dx

)
+ l(x)V (x) = rg(x)V (x) for all x ∈ [a, b] (3.2)

where:

(a) the coefficients k, l, g : [a, b]→ R, with l, g ∈ C[a, b] and k ∈ C(1)[a, b]
(b) k, l, g > 0 on [a, b]
(c) the parameter r ∈ R
(d) the dependent variable V : [a, b]→ R.
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To compare with another widely used modern notation for the Sturm-Liou-
ville differential equation, now involving the concept of quasi-derivative (see [17]
and [6]), we have (here the prime ′ denotes classical differentiation on R)

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ (a, b), (3.3)

where a wider class of coefficients is admitted as follows:
(α) for the interval (a, b) the endpoints, in general, satisfy −∞ ≤ a < b ≤ +∞
(β) the coefficients p, q, w : (a, b)→ R and p−1, q, w ∈ L1

loc(a, b), where L1
loc(a, b)

is the local Lebesgue integration space
(γ) the weight w(x) > 0 for almost all x ∈ (a, b); there are no sign restrictions

on the coefficients p, q

(δ) the spectral parameter λ ∈ C.
In all the cases which follow, Sturm-Liouville differential equations are given

in the form (3.3), with restrictions on the coefficients p, q, w and the interval (a, b).

4. Mathematical analysis

The four main areas in mathematical analysis that influenced the development of
Sturm-Liouville theory, and were in part influenced by this theory in its own right,
are:

(i) The Lebesgue integral
(ii) Integrable-square Hilbert function spaces
(iii) Complex function theory on the plane C
(iv) Spectral theory of unbounded operators in Hilbert spaces.

This influence from within and without Sturm-Liouville theory is to be seen
in the sections which follow in this paper.

5. Hermann Weyl and the 1910 paper

This paper [33] has now long been regarded as one of the most significant contri-
butions to mathematical analysis in the 20th century; whilst not the first paper to
consider the singular case of the Sturm-Liouville differential equation it is the first
structured consideration of the analytical properties of the equation. The range of
new definitions and results is remarkable and set the stage for the full development
of Sturm-Liouville theory in the 20th century, as to be seen in the later theory of
differential operators in the work of von Neumann [18] and Stone [20], and in the
application of complex variable techniques by Titchmarsh [30].
The paper considers the equation (3.3) with the restrictions:

(i) The interval is [0,∞) and p, q : [0,∞)→ R; w(x) = 1 for all x ∈ [0,∞)
(ii) The coefficients satisfy: p, q ∈ C[0,∞); p > 0 on [0,∞)
(iii) The spectral parameter λ ∈ C.
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The differential equation is then

−(p(x)y′(x))′ + q(x)y(x) = λy(x) for all x ∈ [0,∞). (5.1)

Before listing the main results from this paper there are two comments to be made:

1. At the start of the paper, see [33, Chapter I, Page 221, Footnote †)], Weyl
points out that no assumption is made concerning the differentiability of the
leading coefficient p; it is sufficient to require only the continuity of p on
[0,∞); this assumption has the consequence that any term of the form py′

has to be considered as a single symbol; in particular the derivative y′ may
not exist separately at any point of the interval [0,∞). The initial conditions
at the regular endpoint 0 for the existence theorem in [33, Chapter I, Section
1] are of the form, for numbers α, β ∈ C,

y(0) = α (py′)(0) = β (5.2)

which fits in with the existence result that both y and (py′) are continuous
on [0,∞). In this respect Weyl is working with the quasi-derivative (py′) in
place of the classical derivative y′ many years before the general introduction
of quasi-derivatives, see [1, Appendix 2, Section 123] and [17, Chapter V,
Section 15].

2. Throughout the paper, but not always stated in theorems and other results,
Weyl assumes a boundary condition, at the regular endpoint 0, on the solu-
tions of the equation (5.1), of the form

cos(h)y(0) + sin(h)(py′)(0) = 0 (5.3)

where h is a given real number; see [33, Chapter I, Section 2, (10)].

The main results from this paper are:

(a) Chapter I, Theorem 1: the introduction of the circle method for the differ-
ential equation (5.1), and the definition of the limit-circle and limit-point
classification of the equation for any point λ ∈ C.

(b) Chapter I, Theorem 2: for all λ ∈ C \R the differential equation (5.1) has at
least one non-null solution in the Hilbert function space L2(0,∞).

(c) Chapter II, Theorem 5: the limit-circle/limit-point classification of the equa-
tion (5.1) is independent of the spectral parameter λ, and depends only on
the choice of the two coefficients p and q.

(d) Chapter II, Theorem 5: in the limit-circle case all solutions of the differential
equation (5.1) are in the Hilbert function space L2(0,∞), for all λ ∈ C.

(e) Chapter II, Theorem 5: in the limit-point case there is at most one non-null
solution of the equation in the Hilbert function space L2(0,∞), for all λ ∈ C.

(f) Chapter II, Corollary to Theorem 5: if the coefficient q is bounded below on
[0,∞) then for all coefficients p the differential equation is in the limit-point
case.
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(g) Chapter III: at the start of this chapter there are the Weyl definitions of the
point spectrum (Punktspektrum), and the continuous spectrum (Strecken-
spektrum) involving eigendifferentials; the latter definition agrees with the
earlier definition of continuous spectrum given by Hellinger in the paper [8].

(h) Chapter III: the Hellinger/Weyl definition of continuous spectrum introduces
essentially the concept of eigenpackets as later studied by Rellich [13, Chapter
II, Sections 1 and 2] and Hellwig [9, Chapter 10, Section 10.4].

(i) Chapter II, Theorem 4: this theorem gives the eigenfunction expansion in
the limit-circle case for the boundary value problem consisting of the Sturm-
Liouville differential equation (5.1), a boundary condition (5.3) at the regular
endpoint 0, and a boundary condition [33, Chapter II, (41)] at the endpoint
+∞; the spectrum of this problem consists only of the point spectrum of real,
simple eigenvalues {λn : n ∈ N} with an accumulation point at +∞ on the
real axis R of the complex spectral plane C; the corresponding eigenfunctions
{ϕn : n ∈ N} form a complete, orthogonal set in the Hilbert function space
L2(0,∞); there is a pointwise expansion of a function f ∈ L2(0,∞), subject
to additional smoothness and integrability conditions on the function f , in
terms of the eigenfunctions where the infinite series is absolutely convergent
and locally uniformly convergent.

(j) Chapter III, Theorem 7: this theorem gives the eigenfunction expansion in
the limit-point case for the boundary value problem consisting of the Sturm-
Liouville differential equation (5.1), and a boundary condition (5.3) at the
regular endpoint 0; in this case no boundary condition is required at the end-
point +∞; the spectrum of this problem consists of a point spectrum, which
may be empty, and a continuous spectrum, which may be empty; the point
spectrum gives rise to eigenfunctions and a series expansion; the continu-
ous spectrum gives rise to eigendifferentials and an integral expansion; there
is a pointwise expansion of a function f ∈ L2(0,∞), subject to additional
smoothness and integrability conditions on f , in terms of the eigenfunctions
and eigendifferentials, where the series and integrals are, respectively, abso-
lutely convergent and locally uniformly convergent.

(k) Chapter IV, Theorem 8: in the limit-point case the continuous spectrum is
independent of the choice of the boundary condition at the regular endpoint
0; the point spectrum is different for each particular boundary condition at
the regular endpoint 0.

(l) Chapter IV, Theorem 9: if the coefficient q satisfies the condition

lim
x→∞ q(x) = +∞ (5.4)

then, for all coefficients p, the limit-point case holds and the spectrum for any
boundary value problem consists only of the point spectrum of real, simple
eigenvalues {λn : n ∈ N} with accumulation only at +∞ on the real axis R of
the complex spectral plane C; the corresponding eigenfunctions {ϕn : n ∈ N}
form a complete, orthogonal set in the Hilbert function space L2(0,∞); for
all n ∈ N the eigenfunction ϕn has exactly n zeros in the open interval (0,∞).
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(m) Chapter IV, Theorem 11: under the following conditions on the coefficients p,q

p(x) = 1 for all x ∈ [0,∞)
∫ ∞

0

x |q(x)| dx < +∞ (5.5)

the limit-point case holds and the spectrum for any boundary value prob-
lem consists of a finite number of strictly negative eigenvalues for the point
spectrum, and the half line [0,∞) for the continuous spectrum.

(n) Chapter IV, Section 22: here there is a remarkable example which illustrates
the effectiveness of the Weyl definition of the continuous spectrum of Sturm-
Liouville differential equations. Let the coefficients p, q be given by

p(x) = 1 and q(x) = −x for all x ∈ [0,∞). (5.6)

The resulting Sturm-Liouville differential equation is

−y′′(x) − xy(x) = λy(x) for all x ∈ [0,∞) (5.7)

which has solutions that can be expressed in terms of the classical Bessel
functions. Weyl gives a proof that this equation is in the limit-point case at the
singular endpoint +∞; also that, in terms of his definition of the continuous
spectrum, any boundary value problem, determined by a boundary condition
at the regular endpoint 0, has no eigenvalues and the whole real line R as
continuous spectrum.

(o) Closing remark: at the end of the paper Weyl remarks that all the main
results and theorems can be extended to the case when a weight function
w is included in the Sturm-Liouville differential equation; that is the results
extend to the general equation (3.3)

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ [0,∞). (5.8)

Here the weight function w is positive-valued and continuous on the half line
[0,∞); in these circumstances the Hilbert function space is

L2((0,∞); w),

see Section 3 above.

6. A.C. Dixon and the paper of 1912

This paper is significant in the development of the Sturm-Liouville differential
equation for one reason; it seems to be the first paper in which the continuity
conditions on the coefficients p, q, w are replaced by the Lebesgue integrability
conditions; these latter conditions are the minimal conditions to be satisfied by
p, q, w within the environment given by the Lebesgue integral, see Section 3 above.

The paper uses the same notation [5, Section 1, (1)] of the Sturm-Liouville
differential equation as given in the original paper of Sturm and Liouville, i.e.,

− d

dx

(
k

dV

dx

)
+ lV = rgV on the interval [a, b]; (6.1)

however there is no direct reference to the paper [24].
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In the notation of Section 3 this Dixon paper considers the equation (3.3)
with the assumptions:

(i) The interval [a, b] is compact and p, q, w : [a, b]→ R.
(ii) The coefficients p, q, w satisfy the Lebesgue minimal conditions p−1, q, w ∈

L1[a, b], and both p, w > 0 almost everywhere on [a, b].

The paper discusses the existence of solutions of this Sturm-Liouville differ-
ential equation

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ [a, b] (6.2)

under these coefficient conditions; the existence proof is based on replacing, for-
mally, the differential equation (6.1) with the two integral equations, see [5, Section
1, (2)],

U =
∫

V (l − gr) dx V =
∫

1
k

U dx. (6.3)

However, boundary conditions at the endpoints a and b, which will determine
the associated Sturm-Liouville boundary value problem, are difficult to locate.

Certain expansion theorems are given, see for example [5, Section 19]; however
again it is difficult to relate such results to the original series type of expansions
associated with regular Sturm-Liouville boundary value problems.
This paper by Dixon raises a number of interesting remarks:

1. In effect, the Dixon existence theorem, see [5, Section 3], is a special case of
the existence theorem for linear differential systems, with locally integrable
coefficients, see [17, Chapter V, Section 16.1]. Note that there seems to be
no reference in the paper [5] to the fact that the quasi-derivative kV ′ exists
for solutions of 6.1 (to see this point differentiate the second term in (6.3))
but that the classical derivative V ′ may not exist.

2. The paper [5] was published two years after the Weyl paper [33] but no refer-
ence is given to these earlier results on Sturm-Liouville differential equations.
Nevertheless, the Dixon conditions on the coefficients make for a remarkable
advance in the study of such differential equations.

3. The years from 1910 onwards saw the introduction of the Lebesgue integral
into mathematics; it is interesting to compare the use of integration in the
Weyl paper [33], seemingly generalized Riemann integration, with that of the
Dixon paper, Lebesgue integration.

7. M.H. Stone and the book of 1932

The general theory of unbounded linear operators in Hilbert spaces was developed
by John von Neumann from 1927 onwards, and independently by M.H. Stone from
1929 onwards.

The book [20] appeared in the year 1932; it is a remarkable compendium of
results and properties of Hilbert spaces. With regard to Sturm-Liouville theory
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there is in [20, Chapter X, Section 3] a detailed study of Sturm-Liouville differ-
ential operators; this study seems to be the first extended account of the proper-
ties of Sturm-Liouville differential operators in Hilbert function spaces, under the
Lebesgue minimal conditions on the coefficients of the differential equation.

In respect of the standard form of the Sturm-Liouville differential equation
given in Section 3 above, see (3.3), the conditions adopted in [20, Chapter X,
Section 3] are:

(i) The open interval (a, b) ⊆ R is arbitrary, so that −∞ ≤ a < b ≤ +∞.
(ii) The coefficient w is restricted to w(x) = 1 for all x ∈ (a, b).
(iii) The coefficients p, q : (a, b)→ R and satisfy p−1, q ∈ L1

loc(a, b).
(iv) The Sturm-Liouville differential equation and operators are studied in the

Hilbert function space L2(a, b).

Thus the differential equation studied in [20, Chapter X, Section 3] is

−(p(x)y′(x))′ + q(x)y(x) = λy(x) for all x ∈ (a, b). (7.1)

Remark 7.1. Four remarks are important:

1. The general weight coefficient w, under the conditions of Section 3, can be
included in the differential equation to yield all the results in [20, Chapter
X, Section 3], with only some additional technical details to the proofs of
the stated lemmas and theorems; thus the Stone theory of Sturm-Liouville
differential operators applies to the general differential equation

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ (a, b), (7.2)

working now in the weighted Hilbert function space L2((a, b); w).

2. Stone in the 1932 book [20] makes only marginal reference to the results of
Weyl given in the 1910 paper [33]; in the following discussion of the Stone
results these two contributions to Sturm-Liouville theory are brought closer
together.

3. In his paper [33] of 1910 Weyl introduced his classification of the singular
endpoint as limit-point or limit-circle; this classification is replaced in the
Stone book [20] by the concept of the deficiency index of the minimal closed
symmetric operator in the Hilbert function space; reference is made to this
connection in some of the statements made below.

4. The spectral theory of self-adjoint operators is considered in detail in [20,
Chapter V, Section 5], and is based on the properties of the resolution of the
identity of the operator; although not discussed in the book [20] it can be
shown that the definition of the continuous spectrum (Streckenspektrum) in
the Weyl paper [33] is consistent with the definition of continuous spectrum
in the book, see [20, Chapter V, Section 5, Theorem 5.11].
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The main results from the Stone book, see [20, Chapter X, Section 3], are:

(a) Lemma 10.1: the existence theorem for solutions of the differential equation
(7.2) determined by initial conditions at any point c ∈ (a, b); this existence
result involves the requirement to use the quasi-derivative py′ in stating the
initial conditions for any solution.

(b) Theorem 10.11: this theorem defines and gives the essential properties of
the minimal and maximal differential operators in the Hilbert function space
L2(a, b), generated by the differential expression −(pf ′)′ + qf ; these defini-
tions involve the use of the bilinear form, from the Green’s formula for the
differential expression, to determine the domain of the minimal operator; the
minimal operator is closed and symmetric in L2(a, b) and its adjoint opera-
tor is the maximal operator; the entries in the deficiency index (m, m) of the
minimal operator are equal, since this operator is real in L2(a, b), and take
the values m = 0, 1 or 2.

(c) Theorem 10.15: this theorem considers the special case of Theorem 10.11
when one endpoint of the interval, say a, satisfies a ∈ R and the coefficients
then satisfy p−1, q ∈ L1

loc[a, b), i.e., this is the case when one endpoint is
regular; the maximal operator is then defined as before; the domain of the
minimal operator consists of all elements f of the maximal domain satisfying
the boundary conditions

f(a) = 0 and (pf ′)(a) = 0, (7.3)

in addition to a boundary condition at the endpoint b; again the minimal
operator is closed and symmetric in L2(a, b) and its adjoint operator is the
maximal operator; the entries in the deficiency index (m, m), in L2(a, b), of
the minimal operator are equal since this operator is real in L2(a, b), and
take the values m = 1 or 2. This case is equivalent to the singular problem
considered in the 1910 paper [33] of Weyl; the connection here is that the
deficiency index (1, 1) is equivalent to the Weyl limit-point case, and the
deficiency index (2, 2) is equivalent to the Weyl limit-circle case.

(d) Theorem 10.16: this theorem considers the properties of the Sturm-Liouville
differential operators in the special case of Theorem 10.15, when it is assumed
that the deficiency index is (1, 1); this is the limit-point case as defined and
considered in the Weyl paper [33].

(e) Theorem 10.17: this theorem considers the properties of the Sturm-Liouville
differential operators in the special case of Theorem 10.15, when it is assumed
that the deficiency index is (2, 2); this is the limit-circle case as defined and
considered in the Weyl paper [33].

(f) Theorem 10.18: this theorem considers properties of self-adjoint Sturm-Liou-
ville differential operators when the interval (a, b) is bounded and the co-
efficients then satisfy p−1, q ∈ L1

loc[a, b], i.e., the so-called regular case of
Sturm-Liouville theory; here the deficiency index of the minimal closed sym-
metric operator is (2, 2); the results of this theorem show how to construct
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the domains of all self-adjoint extensions of this minimal operator by im-
posing symmetric, separated or coupled boundary conditions, at the regular
endpoints a and b, on elements of the domain of the maximal operator.

(g) Theorem 10.19: this theorem returns to the case of the general theorem given
above as Theorem 10.11, but when the deficiency index is (2, 2); it is re-
marked that this assumption on the index is equivalent to assuming that for
some λ ∈ C the Sturm-Liouville differential equation (7.1) has all solutions
in the space L2(a, b) (this solution property then holds for all λ ∈ C); this
condition is equivalent to assuming that the differential equation is in the
limit-circle case at both endpoints a and b; the results show how to construct
the resolvent operator of any self-adjoint extension of the minimal operator,
which resolvent is shown to be a Hilbert-Schmidt integral operator in the
space L2(a, b); the point spectrum of this self-adjoint extension is a denumer-
able infinite point set, with no finite accumulation point; these points are the
eigenvalues of the operator, none of which has multiplicity greater than 2;
the continuous spectrum of this self-adjoint operator is empty.

(h) Theorem 10.20: this theorem returns to the case of the general theorem given
above as Theorem 10.11, but when the deficiency index is (1, 1); if the point
c ∈ (a, b), then this index situation can arise when one only of the following
two cases holds:

1. the deficiency index in the space L2(a, c) for the interval (a, c] is (2, 2),
and the deficiency index in the space L2(c, b) for the interval [c, b) is (1, 1)

2. the deficiency index in the space L2(a, c) for the interval (a, c] is (1, 1),
and the deficiency index in the space L2(c, b) for the interval [c, b) is
(2, 2).

Self-adjoint extensions of the minimal operator, in these circumstances, may
have eigenvalues but only of multiplicity 1; the continuous spectrum of such
a self-adjoint operator need not be empty.

(i) Theorem 10.21: this theorem returns to the case of the general theorem given
above as Theorem 10.11, but when the deficiency index is (0, 0); if the point
c ∈ (a, b), then this index situation can arise only when the deficiency index in
the space L2(a, c) for the interval (a, c] is (1, 1), and the deficiency index in the
space L2(c, b) for the interval [c, b) is (1, 1), i.e., when the differential equation
is in the limit-point case at both endpoints a and b. Self-adjoint extensions
of the minimal operator, in these circumstances, may have eigenvalues but
only of multiplicity 1, and the continuous spectrum may not be empty.

8. E.C. Titchmarsh and the papers from 1939

The Titchmarsh contributions to Sturm-Liouville theory began about 1938 and
concerned the analytic properties of the differential equation

−y′′(x) + q(x)y(x) = λy(x) for all x ∈ [0,∞) (8.1)
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under the coefficient conditions
(i) q : [0,∞)→ R
(ii) q is continuous on [0,∞)
(iii) the spectral parameter λ ∈ C.

This is a special case of the general Sturm-Liouville differential equation (3.3);
however, as in the work of both Weyl and Stone some, but not all, of the Titch-
marsh analysis extends to this general form of the equation, and to the case when
the coefficients p, q, w satisfy the local integrability conditions given in Section 3.

Both the regular and singular cases of Sturm-Liouville boundary value prob-
lems are considered in the Titchmarsh literature; for the requirements of this
present paper the three 1941 contributions [26], [27] and [28] are significant; for
the consolidated results from Titchmarsh in Sturm-Liouville theory see the second
edition of the volume Eigenfunction expansions I, [30], and the relevant chapter
in the volume Eigenfunction expansions II, [31, Chapter XX].

The main thrust of the Titchmarsh method is to apply the extensive theory
of functions of a single complex variable to the study of Sturm-Liouville boundary
value problems; in the singular case this method involves the existence proof of
the complex analytic form of the Weyl integrable-square solution of the differen-
tial equation (8.1). This proof of the basic Titchmarsh result dates from 1941,
introduces the m-coefficient as a Nevanlinna (Herglotz, Pick, Riesz) analytic func-
tion which plays such a significant part in the eigenfunction expansion theory
of singular Sturm-Liouville boundary value problems. This structure of the Weyl
integrable-square solution enables the definition of the Titchmarsh resolvent func-
tion Φ and this step leads to the classical proof of the eigenfunction expansion
theorem by contour integration in the complex λ-plane.

8.1. The regular case

The regular Sturm-Liouville case concerns the differential equation (8.1) when
considered on a compact interval [a, b]

−y′′(x) + q(x)y(x) = λy(x) for all x ∈ [a, b] (8.2)

see [30, Chapter I, Section 1.5]. The starting point is the existence of a solution
ϕ : [a, b]× C→ C determined by the initial conditions, for some α ∈ [0, π),

ϕ(a, λ) = sin(α) ϕ′(a, λ) = − cos(α) for all λ ∈ C; (8.3)

it follows that ϕ(x, ·) ∈ H for all x ∈ [a, b]. Similarly for the solution χ determined,
for some β ∈ [0, π), by

χ(b, λ) = sin(β) χ′(b, λ) = − cos(β) for all λ ∈ C. (8.4)

Then the boundary value problem determined by the equation (8.2) and the sep-
arated boundary conditions, see [30, Chapter V, Section 5.3],

y(a) cos(α) + y′(a) sin(α) = 0 (8.5)

y(b) cos(β) + y′(b) sin(β) = 0 (8.6)
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has a discrete, simple, real spectrum with eigenvalues {λn : n ∈ N0} determined
by the zeros of the entire function ω ∈ H, where

ω(λ) := W (χ, ϕ)(λ). (8.7)

Here W (χ, ϕ) is the Wronskian of the solutions ϕ and χ which is independent of
the variable x ∈ [a, b].

For any zero λ of ω the solutions ϕ(·, λ) and χ(·, λ) are linearly dependent
and so there exists a real number k �= 0 such that

χ(x, λ) = kϕ(x, λ) for all x ∈ [a, b]. (8.8)

The zeros of ω are all real, see [30, Chapter I, Section 1.8].
It then follows that

0 �= k

∫ b

a

ϕ(x, λ)2 dx = ω′(λ) (8.9)

so that all the zeros of ω are not only real but also simple. (At this stage it is
interesting to return to the original paper [24] of Sturm and Liouville; this last
result echoes the earlier result given above in Section 2, see (2.5).)

The asymptotic properties of the solutions ϕ and χ, for fixed x and large
values of |λ|, show that ω is an entire function on C which is of order 1/2, see [30,
Chapter I, Section 1.7]; this implies that ω has a denumerable number of zeros,
see [25, Chapter VIII, Section 8.6]; let these zeros (eigenvalues) be denoted by
{λn : n ∈ N0}.

The resolvent function Φ : [a, b]× C× L2(a, b)→ C is defined by

Φ(x, λ; f) :=
χ(x, λ)
ω(λ)

∫ x

a

ϕ(t, λ)f(t) dt +
ϕ(x, λ)
ω(λ)

∫ b

x

χ(t, λ)f(t) dt. (8.10)

From this definition it follows that, for almost all x ∈ [a, b],

−Φ′′(x, λ; f) + q(x)Φ(x, λ; f) = λΦ(x, λ; f) + f(x) (8.11)

and that Φ(·, λ; f) satisfies the boundary conditions (8.5) and (8.6) at the endpoints
a and b.

For x ∈ [a, b] and f ∈ L2(a, b), the resolvent Φ(x, ·; f) is a Cauchy analytic
function, regular on C\{λn : n ∈ N0}, with simple poles at the eigenvalues {λn :
n ∈ N0}. With the corresponding values of k in (8.8) given by {kn : n ∈ N0}, the
residues are

kn

ω′(λn)
ϕ(x, λn)

∫ b

a

ϕ(t, λn)f(t) dt. (8.12)

If now the function Φ(x, ·; f) is integrated around a closed contour ΓN in the
complex plane which avoids any of the zeros of ω but contains the finite number
of eigenvalues {λn : n = 0, 1, 2, . . . , N}, then the Cauchy calculus of residues gives

1
2πi

∫
ΓN

Φ(x, λ; f) dλ =
N∑

n=0

kn

ω′(λn)
ϕ(x, λn)

∫ b

a

ϕ(t, λn)f(t) dt. (8.13)
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The sequence of contours {ΓN : N ∈ N0} is then chosen so to extend to
infinity over the complex plane; an argument based on the asymptotic properties
of the solutions ϕ and χ then shows that, for suitable conditions on the function
f ∈ L2(a, b) and for certain values of the variable x ∈ [a, b],

lim
N→∞

1
2πi

∫
ΓN

Φ(x, λ; f) dλ = f(x). (8.14)

Formally then this argument gives the classical eigenfunction expansion for
regular Sturm-Liouville boundary value problems, see [30, Chapter I, Section 1.6,
(1.6.5)],

f(x) =
∞∑

n=0

kn

ω′(λn)
ϕ(x, λn)

∫ b

a

ϕ(t, λn)f(t) dt, (8.15)

or

f(x) =
∞∑

n=0

ψn(x)
∫ b

a

ψn(t)f(t) dt (8.16)

where, for each n ∈ N, ψn is the real-valued normalized eigenfunction

[kn/ω′(λn)]1/2
ϕ(·, λn),

using (8.9).
In [30, Chapter I, Theorem 1.9] Titchmarsh shows how these formal results

can be made rigorous to prove that:
1. The infinite series of eigenfunctions (8.16) converges in the topology of C to

f(x), under Fourier type convergence conditions on the function f .
2. The normal orthogonal set of eigenfunctions {ψn : n ∈ N0} is complete in

the Hilbert function space L2(a, b).
3. If given the element f ∈ L2(a, b) the generalized Fourier coefficients {cn : n ∈

N0) are defined by

cn :=
∫ b

a

ψn(x)f(x) dx for all n ∈ N0 (8.17)

then the Parseval identity holds∫ b

a

|f(x)|2 dx =
∞∑

n=0

|cn|2 . (8.18)

Remark 8.1. Two remarks are important:
1. The use of complex variable techniques in [30, Chapter I] illustrates the use

of classical analysis to study this regular Sturm-Liouville boundary value
problem, without resource to operator theoretic methods; note that there is
no mention of the underlying self-adjoint operator in the Hilbert function
space L2(a, b) although the completeness of the eigenfunctions in L2(a, b)
is established. Moreover the methods used enable a proof of the pointwise
eigenfunction expansion on the interval (a, b) of a function f ∈ L2(a, b),



62 W.N. Everitt

subject to f satisfying the same conditions that give direct convergence, i.e.,
convergence in C, of the classical Fourier series.

2. However, it has to be accepted that these complex variable methods do not
extend to the analysis of the general regular Sturm-Liouville differential equa-
tion

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ [a, b] (8.19)

when the minimal coefficient conditions p−1, q, w ∈ L1(a, b) only are satisfied.
In general, with these conditions, it is impossible to apply the transforma-
tion, known as the Liouville transformation, to reduce the equation (8.19) to
the Titchmarsh form (8.2); the coefficient p may change sign essentially on
the compact interval [a, b], and all three coefficients may be unbounded at
endpoints and interior points of this interval.

Moreover, whilst the corresponding solutions ϕ and χ and their Wron-
skian ω have the same holomorphic properties on C, it is impossible, in gen-
eral, to obtain similar asymptotic properties of these functions for large val-
ues of |λ|; however, the reality of the eigenvalues and the orthogonality of the
eigenfunctions can be established. The resolvent function Φ is defined in the
same manner, and formal results such as (8.15) and (8.16) follow as above.

8.2. The singular case

For the singular case we return to the differential equation (8.1), to be studied in
the Hilbert function space L2(0,∞),

−y′′(x) + q(x)y(x) = λy(x) for all x ∈ [0,∞) (8.20)

with the given conditions on the coefficient q. Note that if y is a solution of this
equation then y, y′, y′′ are all continuous on the interval [0,∞).

The main problem of extending the Titchmarsh analysis of the regular case
to the singular case is to find the equivalent of the boundary function χ; in general
there is no method to use a boundary condition at the singular endpoint +∞ in
order to determine such a solution as χ; however such an extension is essential to
defining a resolvent function Φ for the singular case.

This problem was resolved by Titchmarsh by using:

1. The existence of the Weyl integrable-square solution of the equation (8.20)
for complex values of the parameter λ, see [33, Chapter I, Theorem 2] and
item (b) of Section 5 above.

2. The definition of the m-coefficient to give a complex analytic structure to
this Weyl solution.

The relevant Titchmarsh work for this programme is to be found in the three
1941 papers [26], [27] and [28]. In the original notation the l-coefficient is introduced
in [26, Section 2]; the analytic properties of this coefficient are given in [26, Section
5], noting the use that is made of the Vitali convergence theorem. However this
original l-coefficient notation was later altered to the present m-coefficient notation
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in the first edition of Eigenfunction Expansions I, see [29, Chapters II and III],
and the second edition [30, Chapters II and III].

Let the solutions θ, ϕ : [0,∞) × C → C of (8.20) be defined by the initial
conditions, for some α ∈ [0, π),{

θ(0, λ) = cos(α) θ′(0, λ) = sin(α)
ϕ(0, λ) = − sin(α) ϕ′(0, λ) = cos(α) (8.21)

and for all λ ∈ C. Then the pair θ, ϕ forms a basis for solutions of (8.20), for all
λ ∈ C, and θ(x, ·), θ′(x, ·), ϕ(x, ·), ϕ′(x, ·) are all entire (integral) functions on C,
for all x ∈ [0,∞). Note that this definition of the initial values of the pair θ, ϕ at
0 yields the Wronskian condition, for all x ∈ [0,∞) and λ ∈ C,

W (θ, ϕ)(x, λ) ≡ θ(x, λ)ϕ′(x, λ) − θ′(x, λ)ϕ(x, λ) = 1; (8.22)

this sign convention differs from the Titchmarsh convention of the Wronskian given
in [30, Chapter II, Section 2.1, (2.1.4)]; this change is to adopt the now standard
sign convention for the m-coefficient as a Nevanlinna analytic function, see item
(iii) below.

Weyl, see [33], proved that either

(i) in the limit-point case

θ(·, λ) /∈ L2(0,∞) and ϕ(·, λ) /∈ L2(0,∞) for all λ ∈ C \ R (8.23)

or

(ii) in the limit-circle case

θ(·, λ) ∈ L2(0,∞) and ϕ(·, λ) ∈ L2(0,∞) for all λ ∈ C. (8.24)

In both cases Titchmarsh showed, see [26] and later in [30, Chapter II, Sec-
tions 2.1 and 2.2], that there exists at least one analytic function (the m-coefficient)
with the properties (note the sign change that has been effected from the formulae
in [30, Chapter II, Sections 2.1 and 2.2], see (8.22) above):

(i) m is regular on C \ R
(ii) m(λ) = m(λ) for all λ ∈ C \ R
(iii) Im(m(λ)) > 0 for all λ with Im(λ) > 0;

Im(m(λ)) < 0 for all λ with Im(λ) < 0
(iv) the analytic function m(·) considered in the upper half plane

C+ := {λ ∈ C : Im(λ) > 0}

of C may or may not have a continuation into the lower half plane

C− := {λ ∈ C : Im(λ) < 0}

of C; if it does so continue the continuation may or may not be the analytic
function m(·) in the lower half plane C−
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(v) the solution ψ(·, λ) of the equation (8.20) defined by

ψ(x, λ) := θ(x, λ) + m(λ)ϕ(x, λ) for all x ∈ [0,∞) and all λ ∈ C \ R (8.25)

satisfies ∫ ∞

0

|ψ(x, λ)|2 dx =
Im(m(λ))

Im(λ)
< +∞ for all λ ∈ C \ R. (8.26)

The existence of this solution ψ, and the analytic m-coefficient are funda-
mental to the Titchmarsh eigenfunction analysis as developed in the text [30]. The
existence proofs so concerned involve the introduction of the Weyl circle method,
see [33, Chapter I, Theorem 1], but with the additional use of complex function
theory, see [30, Chapter II, Sections 2.1 and 2.2].

For the m-coefficient the following cases occur, see [30, Chapter II, Section 2.1],

1. If the differential equation (8.20) is in the limit-point case at the singular
endpoint +∞ then for each choice of the boundary condition parameter α ∈
[0, π) there is a unique m-coefficient, which depends upon α, with the above
properties; for all λ ∈ C \ R the unique value m(λ) is the limit-point of the
circles for that value of λ.

2. If the differential equation (8.20) is in the limit-circle case at the singular
endpoint +∞ then for each choice of the boundary condition parameter α ∈
[0, π) there is a continuum of m-coefficients, each continuum depending upon
α; the determination of any particular m-coefficient depends upon the limit-
circle process, but see the application of the Vitali convergence theorem in
[30, Chapter II, Section 2.2].

Although not part of the Titchmarsh theory it is well to remark that the
properties (i), (ii) and (iii) above imply that the analytic coefficient m(·) is a
Nevanlinna (Herglotz, Pick, Riesz) function and so has a representation of the
form, see [1, Chapter 6, Section 69, Theorem 2], where γ, δ ∈ R with δ ≥ 0,

m(λ) = γ + δλ +
∫ +∞

−∞

{
1

t− λ
− t

t2 + 1

}
dρ(t) for all λ ∈ C \ R. (8.27)

Here the function ρ : R → R is monotonic non-decreasing on R and satisfies the
growth restriction ∫ +∞

−∞

1
1 + t2

dρ(t) < +∞; (8.28)

this function ρ is the spectral function for the m-coefficient. The integrals in (8.27)
and (8.28) are best interpreted as Lebesgue-Stieltjes integrals with the symbol ρ
representing a Borel measure.

The resolvent function Φ : [0,∞)× C \R× L2(0,∞) is now defined by

Φ(x, λ; f) := ψ(x, λ)
∫ x

0

ϕ(t, λ)f(t) dt + ϕ(x, λ)
∫ ∞

x

ψ(t, λ)f(t) dt. (8.29)
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The Sturm-Liouville boundary value problem considered by Titchmarsh in
the singular case is best formulated by requiring that any solution y of the dif-
ferential equation (8.20) is to satisfy the following conditions, see [30, Chapter II,
Section 2.7, Theorem 2.7 (i)],⎧⎨⎩

(i) y ∈ L2(0,∞)
(ii) W (y, ϕ)(0) ≡ y(0) cos(α) + y′(0) sin(α) = 0
(iii) limx→∞ W (y, ψ(·, λ))(x) = 0 for all λ ∈ C \ R.

(8.30)

The condition (iii) is the required boundary condition at the singular endpoint
+∞; it was introduced by Weyl in 1910, see [33, Chapter II, Section 8, (41)],
and later by Titchmarsh in 1941, [26, Section 6, (6.2)]; this form of boundary
condition heralded the introduction of structured boundary conditions for classical
and quasi-differential operators, see [1, Appendix 2, Section 127, Theorem 2] and
[17, Chapter V, Section 18.1, Theorem 4].

As in the regular case, see (8.10), the resolvent function Φ of (8.29) satisfies
the boundary conditions (8.30); see [30, Chapter II, Sections 2.8 and 2.9].

The Titchmarsh eigenfunction expansion for the singular Sturm-Liouville
boundary value problem (8.20) and (8.30) is considered in two separate cases;
the series case when it is assumed that the m-coefficient is meromorphic on C, see
[30, Chapter II], and the general case in [30, Chapter III].

These two cases both concern the situation when the interval for the differen-
tial equation (8.20) is the closed half-line [0,∞); for both the series and general case
Titchmarsh also considers expansion theorems when the interval is the whole real
line (−∞,∞), see [30, Chapter II, Section 2.18] and [30, Chapter III, Section 3.8].

8.2.1. The singular case: series expansion. In this case there is a significant addi-
tional assumption in that, given α ∈ [0,∞), the m-coefficient is assumed to be a
meromorphic analytic function on the complex λ-plane C; this property for m can
arise in the limit-point case (for an example see [30, Chapter IV, Section 4.12]); it
is always satisfied in the limit-circle case, see [30, Chapter V, Section 5.12].

Suppose that m has a denumerable set of poles at the points {λn : n ∈ N0};
then λn ∈ R for all n ∈ N0; it is shown in [30, Chapter II, Section 2.2] that all these
poles are simple; let the residue of m at λn be rn for all n ∈ N0. The analysis in
[30, Chapter II, Section 2.5] shows that if the sequence of functions {ψn : n ∈ N0}
is defined by

ψn(x) := |rn|1/2
ϕ(x, λn) for all x ∈ [0,∞) and n ∈ N0, (8.31)

then {ψn : n ∈ N0} is a normal orthogonal set in the space L2(0,∞). From
this result it follows that, see [30, Chapter II, Section 2.6], the resolvent function
Φ(x, ·; f) is meromorphic on the complex plane C, with simple poles at the points
{λn : n ∈ N0}; the residue at the pole λn is

rnϕ(x, λn)
∫ ∞

0

ϕ(t, λn)f(t) dt = ψn(x)
∫ ∞

0

ψn(t)f(t) dt = cnψn(x), (8.32)
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where, given f ∈ L2(0,∞), the generalized Fourier coefficients {cn : n ∈ N0} are
defined by

cn :=
∫ ∞

0

ψn(t)f(t) dt for all n ∈ N0.

It is now possible to prove, following the analysis in [30, Chapter II, Section
2.6], that the solution ϕ(·, λn) of the differential equation (8.20), with λ = λn,
satisfies the boundary conditions (8.30); this λn is an eigenvalue of the singular
Sturm-Liouville boundary value problem (8.20) and (8.30), and ϕ(·, λn) is the
associated eigenfunction.

The Titchmarsh analysis, see [30, Chapter II, Section 2.7], now continues to
prove that if f : [0,∞)→ C satisfies the conditions⎧⎪⎪⎨⎪⎪⎩

(i) f, f ′ ∈ ACloc[0,∞)
(ii) f, f ′′ − qf ∈ L2(0,∞)
(iii) W (f, ϕ)(0) ≡ f(0) cos(α) + f ′(0) sin(α) = 0
(iv) limx→∞ W (f, ψ(·, λ))(x) = 0 for all λ ∈ C \ R

(8.33)

then

f(x) =
∞∑

n=0

cnψn(x) for all x ∈ [0,∞), (8.34)

where the infinite series converges absolutely for all x ∈ [0;∞) and is locally
uniformly convergent on [0,∞).

Further analysis then shows that for any element f ∈ L2(0,∞) we have the
Parseval identity ∫ ∞

0

|f(x)|2 dx =
∞∑

n=0

|cn|2 . (8.35)

These last results represent the classical solution to the singular Sturm-
Liouville boundary value problem determined by the differential equation (8.20)
and the boundary conditions (8.30).

Remark 8.2. The Parseval identity (8.35) shows that the normal orthogonal set
{ψn : n ∈ N0} is complete in the Hilbert function space L2(0,∞); this result
implies that the meromorphic m does have a denumerable number of poles on the
real line R; this property was assumed to hold at the beginning of Section 8.2.1.

8.2.2. The singular case: the general expansion. Let all the previous definitions
concerning the solutions θ and ϕ of the equation (8.20) and initial conditions (8.21)
hold; let an m-coefficient be chosen, which implies that the properties (8.25) and
(8.26) are satisfied.

To consider the general singular case, i.e., when no additional assumptions
are made on the m-coefficient, Titchmarsh introduced the k function; originally
this function was defined in the 1941 paper [27, Section 4] but here quoted from
[30, Chapter III, Section 3.3, Lemma 3.3].
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Let k : R → R be defined by (again there is a sign change from the original
definition)

k(t) := lim
δ→0+

∫ t

0

Im(m(u + iδ)) du for all t ∈ R. (8.36)

The analysis in [30, Chapter III, Section 3.3] shows that this limit exists for all
t ∈ R and that k is a non-decreasing function on R which satisfies

k(t) = 1
2{k(t + 0) + k(t− 0)} for all t ∈ R. (8.37)

The function k defines a non-negative Borel measure on the real line R to give the
Lebesgue-Stieltjes integrable-square space L2(R; k(·)) with elements

F : (−∞, +∞)→ C

satisfying ∫
(−∞,+∞)

|F (t)|2 dk(t) < +∞.

To obtain the eigenfunction expansion of any element f ∈ L2(0,∞) Titch-
marsh gives the following definitions and properties, see [30, Chapter III, Sections
3.4 to 3.6],

1. Let χ : [0,∞)× (−∞, +∞)→ R be defined by the Lebesgue-Stieltjes integral

χ(x, t) :=
∫

[0,t]

ϕ(x, s) dk(s) for all x ∈ [0,∞) and t ∈ (−∞, +∞); (8.38)

then

χ(·, t) ∈ L2(0,∞) for all t ∈ (−∞, +∞). (8.39)

2. Given f ∈ L2(0,∞) let F : (−∞, +∞)→ R be defined by

F(t) :=
∫ ∞

0

χ(x, t)f(x) dx for all t ∈ (−∞, +∞); (8.40)

then it can be shown that F ∈ BVloc(−∞, +∞), the space of complex-valued
functions, defined on R, which are of bounded variation on all compact in-
tervals of R.

3. Now let f additionally satisfy the boundary conditions (8.33); then

f(x) =
1
π

∫
(−∞,+∞)

ϕ(x, t) dF(t) for all x ∈ [0,∞) (8.41)

where the integral is taken in the sense of Lebesgue-Stieltjes and so is abso-
lutely convergent for all x ∈ [0,∞).
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The result (8.41) is then the general singular Sturm-Liouville eigenfunction
expansion for the Titchmarsh differential equation (8.20) when the function f
satisfies the boundary conditions (8.33).

In [30, Chapter III, Section 3.7] Titchmarsh gives the Parseval identity for
this eigenfunction expansion:

1. Let f ∈ L2(0,∞); then the sequence of functions {Fn : n ∈ N0}, where

Fn : (−∞, +∞)→ C,

is defined by

Fn(t) :=
∫ n

0

ϕ(x, t)f(x) dx for all t ∈ (−∞, +∞). (8.42)

2. Then it may be shown that Fn ∈ L2(R; k(·)) for all n ∈ N0, that the sequence
{Fn : n ∈ N0} converges in mean to, say, F ∈ L2(R; k(·)) in this space, and∫ ∞

0

|f(x)|2 dx =
∫

(−∞,+∞)

|F (t)|2 dk(t). (8.43)

9. The Titchmarsh-Weyl contributions

In this section we review some aspects of the Weyl and Titchmarsh contributions
to the development of Sturm-Liouville boundary value problems in the years 1900
to 1950.

9.1. The regular case

From the viewpoint of classical analysis the Titchmarsh theory of the regular case,
see [30, Chapter I] is still a significant contribution to Sturm-Liouville theory.
The spectrum of the boundary value problem is proved to be discrete with a
denumerable number of eigenvalues, the eigenfunctions are complete in the Hilbert
space L2(a, b), and the Parseval identity is established. Of course, all these results
also follow from the properties of the associated self-adjoint operators in L2(a, b),
see again [20, Chapter X, Section 3, Theorem 10.18].

However, the additional contribution in [30, Chapter I, Section 1.9, Theorem
1.9] is that of the pointwise convergence result of the eigenfunction expansion under
Fourier type conditions on the function f ∈ L2(a, b), as in the classical theory of
Fourier series. Such results are not in general possible using the operator methods
of Sturm-Liouville theory.

In the Titchmarsh theory with the differential equation

−y′′(x) + q(x)y(x) = λy(x) for all x ∈ [a, b],

the coefficient q is required to be continuous; however, this condition can be relaxed
to q ∈ L1(a, b) to achieve the same results.
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9.2. The singular case: general remarks

We make the following general remarks on the singular Sturm-Liouville case as to
be seen in the work of Weyl and Titchmarsh up to the year 1950.

9.2.1. Pointwise convergence theorems. The eigenfunction expansions as envis-
aged originally by Sturm and Liouville [24], and later developed by Weyl [33],
Dixon [5] and Titchmarsh [30] are all modelled on the classical theory of Fourier
series.

The pointwise convergence, in C, for a function f : [0, 2π) → C in Fourier
series is given in detail in [25, Chapter XIII, Section 8.2]; in addition to starting
with f ∈ L1(0, 2π) some form of smoothness on f is required. However, if f ∈
L2(0, 2π) then convergence in this space requires no additional restrictions on f ;
the main tool here is the Bessel inequality; the expansion result is seen in the form
of the Parseval identity, see [25, Chapter XIII, Section 13.6].

The original problem of Sturm and Liouville [24] in 1837 was to consider
pointwise convergence, as viewed at that time, of the series of solution functions.
The Weyl paper of 1910 [33] considers both pointwise and L2 convergence; the
Dixon paper of 1912 [5] considers only some form of pointwise convergence; of
course, in both these theories the concept of convergence has been made rigorous.

The Titchmarsh theory, as now gathered together in the text [30], is influ-
enced throughout by classical Fourier theory. In both the regular and singular
cases we have:

(i) direct or pointwise convergence of the eigenfunction expansion requiring some
form of second derivative integrability on the function f , in addition to the
initial requirement that f ∈ L2(a, b) or L2(0,∞)

(ii) integrable-square convergence involving only that f ∈ L2(a, b) or L2(0,∞)
where the main methods are in obtaining the Bessel inequality and, in par-
ticular, the Parseval identity.

There are additional pointwise convergence results under Fourier conditions
in [30, Chapter IX]; these results relax the conditions on the function f but require
additional constraints on the coefficient q.

For the Stone book [20] the only convergence considered is that involved with
abstract Hilbert space theory; there are no pointwise convergence results.

9.2.2. Operator theory. The theory of Sturm-Liouville differential operators is
fully developed in the Stone treatise [20, Chapter X, Section 3]; see Section 7
above.

There are interesting connections between this operator theory and some of
the classical convergence results in the work of Weyl [33] and Titchmarsh [30].

In [33] the two main pointwise expansion theorems are [33, Chapter II, The-
orem II] and [33, Chapter III, Theorem 7]. In both theorems the domains of func-
tions in the space L2(0,∞) for which the expansion results are valid are virtually
the domains of the corresponding self-adjoint operators in the Stone theory, see
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respectively the statements of the theorems [20, Chapter X, Section 3, Theorem
10.17] and [20, Chapter X, Section 3, Theorem 10.16].

These remarks also apply, respectively, to the Titchmarsh expansion results
given above in Section 8.2.1 and 8.2.2; the set of functions (8.33) for which these
expansions are valid are, in effect, the domains of the corresponding Stone self-
adjoint differential operators.

In general, well-posed Sturm-Liouville boundary value problems generate self-
adjoint differential operators in L2(a, b) for which the generalized Parseval identity
holds. However, if a pointwise expansion theorem is required for the same boundary
value problem, then the function in L2(a, b), to be expanded, has to satisfy addi-
tional smoothness conditions equivalent to the function belonging to the domain
of the corresponding self-adjoint differential operator.

In one respect Titchmarsh came much closer to the operator theory than
did Weyl. The Titchmarsh k function, see the definition in (8.36), introduces the
Lebesgue-Stieltjes Hilbert function space L2(R; k(·)). Now the canonical form of
the self-adjoint Stone differential operator in L2(a, b) is simply the self-adjoint
multiplication operator in L2(R; k(·)); these two self-adjoint operators are unitar-
ily equivalent and so the spectrum of the Sturm-Liouville operator can be read off
from the jump and continuity properties of the monotonic non-decreasing func-
tion k. Although, seemingly, Titchmarsh was not aware of this operator theoretic
connection, he successfully defines the spectrum of his singular Sturm-Liouville
boundary value problem in terms of the k function, see [30, Chapter III, Section
3.9] and Section 9.2.3 below.

9.2.3. The spectrum. The definition of the spectrum of singular Sturm-Liouville
boundary value problems is best seen from the operator theoretic viewpoint; for
self-adjoint operators this definition concerns the resolution of the identity of the
operator, see [20, Chapter V, Section 5, Definition 5.2 and Theorem 5.11].

From the classical viewpoint, such as is involved with the results and work
of Weyl and Titchmarsh, the definitions are equivalent to the operator theoretic
definitions but this statement has to be justified analytically. It should be remem-
bered that Weyl, see [33, Chapter III] and items (g) and (h) of Section 5 above,
formulated his definitions some twenty years before the Hilbert space definitions
were in place. In the case of Titchmarsh, seemingly, he framed his definition of
the spectrum of his Sturm-Liouville boundary value problems, see [30, Chapter
III, Section 3.9], solely in analytical terms of his k function, as derived from the
m-coefficient.

In the case of the Weyl definition of the spectrum the connection with the
operator theoretic definition is given by Hellwig, see [9, Chapter 10, Sections 10.4
and 10.5]

As mentioned above, the Titchmarsh definition of the spectrum is made in
terms of the monotonic non-decreasing function k; see [30, Chapter III, Section 3.9].

Given a singular Sturm-Liouville boundary value problem as discussed in
Section 8.2.2 above, let the function k be defined as in (8.36). If k is constant
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over any open interval of R then it follows from the formulae (8.38) and (8.40)
that this open interval makes no contribution to the expansion formula (8.41). The
spectrum of the boundary value problem is then defined as the complement in the
real line R of the set of all such open intervals of constancy of the function k. Thus
the spectrum of the boundary value problem is a closed subset of the real line R.

Points of R being being points of discontinuity of k belong to the spectrum
and represent the eigenvalues of the boundary value problem; points of continuity
but where k is increasing are in the continuous spectrum; also the limit points of
these two sets are in the spectrum.

The connection between the Titchmarsh definition and the operator theory
definition of the spectrum is best considered in terms of the self-adjoint multi-
plication operator in the Hilbert space L2(R; k(·)); see the remarks in the last
paragraph of Section 9.2.2 above.

The Titchmarsh definition of the spectrum can also be made in terms of
the properties of the m-coefficient on the real line R of the complex plane C. For
the definitions concerned and the connection with the spectrum defined by the k
function see the paper by Chaudhuri and Everitt [3].

Finally, the Titchmarsh spectral properties can be determined, or defined,
from the spectral function ρ of the m-coefficient, see (8.27). There is a connection
between the Titchmarsh k function and the Nevanlinna ρ function

k(t) = πρ(t) for all t ∈ R;

see [30, Chapter VI, Section 6.7, (6.7.5)], so that spectral properties may be de-
duced equally well from k as from ρ.

10. Aftermath

From 1950 onwards all these properties and results of the Sturm-Liouville differ-
ential equations and boundary value problems formed the basis of the spectral
theory of ordinary and quasi-differential equations, and the associated differential
operators, of arbitrary integer order with real and complex coefficients.

For some details of the progress made in the study of Sturm-Liouville differ-
ential equations and boundary value problems, following soon after the years 1900
to 1950, see the texts of Akhiezer and Glazman [1, Appendix 2], Naimark [17],
Glazman [7] and Coddington and Levinson [4], and the papers by Kodaira [14]
and [15]. For a new proof of the expansion theorem for Sturm-Liouville equations,
see the article by Bennewitz and Everitt in this volume.

For a final word from Hermann Weyl see his epilogue [35] written in 1950.
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12. Salute

When Charles Sturm died in 1855 Liouville said, at the side of the grave,

“Adieu, Sturm, Adieu”.
At my lecture to the Sturm Bicentennial meeting at the University of Geneva,

in September 2003, I finished with the words

“Merci, Sturm-Liouville, Merci Bien”.
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