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Preface

Charles François Sturm, through his papers published in the 1830’s, is considered
to be the founder of Sturm-Liouville theory. He was born in Geneva in Septem-
ber 1803. To commemorate the 200th anniversary of his birth, an international
colloquium in recognition of Sturm’s major contributions to science took place at
the University of Geneva, Switzerland, following a proposal by Andreas Hinz. The
colloquium was held from 15 to 19 September 2003 and attended by more than 60
participants from 16 countries. It was organized by Werner Amrein of the Depart-
ment of Theoretical Physics and Jean-Claude Pont, leader of the History of Science
group of the University of Geneva. The meeting was divided into two parts. In the
first part, historians of science discussed the many contributions of Charles Sturm
to mathematics and physics, including his pedagogical work. The second part of the
colloquium was then devoted to Sturm-Liouville theory. The impact and develop-
ment of this theory, from the death of Sturm to the present day, was the subject of
a series of general presentations by leading experts in the field, and the colloquium
concluded with a workshop covering recent research in this highly active area.

This drawing together of historical presentations with seminars on current
mathematical research left participants in no doubt of the degree to which Sturm’s
original ideas are continuing to have an impact on the mathematics of our own
times. The format of the conference provided many opportunities for exchange
of ideas and collaboration and might serve as a model for other multidisciplinary
meetings.

The organizers had decided not to publish proceedings of the meeting in the
usual form (a complete list of scientific talks is appended, however). Instead it
was planned to prepare, in conjunction with the colloquium, a volume containing
a complete collection of Sturm’s published articles and a volume presenting the
various aspects of Sturm-Liouville theory at a rather general level, accessible to
the non-specialist. Thus Jean-Claude Pont will edit a volume1 containing the col-
lected works of Sturm accompanied by a biographical review as well as abundant
historical and technical comments provided by the contributors to the first part of
the meeting.

The present volume is a collection of twelve refereed articles relating to the
second part of the colloquium. It contains, in somewhat extended form, the survey
lectures on Sturm-Liouville theory given by the invited speakers; these are the first

1The Collected Works of Charles François Sturm, J.-C. Pont, editor (in preparation).
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six papers of the book. To complement this range of topics, the editors invited
a few participants in the colloquium to provide a review or other contribution
in an area related to their presentation and which should cover some important
aspects of current interest. The volume ends with a comprehensive catalogue of
Sturm-Liouville differential equations. At the conclusion of the Introduction is a
brief description of the articles in the book, placing them in the context of the
developing theory of Sturm-Liouville differential equations. We hope that these
articles, besides being a tribute to Charles François Sturm, will be a useful resource
for researchers, graduate students and others looking for an overview of the field.

We have refrained from presenting details of Sturm’s life and his other sci-
entific work in this volume. As regards Sturm-Liouville theory, some aspects of
Sturm’s original approach are presented in the contributions to the present book,
and a more detailed discussion will be given in the article by Jesper Lützen and
Angelo Mingarelli in the companion volume. Of course, the more recent literature
concerned with this theory and its applications is strikingly vast (on the day of
writing, MathSciNet yields 1835 entries having the term “Sturm-Liouville” in their
title); it is therefore unavoidable that there may be certain aspects of the theory
which are not sufficiently covered here.

The articles in this volume can be read essentially independently. The authors
have included cross-references to other contributions. In order to respect the style
and habits of the authors, the editors did not ask them to use a uniform standard
for notations and conventions of terminology. For example, the reader should take
note that, according to author, inner products may be anti-linear in the first or in
the second argument, and deficiency indices are either single natural numbers or
pairs of numbers. Moreover, there are some differences in terminology as regards
spectral theory.

The colloquium would not have been possible without support from numerous
individuals and organizations. Financial contributions were received from various
divisions of the University of Geneva (Commission administrative du Rectorat,
Faculté des Lettres, Faculté des Sciences, Histoire et Philosophie des Sciences, Sec-
tion de Physique), from the History of Science Museum and the City of Geneva,
the Société Académique de Genève, the Société de Physique et d’Histoire Naturelle
de Genève, the Swiss Academy of Sciences and the Swiss National Science Foun-
dation. To all these sponsors we express our sincere gratitude. We also thank the
various persons who volunteered to take care of numerous organizational tasks
in relation with the colloquium, in particular Francine Gennai-Nicole who under-
took most of the secretarial work, Jan Lacki and Andreas Malaspinas for technical
support, Danièle Chevalier, Laurent Freland, Serge Richard and Rafael Tiedra de
Aldecoa for attending to the needs of the speakers and other participants. Special
thanks are due to Jean-Claude Pont for his enthusiastic collaboration over a period
of more than three years in the entire project, as well as to all the speakers of the
meeting for their stimulating contributions.

As regards the present volume, we are grateful to our authors for all the
efforts they have put into the project, as well as to our referees for generously
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giving of their time. We thank Norrie Everitt, Hubert Kalf, Karl Michael Schmidt,
Charles Stuart and Peter Wittwer who freely gave their scientific advice, Serge
Richard who undertook the immense task of preparing manuscripts for the pub-
lishers, and Christian Clason for further technical help. We are much indebted to
Thomas Hempfling from Birkhäuser Verlag for continuing support in a fruitful and
rewarding partnership.

The cover of this book displays, in Liouville’s handwriting, the original for-
mulation by Sturm and Liouville, in the manuscript of their joint 1837 paper,
of the regular second-order boundary value problem on a finite interval. The pa-
per, which is discussed here by W.N. Everitt on pages 47–50, was presented to
the Paris Académie des sciences on 8 May 1837 and published in Comptes ren-
dus de l’Académie des sciences, Vol. IV (1837), 675–677, as well as in Journal de
Mathématiques Pures et Appliquées, Vol. 2 (1837), 220–223. The original manu-
script, with the title “Analyse d’un Mémoire sur le développement des fonctions en
séries, dont les différents termes sont assujettis à satisfaire à une même équation
différentielle linéaire contenant un paramètre variable”, is preserved in the archives
of the Académie des sciences to whom we are much indebted for kind permission
to reproduce an extract.

Geneva, September 2004 Werner Amrein
Andreas Hinz
David Pearson
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J. Lützen
The history of Sturm-Liouville theory, in particular its early part

A. Mingarelli
Two papers by Sturm (1829 and 1833) are considered
in the light of their impact on his famous 1836 Memoir

P. Radelet
Charles Sturm et la Mécanique
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Introduction

David Pearson

Charles François Sturm was born in Geneva on 29 September 18031. He received his
scientific education in this city, in which science has traditionally been of such great
importance. Though he was later drawn to Paris, where he settled permanently
in 1825 and carried out most of his scientific work, he has left his mark also on
the city of Geneva, where his name is commemorated by the Place Sturm and the
Rue Charles-Sturm. On the first floor of the Museum of History of Science, in its
beautiful setting with magnificent views over Lake Geneva, you can see some of
the equipment with which his friend and collaborator Daniel Colladon pursued his
research on the lake into the propagation of sound through water2.

Sturm’s family came to Geneva from Strasbourg a few decades before his
birth. He frequently moved house, and at least two of the addresses where he
spent some of his early years can still be found in Geneva’s old town3,4.

Not only did Charles Sturm leave his mark on Geneva, but his rich scientific
legacy is recognized by mathematicians and scientists the world over, and contin-
ues to influence the direction of mathematical development in our own times5. In

1This corresponds to the sixth day of the month of Vendémiaire in year XII of the French
revolutionary calendar then in use in the Département du Léman.
2Colladon was the physicist and experimentalist of this partnership, while Sturm played an
important role as theoretician. Their joint work on sound propagation and compressibility of
fluids was recognized in 1827 by the award of the Grand Prix of the Paris Academy of Sciences.
3The address 29, Place du Bourg-de-Four was home to ancestors of Charles Sturm in 1798. The
present building appears on J.-M. Billon’s map of Geneva, dated 1726, which is the earliest extant
cadastral map of the city. The home of Charles Sturm in 1806, with his parents and first sister,
was 11, Rue de l’Hôtel-de-Ville. The building now on this site was constructed in 1840. The two
houses are in close proximity.
4For details on Sturm’s life, see the biographical notice by J.-C. Pont and I. Benguigui in The
Collected Works of Charles François Sturm, J.-C. Pont, editor (in preparation), as well as Chap-
ter 21 of the book by P. Speziali, Physica Genevensis, La vie et l’oeuvre de 33 physiciens genevois,
Georg, Chêne-Bourg (1997).
5Sturm was already judged by his contemporaries to be an outstanding theoretician. Of the
numerous honours which he received during his lifetime, special mention might be made of the
Grand Prix in Mathematics of the Paris Academy, in 1834, and membership of the Royal Society
of London as well as the Copley Medal, in 1840. The citation for membership of the Royal Society
was as follows: “Jacques Charles François Sturm, of Paris, a Gentleman eminently distinguished
for his original investigations in mathematical science, is recommended by us as a proper person
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bringing together leading experts in the scientific history of Sturm’s work with
some of the major contributors to recent and contemporary mathematical devel-
opments in related fields, the Sturm Colloquium provided a unique opportunity
for the sharing of knowledge and exchange of new ideas.

Interactions of this kind between individuals from different academic back-
grounds can be of great value. There is, of course, a powerful argument for mathe-
matics to take note of its history. Mathematical results, concepts and methods do
not spring from nowhere. Often new results are motivated by existing or potential
applications. Some of Sturm’s early work on sound propagation in fluids is a good
example of this, as are his fundamental contributions to the theory of differential
equations, which were partly motivated by problems of heat flow. Some of the
later developments in areas that Sturm had initiated proceeded in parallel with
one of the revolutions in twentieth century physics, namely quantum mechanics.
New ideas in mathematics need to be considered in the light of the mathematical
and cultural environment of their time.

Sturm’s mathematical publications covered diverse areas of geometry, alge-
bra, analysis, mechanics and optics. He published textbooks in analysis and me-
chanics, both of which were still in use as late as the twentieth century6.

To most mathematicians today, Sturm’s best-known contributions, and those
which are usually considered to have had the greatest influence on mathematics
since Sturm’s day, have been in two main areas.

The first of Sturm’s major contributions to mathematics was his remarkable
solution, presented to the Paris Academy of Sciences in 1829 and later elaborated
in a memoir of 18357, of the problem of determining the number of roots, on a given
interval, of a real polynomial equation of arbitrary degree. Sturm found a complete
solution of this problem, which had been open since the seventeenth century. His
solution is algorithmic; a sequence of auxiliary polynomials (now called Sturm

to be placed on the list of Foreign members of the Royal Society”. The Copley Medal was in
recognition of his seminal work on the roots of real polynomial equations and was the second
medal awarded that year, the first having gone to the chemist J. Liebig. The citation for the
Medal was: “Resolved, by ballot. – That another Copley Medal be awarded to M. C. Sturm,
for his “Mémoire sur la Résolution des Equations Numériques,” published in the Mémoires des
Savans Etrangers for 1835”. Sturm is also one of the few mathematicians commemorated in the
series of plaques at the Eiffel tower in Paris.
6Both of these books were published posthumously, Sturm having died on 18 December 1855.
The analysis text went through 15 editions, of which the last printing was as late as 1929. A

reference for the first edition is: Cours d’analyse de l’École polytechnique (2 vols.), published by
E. Prouhet (Paris, 1857–59). The text was translated into German by T. Fischer as: Lehrbuch
der Analysis (Berlin, 1897–98). The first edition of the mechanics text was: Cours de mécanique

de l’École polytechnique (2 vols.), published by E. Prouhet (Paris, 1861). The fifth and last
edition, revised and annotated by A. de Saint-Germain, was in print at least until 1925.
7The full text of Sturm’s resolution of this problem is to be found in: Mémoire sur la résolution
des équations numériques, in the journal Mémoires présentés par divers savans à l’Académie
Royale des Sciences de l’Institut de France, sciences mathématiques et physiques 6 (1835), 271–

318 (also cited as Mémoires Savants Étrangers). See also The Collected works of Charles François
Sturm, J.-C. Pont, editor (in preparation) for further discussion of this work.
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functions), is calculated, and the number of roots on an interval is determined by
the signs of the Sturm functions at the ends of the intervals. Sturms work on zeros
of polynomials undoubtedly influenced his work on related problems for solutions
of differential equations, which was to follow.

His second major mathematical contribution, or rather a whole series of con-
tributions, was to the theory of second-order linear ordinary differential equations.
In 1833 he read a paper to the Academy of Sciences on this subject, to be followed
in 1836 by a long and detailed memoir in the Journal de Mathématiques Pures et
Appliquées. This memoir was one of the first to appear in the journal, which had
recently been founded by Joseph Liouville, who was to become a collaborator and
one of Sturm’s closest friends in Paris. It contained the first full treatment of the
oscillation, comparison and separation theorems which were to bear Sturm’s name,
and was succeeded the following year by a remarkable short paper, in the same
journal and in collaboration with Liouville, which established the basic principles
of what was to become known as Sturm-Liouville theory8. The problems treated in
this paper would be described today as Sturm-Liouville boundary value problems
(second-order linear differential equations, with linear dependence on a parame-
ter) on a finite interval, with separated boundary conditions. Sturm’s earlier work
had shown that such problems led to an infinity of possible values of the param-
eter. The collaboration between Sturm and Liouville took the theory some way
forward by proving the expansion theorem, namely that a large class of functions
could be represented by a Fourier-type expansion in terms of the family of solu-
tions to the boundary value problem. In modern terminology, the solutions would
later be known as eigenfunctions and the corresponding values of the parameter
as eigenvalues.

The 1837 memoir, published jointly by Sturm and Liouville, was to become
the foundation of a whole new branch of mathematics, namely the spectral the-
ory of differential operators. Sturm-Liouville theory is central to a large part of
modern analysis. The theory has been successively generalized in a number of
directions, with applications to Mathematical Physics and other branches of mod-
ern science. This volume provides the reader with an account of the evolution of
Sturm-Liouville theory since the pioneering work of its two founders, and presents
some of the most recent research. The companion volume will treat aspects of the
work of Sturm and his successors as a branch of the history of scientific ideas.
We believe that the two volumes together will provide a perspective which will
help to make clear the significant position of Sturm-Liouville theory in modern
mathematics.

Sturm-Liouville theory, as originally conceived by its founders, may be re-
garded, from a modern standpoint, as a first, tentative step towards the develop-
ment of a spectral theory for a class of second-order ordinary differential operators.

8For a more extended treatment of the early development of Sturm-Liouville theory, with detailed

references, see the paper on Sturm and differential equations by J. Lützen and A. Mingarelli in
the companion volume, as well as the first contribution by Everitt to this volume.
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Liouville had already covered in some detail the case of a finite interval with two
regular endpoints and boundary conditions at each endpoint. He regarded the re-
sulting expansion theorem in terms of orthogonal eigenfunctions9 as an extension
of corresponding results for Fourier series, and the analysis was applicable only
to cases for which, in modern terminology, the spectrum could be shown to be
pure point. In fact the term “spectrum” itself, in a sense close to its current mean-
ing, only began to emerge at the end of the nineteenth and the beginning of the
twentieth century, and is usually attributed to David Hilbert.

The first decade of the twentieth century was a period of rapid and highly
significant development in the concepts of spectral theory. A number of math-
ematicians were at that time groping towards an understanding of the idea of
continuous spectrum. Among these was Hilbert himself, in Göttingen. Hilbert was
concerned not with differential equations (though his work was to have a profound
impact on the spectral analysis of second-order differential equations) but with
what today we would describe as quadratic forms in the infinite-dimensional space
l2. Within this framework, he was able to construct the equivalent of a spectral
function for the quadratic form, in terms of which both discrete and continuous
spectrum could be defined. Examples of both types of spectrum could be found,
and from these examples emerged the branch of mathematics known as spectral
analysis. For the first time, spectral theory began to make sense even in cases
where the point spectrum was empty. The time was ripe for such developments,
and the theory rapidly began to incorporate advances in integration and measure
theory coming from the work of Lebesgue, Borel, Stieltjes and others.

As far as Sturm-Liouville theory itself is concerned, the most significant
progress during this first decade of the twentieth century was undoubtedly due
to the work of the young Hermann Weyl. Weyl had been a student of Hilbert in
Göttingen, graduating in 1908. (He was later, in 1930, to become professor at the
same university.) His 1910 paper10 did much to revolutionise the spectral theory
of second-order linear ordinary differential equations. Weyl’s spectrum is close to
the modern definition via resolvent operators, and his analysis of endpoints based
on limit point/limit circle criteria anticipates later ideas in functional analysis in
which deficiency indices play the central role. For Weyl, continuous spectrum was
not only to be tolerated, but was totally absorbed into the new theory. The expan-
sion theorem, from 1910 onwards, was to cover contributions from both discrete
and continuous parts of the spectrum. Weyl’s example of continuous spectrum,
corresponding to the differential equation −d2f(x)/dx2 − xf(x) = λf(x) on the

9Liouville’s proof of the expansion theorem was not quite complete in that it depended on as-
sumptions involving some additional regularity of eigenfunctions. Later extensions of this theory,
as well as a full and original proof of completeness of eigenfunctions, can be found in the article
by Bennewitz and Everitt in this volume.
10A full discussion of Weyl’s paper and its impact on Sturm-Liouville theory is to be found in
the first contribution by Everitt to this volume.
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half line [0,∞) , could hardly have been simpler11. And, perhaps most importantly,
with Weyl’s 1910 paper complex function theory began to move to the center stage
in spectral analysis.

The year 1913 saw a further advance through the publication of a research
monograph by the Hungarian mathematician Frigyes Riesz12, in which he contin-
ued the ideas of Hilbert, with the new point of view that it was the linear operator
associated with a given quadratic form, rather than the form itself, which was to
be the focus of analysis. In other words, Riesz shifted attention towards the spec-
tral theory of linear operators. In doing so he was able to arrive at the definition
of spectrum in terms of the resolvent operator, to define a functional calculus for
linear operators, and to explore the idea of what was to become the resolution
of the identity for bounded self-adjoint operators. An important consequence of
these results was that it became possible to incorporate many of Weyl’s results on
Sturm-Liouville problems into the developing theory of functional analysis. Thus,
for example, the role of boundary conditions in determining self-adjoint extensions
of differential operators could then be fully appreciated.

The modern theory of Sturm-Liouville differential equations, which grew from
these beginnings, was profoundly influenced by the emergence of quantum me-
chanics, which also had its birth in the early years of the twentieth century. At
the heart of the development of a mathematical theory to meet the demands of
the new physics was John von Neumann13.

Von Neumann joined Hilbert as assistant in Göttingen in 1926, the very year
that Schrödinger first published his fundamental wave equation. The Schrödinger
equation is, in fact, a partial differential equation, but, in the case of spherically
symmetric potentials such as the Coulomb potential, the standard technique of
separation of variables reduces the equation to a sequence of ordinary differential
equations, one for each pair of angular momentum quantum numbers. In this
way, under the assumption of spherical symmetry, Sturm-Liouville theory can be
applied to the Schrödinger equation.

Von Neumann found in functional analysis the perfect medium for under-
standing the foundations of quantum mechanics. Quantum theory led in a natural
way to a close correspondence (one could almost say identification, though that
would not quite be true) of the physical objects of the theory with mathematical
objects drawn from the theory of linear operators (usually differential operators) in
Hilbert space. The state of a quantum system could be described by a normalized
element (or vector, or wave function) in the Hilbert space. Corresponding to each

11Later it was to emerge that examples of this kind could be interpreted physically in terms of
a quantum mechanical charged particle moving in a uniform electric field.
12F. Riesz, Les systèmes d’équations linéaires à une infinité d’inconnues, Gauthier-Villars, Paris
(1913). See also J. Dieudonné, History of functional analysis, North-Holland, Amsterdam (1981).
With Riesz we begin to see the development of an “abstract” operator theory, in which the special
example of Sturm-Liouville differential operators was to play a central role.
13Von Neumann established a mathematical framework for quantum theory in his book Mathe-
matische Grundlagen der Quantenmechanik, Springer, Berlin (1932). An English translation ap-
peared as Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955).
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quantum observable was a self-adjoint operator, the spectrum of which represented
the range of physically realizable values of the observable. Both point spectrum
and continuous spectrum were important – in the case of the hydrogen atom the
energy spectrum had both discrete and continuous components, the discrete points
(eigenvalues of the corresponding Schrödinger operator) agreeing closely with ob-
served energy levels of hydrogen, and the continuous spectrum corresponding to
states of positive energy.

Von Neumann quickly saw the implications for quantum mechanics of the new
theory, and played a major part in developing the correspondence between physical
theory and the analysis of operators and operator algebras. Physics and mathe-
matical theory were able to develop in close parallel for many years, greatly to the
advantage of both. He developed to a high art the spectral theory of self-adjoint
and normal operators in abstract Hilbert space. A complete spectral analysis of
self-adjoint operators in Hilbert space, generalizing the earlier results of Riesz, was
just one outcome of this work, and a highly significant one for quantum theory.
Similar results were independently discovered by Marshall Stone, who expounded
the theory in his book published in 1932. (See the first article by Everitt.)

Of central importance for the future development of applications to mathe-
matical physics, particularly in scattering theory which existed already in embry-
onic form in the work of Heisenberg, was the realization that the Lebesgue decom-
position of measures into its singular and absolutely continuous (with respect to
Lebesgue measure) components led to an analogous decomposition of the Hilbert
space into singular and absolutely continuous subspaces for a given self-adjoint op-
erator. Moreover, these two subspaces are mutually orthogonal. The singular sub-
space may itself be decomposed into two orthogonal components, namely the sub-
space of discontinuity, spanned by eigenvectors, and the subspace of singular conti-
nuity. Physical interpretations have been found for all of these subspaces, though in
most applications only the discontinuous and absolutely continuous subspaces are
non-trivial. In the case of the Hamiltonian (energy operator) for a quantum particle
subject to a Coulomb force, the discontinuous subspace is the subspace of nega-
tive energy states and describes bound states of the system, whereas the absolutely
continuous subspace corresponds to scattering states, which have positive energy.

The influence of the work of Charles Sturm and his close friend and collab-
orator Joseph Liouville may be found in the numerous modern developments of
the theory which bears their names. A principal aim of this volume is to follow in
detail the evolution of the theory since its early days, and to present an overview
of the most important aspects of the theory as it stands today at the beginning of
the twenty-first century.

We are grateful indeed to Norrie Everitt for his contributions to this volume,
as author of two articles and coauthor of another. Over a long mathematical career,
he has played an important role in the continuing progress of Sturm-Liouville
theory.

The first of Norrie’s articles in this volume deals with the development of
Sturm-Liouville theory up to the year 1950, and covers in particular the work of
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Weyl, Stone and Titchmarsh, of whom Norrie was himself a one-time student. (He
also had the good fortune, on one occasion, to have encountered Weyl, who was
visiting Titchmarsh at the time.)

Don Hinton’s article is concerned with a series of results which follow from
Sturm’s original oscillation theorems developed in 1836 for second-order equations.
Criteria are obtained for the oscillatory nature of solutions of the differential equa-
tion, and implications for the point spectrum are derived. Extensions of the theory
to systems of equations and to higher-order equations are described.

Joachim Weidmann’s contribution considers the impact of functional analysis
on the spectral theory of Sturm-Liouville operators. Starting from ideas of resol-
vent convergence, it is shown how spectral behavior for singular problems may
in appropriate cases be derived through limiting arguments from an analysis of
regular problems. Conditions are obtained for the existence (or non-existence) of
absolutely continuous spectrum in an interval.

Spectral properties of Sturm-Liouville operators are often derived, directly or
indirectly, as a consequence of an established link between large distance asymp-
totic behavior of solutions of the associated differential equation and spectral prop-
erties of the corresponding differential operator. In the case of complex spectral
parameter, the existence of solutions which are square-integrable at infinity may
be described by the values of an analytic function, known as the Weyl-Titchmarsh
m-function or m-coefficient, and spectral properties of Sturm-Liouville operators
may be correlated with the boundary behavior of the m-function close to the real
axis. The article by Daphne Gilbert explores further the link between asymptotics
and spectral properties, particularly through the concept of subordinacy of solu-
tions, an area of spectral analysis to which she has made important contributions.

A useful resource for readers of this volume, particularly those with an inter-
est in numerical approaches to spectral analysis, will be the catalogue of Sturm-
Liouville equations, compiled by Norrie Everitt with the help of colleagues. More
than 50 examples are described, with details of their Weyl limit point/limit circle
endpoint classification, the location of eigenvalues, other spectral information, and
some background on applications. This collection of examples from an extensive
literature should also provide a reference to some of the sources in which the in-
terested reader can find further details of the theory and its applications, as well
as numerical data on spectral properties.

In collaboration with Christer Bennewitz, Everitt has contributed a new ver-
sion of the proof of the expansion theorem for general Sturm-Liouville operators,
incorporating both continuous and discontinuous spectra.

The article by Barry Simon presents some recent results related to Sturm’s
oscillation theory for second-order equations. The cases of both Schrödinger op-
erators and Jacobi matrices (which may be regarded as a discrete analogue of
Schrödinger operators) are considered. A focus of this work is the establishment
of a connection between the dimension of spectral projections and the number
of zeros of appropriate functions defined in terms of solutions of the Schrödinger
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equation. Some deep results in spectral theory follow from this analysis, and there
are links with the theory of orthogonal polynomials on the unit circle.

Yoram Last has provided a review of progress over recent years in spectral
theory for discrete and continuous Schrödinger operators. Of particular interest
has been the progress in analysis of spectral types, with a finer decomposition of
spectral measures than hitherto, and the development of new ways of characteriz-
ing absolutely continuous and singular continuous spectrum.

Rafael del Rı́o’s article is an exposition of recent results relating to the in-
fluence of boundary conditions on spectral behavior. For Schrödinger operators, a
change of boundary condition will not affect the location of absolutely continuous
spectrum, whereas the nature of singular spectrum may be profoundly influenced
by choice of boundary conditions.

In view of the major influence that Sturm-Liouville theory has had over the
years on the development of spectral theory for linear differential equations, it is
not surprising that there have been many attempts to extend the ideas and meth-
ods to nonlinear equations. Chao-Nien Chen describes some recent results in the
nonlinear theory, with particular emphasis on the characterization of nodal sets,
an area related to Sturm’s original ideas on oscillation criteria in the linear case.

Another productive area of research into Sturm-Liouville theory is the exten-
sion of the theory to partial differential equations. Sturm had himself published
results on zero sets for parabolic linear partial differential equations in a paper
of 1836. In their contribution to this volume, Victor Galaktionov and Petra Har-
win survey recent progress in this area, including extensions to some quasilinear
equations.

A continuing and flourishing branch of spectral theory, with applications in
many areas, is that of inverse spectral theory. The aim of inverse theory is to derive
the Sturm-Liouville equation from its spectral properties. An early example of this
kind of result was the proof, due originally to Borg in 1946, that for the Schrödinger
equation with potential function q over a finite interval and subject to boundary
conditions at both endpoints, the spectrum for the associated Schrödinger operator
for two distinct boundary conditions at one endpoint (and given fixed boundary
condition at the other endpoint) is sufficient to determine q uniquely. This result
has been greatly extended over recent years, for example to systems of differential
equations, and some of the more recent developments are treated in the survey by
Mark Malamud.

We believe that the contents of this book will confirm that Sturm-Liouville
theory has, indeed, a very rich Past and a most active and influential Present. It
is our hope, too, that the book will help to contribute to a continuing productive
Future for this fundamental branch of mathematics and its applications.
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Abstract. We examine how Sturm’s oscillation theorems on comparison, sep-
aration, and indexing the number of zeros of eigenfunctions have evolved. It
was Bôcher who first put the proofs on a rigorous basis, and major tools of
analysis where introduced by Picone, Prüfer, Morse, Reid, and others. Some
basic oscillation and disconjugacy results are given for the second-order case.
We show how the definitions of oscillation and disconjugacy have more than
one interpretation for higher-order equations and systems, but it is the defini-
tions from the calculus of variations that provide the most fruitful concepts;
they also have application to the spectral theory of differential equations. The
comparison and separation theorems are given for systems, and it is shown
how they apply to scalar equations to give a natural extension of Sturm’s
second-order case. Finally we return to the second-order case to show how
the indexing of zeros of eigenfunctions changes when there is a parameter in
the boundary condition or if the weight function changes sign.
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1. Introduction

In a series of papers in the 1830’s, Charles Sturm and Joseph Liouville studied the
qualitative properties of the differential equation

d

dx

(
K

dV

dx

)
+ GV = 0, for x ≥ α (1.1)

where K, G, and V are real functions of the two variables x, r. Their work began
research into the qualitative theory of differential equations, i.e., the deduction of
properties of solutions of the differential equation directly from the equation and
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without benefit of knowing the solutions. However, it was half a century before
significant interest in the qualitative theory took hold. In (1.1) and elsewhere, we
consider only real solutions unless otherwise indicated.

In more modern notation (for spectral theory it is convenient to have the
leading coefficient negative; for the oscillation results of Sections 2 and 3, we return
to the convention of positive leading coefficient), (1.1) would be written as

−(py′)′ + qy = 0, x ∈ I, (1.2)

or as (when eigenvalue problems are studied )

−(py′)′ + qy = λwy, x ∈ I, (1.3)

where the real functions p, q, w satisfy

p(x), w(x) > 0 on I , 1/p, q, w ∈ Lloc(I), (1.4)

where Lloc(I) denotes the locally Lebesgue integrable functions on I. These are
the minimal conditions the coefficients must satisfy for the initial value problem,

−(py′)′ + qy = 0, x ∈ I, y(a) = y0, y′(a) = y1,

to have a unique solution. Sturm imposed no conditions on his coefficients, but
was perhaps thinking of continuous coefficients. It is fair to say that thousands
of papers have been written concerning the properties of solutions of (1.2), and
hundreds more are published each year. Tony Zettl has called (1.2) the world’s
most popular differential equation. A recent check in math reviews shows 8178
entries for the word “oscillatory”, 3284 entries for “disconjugacy”, 1412 entries
for “non-oscillatory”, and even 62 for “Picone identity”. The applications of (1.2)
and (1.3) are ubiquitous. Their appearance in problems of heat flow and vibra-
tions were well known since the work of Fourier. They play an important role in
quantum mechanics where the problems are singular in the sense that I is an in-
terval of infinite extent or where at a finite endpoint a coefficient fails to satisfy
certain integrability conditions. Today we can find numerically with computers
the solutions of (1.2) or the eigenvalues and eigenfunctions associated with (1.3).
However, even with current technology, there are still problems which give com-
putational difficulty such as computing two eigenvalues which are close together.
Codes such as SLEIGN2 [9] (developed by Bailey, Everitt, and Zettl) or the NAG
routines give quickly and accurately the eigenvalues and eigenfunctions of large
classes of Sturm-Liouville problems. The recent text by Pryce [85] is devoted to
the numerical solution of Sturm-Liouville problems.

For (1.1), Sturm imposed a condition (h(r) is a given function),

K(α, r)
V (α, r)

∂V (α, r)
∂x

= h(r), (1.5)

and obtained the following central result [94] (after noting that when the values of
V (α, r), ∂V (α, r)/∂x are given, the solution V (x, r) is uniquely determined). We
have also used Lützen’s translation [74].
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Theorem A. If V is a nontrivial solution of (1.1) and (1.5), and if for all x ∈
[α, β],

1. K > 0 for all r and K is a decreasing function of r,
2. G is an increasing function of r,
3. h(r) is a decreasing function of r,

then
(

K
V

∂V
∂x

)
is a decreasing function of r for all x ∈ [α, β].

Here decreasing or increasing means strictly. If V (α, r) = 0, then h(r) de-
creasing means ∂V/∂x ·∂V/∂r < 0 at x = α. Sturm’s method of proof of Theorem
A was to differentiate (1.1) with respect to r, multiply this by V , and then sub-
tract this from ∂V/∂r times (1.1). After an integration by parts over [α, x], the
resulting equation obtained is(

−V 2 ∂

∂r

(
K

V

∂V

∂x

))
(x) =

(
−V 2(α, r)

dh

dr

)
+
∫ x

α

[
∂G

∂r
V 2 − ∂K

∂r

(
∂V

∂r

)2
]

, (1.6)

where we have used

−V 2 ∂

∂r

(
K

V

∂V

∂x

)
= K

∂V

∂x

∂V

∂r
− V

∂

∂r

(
K

∂V

∂x

)
. (1.7)

If we solve this equation for the term ∂
∂r

(
K
V

∂V
∂x

)
(x), then we get

∂

∂r

(
K

V

∂V

∂x

)
(x, r) < 0, (1.8)

which completes the proof.
An examination of the above proof shows that the same conclusion can be

reached with less restrictive hypotheses. With K > 0, an examination of the right-
hand side of (1.6) shows that it is positive, and hence (1.8) holds under any one
of the following three conditions.

∂G

∂r
> 0,

∂K

∂r
≤ 0,

dh

dr
≤ 0, (1.9)

∂G

∂r
≥ 0,

∂K

∂r
≤ 0,

dh

dr
< 0, (1.10)

∂G

∂r
≥ 0,

∂K

∂r
< 0,

dh

dr
≤ 0, V is not constant. (1.11)

Theorem A has immediate consequences. The first is that if x(r) denotes a
solution of V (x, r) = 0, then by implicit differentiation, we get from (1.7) and (1.8)
that

dr

dx
= −∂V

∂x
/
∂V

∂r
< 0. (1.12)

Note that this implies under the conditions of Theorem A, that the roots x(r) of
V (x, r) are decreasing with respect to r. With K > 0 the same conclusion may be
reached by replacing the hypothesis of Theorem A with (1.9), (1.10), or (1.11).
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By considering two equations, (KiV
′
i )′ + GiVi = 0, i = 1, 2, with G2(x) ≥

G1(x), K2(x) ≤ K1(x) and embedding the functions h1, h2, G1, G2 and K1, K2

into a continuous family, e.g., one can define

Ĝ(r, x) = rG2(x) + (1 − r)G1(x), 0 ≤ r ≤ 1,

and similarly for K, Sturm was able to prove comparison theorems. In particular
he proved

Theorem B (Sturm’s Comparison Theorem). For i = 1, 2 let Vi be a nontrivial
solution of (KiV

′
i )′ + GiVi = 0. Suppose further that with hi = (KiV

′
i /Vi)(α),

h2 < h1, G2(x) ≥ G1(x), K2(x) ≤ K1(x), x ∈ [α, β].

Then if α, β are two consecutive zeros of V1, the open interval (α, β) will contain
at least one zero of V2.

In case Vi(α) = 0, the proper interpretation of infinity must be made.
This version of comparison corresponds to using the hypothesis (1.10). Other

versions may be proved by using either (1.9) or (1.11). Perhaps the most widely
stated version of Sturm’s comparison theorem (not the version he proved) may be
stated as follows.

Theorem B*. For i = 1, 2 let Vi be a nontrivial solution of (KiV
′
i )′ + GiVi = 0 on

α ≤ x ≤ β. Suppose further that the coefficients are continuous and for x ∈ [α, β],

G2(x) ≥ G1(x), with G2(x0) > G1(x0) for some x0, K2(x) ≤ K1(x).

Then if α, β are two consecutive zeros of V1, the open interval (α, β) will contain
at least one zero of V2.

Sturm’s methods also yielded (in modern terminology):

Theorem C (Sturm’s Separation Theorem). If V1, V2 are two linearly independent
solutions of (KV ′)′ +GV = 0 and a,b are two consecutive zeros of V1, then V2 has
a zero on the open interval (a, b).

The final result of Sturm that we wish to quote concerns the zeros of eigen-
functions and is proved in his second memoir [95]. Here he considered the eigen-
value problem,

(k(x)V ′(x))′ + [λg(x)− l(x)]V (x) = 0, α ≤ x ≤ β, (1.13)

with separated boundary conditions,

k(α)V ′(α)− hV (α) = 0, k(β)V ′(β) + HV (β) = 0. (1.14)

Further the functions k, g, and l are assumed positive. Some properties he estab-
lished are:

Theorem D. There are infinitely many real simple eigenvalues λ1, λ2, . . . of (1.13)
and (1.14), and if V1, V2, . . . are the corresponding eigenfunctions, then for n =
1, 2, . . . ,

1. Vn has exactly n− 1 zeros in the open interval (α, β),
2. between two consecutive zeros of Vn+1 there is exactly one zero of Vn.
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Theorem D relates to the spectral theory of the operator associated with
(1.13) and (1.14). For (1.2) considered on an infinite interval I = [a,∞), an
eigenvalue problem, in order to define a self-adjoint operator, may only require
one boundary condition at a (limit point case at infinity), or it may require two
boundary conditions involving both a and infinity (limit circle case at infinity).
This dichotomy was discovered by Weyl. In the limit point case with w ≡ 1, a
self-adjoint operator is defined in the Hilbert space L2(a,∞) of Lebesgue square
integrable functions by

Lα[y] = −(py′)′ + qy, y ∈ D,

where

D = {y ∈ L2(a,∞) : y, py′ ∈ ACloc, Lα[y] ∈ L2(a,∞),

y(a) sin α− (py′)(a) cosα = 0}, (1.15)

and ACloc denotes the locally absolutely continuous functions.
Unlike the case (1.13) and (1.14) for the compact interval, the spectrum for

the infinite interval may contain essential spectrum, i.e., numbers λ such that
Lα − λI has a range that is not closed, and Theorem D does not apply. However
in the case of a purely discrete spectrum bounded below, a version of Theorem D
carries over to the operator Lα above in the relation of the index of the eigenvalue
to the number of zeros of the eigenfunction in (a,∞) [22]. In general, one can say
that the number of points in the spectrum of Lα below a real number λ0 is infinite
if and only if the equation −(py′)′ + qy = λ0y is oscillatory, i.e., the solutions
have infinitely many zeros on [a,∞). This same result carries over to self-adjoint
equations of arbitrary order if the definition of oscillation in Section 4 is used
[80, 99]. This basic connection has been used extensively in spectral theory. Note
that if −(py′)′ + qy = λ0y is non-oscillatory for every λ0, then the spectrum of Lα

consists only of a sequence of eigenvalues tending to infinity. Theorem D and its
generalizations have also important numerical consequences. When an eigenvalue
is computed, it allows one to be sure which eigenvalue it is, i.e., just count the
zeros of the eigenfunction. It also allows the calculation of an eigenvalue without
first calculating the eigenvalues that precede it. This feature is built into some
eigenvalue codes.

A number of monographs deal almost exclusively with the oscillation theory
of linear differential equations and systems. The books of Coppel [24] and Reid
[88] emphasize linear Hamiltonian systems, but also contain substantial material
on the second-order case. Coppel contains perhaps the most concise treatment
of Hamiltonian systems; Reid is the most comprehensive development of Sturm
theory. The book of Elias [29] is based on the oscillation and boundary value
problem theory for two term ordinary differential equations, while Greguš [38]
deals entirely with third-order equations. The text by Kreith [62] includes abstract
oscillation theory as well as oscillation theory for partial differential equations.
Finally the classic book by Swanson [96] has special chapters on second, third,
fourth-order ordinary differential equations as well as results for partial differential
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equations. The reader is also referred to the survey papers of Barrett [10] and
Willett [100]. The books by Atkinson [8], Glazman [37], Hartman [44], Ince [53],
Kratz [61], Müller-Pfeiffer [80], and Reid [86] contain many results on oscillation
theory.

As noted, the literature on the Sturm theory is voluminous. There are exten-
sive results on difference equations, delay and functional differential equations, and
partial differential equations. The Sturm theory for difference equations is similar
to that of ordinary differential equations, but contains many new twists. The book
by Ahlbrandt and Peterson [6] details this theory (see also the text by B. Simon in
the present volume). Oscillation results for delay and functional equations as well
as further work on difference equations can be found in the books by Agarwal,
Grace, and O’Regan [1, 2], I. Gyori and G. Ladas [39], and L. Erbe, Q. Kong, and
B. Zhang [31]. We confine ourselves to the case of ordinary differential equations
and at that we are only able to pursue a few themes.

The comparison and oscillation theorems of Sturm have remained a topic of
considerable interest. While the extensions and generalizations have much intrinsic
interest, we believe their continued relevance is due in no small part to their
intimate connection with problems of physical origin. Particularly the connections
with the minimization problems of the calculus of variations and optimal control as
well as the spectral theory of differential operators are important. We will discuss
some of these connections below. We will trace some of the developments that
have occurred with respect to the comparison and separation theorems as well
as other developments related to Theorem D. The tools introduced by Picone,
Prüfer, and the variational methods will be discussed and their applications to
second-order equations as well as to higher-order equations and systems. Sample
results will be stated and a few short and elegant proofs will be given. The problem
of extending Sturm’s results to systems was only considered about one hundred
years after Sturm; the work of Morse was fundamental in this development. It is
interesting that it was variational theory which gave the most natural and fruitful
generalization of the definitions of oscillation. In a very loose way, we show that
the theme of largeness of the coefficient q in (py′)′ + qy = 0 leads to oscillation
in not only the second-order, but also higher-order equations, while q ≤ 0, or |q|
small leads to disconjugacy.

2. Extensions and more rigor

Sturm’s proofs of course do not meet the standards of modern rigor. They meet
the standards of his time, and are in fact correct in method and can without too
much trouble be made rigorous. The first efforts to do this are due to Bôcher
in a series of papers in the Bulletin of the AMS [17] and are also contained in
his book [18]. Bôcher [17] remarks that “the work of Sturm may, however, be
made perfectly rigorous without serious trouble and with no real modification of
method”. The conditions placed on the coefficients were to make them piecewise
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continuous. Bôcher used Riccati equation techniques in some of his proofs; we note
that Sturm mentions the Riccati equation, but does not employ it in his proofs.
Riccati equation techniques in variational theory go back at least to Legendre who
in 1786 gave a flawed proof of his necessary condition for a minimizer of an integral
functional. A correct proof of Legendre’s condition using Riccati equations can be
found in Bolza’s 1904 lecture notes [19]. Bolza attributes this proof to Weierstrass.

Bôcher was also motivated by the oscillation theorem of Klein [58] which is
a multiparameter version of Sturm’s existence proof for eigenvalues. Bôcher [17]
noted that Klein “had given rough geometrical proofs which however made no
pretence at rigor”. The general form of Klein’s problem may be stated as follows,
see Ince [53, p. 248]. Suppose in (1.2), q is of the form

q(x) = −l(x) + [λ0 + λ1x + · · ·+ λnxn]g(x),

where p, l, g are continuous with p(x), g(x) > 0. Further let there be n+1 intervals
[a0, b0], . . . , [an, bn] with a0 < b0 < a1 < · · · < an < bn. Suppose ms, s = 0, . . . , n
are given nonnegative integers and on each interval [as, bs], separated boundary
conditions of the form (1.14) are given. Then there exist a set of simultaneous
characteristic numbers λ0, . . . , λn and corresponding functions y0, . . . , yn such that
on each [as, bs], ys has ms zeros in (as, bs) and satisfies the boundary conditions
for [as, bs]. Klein was interested in the two parameter Lamé equation

y′′ +
1
2

[
1

x− e1
+

1
x− e2

+
1

x− e3

]
y′ − Ax + B

4(x− e1)(x − e2)(x− e3)
y = 0

because of its application to physics. The text by Halvorsen and Mingarelli [40]
deals with the oscillation theory of the two parameter case.

The proofs of Sturm’s theorems depend on existence-uniqueness results for
(1.2), and Norrie Everitt has brought to our attention that it was Dixon [25] who
first proved that these are valid under only the assumption that the coefficients
1/p, q are Lebesgue integrable functions. The details of Dixon’s work may be
found in N. Everitt’s text in the present volume. Later Carathéodory generalized
the concept of a solution of a system of differential equations to only require
the equation hold almost everywhere. When (1.2) is written in system form, the
Dixon and Carathéodory conditions are the same. Richardson [89, 90] extended
the results of counting zeros of eigenfunctions further by allowing the weight g(x)
in (1.13) to not be of constant sign and called this the non-definite case. We will
return to his case in Section 5. Part (1) of Theorem D, which is for the separated
boundary conditions (1.14), was extended by Birkhoff [16] to the case of arbitrary
self-adjoint boundary conditions.

To simplify our discussion, we will henceforth assume that all coefficients and
matrix components are real and piecewise continuous unless otherwise stated.

Thinking of examples like y′′ + ky = 0, k > 0, whose solutions are sines and
cosines or the Euler equation y′′ + kx−2y = 0 which has oscillatory solutions if
and only if k > 1/4, it is natural to pose the problem:

When are all solutions of (py′)′ + qy = 0 oscillatory on I? (2.1)
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We use the term oscillatory (non-oscillatory) here in the sense of infinitely (finitely)
many zeros for all nontrivial solutions. Because of the Sturm separation theorem,
if one nontrivial solution has infinitely many zeros, then all do, but this property
fails for nonlinear equations. A second problem, not quite so obvious, but which
arose naturally from the calculus of variations, is

When is the equation (py′)′ + qy = 0 disconjugate on I? (2.2)

The term disconjugate is used here to mean that no nontrivial solution has more
than one zero on I. If a nontrivial solution of (py′)′ + qy = 0 has a zero at a, then
the first zero of y to the right of a is called the first right conjugate point of a; if
there are no zeros to the right of a, then we say the equation is right disconjugate.
Successive zeros are isolated and hence yield a counting of conjugate points. If y
satisfies y′(a) = 0, then the first zero of y to the right of a is called the first right
focal point of a. If y has no zeros to the right of a, then (py′)′+qy = 0 is called right
disfocal. Similar definitions are made to the left. The simplest criterion for both
right disconjugate and disfocal is for q(x) ≤ 0, for then an easy argument shows y
is monotone if y(a) ≥ 0, y′(a) ≥ 0. On a compact or open interval I disconjugacy
is equivalent to there being a solution of (py′)′ + qy = 0 with no zeros on I [24,
p.5]. For a half-open interval (py′)′ + qy = 0 can be disconjugate without there
being a solution with no zeros as is shown by the equation y′′ + y = 0 on [0, π)
which is disconjugate, but every solution has a zero in [0, π).

A major advance was made by Picone [83] in his 1909 thesis. He discovered
the identity[u

v
(vpu′ − uPv′)

]′
= u(pu′)′ − u2

v
(Pv′)′ + (p− P )u′2 + P

(
u′ − u

v
v′
)2

(2.3)

which holds when u, v, pu′, and Pv′ are differentiable and v(x) �= 0. In case u, v
are solutions of the differential equations

(pu′)′ + qu = 0, (Pv′)′ + Qv = 0,

(2.3) reduces to[u
v

(vpu′ − uPv′)
]′

= (Q− q)u2 + (p− P )u′2 + P
(
u′ − u

v
v′
)2

. (2.4)

With this identity one can give an elementary proof of Sturm’s comparison
Theorem B* which we now give. Suppose p(x) ≥ P (x), Q(x) ≥ q(x) with Q(x0) >
q(x0) at some x0, α, β are consecutive zeros of a nontrivial solution u of (pu′)′ +
qu = 0, and that v is a solution of (Pv′)′+Qv = 0 with no zeros in the open interval
(α, β). Note the quotient u(x)/v(x) has a limit at the endpoints. For example the
limit at α is zero if v(α) �= 0, and the limit is u′(α)/v′(α) if v(α) = 0. Integration
of (2.4) over [α, β] yields that the left-hand side integrates to zero while the right-
hand side integrates to a positive number. This contradiction proves the theorem.

Another major advance was made by Prüfer [84] with the use of trigonometric
substitution. In the equation (pu′)′ + (q + λw)u = 0, he made the substitution

u = ρ sin θ, pu′ = ρ cos θ,
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and then proved that ρ, θ satisfy the differential equations

θ′ =
1
p

cos2 θ + (q + λw) sin2 θ, ρ′ = (
1
p
− q − λw)(sin θ cos θ)ρ.

The zeros of the solution u are given by the values of x such that θ(x) = nπ for
some integer n. The equation for θ is independent of ρ, and by using a first-order
comparison theorem for nonlinear equations, it is possible to establish Sturm’s
comparison theorem. Prüfer used the equation for θ to establish the link stated in
Theorem D between the number of zeros of an eigenfunction and the corresponding
eigenvalue. These equations can also be used to prove the existence of infinitely
many eigenvalues. This is the method used in most textbooks today for the proof
of Theorem D.

Note that with Prüfer’s transformation, the equation (py′)′ + qy = 0, a ≤
x <∞, is oscillatory if and only if θ(x)→∞ as x→∞. It also follows easily from
this transformation that∫ ∞

a

[
1
p

+ |q|
]

dx <∞⇒ non-oscillation,

∫ ∞

a

[
1
p

+ |q|
]

dx < π ⇒ disconjugacy.

Kamke [56] used the trigonometric substitution technique to prove a Sturm
type comparison theorem for a system of first-order equations

y′ = Py + Qz, z′ = Ry + Sz

where the coefficients are continuous functions.
Klaus and Shaw [57] used the Prüfer transformation to study the eigenvalues

of a Zakharov-Shabat system. One of their results shows that the first-order system

v′1 = sv1 + q(t)v2, v′2 = −sv2 − q(t)v1,

is (in our terminology ) right disfocal on −d ≤ t ≤ d if
∫ d

−d
|q(t)|dt ≤ π/2; moreover

the constant π/2 is sharp. Extension is then made to the interval (−∞,∞) and for
complex-valued q. Application is made to the nonexistence of eigenvalues (s is the
eigenparameter) of the Zakharov-Shabat system, and hence to the nonexistence of
soliton solutions of an associated nonlinear Schrödinger equation.

Sturm’s comparison Theorem B* has been generalized to include integral
comparisons of the coefficients. Consider the two equations, for a ≤ x <∞,

y′′ + q1(x)y = 0, (2.5)

y′′ + q2(x)y = 0. (2.6)

Then we may phrase Sturm’s comparison theorem by:

If q1(x) ≤ q2(x), a ≤ x <∞, then (2.6) disconjugate⇒ (2.5) disconjugate.
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This result was extended by Hille [50] (as generalized by Hartman [44, p. 369]) to
read:

If
∫ ∞

t

q1(x)dx ≤
∫ ∞

t

q2(x)dx, a ≤ t <∞,

then (2.6) disconjugate⇒ (2.5) disconjugate.

Further results of this nature were given by Levin [67] and Stafford and Heidel [92].

3. Some basic oscillation results

The first major attack on problem (2.1) seems to have been made in 1883 by
Kneser [59] who studied the higher-order equation y(n) + qy = 0, and proved that
all solutions oscillate an infinite number of times provided that xmq(x) > k > 0
for all sufficiently large values of x, where n ≥ 2m > 0 and n is even. Of course
for n = 2, this follows immediately from the Sturm comparison theorem applied
to the oscillatory Euler equation y′′ + kx−2y = 0, k > 1/4, since k/x2 ≤ k/x for
x ≥ 1. Hubert Kalf has noted that Weber [98] refined Kneser’s result to decide on
oscillation or non-oscillation in the case where x2q(x) tends to a limit as x tends
to infinity. The Kneser criterion has recently been extended by Gesztesy and Ünal
[36].

A result which subsequently received a lot of attention was proved by Fite
[33] in studying the equation y(n) + py(n−1) + qy = 0 on a ray x ≥ x1. Fite’s result
was if q ≥ 0,

∫∞
x1

qdx =∞ and y is a solution of y(n) + qy = 0, then y must change
sign an infinite number of times in case n is even, and in case n is odd such a
solution must either change sign an infinite number of times or not vanish at all
for x ≥ x1. For n = 2 we then have a sufficient condition for (2.1), i.e.,

q(x) ≥ 0,

∫ ∞

x1

q(x)dx =∞⇒ y′′ + qy = 0 is oscillatory.

This theme of q(x) being sufficiently large has reoccurred in oscillation theory in
many situations. The first improvement of the Fite result was due to Wintner [101]
who removed the sign restriction on q(x) and proved the stronger result

t−1

∫ t

q(x)(t − x)dx→∞ as t→∞⇒ y′′ + qy = 0 is oscillatory.

Independently Leighton [64] proved, for (py′)′ + qy = 0, that∫ ∞ dx

p(x)
=∞,

∫ ∞
q(x)dx =∞⇒ (py′)′ + qy = 0 is oscillatory.

Again there is no sign restriction on q(x).
An elegant proof of this Fite-Wintner-Leighton result has been given by Coles

[23]. We give this proof since it a good illustration of Riccati equation techniques.
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Suppose that
∫∞

p−1 dx =∞,
∫∞

q dx =∞, and that u is a non-oscillatory
solution of (pu′)′ + qu = 0, say u(x) > 0 on [b,∞). Define r = pu′/u. Then a
calculation shows that r′ = −q − r2/p, and hence for large x, say x ≥ c,

r(x) +
∫ x

b

r2

p
dt = r(b)−

∫ x

b

q dx < 0.

This implies that r(x) < −
∫ x

b p−1r2 dt. Thus defining R(x) =
∫ x

b p−1r2 dt, one has
that for x ≥ c, R′ = r2/p ≥ R2/p. Integration of this inequality gives∫ x

c

1
p

dt ≤
∫ x

c

R′

R2
dt =

1
R(c)

− 1
R(x)

≤ 1
R(c)

which is contrary to
∫∞

p−1 dx =∞.
Related to the above result of Wintner is that of Kamenev [55] who showed

that if for some positive integer m > 2,

lim sup
t→∞

1
tm−1

∫ t

a

(t− s)m−1q(s) ds =∞,

then the equation y′′ + qy = 0 is oscillatory on [a,∞). The Kamenev type results
have been extended to operators with matrix coefficients and Hamiltonian systems
by Erbe, Kong, and Ruan [30], Meng and Mingarelli [75], and others.

The mid-twentieth century saw a large number of papers written on problems
(2.1) and (2.2). We mention a small sampling of these results.

Theorem 3.1 (Hille, 1948). If q(x) ≥ 0 is a continuous function on I = [a,∞),
such that

∫∞
a q <∞, and

g∗ := lim inf
x→∞ x

∫ ∞

x

q(t)dt, g∗ := lim sup
x→∞

x

∫ ∞

x

q(t)dt,

then g∗ > 1 or g∗ > 1/4 implies y′′ + qy = 0 is oscillatory, and g∗ < 1/4 implies
y′′ + qy = 0 is non-oscillatory.

Hille’s results have been extended to equations with matrix coefficients and
linear Hamiltonian systems by Sternberg [93] and Ahlbrandt [3].

Theorem 3.2 (Hartman, 1948). If y′′ + qy = 0 is non-oscillatory on [a,∞), then
there are solutions u, v of y′′ + qy = 0 such that∫ ∞

u−2(t) dt <∞ and
∫ ∞

v−2(t) dt =∞.

Theorem 3.3 (Wintner, 1951). The equation y′′ + qy is non-oscillatory on [a,∞)
if
∫∞

x
q(t) dt converges and either −3/4 ≤ x

∫∞
x

q(t) dt ≤ 1/4 or [
∫∞

x
q(t) dt]2 ≤

q(x)/4.

Theorem 3.4 (Nehari, 1954). If I = [a,∞) and λ0(b) is the smallest eigenvalue of

−y′′ = λc(x)y, y(a) = y′(b) = 0,

where c(x) > 0 is continuous on I, then y′′ + c(x)y = 0 is non-oscillatory on I iff
λ0(b) > 1 for all b > a.
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Theorem 3.5 (Hartman-Wintner, 1954). The equation y′′+qy=0 is non-oscillatory
on [a,∞) if f(x)=

∫∞
x q(t)dt converges and the differential equation v′′+4f2(x)v=

0 is non-oscillatory.

Theorem 3.6 (Hawking-Penrose, 1970). If I = (−∞,∞) and q(x) ≥ 0 is a con-
tinuous function on I such that q(x0) > 0 for some x0, then y′′ + q(x)y = 0 is not
disconjugate on I.

A particularly simple proof of this result has been given by Tipler [97] which
we now present. Suppose y is the unique solution of y′′ + q(x)y = 0 with the initial
conditions y(x0) = 1, y′(x0) = 0. Then y′′(x0) = −q(x0)y(x0) < 0, and further
y′′(x) ≤ 0 as long as y(x) ≥ 0. Since y′(x0) = 0, this concavity of y implies that y
eventually has a zero both to the right and to the left of x0.

Many results on oscillation can be expanded by making a change of indepen-
dent and dependent variables of the form y(x) = µ(x)z(t), t = f(x), where µ(x)
and f ′(x) are nonzero on the interval I. In the case of (py′)′ + qy, this leads to

(py′)′ + qy = (γ/µ)[ẇ + Qz], w = P ż, γ(x) = f ′(x),

where ż = dz/dt and

P (t) = p(x)µ2(x)γ(x), Q(t) =
µ(x)
γ(x)

[(pµ′)′ + qµ] .

Applications of these ideas can be found in Ahlbrandt, Hinton, and Lewis [5].
To return to the concept of disconjugacy and the link to the calculus of

variations, it was in 1837 that Jacobi [54] gave his sufficient condition for the
existence for a (weak) minimum of the functional

J [y] =
∫ b

a

f(x, y, y′)dx (3.1)

over the class of admissible functions y defined as those sufficiently smooth y
satisfying the endpoint conditions y(a) = A, y(b) = B. A necessary condition for
an extremal is the vanishing of the first variation, dJ(y+εη)/dε	ε=0, for sufficiently
smooth variations η satisfying η(a) = η(b) = 0. This leads to the Euler-Lagrange
equation fy − d(fy′)/dx = 0 for y. A sufficient condition for a weak minimum is
that the second variation

δ2J(η) =
∫ b

a

[
pη′2 + qη2

]
dx (3.2)

be positive for all nontrivial admissible η where p = fy′y and q = fyy−d(fy′y)/dx.
Jacobi discovered that the positivity of (3.2) was related to the oscillation proper-
ties of −(py′)′+qy = 0. In particular he discovered (3.2) is positive if −(py′)′+qy =
0 has a solution y which is positive on [a, b]. The condition of (3.2) being positive
is equivalent to −(py′)′ + qy = 0 being disconjugate on [a, b]. This is the principal
connection of oscillation theory to the calculus of variations. This connection may
be proved with Picone’s identity as we now demonstrate.
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First suppose (1.2) is disconjugate on [a, b]; hence there is a solution v of
(1.2) which is positive on [a,b]. Then (2.3) with p = P yields for the variation η,[

η(pη′)− η2

v
(Pv′)

]′
= η(pη′)′ − η2

v
(Pv′)′ + p

(
η′ − η

v
v′
)2

.

Simplifying this expression yields that

pη′2 −
[
η2

v
(pv′)

]′
= −qη2 + p

(
η′ − η

v
v′
)2

,

which one can verify directly using only one derivative for η. An integration and
applying η(a) = η(b) = 0 gives that

0 ≤
∫ b

a

p
(
η′ − η

v
v′
)2

dx =
∫ b

a

(
pη′2 + qη2

)
dx

with equality if and only if η′ = ηv′/v. But η′ = ηv′/v implies (η/v)′ = 0 or
η/v is constant. This is contrary to η(a) = 0, v(a) �= 0. Hence δ2J(η) is positive.
On the other hand if (1.2) is not disconjugate, there is a nontrivial solution u
with u(c) = u(d) = 0, a ≤ c < d ≤ b. By defining η(x) = u(x), c ≤ x ≤ d, and
η(x) = 0 otherwise, it follows that δ2J(η) = 0 so that δ2J fails to be positive for
all nontrivial admissible functions.

Leighton was able to exploit this equivalence to obtain comparison theorems,
e.g., as in [65]. One of his results is that if there is a nontrivial solution u in [a, b]
of (pu′)′ + qu = 0 such that u(a) = u(b) = 0, and∫ b

a

[
(p− P )u′2 + (Q− q)u2

]
dx > 0,

then every solution of (Pv′)′ + Qv = 0 has at least one zero in (a,b). This has
as a corollary Sturm’s Comparison Theorem B*. Angelo Mingarelli has pointed
out that the monotonicity condition on the G coefficient in Sturm’s comparison
theorem has been replaced by a convexity condition by Hartman [45].

When the equivalence of disconjugacy of (1.2) to positivity of (3.2) is used
to show oscillation, it is frequently done by a construction. That is, if (1.2) is
considered on I = [a,∞), and it can be shown that for each b > a there is a
function ηb with compact support in [b,∞) such that δ2J(ηb) ≤ 0, then (1.2) is
oscillatory. When the equivalence is used to show disconjugacy, it is usually done by
the use of inequalities which bound the integral

∫ b

a
qη2 dx in terms of the integral∫ b

a
pη′2 dx. For example, the Hardy inequality

∫ b

a
x−2u2 dx ≤ (1/4)

∫ b

a
u′2 dx for

functions u satisfying u(a) = u(b) = 0, a > 0, can be used to show that u′′+qu = 0
is disconjugate on [a,∞), a > 0, if |x

∫∞
x q(t)dt| ≤ 1/4.

Oscillation theory in the complex domain, i.e., for an equation of the form

w′′(z) + G(z)w(z) = 0, z ∈ D, (3.3)

where w(z) is a function analytic in the domain D, did not begin until the end
of the nineteenth century. The earliest work dealt with special functions which
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are themselves solutions of second-order linear differential equations. Hurwitz [52]
in 1889 investigated the zeros of Bessel functions in the complex plane. Work
soon followed on other special functions. The definitions of disconjugate and non-
oscillatory are the same as in the real case although now there is no simple ordering
of the zeros. The location of complex zeros has found recent application in the
quantum mechanical problem of locating resonances and anti-bound states as in
Brown and Eastham [20], Eastham [28], or Simon [91]. A fairly extensive analytic
oscillation theory has been developed by Hille [49], Beesack [11], London [73],
Nehari [81], and others. We state two such results.

Theorem 3.7 (Nehari, 1954). If G(z) is analytic in |z| < 1, then (3.3) is disconju-
gate in |z| < 1 if |G(z)| ≤ (1− |z|2)−2 in |z| < 1.

Theorem 3.8 (London, 1962). If G(z) is analytic in |z| < 1, then (3.3) is discon-
jugate in |z| < 1 if ∫∫

|z|<1

|G(z)|dxdy ≤ π.

It is surprising that the oscillation theory on the real axis, especially the
comparison theory, plays an important role in the analytic oscillation theory, cf.,
Beesack [11]. Analytic oscillation theory is also connected with the theory of uni-
valent functions. If f(z) is analytic in D and G(z) = {f(z), z}/2 where {f(z), z}
is the Schwarzian derivative of f , then the univalence of f in D is equivalent to
the disconjugacy of (3.3) in D [11]. A summary of the analytic oscillation theory
can be found in the books by Hille [51] and Swanson [96].

A notable result on disconjugacy was given by Lyapunov in 1893 [71].

Theorem 3.9 (Lyapunov). The equation y′′ + q(x)y = 0 is disconjugate on [a, b] if
(b− a)

∫ b

a
|q(x)|dx ≤ 4.

Extensions of Lyapunov’s theorem to systems in the Stieltjes integral setting
have been made by Brown, Clark, and Hinton [21]; further the L[a, b] norm on q
has been replaced by an Lp[a, b] norm for 1 ≤ p ≤ 2.

Disconjugacy theorems play an important role in the stability of differential
equations with periodic coefficients. For −y′′+qy = µy on [0,∞) with q(t) periodic
of period T , the equation is called stable if all solutions are bounded. This occurs
if λ0 < µ < λ∗

0, where λ0 is the first eigenvalue of −y′′ + qy = λy with periodic
boundary conditions, and where λ∗

0 is the first eigenvalue of −y′′ + qy = λy with
semi-periodic boundary conditions. The criterion of Krein/Borg [103, II, p. 729]
(see also Eastham [27, p. 49]) states that −y′′ + qy = 0 is stable if

∫ T

0 q ≤ 0, q �= 0,
and T

∫ T

0 q− ≤ 4, where q−(t) = max{−q(t), 0}. The proof of this uses the fact that
T
∫ T

0 q− ≤ 4 and q periodic implies the spacing of zeros of solutions of −y′′+qy = 0
is greater than T . Much of the work on stability of solutions of periodic equations
and systems can be found in the Russian literature; in particular, see Yakubovich
and Starzhinskii [103].
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Thus we see from these theorems that q sufficiently large in (py′)′ + qy = 0
will give oscillation, and that q ≤ 0 or |q| sufficiently small will give disconjugacy.

4. Higher-order equations and systems

For higher-order differential equations, what is the “correct” extension of the def-
inition of oscillatory? of disconjugate? Consider for example the two-term fourth-
order equation y(iv)+q(x)y = 0. For the distribution of four zeros of a nontrivial so-
lution, there are seven possibilities, 3-1 (meaning y(a) = y′(a) = y′′(a) = y(b) = 0
for some a < b), and with similar meanings the distributions 2-2, 1-3, 2-1-1, 1-2-1,
1-1-2, 1-1-1-1. Hence one could define seven different kinds of disconjugacy.

A widely studied point of view is that an nth-order linear ordinary differential
equation is disconjugate if no nontrivial solution has n zeros containing multiplic-
ities. This was the definition used by Levin [68, 69] and others. For the differential
expression

l[y] = y(n) +
n∑

i=1

ai(x)y(n−i) = 0, α ≤ x ≤ β, (4.1)

one defines the first conjugate point δ(α) as the supremum of all γ such that no
nontrivial solution of (4.1) has more than n− 1 zeros, counting multiplicities, on
[α, γ]. One result of Levin is that if δ(α) <∞, then there is a nontrivial solution of
(4.1) which is positive on (α, δ(α)), and for some k, 1 ≤ k ≤ n− 1, it has a zero of
order not less than k at α and a zero of order not less than n− k at δ(α). Green’s
functions are useful in establishing disconjugacy criteria in this sense. One such
result by Levin is that y(4) + q(x)y = 0 is disconjugate on [α, β] if q(x) ≥ 0, and∫ β

α
q(x) dx ≤ 384(β − α)−3.

For oscillation one could again say that the equation is oscillatory if all non-
trivial solutions have infinitely many zeros. However for the equation y(iv)− y = 0
some solutions have infinitely many zeros and others have none, so some modifica-
tion of the definition is required. There has been much research on the structure of
somewhat special equations. In a classic paper on fourth-order equations, Leighton
and Nehari [66] studied the oscillatory structure of the equations

(ry′′)′′ + qy = 0, (4.2)

(ry′′)′′ − qy = 0, (4.3)
where r, q are positive continuous functions on an interval I = [a,∞). Typical of
their results are:
(1) If u and v are linearly independent solutions of (4.3) on [a,∞) such that

u(a) = u′(a) = v(a) = v′(a) = 0, then the zeros of u and v separate each
other in (a,∞).

(2) If u and v are nontrivial solutions of (4.2), the number of zeros of u on any
closed interval [α, β] cannot differ by more than 4 from the number of zeros
of v on [α, β]. In particular the nontrivial solutions of (4.2) all have infinitely
many zeros on [a,∞) or none do.



16 D. Hinton

(3) Suppose that r(x) ≥ R(x) and q(x) ≤ Q(x) in (4.3) and in (Ry′′)′′−Qy = 0.
Let u and v be nontrivial solutions of (4.3) and (Ry′′)′′−Qy = 0, respectively,
such that u(α) = v(α) = u(β) = v(β) = 0. If n, m denote the number of zeros
of u, v respectively on [α, β] (n ≥ 4), then m ≥ n− 1.

This type of separation, where the zeros of one solution of a scalar equation have
interlacing properties with another solution, has been developed by Hanan [41] for
third-order equations.

However, we will concentrate here on the definition of oscillation and discon-
jugacy that comes from the calculus of variations and has other applications such
as in optimal control and spectral theory of differential equations. If in (3.1) the
functions f and y are n-vector-valued, the Euler-Lagrange equation is a coupled
system of n second-order differential equations. The quadratic form of the second
variation is (where * indicates transpose)

J [η, ξ] =
∫ b

a

(ξ∗[R(x)ξ + Q(x)η] + η∗[Q∗(x)ξ + P (x)η])dx

which arises from the vector equation

(Ru′ + Qu)′ − (Q∗u′ + Pu) = 0 (4.4)

with R(x), P (x) hermitian and R(x) nonsingular. The functions P (x), R(x), Q(x)
are expressed in terms of the partial derivatives of the components of f . Equation
(4.4) can be written in the linear Hamiltonian system form

u′ = Au + Bv, v′ = Cu−A∗v (4.5)

with A = −R−1Q, B = R−1, and C = P −Q∗R−1Q.
Symmetric scalar differential equations can also be put in the form (4.5). For

example, the equation
(ry′′)′′ + (py′)′ + q(x)y = 0, (4.6)

has the system form (4.5) with

u =
[
y
y′

]
, v =

[
−(ry′′)′ − py′

ry′′

]
, A =

[
0 1
0 0

]
, B =

[
0 0
0 1/r

]
, C =

[
q 0
0 −p

]
.

In analogy to the scalar case, the vector minimization problem with fixed
endpoints leads to admissible perturbations with η(a) = η(b) = 0. Thus we say
that a solution u, v of (4.5) has a zero at a provided u(a) = 0, and we say b > a is
conjugate to a if there is a nontrivial solution u, v of (4.5) such that u(a) = u(b) =
0. Note that as applied to the scalar equation (4.6), u(a) = 0 is equivalent to
y(a) = y′(a) = 0. We will say the system (4.5) is disconjugate on [a, b] provided that
there do not exist c < d in [a, b] such that d is conjugate to c. Otherwise we say (4.5)
is oscillatory on [a,b]. The definition of oscillatory on a ray I = [a,∞) that turns
out to be useful for spectral theory is that (4.5) is oscillatory on [a,∞) if for every
b > a there exist b ≤ c < d such that d is conjugate to c. Analogous to problems
(2.1) and (2.2) are the questions of when (4.5) is oscillatory or disconjugate on
an interval. The definitions of disfocal are similar to those in the second-order
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case. The system (4.5) is called identically normal on an interval I if u ≡ 0 on
a subinterval of I implies also v ≡ 0 on the subinterval. This is a controllability
condition, cf. [24].

The theme of a sufficiently large coefficient that is in the Fite-Leighton-
Wintner Theorem of Section 3 has continued in the case of scalar equations of order
greater than 2 and for Hamiltonian systems. Some of these results are described
below.

Theorem 4.1 (Byers, Harris, Kwong, 1986). If Q(x) is a continuous symmetric
n× n matrix function on I = [a,∞), and

max eigenvalue
∫ x

a

Q(t)dt −→∞ as x −→∞,

then the equation y′′ + Q(x)y = 0 is oscillatory on [a,∞).

Note that the scalar condition
∫∞

a
q(x)dx = ∞ has been replaced by the

maximum eigenvalue condition.
Glazman [37] proved that the scalar equation (−1)n+1y(2n) + q(x)y = 0 is

oscillatory on [a,∞) if
∫∞

a q(x)dx =∞. Various extensions of this have been made.
In particular we quote the result:

Theorem 4.2 (Müller-Pfeiffer, 1982). The equation (−1)n+1(p(x)y(n))(n)+q(x)y =
0 is oscillatory on [a,∞) if

1. p(x) > 0 and for some m, 0 ≤ m ≤ n− 1,
∫∞

a
x2m[p(x)]−1 dx =∞,

2.
∫∞

a
q(x)Q2(x)dx =∞ for some polynomial Q of degree ≤ n−m− 1.

For two-term equations, the theory of reciprocal equations has been fruitful.
Using the results of Ahlbrandt [4], it follows that the equation (−1)n(r−1y(n))(n)

− py = 0 is non-oscillatory on [a,∞) if and only if (−1)n(p−1y(n))(n) − ry = 0 is
non-oscillatory on [a,∞). Using these ideas, Lewis [70] was able to answer affirma-
tively an open question posed by Glazman that the condition limx→∞ x2n−1

∫∞
x 1/r

= 0 was a necessary condition for the equation (−1)n(ry(n))(n) = λy to be non-
oscillatory on [a,∞) for all λ. The condition was known to be sufficient.

As noted in the theorems for second-order equations, the equation is discon-
jugate if the coefficient of y is sufficiently small. A theorem of this type for scalar
equations is

Theorem 4.3 (Ashbaugh, Brown, Hinton, 1992). The scalar equation (xδy(n))(n) +
q(x)y = 0, δ not in {−1, 1, . . . , 2n− 1}, is non-oscillatory on I = [a,∞), a > 0, if
there is an s, 1 ≤ s <∞, such that

∫∞
a

x2n−δ−1/s|q(x)|sdx <∞.

Associated with the system (4.5) is the matrix system

U ′ = AU + BV, V ′ = CU −A∗V (4.7)

where U, V are n × n matrix functions. When U is nonsingular, the function
W = V U−1 satisfies the Riccati equation

W ′ = C −WA− A∗W −WBW. (4.8)
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A solution of (4.7) is called conjoined or isotropic if U∗V = V ∗U . When U is
nonsingular, it is easy to show W = W ∗ if and only if the solution U, V is conjoined.
All of these concepts can be brought together in what Calvin Ahlbrandt calls the
Reid Roundabout Theorem [88, p. 285].

Theorem 4.4. Suppose on I = [a, b] the coefficients A, B, C are Lebesgue integrable
with C, B hermitian and B positive semi-definite and the system (4.5) is identically
normal on I. Define D0[a, b] to be the set of all n-dimensional vector functions η
on [a, b] which are absolutely continuous, satisfy η(a) = η(b) = 0, and for which
there is an essentially bounded function ξ such that η′(x) = A(x)η(x) + B(x)ξ(x)
a.e. on [a, b]. For η ∈ D0[a, b] define

J(η, a, b) =
∫ b

a

[ξ∗(x)B(x)ξ(x) + η∗(x)C(x)η(x)] dx. (4.9)

Then the following statements are equivalent.

1. There is a conjoined solution U, V of (4.7) such that U is nonsingular on
[a, b].

2. If η ∈ D0[a, b] and η is not the zero function, then J(η, a, b) > 0.
3. The system (4.5) is disconjugate on [a, b].
4. The equation (4.8) has a hermitian solution on [a, b].

The proof of Theorem 4.4 is greatly facilitated by the Legendre or Clebsch
transformation of the functional (4.9) which we now state. Suppose U, V are n×n
matrix solutions of (4.7) on an interval [a,b] and U is nonsingular on [a, b]. If
η ∈ D0[a, b] with corresponding function ξ, and W = V U−1, then

[η∗Wη]′ + [ξ −Wη]∗ B [ξ −Wη] = η∗Cη + ξ∗Bξ.

This follows by differentiation and substitution from (4.8).
A general Picone identity for the system (4.7) may be stated. Suppose for

i=1,2 we have on an interval matrix solutions Ui, Vi of

U ′
i = AiUi + BiVi, V ′

i = CiUi −A∗
i Vi,

where U1, V1 are n×r matrices and U2, V2 are n×n matrices with U2 nonsingular.
Define W = V2U

−1
2 . Then if A1 = A2 and B1 = B2,

[U∗
1 WU1 − U∗

1 V1]
′ = U∗

1 (C2 − C1)U1 − [V1 −WU1]
∗
B2 [V1 −WU1] .

The general result can be found in [88, p. 354].
Calvin Ahlbrandt has pointed out that prior to Weierstrass it was thought

that, as for point functions, if an admissible arc satisfied the Euler equation, the
strengthened Legendre condition and the strengthened Jacobi condition (condition
(3) in Theorem 4.4), then it would provide a local minimum. This was true for
weak local minimums, but not for strong local minimums. Thus the theory of
the second variation was discredited as having the analogous utility as the second
derivative for point functions.
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Theorem 4.4 gives immediately a comparison theorem. If B1(x) ≥ B(x) and
C1(x) ≥ C(x), and J1 is the functional corresponding to (4.9), then J1(η, a, b) ≥
J(η, a, b) so that disconjugacy of (4.5) implies disconjugacy of

U ′ = AU + B1V, V ′ = C1U −A∗V.

For (4.6), J is given by

J(η, a, b) = J(y, a, b) =
∫ b

a

[ry′′2 − py′2 + qy2]dx

over those sufficiently smooth y satisfying y(a) = y′(a) = y(b) = y′(b) = 0. Hence
the comparison reads r1(x) ≥ r(x), p1(x) ≤ p(x), q1(x) ≥ q(x) and disconjugacy of
(4.6) implies disconjugacy of

(r1y
′′)′′ + (p1y

′)′ + q1(x)y = 0.

Similar comparisons are immediate for the 2nth-order symmetric differential ex-
pression l[y] =

∑n
i=0(piy

(i))(i).
It was Morse [78] who gave the first generalizations of the Sturm theorems of

separation and comparison to self-adjoint second-order linear differential systems.
Morse proved the number of points on an interval (a, b) which are conjugate to
the point a is the same as the number of negative eigenvalues of a quadratic form
defined on a certain finite-dimensional space. This quadratic form is constructed
from the form (4.9) of Theorem 4.4. This development can be found in [79] and
[86]. In particular, it establishes a comparison between conjugate points for two
systems of the form (4.5).

A solution of the problem of extending Sturm’s separation Theorem C may
be stated as follows [86, p. 307]. If for (4.5) there are q points conjugate to a on
(a, b], then for any conjoined basis of (4.5) there are at most q+n points conjugate
to a on (a, b] and at least q − n points conjugate to a on (a, b]. Thus if we take
U, V to be the solution of (4.7) with initial conditions U(a) = 0, V (a) = I, and
suppose det U(x) is zero exactly n+1 times in (a, b], then for any other conjoined
solution U1, V1, det U1(x) = 0 at least once. For n = 1 this is Sturm’s theorem.
Note also if det U(x) = 0 infinitely many times on [a,∞), then det U1(x) = 0
infinitely many times on [a,∞).

5. Parameter dependent boundary conditions and
indefinite weights

A large class of physical problems have the eigenparameter in the boundary con-
ditions. Examples are vibration problems under various loads such as a vibrating
string with a tip mass or heat conduction through a liquid solid interface. See [34]
for a list of references. With the boundary condition at one endpoint containing
the eigenparameter, the eigenvalue problem on [a, b] takes the form of (1.3) with



20 D. Hinton

boundary conditions

y(a) cosα− (py′)(a) sin α = 0, (5.1)

[β1λ + β′
1]y(b) = [β2λ + β′

2](py′)(b). (5.2)

It was noted independently by several authors, Binding, Browne, and Seddighi [14],
Harrington [42], and Linden [72] that there is a skip in the counting of the zeros
of the eigenfunction compared to the index of the eigenvalue. The development
in [14] is the most comprehensive and also shows how the eigenvalues of (5.1)-
(5.2) interlace with those of a standard Sturm-Liouville problem. We quote here
Linden’s theorem.

Theorem 5.1 (Linden, 1991). For the eigenvalue problem (1.3), (5.1), and (5.2),
suppose that β′

1β2−β′
2β1 > 0. Then there is a countable sequence λ1 < λ2 < · · · of

real simple eigenvalues with λk →∞ for k →∞. Let yk denote the eigenfunction
corresponding to the eigenvalue λk. If β′

2 = 0, then yk has exactly (k− 1) zeros in
(a, b). If β′

2 �= 0, then for λk < −β2/β′
2, yk has exactly (k − 1) zeros in (a, b), and

for λk ≥ −β2/β′
2, yk has exactly (k − 2) zeros in (a, b).

In the case of a parameter in the boundary condition at both endpoints there
is in general a skip of two zeros in the indexing of the eigenfunctions [14, p. 65].
The case of the eigenparameter occurring rationally in the boundary conditions
has been considered by Binding [12].

Everitt, Kwong, and Zettl [32] considered (1.3) with the separated boundary
conditions

y(a) cosα− (py′)(a) sin α = 0, y(b) cosβ + (py′)(b) sin β = 0, (5.3)

where the conditions on p and w were relaxed to

p(x), w(x) ≥ 0,

∫ b

a

w(x) dx > 0.

Under these conditions they were able to prove that there is a sequence λ0 <
λ1 < · · · of simple eigenvalues tending to infinity with associated eigenfunctions
ψ0, ψ1, . . . , where each ψn has only a finite number mn of zeros in the open interval
(a,b) and such that

(i) mn+1 = mn + 1,
(ii) Given any integer r ≥ 0 there exist p, q, and w such that m0 = r and so

mn = m0 + n = n + r for n=1,2, . . . .

Of course m0 = 0 in the standard case where p(x), w(x) > 0. Property (i) may
also be deduced from Theorem IV of [90] (see also Section 6 of [90]).

We turn now to the case where w may change sign. This occurs in some
physical problems, e.g., the equation

−((1− x2)y′)′ = λxy, −1 < x < 1,
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occurs in electron transport theory. We associate with the differential expression
L[y] = −(py′)′ + qy and boundary conditions (5.3) the quadratic forms

Q[y, y] = 〈L[y], y〉 = |y(a)|2 cotα + |y(b)|2 cotβ +
∫ b

a

[p|y′|2 + q|y|2]dx (5.4)

and

W [y, y] =
∫ b

a

w|y|2dx. (5.5)

Then the equation (1.3) is called left definite (polar by Hilbert and his school) if
Q[y, y] > 0 for all y �= 0 in the domain of Q which consists of all absolutely con-
tinuous y such that

∫ b

a
p|y′|2dx <∞. It is called right definite if W [y, y] > 0 for all

y �= 0 such that
∫ b

a |w||y|2dx <∞. It is called indefinite (non-definite by Richard-
son) if

∫ b

a
w+dx > 0 and

∫ b

a
w−dx > 0 where w+ = max{w, 0}, w− = max{−w, 0}.

In his survey article, Mingarelli [76] attributes the first investigations of the general
indefinite case to Haupt [47] and Richardson [89]. The indefinite equations have
been studied in Krein and Pontrjagin spaces where the indefinite metric is given
by
∫ b

a w|y|2dx, but more for questions of completeness of eigenfunction expansions
and operator theory. The indefinite problems may have complex eigenvalues, but
can have only finitely many.

An early result (see Mingarelli [76]) of Haupt [47] and Richardson [90] is that
in the indefinite case there exists an integer nR > 0 such that for each n > nR

there are at least two solutions of (1.3) and (5.3) having exactly n zeros in (a,b)
while for n < nR there are no real solutions having n zeros in (a,b). Furthermore
there exists a possibly different integer nH ≥ nR such that for each n ≥ nH there
are precisely two solutions of (1.3) and (5.3) having exactly n zeros in (a,b). It has
been shown by Mingarelli that both cases nR = nH and nR < nH may occur.

However, in the left definite indefinite case things are more orderly and we
quote the following result from Ince [53, p. 237]. If in (1.3) and (5.3), q(x) ≥ 0, 0 ≤
α, β ≤ π/2, and the problem is indefinite, then there are eigenvalues

· · · < λ−
1 < λ−

0 < 0 < λ+
0 < λ+

1 < · · ·
with corresponding eigenfunctions y−

n , y+
n such that both y−

n , y+
n have exactly n

zeros in a < x < b for n = 0, 1, . . . .
Further work on left-definite and indefinite problems may be found in Binding

and Browne [13], Binding and Volkmer [15], and Kong, Wu, and Zettl [60]. In
[15] and in Möller [77] the coefficient p is also allowed to change sign. Again the
eigenvalues are unbounded above and below.

It is clear that the work of Sturm on oscillation theory has had an enduring
impact in mathematics. We have only discussed a few ways in which the theory has
been extended. It has been necessary to omit many important topics such as the
theory of principal solutions and the renormalization theory of Gesztesy, Simon
and Teschl [35] (for the latter see the text of B. Simon in the present volume).
Important work on the constants of oscillation theory (as in Hille’s 1948 theorem)
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has been done by O. Došlý [26] and others. We have just touched on the Riccati
equations which arise in diverse applications and are a research area by themselves,
see Reid [87]. Oscillation theory is a subject in its own right, and theorems such as
Theorem 4.4 show it can be pursued independently. In his remark “Le principe sur
lequel reposent les théorèmes que je développe, n’a jamais, si je ne me trompe, été
employé dans l’analyse, et il ne me parâıt pas susceptible de s’étendre à d’autres
équations différentielles”, Sturm [94] was too pessimistic that his methods could
not be applied to other differential equations.
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[38] M. Greguš, Third-Order Linear Differential Equations, Reidel, Dordrecht, 1987.

[39] I. Gyori and G. Ladas, Oscillation theory of delay differential equations with appli-
cations, Oxford Press, New York, 1991.

[40] G. Halvorsen and A. Mingarelli, Non-oscillation Domains of Differential Equations
with Two Parameters, Lecture Notes in Mathematics 1338, Springer, Berlin, 1988.

[41] M. Hanan, Oscillation criteria for third-order differential equations, Pacific J. Math.
11 (1961), 919–944.

[42] B. Harrington, Qualitative and Quantitative Properties of Eigenvalue Problems with
Eigenparameter in the Boundary Conditions, M.S. thesis, U. Tennessee, 1988.

[43] P. Hartman, Differential equations with non-oscillatory eigenfunctions, Duke Math.
J. 15 (1948), 697–709.

[44] , Ordinary Differential Equations, Wiley, New York, 1964.

[45] , Comparison theorems for self-adjoint second-order systems and unique-
ness of eigenvalues of scalar boundary value problems, pp. 1–22, Contributions to
analysis and geometry, Johns Hopkins Univ. Press, Baltimore, 1980.

[46] P. Hartman and A. Wintner, On non-oscillatory linear differential equations with
monotone coefficients, Amer. J. Math. 76 (1954), 207–219.

[47] O. Haupt, Untersuchungen über Oszillationstheoreme, Teubner, Leipzig, 1911.

[48] S.W. Hawking and R. Penrose, The singularities of gravity collapse and cosmology,
Proc. Roy. Soc. London Ser. A 314 (1970), 529–548.

[49] E. Hille, Oscillation theorems in the complex domain, Trans. Amer. Math. Soc. 23
(1922), 350–385.

[50] , Nonoscillation Theorems, Trans. Amer. Math. Soc. 64 (1948), 234–252.

[51] , Lectures on Ordinary Differential Equations, Addison-Wesley, Reading,
1969.
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Math. Pures Appl. 1 (1836), 106–186.

[95] , Mémoire sur une classe d’Équations à différences partielles, J. Math. Pures
Appl. 1 (1836), 373–444.

[96] C.A. Swanson, Comparison and Oscillation Theory of Linear Differential Equa-
tions, Academic Press, New York, 1968.



Sturm’s 1836 Oscillation Results 27

[97] F.J. Tipler, General relativity and conjugate ordinary differential equations, J. Dif-
ferential Eqs. 30 (1978), 165–174.

[98] H. Weber, Die partiellen Differentialgleichungen der mathematischen Physik, Band
2, 5. Auflage, Vieweg, Braunschweig, 1912.

[99] J. Weidman, Spectral Theory of Ordinary Differential Operators, Lecture Notes in
Mathematics 1258, Springer, Berlin, 1987.

[100] D. Willett, Classification of second-order linear differential equations with respect
to oscillation, Adv. Math. 3 (1969), 594–623.

[101] A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115–
117.

[102] , On the non-existence of conjugate points, Amer. J. Math. 73 (1951), 368–
380.

[103] Y. Yakubovich and V. Starzhinskii, Linear Differential Equations with Periodic
Coefficients, vol. I, II, Wiley, New York, 1975.

Don Hinton
Mathematics Department
University of Tennessee
Knoxville, TN 37996-1300, USA
e-mail: hinton@math.utk.edu



W.O. Amrein, A.M. Hinz, D.B. Pearson
Sturm-Liouville Theory: Past and Present, 29–43
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Sturm Oscillation and Comparison Theorems

Barry Simon

Abstract. This is a celebratory and pedagogical discussion of Sturm oscil-
lation theory. Included is the discussion of the difference equation case via
determinants and a renormalized oscillation theorem of Gesztesy, Teschl, and
the author.

1. Introduction

Sturm’s greatest contribution is undoubtedly the introduction and focus on Sturm-
Liouville operators. But his mathematically deepest results are clearly the oscil-
lation and comparison theorems. In [26, 27], he discussed these results for Sturm-
Liouville operators. There has been speculation that in his unpublished papers
he had the result also for difference equations, since shortly before his work on
Sturm-Liouville operators, he was writing about zeros of polynomials, and there
is a brief note referring to a never published manuscript that suggests he had a
result for difference equations [17]. Indeed, the Sturm oscillation theorems for dif-
ference equations written in terms of orthogonal polynomials are clearly related
to Descartes’ theorem on zeros and sign changes of coefficients [31].

In any event, the oscillation theorems for difference equations seem to have
appeared in print only in 1898 [3], and the usual proof given these days is by linear
interpolation and reduction to the ODE result. One of our purposes here is to make
propaganda for the approach via determinants and orthogonal polynomials (see
Section 2). Our discussion in Sections 3 and 4 is more standard ODE theory [4]
– put here to have a brief pedagogical discussion in one place. Section 5 makes
propaganda for what I regard as some interesting ideas in a paper written by
Gesztesy, Teschl, and me [10]. Section 6 has three applications to illustrate the
scope of applicability.

Our purpose here is celebratory and pedagogical, so we make simplifying as-
sumptions, such as only discussing bounded and continuous perturbations. Stan-
dard modern techniques allow one to discuss much more general perturbations, but

Supported in part by NSF grant DMS-0140592.
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this is not the place to make that precise. And we look at Schrödinger operators,
rather than the more general Sturm-Liouville operators.

We study the ODE

Hu = −d2u

dx2
+ V u = Eu (1.1)

typically on [0, a] with u(0) = u(a) = 0 boundary conditions or on [0,∞) with
u(0) = 0 boundary condition. The discrete analog is

(hu)n = anun+1 + bnun + an−1un−1 = Eu (1.2)

for n = 1, 2, . . . with u0 ≡ 0.
For discussions of Sturm-Liouville theory and its history, see [4, 28, 12, 8].

It is a pleasure to thank W. Amrein for the invitation to give this talk and
for organizing an interesting conference, Y. Last and G. Kilai for the hospitality
of Hebrew University where this paper was written, and F. Gesztesy for useful
comments.

2. Determinants, orthogonal polynomials, and Sturm theory
for difference equations

Given a sequence of parameters of positive reals a1, a2, . . . and a sequence of reals
b1, b2, . . . for the difference equation (1.2), we look at the fundamental solution,
un(E), defined recursively by u1(E) = 1 and

anun+1(E) + (bn − E)un(E) + an−1un−1(E) = 0 (2.1)

with u0 ≡ 0, so

un+1(E) = a−1
n (E − bn)un(E) − a−1

n an−1un−1(E). (2.2)

Clearly, (2.2) implies, by induction, that un+1 is a polynomial of degree n with
leading term (an . . . a1)−1En. Thus, we define for n = 0, 1, 2, . . .

pn(E) = un+1(E) Pn(E) = (a1 . . . an)pn(E). (2.3)

Then (2.1) becomes

an+1pn+1(E) + (bn+1 − E)pn(E) + anpn−1(E) = 0 (2.4)

for n = 0, 1, 2, . . . . One also sees that

EPn(E) = Pn+1(E) + bn+1(E)Pn(E) + a2
nPn−1(E). (2.5)

We will eventually see pn are orthonormal polynomials for a suitable measure on
R and the Pn are what are known as monic orthogonal polynomials.
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Let Jn be the finite n× n tridiagonal matrix

Jn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 a1 0
a1 b2 a2

0 a2 b3
. . .

. . . . . . . . .
. . . bn−1 an−1

an−1 bn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Proposition 2.1. The eigenvalues of Jn are precisely the zeros of pn(E). We have

Pn(E) = det(E − Jn). (2.6)

Proof. Let ϕ(E) be the vector ϕj(E) = pj−1(E), j = 1, . . . , n. Then (2.1) implies

(Jn − E)ϕ(E) = −anpn(E)δn (2.7)

where δn is the vector (0, 0, . . . , 0, 1)T . Thus every zero of pn is an eigenvalue of
Jn. Conversely, if ϕ̃ is an eigenvector of Jn, then both ϕ̃j and ϕj solve (2.2), so
ϕ̃j = ϕ̃1ϕj(E). This implies that E is an eigenvalue only if pn(E) is zero and that
eigenvalues are simple.

Since Jn is real symmetric and eigenvalues are simple, pn(E) has n distinct
eigenvalues E

(n)
j , j = 1, . . . , n with E

(n)
j−1 < E

(n)
j . Thus, since pn and Pn have the

same zeros,

Pn(E) =
n∏

j=1

(E − E
(n)
j ) = det(E − Jn).

�

Proposition 2.2. (i) The eigenvalues of Jn and Jn+1 strictly interlace, that is,

E
(n+1)
1 < E

(n)
1 < E

(n+1)
2 < · · · < E(n)

n < E
(n+1)
n+1 . (2.8)

(ii) The zeros of pn(E) are simple, all real, and strictly interlace those of pn+1(E).

Proof. (i) Jn is obtained from Jn+1 by restricting the quadratic form u→〈u,Jn+1u〉
to Cn, a subspace. It follows that

E
(n+1)
1 = min

u,‖u‖=1
〈u, Jn+1u〉 ≤ min

u∈Cn,‖u‖=1
〈u, Jn+1u〉 = E

(n)
1 .

More generally, using the min-max principle

E
(n+1)
j = max

ϕ1,...,ϕj−1
min
‖u‖=1

u⊥ϕ1,...,ϕj−1

〈u, Jn+1u〉

one sees that
E

(n)
j ≥ E

(n+1)
j .

By replacing min’s with max’s,

E
(n)
j ≤ E

(n+1)
j+1 .
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All that remains is to show that equality is impossible. If E0 = E
(n)
j = E

(n+1)
j

or E0 = E
(n)
j = E

(n+1)
j , then pn+1(E0) = pn(E0) = 0. By (2.4), this implies

pn−1(E0) = 0 so, by induction, p0(E) = 0. But p0 ≡ 1. Thus equality is impossible.
(ii) Given (2.6), this is a restatement of what we have proven about the

eigenvalues of Jn. �

Here is our first version of Sturm oscillation theorems:

Theorem 2.3. Suppose E0 is not an eigenvalue of Jk for k = 1, 2, . . . , n. Then

#{j | E(n)
j > E0} = #{� = 1, . . . , n | sgn(P�−1(E0)) �= sgn(P�(E0))}, (2.9)

#{j | E(n)
j < E0} = #{� = 1, . . . , n | sgn(P�−1(E0) = sgn(P�(E0))}. (2.10)

Proof. (2.9) clearly implies (2.10) since the sum of both sides of the equalities is
n. Thus we need only prove (2.9).

Suppose that E
(�)
1 < · · · < E

(�)
k < E0 < E

(�)
k+1 < E

(�)
� . By eigenvalue interlac-

ing, J�+1 has k eigenvalues in (−∞, E
(�)
k ) and n−k eigenvalues in (E(�)

k+1,∞). The

question is whether the eigenvalue in (E(�)
k , E

(�)
k+1) lies above E0 or below. Since

sgn det(E − J�) = (−1)#{j|E(�)
j >E0}, and similarly for J�+1, and there is at most

one extra eigenvalue above E0, we see

sgnP�(E0) = sgnP�+1(E0)⇔ #{j | E(�)
j > E0} = #{j | E(�+1)

j > E0},
sgnP�(E0) �= sgnP�+1(E0)⇔ #{j | E(�)

j > E0}+ 1 = #{j | E(�+1)
j > E0}.

(2.9) follows from this by induction. �

We want to extend this in two ways. First, we can allow Pk(E0) = 0 for
some k < n. In that case, by eigenvalue interlacing, it is easy to see Jk+1 has one
more eigenvalue than Jk−1 in (E0,∞) and also in (−∞, E0), so sgn(Pk−1(E0)) =
− sgn(Pk+1(E0)) (also evident from (2.5) and Pk(E0) = 0). Thus we need to be
sure to count the change of sign corresponding to three successive values of P·
which are, respectively, negative, zero and positive, as just one change of sign. We
therefore have

Proposition 2.4. (2.9) and (2.10) remain true so long as Pn(E0) �= 0 if we define
sgn(0) = 1. If Pn(E0) = 0, they remain true so long as � = n is dropped from the
right side.

One can summarize this result as follows: for x ∈ [0, n], define y(x) by linear
interpolation of P , that is,

x = [x] + (x)⇒ y(x) = P[x] + (x)(P[x]+1 − P[x]).

Then the number of eigenvalues of Jn above E is the number of zeros of y(x, E) in
[0, n). If we do the same for ỹ with P[x] replaced by (−1)[x]P[x], then the number
of eigenvalues below E is the number of zeros of ỹ in [0, n). Some proofs (see [6])
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of oscillation theory for difference equations use y and mimic the continuum proof
of the next section.

The second extension involves infinite Jacobi matrices. In discussing eigenval-
ues of an infinite J , domain issues arise if J is not bounded (if the moment problem
is not determinate, these are complicated issues; see Akhiezer [1] or Simon [25]).
Thus, let us suppose

sup
n

(|an|+ |bn|) <∞. (2.11)

If J is bounded, the quadratic form of Jn is a restriction of J to Cn. As in
the argument about eigenvalues interlacing, one shows that if J has only N0 <∞
eigenvalues in (E0,∞), then Jn has at most N0 eigenvalues there. Put differently,
if E

(∞)
1 > E

(∞)
2 > · · · are the eigenvalues of J , E

(∞)
j ≥ E

(n)
j . Thus, if Nn(E) is the

number of eigenvalues of Jn in (E,∞) and N∞ the dimension of RanP(E,∞)(J),
the spectral projection, then

Nn(E) ≤ Nn+1(E) ≤ · · · ≤ N∞(E). (2.12)

On the other hand, suppose we can find an orthonormal set {ϕj}N
j=1 with

M
(∞)
jk = 〈ϕj , Jϕk〉 = ejδjk and min(ej) = e0 > E0. If M

(n)
jk = 〈ϕj , Jnϕk〉, M (n) →

M (∞), so for n large, M (n) ≥ min(ej) + 1
2 (e0 − E0) > E0. Thus Nn(E0) ≥ N

for n large. It follows that limNn ≥ N∞, that is, we have shown that N∞(E0) =
limn→∞ Nn(E0). Thus,

Theorem 2.5. Let J be an infinite Jacobi matrix with (2.11). Then (with sgn(0) =
1) we have

N∞(E0) = #{� = 1, 2, . . . | sgn(P�−1(E0)) �= sgn(P�(E0))}, (2.13)

dimP(−∞,E0)(J) = #{� = 1, 2, . . . | sgn(P�−1(E0)) = sgn(P�(E0))}. (2.14)

Corollary 2.6. a− ≤ J ≤ a+ if and only if for all �,

P�(a+) > 0 and (−1)�P�(a−) > 0. (2.15)

While on the subject of determinants and Jacobi matrices, I would be remiss
if I did not make two further remarks.

Given (2.6), (2.5) is an interesting relation among determinants, and you
should not be surprised it has a determinantal proof. The matrix Jn+1 has bn+1

and an in its bottom row. The minor of E−bn+1 in E−Jn+1 is clearly det(E−Jn).
A little thought shows the minor of −an is −an det(E − Jn−1). Thus

det(E − Jn+1) = (E − bn+1) det(E − Jn)− a2
n det(E − Jn−1), (2.16)

which is just (2.5).
Secondly, one can look at determinants where we peel off the top and left

rather than the right and bottom. Let J (1), J (2) be the Jacobi matrices obtained



34 B. Simon

from J by removing the first row and column, the first two, . . . . Making the J-
dependence of Pn( · ) explicit, Cramer’s rule implies

[(z − Jn)−1]11 =
Pn−1(z, J (1))

Pn(z, J)
. (2.17)

In the OP literature, a−1
1 pn(z, J (1)) are called the second kind polynomials.

The analog of (2.16) is

Pn(z, J) = (z − b1)Pn−1(z, J (1))− a2
1Pn−2(z, J (2))

which, by (2.17), becomes

[(z − Jn)−1]11 =
1

(z − b1)− a2
1[(z − J

(1)
n−1)−1]11

. (2.18)

In particular, if dγ is the spectral measure [20] of J for the vector δ1, we have

[(z − J)−1]11 =
∫

dγ(x)
z − x

≡ −m(z, J) (2.19)

and (2.18) becomes in the limit with [(z − J
(1)
n−1)

−1]11 → −m(z, J (1))

m(z; J) =
1

b1 − z − a2
1m(z; J (1))

. (2.20)

(2.18) leads to a finite continued fraction expansion of [(z − Jn)−1]11 due to Ja-
cobi, and (2.20) to the Stieltjes continued fraction. Sturm’s celebrated paper on
zeros of polynomials is essentially also a continued fraction expansion. It would
be interesting to know how much Sturm and Jacobi knew of each other’s work.
Jacobi visited Paris in 1829 (see James [13]), but I have no idea if he and Sturm
met at that time.

3. Sturm theory on the real line

We will suppose V is a real bounded function on [0,∞). We are interested in
solutions of

−u′′ + V u = Eu (3.1)
for E real.

Theorem 3.1 (Sturm Comparison Theorem). For j = 1, 2, let uj be not identically
zero and solve −u′′

j +V uj = Ejuj. Suppose a < b, u1(a) = u1(b) = 0 and E2 > E1.
Then u2 has a zero in (a, b). If E2 = E1 and u2(a) �= 0, then u2 has a zero in
(a, b).

Proof. Define the Wronskian

W (x) = u′
1(x)u2(x) − u1(x)u′

2(x). (3.2)

Then
W ′(x) = (E2 − E1)u1(x)u2(x). (3.3)
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Without loss, suppose a and b are successive zeros of u1. By changing signs
of u if need be, we can suppose u1 > 0 on (a, b) and u2 > 0 on (a, a + ε) for
some ε. Thus W (a) = u′

1(a)u2(a) ≥ 0 (and, in case E1 = E2 and u2(a) �= 0,
W (a) > 0). If u2 is non-vanishing in (a, b), then u2 ≥ 0 there, so W (b) > 0 (if
E2 > E1, (E2 − E1)

∫ b

a
u1u2 dx > 0, and if E2 = E1 but u2(a) �= 0, W (a) > 0).

Since W (b) = u′
1(b)u2(b) with u′

1(b) < 0 and u2(b) ≥ 0, this is impossible. Thus
we have the result by contradiction. �
Corollary 3.2. Let u(x, E) be the solution of (3.1) with u(0, E) = 0, u′(0, E) = 1.
Let N(a, E) be the number of zeros of u(x, E) in (0, a). Then, if E2 > E1, we have
N(a, E2) ≥ N(a, E1) for all a.

Proof. If n = N(a, E1) and 0 < x1 < · · · < xn < a are the zeros of u(x, E1), then,
by the theorem, u(x, E2) has zeros in (0, x1), (x1, x2), . . . , (xn−1, xn). �

This gives us the first version of the Sturm oscillation theorem:

Theorem 3.3. Let E0 < E1 < · · · be the eigenvalues of H ≡ −d2/dx2 + V (x) on
L2(0, a) with boundary conditions u(0) = u(a) = 0. Then u(x, En) has exactly n
zeros in (0, a).

Proof. If uk ≡ u( · , Ek) has m zeros x1 < x2 < · · · < xm in (0, a), then for any
E > Ek, u( · , E) has zeros in (0, x1), . . . , (xm−1, xm), (xm, a) and so, uk+1 has at
least m + 1 zeros. It follows by induction that un has at least n zeros, that is,
m ≥ n.

Suppose un has m zeros x1 < · · · < xm in (0, a). Let v0, . . . , vm be the function
un restricted successively to (0, x1), (x1, x2), . . . , (xm, a). The v’s are continuous
and piecewise C1 with v�(0) = v�(a) = 0. Thus they lie in the quadratic form
domain of H (see [20, 21] for discussions of quadratic forms) and

〈vj , Hvk〉 =
∫ a

0

v′jv
′
k +

∫ a

0

V vjvk

= δjkE

∫ a

0

v2
j dx (3.4)

since if j = k, we can integrate by parts and use −u′′ + V u = Eu.
It follows that for any v in the span of vj ’s, 〈v, Hv〉 = E‖v‖2, so by the

variational principle, H has at least m+1 eigenvalues in (−∞, En], that is, n+1 ≥
m + 1. �
Remark 1. The second half of this argument is due to Courant-Hilbert [5].

If we combine this result with Corollary 3.2, we immediately have:

Theorem 3.4 (Sturm Oscillation Theorem). The number of eigenvalues of H strict-
ly below E is exactly the number of zeros of u(x, E) in (0, a).

As in the discrete case, if Ha is −d2/dx2+V (x) on [0, a] with u(0) = u(a) = 0
boundary conditions and H∞ is the operator on L2(0,∞) with u(0) = 0 boundary
conditions, and if Na(E) = dimP(−∞,E)(Ha), then Na(E)→ N∞(E), so
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Theorem 3.5. The number of eigenvalues of H∞ strictly below E, more generally
dimP(−∞,E)(H), is exactly the number of zeros of u(x, E) in (0,∞).

There is another distinct approach, essentially Sturm’s approach in [26], to
Sturm theory on the real line that we should mention. Consider zeros of u(x, E),
that is, solutions of

u(x(E), E) = 0. (3.5)
u is a jointly C1 function of x and E, and if u(x0, E0) = 0, then u′(x0, E0) �= 0
(since u obeys a second-order ODE). Thus, by the implicit function theorem, for
E near E0, there is a unique solution, x(E), of (3.4) near x0, and it obeys

dx

dE

∣∣∣∣
E0

= − ∂u/∂E

∂u/∂x

∣∣∣∣
x=x0,E=E0

. (3.6)

Now, v ≡ ∂u/∂E obeys the equation

−v′′ + V v = Ev + u (3.7)

by taking the derivative of −u′′ + V u = Eu. Multiply (3.7) by u and integrate by
parts from 0 to x0. Since v(0) = 0, there is no boundary term at 0, but there is at
x0, and we find

v(x0)u′(x0) =
∫ x0

0

|u(x)|2 dx.

Thus (3.6) becomes

dx0

dE
= −|u′(x0, E)|−2

∫ x0

0

|u(x, E)|2 dx < 0. (3.8)

Thus, as E increases, zeros of u move towards zero. This immediately implies
the comparison theorem. Moreover, starting with un, the (n + 1)th eigenfunction
at energy En, if it has m zeros in (0, a) as E decreases from En to a value, E′,
below −‖V ‖∞ (where u(x, E′) > 0 has no zeros in (0,∞)), the m zeros move out
continuously, and so u(a, E) = 0 exactly m times, that is, m = n. This proves the
oscillation theorem.

4. Rotation numbers and oscillations

Take the solution u(x, E) of the last section and look at the point

Π(x, E) =
(

u′(x, E)
u(x, E)

)
in R2. Π is never zero since u and u′ have no common zeros. At most points in R2,
the argument of Π, that is, the angle π makes with

(
1
0

)
, can increase or decrease. u

can wander around and around. But not at points where u = 0. If u′ > 0 at such
a point, Π moves from the lower right quadrant to the upper right, and similarly,
if u′ < 0, it moves from the upper left to the lower left. Thus, since π starts at(
1
0

)
, we see
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Theorem 4.1. If u(x, E) has m zeros in (0, a), then Arg π(a, E) (defined by conti-
nuity and Arg π(0, E) = 0) lies in (mπ, (m + 1)π].

If u and v are two solutions of −u′′ + V u = Eu with u(0) = 0, v(0) �= 0, we
can look at

Π̃(x, E) =
(

v

u

)
.

Π̃ is never zero since u and v are linear independent. W (x) = u′v − v′u is a
constant, say c. c �= 0 since u and v are linear independent. Suppose c > 0. Then
if u(x0) = 0, u′(x0) = c/v(x0) has the same sign as v(x0). So the above argument
applies (if c < 0, there is winding in the (u, v)-plane in the opposite direction).
Rather than look at Π̃, we can look at ϕ = u + iv. Then uv′ − vu′ = Im(ϕ̄ϕ′).
Thus we have

Theorem 4.2. Let ϕ(x, E) obey −ϕ′′ + V ϕ = Eϕ and be complex-valued with

Im(ϕ̄(0)ϕ′(0)) > 0. (4.1)

Suppose Re ϕ(0) = 0 and Im ϕ(0) < 0. Then, if Re ϕ has m zeros in (0, a), then
Arg(ϕ(a)) is in ((m− 1

2 )π, (m + 1
2 )π].

The ideas of this section are the basis of the relation of rotation numbers and
density of states used by Johnson-Moser [15] (see also [14]). We will use them as
the starting point of the next section.

5. Renormalized oscillation theory

Consider H = −d2/dx2 + V on [0,∞) with u(0) = 0 boundary conditions where,
as usual, for simplicity, we suppose that V is bounded.

By Theorem 3.5, dimP(−∞,E)(H) is the number of zeros of u(x, E) in (0,∞).
If we want to know dim P[E1,E2)(H), we can just subtract the number of zeros of
u(x, E1) on (0,∞) from those of u(x, E2). At least, if dim P(−∞,E2)(H) is finite,
one can count just by subtracting. But if dimP(−∞,E1)(H) =∞ while dim P[E1,E2)

is finite, both u(x, E2) and u(x, E1) have infinitely many zeros, and so subtraction
requires regularization.

One might hope that

dimP[E1,E2)(H) = lim
a→∞(N(E2, a)−N(E1, a)) (5.1)

where N(E, a) is the number of zeros of u(x, E) in (0, a). This is an approach of
Hartman [11]. (5.1) cannot literally be true since N(E2, a)−N(E1, a) is an integer
which clearly keeps changing when one passes through a zero of u(x, E2) that is
not also a zero of u(x, E1). One can show that for a large, the absolute value of
the difference of the two sides of (5.1) is at most one, but it is not obvious when
one has reached the asymptotic region.
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Instead, we will describe an approach of Gesztesy, Simon, and Teschl [10];
see Schmidt [23] for further discussion. Here it is for the half-line (the theorem is
true in much greater generality than V bounded and there are whole-line results).

Theorem 5.1. Let V be bounded and let H = −d2/dx2 + V (x) on [0,∞) with
u(0) = 0 boundary condition. Fix E1 < E2. Let

W (x) = u(x, E2)u′(x, E1)− u′(x, E2)u(x, E1) (5.2)

and let N be the number of zeros of W in (0,∞). Then

dimP(E1,E2)(H) = N. (5.3)

The rest of this section will sketch the proof of this theorem under the assump-
tion that dimP(−∞,E2)(H) = ∞. This will allow a simplification of the argument
and covers cases of greatest interest. Following [10], we will prove this in three
steps:
(1) Prove the result in a finite interval [0, a] in case u(a, E2) = 0.
(2) Prove dim P(E1,E2)(H) ≤ N by limits from (1) when dimP(−∞,E2)(H) =∞.
(3) Prove dim P(E1,E2)(H) ≥ N by a variational argument.
Step 1. We use the rotation number picture of the last section. Define the Prüfer
angle θ(x, E) by

tan(θ(x, E)) =
u(x, E)
u′(x, E)

(5.4)

with θ(0, E) = 0 and θ continuous at points, x0, where u′(x0, E) = 0. Using
d
dy tan y = 1 + tan2 y, we get

dθ

dx
=

(u′)2 − uu′′

u2 + (u′)2
. (5.5)

Let θ1, θ2 be the Prüfer angles for u1(x) ≡ u(x, E1) and u2(x) ≡ u(x, E2).
Suppose W (x0) = 0. This happens if and only if u(x0, E1)/u′(x0, E1) =
u(x0, E2)/u′(x0, E2), that is, θ2 = θ1 + kπ with k ∈ Z. If it happens, we can
multiply u2 by a constant so u1(x0) = u2(x0), u′

1(x0) = u′
2(x0). Once we do that,

(5.5) says
d

dx
(θ2 − θ1) =

(E2 − E1)u2
1(x0)

u′
1(x0)2 + u2

1(x0)
> 0.

Thus
θ1 = θ2 mod π ⇒ θ′2 > θ′1. (5.6)

Think of θ2 as a hare and θ1 as a tortoise running around a track of length
π. There are two rules in their race. They can each run in either direction, except
they can only pass the starting gate going forward (i.e., θj = 0 mod π ⇒ θ′j > 0),
and the hare can pass the tortoise, not vice-versa (i.e., (5.6) holds).

Suppose Ha, the operator on (0, a) with u(0) = u(a) = 0 boundary condition,
has m eigenvalues below E2 and n below E1. Since u(a, E2) = 0, θ2(a) = (m+1)π,
that is, at x = a, the hare makes exactly m + 1 loops of the track. At x = a,
the tortoise has made n loops plus part, perhaps all, of an additional one. Since
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θ′2 − θ′1 > 0 at x = 0, the hare starts out ahead. Thus, the hare must overtake
the tortoise exactly m− n times between 0 and a (if θ1(a) = (n + 1)π, since then
θ′2 − θ′1 > 0 at x = 0, θ2 − (m + 1)π < θ1 − (n− 1)π, and x = a; so it is still true
that there are exactly m− n crossings). Thus

dimP(E1,E2)(Ha) = #{x0 ∈ (0, a) |W (x0) = 0}. (5.7)

Step 2. Since dimP(−∞,E2)(H) =∞, there is, by Theorem 3.5, an infinite sequence
a1 < a2 < · · · → ∞ so that u(aj , E2) = 0. Haj → H in strong resolvent sense, so
by a simple argument,

dim P(E1,E2)(H) ≤ lim inf dimP(E1,E2)(Ha)

= N (5.8)

with N the number of zeros of W in (0,∞). (5.8) comes from (5.7).
Step 3. Suppose N <∞. Let 0 < x1 < · · · < xN be the zeros of W. Define

ηj(x) =

{
u1(x)− γju2(x) 0 < x ≤ xj

0 x ≥ xj

(5.9)

η̃j(x) =

{
u1(x) + γju2(x) 0 < x < xj

0 x > xj

(5.10)

where uj(x) = u(x, Ej) and γj is chosen by

γj =

{
u1(xj)/u2(xj) if u2(xj) �= 0
u′

1(xj)/u′
2(xj) if u2(xj) = 0.

(5.11)

Since W (xj) = 0, ηj is a C1 function of compact support and piecewise C2, and
so in D(H). But η̃j is discontinuous.

We claim that if η is in the span of {ηj}N
j=1, then∥∥∥∥(H − E2 + E1

2

)
η

∥∥∥∥ =
|E2 − E1|

2
‖η‖. (5.12)

Moreover, such η’s are never a finite linear combination of eigenfunctions of H .
Accepting these two facts, we note that since the ηj are obviously linear indepen-
dent, (5.12) implies dim P(E1,E2)(H) ≥ N . This, together with (5.8), proves the
result.

To prove (5.12), we note that(
H − E2 + E1

2

)
ηj = −|E2 − E1|

2
η̃j . (5.13)

Since η̃j is not C1 at xj , η̃ is not in D(H), hence η cannot be in D(H2) (so we get
control of dim P(E1,E2)(H), not just dimP[E1,E2](H)).
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Next, note that since W ′(x) = (E2−E1)u2u1, we have if W (xi) = W (xi+1) =
0 that ∫ xi+1

xi

u1(x)u2(x) dx = 0

for i = 0, 1, 2, . . . , N where x0 = 0. Thus

〈ηi, ηj〉 = 〈η̃i, η̃j〉 (5.14)

since if i < j, the difference of the two sides is 2(γi +γj)
∫ xj

xi
u1(x)u2(x) = 0. (5.14)

and (5.13) imply (5.12). That completes the proof if N <∞.
If N is infinite, pick successive zeros 0 < x1 < · · · < xL and deduce

dimP(E1,E2)(H) ≥ L for all L. �

6. Some applications

We will consider three typical applications in this section: one classical (i.e., fifty
years old!), one recent to difference equations, and one of Theorem 5.1.

Application 1: Bargmann’s Bound. Let u obey −u′′ + V u = 0 on [0,∞) with
u(0) = 0. Then, if V is bounded, u(x)/x has a finite limit as x ↓ 0. Also suppose
V ≤ 0.

Define m̃ = −u′/u so
m̃′ = |V |+ m̃2 (6.1)

since −V = |V |. Thus m̃ is monotone increasing. It has a pole at each zero, x0 = 0,
x1, x2, . . . , x�, . . . of u. Define

b(x) = −xu′(x)
u(x)

= xm̃(x). (6.2)

Then b(x) has limit −1 as x ↓ 0 and

b′(x) = x|V (x)| + b(x) + b2(x)
x

. (6.3)

In particular,
−1 ≤ b ≤ 0⇒ b′(x) ≤ x|V (x)|. (6.4)

By the monotonicity of m̃, there are unique points 0 < z1 < x1 < · · · <
x�−1 < z� < x� where b� = 0, and since b → −∞ as x ↓ xj , there are last points
yj ⊂ [xj−1, zj ] where b(y) = −1 for j = 2, 3, . . . , � and at y1 = 0, b(0) = −1.
Integrating b′ from yj to zj, using (6.4), we find∫ zj

yj

x|V (x)| dx ≥ 1

so ∫ x�

0

x|V (x)| dx ≥ �.
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By the oscillation theorem, if N(V ) = dimP(−∞,0)(H), then

N(V ) ≤
∫ ∞

0

x|V (x)| dx. (6.5)

This is Bargmann’s bound [2]. For further discussion, see Schmidt [24].
Application 2: Denisov-Rakhmanov Theorem. Rakhmanov [18, 19] (see also [16])
proved a deep theorem about orthogonal polynomials on the unit circle that trans-
lates to

Rakhmanov’s Theorem. If J is an infinite Jacobi matrix with its spectral measure,
dµ = f dx + dµs and f(x) > 0 for all x ∈ [−2, 2] and supp(dµs) ⊂ [−2, 2] (i.e.,
σ(J) ⊂ [−2, 2]), then an → 1, bn → 0.

From the 1990’s, there was some interest in extending this to the more general
result, where σ(J) ⊂ [−2, 2] is replaced by σess(J) ⊂ [−2, 2]. By using the ideas of
the proof of Rakhmanov’s theorem, one can prove:

Extended Rakhmanov Theorem. There exist C(ε) → 0 as ε ↓ 0 so that if dµ =
f dx + du and f(x) > 0 for a.e. x in [−2, 2] and σ(J) ⊂ [−2− ε, 2 + ε], then

lim sup
n→∞

(|an − 1|+ |bn|) ≤ C(ε).

Here is how Denisov [7] used this to prove

Denisov-Rakhmanov Theorem. If dµ = f(x) dx+dµ0, f(x) > 0 for a.e. x ∈ [−2, 2]
and σess(J) ⊂ [−2, 2], then an → 1 and bn → 0.

His proof goes as follows. Fix ε. Since J has only finitely many eigenvalues in
[2+ε,∞), Pn(2+ε) has only finitely many sign changes. Similarly, (−1)nPn(−2−
ε) has only finitely many sign changes. Thus, we can find N0 so Pn(2 + ε) and
(−1)nPn(−2− ε) both have fixed signs if n > N0. Let ã, b̃ be given by

ãn = aN0+n b̃n = bN0+n.

By a use of the comparison and oscillation theorems, J̃ has no eigenvalues in
(−∞,−2− ε) ∪ (2 + ε,∞). Thus, by the Extended Rakhmanov Theorem,

lim sup
n→∞

(|an − 1|+ |bn|) = lim sup
n→∞

(|ãn − 1|+ |b̃n|) ≤ C(ε).

Since ε is arbitrary, the theorem is proven.
Application 3: Teschl’s Proof of the Rofe-Beketov Theorem. Let V0(x) be periodic
and continuous. Let H0 = −d2/dx2 + V0 on L2(0,∞) with u(0) = 0 boundary
condition. Then

σess(H0) =
∞⋃

j=1

[aj , bj ]

with bj < aj+1. (In some special cases, there is only a finite union with one infinite
interval.) (bj , aj+1) are called the gaps. In each gap, H0 has either zero or one
eigenvalue. Suppose X(x) → 0 as x → ∞, and let H = H0 + X . Since σess(H) =



42 B. Simon

σess(H0), H also has gaps in its spectrum. When is it true that each gap has at most
finitely many eigenvalues? Teschl [29, 30] has proven that if

∫∞
0 x|X(x)| dx < ∞,

then for each j, the Wronskian, w(x), of u(x, bj) and u(x, aj+1) has only finitely
many zeros. He does this by showing for H0 that |X(x)| → ∞ as x → ∞ and
by an ODE perturbation argument, this implies |w(x)| → ∞ for H . Thus, by the
results of Section 5, there are finitely many eigenvalues in each gap.

It is easy to go from half-line results to whole-line results, so Teschl proves if∫
|x| |X(x)| dx <∞, each gap has only finitely many eigenvalues.

This result was first proven by Rofe-Beketov [22] with another simple proof in
Gesztesy-Simon [9]; see that later paper for additional references. Teschl’s results
are stated for the discrete (Jacobi) case (and may be the first proof for the finite
difference situation), but his argument translates to the one above for Schrödinger
operators.
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1. References

The early papers of Sturm on ordinary linear differential equations, and their
initial value and boundary value problems, date from 1829 to 1836; see [21], [22]
and [23].

The first joint paper by Sturm and Liouville on boundary problems is given
in [24]; the results from this remarkable paper are discussed in Section 2 below.

The place and significance of these Sturm and Liouville results in the his-
tory of mathematics in the 19th century are considered in detail in the paper of
Lützen [16].

In this present paper there are detailed discussions of contributions to Sturm-
Liouville theory from: Weyl [32], [33] and [34]; Dixon [5]; Stone [20]; Titchmarsh
[26], [27], [28], [29] and [30].

There are later accounts of the Titchmarsh-Weyl theories in the works of
Coddington and Levinson [4]; Everitt [6]; Hellwig [9]; Hilb [10]; Hille [11]; Jörgens
[12]; Kodaira [14]; Titchmarsh [30]; Yoshida [36].
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The theory of Sturm-Liouville differential operators in Hilbert function spaces
is developed in the works of Akhiezer and Glazman [1]; Hellwig [9]; Jörgens and
Rellich [13]; Naimark [17]; von Neumann [18]; Stone [20].

In view of the significance for Sturm-Liouville theory of the 1910 paper [33]
by Weyl special mention is made of the M.Sc. thesis of Race, see [19]. This thesis
contains a translation from the German into English of the major part of the Weyl
paper; in particular, there is a complete translation of Chapters I and II, together
with the translation of the more significant results and remarks from the remaining
Chapters, III and IV.

The numerical treatment of Sturm-Liouville boundary value problems has
been extensively developed; a summary of results, references together with infor-
mation on the SLEIGN2 computer code, is given in [2].

Finally there is an epilogue from Weyl in his paper of 1950 [35].
This work is not to be counted as a history of Sturm-Liouville theory for

the period 1900 to 1950; such a history should contain reference to many more
individual contributions from mathematicians, other than those named at the end
of this paper. This paper is an attempt to view the development of Sturm-Liouville
theory in the light of advancing techniques in mathematical analysis over this
period: the theories of real and complex functions, measure and integration, and
linear operators in function spaces.

2. Sturm and Liouville and the paper of 1837

As mentioned in the previous section the history of Sturm-Liouville theory is
presented in detail in the scholarly paper of Lützen [16]. The main Sturm and
Liouville contributions listed in the references are:

(i) The Sturm papers [21], [22] and [23].
(ii) The Sturm and Liouville paper [24].

For a discussion of the results in the three papers listed in (i) see [16].
The Sturm and Liouville paper [24] in (ii) is totally remarkable; it is four

pages long but, in almost modern notation, presents the essentials of a Sturm-
Liouville boundary value problem on a compact interval, with separated boundary
conditions.

The boundary value problem studied by Sturm and Liouville in [24], see also
[16, Introduction], is, in their notation,

− d

dx

(
k

dV

dx

)
+ lV = rgV on the interval [x,X] (2.1)

with the imposed separated boundary conditions
dV

dx
− hV = 0 for x = x (2.2)

dV

dx
+ HV = 0 for x = X. (2.3)
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Here the coefficients k, l, g are positive on the interval [x,X], h and H are given
positive numbers and r is a real-valued parameter.

It is shown that the initial value problem at the endpoint x, determined
by the differential equation (2.1) and the initial boundary condition (2.2), has a
non-null solution V for all values of the parameter r.

This boundary value problem (2.1), (2.2) and (2.3) only allows for non-null
solutions (now called eigenfunctions) for certain values (now called eigenvalues) of
the parameter r in (2.1); these values are determined in [24, Page 221] as roots of
a transcendental equation, involving the solutions of the equation,

ω(r) = 0; (2.4)

namely the equation obtained by inserting the general solution V of (2.1) and (2.2)
into the remaining boundary condition (2.3). In the earlier Sturm papers [21], [22]
and [23] it is shown that the transcendental equation (2.4) has an infinity of real
simple roots which are positive and denoted in [24, Page 221] by r1, r2, . . . , rn, . . .
arranged in increasing order of magnitude. These are the eigenvalues of the bound-
ary value problem; likewise the associated solution functions (eigenfunctions) are
denoted by V1, V2, . . . , Vn, . . .

It is remarked that the transcendental function ω in (2.4) has the property
that ω′(rn) �= 0 for all n ∈ N; in fact it is shown that∫ X

x

g(x)V 2
n(x) dx = −k(X)Vn(X)ω′(rn) (2.5)

where the numbers k(X) and Vn(X) are both non-zero; it is this result that yields
the proof that the zeros of the transcendental function ω are all simple. (Note the
use of the prime ′ notation in (2.5) for the derivative of the function ω; this is the
Lagrange notation for the derivative, see [16, Introduction, Page 310].)

The formulae given also show, in effect, that the solution functions

V1, V2, . . . , Vn, . . .

have the orthogonality properties∫ X

x

g(x)Vm(x)Vn(x) dx = 0 (2.6)

for all m, n ∈ N with m �= n.
Given a function f defined on the interval [x,X] the following formulae are

obtained (recall that V is the solution of the initial value problem (2.1) and (2.2))∫ X

x

g(x)V (x)f(x) dx =
∞∑

n=1

{∫X

x
g(x)V (x)V n(x) dx ·

∫X

x
g(x)Vn(x)f(x) dx∫X

x
g(x)V 2

n(x) dx

}
,

(2.7)
and if F on [x,X] is given by

F (x) =
∞∑

n=1

{
Vn(x)

∫X

x
g(y)Vn(y)f(y) dy∫X

x
g(y)V 2

n(y) dy

}
(2.8)
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then∫ X

x

g(x)V (x)F (x) dx =
∞∑

n=1

{∫X

x g(x)V (x)V n(x) dx ·
∫X

x g(x)Vn(x)f(x) dx∫X

x g(x)V 2
n(x) dx

}
.

From these results it follows that∫ X

x

g(x)V (x)[F (x) − f(x)] dx = 0 (2.9)

and leads to the conclusion that

F (x) − f(x) = 0 for all x ∈ [x,X]. (2.10)

Finally then the series expansion is obtained

f(x) =
∞∑

n=1

{
Vn(x)

∫X

x g(y)Vn(y)f(y) dy∫X

x g(y)V 2
n(y) dy

}
for all x ∈ [x,X]. (2.11)

Remark 2.1. We enter three remarks:
(a) We have followed the outline details of the proof of the critical result (2.10)

from the paper [24]; however there seems to be a difficulty in deducing (2.10)
from (2.9), since the function V may not be of one sign on the interval [x,X];
for clarification on this point see the remarks by Lützen [16, Section 49, Page
348].

(b) At the end of the Sturm and Liouville paper [24, Page 223] there is a foot-
note written by Liouville indicating that complete details of the analysis of
the results announced are to be published in a following mémoire; however,
Lützen remarks in his paper [16, Section 49, Page 349, Line 5] that this work
has been lost.

(c) In modern terminology this last result (2.11) is then the eigenfunction ex-
pansion of a continuous function f in terms of these eigenfunctions, within
the weighted Hilbert function space L2([x,X]; g).

Sturm, in his first large paper wrote, see [22, Page 106] and [16, Section II,
Page 315],

“La résolution de la plupart des problèmes relatifs à la distribution de la
chaleur dans des corps de formes diverses et aux petits mouvements oscillatoires
des corps solides élastiques, des corps flexibles, des liquides et des fluides élastiques,
conduit à des équations différentielles linéaires du second ordre. . . ”.

As an example Sturm discussed heat conduction in an inhomogeneous thin
bar; in this case the temperature is governed by the linear partial differential
equation

g
∂u

∂t
=

∂

∂x

(
k

∂u

∂x

)
− lu. (2.12)

Applying the method of solution by separation of variables leads to ordinary
boundary value problems of the form (2.1), (2.2) and (2.3) with the coefficients
g, k, l. The expansion in terms of the solution functions of these boundary value
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problems, as given above, then led to formal solutions of boundary and initial
value problems associated with partial differential equations of the form (2.12).

Remark 2.2. With the advantage of hindsight the following remarks can be made:

(i) As to be expected, given the period when these early results were obtained
there are no continuity or differentiability conditions on the three coefficient
functions k, l, g.

(ii) Essentially, in the earlier results of Sturm, see [21], [22] and [23], there are
underlying assumptions of continuity needed to obtain the existence of the
real, simple roots {rn : n ∈ N} of the transcendental equation (2.4).

(iii) The sign convention in the differential equation (2.1), in particular the neg-
ative sign in the derivative term, comes from consideration of the separation
of variables technique applied to such partial differential equations as (2.12).

(iv) The positivity of the coefficients k, l and g in the differential equation (2.1),
and the positive values of the boundary numbers h and H , are responsible for
the parameter values of r, obtained from the transcendental equation (2.4),
being all non-negative and so bounded below on R.

3. Notations

The symbols N and N0 represent the positive and the non-negative integers, re-
spectively.

The real and complex number fields are denoted by R and C respectively.
Lebesgue integration is denoted by L; the Hilbert function space L2((a, b); w),
given the interval (a, b) and the weight w, is the collection (of equivalence classes)
of complex-valued, Lebesgue measurable functions f defined on (a, b) such that∫ b

a

w(x) |f(x)|2 dx < +∞. (3.1)

The class of Cauchy entire (integral) complex-valued functions defined on C
is denoted by H.

The Sturm and Liouville differential equation in [24] may be rewritten in the
form, in modern notation,

− d

dx

(
k(x)

dV (x)
dx

)
+ l(x)V (x) = rg(x)V (x) for all x ∈ [a, b] (3.2)

where:

(a) the coefficients k, l, g : [a, b]→ R, with l, g ∈ C[a, b] and k ∈ C(1)[a, b]
(b) k, l, g > 0 on [a, b]
(c) the parameter r ∈ R
(d) the dependent variable V : [a, b]→ R.
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To compare with another widely used modern notation for the Sturm-Liou-
ville differential equation, now involving the concept of quasi-derivative (see [17]
and [6]), we have (here the prime ′ denotes classical differentiation on R)

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ (a, b), (3.3)

where a wider class of coefficients is admitted as follows:
(α) for the interval (a, b) the endpoints, in general, satisfy −∞ ≤ a < b ≤ +∞
(β) the coefficients p, q, w : (a, b)→ R and p−1, q, w ∈ L1

loc(a, b), where L1
loc(a, b)

is the local Lebesgue integration space
(γ) the weight w(x) > 0 for almost all x ∈ (a, b); there are no sign restrictions

on the coefficients p, q

(δ) the spectral parameter λ ∈ C.
In all the cases which follow, Sturm-Liouville differential equations are given

in the form (3.3), with restrictions on the coefficients p, q, w and the interval (a, b).

4. Mathematical analysis

The four main areas in mathematical analysis that influenced the development of
Sturm-Liouville theory, and were in part influenced by this theory in its own right,
are:

(i) The Lebesgue integral
(ii) Integrable-square Hilbert function spaces
(iii) Complex function theory on the plane C
(iv) Spectral theory of unbounded operators in Hilbert spaces.

This influence from within and without Sturm-Liouville theory is to be seen
in the sections which follow in this paper.

5. Hermann Weyl and the 1910 paper

This paper [33] has now long been regarded as one of the most significant contri-
butions to mathematical analysis in the 20th century; whilst not the first paper to
consider the singular case of the Sturm-Liouville differential equation it is the first
structured consideration of the analytical properties of the equation. The range of
new definitions and results is remarkable and set the stage for the full development
of Sturm-Liouville theory in the 20th century, as to be seen in the later theory of
differential operators in the work of von Neumann [18] and Stone [20], and in the
application of complex variable techniques by Titchmarsh [30].
The paper considers the equation (3.3) with the restrictions:

(i) The interval is [0,∞) and p, q : [0,∞)→ R; w(x) = 1 for all x ∈ [0,∞)
(ii) The coefficients satisfy: p, q ∈ C[0,∞); p > 0 on [0,∞)
(iii) The spectral parameter λ ∈ C.
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The differential equation is then

−(p(x)y′(x))′ + q(x)y(x) = λy(x) for all x ∈ [0,∞). (5.1)

Before listing the main results from this paper there are two comments to be made:

1. At the start of the paper, see [33, Chapter I, Page 221, Footnote †)], Weyl
points out that no assumption is made concerning the differentiability of the
leading coefficient p; it is sufficient to require only the continuity of p on
[0,∞); this assumption has the consequence that any term of the form py′

has to be considered as a single symbol; in particular the derivative y′ may
not exist separately at any point of the interval [0,∞). The initial conditions
at the regular endpoint 0 for the existence theorem in [33, Chapter I, Section
1] are of the form, for numbers α, β ∈ C,

y(0) = α (py′)(0) = β (5.2)

which fits in with the existence result that both y and (py′) are continuous
on [0,∞). In this respect Weyl is working with the quasi-derivative (py′) in
place of the classical derivative y′ many years before the general introduction
of quasi-derivatives, see [1, Appendix 2, Section 123] and [17, Chapter V,
Section 15].

2. Throughout the paper, but not always stated in theorems and other results,
Weyl assumes a boundary condition, at the regular endpoint 0, on the solu-
tions of the equation (5.1), of the form

cos(h)y(0) + sin(h)(py′)(0) = 0 (5.3)

where h is a given real number; see [33, Chapter I, Section 2, (10)].

The main results from this paper are:

(a) Chapter I, Theorem 1: the introduction of the circle method for the differ-
ential equation (5.1), and the definition of the limit-circle and limit-point
classification of the equation for any point λ ∈ C.

(b) Chapter I, Theorem 2: for all λ ∈ C \R the differential equation (5.1) has at
least one non-null solution in the Hilbert function space L2(0,∞).

(c) Chapter II, Theorem 5: the limit-circle/limit-point classification of the equa-
tion (5.1) is independent of the spectral parameter λ, and depends only on
the choice of the two coefficients p and q.

(d) Chapter II, Theorem 5: in the limit-circle case all solutions of the differential
equation (5.1) are in the Hilbert function space L2(0,∞), for all λ ∈ C.

(e) Chapter II, Theorem 5: in the limit-point case there is at most one non-null
solution of the equation in the Hilbert function space L2(0,∞), for all λ ∈ C.

(f) Chapter II, Corollary to Theorem 5: if the coefficient q is bounded below on
[0,∞) then for all coefficients p the differential equation is in the limit-point
case.
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(g) Chapter III: at the start of this chapter there are the Weyl definitions of the
point spectrum (Punktspektrum), and the continuous spectrum (Strecken-
spektrum) involving eigendifferentials; the latter definition agrees with the
earlier definition of continuous spectrum given by Hellinger in the paper [8].

(h) Chapter III: the Hellinger/Weyl definition of continuous spectrum introduces
essentially the concept of eigenpackets as later studied by Rellich [13, Chapter
II, Sections 1 and 2] and Hellwig [9, Chapter 10, Section 10.4].

(i) Chapter II, Theorem 4: this theorem gives the eigenfunction expansion in
the limit-circle case for the boundary value problem consisting of the Sturm-
Liouville differential equation (5.1), a boundary condition (5.3) at the regular
endpoint 0, and a boundary condition [33, Chapter II, (41)] at the endpoint
+∞; the spectrum of this problem consists only of the point spectrum of real,
simple eigenvalues {λn : n ∈ N} with an accumulation point at +∞ on the
real axis R of the complex spectral plane C; the corresponding eigenfunctions
{ϕn : n ∈ N} form a complete, orthogonal set in the Hilbert function space
L2(0,∞); there is a pointwise expansion of a function f ∈ L2(0,∞), subject
to additional smoothness and integrability conditions on the function f , in
terms of the eigenfunctions where the infinite series is absolutely convergent
and locally uniformly convergent.

(j) Chapter III, Theorem 7: this theorem gives the eigenfunction expansion in
the limit-point case for the boundary value problem consisting of the Sturm-
Liouville differential equation (5.1), and a boundary condition (5.3) at the
regular endpoint 0; in this case no boundary condition is required at the end-
point +∞; the spectrum of this problem consists of a point spectrum, which
may be empty, and a continuous spectrum, which may be empty; the point
spectrum gives rise to eigenfunctions and a series expansion; the continu-
ous spectrum gives rise to eigendifferentials and an integral expansion; there
is a pointwise expansion of a function f ∈ L2(0,∞), subject to additional
smoothness and integrability conditions on f , in terms of the eigenfunctions
and eigendifferentials, where the series and integrals are, respectively, abso-
lutely convergent and locally uniformly convergent.

(k) Chapter IV, Theorem 8: in the limit-point case the continuous spectrum is
independent of the choice of the boundary condition at the regular endpoint
0; the point spectrum is different for each particular boundary condition at
the regular endpoint 0.

(l) Chapter IV, Theorem 9: if the coefficient q satisfies the condition

lim
x→∞ q(x) = +∞ (5.4)

then, for all coefficients p, the limit-point case holds and the spectrum for any
boundary value problem consists only of the point spectrum of real, simple
eigenvalues {λn : n ∈ N} with accumulation only at +∞ on the real axis R of
the complex spectral plane C; the corresponding eigenfunctions {ϕn : n ∈ N}
form a complete, orthogonal set in the Hilbert function space L2(0,∞); for
all n ∈ N the eigenfunction ϕn has exactly n zeros in the open interval (0,∞).
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(m) Chapter IV, Theorem 11: under the following conditions on the coefficients p,q

p(x) = 1 for all x ∈ [0,∞)
∫ ∞

0

x |q(x)| dx < +∞ (5.5)

the limit-point case holds and the spectrum for any boundary value prob-
lem consists of a finite number of strictly negative eigenvalues for the point
spectrum, and the half line [0,∞) for the continuous spectrum.

(n) Chapter IV, Section 22: here there is a remarkable example which illustrates
the effectiveness of the Weyl definition of the continuous spectrum of Sturm-
Liouville differential equations. Let the coefficients p, q be given by

p(x) = 1 and q(x) = −x for all x ∈ [0,∞). (5.6)

The resulting Sturm-Liouville differential equation is

−y′′(x) − xy(x) = λy(x) for all x ∈ [0,∞) (5.7)

which has solutions that can be expressed in terms of the classical Bessel
functions. Weyl gives a proof that this equation is in the limit-point case at the
singular endpoint +∞; also that, in terms of his definition of the continuous
spectrum, any boundary value problem, determined by a boundary condition
at the regular endpoint 0, has no eigenvalues and the whole real line R as
continuous spectrum.

(o) Closing remark: at the end of the paper Weyl remarks that all the main
results and theorems can be extended to the case when a weight function
w is included in the Sturm-Liouville differential equation; that is the results
extend to the general equation (3.3)

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ [0,∞). (5.8)

Here the weight function w is positive-valued and continuous on the half line
[0,∞); in these circumstances the Hilbert function space is

L2((0,∞); w),

see Section 3 above.

6. A.C. Dixon and the paper of 1912

This paper is significant in the development of the Sturm-Liouville differential
equation for one reason; it seems to be the first paper in which the continuity
conditions on the coefficients p, q, w are replaced by the Lebesgue integrability
conditions; these latter conditions are the minimal conditions to be satisfied by
p, q, w within the environment given by the Lebesgue integral, see Section 3 above.

The paper uses the same notation [5, Section 1, (1)] of the Sturm-Liouville
differential equation as given in the original paper of Sturm and Liouville, i.e.,

− d

dx

(
k

dV

dx

)
+ lV = rgV on the interval [a, b]; (6.1)

however there is no direct reference to the paper [24].
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In the notation of Section 3 this Dixon paper considers the equation (3.3)
with the assumptions:

(i) The interval [a, b] is compact and p, q, w : [a, b]→ R.
(ii) The coefficients p, q, w satisfy the Lebesgue minimal conditions p−1, q, w ∈

L1[a, b], and both p, w > 0 almost everywhere on [a, b].

The paper discusses the existence of solutions of this Sturm-Liouville differ-
ential equation

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ [a, b] (6.2)

under these coefficient conditions; the existence proof is based on replacing, for-
mally, the differential equation (6.1) with the two integral equations, see [5, Section
1, (2)],

U =
∫

V (l − gr) dx V =
∫

1
k

U dx. (6.3)

However, boundary conditions at the endpoints a and b, which will determine
the associated Sturm-Liouville boundary value problem, are difficult to locate.

Certain expansion theorems are given, see for example [5, Section 19]; however
again it is difficult to relate such results to the original series type of expansions
associated with regular Sturm-Liouville boundary value problems.
This paper by Dixon raises a number of interesting remarks:

1. In effect, the Dixon existence theorem, see [5, Section 3], is a special case of
the existence theorem for linear differential systems, with locally integrable
coefficients, see [17, Chapter V, Section 16.1]. Note that there seems to be
no reference in the paper [5] to the fact that the quasi-derivative kV ′ exists
for solutions of 6.1 (to see this point differentiate the second term in (6.3))
but that the classical derivative V ′ may not exist.

2. The paper [5] was published two years after the Weyl paper [33] but no refer-
ence is given to these earlier results on Sturm-Liouville differential equations.
Nevertheless, the Dixon conditions on the coefficients make for a remarkable
advance in the study of such differential equations.

3. The years from 1910 onwards saw the introduction of the Lebesgue integral
into mathematics; it is interesting to compare the use of integration in the
Weyl paper [33], seemingly generalized Riemann integration, with that of the
Dixon paper, Lebesgue integration.

7. M.H. Stone and the book of 1932

The general theory of unbounded linear operators in Hilbert spaces was developed
by John von Neumann from 1927 onwards, and independently by M.H. Stone from
1929 onwards.

The book [20] appeared in the year 1932; it is a remarkable compendium of
results and properties of Hilbert spaces. With regard to Sturm-Liouville theory
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there is in [20, Chapter X, Section 3] a detailed study of Sturm-Liouville differ-
ential operators; this study seems to be the first extended account of the proper-
ties of Sturm-Liouville differential operators in Hilbert function spaces, under the
Lebesgue minimal conditions on the coefficients of the differential equation.

In respect of the standard form of the Sturm-Liouville differential equation
given in Section 3 above, see (3.3), the conditions adopted in [20, Chapter X,
Section 3] are:

(i) The open interval (a, b) ⊆ R is arbitrary, so that −∞ ≤ a < b ≤ +∞.
(ii) The coefficient w is restricted to w(x) = 1 for all x ∈ (a, b).
(iii) The coefficients p, q : (a, b)→ R and satisfy p−1, q ∈ L1

loc(a, b).
(iv) The Sturm-Liouville differential equation and operators are studied in the

Hilbert function space L2(a, b).

Thus the differential equation studied in [20, Chapter X, Section 3] is

−(p(x)y′(x))′ + q(x)y(x) = λy(x) for all x ∈ (a, b). (7.1)

Remark 7.1. Four remarks are important:

1. The general weight coefficient w, under the conditions of Section 3, can be
included in the differential equation to yield all the results in [20, Chapter
X, Section 3], with only some additional technical details to the proofs of
the stated lemmas and theorems; thus the Stone theory of Sturm-Liouville
differential operators applies to the general differential equation

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ (a, b), (7.2)

working now in the weighted Hilbert function space L2((a, b); w).

2. Stone in the 1932 book [20] makes only marginal reference to the results of
Weyl given in the 1910 paper [33]; in the following discussion of the Stone
results these two contributions to Sturm-Liouville theory are brought closer
together.

3. In his paper [33] of 1910 Weyl introduced his classification of the singular
endpoint as limit-point or limit-circle; this classification is replaced in the
Stone book [20] by the concept of the deficiency index of the minimal closed
symmetric operator in the Hilbert function space; reference is made to this
connection in some of the statements made below.

4. The spectral theory of self-adjoint operators is considered in detail in [20,
Chapter V, Section 5], and is based on the properties of the resolution of the
identity of the operator; although not discussed in the book [20] it can be
shown that the definition of the continuous spectrum (Streckenspektrum) in
the Weyl paper [33] is consistent with the definition of continuous spectrum
in the book, see [20, Chapter V, Section 5, Theorem 5.11].



Sturm-Liouville Theory 1900 to 1950 57

The main results from the Stone book, see [20, Chapter X, Section 3], are:

(a) Lemma 10.1: the existence theorem for solutions of the differential equation
(7.2) determined by initial conditions at any point c ∈ (a, b); this existence
result involves the requirement to use the quasi-derivative py′ in stating the
initial conditions for any solution.

(b) Theorem 10.11: this theorem defines and gives the essential properties of
the minimal and maximal differential operators in the Hilbert function space
L2(a, b), generated by the differential expression −(pf ′)′ + qf ; these defini-
tions involve the use of the bilinear form, from the Green’s formula for the
differential expression, to determine the domain of the minimal operator; the
minimal operator is closed and symmetric in L2(a, b) and its adjoint opera-
tor is the maximal operator; the entries in the deficiency index (m, m) of the
minimal operator are equal, since this operator is real in L2(a, b), and take
the values m = 0, 1 or 2.

(c) Theorem 10.15: this theorem considers the special case of Theorem 10.11
when one endpoint of the interval, say a, satisfies a ∈ R and the coefficients
then satisfy p−1, q ∈ L1

loc[a, b), i.e., this is the case when one endpoint is
regular; the maximal operator is then defined as before; the domain of the
minimal operator consists of all elements f of the maximal domain satisfying
the boundary conditions

f(a) = 0 and (pf ′)(a) = 0, (7.3)

in addition to a boundary condition at the endpoint b; again the minimal
operator is closed and symmetric in L2(a, b) and its adjoint operator is the
maximal operator; the entries in the deficiency index (m, m), in L2(a, b), of
the minimal operator are equal since this operator is real in L2(a, b), and
take the values m = 1 or 2. This case is equivalent to the singular problem
considered in the 1910 paper [33] of Weyl; the connection here is that the
deficiency index (1, 1) is equivalent to the Weyl limit-point case, and the
deficiency index (2, 2) is equivalent to the Weyl limit-circle case.

(d) Theorem 10.16: this theorem considers the properties of the Sturm-Liouville
differential operators in the special case of Theorem 10.15, when it is assumed
that the deficiency index is (1, 1); this is the limit-point case as defined and
considered in the Weyl paper [33].

(e) Theorem 10.17: this theorem considers the properties of the Sturm-Liouville
differential operators in the special case of Theorem 10.15, when it is assumed
that the deficiency index is (2, 2); this is the limit-circle case as defined and
considered in the Weyl paper [33].

(f) Theorem 10.18: this theorem considers properties of self-adjoint Sturm-Liou-
ville differential operators when the interval (a, b) is bounded and the co-
efficients then satisfy p−1, q ∈ L1

loc[a, b], i.e., the so-called regular case of
Sturm-Liouville theory; here the deficiency index of the minimal closed sym-
metric operator is (2, 2); the results of this theorem show how to construct
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the domains of all self-adjoint extensions of this minimal operator by im-
posing symmetric, separated or coupled boundary conditions, at the regular
endpoints a and b, on elements of the domain of the maximal operator.

(g) Theorem 10.19: this theorem returns to the case of the general theorem given
above as Theorem 10.11, but when the deficiency index is (2, 2); it is re-
marked that this assumption on the index is equivalent to assuming that for
some λ ∈ C the Sturm-Liouville differential equation (7.1) has all solutions
in the space L2(a, b) (this solution property then holds for all λ ∈ C); this
condition is equivalent to assuming that the differential equation is in the
limit-circle case at both endpoints a and b; the results show how to construct
the resolvent operator of any self-adjoint extension of the minimal operator,
which resolvent is shown to be a Hilbert-Schmidt integral operator in the
space L2(a, b); the point spectrum of this self-adjoint extension is a denumer-
able infinite point set, with no finite accumulation point; these points are the
eigenvalues of the operator, none of which has multiplicity greater than 2;
the continuous spectrum of this self-adjoint operator is empty.

(h) Theorem 10.20: this theorem returns to the case of the general theorem given
above as Theorem 10.11, but when the deficiency index is (1, 1); if the point
c ∈ (a, b), then this index situation can arise when one only of the following
two cases holds:

1. the deficiency index in the space L2(a, c) for the interval (a, c] is (2, 2),
and the deficiency index in the space L2(c, b) for the interval [c, b) is (1, 1)

2. the deficiency index in the space L2(a, c) for the interval (a, c] is (1, 1),
and the deficiency index in the space L2(c, b) for the interval [c, b) is
(2, 2).

Self-adjoint extensions of the minimal operator, in these circumstances, may
have eigenvalues but only of multiplicity 1; the continuous spectrum of such
a self-adjoint operator need not be empty.

(i) Theorem 10.21: this theorem returns to the case of the general theorem given
above as Theorem 10.11, but when the deficiency index is (0, 0); if the point
c ∈ (a, b), then this index situation can arise only when the deficiency index in
the space L2(a, c) for the interval (a, c] is (1, 1), and the deficiency index in the
space L2(c, b) for the interval [c, b) is (1, 1), i.e., when the differential equation
is in the limit-point case at both endpoints a and b. Self-adjoint extensions
of the minimal operator, in these circumstances, may have eigenvalues but
only of multiplicity 1, and the continuous spectrum may not be empty.

8. E.C. Titchmarsh and the papers from 1939

The Titchmarsh contributions to Sturm-Liouville theory began about 1938 and
concerned the analytic properties of the differential equation

−y′′(x) + q(x)y(x) = λy(x) for all x ∈ [0,∞) (8.1)
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under the coefficient conditions
(i) q : [0,∞)→ R
(ii) q is continuous on [0,∞)
(iii) the spectral parameter λ ∈ C.

This is a special case of the general Sturm-Liouville differential equation (3.3);
however, as in the work of both Weyl and Stone some, but not all, of the Titch-
marsh analysis extends to this general form of the equation, and to the case when
the coefficients p, q, w satisfy the local integrability conditions given in Section 3.

Both the regular and singular cases of Sturm-Liouville boundary value prob-
lems are considered in the Titchmarsh literature; for the requirements of this
present paper the three 1941 contributions [26], [27] and [28] are significant; for
the consolidated results from Titchmarsh in Sturm-Liouville theory see the second
edition of the volume Eigenfunction expansions I, [30], and the relevant chapter
in the volume Eigenfunction expansions II, [31, Chapter XX].

The main thrust of the Titchmarsh method is to apply the extensive theory
of functions of a single complex variable to the study of Sturm-Liouville boundary
value problems; in the singular case this method involves the existence proof of
the complex analytic form of the Weyl integrable-square solution of the differen-
tial equation (8.1). This proof of the basic Titchmarsh result dates from 1941,
introduces the m-coefficient as a Nevanlinna (Herglotz, Pick, Riesz) analytic func-
tion which plays such a significant part in the eigenfunction expansion theory
of singular Sturm-Liouville boundary value problems. This structure of the Weyl
integrable-square solution enables the definition of the Titchmarsh resolvent func-
tion Φ and this step leads to the classical proof of the eigenfunction expansion
theorem by contour integration in the complex λ-plane.

8.1. The regular case

The regular Sturm-Liouville case concerns the differential equation (8.1) when
considered on a compact interval [a, b]

−y′′(x) + q(x)y(x) = λy(x) for all x ∈ [a, b] (8.2)

see [30, Chapter I, Section 1.5]. The starting point is the existence of a solution
ϕ : [a, b]× C→ C determined by the initial conditions, for some α ∈ [0, π),

ϕ(a, λ) = sin(α) ϕ′(a, λ) = − cos(α) for all λ ∈ C; (8.3)

it follows that ϕ(x, ·) ∈ H for all x ∈ [a, b]. Similarly for the solution χ determined,
for some β ∈ [0, π), by

χ(b, λ) = sin(β) χ′(b, λ) = − cos(β) for all λ ∈ C. (8.4)

Then the boundary value problem determined by the equation (8.2) and the sep-
arated boundary conditions, see [30, Chapter V, Section 5.3],

y(a) cos(α) + y′(a) sin(α) = 0 (8.5)

y(b) cos(β) + y′(b) sin(β) = 0 (8.6)
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has a discrete, simple, real spectrum with eigenvalues {λn : n ∈ N0} determined
by the zeros of the entire function ω ∈ H, where

ω(λ) := W (χ, ϕ)(λ). (8.7)

Here W (χ, ϕ) is the Wronskian of the solutions ϕ and χ which is independent of
the variable x ∈ [a, b].

For any zero λ of ω the solutions ϕ(·, λ) and χ(·, λ) are linearly dependent
and so there exists a real number k �= 0 such that

χ(x, λ) = kϕ(x, λ) for all x ∈ [a, b]. (8.8)

The zeros of ω are all real, see [30, Chapter I, Section 1.8].
It then follows that

0 �= k

∫ b

a

ϕ(x, λ)2 dx = ω′(λ) (8.9)

so that all the zeros of ω are not only real but also simple. (At this stage it is
interesting to return to the original paper [24] of Sturm and Liouville; this last
result echoes the earlier result given above in Section 2, see (2.5).)

The asymptotic properties of the solutions ϕ and χ, for fixed x and large
values of |λ|, show that ω is an entire function on C which is of order 1/2, see [30,
Chapter I, Section 1.7]; this implies that ω has a denumerable number of zeros,
see [25, Chapter VIII, Section 8.6]; let these zeros (eigenvalues) be denoted by
{λn : n ∈ N0}.

The resolvent function Φ : [a, b]× C× L2(a, b)→ C is defined by

Φ(x, λ; f) :=
χ(x, λ)
ω(λ)

∫ x

a

ϕ(t, λ)f(t) dt +
ϕ(x, λ)
ω(λ)

∫ b

x

χ(t, λ)f(t) dt. (8.10)

From this definition it follows that, for almost all x ∈ [a, b],

−Φ′′(x, λ; f) + q(x)Φ(x, λ; f) = λΦ(x, λ; f) + f(x) (8.11)

and that Φ(·, λ; f) satisfies the boundary conditions (8.5) and (8.6) at the endpoints
a and b.

For x ∈ [a, b] and f ∈ L2(a, b), the resolvent Φ(x, ·; f) is a Cauchy analytic
function, regular on C\{λn : n ∈ N0}, with simple poles at the eigenvalues {λn :
n ∈ N0}. With the corresponding values of k in (8.8) given by {kn : n ∈ N0}, the
residues are

kn

ω′(λn)
ϕ(x, λn)

∫ b

a

ϕ(t, λn)f(t) dt. (8.12)

If now the function Φ(x, ·; f) is integrated around a closed contour ΓN in the
complex plane which avoids any of the zeros of ω but contains the finite number
of eigenvalues {λn : n = 0, 1, 2, . . . , N}, then the Cauchy calculus of residues gives

1
2πi

∫
ΓN

Φ(x, λ; f) dλ =
N∑

n=0

kn

ω′(λn)
ϕ(x, λn)

∫ b

a

ϕ(t, λn)f(t) dt. (8.13)
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The sequence of contours {ΓN : N ∈ N0} is then chosen so to extend to
infinity over the complex plane; an argument based on the asymptotic properties
of the solutions ϕ and χ then shows that, for suitable conditions on the function
f ∈ L2(a, b) and for certain values of the variable x ∈ [a, b],

lim
N→∞

1
2πi

∫
ΓN

Φ(x, λ; f) dλ = f(x). (8.14)

Formally then this argument gives the classical eigenfunction expansion for
regular Sturm-Liouville boundary value problems, see [30, Chapter I, Section 1.6,
(1.6.5)],

f(x) =
∞∑

n=0

kn

ω′(λn)
ϕ(x, λn)

∫ b

a

ϕ(t, λn)f(t) dt, (8.15)

or

f(x) =
∞∑

n=0

ψn(x)
∫ b

a

ψn(t)f(t) dt (8.16)

where, for each n ∈ N, ψn is the real-valued normalized eigenfunction

[kn/ω′(λn)]1/2
ϕ(·, λn),

using (8.9).
In [30, Chapter I, Theorem 1.9] Titchmarsh shows how these formal results

can be made rigorous to prove that:
1. The infinite series of eigenfunctions (8.16) converges in the topology of C to

f(x), under Fourier type convergence conditions on the function f .
2. The normal orthogonal set of eigenfunctions {ψn : n ∈ N0} is complete in

the Hilbert function space L2(a, b).
3. If given the element f ∈ L2(a, b) the generalized Fourier coefficients {cn : n ∈

N0) are defined by

cn :=
∫ b

a

ψn(x)f(x) dx for all n ∈ N0 (8.17)

then the Parseval identity holds∫ b

a

|f(x)|2 dx =
∞∑

n=0

|cn|2 . (8.18)

Remark 8.1. Two remarks are important:
1. The use of complex variable techniques in [30, Chapter I] illustrates the use

of classical analysis to study this regular Sturm-Liouville boundary value
problem, without resource to operator theoretic methods; note that there is
no mention of the underlying self-adjoint operator in the Hilbert function
space L2(a, b) although the completeness of the eigenfunctions in L2(a, b)
is established. Moreover the methods used enable a proof of the pointwise
eigenfunction expansion on the interval (a, b) of a function f ∈ L2(a, b),
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subject to f satisfying the same conditions that give direct convergence, i.e.,
convergence in C, of the classical Fourier series.

2. However, it has to be accepted that these complex variable methods do not
extend to the analysis of the general regular Sturm-Liouville differential equa-
tion

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ [a, b] (8.19)

when the minimal coefficient conditions p−1, q, w ∈ L1(a, b) only are satisfied.
In general, with these conditions, it is impossible to apply the transforma-
tion, known as the Liouville transformation, to reduce the equation (8.19) to
the Titchmarsh form (8.2); the coefficient p may change sign essentially on
the compact interval [a, b], and all three coefficients may be unbounded at
endpoints and interior points of this interval.

Moreover, whilst the corresponding solutions ϕ and χ and their Wron-
skian ω have the same holomorphic properties on C, it is impossible, in gen-
eral, to obtain similar asymptotic properties of these functions for large val-
ues of |λ|; however, the reality of the eigenvalues and the orthogonality of the
eigenfunctions can be established. The resolvent function Φ is defined in the
same manner, and formal results such as (8.15) and (8.16) follow as above.

8.2. The singular case

For the singular case we return to the differential equation (8.1), to be studied in
the Hilbert function space L2(0,∞),

−y′′(x) + q(x)y(x) = λy(x) for all x ∈ [0,∞) (8.20)

with the given conditions on the coefficient q. Note that if y is a solution of this
equation then y, y′, y′′ are all continuous on the interval [0,∞).

The main problem of extending the Titchmarsh analysis of the regular case
to the singular case is to find the equivalent of the boundary function χ; in general
there is no method to use a boundary condition at the singular endpoint +∞ in
order to determine such a solution as χ; however such an extension is essential to
defining a resolvent function Φ for the singular case.

This problem was resolved by Titchmarsh by using:

1. The existence of the Weyl integrable-square solution of the equation (8.20)
for complex values of the parameter λ, see [33, Chapter I, Theorem 2] and
item (b) of Section 5 above.

2. The definition of the m-coefficient to give a complex analytic structure to
this Weyl solution.

The relevant Titchmarsh work for this programme is to be found in the three
1941 papers [26], [27] and [28]. In the original notation the l-coefficient is introduced
in [26, Section 2]; the analytic properties of this coefficient are given in [26, Section
5], noting the use that is made of the Vitali convergence theorem. However this
original l-coefficient notation was later altered to the present m-coefficient notation
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in the first edition of Eigenfunction Expansions I, see [29, Chapters II and III],
and the second edition [30, Chapters II and III].

Let the solutions θ, ϕ : [0,∞) × C → C of (8.20) be defined by the initial
conditions, for some α ∈ [0, π),{

θ(0, λ) = cos(α) θ′(0, λ) = sin(α)
ϕ(0, λ) = − sin(α) ϕ′(0, λ) = cos(α) (8.21)

and for all λ ∈ C. Then the pair θ, ϕ forms a basis for solutions of (8.20), for all
λ ∈ C, and θ(x, ·), θ′(x, ·), ϕ(x, ·), ϕ′(x, ·) are all entire (integral) functions on C,
for all x ∈ [0,∞). Note that this definition of the initial values of the pair θ, ϕ at
0 yields the Wronskian condition, for all x ∈ [0,∞) and λ ∈ C,

W (θ, ϕ)(x, λ) ≡ θ(x, λ)ϕ′(x, λ) − θ′(x, λ)ϕ(x, λ) = 1; (8.22)

this sign convention differs from the Titchmarsh convention of the Wronskian given
in [30, Chapter II, Section 2.1, (2.1.4)]; this change is to adopt the now standard
sign convention for the m-coefficient as a Nevanlinna analytic function, see item
(iii) below.

Weyl, see [33], proved that either

(i) in the limit-point case

θ(·, λ) /∈ L2(0,∞) and ϕ(·, λ) /∈ L2(0,∞) for all λ ∈ C \ R (8.23)

or

(ii) in the limit-circle case

θ(·, λ) ∈ L2(0,∞) and ϕ(·, λ) ∈ L2(0,∞) for all λ ∈ C. (8.24)

In both cases Titchmarsh showed, see [26] and later in [30, Chapter II, Sec-
tions 2.1 and 2.2], that there exists at least one analytic function (the m-coefficient)
with the properties (note the sign change that has been effected from the formulae
in [30, Chapter II, Sections 2.1 and 2.2], see (8.22) above):

(i) m is regular on C \ R
(ii) m(λ) = m(λ) for all λ ∈ C \ R
(iii) Im(m(λ)) > 0 for all λ with Im(λ) > 0;

Im(m(λ)) < 0 for all λ with Im(λ) < 0
(iv) the analytic function m(·) considered in the upper half plane

C+ := {λ ∈ C : Im(λ) > 0}

of C may or may not have a continuation into the lower half plane

C− := {λ ∈ C : Im(λ) < 0}

of C; if it does so continue the continuation may or may not be the analytic
function m(·) in the lower half plane C−
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(v) the solution ψ(·, λ) of the equation (8.20) defined by

ψ(x, λ) := θ(x, λ) + m(λ)ϕ(x, λ) for all x ∈ [0,∞) and all λ ∈ C \ R (8.25)

satisfies ∫ ∞

0

|ψ(x, λ)|2 dx =
Im(m(λ))

Im(λ)
< +∞ for all λ ∈ C \ R. (8.26)

The existence of this solution ψ, and the analytic m-coefficient are funda-
mental to the Titchmarsh eigenfunction analysis as developed in the text [30]. The
existence proofs so concerned involve the introduction of the Weyl circle method,
see [33, Chapter I, Theorem 1], but with the additional use of complex function
theory, see [30, Chapter II, Sections 2.1 and 2.2].

For the m-coefficient the following cases occur, see [30, Chapter II, Section 2.1],

1. If the differential equation (8.20) is in the limit-point case at the singular
endpoint +∞ then for each choice of the boundary condition parameter α ∈
[0, π) there is a unique m-coefficient, which depends upon α, with the above
properties; for all λ ∈ C \ R the unique value m(λ) is the limit-point of the
circles for that value of λ.

2. If the differential equation (8.20) is in the limit-circle case at the singular
endpoint +∞ then for each choice of the boundary condition parameter α ∈
[0, π) there is a continuum of m-coefficients, each continuum depending upon
α; the determination of any particular m-coefficient depends upon the limit-
circle process, but see the application of the Vitali convergence theorem in
[30, Chapter II, Section 2.2].

Although not part of the Titchmarsh theory it is well to remark that the
properties (i), (ii) and (iii) above imply that the analytic coefficient m(·) is a
Nevanlinna (Herglotz, Pick, Riesz) function and so has a representation of the
form, see [1, Chapter 6, Section 69, Theorem 2], where γ, δ ∈ R with δ ≥ 0,

m(λ) = γ + δλ +
∫ +∞

−∞

{
1

t− λ
− t

t2 + 1

}
dρ(t) for all λ ∈ C \ R. (8.27)

Here the function ρ : R → R is monotonic non-decreasing on R and satisfies the
growth restriction ∫ +∞

−∞

1
1 + t2

dρ(t) < +∞; (8.28)

this function ρ is the spectral function for the m-coefficient. The integrals in (8.27)
and (8.28) are best interpreted as Lebesgue-Stieltjes integrals with the symbol ρ
representing a Borel measure.

The resolvent function Φ : [0,∞)× C \R× L2(0,∞) is now defined by

Φ(x, λ; f) := ψ(x, λ)
∫ x

0

ϕ(t, λ)f(t) dt + ϕ(x, λ)
∫ ∞

x

ψ(t, λ)f(t) dt. (8.29)
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The Sturm-Liouville boundary value problem considered by Titchmarsh in
the singular case is best formulated by requiring that any solution y of the dif-
ferential equation (8.20) is to satisfy the following conditions, see [30, Chapter II,
Section 2.7, Theorem 2.7 (i)],⎧⎨⎩

(i) y ∈ L2(0,∞)
(ii) W (y, ϕ)(0) ≡ y(0) cos(α) + y′(0) sin(α) = 0
(iii) limx→∞ W (y, ψ(·, λ))(x) = 0 for all λ ∈ C \ R.

(8.30)

The condition (iii) is the required boundary condition at the singular endpoint
+∞; it was introduced by Weyl in 1910, see [33, Chapter II, Section 8, (41)],
and later by Titchmarsh in 1941, [26, Section 6, (6.2)]; this form of boundary
condition heralded the introduction of structured boundary conditions for classical
and quasi-differential operators, see [1, Appendix 2, Section 127, Theorem 2] and
[17, Chapter V, Section 18.1, Theorem 4].

As in the regular case, see (8.10), the resolvent function Φ of (8.29) satisfies
the boundary conditions (8.30); see [30, Chapter II, Sections 2.8 and 2.9].

The Titchmarsh eigenfunction expansion for the singular Sturm-Liouville
boundary value problem (8.20) and (8.30) is considered in two separate cases;
the series case when it is assumed that the m-coefficient is meromorphic on C, see
[30, Chapter II], and the general case in [30, Chapter III].

These two cases both concern the situation when the interval for the differen-
tial equation (8.20) is the closed half-line [0,∞); for both the series and general case
Titchmarsh also considers expansion theorems when the interval is the whole real
line (−∞,∞), see [30, Chapter II, Section 2.18] and [30, Chapter III, Section 3.8].

8.2.1. The singular case: series expansion. In this case there is a significant addi-
tional assumption in that, given α ∈ [0,∞), the m-coefficient is assumed to be a
meromorphic analytic function on the complex λ-plane C; this property for m can
arise in the limit-point case (for an example see [30, Chapter IV, Section 4.12]); it
is always satisfied in the limit-circle case, see [30, Chapter V, Section 5.12].

Suppose that m has a denumerable set of poles at the points {λn : n ∈ N0};
then λn ∈ R for all n ∈ N0; it is shown in [30, Chapter II, Section 2.2] that all these
poles are simple; let the residue of m at λn be rn for all n ∈ N0. The analysis in
[30, Chapter II, Section 2.5] shows that if the sequence of functions {ψn : n ∈ N0}
is defined by

ψn(x) := |rn|1/2
ϕ(x, λn) for all x ∈ [0,∞) and n ∈ N0, (8.31)

then {ψn : n ∈ N0} is a normal orthogonal set in the space L2(0,∞). From
this result it follows that, see [30, Chapter II, Section 2.6], the resolvent function
Φ(x, ·; f) is meromorphic on the complex plane C, with simple poles at the points
{λn : n ∈ N0}; the residue at the pole λn is

rnϕ(x, λn)
∫ ∞

0

ϕ(t, λn)f(t) dt = ψn(x)
∫ ∞

0

ψn(t)f(t) dt = cnψn(x), (8.32)
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where, given f ∈ L2(0,∞), the generalized Fourier coefficients {cn : n ∈ N0} are
defined by

cn :=
∫ ∞

0

ψn(t)f(t) dt for all n ∈ N0.

It is now possible to prove, following the analysis in [30, Chapter II, Section
2.6], that the solution ϕ(·, λn) of the differential equation (8.20), with λ = λn,
satisfies the boundary conditions (8.30); this λn is an eigenvalue of the singular
Sturm-Liouville boundary value problem (8.20) and (8.30), and ϕ(·, λn) is the
associated eigenfunction.

The Titchmarsh analysis, see [30, Chapter II, Section 2.7], now continues to
prove that if f : [0,∞)→ C satisfies the conditions⎧⎪⎪⎨⎪⎪⎩

(i) f, f ′ ∈ ACloc[0,∞)
(ii) f, f ′′ − qf ∈ L2(0,∞)
(iii) W (f, ϕ)(0) ≡ f(0) cos(α) + f ′(0) sin(α) = 0
(iv) limx→∞ W (f, ψ(·, λ))(x) = 0 for all λ ∈ C \ R

(8.33)

then

f(x) =
∞∑

n=0

cnψn(x) for all x ∈ [0,∞), (8.34)

where the infinite series converges absolutely for all x ∈ [0;∞) and is locally
uniformly convergent on [0,∞).

Further analysis then shows that for any element f ∈ L2(0,∞) we have the
Parseval identity ∫ ∞

0

|f(x)|2 dx =
∞∑

n=0

|cn|2 . (8.35)

These last results represent the classical solution to the singular Sturm-
Liouville boundary value problem determined by the differential equation (8.20)
and the boundary conditions (8.30).

Remark 8.2. The Parseval identity (8.35) shows that the normal orthogonal set
{ψn : n ∈ N0} is complete in the Hilbert function space L2(0,∞); this result
implies that the meromorphic m does have a denumerable number of poles on the
real line R; this property was assumed to hold at the beginning of Section 8.2.1.

8.2.2. The singular case: the general expansion. Let all the previous definitions
concerning the solutions θ and ϕ of the equation (8.20) and initial conditions (8.21)
hold; let an m-coefficient be chosen, which implies that the properties (8.25) and
(8.26) are satisfied.

To consider the general singular case, i.e., when no additional assumptions
are made on the m-coefficient, Titchmarsh introduced the k function; originally
this function was defined in the 1941 paper [27, Section 4] but here quoted from
[30, Chapter III, Section 3.3, Lemma 3.3].



Sturm-Liouville Theory 1900 to 1950 67

Let k : R → R be defined by (again there is a sign change from the original
definition)

k(t) := lim
δ→0+

∫ t

0

Im(m(u + iδ)) du for all t ∈ R. (8.36)

The analysis in [30, Chapter III, Section 3.3] shows that this limit exists for all
t ∈ R and that k is a non-decreasing function on R which satisfies

k(t) = 1
2{k(t + 0) + k(t− 0)} for all t ∈ R. (8.37)

The function k defines a non-negative Borel measure on the real line R to give the
Lebesgue-Stieltjes integrable-square space L2(R; k(·)) with elements

F : (−∞, +∞)→ C

satisfying ∫
(−∞,+∞)

|F (t)|2 dk(t) < +∞.

To obtain the eigenfunction expansion of any element f ∈ L2(0,∞) Titch-
marsh gives the following definitions and properties, see [30, Chapter III, Sections
3.4 to 3.6],

1. Let χ : [0,∞)× (−∞, +∞)→ R be defined by the Lebesgue-Stieltjes integral

χ(x, t) :=
∫

[0,t]

ϕ(x, s) dk(s) for all x ∈ [0,∞) and t ∈ (−∞, +∞); (8.38)

then

χ(·, t) ∈ L2(0,∞) for all t ∈ (−∞, +∞). (8.39)

2. Given f ∈ L2(0,∞) let F : (−∞, +∞)→ R be defined by

F(t) :=
∫ ∞

0

χ(x, t)f(x) dx for all t ∈ (−∞, +∞); (8.40)

then it can be shown that F ∈ BVloc(−∞, +∞), the space of complex-valued
functions, defined on R, which are of bounded variation on all compact in-
tervals of R.

3. Now let f additionally satisfy the boundary conditions (8.33); then

f(x) =
1
π

∫
(−∞,+∞)

ϕ(x, t) dF(t) for all x ∈ [0,∞) (8.41)

where the integral is taken in the sense of Lebesgue-Stieltjes and so is abso-
lutely convergent for all x ∈ [0,∞).
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The result (8.41) is then the general singular Sturm-Liouville eigenfunction
expansion for the Titchmarsh differential equation (8.20) when the function f
satisfies the boundary conditions (8.33).

In [30, Chapter III, Section 3.7] Titchmarsh gives the Parseval identity for
this eigenfunction expansion:

1. Let f ∈ L2(0,∞); then the sequence of functions {Fn : n ∈ N0}, where

Fn : (−∞, +∞)→ C,

is defined by

Fn(t) :=
∫ n

0

ϕ(x, t)f(x) dx for all t ∈ (−∞, +∞). (8.42)

2. Then it may be shown that Fn ∈ L2(R; k(·)) for all n ∈ N0, that the sequence
{Fn : n ∈ N0} converges in mean to, say, F ∈ L2(R; k(·)) in this space, and∫ ∞

0

|f(x)|2 dx =
∫

(−∞,+∞)

|F (t)|2 dk(t). (8.43)

9. The Titchmarsh-Weyl contributions

In this section we review some aspects of the Weyl and Titchmarsh contributions
to the development of Sturm-Liouville boundary value problems in the years 1900
to 1950.

9.1. The regular case

From the viewpoint of classical analysis the Titchmarsh theory of the regular case,
see [30, Chapter I] is still a significant contribution to Sturm-Liouville theory.
The spectrum of the boundary value problem is proved to be discrete with a
denumerable number of eigenvalues, the eigenfunctions are complete in the Hilbert
space L2(a, b), and the Parseval identity is established. Of course, all these results
also follow from the properties of the associated self-adjoint operators in L2(a, b),
see again [20, Chapter X, Section 3, Theorem 10.18].

However, the additional contribution in [30, Chapter I, Section 1.9, Theorem
1.9] is that of the pointwise convergence result of the eigenfunction expansion under
Fourier type conditions on the function f ∈ L2(a, b), as in the classical theory of
Fourier series. Such results are not in general possible using the operator methods
of Sturm-Liouville theory.

In the Titchmarsh theory with the differential equation

−y′′(x) + q(x)y(x) = λy(x) for all x ∈ [a, b],

the coefficient q is required to be continuous; however, this condition can be relaxed
to q ∈ L1(a, b) to achieve the same results.
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9.2. The singular case: general remarks

We make the following general remarks on the singular Sturm-Liouville case as to
be seen in the work of Weyl and Titchmarsh up to the year 1950.

9.2.1. Pointwise convergence theorems. The eigenfunction expansions as envis-
aged originally by Sturm and Liouville [24], and later developed by Weyl [33],
Dixon [5] and Titchmarsh [30] are all modelled on the classical theory of Fourier
series.

The pointwise convergence, in C, for a function f : [0, 2π) → C in Fourier
series is given in detail in [25, Chapter XIII, Section 8.2]; in addition to starting
with f ∈ L1(0, 2π) some form of smoothness on f is required. However, if f ∈
L2(0, 2π) then convergence in this space requires no additional restrictions on f ;
the main tool here is the Bessel inequality; the expansion result is seen in the form
of the Parseval identity, see [25, Chapter XIII, Section 13.6].

The original problem of Sturm and Liouville [24] in 1837 was to consider
pointwise convergence, as viewed at that time, of the series of solution functions.
The Weyl paper of 1910 [33] considers both pointwise and L2 convergence; the
Dixon paper of 1912 [5] considers only some form of pointwise convergence; of
course, in both these theories the concept of convergence has been made rigorous.

The Titchmarsh theory, as now gathered together in the text [30], is influ-
enced throughout by classical Fourier theory. In both the regular and singular
cases we have:

(i) direct or pointwise convergence of the eigenfunction expansion requiring some
form of second derivative integrability on the function f , in addition to the
initial requirement that f ∈ L2(a, b) or L2(0,∞)

(ii) integrable-square convergence involving only that f ∈ L2(a, b) or L2(0,∞)
where the main methods are in obtaining the Bessel inequality and, in par-
ticular, the Parseval identity.

There are additional pointwise convergence results under Fourier conditions
in [30, Chapter IX]; these results relax the conditions on the function f but require
additional constraints on the coefficient q.

For the Stone book [20] the only convergence considered is that involved with
abstract Hilbert space theory; there are no pointwise convergence results.

9.2.2. Operator theory. The theory of Sturm-Liouville differential operators is
fully developed in the Stone treatise [20, Chapter X, Section 3]; see Section 7
above.

There are interesting connections between this operator theory and some of
the classical convergence results in the work of Weyl [33] and Titchmarsh [30].

In [33] the two main pointwise expansion theorems are [33, Chapter II, The-
orem II] and [33, Chapter III, Theorem 7]. In both theorems the domains of func-
tions in the space L2(0,∞) for which the expansion results are valid are virtually
the domains of the corresponding self-adjoint operators in the Stone theory, see
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respectively the statements of the theorems [20, Chapter X, Section 3, Theorem
10.17] and [20, Chapter X, Section 3, Theorem 10.16].

These remarks also apply, respectively, to the Titchmarsh expansion results
given above in Section 8.2.1 and 8.2.2; the set of functions (8.33) for which these
expansions are valid are, in effect, the domains of the corresponding Stone self-
adjoint differential operators.

In general, well-posed Sturm-Liouville boundary value problems generate self-
adjoint differential operators in L2(a, b) for which the generalized Parseval identity
holds. However, if a pointwise expansion theorem is required for the same boundary
value problem, then the function in L2(a, b), to be expanded, has to satisfy addi-
tional smoothness conditions equivalent to the function belonging to the domain
of the corresponding self-adjoint differential operator.

In one respect Titchmarsh came much closer to the operator theory than
did Weyl. The Titchmarsh k function, see the definition in (8.36), introduces the
Lebesgue-Stieltjes Hilbert function space L2(R; k(·)). Now the canonical form of
the self-adjoint Stone differential operator in L2(a, b) is simply the self-adjoint
multiplication operator in L2(R; k(·)); these two self-adjoint operators are unitar-
ily equivalent and so the spectrum of the Sturm-Liouville operator can be read off
from the jump and continuity properties of the monotonic non-decreasing func-
tion k. Although, seemingly, Titchmarsh was not aware of this operator theoretic
connection, he successfully defines the spectrum of his singular Sturm-Liouville
boundary value problem in terms of the k function, see [30, Chapter III, Section
3.9] and Section 9.2.3 below.

9.2.3. The spectrum. The definition of the spectrum of singular Sturm-Liouville
boundary value problems is best seen from the operator theoretic viewpoint; for
self-adjoint operators this definition concerns the resolution of the identity of the
operator, see [20, Chapter V, Section 5, Definition 5.2 and Theorem 5.11].

From the classical viewpoint, such as is involved with the results and work
of Weyl and Titchmarsh, the definitions are equivalent to the operator theoretic
definitions but this statement has to be justified analytically. It should be remem-
bered that Weyl, see [33, Chapter III] and items (g) and (h) of Section 5 above,
formulated his definitions some twenty years before the Hilbert space definitions
were in place. In the case of Titchmarsh, seemingly, he framed his definition of
the spectrum of his Sturm-Liouville boundary value problems, see [30, Chapter
III, Section 3.9], solely in analytical terms of his k function, as derived from the
m-coefficient.

In the case of the Weyl definition of the spectrum the connection with the
operator theoretic definition is given by Hellwig, see [9, Chapter 10, Sections 10.4
and 10.5]

As mentioned above, the Titchmarsh definition of the spectrum is made in
terms of the monotonic non-decreasing function k; see [30, Chapter III, Section 3.9].

Given a singular Sturm-Liouville boundary value problem as discussed in
Section 8.2.2 above, let the function k be defined as in (8.36). If k is constant
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over any open interval of R then it follows from the formulae (8.38) and (8.40)
that this open interval makes no contribution to the expansion formula (8.41). The
spectrum of the boundary value problem is then defined as the complement in the
real line R of the set of all such open intervals of constancy of the function k. Thus
the spectrum of the boundary value problem is a closed subset of the real line R.

Points of R being being points of discontinuity of k belong to the spectrum
and represent the eigenvalues of the boundary value problem; points of continuity
but where k is increasing are in the continuous spectrum; also the limit points of
these two sets are in the spectrum.

The connection between the Titchmarsh definition and the operator theory
definition of the spectrum is best considered in terms of the self-adjoint multi-
plication operator in the Hilbert space L2(R; k(·)); see the remarks in the last
paragraph of Section 9.2.2 above.

The Titchmarsh definition of the spectrum can also be made in terms of
the properties of the m-coefficient on the real line R of the complex plane C. For
the definitions concerned and the connection with the spectrum defined by the k
function see the paper by Chaudhuri and Everitt [3].

Finally, the Titchmarsh spectral properties can be determined, or defined,
from the spectral function ρ of the m-coefficient, see (8.27). There is a connection
between the Titchmarsh k function and the Nevanlinna ρ function

k(t) = πρ(t) for all t ∈ R;

see [30, Chapter VI, Section 6.7, (6.7.5)], so that spectral properties may be de-
duced equally well from k as from ρ.

10. Aftermath

From 1950 onwards all these properties and results of the Sturm-Liouville differ-
ential equations and boundary value problems formed the basis of the spectral
theory of ordinary and quasi-differential equations, and the associated differential
operators, of arbitrary integer order with real and complex coefficients.

For some details of the progress made in the study of Sturm-Liouville differ-
ential equations and boundary value problems, following soon after the years 1900
to 1950, see the texts of Akhiezer and Glazman [1, Appendix 2], Naimark [17],
Glazman [7] and Coddington and Levinson [4], and the papers by Kodaira [14]
and [15]. For a new proof of the expansion theorem for Sturm-Liouville equations,
see the article by Bennewitz and Everitt in this volume.

For a final word from Hermann Weyl see his epilogue [35] written in 1950.
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12. Salute

When Charles Sturm died in 1855 Liouville said, at the side of the grave,

“Adieu, Sturm, Adieu”.
At my lecture to the Sturm Bicentennial meeting at the University of Geneva,

in September 2003, I finished with the words

“Merci, Sturm-Liouville, Merci Bien”.
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edited by J. Weidmann, Springer, Heidelberg, 1976.

[14] K. Kodaira, Eigenvalue problems for ordinary differential equations of the second
order and Heisenberg’s theory of S-matrices, Amer. J. Math. 71 (1949), 921–945.

[15] K. Kodaira, On ordinary differential equations of any even order and the correspond-
ing eigenfunction expansions, Amer. J. Math. 72 (1950), 502–544.

[16] J. Lützen, Sturm and Liouville’s work on ordinary linear differential equations. The
emergence of Sturm-Liouville theory, Arch. Hist. Exact Sci. 29 (1984), 309–376.

[17] M.A. Naimark, Linear differential operators II, Ungar Publishing Company, New
York, 1968.

[18] J. von Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren,
Math. Ann. 102 (1929), 49–131.

[19] D. Race, Limit-point and limit-circle: 1910-1970, M.Sc. thesis, University of Dundee,
Scotland, UK, 1976.

[20] M.H. Stone, Linear transformations in Hilbert space, American Mathematical Society
Colloquium Publications 15, American Mathematical Society, Providence, Rhode
Island, 1932.
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Spectral Theory of Sturm-Liouville Operators
Approximation by Regular Problems

Joachim Weidmann

Abstract. It is the aim of this article to present a brief overview of the theory
of Sturm-Liouville operators, self-adjointness and spectral theory: minimal
and maximal operators, Weyl’s alternative (limit point/limit circle case), de-
ficiency indices, self-adjoint realizations, spectral representation.

The main part of the lecture will be devoted to the method of proving
spectral results by approximating singular problems by regular problems: cal-
culation/approximation of the discrete spectrum as well as the study of the
absolutely continuous spectrum. For simplicity, most results will be presented
only for the case where one end point is regular, but they can be extended
to the general case, as well as to Dirac systems, to discrete operators, and
(partially) to ordinary differential operators of arbitrary order.

1. Introduction

We study self-adjoint operators generated by Sturm-Liouville differential expres-
sions

τf(x) =
1

r(x)

{
− (pf ′)′(x) + q(x)f(x)

}
in (a, b),−∞ ≤ a < b ≤ ∞

in the Hilbert space L2(a, b; r) with inner product 〈f, g〉 :=
∫ b

a f(x)g(x)r(x)dx.
We require the following minimal assumptions on the coefficients of τ :

– p, q, r are real-valued measurable functions on (a, b),
– p(x), r(x) > 0 almost everywhere in (a, b) (sometimes p is allowed to change

sign, but this changes the type of operators radically; therefore we will ignore
this case here),

– 1/p, q, r are locally integrable in (a, b).
A very special – but anyhow very interesting – case is (p = r = 1)

τf(x) = −f ′′(x) + q(x)f(x) in (a, b), −∞ ≤ a < b ≤ ∞. (1)
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The above assumptions reduce in this case to:

– q is a real-valued measurable function on (a, b),
– q is locally integrable on (a, b).

All interesting phenomena do occur in this special case (1); therefore in the liter-
ature often only this case is studied.

Many technical problems disappear if we assume in addition that p is con-
tinuously differentiable and that r and q are continuous in (a, b). In the special
case (1) it is reasonable (and in most cases sufficiently general) to assume that q
is locally square integrable on (a, b).

We say that τ is regular at a, if a > −∞ and the above assumptions hold in
[a, b) instead of (a, b). Similarly one defines regularity at b. τ is called regular if it
is regular at a and at b. τ is said to be singular at a (resp. b) if it is not regular at
a (resp. b); it is said to be singular if it is singular at a or at b.

Since in the general case p is not assumed to be continuous, τ is not a differ-
ential expression in the usual sense: (pf ′)′ cannot be written in the form p′f ′+pf ′′.
The expression pf ′ is sometimes called the first quasi derivative.

The “differential equation”

(τ − z)u = g (z ∈ C)

is transformed to the linear system of first order

Y ′(x) =
(

0 1/p(x)
q(x)− zr(x) 0

)
Y (x) + G(x),

where

Y (x) =
(

u(x)
pu′(x)

)
and G(x) =

(
0

−r(x)g(x)

)
.

Although the coefficients of this system are not continuous but only locally inte-
grable in (a, b), the usual existence and uniqueness for the corresponding initial
value problem hold (cf. J. Weidmann [19], Satz 13.2, or [17], Theorem 2.1).

This implies that, given g ∈ L2
loc(a, b; r), a fundamental system u1, u2 and a

c ∈ (a, b), all solutions f of (τ − z)u = g have the form

f(x) = c1u1(x) + c2u2(x)

+
1

W (u1, u2)

{
u1(x)

∫ x

c

u2(y)g(y)r(y)dy − u2(x)
∫ x

c

u1(y)g(y)r(y)dy
}

,

with cj ∈ C, where W (u1, u2) denotes the generalized Wronskian

W (u1, u2) := u1(x)pu′
2(x) − pu′

1(x)u2(x).

If τ is regular at a (resp. b) and g is L2 at a (resp. b), then c may be chosen to be
a (resp. b).

In this lecture we give a brief introduction to the spectral theory of self-
adjoint realizations of τ and describe the method of approximation of singular
operators by regular operators in order to prove spectral properties.
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2. The minimal and maximal operator

Since all operators studied here will be defined by the map f �→ τf , we need only
to describe their domain of definition. The maximal operator T is defined on the
domain

D(T ) :=
{
f ∈ L2(a, b; r) : f and pf ′ absolutely continuous, τf ∈ L2(a, b; r)

}
(apparently this is the maximal domain in L2(a, b; r) on which the map f �→ τf
operates as a differential operator).

For f, g : (a, b)→ C with f, g and pf ′, pg′ absolutely continuous, the Lagrange
bracket is defined by

[f, g]x := f(x)pg′(x)− pf ′(x)g(x)

(we always write pf ′(x) and not p(x)f ′(x) since in general p and f are only mea-
surable while pf ′ is continuous). For f, g ∈ D(T ) the limits

[f, g]a := lim
x↘a

[f, g]x and [f, g]b := lim
x↗b

[f, g]x

exist, and the Lagrange identity holds:

〈Tf, g〉 − 〈f, T g〉 = [f, g]ba := [f, g]b − [f, g]a.

The (pre-)minimal operator T ′
0 is defined on

D(T ′
0) :=

{
f ∈ D(T ) : f has compact support in (a, b)

}
.

D(T ′
0) is dense in L2(a, b; r); this is trivial under the additional assumptions men-

tioned in Section 1 (p continuously differentiable, r and q continuous); for the
general case see J.Weidmann [19], Satz 13.1, or [17], Theorem 3.7. Hence T ′

0 is
a real (with respect to the natural conjugation K : f �→ f) symmetric operator.
This implies that T ′

0 is closable and that it allows self-adjoint extensions.
The minimal operator T0 is defined to be the closure of T ′

0, T0 := T ′
0.

Theorem 2.1. a) For every z ∈ C the range of the operator T ′
0 − z is given by

R(T ′
0 − z) =

⎧⎨⎩g ∈ L2
0(a, b; r) :

b∫
a

u(x)g(x)r(x)dx = 0 for every

solution u of (τ − z)u = 0

⎫⎬⎭
(L2

0(a, b; r) is the subspace of L2(a, b; r) of functions which vanish almost
everywhere close to a and b).

b) If τ is regular, then R(T0 − z) = N(T − z)⊥, R(T0 − z)⊥ = N(T − z) (where
N(A) is the null-space of the operator A).

c) (T ′
0)∗ = T .
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Proof. a) Denote the set on the right-hand side by R. Obviously R(T ′
0 − z) ⊂ R,

since for every f ∈ D(T ′
0) the function (T ′

0 − z)f = (τ − z)f has compact support
in (a, b), and for every solution u of (τ − z)u = 0

b∫
a

u(x)(τ − z)f(x)r(x)dx =

b∫
a

(τ − z)u(x)f(x)r(x)dx = 0.

Let g ∈ R, h the solution of (τ − z)h = g given by

h(x) =
1

W (u1, u2)

{
u1(x)

x∫
a

u2(y)g(y)r(y)dy − u2(x)

x∫
a

u1(y)g(y)r(y)dy
}

,

where u1, u2 is a fundamental system of (τ − z)u = 0. The function h(x) vanishes
close to a and b since g does so, and

∫ b

a uj(y)g(y)r(y)dy = 0 for j = 1, 2 (notice
that uj(·) are solutions of (τ − z) = 0). Hence h ∈ D(T ′

0).
b) R(T0 − z) = N(T − z)⊥ follows by essentially the same arguments. Since

N(T − z) is finite-dimensional, the second equation follows from this.
c) T ⊂ (T ′

0)
∗ is obvious.

Let f ∈ D((T ′
0)

∗), h any solution of τh = (T ′
0)

∗f . This implies for every
g ∈ D(T ′

0)

b∫
a

(f(x) − h(x))T ′
0g(x)r(x)dx =

〈
(T ′

0)
∗f − τh, g

〉
= 0,

i.e., R(T ′
0) ⊂ N(F ), where F is the linear functional

F : L2
0(a, b; r)→ C, k �→

b∫
a

(f(x)− h(x))k(x)r(x)dx.

If {u1, u2} is a fundamental system of τu = 0, this implies together with part a)
that

N(F1) ∩N(F2) = R(T ′
0) ⊂ N(F ),

where the Fj are the linear functionals

Fj : L2
0(a, b; r)→ C, k �→

∫ b

a

uj(x)k(x)r(x)dx.

With [18], Lemma 2.21 this implies that F is a linear combination of F1 and F2,
hence f −h is the corresponding linear combination of u1 and u2. Therefore f and
pf ′ are absolutely continuous and τf = τh ∈ L2(a, b; r), i. e. f ∈ D(T ). �

The identity (T ′
0)

∗ = T implies that T ′
0 is minimal in the following sense: If

S is defined by f �→ τf on an “essentially” smaller domain than T ′
0, then S∗ � T

is not a differential operator in the above sense.
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The domain of the minimal operator T0 is characterized by

D(T0) =
{
f ∈ D(T ) : [f, g]a = [f, g]b = 0 for every g ∈ D(T )

}
.

If τ is regular at a, then, as g varies over D(T ), g(a) and pg′(a) will assume any
value, hence the condition [f, g]a = 0 for all g ∈ D(T ) may be replaced by

f(a) = pf ′(a) = 0.

Similarly if τ is regular at b, the condition [f, g]b = 0 for all g ∈ D(T ) is equiva-
lent to

f(b) = pf ′(b) = 0.

3. Self-adjoint realizations

As mentioned above T ′
0, and therefore T0 = T ′

0, has self-adjoint extensions; for
short we call these just self-adjoint realizations of τ . From

R(T0 − z)⊥ = N(T ∗
0 − z) = N(T − z) =

{
L2(a, b; r)-solutions of (τ − z)u = 0

}
it follows that the deficiency indices of T0 can only be (0, 0), (1, 1) or (2, 2).

From this we conclude immediately:

Theorem 3.1. All self-adjoint realizations of τ have the same essential spectrum.
Their absolutely continuous parts are unitarily equivalent.

The proof follows from abstract results of spectral and scattering theory
(cf. J. Weidmann [18], Satz 10.17 and [19], Satz 22.19).

The deficiency indices may be explicitly determined by means of the following
Weyl’s alternative. Here we use the following convenient notation: a function f :
(a, b) → C is said to lie left (respectively right) in L2(a, b; r), if the restriction
of f to (a, c) (respectively (c, b)) for any c ∈ (a, b) lies in L2(a, c; r) (respectively
L2(c, b; r)).

Theorem 3.2 (Weyl’s alternative). Either
• for every z ∈ C all solutions of (τ − z)u = 0 lie left (respectively right) in

L2(a, b; r), limit circle case (lcc) at a (respectively b),
• or for every z ∈ C \R there is a unique (up to a factor) solution of (τ−z)u = 0

which lies left (respectively right) in L2(a, b; r), limit point case (lpc) at a
(respectively b) (in this case for every z ∈ C there is at least one solution of
(τ − z)u = 0 which lies not left (respectively right) in L2(a, b; r)).

For a proof see, e. g., J.Weidmann [17], Theorem 5.6, or [19], Satz 13.18.
This alternative makes it very easy to decide if τ is in lpc or lcc at a (respec-

tively b): if for some z ∈ C two linearly independent solutions of (τ − z)u = 0 lie
left (respectively right) in L2(a, b; r), then τ is lcc at a (respectively b). If for some
z ∈ C at least one solution does not lie left (respectively right) in L2(a, b; r), then
τ is lpc at a (respectively b).
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The deficiency indices are:

– (0, 0) if τ is lpc at a and at b,
– (1, 1) if τ is lpc at one boundary point and lcc at the other one,
– (2, 2) if τ is lcc at a and at b.

If τ is lpc at a (respectively b), then for arbitrary f, g ∈ D(T ) we have
[f, g]a = 0 (respectively [f, g]b = 0).

The self-adjoint realizations A of τ can be explicitly described as follows:

– Deficiency (0, 0): A = T0 = T is the only self-adjoint realization of τ , i.e., T ′
0

is essentially self-adjoint.
– Deficiency (1, 1): All self-adjoint realizations A of τ are given by

D(A) = D(Ag) =
{
f ∈ D(T ) : [f, g]ba = 0

}
,

where g is a real function from D(T ) \ D(T0). Notice that here [f, g]a = 0
(resp. [f, g]b = 0) if τ is lpc at a (resp. b). Hence

– lcc at a, lpc at b: D(A) = {f ∈ D(T ) : [f, g]a = 0},
– lcc at b, lpc at a: D(A) = {f ∈ D(T ) : [f, g]b = 0}.

In this special representation of D(A) we may choose g to be any nontrivial
real solution of (τ − λ)u = 0 with λ ∈ R.

– Deficiency (2, 2): All self-adjoint realizations A of τ are given by

D(A) =
{
f ∈ D(T ) : [f, gj ]ba = 0, j = 1, 2

}
,

where g1, g2 ∈ D(T ) are linearly independent modulo D(T0) and satisfy
[gj , gk]ba = 0 for j, k = 1, 2. Without restriction g1 and g2 may be chosen
to be equal to solutions of (τ − λ)g = 0 in neighborhoods of a and b for
some λ ∈ R. Only in this case coupled boundary conditions are possible. All
self-adjoint realizations with separated boundary conditions are given by

D(A) =
{
f ∈ D(T ) : [f, ga]a = 0, [f, gb]b = 0

}
where ga and gb are nontrivial real solutions of (τ − λ)u = 0 with λ ∈ R.

There exists a huge number of limit point – limit circle criteria in the lit-
erature. Here we just mention the most important ones for the special case (1)
(for these and some more results see N. Dunford-J. Schwartz [3] Chapter XIII, or
J. Weidmann [19], Section 13.4).

Theorem 3.3. Let τ = − d2

dx2
+ q on (a, b).

a) i) If there exists a C ∈ R such that

q(x) ≥ C +
3
4

1
(x− a)2

for x close to a,

then τ is lpc at a (similarly for b).



Approximation by Regular Problems 81

ii) If there exists an ε > 0 such that

|q(x)| ≤
(3

4
− ε
) 1

(x− a)2
for x close to a,

then τ is lcc at a (similarly for b).
b) Let b =∞. If there exists a C ≥ 0 such that

q(x) ≥ −C|x|2 for x close to ∞,

then τ is lpc at ∞ (similarly for a = −∞).

In the case of deficiency (2, 2) (i.e., lcc at both end points: quasi regular case)
the resolvent turns out to be compact (actually Hilbert-Schmidt; cf. the explicit
description of the resolvent in Section 6); therefore the spectral theory of these
operators is not really interesting (their spectrum is purely discrete, with eigenval-
ues of multiplicity at most 2). For this reason we essentially restrict ourselves to
the cases of deficiency indices (0, 0) and (1, 1), where at most separated boundary
conditions occur.

4. Spherically symmetric Schrödinger operators

The Schrödinger operator H = −∆ + V (·) of a charged particle moving in the
gradient field of the real-valued potential V (·) in Rd (d ≥ 2) generates an operator
in L2(Rd) with domain D ⊃ C∞

0 (Rd) if V is locally square integrable. If V is
• uniformly locally square integrable for d ≤ 3,
• uniformly locally in Lp with p > d/2 for d > 3,

then V is −∆-bounded with relative bound 0. This implies that H is essentially
self-adjoint on C∞

0 (Rd); the self-adjoint closure is bounded from below. If in ad-
dition V (x) tends to 0 for |x| → ∞ in a suitable sense, then V is −∆-compact.
In this case the self-adjoint closure has essential spectrum [0,∞), and the discrete
spectrum is bounded below with the possible accumulation point 0.

In the case of a spherically symmetric potential V , i.e., V (x) = v(|x|), one
adequate technique for the more detailed study of the spectral properties of H
is the decomposition of H into an orthogonal sum of one-dimensional operators;
these are of Sturm-Liouville type.

The subspaces

Xl,j :=
{

f ∈ L2(Rd) : f(x) = Yl,j

(
x

|x|

)
g(|x|)

}
with the spherical harmonics Yl,j (j = 1, . . . , N(d, l) 1, l ∈ N0) reduce the operator
H , and the restriction of H to Xl,j is unitarily equivalent to

τd,l = − d2

dr2
+ qd,l(r) on (0,∞)

1with N(d, l) = (2l+d−2)(l+d−3)!
l!(d−2)!

for d ≥ 2.
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with

qd,l(r) =
{
l(l + d− 2) +

1
4
(d− 1)(d− 3)

} 1
r2

+ v(r).

If v has reasonable behavior near 0 and near ∞ (e.g., not more singular than 1/r
near 0, and bounded 2 near ∞), then τ is

• lpc at ∞ for every l ∈ N and every d ≥ 2,
• lpc at 0 for l > 0, d ≥ 3 and for l = 0, d > 3,
• lcc at 0 for l = 0, d = 3

(for d = 2 the situation is more complicated).
In the most interesting case d = 3 we have lcc only for l = 0 at 0; in this

case q3,0(r) = v(r). In order to define self-adjoint realizations of τ3,l a boundary
condition at 0 is needed only for l = 0; in all other cases the maximal operator
generated by τ3,l is the only self-adjoint realization of τ3,l (for d > 3 this is true
for all l ≥ 0).

The self-adjoint Schrödinger operator H = −∆ + V (·) in L2(Rd) is unitarily
equivalent to a sum of self-adjoint realizations of τd,l (l ∈ N0; the self-adjoint
realization of τd,l occurs exactly N(d, l) times in the sum).

Only for d = 3, l = 0 we have the problem of choosing the suitable bound-
ary condition at 0. For reasonable v(·) this boundary condition is as follows (cf.
Weidmann [19], Satz 18.14, or [17], Section 17.F)

lim
r→0

(
rg′(r) − g(r)

)
= 0.

Together with methods as they are described in the following sections this allows
a detailed study of the spectral properties of H : the negative eigenvalues can be
calculated numerically, and the absolute continuity of the positive spectrum can
be shown in many interesting cases.

5. Essential self-adjointness on C∞
0 (a, b)

In the case of deficiency (0, 0), where T ′
0 is essentially self-adjoint, one often asks if

the operator T00 with D(T00) = C∞
0 (a, b) is essentially self-adjoint. Actually this

seems to be true in most cases where τ can be defined on C∞
0 (a, b):

Theorem 5.1. Assume that p is continuously differentiable, q2/r and p′2/r are
locally integrable and p2/r is locally bounded and bounded away from 0 on (a, b).
Then T00 is essentially self-adjoint if and only if τ is lpc at a and b.

Proof. From the assumptions it follows that T00 ⊂ T ′
0 holds, and therefore T00 ⊂

T ′
0. Hence the theorem is proved if we show T ′

0 ⊂ T00. For this let f ∈ D(T ′
0), i. e. f

has compact support in (a, b), f and pf ′ are absolutely continuous (which, under

2Boundedness in L2-mean for d = 3 and Lp-mean with p > d/2 for d > 3 is sufficient.



Approximation by Regular Problems 83

the above assumptions, actually implies that f is continuously differentiable and
f ′ is absolutely continuous), and

q

r
f ∈ L2(a, b; r),

1
r
(pf ′)′ ∈ L2(a, b; r) and f ′′ ∈ L2(a, b).

Let fε ∈ D(T00) be the convolution of f with a smooth δ-approximation.
Then fε → f and f ′

ε → f ′ uniformly for ε → 0, f ′′
ε → f ′′ in L2(a, b; r) for ε → 0;

hence
q

r
fε →

q

r
f in L2(a, b; r)

and
1
r
(pf ′

ε)
′ =

p′

r
f ′

ε +
p

r
f ′′

ε →
p′

r
f ′ +

p

r
f ′′ =

1
r
(pf ′)′ in L2(a, b; r).

This implies τfε → τf and therefore f ∈ D(T00). �

6. The resolvent of self-adjoint realizations

In all cases the resolvent of every self-adjoint realization A of τ is an integral
operator

Rzf(x) =

b∫
a

k(x, y; z)f(y)r(y)dy for z ∈ ρ(A), f ∈ L2(a, b; r),

where k(·, ·; z) has the form

k(x, y; z) =

⎧⎨⎩
∑2

i,j=1 m+
ij(z)ui(x)uj(y) for a < y < x < b,∑2

i,j=1 m−
ij(z)ui(x)uj(y) for a < x < y < b

with a fundamental system {u1, u2} of (τ−λ)u = 0 and suitable complex numbers
m±

ij(z) (cf. J. Weidmann [19], Satz 13.14, 13.20 and 13.21, or [17], Section 7).
In general it is not easy to determine the m±

ij(z) explicitly. This is much
easier in all cases with separated boundary condition (i.e., for every self-adjoint
realization if τ is in the lpc at least at one boundary point).

The self-adjoint realizations with separated boundary conditions are in all
cases given by

D(A) =

{
f ∈ D(T ) :

[f, ga]a = 0 if τ is lcc at a,

[f, gb]b = 0 if τ is lcc at b

}
, (2)

where ga, gb are nontrivial real solutions of (τ − λ)g = 0 with λ ∈ R. At a regular
boundary point c (= a or = b) every self-adjoint boundary condition (s.a.b.c) has
the form

f(c) cosα− pf ′(c) sin α = 0 (α ∈ [0, π)). (3)



84 J. Weidmann

In this case the resolvent of the self-adjoint realization A for z ∈ ρ(A) is given by

Rzg(x) = (A− z)−1g(x)

=
1

W (ub, ua)

{
ub(x)

∫ x

a

ua(y)g(y)r(y)dy

+ua(x)
∫ b

x

ub(y)g(y)r(y)dy
}

,

where ua and ub are nontrivial solutions of (τ − z)u = 0 which

– lie left, resp. right, in L2(a, b; r) in the lpc at a, resp. b,
– satisfy the boundary condition at a, resp. b, in the lcc at a, resp. b,

and W is the (generalized) Wronskian (cf. Section 1). If τ is quasi regular (i.e., lcc
at a and b), then this implies (as we already mentioned above) that the resolvent of
every self-adjoint realization A is Hilbert-Schmidt, which implies

∑
λn 
=0 |λn|−2 <

∞ for the eigenvalues λn of A. Actually much more holds (cf. J. Weidmann [15]):

Theorem 6.1. For every self-adjoint realization A of a quasi regular Sturm-Liouville
expression and every ε > 0 we have

∑
λn 
=0 |λn|−1−ε < ∞. If A is semi-bounded

(which holds either for none or for all self-adjoint realizations), then one has∑
λn 
=0 |λn|−1 < ∞. (Notice that in many explicitly solvable regular problems∑
λn 
=0 |λn|−1/2−ε <∞ for every ε > 0.)

In the general case (i.e., lpc at least at one boundary point) things are more
complicated. Again we consider only the case where τ is regular at a and lpc at
b. It seems to be something like a general rule: if for every λ from an interval I
there exists an L2-solution, then there is a purely discrete spectrum in I (only
isolated eigenvalues); if for no λ ∈ I there is an L2-solution, then the spectrum
is absolutely continuous in I (obviously it is continuous in this case since there
cannot be eigenvalues). Although this is true in all (or at least most) explicitly
solvable problems, the following sections will show that we are far from being able
to prove this in general.

7. Approximation by regular problems

In many cases results about the spectral properties (continuity and discreteness)
of singular problems can be proved by means of an “approximation” by regular
problems. We shall demonstrate this in several cases. But first: How can singular
problems be approximated by regular problems? Notice that for every [c, d] ⊂ (a, b)
the differential expression τ is regular in (c, d); of course one may choose c = a (or
d = b) if τ is regular at a (respectively b).
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For an operator A = Aga,gb
defined by (2) and [c, d] ⊂ (a, b) we define oper-

ators Ac,d in L2(c, d; r) by

D(Ac,d) :=

⎧⎪⎪⎨⎪⎪⎩f ∈ D(Tc,d) :

any s. a. b. c. at c if τ is lpc at a,
[f, ga]c = 0 if τ is lcc at a,
any s. a. b. c. at d if τ is lpc at b,
[f, gb]d = 0 if τ is lcc at b.

⎫⎪⎪⎬⎪⎪⎭ ,

where we denote by Tc,d the maximal operator generated by τ in L2(c, d; r).

Theorem 7.1. With the above definition Ac,d converges to A in the sense of gen-
eralized strong resolvent convergence, i.e.,

(Ac,d − z)−1Pc,d
s→ (A− z)−1 for z ∈ C \ R, c→ a, d→ b,

and
Ec,d(λ)Pc,d

s→ E(λ) if λ is not an eigenvalue of A,

where Pc,d is the orthogonal projection in L2(a, b; r) onto L2(c, d; r) (= restriction
to (c, d)).

Proof. In fact, if Ac,d is extended to a self-adjoint operator Ãc,d in L2(a, b; r) by

D(Ãc,d) := D(Ac,d)⊕ L2((a, b) \ (c, d); r)

Ãc,d(f + g) := Ac,df for f + g ∈ D(Ãc,d),

then (Ãc,d − z)−1 s→ (A − z)−1; this is the usual strong resolvent convergence of
Ãc,d to A. In order to prove this one uses the fact that

D̃ :=

⎧⎪⎪⎨⎪⎪⎩f ∈ D(T ) :

f = 0 close to a, if τ is lpc at a,
f ∼ ga close to a, if τ is lcc at a,
f = 0 close to b, if τ is lpc at b,
f ∼ gb close to b, if τ is lcc at b

⎫⎪⎪⎬⎪⎪⎭
is a core of A (cf. G. Stolz and J.Weidmann [12], Theorem 6, or J.Weidmann [19],
Section 14.3).

The strong resolvent convergence of Ãc,d to A implies the strong convergence
of the spectral resolution Ẽc,d(λ) of Ãc,d to the spectral resolution E(λ) of A for
every λ ∈ R where E(·) is continuous (i.e., for every λ which is not an eigenvalue
of A). Since I −Pc,d

s→ 0 for c→ a, d→ b, this implies Ec,d(λ)Pc,d
s→ E(λ) if λ is

not an eigenvalue of A. �

For simplicity we consider in the sequel only the case where τ is regular at
a and lpc at b. (The case where τ is regular at b and lpc at a is treated similarly.
The general case is somewhat more complicated although some of the results
follow from the special case by means of the so-called decomposition method, cf.
J. Weidmann [17], Section 11, or [19], Aufgabe 13.6.) This means that we consider
operators A = Aα (α ∈ [0, π)) with

D(Aα) :=
{
f ∈ D(T ) : f(a) cosα− pf ′(a) sin α = 0

}
.
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With d ∈ (a, b) and d→ b these operators are approximated in the above sense by
Aα,d with

D(Aα,d) :=
{

f ∈ D(Ta,d) : f(a) cosα− pf ′(a) sin α = 0,
any s. a. b. c. at d

}
,

where the boundary condition at d may depend on d or not, for example the
following situations will occur later:

– boundary condition (α) at d, especially Dirichlet condition (α = 0) f(d) = 0,
or

– [f, g]d = 0 with a fixed real function g (e.g., a nontrivial real solution g of
(τ − λ)g = 0 with λ ∈ R).

As mentioned above, the quasi regular case (lcc at both endpoints) is not
interesting in connection with the questions treated in this paper. Just for com-
pleteness we end this section with a short look at this case:

If τ is quasi regular, and the self-adjoint realization A is defined by

D(A) := {f ∈ D(T ) : [f, gj]ba = 0 for j = 1, 2}

with solutions g1, g2 of (τ − λ)g = 0 (λ ∈ R) satisfying [gj , gk]ba = 0 for j, k =
1, 2, then the corresponding way of defining approximating regular operators in
L2(c, d; r) is

D(Ac,d) :=
{

f ∈ D(Tc,d) : [f, gj ]dc = 0 for j = 1, 2
}
.

With similar arguments as in Theorem 6.1 it can be shown that Ac,d converges
to A in the sense of generalized strong resolvent convergence. But actually much
more holds:

We recall the following result from the paper by P.B. Bailey, W. N. Everitt,
J. Weidmann and A. Zettl [2]. Notice that this result holds for every family of self-
adjoint realizations Ac,d of τ in L2(c, d; r) which, for c ↘ a and d ↗ b, converges
to A in the sense of generalized strong resolvent convergence, not only for those
constructed above in terms of the functions g1, g2 which occur in the boundary
conditions of A.

Theorem 7.2. Assume that τ is lcc at a and b. Let A be any self-adjoint realization
of τ in L2(a, b; r). For (c, d) ⊂ (a, b) let Ac,d be self-adjoint realizations of τ in
L2(c, d; r) such that Ac,d → A in the sense of generalized strong resolvent conver-
gence for c↘ a and d↗ b. Then (Ac,d−z)−1Pc,d → (A−z)−1 for z ∈ C\R in the
sense of Hilbert-Schmidt norm. (This of course implies convergence of eigenvalues
including the norm convergence of the corresponding eigenprojections. Notice that
in general the eigenvalues of Ac,d and A may have multiplicity 2.)
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The proof uses the fact that the resolvent kernels k(x, y; z) and kc,d(x, y; z)
have the form (cf. Section 6)

k(x, y; z) =

⎧⎪⎪⎨⎪⎪⎩
2∑

i,j=1

m+
ijui(x)uj(y) for a < y < x < b,

2∑
i,j=1

m−
ijui(x)uj(y) for a < x < y < b

and

kc,d(x, y; z) =

⎧⎪⎪⎨⎪⎪⎩
2∑

i,j=1

m+
ij(c, d)ui(x)uj(y) for c < y < x < d,

2∑
i,j=1

m−
ij(c, d)ui(x)uj(y) for c < x < y < d

with a fundamental system {u1, u2} of (τ −z)u = 0 and suitable complex numbers
m±

ij and m±
ij(c, d). The resolvent convergence implies that

m±
ij(c, d)→ m±

ij for c↘ a, d↗ b.

From this the convergence of the resolvents in Hilbert-Schmidt norm follows.

8. Point spectrum

In this Section we discuss the question: which spectral properties can be deduced
from the existence or nonexistence of L2-solutions of (τ −λ)u = 0 for some λ ∈ R,
respectively for all λ from an interval I. The following classical result is essentially
due to Ph. Hartman and A. Wintner [7]. A similar result for higher-order operators
is given in J. Weidmann [17], Section 11.

Theorem 8.1. Let τ be regular at a, lpc at b.

a) If for some λ ∈ R the equation (τ − λ)u = 0 has no L2-solution, then λ
belongs to the essential spectrum of every self-adjoint realization Aα of τ (of
course λ is not an eigenvalue of Aα for any α; if the assumption holds for
all λ from an interval I, then the spectrum is continuous in I).

b) If for every λ from an interval I there exists an L2-solution of (τ − λ)u = 0,
then for every self-adjoint realization Aα of τ the continuous spectrum in I
is empty and the point spectrum is nowhere dense in I.3

Proof. a) By assumption λ is certainly not an eigenvalue. Since the deficiency
indices of T0 are (1, 1) and R(T0 − λ)⊥ = N(T − λ) = {0}, λ is not in the
regularity domain of T0

4 and therefore not in the resolvent set of Aα. Hence λ is
in the essential spectrum of Aα.

3It seems to be unknown whether in this case the spectrum is purely discrete in I.
4This is the set of those z ∈ C for which there exists a k(z) > 0 such that ‖(T0 − z)f‖ ≥ k(z)‖f‖
for every f ∈ D(T0) (cf. M.A. Naimark [9] or J. Weidmann [18]).
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b) Throughout this part of the proof we use the solutions uj(·, s) of (τ−s)u =
0 defined by

u1(a, s) = sinα, pu′
1(a, s) = cosα,

u2(a, s) = cosα, pu′
2(a, s) = − sin α.

By assumption for every λ ∈ I which is not an eigenvalue of Aα there exists
a unique m(λ) ∈ C (m-function) such that

ψ(·, λ) = m(λ)u1(·, λ) + u2(·, λ) ∈ L2(a, b; r)

(notice that u1(·, λ) �∈ L2(a, b; r) since λ is not an eigenvalue of Aα). Obviously we
have for every µ ∈ R

[ψ(·, λ), u1(·, µ)]a = [u2(·, λ), u1(·, µ)]a = 1.

At first we show that the point spectrum is nowhere dense in I: Let {λn :
n ∈M} be the eigenvalues of Aα in I,

vn(·) :=
u1(·, λn)
‖u1(·, λn)‖

the corresponding normalized eigenfunctions. Notice that

[ψ(·, λ), vn]a =
1

‖u1(·, λ)‖ [ψ(·, λ), u1(·, λn)]a =
1

‖u1(·, λ)‖ ,

while, since ψ and vn are in L2(a, b; r),

[ψ(·, λ), vn]b = 0,

and therefore

〈ψ(·, λ), vn〉 =
1

λ− λn
[ψ(·, λ), vn]ba =

1
‖u1(·, λn)‖

−1
λ− λn

.

This implies for λ ∈ I \ {λn : n ∈M}

∞ > ‖ψ(·, λ)‖2 ≥
∑
n∈M

∣∣∣〈ψ(·, λ), vn〉
∣∣∣2 =

∑
n∈M

1
‖u1(·, λn)‖2

∣∣∣∣ 1
λ− λn

∣∣∣∣2 .

Assume now that {λn : n ∈ N} is dense in a subinterval [λ′, λ′′]. Then for
every N ∈ N the set

KN :=

{
λ ∈ [λ′, λ′′] :

∞∑
k=1

1
‖u1(·, λn)‖2

∣∣∣∣ 1
λ− λn

∣∣∣∣2 < N

}
is nowhere dense in [λ′, λ′′], and therefore

[λ′, λ′′] \ {λn : n ∈ N} =
⋃

N∈N

KN

is of first category. Hence {λn : n ∈ N} is of second category, in contradiction to
the countability.

It remains to show that there is no continuous spectrum in I. Without re-
striction we may assume that I is compact (otherwise take any compact subinter-
val of I).
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Let λ be any fixed value in I which is not an eigenvalue of Aα. For d ∈ (a, b)
let Aα,d be the self-adjoint realization in L2(a, d; r) defined by

D(Aα,d) :=
{
f ∈ D(Ta,d) : b. c. (3) at a, [ψ(·, λ), f ]d = 0

}
,

λd,n the eigenvalues of Aα,d in I; ‖u1(·, λd,n)‖−1u1(x, λd,n) are the normalized
eigenfunctions corresponding to the eigenvalues λd,n. From[

ψ(x, λ), u1(x, λd,n)
]

=
[
u2(x, λ), u1(x, λd,n)

]
=

{
1 for x = a,

0 for x = d,

it follows that〈
ψ(·, λ), u1(·, λd,n)

〉
(a,d)

=
1

λ− λd,n

[
ψ(·, λ), u1(·, λd,n)

]d
a

=
−1

λ− λd,n
,

and for every ε > 0 with λ± ε ∈ I

‖ψ(·, λ)‖2 ≥
∫ d

a

|ψ(x, λ)|2r(x)dx

≥
∑

|λ−λd,n|≤ε

∣∣∣〈ψ(·, λ), u1(·, λd,n)
〉

(a,d)

∣∣∣2 1
‖u1(·, λd,n)‖2

≥
∑

|λ−λd,n|≤ε

1
|λ− λd,n|2

1
‖u1(·, λd,n)‖2

≥ 1
ε2

∑
|λ−λd,n|≤ε

1
‖u1(·, λd,n)‖2 .

This implies, with c := ‖ψ(·, λ)‖2∑
|λ−λd,n|≤ε

1
‖u1(·, λd,n)‖2 ≤ cε2.

For an arbitrary f ∈ L2(a, b; r) with compact support in [a, b) and d ∈ (a, b) such
that supp f ⊂ [a, d) we have (since |u1(x, s)| is uniformly bounded for x ∈ supp f
and s ∈ I)∣∣∣〈(Ed(λ ± ε)− Ed(λ)

)
f, f

〉∣∣∣ ≤
∑

|λ−λd,n|≤ε

∣∣∣〈f, u1(·, λd,n)
〉∣∣∣2 1
‖u1(·, λd,n)‖2

≤ c1

∑
|λ−λd,n|≤ε

1
‖u1(·, λd,n)‖2 ≤ c2ε

2,

where c1 and c2 of course depend on f .
For d→ b it follows, if λ± ε are also not eigenvalues of Aα, that∣∣∣〈(E(λ ± ε)− E(λ)

)
f, f

〉∣∣∣ ≤ c2ε
2.



90 J. Weidmann

Hence 〈E(·)f, f〉 is differentiable with derivative 0 in every point λ ∈ I which is
not an eigenvalue of Aα; therefore the continuous part of the spectral measure of
Aα vanishes in I. �

9. Approximation of the discrete spectrum

In the complement of the essential spectrum there is at most discrete point spec-
trum, i.e., isolated eigenvalues (notice that the eigenvalues of a Sturm-Liouville-
operator have at most multiplicity 2). For regular problems there exist methods to
calculate or at least to approximate numerically the eigenvalues. This leads to the
question whether it is possible to determine/approximate the isolated eigenvalues
by approximating singular problems by regular problems.

Especially simple is the case where T0 (and therefore every self-adjoint re-
alization of τ) is bounded from below; then the spectrum below the essential
spectrum consists at most of simple eigenvalues which accumulate at most at the
lower bound of the essential spectrum.

Theorem 9.1. Assume that τ is regular at a, lpc at b, and that T0 is bounded below.
Let Aα be the self-adjoint realization of τ with boundary condition (3) at a, Aα,d,0

the self-adjoint realization of τ in L2(a, d; r) defined by

D(Aα,d,0) :=
{

f ∈ D(Ta,d) : b. c. (3), f(d) = 0
}
.

Then for every λ below the essential spectrum of Aα which is not an eigenvalue of
Aα we have ∥∥∥Eα,d,0(λ)Pd − Eα(λ)

∥∥∥→ 0 for d→ b,

where Pd is restriction to (a, d) (the orthogonal projection from L2(a, b; r) onto
L2(a, d; r)). This implies that the eigenvalues of Aα below the essential spectrum
are exactly the limits of eigenvalues of Tα,d,0 for d → b; the corresponding eigen-
projections converge in norm.

Proof. From Theorem 7.1 (special case c = a) it follows that

Eα,d,0(λ) s→ Eα(λ) for λ �∈ σp(Aα), d→ b.

Therefore the result follows if we show that

dimEα,d,0(λ) = dim Eα,d,0(λ)Pd ≤ dimEα(λ) (4)

(notice that dimEα(λ) < ∞ for λ below the essential spectrum). Here we use
the following well-known result: If Pn, P are orthogonal projections with dim Pn ≤
dimP < ∞ and Pn

s→ P , then ‖Pn − P‖ → 0. The inequality (4) follows from
the fact that Aα,d,0 is the Friedrichs extension in L2(a, d; r) of the operator with
domain {

f ∈ D(Aα) : f(x) = 0 for x ≥ d
}
⊂ D(Aα),
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while Aα is self-adjoint on D(Aα) and therefore may be considered as Friedrichs
extension of Aα. �

If T0 is not bounded from below or if we want to approximate the eigenvalues
in a gap of the essential spectrum, things are somewhat more complicated. If we use
the same approximation operators as above, then for every λ in this gap and every
d ∈ (a, b) the projection Eα,d,0(λ) is finite-dimensional, while Eα(λ) is infinite-
dimensional. This implies that the eigenvalues of Aα,d,0 for d → b are “falling
down” through the gap, which leads to the so called “trapping and cascading”
phenomenon (cf. F. Gesztesy, D. Gurarie, H. Holden, M. Klaus, L. Sudan, B. Simon,
P. Vogl [5] and G. Stolz, J.Weidmann [12]).

Of course, every eigenvalue of Aα is a limit of eigenvalues of a sequence
Aα,dn,0 with dn → b (this follows from the strong convergence of the spectral
resolution); but actually every λ in the gap (not only the eigenvalues) may be
represented as such a limit. This problem cannot be solved by considering dif-
ferences of spectral projections Eα,d,0(µ) − Eα,d,0(λ), since only the inequality
dim(Eα,d,0(µ)− Eα,d,0(λ)) ≥ dim(Eα(µ)− Eα(λ)) can be shown for d sufficiently
large, and there exist d arbitrarily close to b for which “>” holds. Choosing other
more suitable boundary conditions at d we get again a correct approximation:

Theorem 9.2. Let Aα be the self-adjoint realization of τ with boundary condition
(3) at a, I = [λ, µ] ⊂ R \ σe(Aα), v a nontrivial real L2-solution of (τ − γ)v = 0
with γ ∈ I, Aα,d,v the self-adjoint realization of τ in L2(a, d; r) defined by

D(Aα,d,v) :=
{
f ∈ D(Ta,d) : b. c. (3) at a, [v, f ]d = 0

}
.

Then for [λ1, λ2] ⊂ I with λj not eigenvalues of Aα we have∥∥∥(Eα,d,v(λ2)− Eα,d,v(λ1)
)
Pd −

(
Eα(λ2)− Eα(λ1)

)∥∥→ 0 for d→ b.

This implies that the eigenvalues of Aα in I are exactly the limits of eigenval-
ues of Aα,d,v in I, and that the corresponding eigenprojections converge in norm.

Proof. Again the essential part of the proof is to show that

k := dim
(
Eα,d,v(µ)− Eα,d,v(λ)

)
≤ dim(Eα(µ)− Eα(λ)).

This implies the desired norm convergence, and therefore equality of the dimension
for d sufficiently close to b. Hence for every eigenvalue σ in this interval and
sufficiently small ε > 0

dim
(
Eα,d,v(σ + ε)− Eα,d,v(σ − ε)

)
= 1 for d close to b.

From this the statement of the theorem follows.
In order to prove the above inequality it is sufficient to find a k-dimensional

subspace M of D(Aα) such that∥∥∥(Aα −
λ + µ

2

)
ψ
∥∥∥ ≤ µ− λ

2
‖ψ‖ for ψ ∈M.
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Let λ1, . . . , λk be the eigenvalues of Aα,d,v in (λ, µ), ϕ1, . . . , ϕk the corresponding
normalized eigenfunctions. Since the functions ϕj satisfy the boundary condition
[v, ϕj ]d = 0 at d, there exist dj ∈ C such that for every j ∈ {1, . . . , k}

ψj(x) :=

{
ϕj(x) in [a, d],
djv(x) in [d, b)

lies in D(Aα). The linear span M of these functions obviously is k-dimensional.
Every ψ ∈M has the form

ψ(x) =

⎧⎪⎨⎪⎩
k∑

j=1

cjϕj(x) in [a, d],

cψv(x) in [d, b).

From this it follows that

‖ψ‖2 =
k∑

j=1

|cj |2 + c2
ψ‖v‖2(a,b),

and therefore∥∥∥(Aα −
λ + µ

2

)
ψ
∥∥∥2

=
k∑

j=1

∣∣∣λj −
λ + µ

2

∣∣∣2|cj |2 + c2
ψ

∥∥∥(γ − λ + µ

2

)
v
∥∥∥2

(d,b)

≤
(µ− λ

2

)
‖ψ‖2. �

Of course, it will be difficult in general to find the L2-solution v of (τ−γ)v = 0
explicitly. Actually an L2-solution of (τ̃ − γ)v = 0 can be used, where τ̃ “behaves
like τ” close to b (cf. G. Stolz, J.Weidmann [12], Corollary 3).

10. Absolutely continuous spectrum

In order to study the continuous/absolutely continuous spectrum we first have to
say something about the general form of the spectral representation of self-adjoint
Sturm-Liouville operators (cf. J. Weidmann [17], Section 8, or [19], Section 14).
An ordered spectral representation of a self-adjoint operator A in Hilbert space H
is a unitary map F : H →

⊕
j

L2(R, ρj), where ρj+1 is absolutely continuous with

respect to ρj such that FAF−1 is the (maximal) operator of multiplication by id in⊕
j

L2(R, ρj). The number of measures ρj �≡ 0 is called the spectral multiplicity of

A. If Fjf is the jth component of Ff , it is not difficult to see that for [α, β] ⊂ (a, b)
and Mj = multiplication by id in L2(R, ρj)

(Mj − z)−1Fjχ[α,β] = Fj(A− z)−1χ[α,β]



Approximation by Regular Problems 93

is a Hilbert-Schmidt operator (here χ[α,β] is the operator of multiplication by the
characteristic function of [α, β]). This implies that F has the form

Ff(λ) = l.i.m.
c↘ a
d↗ b

( d∫
c

vj(λ, x)f(x)r(x)dx
)

j

where the vj(λ, ·) are linearly independent solutions of (τ − λ)v = 0 for ρj-almost
every λ. Therefore the spectral representation of a Sturm-Liouville operator cannot
have more than 2 components.

In the special case which we are studying here (regular at a, lpc at b, Aα the
operator with boundary condition (3) at a) only the solutions are needed which
satisfy the boundary condition (3) at a, i.e., the spectral representation has only
one component:

F : L2(a, b; r)→ L2(R, ρ), Ff(λ) = l.i.m.
d→b

d∫
a

v(λ, x)f(x)r(x)dx,

where v(λ, ·) is a solution of (τ − λ)v = 0 satisfying the boundary condition (3)
at a; for simplicity we usually choose v(λ, ·) to be solution that satisfies the initial
condition

v(λ, a) = sinα, pv′(λ, a) = cosα.

The measure ρ can be determined from Weyl’s m-function by means of the Weyl-
Titchmarsh-Kodaira formulae (cf. J. Weidmann [17], Section 9, or [19], Satz 14.5);
we do not need this machinery here. 5

For the regular approximations Aα,d (with any boundary condition at d) the
corresponding measure ρα,d(·) is completely determined by the fact that the mea-
sure is concentrated at the eigenvalues of Aα,d and the measure of every eigenvalue
λ is

ρα,d({λ}) = ‖v(λ, ·)‖−2
a,d

(this simply follows from the fact that F should be unitary).
This determines the measure ρα(·) corresponding to the operator Aα uniquely

by means of the following:

Theorem 10.1. Let τ be regular at a, Aα the self-adjoint realization with

D(Aα) :=
{

f ∈ D(T ) : b. c. (3) at a, [g, f ]b = 0 if τ is lcc at b
}
,

5For the general case (which we do not consider here) a fundamental system {v1(λ, ·), v2(λ, ·)}
of (τ − λ)u = 0 can be used, for example with the fixed initial condition at some c ∈ (a, b)

v1(λ, c) = −pv′2(λ, c) = sin γ, v2(λ, c) = pv′1(λ, c) = cos γ,

in order to get a spectral representation F : L2(a, b; r) → L2(R, ρ̃), where ρ̃(·) is a matrix-valued

measure on R, which again can be determined by the Weyl-Titchmarsh-Kodaira formulae. But
this can be explicitly evaluated only in a few very simple cases.
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Aα,d the operator in L2(a, d; r) defined by

D(Aα,d) :=
{

f ∈ D(Ta,d) :
boundary condition (3) at a, any s.a.b.c. at d
if τ is lpc at b, [g, f ]d = 0 if τ is lcc at b

}
.

If ρα and ρα,d are the spectral measures of Aα and Aα,d, respectively, then

lim
d→b

ρα,d((λ1, λ2)) = ρα((λ1, λ2))

for every interval (λ1, λ2) with λj not eigenvalues of Aα.

Proof. For every f ∈ L2(a, b; r) with compact support and every interval (σ1, σ2)
with σj not eigenvalues of Aα∫ σ2

σ1

∣∣∣ ∫ v(λ, x)f(x)r(x)dx
∣∣∣2dρσ,d(λ) = ‖Eα,d((σ1, σ2))f‖2

→ ‖Eα((σ1, σ2))f‖2 =
∫ σ2

σ1

∣∣∣ ∫ v(x, λ)f(x)r(x)dx
∣∣∣2dρα(λ).

From this the result can be easily deduced (for details see J. Weidmann [19], Satz
14.13). �

The above result can be used to prove absolute continuity of the spectrum in
an interval I (actually we prove unitary equivalence of the part of Aα corresponding
to the spectral interval I to the multiplication with id in L2(I)). This result is a
very elementary analogue to the subordinacy result of D. Gilbert and D. B. Pearson
[6] (see also the article by D. Gilbert in this volume).

In the sense of Gilbert-Pearson, a solution u of (τ − λ)u = 0 is called sub-
ordinate (at b) if for every linearly independent solution v of (τ − λ)u = 0 and
c ∈ (a, b)

d∫
c

|u(x)|2r(x)dx

d∫
c

|v(x)|2r(x)dx

→ 0 for d→ b.

If τ is lpc at b and for some λ ∈ R there exists no subordinate solution, then
obviously there is no L2-solution of (τ −λ)u = 0 and therefore λ is in the essential
spectrum of every self-adjoint realization of τ . If for no λ in I there exists a sub-
ordinate solution, then the spectrum of every self-adjoint realization is continuous
in I. The result of Gilbert and Pearson says that the spectrum is even absolutely
continuous in I. Actually it is also proved that the set of all λ ∈ R for which
no subordinate solution exists is an essential support of the absolutely continuous
part of the spectral measure. This implies for example that in an interval I where
there exists an L2-solution for every λ, there is no absolutely continuous spectrum
(cf. Theorem 8.1). The proof of this result is not easy; it uses detailed information
about the relations between the behavior of the m-functions near the real axis and
the type of the spectrum.
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The result given below is much more elementary, with an extremely simple
proof. It is not as far reaching as that of Gilbert and Pearson; under stronger as-
sumptions it gives a somewhat sharper conclusion, but it does not give information
about the absence of absolutely continuous spectrum or about existence of singular
continuous spectrum if this stronger assumption of uniform nonsubordinacy is not
satisfied.

We say that all solutions of (τ −λ)u = 0 for λ ∈ I are of the same size near b
(or, for λ ∈ I the solutions of (τ −λ)u = 0 are uniformly nonsubordinate), if there
exists a ϑ ∈ (0, 1] such that for every λ ∈ I and all solutions u1, u2 of (τ −λ)u = 0
satisfying the normalization condition

|u(c)|2 + |pu′(c)|2 = 1 (5)

with c ∈ (a, b) (c ∈ [a, b) if τ is lcc at a) we have

ϑ

d∫
c

|u1(x)|2r(x)dx ≤
d∫

c

|u2(x)|2r(x)dx,

i.e., if there exists a function k : [c,∞)→ (0,∞) such that

ϑk(d) ≤ ‖u‖2(c,d) ≤ k(d)

for every solution u of (τ − λ)u = 0 (λ ∈ I) which satisfies the normalization
condition (5). (Since τ is lpc at b this implies that k(d)→∞ for d→ b.)

Theorem 10.2. Let τ be regular at a and lpc at b. If for λ ∈ I all solutions of
(τ−λ)u = 0 are of the same size at b, then every self-adjoint realization Aα of τ has
purely absolutely continuous spectrum in I. Actually the part of Aα corresponding
to the spectral interval I, Aα|R(E(I)), is unitarily equivalent to multiplication by id
in L2(I).

Proof. By assumption the solutions vα(λ, ·) used in the spectral representation,
defined by

vα(λ, a) = sin α, pv′α(λ, a) = cosα,

satisfy the normalization condition (5), and therefore

ϑk(d) ≤ ‖vα(λ, ·)‖2a,d ≤ k(d) for every α ∈ [0, π).

By means of the formula for ρα,d given above Theorem 10.1 and the fact that the
number of eigenvalues of Aα,d in an interval B is the same up to ±1 for every α,
it follows for α, β ∈ [0, π) and every interval B ⊂ I

ϑρα,d(B) ≤ ρβ,d(B) ≤ 1
ϑ

ρα,d(B) for d close to b.

In the limit d → b this implies (remember that Aα has no eigenvalues in I) the
equivalence of the ρα in the sense

ϑρα(B) ≤ ρβ(B) ≤ 1
ϑ

ρα(B)
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for every interval B ⊂ I. Since by a result of S. Kotani [8] (cf. also J.Weidmann
[19], Satz 14.11 and Satz 14.18)

π∫
0

ρα(B)dα = |B|,

this implies that all ρα are equivalent to the Lebesgue measure. �

Typical applications of this result are those to Sturm-Liouville operators on
[0,∞) with p = r = 1 and

– q = q1 + q2 with q1 ∈ L1(0,∞) and q2 of bounded variation with q2(x) →
0 for x → ∞. In this case the spectrum of every self-adjoint realization
Aα is absolutely continuous in (0,∞) and the part of Aα corresponding to
the spectral interval (0,∞) is unitarily equivalent to multiplication by id in
L2(0,∞) (cf. J.Weidmann [14]).

– q = qper + q1 + q2 with periodic qper and q1, q2 as above. In this case the
spectrum of Aα is absolutely continuous in the stability intervals of τper =
−d2/dx2 + qper and the part of Aα corresponding to the stability intervals is
unitarily equivalent to multiplication with id in L2(

⋃
n In), where In are the

stability intervals.
In the proofs of these results one uses for I any closed bounded interval contained
in the corresponding sets.

If one considers such operators on R, where the coefficients satisfy the cor-
responding assumptions also on the negative half axis, then the absolutely con-
tinuous part is unitarily equivalent to L2(0,∞)2, resp. L2(

⋃
In)2, which can be

shown by means of the decomposition method and a suitable trace class scattering
result (cf. M. Reed-B. Simon [11], Section XI.3, or J.Weidmann [19], Section 22.4).
This argument does not directly imply that the spectrum is purely absolutely con-
tinuous; but by means of an adaption of the above method this can be proved
(cf. J. Weidmann [16] or [19], Satz 14.24).

On the other hand the above result implies that the spectral multiplicity of
the whole line operator in (0,∞), respectively

⋃
In, is 2. Notice that in general the

fact that A, B have absolutely continuous spectrum I does not imply that A⊕B
has spectral multiplicity ≥ 2 in I. This is demonstrated by the following simple
example (the author does not know of a similar example in the literature).

Example. Define subsets Aj and Bj of [0, 1] by the following procedure:
– A1 := (0, 1/2), B1 := (1/2, 1),
– Aj+1 is constructed from Aj by deleting the central 2−jth part of every

interval of Aj and adding the central 2−jth part of every interval of Bj ,
– Bj+1 is constructed from Bj by deleting the central 2−jth part of every

interval of Bj and adding the central 2−jth part of every interval of Aj .
(Every Aj and Bj has measure 1/2. It makes no difference whether we take open
or closed intervals in this procedure.)
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Let now
rj := χAj , sj := χBj .

Then the sequences (rj) and (sj) converge in L1(0, 1) and almost everywhere to
functions r and s with r(x)s(x) = 0 and r(x)+s(x) = 1 almost everywhere. Define
measures ρ and σ by

ρ(M) :=
∫

M

r(x)dx and σ(M) :=
∫

M

s(x)dx.

Now take for A and B the operators of multiplication by id in L2(0, 1; ρ) and
L2(0, 1; σ) respectively. The operators A and B have absolutely continuous spec-
trum [0, 1], while A + B is (unitarily equivalent to) the operator of multiplication
by id in L2(0, 1) and therefore has multiplicity 1.

Using the Gelfand-Levitan result on the inverse problem (cf. J. M. Gelfand-
B. M. Levitan [4], M. A. Naimark [9]) it follows that there exists a differential
expression τu = −u′′ + qu on (−∞,∞) such that the corresponding self-adjoint
realizations in L2(−∞, 0) and L2(0,∞) with Dirichlet boundary condition at 0
have absolutely continuous spectrum [0, 1], while the self-adjoint realization in
L2(−∞,∞) has absolutely continuous spectrum [0, 1] with multiplicity 1.
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Spectral Theory of Sturm-Liouville Operators
on Infinite Intervals:
A Review of Recent Developments

Yoram Last

Abstract. This review discusses some of the central developments in the spec-
tral theory of Sturm-Liouville operators on infinite intervals over the last
thirty years or so. We discuss some of the natural questions that occur in this
framework and some of the main models that have been studied.

1. Introduction

This article discusses spectral theory of Sturm-Liouville operators on infinite in-
tervals. More specifically, we focus on one-dimensional Schrödinger operators of
the form

H = − d2

dx2
+ V (x) (1.1)

on L2(R, dx) or L2([0,∞), dx) and on their discrete analogs defined by

(Hψ)(n) = ψ(n + 1) + ψ(n− 1) + V (n)ψ(n) (1.2)

on �2(Z) or �2(N). We shall refer to operators on L2(R, dx) or �2(Z) as whole-line
operators and to operators on L2([0,∞), dx) or �2(N) as half-line operators. We
note that the half-line operators are defined by (1.1) or (1.2) along with a boundary
condition at 0 which takes the form ψ(0) cos θ + ψ′(0) sin θ = 0 for the continuous
case (1.1) and ψ(0) cos θ + ψ(1) sin θ = 0 for the discrete case (1.2). The boundary
condition in the discrete case is equivalent to considering the operator (which acts
on vectors in �2(N) with N = {1, 2, 3, . . .}) as being the tridiagonal matrix defined
by (1.2) for n > 1 and by (Hψ)(1) = ψ(2) + (V (1)− tan θ)ψ(1) at the origin. We
shall refer to θ as the boundary phase.

Since most of the examples we wish to discuss occur more naturally in the
context of discrete operators, our primary focus will be on such operators. We note,
however, that there is good correspondence between the two types of operators

Partially supported by The Israel Science Foundation (grant no. 188/02).



100 Y. Last

except for the case of continuous operators with potentials V that are not bounded
from below. In cases where there is “significant” unboundedness from below (e.g.,
potentials V going to −∞ at infinity), continuous operators may exhibit properties
for which there is no real analog in the discrete case. Such operators are not of
much interest to us here, however.

Our primary interest here is in spectral theory of the above operators, namely,
in questions concerning the location and structure of their spectrum, its decom-
position into various spectral types, and more generally, in properties of their
spectral measures. Given a separable Hilbert space H and a self-adjoint opera-
tor H , recall [76] that for each ψ ∈ H, the spectral measure µψ is the unique
Borel measure obeying 〈ψ, f(H)ψ〉 =

∫
f(x) dµψ(x) for any bounded Borel func-

tion f . By Lebesgue’s decomposition theorem, every Borel measure µ decomposes
uniquely as µ = µac + µsc + µpp. The absolutely-continuous part, µac, gives zero
weight to sets of zero Lebesgue measure. The pure-point part, µpp, is a countable
sum of atomic measures. The singular-continuous part, µsc, gives zero weight to
countable sets and is supported on some set of zero Lebesgue measure. Letting
Hac ≡ {ψ |µψ is purely absolutely-continuous}, and similarly defining Hsc and
Hpp, one obtains a decomposition: H = Hac ⊕ Hsc ⊕ Hpp. Hac, Hsc, and Hpp

are closed (in norm), mutually orthogonal subspaces, which are invariant under
H . The absolutely-continuous spectrum, σac(H), singular-continuous spectrum,
σsc(H), and pure-point spectrum, σpp(H), are defined as the spectra of the re-
strictions of H to the corresponding subspaces, and the spectrum σ(H) of H is
their union: σ(H) = σac(H) ∪ σsc(H) ∪ σpp(H).

We note that some authors, notably [76], use the term “pure point spectrum”
(and the notation σpp) to denote the set of eigenvalues of an operator. Our defini-
tion here coincides with defining the “pure-point spectrum” as the closure of the
set of eigenvalues. Moreover, what we call here “pure-point spectrum,” is often
called just “point spectrum.” The existence of such differing terminologies has the
obvious potential of leading to confusion (e.g., some authors use the term “pure
point spectrum” for what we call below “purely pure-point spectrum”) and so one
should note that we adhere below to the term “pure-point spectrum,” as defined
above.

For discrete half-line operators, the vector δ1 (where δj(n) is 1 if j = n and
0 otherwise) is cyclic and so the spectral properties of the operator are fully de-
termined by the spectral measure µ = µδ1 (which is called the spectral measure of
the operator in this case). In particular, σac(H), σsc(H), and σpp(H) coincide with
the (topological) supports of the corresponding parts of the spectral measure µ.
For discrete whole-line operators, one needs to look at two consecutive δj vectors
to have a cyclic family and so we get the same thing but with the spectral measure
being µ = µδ0 + µδ1 . Analogous natural spectral measures similarly exist for con-
tinuous operators (except that in the continuous case the corresponding spectral
measures are not finite). See, e.g., [19, 30] in this volume.

By classical inverse spectral theory, one should expect the full spectral rich-
ness allowed by measure theory to find its way into such operators.
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In particular, we have

Theorem 1.1 (Gel’fand-Levitan [28]). Given any finite Borel measure ν on [a, b] ⊂
R, there exists a continuous half-line Schrödinger operator for which the spectral
measure coincides with ν on [a, b].

In the discrete case one needs to slightly broaden the class of considered
operators in order to have a full inverse spectral result of this type. Explicitly, one
looks at self-adjoint Jacobi matrices of the form J({an}, {bn}), where {an}∞n=1 ⊂
(0,∞), {bn}∞n=1 ⊂ R, and

(J({an}, {bn})ψ)(n) = an+1ψ(n + 1) + anψ(n− 1) + bnψ(n). (1.3)

We then have, by the classical theory of orthogonal polynomials (see, e.g., [91]):

Theorem 1.2. Any compactly supported probability measure on R is the spectral
measure of a unique bounded Jacobi matrix of the form J({an}, {bn}).

In spite of these inverse spectral results, up until the mid 1970’s or so, the
kind of spectrum most people had in mind in the context of spectral theory
of Schrödinger operators consisted of “bands” of absolutely-continuous spectrum
along with some isolated eigenvalues. These are the kind of spectra occurring for
periodic potentials and for atomic and molecular Hamiltonians, and so it was gen-
erally believed that these are the kind of spectra one is likely to encounter in prob-
lems of physical interest. “Exotic” spectral phenomena such as singular-continuous
spectrum, Cantor set spectrum, and thick pure-point spectrum (namely, the occur-
rence of eigenvalues dense in a set of positive Lebesgue measure), while obviously
allowed by inverse spectral theory, were not considered as likely to occur in any
problem that should be of real interest. In particular, the main role of singular-
continuous spectrum in spectral theory of Schrödinger operators was that of a
mathematical obscurity that needs to be excluded in many problems (in order to
ensure good scattering theory). Indeed, a significant portion of [78], for example,
is devoted to analytical methods for proving that singular-continuous spectrum
does not occur.

This situation started to change, however, around the mid 1970’s, as evi-
dence started to accumulate showing that exotic spectral phenomena do actu-
ally occur in elementary mathematical models that are also of considerable inter-
est to theoretical physics. One of the first results in this direction was the 1977
Goldsheid-Molchanov-Pastur [32] proof of Anderson localization [2] (namely, the
occurrence of pure-point spectrum with eigenvalues dense in an interval) in a ran-
dom Schrödinger operator. They considered a continuous one-dimensional operator
of the form (1.1) on L2(R) with a certain type of random potential V . Even earlier,
the Ishii-Pastur theorem (see Theorem 9.13 of [17]) indicated that some random
one-dimensional Schrödinger operators have no absolutely continuous spectrum in
spite of their spectrum being an interval (which says they must have either thick
pure-point spectrum or singular-continuous spectrum or both). Anderson localiza-
tion for discrete Schrödinger operators of the form (1.2) with potentials made of
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independent, identically distributed random variables, has been proven in 1980 by
Kunz-Souillard [63]. Another notable result of the era is Pearson’s seminal 1978
paper [72], which gave an explicit construction of a one-dimensional Schrödinger
operator having purely singular-continuous spectrum.

Starting around 1980 (note, however, the 1975 paper of Dinaburg-Sinai [24]),
the growing interest in spectral theory of almost periodic Schrödinger opera-
tors [82] provided many more examples of physically interesting operators ex-
hibiting exotic spectral phenomena. In particular, studies of the almost Math-
ieu operator (namely, the operator of the form (1.2) on �2(Z) with potential
V (n) = λ cos(2παn + θ), where λ, α, θ ∈ R) provided an example of Cantor set
spectrum (namely, a case where the spectrum of the operator is nowhere dense and
has no isolated points). It occurs for this operator whenever α ∈ R \Q (something
that was first conjectured in 1964 by Azbel [11] and demonstrated numerically
in 1976 by Hofstadter [47]). The first mathematical result was given in 1982 by
Bellissard-Simon [13] who have shown that Cantor set spectrum must occur for a
generic set of parameters in this model (a proof for all λ, θ ∈ R and α ∈ R \Q has
been completed only very recently; see below). The almost Mathieu operator also
led to a second example of an operator with purely singular-continuous spectrum,
as it was shown in 1982 by Avron-Simon [9] (using ideas of Gordon [33]) that it
has such spectrum if α is a Liouville number and |λ| > 2 (see below).

While the 1980’s interest in almost periodic Schrödinger operators seems to
have started largely by itself and has been much driven by the richness of the
associated spectral theory, it was also soon enhanced by strong connections with
some major discoveries in physics. The 1980 discovery of the integer Quantum Hall
Effect by von Klitzing [60] (for which he got the Nobel prize in 1985), led to a
beautiful theory by Thouless, Kohmoto, Nightingale, and den Nijs [95], which ex-
plains the quantization of charge transport in this effect as connected with certain
topological invariants. Central to their theory is the use of the almost Mathieu
operator as a model for Bloch electrons in a magnetic field (in which case the fre-
quency α is proportional to the magnetic flux; see below). Another strong source of
interest in almost periodic problems came from the 1984 discovery of quasicrystals
by Shechtman et al. [75], as almost periodic Schrödinger operators provide elemen-
tary models for electronic properties in such media. Yet another connection with
physics arose in the context of Quantum Chaos theory, notably in works of Fish-
man, Grempel, and Prange [26, 36, 37], as discrete one-dimensional Schrödinger
operators (and in particular, almost periodic ones) appeared in studies of dynamics
of some elementary quantum models and, in particular, in studies aimed towards
distinguishing quantum from classical dynamics in chaotic systems.

Another phase in these developments occurred in the mid 1990’s, as it has
been realized (largely by Simon and co-workers [21, 22, 20, 46, 55, 84, 85, 86, 89])
that singular-continuous spectrum is a much more common occurrence than pre-
viously believed and that it is, in fact, a “generic” phenomenon for many families
of operators. At that time it has also been realized that singular-continuous spec-
trum is connected with rich dynamics of various quantum systems and that it is
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rich itself, in the sense of being naturally decomposable into many kinds of spectra
associated with different dynamical behaviors [38, 39, 66].

The above discoveries, among others, led to a growing interest in spectral
theory of one-dimensional Schrödinger operators which eventually turned, over
the last thirty years or so, to a rich field of research in its own right. Other than
extensive studies of some specific models and classes of models, much work has
also gone into finding general techniques for spectral analysis of broad classes
of such operators. (See Gilbert’s paper [30] in this volume for a review of some
analytical methods and, in particular, the Gilbert-Pearson theory of subordinacy
[29, 31, 56].) In fact, the area is so vast, by now, that it would be impossible to
provide a truly meaningful review of the subject in the framework of less than
a thick book. We would thus not at all attempt it here, but rather take some
pointwise glimpses at two specific classes of models which played important roles.
One of these is the above-mentioned almost Mathieu operator and the other is
the class of sparse potentials. Hopefully, this would give some idea about the
nature of the field. For further reading, we recommend Simon’s review paper [87],
which, among other things, discusses slowly decaying potentials, and Damanik’s
review paper [18], which discusses some classes of potentials generated by circle
maps and substitutions (these include the most natural models for one-dimensional
quasicrystals). A solid, albeit somewhat outdated, introduction to the spectral
theory of Schrödinger operators with random and almost periodic potentials is
given in [17].

The rest of this paper is organized as follows: In Section 2, we present some
natural extensions of the classical spectral types. In Section 3, we consider the
almost Mathieu operator, and in Section 4, we discuss sparse potentials.

2. Extending the spectral types

Pre-1980 spectral theory of self-adjoint operators on separable Hilbert spaces iden-
tified five spectral types arising from natural spectral decompositions of the Hilbert
space. These are the essential spectrum, σess, discrete spectrum, σdisc, absolutely-
continuous spectrum, σac, singular-continuous spectrum, σsc, and pure-point spec-
trum, σpp. As rich spectral properties started to appear, the desire to make more
spectral distinctions arose, and more spectral types have been introduced.

The first introduction of new spectral types is due to Avron-Simon [8] in
1981. They decomposed the Hilbert space H into a transient subspace, Htac, and
a recurrent subspace, Hrec = H⊥

tac. Htac is a subspace of Hac, which, in some
sense, extracts its smoothest component. It is given by Htac = PeiHac, where Pei

is the spectral projection on the essential interior of the essential support of the
absolutely-continuous part of the spectral measure class of the operator H . The
spectra σtac ∪ σrec = σ are defined by σtac = σ(H�Htac) and σrec = σ(H�Hrec),
and σtac ⊆ σac. These spectral decompositions are connected with dynamics, since,
as Avron-Simon [8] show, Htac = {ψ | µ̂ψ(t) ∈ L1}, where µ̂ψ(t) = 〈ψ, e−iHtψ〉 =
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∫
e−iEt dµψ(E) is the Fourier transform of the spectral measure µψ of the vector

ψ. This should be compared with the classical [77] Hac = {ψ | µ̂ψ(t) ∈ L2}.
Additional spectral types, essentially subtypes of singular-continuous spec-

trum, were introduced in 1996 by Last [66]. This has been impacted by Guarneri’s
seminal papers on quantum dynamics [38, 39] and utilized the Rogers-Taylor
[79, 80] theory of decomposing Borel measures with respect to Hausdorff mea-
sures.

Recall that for any subset S of R and α ∈ [0, 1], the α-dimensional Hausdorff
measure, hα, is given by

hα(S) ≡ lim
δ→0

inf
δ-covers

∞∑
ν=1

|bν |α , (2.1)

where a δ-cover is a cover of S by a countable collection of intervals, S ⊂ ⋃∞
ν=1 bν ,

such that for each ν the length of bν is at most δ. (Technically, we consider hα

as being defined by (2.1) also for real α’s outside [0, 1], but the resulting hα’s are
trivial in such a case.) hα, as defined by (2.1), is an outer measure on R and its
restriction to Borel sets is a Borel measure. h1 coincides with the Lebesgue measure
and h0 is the counting measure (assigning to each set the number of points in it),
such that the family {hα | 0 ≤ α ≤ 1} can be viewed as a way of continuously
interpolating between the counting measure and the Lebesgue measure. Given
any ∅ �= S ⊆ R, there exists a unique α(S) ∈ [0, 1] such that hα(S) = 0 for any
α > α(S), and hα(S) = ∞ for any α < α(S). This unique α(S) is called the
Hausdorff dimension of S. A rich theory of decomposing measures with respect
to Hausdorff measures and dimensions has been developed by Rogers and Taylor
[79, 80]. Here we only discuss a small part of it. A much more detailed description
can be found in [66].

Given α, a measure µ is called α-continuous (αc) if µ(S) = 0 for every set
S with hα(S) = 0. It is called α-singular (αs) if it is supported on some set S
with hα(S) = 0. We say that µ is one-dimensional (od) if it is α-continuous for
every α < 1. We say that it is zero-dimensional (zd) if it is α-singular for every
α > 0. A measure µ is said to have exact dimension α if, for every ε > 0, it is both
(α− ε)-continuous and (α + ε)-singular.

Given a (positive, finite) measure µ and α ∈ [0, 1], we define

Dα
µ(x) ≡ lim sup

ε→0

µ((x − ε, x + ε))
(2ε)α

(2.2)

and T∞ ≡ {x |Dα
µ(x) = ∞}. The restriction µ(T∞ ∩ · ) ≡ µαs is α-singular, and

µ((R \ T∞) ∩ · ) ≡ µαc is α-continuous. Thus, each measure decomposes uniquely
into an α-continuous part and an α-singular part: µ = µαc + µαs. Moreover, an
α-singular measure must have Dα

µ(x) = ∞ a.e. (with respect to it) and an α-
continuous measure must have Dα

µ(x) <∞ a.e. It is important to note that Dα
µ(x)

is defined with a limit superior. The corresponding limit need not exist.
Consider now a separable Hilbert space H and a self-adjoint operator H .

We let Hαc ≡ {ψ |µψ is α-continuous} and Hαs ≡ {ψ |µψ is α-singular}. Hαc
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and Hαs are mutually orthogonal closed subspaces which are invariant under H ,
and H decomposes as H = Hαc ⊕ Hαs. The α-continuous spectrum (σαc) and
α-singular spectrum (σαs) are defined as the spectra of the restrictions of H to
the corresponding subspaces, and σ = σαc ∪ σαs. Thus, the standard spectral
theoretical scheme which uses the Lebesgue decomposition of a Borel measure into
absolutely-continuous, singular-continuous, and pure-point parts can be extended
to include further decompositions with respect to Hausdorff measures.

As described in [66], the full picture is somewhat richer than discussed above.
For every dimension α ∈ (0, 1), there is a natural unique decomposition (of a σ-
finite Borel measure µ on R) into five parts: one below the dimension α, one above
it, and three within it – of which the middle one is absolutely continuous with
respect to hα. Furthermore, this picture can be extended to consider more gen-
eral Hausdorff measures (namely, ones that do not come from a power law) and
families of such measures – as originally discussed by Rogers-Taylor [79, 80]. All
of these measure decompositions lead to corresponding Hilbert space spectral de-
compositions. A point to note here is that continuity and singularity with respect
to Hausdorff measures are completely determined by the a.e. local scaling behav-
ior of the measure. Knowing Dα

µ(x) for every α in [0, 1] and a.e. x with respect
to µ completely determines the decomposition of µ with respect to dimensional
Hausdorff measures. Knowing only the local dimension

αµ(x) ≡ lim inf
ε→0

log(µ((x − ε, x + ε)))
log ε

(2.3)

(for a.e. x with respect to µ) determines its decomposition with respect to Haus-
dorff dimensions. In particular, µ is of exact dimension α if and only if αµ(x) = α
a.e. with respect to it.

It is interesting to note that the singular-continuous spectrum in Pearson’s
seminal example [72] turns out to be purely one-dimensional spectrum (as has
been essentially shown by Simon [86]), while the singular-continuous spectrum
found by Avron-Simon [9] in the almost Mathieu operator turns out to be purely
zero-dimensional [54, 66]. Examples of certain sparse potentials having spectrum
of exact dimension α, for any α ∈ [0, 1], were constructed by Jitomirskaya-Last
[53] using a power-law variant of the Gilbert-Pearson theory [29, 31, 56]; see below.

3. The almost Mathieu operator

The almost Mathieu operator (also known as the Harper operator or the Hofstadter
model) is the discrete one-dimensional Schrödinger operator (acting on �2(Z))
given by:

(Hα,λ,θψ)(n) = ψ(n + 1) + ψ(n− 1) + λ cos(2παn + θ)ψ(n), (3.1)

where α, λ, θ ∈ R. Its name comes from the similarity to the Mathieu equation:

−y′′(x) + λ cos(x) y(x) = Ey(x). (3.2)
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Hα,λ,θ is a tight binding model for the Hamiltonian of an electron in a one-
dimensional lattice, subject to a commensurate (if α is rational) or incommensurate
(if α is irrational) potential. It is also related to the Hamiltonian of an electron
in a two-dimensional lattice, subject to a perpendicular (uniform) magnetic field.
There are two different ways (or limits) in which this relation can be obtained. The
first, going back to Harper [42], is to start with a tight binding model of a two-
dimensional rectangular lattice (which only takes into account nearest neighbor
interactions), and then to consider a Landau gauge for the magnetic field. Namely,
the vector potential is taken to be in one direction, parallel to one of the direc-
tions of the lattice and perpendicular to the other. This makes the Hamiltonian
separable, such that the eigenfunctions are plane waves in the direction which is
perpendicular to the vector potential, and one obtains Hα,λ,θ for the direction of
the vector potential. The number α is the magnetic flux per unit cell (in quantum
flux units), θ is the wave-number of the plane waves in the transversal direction,
and λ/2 is the ratio between the length of a unit cell in the direction of the vector
potential and its length in the transversal direction. In particular, λ = 2 corre-
sponds to a square lattice. This approach is closely related to the standard Landau
gauge solution for free electrons (in the plane) in a uniform magnetic field, where
one gets plane waves in one direction and the harmonic oscillator (which gives rise
to Landau levels) in the other direction. In this sense, Hα,λ,θ appears as a tight
binding analog of the harmonic oscillator. The second way, going back at least
to Rauh [74], is to start with free electrons (in the plane) in a uniform magnetic
field and to consider the perturbation of a single Landau level arising from a weak
periodic (sinusoidal) potential. The magnetic flux per unit cell is 1/α in this case.
In both of these ways, the relevant energy spectrum is the union over θ of the
individual energy spectra of Hα,λ,θ. Namely, it is the set S(α, λ) defined by:

S(α, λ) ≡
⋃
θ

σ(α, λ, θ), (3.3)

where σ(α, λ, θ) is the spectrum of Hα,λ,θ.
The almost Mathieu operator plays an important role in the study of fun-

damental problems related to Bloch electrons in magnetic fields. In particular, it
plays a major role in the Thouless-Kohmoto-Nightingale-den Nijs [95] theory of
the integer quantum Hall effect, where it gives rise to a rich set of possible integer
Hall conductances. It is interesting to note that the Thouless et al. theory, and
thus also the relevance of the almost Mathieu operator for describing electrons in
magnetic fields, has been recently verified experimentally [1]. For a recent review
of the quantum Hall effect and the role played by the almost Mathieu operator,
see [7].

Apart from its relations to some fundamental problems in physics, Hα,λ,θ is
fascinating also because of the incredible spectral richness obtained by varying the
parameters α, λ, θ, along with the fact that, to a large extent, this richness can
be rigorously analyzed. It serves as a primary example for many spectral phenom-
ena, and it is the most studied concrete model of a one-dimensional Schrödinger
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operator. The central spectral questions can be divided into two classes: questions
concerned with the spectrum as a set and those concerned with the spectral types.
Below we review some of the central findings for each of those.

3.1. The spectrum as a set

If α is a rational number, α = p/q, where p and q are relatively prime, Hα,λ,θ is
a periodic Jacobi matrix, and by classical Bloch-Floquet theory, the structure of
the spectrum σ(α, λ, θ) is well understood. It consists of q bands (closed intervals),
which are usually separated by gaps. As θ is varied, these bands move, and their
length may change, but this happens in such a way that different bands never
overlap (other than in band edges). Namely, an energy which is inside a given
band (suppose that we always label the bands by their order of occurrence on the
real line) for some θ, will never be in a different band for any other θ (see, e.g., [6]).
Thus, the set S(α, λ) is similar to σ(α, λ, θ) for any individual θ and also consists
of q bands. If α is irrational, it follows from general principles [10, 17, 82] that the
spectrum is independent of θ. Thus, we have in such case S(α, λ) = σ(α, λ, θ) for
any θ.

An important property of Hα,λ,θ is the Aubry duality [3], which allows to
relate eigenfunctions and spectra of the almost Mathieu operator with some given
λ to those of the almost Mathieu operator with λ replaced by 4/λ. This duality
can be understood from a physical viewpoint: If we consider the magnetic field
problem described above, and change the gauge of the vector potential into a
Landau gauge in the transversal direction, we obtain again the almost Mathieu
operator, but with λ replaced by 4/λ and the whole operator rescaled by a factor
of λ/2. Since the energy spectrum of the magnetic field Hamiltonian must be gauge
independent, we should expect

S(α, λ) =
λ

2
S(α, 4/λ). (3.4)

Indeed, (3.4) has been established (for any real α) by Avron-Simon [10]. From
(3.4) we see, in particular, that it is sufficient to study S(α, λ) for 0 ≤ |λ| ≤ 2,
since for |λ| > 2, S(α, λ) is obtained immediately from the |λ| < 2 case.

In the rational case α = p/q, S(α, λ) (which consists of q bands) can have at
most q−1 gaps. It turns out that these gaps are always open, except for the middle
gap for even q (which is always closed). This fact has been proven by van Mouche
[70], and also, independently, by Choi-Elliot-Yui [15]. In fact, [15] even obtains an
explicit lower bound on the size of each open gap, which is:

Theorem 3.1. If Q � α = p/q, and |λ| ≤ 2, then all gaps (except the middle gap
for q even) of S(α, λ) are open and have width larger than (|λ|/16)q.

Since Hα,λ,θ is strongly continuous in α, σ(α, λ, θ) is also continuous, in the
sense that if E ∈ σ(α, λ, θ) and αn → α, then there are points En ∈ σ(αn, λ, θ) such
that En → E. The set S(α, λ) has even better continuity properties and various
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results on this continuity have been obtained. In particular, Avron-van Mouche-
Simon [6] have shown the following uniform (in both α and the energy) Hölder
continuity of order 1/2.

Proposition 3.2. For a fixed λ and |α − α′| < C(λ), each E ∈ S(α, λ) has E′ ∈
S(α′, λ) with |E − E′| < 6|λ(α− α′)|1/2.

In particular, this theorem says that for every gap in S(α, λ) of width |g| larger
than 12|λ(α−α′)|1/2, there is a corresponding gap in S(α′, λ) of width larger than
|g| − 12|λ(α− α′)|1/2.

Among the notable results for the periodic case (α ∈ Q) are those involving
the Lebesgue measure of the spectrum. While the spectrum itself clearly depends
greatly on α = p/q, as it consists of different numbers of disjoint bands for different
q’s, the “total bandwidth” turns out to have some remarkable universal properties.
This has been first noted in 1980 by Aubry-André [3] who found numerical evidence
that for p, q relatively prime, limq→∞ |S(p/q, λ)| = |4−2|λ|| (where | · |, for subsets
of R, denotes Lebesgue measure). The first rigorous result on this issue came in a
1983 paper by Thouless [93], who showed that for every rational p/q, |S(p/q, λ)| ≥
|4− 2|λ||. In their 1990 paper [6], Avron-van Mouche-Simon have proven that for
|λ| ≤ 2 and p, q relatively prime,

4− 2|λ| ≤ |S(p/q, λ)| ≤ 4− 2|λ|+ 4π

( |λ|
2

)q/2

, (3.5)

and moreover,
|S−(p/q, λ)| = 4− 2|λ|, (3.6)

where S−(α, λ) ≡ ⋂θ σ(α, λ, θ). (3.5) is in accordance with the numerical observa-
tion of Aubry-André for any |λ| �= 2.

For the |λ| = 2 case, it turns out that not only is |S(p/q, λ)| vanishing as q →
∞, but this occurs at a remarkably universal rate. A conjecture of Thouless [93,
94, 96, 97] states that (for p, q relatively prime) limq→∞ q|S(p/q, 2)| = (32/π)β =
9.32 . . . , where β is Catalan’s constant. While heuristic analytical justifications
for this conjecture have been given [43, 69, 94], it has been rigorously established
only for some specific sequences [43]. However, while the above precise scaling law
is generally an open problem, the following general bound has been proven by
Last [65]:

2(
√

5 + 1)
q

< |S(p/q, 2)| < 8e

q
(3.7)

(where e ≡ exp(1) = 2.71 . . . ). It is interesting to note that this result relies
on looking at the λ → 2 limit of the remarkable exact equality (3.6) of Avron-
van Mouche-Simon.

For the non-periodic (but almost periodic) case of α ∈ R \ Q, we have the
following general theorem.

Theorem 3.3. For any α ∈ R \ Q and λ �= 0, S(α, λ) is a Cantor set and has
Lebesgue measure |4− 2|λ||.
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While Theorem 3.3 is elegant and simple to formulate, its proof took a con-
siderable effort by many individuals over a period of more than twenty years. In
fact, the “last nail” that enables us to write this theorem in such a simple general
form is not yet published [4].

While Theorem 3.3 holds equally well for all irrational α’s, its proof, like some
other elements of the spectral theory of Hα,λ,θ discussed below, requires looking
differently at different kinds of irrationals. The main issue that distinguishes irra-
tionals here is how well they can be approximated by rationals. In particular, we
say that α is a Liouville number if there exists a sequence {pn/qn} of rationals,
such that |α − pn/qn| < n−qn . We say that α has typical Diophantine properties
if for every ε > 0 there is a δ > 0, such that |α − p/q| > δ/q2+ε for all rationals
p/q. The numbers with typical Diophantine properties are a set of full Lebesgue
measure, while the Liouville numbers are a dense Gδ set [76] of zero Lebesgue
measure (and zero Hausdorff dimension). The question of how well an irrational
can be approximated by rationals is strongly connected with the properties of its
continued fraction expansion (by integers), which has the form:

α = [n1, n2, n3, . . . ] =
1

n1 +
1

n2 +
1

n3 + · · ·

. (3.8)

Roughly speaking, Liouville numbers have a subsequence of ni’s which grows very
fast, while the ni’s for numbers with typical Diophantine properties cannot grow
too fast. Nevertheless, the set of irrationals for which the sequence of ni’s is
bounded (these are the numbers for which infp,q∈Z q2|α − p/q| > 0) has zero
Lebesgue measure. For more information on continued fraction expansions and
approximating irrationals by rationals, see [41] or [57].

Theorem 3.3 actually consists of two independent results. One is the Cantor
structure of the spectrum, while the other is the precise α-independent formula for
the Lebesgue measure of the spectrum. The two are connected only at the critical
point |λ| = 2, where the vanishing of the measure of the spectrum also implies
that it must be a Cantor set.

The equality |S(α, λ)| = |4−2|λ|| has been first conjectured by Aubry-André
[3] in 1980 (due to their numerical findings for the limiting behavior for ratio-
nal α). Even before then, Hofstadter [47] conjectured the vanishing of |S(α, 2)|.
Thouless [93], showed in 1983 that |S(α, λ)| ≥ |4−2|λ||. In 1989, Helffer-Sjöstrand
[44] proved that S(α, λ) is a Cantor set of zero Lebesgue measure for the spe-
cial case |λ| = 2 and for a special class of irrationals characterized through their
continued fraction expansions (3.8) as having ni > C for some large constant C
and all i. Their analysis is based on a unique spectral renormalization procedure
which exploits elaborate semi-classical analysis and builds on ideas (and a heuris-
tic analysis) of Wilkinson [98]. The class of relevant α’s is nowhere dense and
of zero Lebesgue measure. Later Last [64], in 1993, noted that the core results
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of Avron-van Mouche-Simon [6] (namely, (3.5) and Proposition 3.2 above) imply
that |S(α, λ)| = |4 − 2|λ|| holds for any |λ| �= 2 and α having an unbounded con-
tinued fraction expansion (and thus for Lebesgue a.e. α). He later extended [65]
this result to also include |λ| = 2, by proving (3.7). In 1998, Jitomirskaya-Last
[52] have shown that |S(α, λ)| = |4 − 2|λ|| holds for any irrational α if |λ| > 29
(or |λ| < 4/29). Later, in 2002, Jitomirskaya-Krasovsky [51] extended this to any
|λ| �= 2. Finally, in 2003, Avila-Krikorian [5] have shown that |S(α, 2)| = 0 also for
irrational α’s with a bounded continued fraction expansion and thus completed
the proof that |S(α, λ)| = |4− 2|λ|| holds for any λ and any irrational α.

As noted above, the Cantor structure of the spectrum has been first con-
jectured in 1964 by Azbel [11] and later demonstrated numerically in 1976 by
Hofstadter [47]. The problem of proving it has been the most notable one in the
spectral theory of the almost Mathieu operator. It has been named “the ten Mar-
tini problem” by Simon [82], due to Mark Kac offering ten Martinis to anyone who
solves it (see [81, 82]). The first mathematical result for this problem has been
given in 1982 by Bellissard-Simon [13] who have shown that S(α, λ) is a Cantor
set for a dense Gδ of pairs (λ, α) ∈ R2 (and thus “generically,” in the commonly
used topological sense). The α’s which are relevant to their proof are essentially
Liouville numbers, but are not really specified. Nor are the λ’s. Later Sinai [90],
in a 1987 paper, has proven that for (Lebesgue) a.e. α, and sufficiently large (or
small) |λ|, S(α, λ) is a Cantor set. Sinai’s proof is perturbative and quite com-
plicated. The relevant α’s are those with typical Diophantine properties and are
explicitly given. The λ’s are not explicitly given and the required largeness (or
smallness) of |λ| may depend on α. In 1989, the above-mentioned result of Helffer-
Sjöstrand [44] implied the Cantor structure for |λ| = 2 and some irrational α’s. In
1990, Choi-Elliot-Yui [15] have proven that S(α, λ) is a Cantor set for all λ’s and
Liouville α’s. In particular, their result strengthens the Bellissard-Simon result.
The Choi-Elliot-Yui result is a simple consequence of their lower bound on gap
sizes for rational α’s (Theorem 3.1), along with the continuity properties of S(α, λ)
(Proposition 3.2). Later, in 1994, Last’s result [65] on the vanishing of |S(α, 2)|
also established the Cantor structure for |λ| = 2 and Lebesgue a.e. α. A major
development occurred recently in the work of Puig [73], who shows that S(α, λ) is
a Cantor set for all λ �= 2 and α’s with typical Diophantine properties. While this
means Lebesgue a.e. α, there are still some irrationals which are not covered by
either Puig’s result or the Choi-Elliot-Yui [15] result. This last remaining issue has
been resolved very recently by Avila-Jitomirskaya [4] who completed the proof of
Theorem 3.3.

We note that while the Cantor structure of the spectrum is now fully estab-
lished, there is also a strong (also known as dry) form of the ten Martini problem,
which is to prove that all of the gaps which are allowed by the gap labelling theo-
rem (see [82] and references therein) are really open. The above-mentioned result
of Choi-Elliot-Yui [15] actually does solve this strong form for the case of Liouville
numbers. Moreover, Puig [73] solves it for α’s with typical Diophantine properties
and for very large (or small) |λ|. Beyond that, however, this question is still open.
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Finally, we remark that in order to fully appreciate the rich and elegant
structure of the spectrum of the almost Mathieu operator, one is strongly advised
to look at some of its numerical drawings. The first of those was done by Hofstadter
[47] who created the famous “Hofstadter butterfly” out of it. A nice selection
of many numerically computed illustrations of almost Mathieu spectra has been
provided by Guillement-Helffer-Treton in [40]. For a (physically motivated) colored
version of Hofstadter’s butterfly, see Osadchy-Avron [71] (or [7]).

3.2. Spectral types and the metal-insulator transition

For the periodic case (α ∈ Q), Hα,λ,θ (like all periodic Schrödinger operators) has
purely absolutely-continuous spectrum. Once α is irrational, however, the nature
of the spectrum of Hα,λ,θ is quite rich and depends on the precise values of the
parameters. Aubry-André, in their 1980 paper [3], conjectured that Hα,λ,θ (for
α ∈ R \Q) exhibits an elegant “metal-insulator transition” as follows: For |λ| < 2
it has purely absolutely-continuous spectrum and for |λ| > 2 it exhibits Anderson
localization (namely, it has purely pure-point spectrum with exponentially decay-
ing eigenvectors). As studies in the years that followed indicate, this conjecture
is correct only in the probabilistic sense of holding for Lebesgue a.e. α, θ. The
full picture is a lot more delicate as there are sets of parameters of zero Lebesgue
measure giving rise to different spectral properties.

The following version of the Aubry-André conjecture (whose proof has been
recently completed by Jitomirskaya [50]) is now known:

Theorem 3.4. For Lebesgue a.e. pair α, θ, Hα,λ,θ has spectral properties as follows:
(i) If |λ| < 2, purely absolutely continuous spectrum.
(ii) If |λ| = 2, purely singular continuous spectrum.
(iii) If |λ| > 2, purely pure-point spectrum with exponentially decaying eigenvec-

tors.

Theorem 3.4 is complemented by the following facts:
• If |λ| > 2 and α is a Liouville number, then Hα,λ,θ has purely singular-

continuous spectrum for every θ. (The result for a.e. θ has been obtained
by Avron-Simon [9] in 1982, following an idea of Gordon [33]. The fact that
it holds for every θ is a consequence of later results [62, 66, 68]). Thus, the
α’s for which pure-point spectrum occurs are, roughly, those with typical
Diophantine properties.

• If |λ| > 2 and α is irrational, then there exists a dense Gδ set of θ’s for
which Hα,λ,θ has purely singular-continuous spectrum (Jitomirskaya-Simon
[55], 1994).

• If |λ| > 2 and α is irrational, then for every θ, the spectrum of Hα,λ,θ is
purely zero-dimensional, namely, the spectral measures are supported on a
set of zero Hausdorff dimension (Jitomirskaya-Last [54], 2000).

• If |λ| = 2 and α is irrational, then for Lebesgue a.e. θ, the spectrum of Hα,λ,θ

is purely singular-continuous (see below).
• If |λ| < 2, then for every α, θ, Hα,λ,θ has no eigenvalues (Delyon [23], 1987).
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• If |λ| < 2 and α is irrational, then for every θ, Hα,λ,θ has some absolutely-
continuous spectrum and, moreover, the Lebesgue measure of its absolutely-
continuous spectrum is equal to the Lebesgue measure of its spectrum. (This
is essentially a 1993 result of Last [64], who proved it for every α and a.e. θ
using Kotani theory [61, 83]. The fact that it holds for every θ is a consequence
of later results [62, 68].)
We note that while the above listed facts provide a fairly detailed and nearly

complete picture for the spectral properties of Hα,λ,θ, the following natural ques-
tions are still open:
• Is there ever any singular-continuous spectrum for |λ| < 2?
• Is there ever any pure-point spectrum for |λ| = 2?

Similarly to Theorem 3.3, proving Theorem 3.4 took a considerable effort over
a period of almost twenty years, with many partial results along the way. Some of
the main highlights (excluding results already mentioned above as complements
to the theorem) are the following: Absence of absolutely-continuous spectrum for
any |λ| > 2, irrational α, and a.e. θ, has been established in 1982 by Avron-Simon
[10] and Figotin-Pastur [25]. They show (based on the arguments of Aubry-André
[3]) positivity of the Lyapunov exponent, which has also been obtained by Herman
[45], and thus conclude the absence of a.c. spectrum by the Ishii-Pastur theorem
(see Theorem 9.13 of [17]). In 1983, Bellissard-Lima-Testard [12], using ideas of
Dinaburg-Sinai [24], have shown (for α with typical Diophantine properties and a.e.
θ) the existence of some pure-point spectrum for very large |λ| and some absolutely-
continuous spectrum for very small |λ|. In 1987, Sinai [90] established the existence
of purely pure-point spectrum for α’s with typical Diophantine properties, very
large |λ|, and a.e. θ. A similar result has independently been obtained about the
same time by Fröhlich-Spencer-Wittwer [27]. A little later, in 1989, Chulaevsky-
Delyon [16], using Sinai’s result, have shown that the spectrum is purely absolutely-
continuous for α’s with typical Diophantine properties, very small |λ|, and a.e.
θ. In 1997, Gordon-Jitomirskaya-Last-Simon [35] proved a version of the Aubry
duality saying that for a fixed irrational α and a.e. θ, the existence of some p.p.
spectrum for λ implies the existence of some a.c. spectrum for the dual coupling
4/λ, and the occurrence of purely p.p. spectrum for λ implies the occurrence
of purely a.c. spectrum for the dual coupling 4/λ. This result, along with the
vanishing of the measure of the spectrum of Hα,2,θ, which says that it cannot
have any a.c. spectrum, implies the part of Theorem 3.4 for |λ| = 2. Finally, in
1999, Jitomirskaya [50], strengthening her earlier results [48, 49], proved that for
α with typical Diophantine properties, any |λ| > 2, and a.e. θ, Hα,λ,θ has purely
pure-point spectrum with exponentially localized eigenvectors (also see Bourgain-
Goldstein [14] for a slightly later proof). This establishes the part of Theorem 3.4
for |λ| > 2, and when combined with the Gordon-Jitomirskaya-Last-Simon [35]
result, it also implies the part of Theorem 3.4 for |λ| < 2.
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4. Sparse potentials

Sparse potentials are potentials which vanish outside a sequence of “bumps” which
are spaced “very far” apart from each other, namely, the distances between the
bumps should be fastly growing to infinity. The bumps themselves may have “sizes”
which are either growing, decaying, or stay the same. The size of a bump can be
made large or small by controlling either its height or its width, although in what
follows, we consider only unit width bumps, such that their size is fully determined
by their height.

To be more concrete, we discuss here a specific class of discrete operators on
�2(N), defined by (1.2) with a potential V obeying:

V (n) = 0 if n /∈ {Lk}∞k=1. (4.1)

Here {Lk}∞k=1 is a rapidly growing sequence of positive integers and the V (Lk)’s
are some non-vanishing real numbers. The growth rate of the sequence {Lk}∞k=1

is at least faster than linear. A broad range of growth rates has been considered,
including, as we shall see below, growth rates from quadratic to much faster than
factorial.

Unlike the almost Mathieu operator discussed above, sparse Schrödinger op-
erators of this type are generally not expected to be connected with any interesting
problems in physics and so the interest in them is essentially purely mathematical.
What makes them interesting is the fact that they are relatively easy to analyze,
while at the same time they can exhibit a broad range of spectral properties.
This makes them a very useful playground for constructing explicit examples with
various prescribed (and often tightly controlled) spectral properties.

The first to realize the great usefulness of sparse potentials for constructing
examples with interesting spectral properties seems to have been Pearson, who
used them in his seminal 1978 paper [72] to construct explicit Schrödinger oper-
ators with purely singular-continuous spectrum. While he considered continuous
operators of the form (1.1), it is also easy to prove a discrete analog of his re-
sult. In particular, the following variant of Pearson’s result has been proven by
Kiselev-Last-Simon [59]:

Theorem 4.1. Let H be a discrete sparse Schrödinger operator on �2(N), of the
form defined by (1.2) and (4.1). Suppose that as k → ∞, Lk/Lk+1 → 0 and
V (Lk)→ 0.

(i) If
∑∞

k=1 |V (Lk)|2 <∞, then H has purely absolutely-continuous spectrum on
(−2, 2).

(ii) If
∑∞

k=1 |V (Lk)|2 = ∞, then H has purely singular-continuous spectrum on
(−2, 2).

In 1990, Gordon [34] and Kirsch-Molchanov-Pastur [58] used growing sparse
potentials to construct deterministic Schrödinger operators with thick pure-point
spectrum. What they show, in essence, is that for a given {Lk}∞k=1, it is possible to
make {V (Lk)}∞k=1 grow fast enough so that the operator H has purely pure-point



114 Y. Last

spectrum for a.e. boundary phase θ. More recently, models of this type have also
been studied by Last-Simon [67], who show the following explicit variant for this
type of results:

Theorem 4.2. Let H be a discrete sparse Schrödinger operator on �2(N), of the
form defined by (1.2) and (4.1). Let Lk = k2 and V (Lk) = eβk; then for a.e.
boundary phase θ, H has purely pure-point spectrum on [−2, 2] with eigenvectors
decaying like e−βn/2.

In 1996, Simon-Stolz [89] took a complementary view of unbounded sparse
potentials and showed that for a given unbounded sequence of potential values
{V (Lk)}∞k=1, it is possible to make the sequence {Lk}∞k=1 grow fast enough so that
H has purely singular-continuous spectrum on (−2, 2) (for any boundary phase θ).
A little later, Simon [86] showed that it is, in fact, possible to make {Lk}∞k=1 grow
fast enough so that the singular-continuous spectrum is purely one-dimensional,
namely, the spectral measures do not give weight to sets of Hausdorff dimension
less than one.

We note that for unbounded sparse potentials, absolutely-continuous spec-
trum is excluded by a general theorem of Simon-Spencer [88], which states that
discrete half-line Schrödinger operators with unbounded potentials have no a.c.
spectrum (also see [68] for another proof). Thus, the spectrum is always singular
and we see that there is an interplay between the rates of growth of the two se-
quences {Lk}∞k=1 and {V (Lk)}∞k=1. That is, faster growth of {Lk}∞k=1 makes the
spectrum more continuous and faster growth of {V (Lk)}∞k=1 makes it more singu-
lar. This general principle has been fine-tuned in 1999 by Jitomirskaya-Last [53]
to construct examples of operators with singular-continuous spectrum of exact
dimension α (for any α ∈ (0, 1)). That is:

Theorem 4.3. Let H be a discrete sparse Schrödinger operator on �2(N), of the form
defined by (1.2) and (4.1). Let α ∈ (0, 1), Lk = 2(kk), and V (Lk) = L

(1−α)/2α
k ; then

for a.e. boundary phase θ, the spectrum of H in [−2, 2] is of exact dimension α,
namely, the restriction of the spectral measure to [−2, 2] is supported on a set of
Hausdorff dimension α and does not give weight to sets of Hausdorff dimension
less than α.

We note that while we formulated Theorem 4.3 as holding for “a.e. boundary
phase θ,” as indeed proven in [53], Tcheremchantsev [92] has recently proven a
variant of this theorem where the exact dimension holds for all boundary phases.
Thus, “a.e.” in Theorem 4.3 can actually be replaced by “every”.

We further note that Zlatoš [99] recently studied discrete sparse Schrödinger
operators for which {V (Lk)}∞k=1 is a constant sequence and {Lk}∞k=1 grows ex-
ponentially. He shows that for appropriate exponential growth rates of the Lk’s
(depending on the common value of the V (Lk)’s), such operators exhibit some
singular-continuous spectrum with fractional dimensionality. In fact, his model is
an example of a deterministic potential leading to spectral properties which are
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very similar to those previously established by Kiselev-Last-Simon [59] for certain
random decaying potentials.
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[3] S. Aubry and G. André, Analyticity breaking and Anderson localization in incom-
mensurate lattices, Ann. Israel Phys. Soc. 3 (1980), 133–164.

[4] A. Avila and S. Jitomirskaya, in preparation.

[5] A. Avila and R. Krikorian, Reducibility or non-uniform hyperbolicity for quasiperiodic
Schrödinger cocycles, preprint, 2003.

[6] J. Avron, P.M.H. van Mouche and B. Simon, On the measure of the spectrum for
the almost Mathieu operator, Commun. Math. Phys. 132 (1990), 103–118.

[7] J.E. Avron, D. Osadchy and R. Seiler, A topological look at the quantum Hall effect,
Physics Today, August 2003, 38–42.

[8] J. Avron and B. Simon, Transient and recurrent spectrum, J. Funct. Anal. 43 (1981),
1–31.

[9] J. Avron and B. Simon, Singular continuous spectrum for a class of almost periodic
Jacobi matrices, Bull. Amer. Math. Soc. 6 (1982), 81–85.

[10] J. Avron and B. Simon, Almost periodic Schrödinger operators II: The integrated
density of states, Duke Math. J. 50 (1983), 369–391.

[11] M.Ya. Azbel, Energy spectrum of a conduction electron in a magnetic field, Sov.
Phys. JETP 19 (1964), 634–645.

[12] J. Bellissard, R. Lima and D. Testard, A metal-insulator transition for the almost
Mathieu model, Commun. Math. Phys. 88 (1983), 207–234.

[13] J. Bellissard and B. Simon, Cantor spectrum for the almost Mathieu equation, J.
Funct. Anal. 48 (1982), 408–419.

[14] J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic
potential, Ann. of Math. 152 (2000), 835–879.

[15] M.D. Choi, G.A. Elliott and N. Yui, Gauss polynomials and the rotation algebra,
Invent. Math. 99 (1990), 225–246.

[16] V. Chulaevsky and F. Delyon, Purely absolutely continuous spectrum for almost
Mathieu operators, J. Stat. Phys. 55 (1989), 1279–1284.



116 Y. Last

[17] H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger Operators, Springer,
Berlin, 1987.

[18] D. Damanik, Gordon-type arguments in the spectral theory of one-dimensional qua-
sicrystals, in Directions in mathematical quasicrystals, 277–305, CRM Monogr. Ser.
13, Providence, R.I., Amer. Math. Soc., 2000.

[19] R. Del Rio, Boundary Conditions and Spectra of Sturm-Liouville Operators, in this
volume.

[20] R. Del Rio, S. Jitomirskaya, Y. Last and B. Simon, Operators with singular contin-
uous spectrum IV: Hausdorff dimensions, rank one perturbations, and localization,
J. Analyse Math. 69 (1996), 153–200.

[21] R. Del Rio, S. Jitomirskaya, N. Makarov and B. Simon, Singular continuous spectrum
is generic, Bull. Amer. Math. Soc. 31 (1994), 208–212.

[22] R. Del Rio, N. Makarov and B. Simon, Operators with singular continuous spectrum
II: Rank one operators, Commun. Math. Phys. 165 (1994), 59–67.

[23] F. Delyon, Absence of localisation in the almost Mathieu equation, J. Phys. A 20
(1987), L21–L23.

[24] E. Dinaburg and Ya. Sinai, The one-dimensional Schrödinger equation with a quasi-
periodic potential, Funct. Anal. Appl. 9 (1975), 279–289.

[25] A. Figotin and L. Pastur, The positivity of Lyapunov exponent and absence of the
absolutely continuous spectrum for the almost-Mathieu equation, J. Math. Phys. 25
(1984), 774–777.

[26] S. Fishman, D.R. Grempel and R.E. Prange, Chaos, quantum recurrences, and An-
derson localization, Phys. Rev. Lett. 49 (1982), 509–512.
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Asymptotic Methods in the Spectral Analysis
of Sturm-Liouville Operators

Daphne Gilbert

Abstract. We consider the relationship between the asymptotic behavior of
solutions of the singular Sturm-Liouville equation and spectral properties of
the corresponding self-adjoint operators. In particular, we review the main
features of the theory of subordinacy by considering two standard cases, the
half-line operator on L2([0,∞)) and the full-line operator on L2(R). It is as-
sumed that the coefficient function q is locally integrable, that 0 is a regular
endpoint in the half-line case, and that Weyl’s limit point case holds at the in-
finite endpoints. We note some consequences of the theory for the well-known
informal characterization of the spectrum in terms of bounded solutions. We
also consider extensions of the theory to related differential and difference
operators, and discuss its application, in conjunction with other asymptotic
methods, to some typical problems in spectral analysis.

1. Introduction

In its original formulation, the Sturm-Liouville boundary value problem consists
of a linear second-order ordinary differential equation expressible in the form

Lu := −u′′(r) + q(r)u(r) = λu(r), r ∈ I ⊆ R, q : I → R, λ ∈ C, (1)

together with suitable separated or periodic boundary conditions at the endpoints
of a finite interval I. The spectrum of the associated self-adjoint operator consists
of an increasing sequence of isolated real eigenvalues accumulating at infinity, the
corresponding eigenfunctions being non-trivial solutions of (1) which satisfy the
endpoint conditions [5], [12], [21], [46], [47]. Extension to the case where one of the
endpoints of I is singular was achieved by Weyl in 1910 [51], and if I = [0,∞) or
(−∞,∞), then (1) is often referred to as the one-dimensional time independent
Schrödinger equation, following subsequent recognition of its importance in the
mathematical description of quantum phenomena (see, e.g., [38]). If a singular
endpoint is in Weyl’s limit point case then essential spectrum, which can itself
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contain both discrete and continuous parts, may also or alternatively be present,
and while the (generalized) eigenfunctions are still solutions of the Sturm-Liouville
equation (1), their behavior is now more subtle.

Recognition of the close relationship between solutions of the differential
equation and spectral properties was already evident in the 1836 paper of Sturm,
where the link between the number of points of the spectrum below an eigenvalue
and the number of zeros in the associated eigenfunction was noted [46]. Analogues
of such properties for the singular case, as well as numerous further connections be-
tween solutions and spectra, were identified in the mid-twentieth century by Hart-
man, Wintner and others (see, e.g., [18], [20], [52]), while contemporary investiga-
tions in the Soviet Union contributed a number of independent results in this re-
gard [16, Chapter V]. In more recent work linking polynomially bounded solutions
to spectral properties, techniques which are applicable to both one-dimensional
and higher-dimensional problems have been developed (see, e.g., [22], [39]).

Different challenges emerged in the late 1950’s with the development of rig-
orous scattering theory and a corresponding awareness of the importance of dis-
tinguishing the absolutely continuous component from other parts of the essential
spectrum, in connection with existence and completeness of the wave operators
[1], [2], [25]. Subsequent efforts to identify distinguishing features of the absolutely
continuous eigenfunctions include work by Carmona [6] and Weidmann [48], [50],
the method of subordinacy, to be outlined in Section 3 [15], [13], [14], [34], and the
use of transfer matrices by Last and Simon [30].

Prior to a seminal paper of Pearson [33], showing that apparently innocuous
potentials can give rise to purely singular continuous spectrum on R+, significant
activity was focussed on seeking conditions under which the absence of singular
continuous spectrum could be assured (see, e.g., [35, Chapter XIII]). The sub-
sequent realization that singular continuous spectrum is generically present in a
variety of situations [9] has stimulated further research activity in recent years
(see, e.g., [29], [40]), while the method of subordinacy and its extensions provide
some insight into the hitherto obscure behavior of the associated eigenfunctions
[15], [23].

The principal focus of this paper is an overview of the method of subordinacy
and its extensions, together with a brief discussion of the wider historical context
and some illustrative examples to demonstrate its role in applications. Details of
the derivation of the theory and of related background results can be found in the
cited references.

2. Bounded solutions and spectral properties

The usefulness in practice of methods which characterize the spectrum in terms of
the asymptotic behavior of solutions is well known, and in this section we briefly
discuss two such approaches, both of which have informed and are informed by
the method of subordinacy. To fix ideas, we restrict attention to the half-line case
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where I = [0,∞), L is regular at 0 and in Weyl’s limit point case at infinity, and q
is locally integrable. In this case it is known that an initial condition of the form

cos(α)u(0) + sin(α)u′(0) = 0, α ∈ [0, π), (2)

is needed at the origin to render the associated operator Hα self-adjoint and that,
under the Hilbert space formulation outlined in Section 3, no endpoint condition
at infinity is required. The spectrum, σ(Hα), is then the complement in C of
the set of all λ for which the resolvent operator (Hα − λI)−1 is bounded and
everywhere defined; an equivalent definition can also be formulated in terms of
the corresponding spectral function, ρα (see Section 3.1).

It follows from the classical separation and comparison theorems of Sturm
(see [21], [41]) that the real line may be partitioned into oscillatory and non-
oscillatory regions, separated by a so-called parabolic point λ� ∈ R ∪ {±∞}. For
λ ∈ (−∞, λ�) any, and hence all, solutions of (1) have a finite number of zeros
for r ≥ 0, while for λ > λ� any, and hence all, solutions of (1) have a countably
infinite number of zeros accumulating only at infinity; we therefore refer to (1)
as being non-oscillatory or oscillatory according as λ ∈ (−∞, λ�) or λ ∈ (λ�,∞)
respectively [20].

Since (1) is oscillatory at λ if and only if the spectrum on (−∞, λ) is an
infinite set [18], the spectrum of Hα on (−∞, λ�) consists of isolated eigenvalues
only, possibly accumulating at λ�, with every λ ∈ (−∞, λ�) being an eigenvalue
for some value of α in (2) [19]. It follows that there exists an L2([0,∞)) solution
uλ(r) of (1) for each λ < λ�; this is known as a principal solution and satisfies

lim
r→∞

uλ(r)
vλ(r)

= 0

whenever vλ(r) is a linearly independent solution of the same equation, with
uλ(r) = o(1) as r → ∞ if λ� < ∞ [20], [52]. The restriction of the spectrum
to (−∞, λ�) is then given by

σ(Hα) ∩ (−∞, λ�) = {λ < λ� : there exists a principal solution
of (1) satisfying the boundary condition (2)}.

A second and more pervasive approach to the spectral analysis of the sin-
gular problem, particularly among physicists, effectively bypasses the intricacies
of Hilbert space theory by defining the “spectrum”, Sα, to be the set of all λ for
which a non-trivial solution u(r) of (1) and (2) satisfies the further condition:

u(r) = O(1) as r →∞. (3)

In the case where α = 0, q ≡ 0, this yields Sα = (0,∞), which is not a closed set,
so that Sα �= σ(Hα) in general; however, since 0 is not an eigenvalue of Hα, and
σ(Hα) = [0,∞), we see that Sα = σ(Hα) except for a set which has measure zero
with respect to both Lebesgue and spectral measures.

The longstanding conjecture that Sα = σ(Hα) a.e. holds in general appears
to be still unresolved so far as the essential spectrum is concerned (see, e.g., [16,
Chapter V], [39, Section C5]), although study of related discrete operators with
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almost periodic potentials suggests that for this part of the spectrum the conjec-
ture is false [53]. In the case of isolated point spectrum, the conjecture was refuted
for λ� =∞ by a counterexample due to Hartman and Wintner, in which for each
λ ∈ R, the square integrable solution fails to be O(1) as r →∞ (see [20, (v)(c) and
p. 648]); we then have Sα = ∅, while σ(Hα) consists of an infinite sequence of iso-
lated eigenvalues accumulating at infinity. However, the conjecture is confirmed for
isolated point spectrum when λ� <∞, since if λ is not in the essential spectrum in
this case, the L2([0,∞)) solution of (1) is O(r−N ) as r →∞ for every fixed N [52].

This informal or “working” definition of the spectrum in terms of bounded
solutions seems to have originated from concern that solutions of the wave equation
of quantum mechanics (i.e., the time dependent Schrödinger equation) be “physi-
cally admissible”, taking into account the accepted interpretation of the square of
the modulus of the value of the wave function at a point as the position probabil-
ity density (see, e.g., [10, Section 38], [37, Chapter II]). Apart from its apparent
agreement with physical intuition, the working definition is undoubtedly attrac-
tive in that it is conceptually simple, easy to apply and agrees with the Hilbert
space definition of the spectrum (at least up to null sets) in many familiar elemen-
tary examples. We shall return to the relationship between bounded solutions and
spectral properties in Section 5.1, taking into account some connections with the
theory of subordinacy.

Although analysis of the spectrum in terms of principal solutions is restricted
to the non-oscillatory region (−∞, λ�), the method is still of interest because it
uses properties of the solution space as a whole to identify the spectrum. This con-
trasts with the informal approach in terms of bounded solutions, which aims to
locate the spectrum by applying a specific criterion (3) to the particular solution
of (1) which satisfies (2), without any reference to the remainder of the solution
space. It will be seen that the definition of a subordinate solution given in Section
3.1 directly extends the definition of a principal solution by replacing the pointwise
comparison of solutions for large r with limiting ratios of Hilbert space norms, thus
enabling the idea of a principal solution to be applicable in both oscillatory and
non-oscillatory regions. This key definition is fundamental to the theory of subor-
dinacy, and enables precise correlations between the relative asymptotic behavior
of solutions of (1) and specific spectral properties of Hα to be established. The use
of properties of the solution space as a whole is also a feature of related transfer
matrix methods, which are particularly effective in connection with the absolutely
continuous spectrum (see, e.g., [30], [28], [17]) and will be briefly introduced in
Section 5.1.

3. The method of subordinacy

For self-adjoint operators associated with (1), it is the behavior of solutions at
one or both endpoints of the interval I, not their intermediate properties, that
determines the contribution to the spectrum at each fixed value of the spectral
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parameter λ. This situation is made precise by the theory of subordinacy, which
provides rigorous criteria for locating minimal supports for the absolutely con-
tinuous and singular spectra, and also, in the case of two limit point endpoints,
enables the simple and degenerate parts of the spectrum to be identified [15], [13],
[14], [34]. Similar results have been shown to apply to related operators, such as
the one-dimensional Dirac operator, the general Sturm-Liouville operator, infinite
matrix operators and the random Schrödinger operator, and will be summarized
in Section 4.

The method of subordinacy is advantageous in several respects. In the first
place, the results are independent of the detailed properties of q; only very general
requirements, as, for example, that q be locally integrable and that L is in the
limit point case at the infinite endpoints, need to be met. Moreover, a complete
analysis of the spectrum can be achieved, at least in principle, by considering
the behavior of solutions at real values only of the spectral parameter λ. As a
result, the considerable technicalities of the spectral function and Titchmarsh-
Weyl m-function, which are key features in the derivation of the theory, can now
be avoided in applications. Also, to identify the absolutely continuous component
of σ(Hα), it is only necessary to consider the behavior of solutions at the limit point
endpoint(s), and for certain classes of potentials, the condition of non-subordinacy
can be replaced by a much simpler boundedness criterion (see Section 5.1).

3.1. The half-line case

We recall that in this case L is assumed to be regular at x = 0; the differential
operator Hα acting on H = L2([0,∞)) is then defined by

Hαf = Lf, f ∈ D(Hα)

where

D(Hα) = {f ∈ H : Lf ∈ H; f, f ′ locally a.c.; cos(α)f(0) + sin(α)f ′(0) = 0}
for some fixed α ∈ [0, π), and q is locally integrable. Note that since L is limit
point at infinity, there is at most one solution of Lf = λf in H for any λ ∈ C, and
that a boundary condition is needed only at 0 (see [15] and references therein).

Associated with Hα is a non-decreasing spectral function ρα : R → R and
it is convenient in the present context to define the spectrum, σ(Hα), to be the
complement of those points of R in a neighborhood of which ρα is constant. The
spectral function generates a corresponding Borel-Stieltjes measure, µα, on R in the
usual way, and the minimal supports of µα provide an indication of where σ(Hα)
is concentrated. Minimal supports (sometimes also known as essential supports)
are defined as follows.

Definition 1. A subset S of R is said to be a minimal support of a Borel-Stieltjes
measure τ if

(i) τ(R\S) = 0,
(ii) whenever S0 ⊆ S satisfies τ(S0) = 0, then |S0| = 0, where | · | denotes

Lebesgue measure.
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It follows from the definition that minimal supports of µα are unique up to
Lebesgue and µα-null sets; while they may differ from σ(Hα) by sets of positive
Lebesgue measure, there always exists a minimal support of µα whose closure is the
spectrum [15]. Since µα can be decomposed uniquely into absolutely continuous,
singular continuous and pure point parts, Definition 1 may also be applied to
(µα)a.c., (µα)s.c. and (µα)p.p..

The definition of a subordinate solution given below makes precise the con-
cept of relative asymptotic smallness of a solution at a limit point endpoint and is
meaningful even if all solutions are oscillatory or no solutions are in L2([0,∞)).

Definition 2. If L is regular at 0 and in the limit point case at infinity, then a
non-trivial solution us(r, λ) of Lu = λu is said to be subordinate at infinity if for
every linearly independent solution u(r, λ)

lim
N→∞

‖us(r, λ)‖N

‖u(r, λ)‖N
= 0 (4)

where ‖ · ‖N denotes the L2([0, N ]) norm.

Note that subordinate solutions are unique up to multiplicative constants,
and that if (4) holds for one solution u(r, λ) which is linearly independent from
us(r, λ), then it holds for every solution u(r, λ) which is linearly independent from
us(r, λ).

The following theorem identifies precise correlations between the spectral
parts of Hα and the asymptotics of solutions of Lu = λu, in terms of minimal
supports of (µα)a.c., (µα)s.c. and (µα)p.p.. The derivation of this result is crucially
dependent on the corresponding Titchmarsh-Weyl function mα, which is a Her-
glotz function on C+, and whose limiting behavior as the real axis is approached
normally is closely related both to a generalized derivative of µα, and to the sub-
ordinacy properties of solutions of (1) [2], [15].

Theorem 1. Minimal supports Ma.c.(Hα),Ms.c.(Hα) and Mp.p.(Hα) of (µα)a.c.,
(µα)s.c. and (µα)p.p. respectively are as follows:

Ma.c.(Hα) = {λ ∈ R : no solution of Lu = λu is subordinate at infinity},
Ms.c.(Hα) = {λ ∈ R : a solution of Lu = λu exists which satisfies the

boundary condition at 0, is subordinate at infinity, but is
not in L2([0,∞))},

Mp.p.(Hα) = {λ ∈ R : a non-trivial L2([0,∞)) solution of Lu = λu

exists which satisfies the boundary condition at 0}.
Theorem 1 shows that there are striking distinctions between the asymp-

totic behavior of solutions associated with the different parts of the spectrum. If
λ ∈ Ma.c.(Hα), then all solutions of Lu = λu are, in some sense, of comparable
asymptotic size at infinity, and this implies, by the limit point property, that no
(non-trivial) solutions are in L2([0,∞)). The absence of an L2([0,∞)) solution is
also a feature if λ ∈Ms.c.(Hα), although not, of course, when λ ∈Mp.p.(Hα).
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Generally speaking, however, the more significant distinctions are between
the singular and absolutely continuous supports of µα; thus, for example, if β �=
α(modπ) is a distinct boundary condition at 0, it is immediate from the theorem
that

Ms.c.(Hα) ∩Ms.c.(Hβ) =Mp.p.(Hα) ∩Mp.p.(Hβ) = ∅,

whereas
Ma.c.(Hα) =Ma.c.(Hβ),

which confirms well-known results of Kato and others concerning the stability of
the absolutely continuous spectrum under finite rank perturbations [25].

It should be noted that some care is needed in interpreting the results of
Theorem 1, given the nature of the relationship between Ma.c.(Hα), Ms.c.(Hα)
andMp.p.(Hα) and the corresponding spectra, σa.c.(Hα), σs.c.(Hα) and σp.p.(Hα),
which are closed sets. For example, although it is true that σp.p.(Hα) = ∅ if
and only if Mp.p.(Hα) = ∅, analogous statements cannot be made for σa.c.(Hα)
or σs.c.(Hα). Indeed we may have σa.c.(Hα) = ∅ even if Ma.c.(Hα) �= ∅, and
similarly for σs.c.(Hα); however, the converse situation is not possible since, using
well-known properties of absolutely continuous and singular continuous measures,
it follows from σa.c.(Hα) �= ∅ that any minimal support of (µα)a.c. has positive
Lebesgue measure, and from σs.c.(Hα) �= ∅ that any minimal support of (µα)s.c. is
an uncountable set of Lebesgue measure zero.

A similar situation holds in the full-line case, which we now consider.

3.2. The full-line case

Let H denote the one-dimensional operator associated with (1) on H = L2(R), let
q be locally integrable on (−∞,∞) and suppose that L is in the limit point case
at both endpoints. Then the self-adjoint operator H is uniquely defined by

Hf = Lf, f ∈ D(H),

where
D(H) = {f ∈ H : Lf ∈ H; f, f ′ locally a.c.}.

The analogue of the spectral function is now a 2× 2 positive semidefinite spectral
matrix function (ρij), and a suitable spectral measure, the so-called trace measure,
µ, is generated from the sum of its diagonal terms.

Let H−
0 , H+

0 respectively denote the self-adjoint operators on L2((−∞, 0])
and L2([0,∞)), which are defined in the usual way by L, together with a Dirich-
let boundary condition at 0. In the derivation of minimal supports for the full-
line operator H , a delicate relationship between the trace measure µ and the
Titchmarsh-Weyl m-functions associated with H−

0 and H+
0 is identified, which is

then combined with application of Theorem 1 to H−
0 and H+

0 , to give the following
theorem [13]; note that the definition of a solution which is subordinate at −∞ is
entirely analogous to that of Definition 2, except that the L2([0, N ]) norm is now
replaced by the L2([−N, 0]) norm.
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Theorem 2. Minimal supports Ma.c.(H), Ms.c.(H) and Mp.p.(H) of µa.c., µs.c.

and µp.p. respectively are as follows:

Ma.c.(H) = {λ ∈ R : no solution of Lu = λu is subordinate at −∞}
∪ {λ ∈ R : no solution of Lu = λu is subordinate at +∞},

Ms.c.(H) = {λ ∈ R : a solution of Lu = λu exists which is subordinate
both at +∞ and at−∞, but is not in L2(R)},

Mp.p.(H) = {λ ∈ R : a non-trivial L2(R) solution of Lu = λu exists}.

Using Theorems 1 and 2, the well-known result that

σa.c.(H) = σa.c.(H−
0 ) ∪ σa.c.(H+

0 )

follows easily from the fact that

Ma.c.(H) =Ma.c.(H−
0 ) ∪Ma.c.(H+

0 ).

The analogous situation for the singular spectrum is less straightforward,
since the matching of subordinate solutions at the decomposition point 0 is in-
volved; taking this into account, we obtain, with obvious notation,

Ms.(H) = ∪α(Ms.(H−
α ) ∩Ms.(H+

α )),

where Ms.(H) =Ms.c.(H)∪Mp.p.(H), and the union is taken over all α ∈ [0, π).
An important issue in the full-line case is that of spectral multiplicity, which

may be 1 or 2; in the half-line case, the question effectively does not arise, since the
spectrum is always simple. A significant contribution to this topic is due to I.S. Kac,
who identified necessary and sufficient conditions for the existence of degenerate
spectrum in terms of the boundary behavior of the m-functions associated with H−

α

and H+
α [24]. By combining Kac’s result with Theorem 2, we obtain the following

result [14].

Theorem 3. H has spectral multiplicity 2 if and only if the Lebesgue measure of
the set

M2(H) = {λ ∈ R : no solution of Lu = λu is subordinate at −∞}
∩ {λ ∈ R : no solution of Lu = λu is subordinate at +∞}

is strictly positive; otherwise the spectrum of H is simple.

Thus the degenerate spectrum of H , if it exists, is effectively concentrated
on M2(H), which is a subset of Ma.c.(H), and the simple spectrum on M1(H) =
M(H) \M2(H), where M(H) =Ma.c.(H) ∪Ms.(H) is a minimal support of µ;
for further details, see [14]. Note that M2(H) in Theorem 3 cannot be replaced
by S = σa.c.(H−

0 ) ∩ σa.c.(H+
0 ), since it is known that operators H exist for which

| S |> 0, but | M2(H) |= ∅ (see, e.g., [14, Example 6.5]).
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It is interesting to observe from Theorem 3 that the simple part of σ(H)
is characterized by the existence of a relatively small solution of Lu = λu on
R; this smallness need only be strict at one of the endpoints. The degenerate
spectrum, on the other hand, is characterized by all solutions of Lu = λu on R
being indistinguishable in terms of relative asymptotic size. On R \M(H), which
includes the resolvent set, the solutions of Lu = λu are not well ordered in the
sense that, although there exists a solution, u−∞, which is subordinate at −∞,
and a solution, u+∞, which is subordinate at +∞, these solutions are linearly
independent; thus there is no non-trivial solution of Lu = λu which is relatively
small at both endpoints.

4. Extensions and generalizations

The usefulness of the theory of subordinacy in a range of spectral problems has
led to a number of extensions to related operators. In each of the cases which we
now describe, a limit point, limit circle theory is known, which is analogous to the
Weyl theory for the standard singular Sturm-Liouville case. We assume therefore,
as before, that 0 is a regular endpoint in the half-line case and that the infinite
endpoints are limit point.

4.1. Generalized Sturm-Liouville operators

Consider the generalized Sturm-Liouville operator Hα which is associated with the
differential equation

Lu := −(pu′)′(r) + q(r)u(r) = λw(r)u(r), r ∈ [0,∞),

and boundary condition cos(α)u(0) + sin(α)(pu′)(0) = 0 on the weighted Hilbert
space Lw

2 ([0,∞)). Here α ∈ [0, π) is fixed and p, q, w are real-valued functions with
p, w > 0 and p−1, q, w locally integrable. Then Theorem 1 holds with ‖ · ‖N =
(
∫ N

0 | · |2 w(r)dr)1/2 [8].

4.2. Separated Dirac operators

For spherically symmetric potentials, the separated Dirac equation may be written
in system form(

0 −1
1 0

)
u′(r) +

(
q1(r) q2(r)
q2(r) q3(r)

)
u(r) = λu(r), r ∈ [0,∞),

where q1, q2, q3 are real-valued, locally integrable functions, and u(r) = (u1, u2)t.
To construct the corresponding self-adjoint operator Hα, it is necessary to impose
an initial condition of the form cos(α)u1(0) + sin(α)u2(0) = 0, for some α ∈
[0, π). Then Theorem 1 holds for Hα under the usual L2([0,∞)) ⊗ C2 norm, and
Theorem 2 is also valid for the corresponding operator H on L2(R)⊗ C2 [3].
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4.3. Infinite matrix operators

Let Hα be the self-adjoint operator associated with the semi-infinite matrix equa-
tion ⎛⎜⎜⎜⎜⎜⎜⎝

a0 b0

b0 a1 b1 0
b1 a2 b2

b2 a3 b3

0 . . . . . . . . .
. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
u0

u1

u2

u3

. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ = λ

⎛⎜⎜⎜⎜⎜⎜⎝
w0u0

w1u1

w2u2

w3u3

. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎠
and boundary condition cos(α)u1+sin(α)b0(u1−u0) = 0, where α ∈ [0, π) is fixed,
and ai, bi, wi ∈ R, bi �= 0, wi > 0, for i = 0, 1, 2, . . . . This case includes the Jacobi
matrix operator for which bi = wi = 1, and Theorem 1 holds for Hα under the
usual �w

2 norm with ‖u‖N = (
∑N

n=0 wn | un |2)1/2 [7], [26], [44].
An interesting variant is the matrix operator associated with orthogonal poly-

nomials on the unit circle and the Szegő recurrence relations,

−→
X (z, n) =

1
(1− | an |2)1/2

(
z an

anz 1

)−→
X (z, n− 1), n ∈ N, | an |< 1, | z |∈ [0, 1],

with initial condition
−→
X (z, 0) = (1, 1)t. Here the interior of the unit circle takes

the place of C+ in the construction of an analogue, F (z), of the Titchmarsh-Weyl
m-function, and F (z) in turn is associated with an orthogonality measure µ on
the unit circle which has a similar role to the spectral measure µα on R in the
half-line case. Theorem 1 now holds for µ with ‖−→X(z)‖N = (

∑N
n=0 ‖

−→
X (z, n)‖2)1/2,

where one has
−→
X (z) = (

−→
X (z, 0), . . . ,

−→
X (z, n), . . .),

−→
X (z, n) = (x1(z, n), x2(z, n))t

and ‖−→X (z, n)‖ = (| x1(z, n) |2 + | x2(z, n) |2)1/2 [17].

4.4. Random Schrödinger operators

Here the general form of the differential operator considered is

Lwu := −u′′(r) + qw(r)u(r) = λu(r), r ∈ [0,∞),

where {qw(r) : r ∈ [0,∞)} is a random function on a probability space (Ω,F , P ),
or a random generalized function. In this context, we assume that Lw is in the limit
point case for P -almost all w, so that Hw,α, defined from Lw together with the
boundary condition cos(α)u(0) + sin(α)u′(0) = 0, is self-adjoint with probability
1; the unique self-adjoint operator Hw is defined by Lw on R in a similar way.
Then under the assumption that a technical condition related to the well-known
Kotani trick holds, analogous results to Theorems 1 and 2 can be established for
λ-intervals of the real line [31].

Remark 1. In addition to extensions of the theory to a number of related operators,
some refinements to the concept of a subordinate solution have been proposed
and used in applications; for example, power law subordinacy [23], strong non-
subordinacy [8], uniform non-subordinacy [49] and sequential subordinacy [34], [43].
Power law subordinacy is a significant generalization of the original concept, which
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enables dimensional Hausdorff properties of the singular continuous spectrum to
be investigated, and has provided detailed results for the almost Mathieu operator
and Fibonacci Hamiltonian. Strong and uniform non-subordinacy are associated
with the relatively “well-behaved” situation where no solution of (1) is subordinate
for any λ in a compact interval I; in such cases, various uniformity properties on
I can be inferred for the ratios of norms of solutions and for the spectral density
functions ρ′α. From Definition 2 it is evident that, to establish non-subordinacy of
solutions, it is only necessary (and usually much more convenient) to demonstrate
non-sequential subordinacy for a single sequence.

5. Applications

In principle, Theorems 1, 2, 3 and their extensions provide distinguishing criteria
which enable a complete and detailed analysis of the spectrum to be carried out
for a range of differential and difference operators. However, in practice it is rare
for explicit expressions for the solutions of the governing equations to be available,
so that in applications the theory is often used indirectly or in conjunction with
suitable asymptotic estimates of the behavior of the solutions at the endpoints.
Some typical strategies include use of the Liouville-Green approximation, applica-
tion of Levinson’s theorem and its extensions, various results on boundedness and
non-subordinacy, and related transfer matrix methods.

Before considering specific examples, we briefly return to the relationship
between bounded solutions and spectral properties.

5.1. Boundedness revisited

The following result, linking boundedness of solutions to non-subordinacy, can
greatly simplify the analysis when absolutely continuous spectrum is present [43].

Lemma 1. Let L be as in (1) with I = [0,∞), and suppose that

sup
x≥0

∫ x+1

x

q−(r)dr <∞, (5)

where q− denotes the negative part of q. Then if all solutions of Lu = λu are
bounded for some fixed λ ∈ R, L is in the limit point case at infinity and, for the
same fixed λ,

(i) u′ is bounded for all solutions u of Lu = λu,
(ii) no solution of Lu = λu is subordinate at infinity.

Note that Lemma 1 shows that, provided (5) is satisfied, the boundedness of
solutions of Lu = λu is a sufficient condition for λ to be in Ma.c.(Hα); however,
it is not a necessary condition, as may be seen by considering a fundamental set
of solutions, {(r + 1)1/2 cos(1

2 ln(r + 1)), (r + 1)1/2 sin(1
2 ln(r + 1))}, of Lu = λu

when q(r) = −2−1(r + 1)−2 and λ = 0. Variants of Lemma 1 for the Dirac and
Jacobi matrix operators may be found in [4], [39], [44], and an alternative proof is
contained in [40].
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It turns out that Lemma 1 may be recast in terms of transfer matrices. To
see this, let λ ∈ R be fixed and suppose that for x ∈ I = [0,∞), {uλ(x), vλ(x)} is
a fundamental set of solutions of Lu = λu satisfying uλ(0) = v′λ(0) = 0, u′

λ(0) =
vλ(0) = 1. Then setting

Tλ(x) :=
(

u′
λ(x) v′λ(x)

uλ(x) vλ(x)

)
,

it is easy to check that for any solution yλ(x) = auλ(x) + bvλ(x) of Lu = λu, with
a, b ∈ C,

Tλ(x)
(

y′
λ(0)

yλ(0)

)
=
(

y′
λ(x)

yλ(x)

)
.

If we now define

‖Tλ(x)‖ := sup
‖y‖=1

‖Tλ(x)y‖ = sup
|a|2+|b|2=1

(| y′
λ(x) |2 + | yλ(x) |2)1/2,

where y = (y′
λ(0), yλ(0))t, then it may be seen from Lemma 1 that, subject to

(5), all solutions of Lu = λu are bounded if and only if lim supx→∞ ‖Tλ(x)‖ <∞.
It follows that issues relating to boundedness of solutions and spectral properties
can be investigated using results from subordinacy and from the study of transfer
matrices. Interest in the latter approach has already led to a number of promising
new developments (see, e.g., [17], [30], [28]).

5.2. Examples

In each of the following examples, it is readily verified that, as appropriate, 0 is a
regular endpoint and the infinite endpoints are limit point. The operators Hα and
H are defined as in Sections 2 and 3 unless otherwise stated.

Example 1. Let q = p + s + w on [0,∞), where p ∈ L1([0,∞)), s is smooth and
long range with s′ ∈ L1([0,∞)), and the von Neumann-Wigner part, w, satisfies
w(r) → 0 as r →∞, and is conditionally integrable, i.e., limr→∞

∫ r

0 w(r)dr exists.
Then for all α ∈ [0, π), σ(Hα) is purely absolutely continuous on (0,∞) apart
from at most a countable set of embedded eigenvalues, known as resonances. This
result is obtained by using asymptotic integration to obtain suitable estimates of
solutions of Lu = λu for λ > 0 and large r, and applying Theorem 1 [3]; some
generalizations are obtained in [4], where Lemma 1 and a limiting absorption
principle are also used.

Example 2. Let L0 := −d2/dr2 + cos(r), r ∈ (−∞,∞),

L := − d2

dr2
+ cos(r) + δ cos(|r|γ), 0 < γ < 1, r ∈ (−∞,∞),

and denote by (an, bn), n = 1, 2, . . . , the stability intervals of the self-adjoint op-
erator H0 associated with L0. Then it is well known that σ(H0) = ∪n[an, bn],
and is purely absolutely continuous, with bn < an+1 for all n ∈ N; moreover, as
n → ∞, the length of the stability intervals is O(n) and the length of the gaps
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becomes arbitrarily small (see, e.g., [11], [35, Chapter XIII, Section 16, Exam-
ple 1]). However, the essential spectrum of the perturbed operator H associated
with L is a countable union of closed intervals, each consisting of a central band of
absolutely continuous spectrum and two outer bands of singular spectrum, these
banded intervals being disjoint for suitably chosen δ and sufficiently small n. In
addition, every interval of absolutely continuous spectrum, respectively gap in the
essential spectrum, of the perturbed operator H is a subset of a stability interval,
respectively subset of a spectral gap, of the unperturbed operator H0. To achieve
these results, trace class methods are used to show that if (b, a) is a spectral gap
of H0, then (b − δ, a + δ) ∩ σa.c.(H) = ∅, and adaptations of arguments used in
[44] are combined with Lemma 1 and Theorems 1 and 2 to show that if (a, b) is
a stability interval of H0, then (a + δ, b− δ) is a stability interval of H [45]. The
degeneracy of σa.c.(H) can be inferred from Theorem 3.

Example 3. Using the notation of Section 4, let Hw denote the Goldsheid-Molcha-
nov-Pastur model on R and Hw,α a self-adjoint operator arising from Lw :=
−d2/dr2 + kW (r), r ∈ [0,∞), where k > 0 and W (r) is Gaussian white noise.
If F ≥ 0 is the intensity of a constant electric field, then with probability 1 the
perturbed GMP operator HF

w = Hw − Fr has purely absolutely continuous spec-
trum with σ(HF

w ) = R, and the perturbed operator HF
w,α = Hw,α − Fr has dense

pure point spectrum on R for F < k2/2 and purely singular continuous spectrum
with σ(HF

w,α) = R for F ≥ k2/2. These results are established by using the asymp-
totic expansions of Airy functions in a transformation of the eigenvalue equations
and applying analogues of Theorems 1 and 2 for random operators [31].

Example 4. Let L be as in (1), with I = [0,∞) and q : I → C satisfying Im q ≥ 0
and Im q(r) → 0 as r → ∞. Let Hα denote the non-self-adjoint operator associ-
ated with L and a self-adjoint boundary condition at the origin (cf. (2)). Then
if Im q /∈ L1([0,∞)), the absolutely continuous spectrum of Hα is empty. This
result depends on a characterization in terms of Hardy spaces of the absolutely
continuous subspace, Ne, of a maximally dissipative, completely non-self-adjoint
operator with essential spectrum on the real axis (see, e.g., [32]). Also involved are
an analogue of the Titchmarsh-Weyl function and an associated spectral measure,
which together enable a theory of subordinacy to be established for the class of
operators considered, through which the proof is completed [36].
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considered on the open interval (a,b), the endpoint a can be classified as either
regular or limit-circle, whilst the endpoint b can be regular, limit-circle or
limit-point; nevertheless it is shown that these conditions lead to the definition
of a single Titchmarsh-Weyl m-coefficient. From this coefficient the complex
function theory methods of Titchmarsh provide a guide to a new proof of the
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1. Introduction

This paper presents a new approach to the now classical theory of Sturm-Liouville
eigenfunction expansions, based essentially on the existence of the Titchmarsh-
Weyl m-coefficient. The main method follows the Titchmarsh use of the theory of
functions of a complex variable and contour integration.

The Sturm-Liouville differential equation is

−(py′)′ + qy = λwy on (a, b); (1.1)

the standard minimal conditions on the coefficients p, q, w, defined on the open
interval (a, b), where −∞ ≤ a < b ≤ +∞, of the real line R, are:⎧⎨⎩

(i) p, q, w : (a, b)→ R
(ii) p−1, q, w ∈ L1

loc(a, b)
(iii) w(x) > 0 for almost all (Lebesgue) x ∈ (a, b).

(1.2)

The spectral parameter λ belongs to C, the complex field.
The only additional restriction of the coefficients p, q, w is that the left-hand

endpoint a of the open interval (a, b) is either in the regular or limit-circle case,
in the framework provided by the Hilbert function space L2((a, b); w). If endpoint
a is limit-point then the methods work if the endpoint b is regular or limit-circle
in L2((a, b); w). Thus the only case that is not considered is when both endpoints
a and b are in the limit-point case in L2((a, b); w); there are technical reasons,
discussed below, for this exclusion.

The Sturm-Liouville boundary value problems which give rise to the eigen-
function expansions here considered, are determined by imposing separated bound-
ary conditions on the solutions of the differential equation (1.1). If both endpoints
a and b are, independently, in the regular or limit-circle case, coupled boundary
conditions can be introduced, but then it is not possible to work with a single m-
coefficient and this case has been excluded from consideration. There are technical
reasons, discussed below, for this exclusion.
The methods used in this paper involve two innovations:
(a) The initial value problem for the differential equation (1.1) can be solved not

only at a regular endpoint but also at a singular limit-circle endpoint.
(b) The application to the m-coefficient of the Herglotz-Nevanlinna-Pick-Riesz

integral representation of Cauchy analytic functions that are holomorphic in
an open half-plane of C, and for which the imaginary part of the function
values are of one sign.
The complete statements of the Sturm-Liouville expansion results are given

in the theorem and corollaries of Section 11.

2. Notations

The real and complex fields are represented by R and C respectively; a general
interval of R is represented by I; compact and open intervals of R are represented
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by [α, β] and (a, b) respectively. The prime symbol ′ denotes classical differentiation
on the real line R.

Lebesgue integration on R is denoted by L, and L1(I) denotes the Lebesgue
integration space of complex-valued functions defined on an interval I. The local
integration space L1

loc(a, b) is the set of all complex-valued functions on I which
are Lebesgue integrable on all compact sub-intervals [α, β] ⊂ (a, b).

Absolute continuity, with respect to Lebesgue measure, is denoted by AC;
the space of all complex-valued functions defined on (a, b) which are absolutely
continuous on all compact sub-intervals [α, β] of (a, b), is denoted by ACloc(a, b).

The weight function w on (a, b) is a Lebesgue measurable function w : (a, b)→
R satisfying w(x) > 0 for almost all x ∈ (a, b).

Given an interval (a, b) and a weight function w the space L2((a, b); w) is
defined as the set of all complex-valued, Lebesgue measurable functions f : (a, b)→
C such that ∫ b

a

|f(x)|2 w(x) dx < +∞.

Taking equivalence classes into account, L2((a, b); w) is a Hilbert function space
with inner product and norm

(f, g)w :=
∫ b

a

f(x)g(x)w(x) dx for all f, g ∈ L2((a, b); w),

‖f‖w :=

{∫ b

a

|f(x)|2 w(x) dx

}1/2

for all f ∈ L2((a, b); w).

The class of Cauchy analytic functions that are holomorphic on the open set
U ⊆ C is denoted by H(U); if U = C then H denotes the class of entire or integral
functions on C.

3. History

We refer to the paper by Everitt, [11] in this volume, on the development of
Sturm-Liouville theory up to the year 1950. This paper covers the first structured
account, by Weyl, of singular Sturm-Liouville boundary value problems, [23]; the
first operator theoretic account, by Stone, of the boundary value problems under
the minimal conditions on the coefficients, [19]; the first structured account, by
Titchmarsh, of the use of complex variable techniques in singular Sturm-Liouville
boundary value problems, [22].

The development of classical, rather than the operator theoretic, Sturm-
Liouville theory in the years after 1950 can be found in various sources; in particu-
lar in the texts of Atkinson [4], Coddington and Levinson [8], Levitan and Sargsjan
[17]. The operator theoretic development is given in the texts by Naimark [20] and
Akhiezer and Glazman [2].

This paper is based on results in an unpublished manuscript of Bennewitz
[6], and the paper by Everitt [10].
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4. Sturm-Liouville differential expressions and equations

Given the interval (a, b), a set of Sturm-Liouville coefficients {p, q, w} has to sat-
isfy the minimal conditions given in (1.2). Note that in general there is no sign
restriction on the leading coefficient p.

The associated Sturm-Liouville differential expression M(p, q) ≡ M [·] is the
linear operator defined by⎧⎨⎩

(i) domain D(M) := {f : (a, b)→ C : f, pf ′ ∈ ACloc(a, b)}
(ii)

{
M [f ](x) := −(p(x)f(x)′)′ + q(x)f(x) for all f ∈ D(M)
and almost all x ∈ (a, b).

(4.1)

We note that M [f ] ∈ L1
loc(I) for all f ∈ D(M); it is shown in [20, Chapter V,

Section 17] that D(M) has a dense intersection with the Hilbert space L2((a, b); w);
also D(M) is dense in the locally convex linear topological space L1

loc(a, b), see [3].
Given the interval (a, b) and the set of Sturm-Liouville coefficients {p, q, w},

the associated Sturm-Liouville differential equation is the second-order linear or-
dinary differential equation

M [y](x) ≡ −(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ (a, b), (4.2)

where λ ∈ C is a complex-valued spectral parameter.
The above minimal conditions on the set of coefficients {p, q, w} imply that

the Sturm-Liouville differential equation has a solution to any initial value problem
at a point c ∈ (a, b). See the existence theorem in [20, Chapter V, Section 15]; i.e.,
given two complex numbers ξ, η ∈ C and any value of the parameter λ ∈ C, there
exists a unique solution of the differential equation, say y(·, λ) : (a, b) → C, with
the properties:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) y(·, λ) and (py′)(·, λ) ∈ ACloc(a, b)
(ii) y(c, λ) = ξ and (py′)(c, λ) = η
(iii) y(x, ·) and (py′)(x, ·) are holomorphic on C
(iv) if ξ, η ∈ R then y(·, λ) = y(·, λ) and

(py′)(·, λ) = (py′)(·, λ) for all λ ∈ C.

(4.3)

The Green’s formula for the differential expression M is, for any compact
interval [α, β] ⊂ (a, b),∫ β

α

{
g(x)M [f ](x) − f(x)M [g](x)

}
dx = [f, g](β)− [f, g](α) for all f, g ∈ D(M),

(4.4)
where the symplectic form [·, ·](·) : D(M)×D(M)× (a, b)→ C is defined by

[f, g](x) := f(x)(pg′)(x) − (pf ′)(x)g(x). (4.5)

For the operator theoretic results given below see [20, Chapter V].
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Incorporating now the weight function w and the Hilbert function space
L2((a, b); w), the maximal operator T1 generated from M is defined by⎧⎨⎩

(i) T1 : D(T1) ⊂ L2((a, b); w)→ L2((a, b); w)
(ii) D(T1) := {f ∈ D(M) : f, w−1M [f ] ∈ L2((a, b); w)}
(iii) T1f := w−1M [f ] for all f ∈ D(T1).

(4.6)

We note, from the Green’s formula, that the symplectic form of M has the
property that the following limits

[f, g](a) := lim
x→a

[f, g](x) and [f, g](b) := lim
x→b

[f, g](x) (4.7)

both exist and are finite in C.
The minimal operator T0 generated by M is defined by⎧⎨⎩
(i) T0 : D(T0) ⊂ L2((a, b); w)→ L2((a, b); w)
(ii) D(T0) := {f ∈ D(T1) : [f, g](b) = [f, g](a) = 0 for all g ∈ D(T1)
(iii) T0f := w−1M [f ] for all f ∈ D(T0).

(4.8)

With these definitions the following properties hold for T0, T1 and their ad-
joint operators,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) T0 ⊆ T1

(ii) T0 is closed and symmetric in L2((a, b); w)
(iii) T ∗

0 = T1 and T ∗
1 = T0

(iv) T1 is closed in L2((a, b); w)
(v) T0 has equal deficiency indices (d, d) with 0 ≤ d ≤ 2.

(4.9)

Self-adjoint extensions T of T0 exist and satisfy

T0 ⊆ T ⊆ T1 (4.10)

where the domain D(T ) is determined, as a restriction of the domain D(T1), by
applying symmetric boundary conditions to the elements of the maximal domain
D(T1).

5. The generalized initial value problem

We require the following lemma:

Lemma 5.1. Let the pair (M, w) be given on the interval (a, b), satisfying the min-
imal conditions (1.2);

1. If the endpoint a is in the limit-point case in L2((a, b); w) then, see (4.7),

[f, g](a) ≡ lim
x→a

[f, g](x) = 0 for all f, g ∈ D(T1). (5.1)
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2. If the endpoint a is regular or limit-circle in L2((a, b); w) then there exists a
continuum of pairs {γ, δ} such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) γ, δ : (a, b)→ R
(ii) γ, δ ∈ D(M)
(iii) γ, δ ∈ L2((a, β]; w) for all β ∈ (a, b)
(iv) w−1M [γ], w−1M [δ] ∈ L2((a, β]; w) for all β ∈ (a, b)
(v) [γ, δ](x) = 1 for all x ∈ (a, b).

(5.2)

There are similar results to both (1) and (2) for the endpoint b.

Proof. These results are known: see [10, Section 5] and [20, Chapter V]. �

If a is regular or limit-circle then, given the pair {γ, δ} as in Lemma 5.1, all
separated boundary conditions at the endpoint a can be determined in the form

[f, Aγ + Bδ](a) = 0 with f ∈ D(T1), (5.3)

where A, B ∈ R with A2 + B2 > 0. If a is regular then this separated condition is
equivalent to the classical form

f(a) cos(α) + (pf ′)(a) sin(α) = 0. (5.4)

for some α ∈ [0, π), see [22, Chapter V, Section 5.3]. In both cases (5.3) and (5.4)
there is a continuum of separated boundary conditions at the endpoint a, each
determined by the choice of the pair {A, B} or the parameter α, respectively.

Remark 5.1. We use bold face α for the boundary condition parameter in (5.4) to
distinguish from α for the endpoint of the compact interval [α, β] ⊂ (a, b); similarly
for β and β.

We can now state

Theorem 5.1. Let the pair (M, w) be given on the interval (a, b), satisfying the
minimal conditions (1.2); let the endpoint a be either regular or limit-circle in
L2((a, b); w); let the pair {γ, δ} satisfy the conditions (5.2); let ξ(·) and η(·) : C→
C and satisfy ξ, η ∈ H (see Section 2 above); then there exists a unique mapping

ψ : (a, b)× C→ C (5.5)

with the properties⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(i) ψ(·, λ) and (pψ′)(·, λ) ∈ ACloc(a, b) for all λ ∈ C
(ii) ψ(x, ·) and (pψ′)(x, ·) ∈ H for all x ∈ (a, b)
(iii) [ψ(·, λ), γ(·)](a) = ξ(λ) and [ψ(·, λ), δ(·)](a) = η(λ) for all λ ∈ C
(iv) ψ(·, λ), for each λ ∈ C, satisfies the differential equation (1.1)

almost everywhere on (a, b)
(v) ψ(·, λ) ∈ L2((a, β]; w) for all β ∈ (a, b) and all λ ∈ C.

(5.6)
There is a similar result for the endpoint b.

Proof. For the proof of this result see [15, Section 5, Theorem 2]. �
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Corollary 5.1. If in the conditions for Theorem 5.1 the initial value functions ξ(·)
and η(·) are replaced by real numbers ξ and η, then

ψ(·, λ) = ψ(·, λ) and (pψ
′
)(·, λ) = (pψ′)(·, λ) for all λ ∈ C. (5.7)

Proof. This result follows on examination of the proof of Theorem 5.1. �
Remark 5.2. We make the following remarks concerning the results of Theorem
5.1:

1. When the endpoint a is regular the generalized initial value result in (5.6)
reduces to the classical initial value result in (4.3).

2. The result (iii) contains the generalized initial conditions at the endpoint a.
3. If the endpoint b is also, independently, regular or limit-circle then the result

(v) becomes ψ(·, λ) ∈ D(T1) for all λ ∈ C.
4. In general it is impossible to solve the initial value problem, either in classical

or generalized form, at a limit-point endpoint.

6. The basic solutions θ and ϕ

To create the framework for the extended Titchmarsh eigenfunction expansion
theorem to be stated and proved we first use the Titchmarsh-Weyl theory to give
the m-coefficient, and the basic solution of the Sturm-Liouville differential equation
(1.1) in the Hilbert function space L2((a, b); w).

Suppose given the open interval (a, b) ⊆ R, and the pair {M, w} of the
differential expression M and the weight function w, as in Sections 4 and 5 above.

The only additional restriction required in the endpoint classification of M
in L2((a, b); w) concerns the endpoint a; we suppose that:{

(i) the endpoint a is regular or limit-circle
(ii) the endpoint b may be regular or limit-circle or limit-point. (6.1)

Remark 6.1. We make the following comments:
1. The only restriction required is that the endpoint a is not in the limit-point

case.
2. The conditions on the endpoints a and b can be reversed.
3. Taken together the main restriction is that the differential expression M is

not to be in the limit-point case at both endpoints a and b; see item 4 of
Remark 5.2 above.

In the results of Weyl [23] and Titchmarsh [22, Chapters II and III], the
conditions on M with the interval (a, b) require that the endpoint a is regular in
L2((a, b); w). In the Titchmarsh notation, see [22, Chapter II, Section 1] but with
some minor alterations here used, the two solutions θ and ϕ of the differential
equation (1.1) are defined, using the classical initial value result (4.3), by{

θ(a, λ) = cos(α) (pθ′) (a, λ) = sin(α)
ϕ(a, λ) = − sin(α) (pϕ′) (a, λ) = cos(α); (6.2)
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here the parameter α is chosen to satisfy α ∈ [0, π). Note that for all x ∈ (a, b)
and λ ∈ C

θ(x, λ) = θ(x, λ) and ϕ(x, λ) = ϕ(x, λ). (6.3)

For the Wronskian W (θ, ϕ) ≡ θ(pϕ′)− (pθ′)ϕ we have

1 = W (θ, ϕ)(a, λ) = W (θ, ϕ)(x, λ) for all x ∈ (a, b) and all λ ∈ C, (6.4)

and for the symplectic form [θ, ϕ], see (4.5) and (6.3),

[θ(·, λ), ϕ(·, λ)](x) = W (θ, ϕ)(x, λ) = 1 for all x ∈ (a, b) and all λ ∈ C. (6.5)

To define the basic solutions θ and ϕ of the Sturm-Liouville differential equa-
tion (1.1) in the generalized endpoint case, under the conditions (6.1), we use the
results of Theorem 5.1, having chosen the endpoint a, and the pair {γ, δ} of ele-
ments as given in (5.2). The solutions θ and ϕ are determined by the generalized
initial conditions, given α ∈ [0, π),

[θ(·, λ), γ(·)](a) = cos(α) and [θ(·, λ), δ(·)](a) = sin(α) (6.6)

[ϕ(·, λ), γ(·)](a) = − sin(α) and [ϕ(·, λ), δ(·)](a) = cos(α). (6.7)

These two solutions θ and ϕ satisfy the property (6.3), see Corollary 5.1. Note also
that, see item (ii) of (5.6),

θ(x, ·), (pθ′)(x, ·), ϕ(x, ·), (pϕ′)(x, ·) ∈ H for all x ∈ (a, b), (6.8)

and from item (v) of (5.6)

θ(·, λ) and ϕ(·, λ) ∈ L2((a, β]; w) for all β ∈ (a, b) and all λ ∈ C. (6.9)

In the case when the endpoint a is regular, Weyl [23] proved that θ and ϕ,
determined by (6.2), satisfy either

(i) in the limit-point case at the endpoint b

θ(·, λ) /∈ L2((a, b); w) and ϕ(·, λ) /∈ L2((a, b); w) for all λ ∈ C \ R (6.10)

or
(ii) in the regular or limit-circle case at the endpoint b

θ(·, λ) ∈ L2((a, b); w) and ϕ(·, λ) ∈ L2((a, b); w) for all λ ∈ C. (6.11)

These results also hold when the endpoint a is regular or limit-circle and θ
and ϕ are determined by the generalized initial conditions (6.6) and (6.7).

To prove the Wronskian result (6.4) for this pair θ, ϕ of solutions, we have to
use the Plücker identity, see [15, Section 5, Remark 1], for the symplectic form [·, ·]
of (4.5). Let fr, gr ∈ D(M) for r = 1, 2, 3 be any six functions from the domain
D(M), where D(M) is given by (4.1), and define the complex-valued 3× 3 matrix
A(·), for all x ∈ (a, b), by

A(x) :=

⎡⎣ [f1, g1](x) [f1, g2](x) [f1, g3](x)
[f2, g1](x) [f2, g2](x) [f2, g3](x)
[f3, g1](x) [f3, g2](x) [f3, g3](x)

⎤⎦ .
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Then
detA(x) = 0 for all x ∈ (a, b). (6.12)

In this identity substitute as follows, for any λ ∈ C,

f1, f2, f3 : θ(·, λ), γ(·), δ(·) and g1, g2, g3 : ϕ(·, λ), γ(·), δ(·);
on evaluating the determinant in (6.12) and recalling that [γ(·), δ(·)](x) = 1 for all
x ∈ (a, b), we obtain

[θ(·, λ), ϕ(·, λ)](x) = 1 for all x ∈ (a, b) and all λ ∈ C. (6.13)

In turn this gives the result, using (6.3),

W (θ, ϕ)(x, λ) = 1 for all x ∈ (a, b) and all λ ∈ C. (6.14)

We also use the Plücker identity to prove the result

[ϕ(·, λ1), ϕ(·, λ2)](a) = 0 for all λ1, λ2 ∈ C; (6.15)

for this result substitute in (6.12) as follows

f1, f2, f3 : ϕ(·, λ1), γ(·), δ(·) and g1, g2, g3 : ϕ(·, λ2), γ(·), δ(·)
and take into account the conditions (6.6) and (6.7).

7. Boundary value problems

Although not part of the Titchmarsh-Weyl theory it is essential to introduce the
GKN (Glazman-Krein-Naimark) method of constructing boundary conditions for
linear ordinary boundary value problems, see [20, Chapter V, Section 18] and [13].

This method determines the domains D(T ) of self-adjoint restrictions T of
the maximal operator T1; see (4.8), (4.9) and (4.10) of Section 4 above.

In the Sturm-Liouville case with the differential equation (1.1) we start with
the endpoint conditions (6.1) for the interval (a, b). Restricting the determination
of the boundary value problem by separated boundary conditions, the domain
D(T ) ⊂ L2((a, b); w) of any self-adjoint restriction T of T1 is defined by selecting
two non-null (modulo D(T0)), real-valued elements χ, κ ∈ D(T1) such that

[χ, χ](a) = [κ, κ](b) = 0. (7.1)

The domain D(T ) and operator T are then defined by{
(i) D(T ) := {f ∈ D(T1) : [f, χ](a) = [f, κ](b) = 0}
(ii) Tf := w−1M [f ] for all f ∈ D(T ). (7.2)

To link this boundary condition at the endpoint a with the Titchmarsh type
boundary condition [22, Chapter V, Section 5.3] when a is regular, we take the
element χ to be defined, for any fixed λ ∈ C and for some c ∈ (a, b), by

χ(x) := ϕ(x, λ) for all x ∈ (a, c]

and then patch χ to zero in some interval [d, b) for d ∈ (c, b), using the Naimark
patching lemma [20, Chapter V, Section 17.3, Lemma 2]. Thus the separated
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boundary conditions at the endpoints of the interval to determine the domain
D(T ) are, for any fixed λ ∈ C, and any non-null κ ∈ D(T1) satisfying [κ, κ](b) = 0,

D(T ) := {f ∈ D(T1) : [f, ϕ(·, λ)](a) = [f, κ](b) = 0} (7.3)

Note that this definition of the domain D(T ) implies that

[f, g](a) = [f, g](b) = 0 for all f, g ∈ D(T ), (7.4)

and for the self-adjoint operator T , in L2((a, b); w),

(Tf, g)w = (f, T g)w for all f, g ∈ D(T ). (7.5)

For the proof of the results in this section see [20, Chapter V] and [13].

8. The Titchmarsh-Weyl m-coefficient

With the information and results of the above sections now available it is possible
to state a theorem giving the existence of the Titchmarsh-Weyl m-coefficient, but
now with the generalized basic solutions θ and ϕ as defined in Section 6 above.
Since the analysis required for this theorem is similar to the Titchmarsh analysis
as given in [22, Chapter II, Sections 2.1 and 2.2], we state the following results
without proof. The reader may consult the same reference for a discussion of Weyl
circles. See also the paper [10] for some additional details related to this section.

Theorem 8.1. (Titchmarsh-Weyl)

1. Given the interval (a, b) let the coefficients p, q, w satisfy the minimal condi-
tions ⎧⎨⎩

(i) p, q, w : (a, b)→ R
(ii) p−1, q, w ∈ L1

loc(a, b)
(iii) w(x) > 0 for almost all (Lebesgue) x ∈ (a, b),

(8.1)

to give the Sturm-Liouville differential equation

−(py′)′ + qy = λwy on (a, b). (8.2)

2. Let the endpoints of the interval (a, b) satisfy the classification conditions{
(i) the endpoint a is regular or limit-circle
(ii) the endpoint b may be regular or limit-circle or limit-point. (8.3)

in the weighted Hilbert function space L2((a, b); w).
3. Let the solutions θ and ϕ of the differential equation (8.2) be determined by

the generalized initial value conditions, for some α ∈ [0, π),

[θ(·, λ), γ(·)](a) = cos(α) and [θ(·, λ), δ(·)](a) = sin(α) (8.4)

and

[ϕ(·, λ), γ(·)](a) = − sin(α) and [ϕ(·, λ), δ(·)](a) = cos(α), (8.5)
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for some given pair {γ, δ} satisfying the conditions, see (5.2),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(i) γ, δ : (a, b)→ R
(ii) γ, δ ∈ D(M)
(iii) γ, δ ∈ L2((a, β]; w) for all β ∈ (a, b)
(iv) w−1M [γ], w−1M [δ] ∈ L2((a, β]; w) for all β ∈ (a, b)
(v) [γ, δ](x) = 1 for all x ∈ (a, b).

(8.6)

Then there exists at least one Cauchy analytic function m : C \ R → C with
the properties:

(i) m is regular on the open set C \ R
(ii) m(λ) = m(λ) for all λ ∈ C \ R
(iii) the solution ψ of the differential equation (8.2) defined by

ψ(x, λ) := θ(x, λ) + m(λ)ϕ(x, λ) for all x ∈ (a, b) and all λ ∈ C \ R (8.7)

satisfies
ψ(·, λ) ∈ L2((a, b); w) for all λ ∈ C \ R. (8.8)

Proof. See [22, Chapter II, Sections 2.1 and 2.2], and the account in [10, Sections
5, 7 and 11] which depends upon the prior definition of the self-adjoint operator
T in L2((a, b); w), as determined in (7.2).

In both these accounts of the Titchmarsh-Weyl m-coefficient a critical role is
played by the Vitali convergence theorem in complex analysis, see [21, Chapter V,
Sections 5.21 and 5.22], rather than involving points on the Weyl circles. �

Remark 8.1. For the m-coefficient the following cases occur, see [22, Chapter II,
Section 2.1],

1. If the differential equation (8.2) is in the limit-point case at the singular
endpoint b then for each choice of the boundary condition parameter α ∈
[0, π) there is a unique m-coefficient, which depends upon α, with the above
properties; for all λ ∈ C \ R the unique value m(λ) is the limit-point of the
Weyl circles for that value of λ.

2. If the differential equation (8.2) is in the regular or limit-circle case at the
singular endpoint b, then for each choice of the boundary condition parameter
α ∈ [0, π) there is a continuum of m-coefficients. In that case, it is possible,
for each fixed α, to use a separated boundary condition function κ ∈ D(T1),
see (7.1) and (7.2), to distinguish an m-coefficient from those satisfying the
conditions (i)–(iii) of Theorem 8.1. For this particular m-coefficient the cor-
responding solution ψ from (8.7) should satisfy the separated boundary con-
dition at b, i.e.,

[ψ(·, λ), κ](b) = 0 for all λ ∈ C \ R. (8.9)

One then has a unique m-coefficient for each choice of the pair α and κ. The
determination of this m-coefficient can be made by use of the limit-circle
process, but see the application of the Vitali convergence theorem in [22,
Chapter II, Section 2.2].
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Corollary 8.1. We have, for any m-coefficient determined as in Remark 8.1, see
Theorem 8.1:

1. For all λ1, λ2 ∈ C \ R

[ψ(·, λ1), ψ(·, λ2)](b) = lim
β→b

[ψ(·, λ1), ψ(·, λ2)](β) = 0. (8.10)

and ∫ b

a

w(x)ψ(x, λ1)ψ(x, λ2) dx =
m(λ1)−m(λ2)

λ1 − λ2

. (8.11)

2. For all λ ∈ C \ R

0 <

∫ b

a

w(x) |ψ(x, λ)|2 dx =
Im(m(λ))

Im(λ)
. (8.12)

Proof. See [22, Chapter II, Sections 2.3, 2.4 and 2.5], and [10]. �

9. Analytic properties

We require the following results for the basic solutions θ and ϕ, and for the
Titchmarsh-Weyl solution ψ.

In all the results here given β is any number satisfying β ∈ (a, b).

Lemma 9.1. The two integral limits

lim
α→a

∫ β

α

w(x) |θ(x, λ)|2 dx and lim
α→a

∫ β

α

w(x) |ϕ(x, λ)|2 dx

converge uniformly for λ ∈ K, where K is any compact subset of C.

Proof. The proof of this result is to be found in the paper [14, Section 3, (3.6)]
and [8, Chapter 9, Theorem 2.1]. �

Lemma 9.2. We have:
(i) The mappings

λ �−→
∫ β

a

w(x) |θ(x, λ)|2 dx and
∫ β

a

w(x) |ϕ(x, λ)|2 dx

are locally bounded on C, i.e., bounded on any compact subset K of C.
(ii) The mapping

λ �−→
∫ b

β

w(x) |ψ(x, λ)|2 dx

is locally bounded on the open set C \ R.

Proof. (i) The uniform convergence of the integrals as given in Lemma 9.1 implies
that these mappings are continuous on K, and hence bounded on this set.
(ii) This boundedness property follows from the result given in (8.12). �
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Lemma 9.3. We have:
(i) For any f ∈ L2((a, b); w)∫ β

a

w(x)θ(x, ·)f(x) dx ∈ H and
∫ β

a

w(x)ϕ(x, ·)f(x) dx ∈ H.

(ii) For any f ∈ L2((a, b); w)∫ b

β

w(x)ψ(x, ·)f(x) dx ∈ H(C \ R).

Proof. These results follow from the boundedness properties in Lemma 9.2, and
the general theorem given in the paper [12, Theorem 1]. �

10. Nevanlinna functions

The properties (i), (ii) given before (8.7) in the statement of Theorem 8.1, and the
result (8.12) above imply that the analytic coefficient m(·) is a Nevanlinna (Her-
glotz, Pick, Riesz) function, i.e., if the open half planes C+ and C− are defined by

C± := {λ ∈ C : Im(λ) ≷ 0},

then
(i) m(·) : C± → C±
(ii) m(·) is regular on C±
(iii) m(λ) = m(λ) for all λ ∈ C±.

Such an analytic function has an integral representation of the following form, see
Akhiezer and Glazman [2, Chapter 6, Section 69, Theorem 2], where A, B ∈ R
with B ≥ 0,

m(λ) = A + Bλ +
∫

(−∞,+∞)

{
1

t− λ
− t

t2 + 1

}
dρ(t) for all λ ∈ C \ R. (10.1)

Here the function ρ : R → R is monotonic non-decreasing on R and satisfies the
growth restriction ∫ +∞

−∞

1
1 + t2

dρ(t) < +∞; (10.2)

this function ρ is the spectral function for the m-coefficient. In [2, Chapter 6,
Section 69, Theorem 2] the integrals in (10.1) and (10.2) are given as general-
ized Riemann-Stieltjes integrals; however these integrals are best interpreted as
Lebesgue-Stieltjes integrals with the symbol ρ representing a non-negative Baire
measure on the Borel σ-algebra of the real line R; see the text of Royden [18, Chap-
ter 12, Section 3]. For this measure ρ every bounded Borel set has finite measure
but in general ρ(R) may be +∞.
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In the text [2, Chapter 6, Section 69, Theorem 2] it is shown that there are
two integral representations for the Nevanlinna function m(·); in addition to (10.1)
there is a representation in the form

m(λ) = C + Dλ +
∫

(−∞,+∞)

1 + sz

s− λ
dσ(s) for all λ ∈ C \ R; (10.3)

here σ(·) is monotonic non-decreasing on R and C, D ∈ R with D ≥ 0. As before
σ(·) generates a non-negative Baire measure σ on the Borel σ-algebra of the real
line R but now this measure is bounded on all Borel sets, i.e., σ(R) < +∞.

However in the analysis which follows it is more convenient to use the rep-
resentation (10.2) and to call ρ the spectral measure of the m-coefficient. This
non-negative Baire measure ρ determines a Hilbert function space L2(R; ρ) of
equivalence classes of functions F : R→ C such that∫

(−∞,+∞)

|F (t)|2 dρ(t) < +∞

with inner-product and norm determined by, for all F, G ∈ L2(R; ρ),

(F, G)ρ =
∫

(−∞,+∞)

F (t)G(t) dρ(t) and ‖F‖ρ =

{∫
(−∞,+∞)

|F (t)|2 dρ(t)

}1/2

.

(10.4)

Remark 10.1. There is a connection between the two measures ρ and σ best ex-
pressed using the Radon-Nikodym theorem, see [18, Chapter 11, Section 6]. The
two measures are absolutely continuous with respect to each other; in particular

σ(E) =
∫

E

1
1 + t2

dρ(t) and ρ(E) =
∫

E

(1 + s2) dσ(s) (10.5)

for all Borel sets E ⊆ R. In terms of the Radon-Nikodym derivatives, see [18,
Chapter 11, Section 6, Problem 34], we have[

dσ

dρ

]
(t) =

1
1 + t2

for all t ∈ R, and
[

dρ

dσ

]
(s) = 1 + s2 for all s ∈ R.

Remark 10.2. All Lebesgue-Stieltjes integrals are written in the form (10.5) even
in the case when the Borel set E is an interval.

11. Expansion theorem

We can now state the generalized form of the Titchmarsh-Weyl eigenfunction
expansion theorem.

Theorem 11.1. Let the open interval (a, b) ⊆ R be given; let the coefficients p, q, w
of the Sturm-Liouville differential equation, with spectral parameter λ ∈ C,

M [y] ≡ −(py′)′ + qy = λwy on (a, b) (11.1)
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satisfy the minimal conditions⎧⎨⎩
(i) p, q, w : (a, b)→ R
(ii) p−1, q, w ∈ L1

loc(a, b)
(iii) w(x) > 0 for almost all (Lebesgue) x ∈ (a, b).

(11.2)

Let the endpoint classification of the equation (11.1) in the Hilbert space
L2((a, b); w) satisfy{

(i) the endpoint a is regular or limit-circle
(ii) the endpoint b may be regular or limit-circle or limit-point; (11.3)

let the pair {γ, δ} of boundary functions for the endpoint a be chosen so that, see
(5.2), ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) γ, δ : (a, b)→ R
(ii) γ, δ ∈ D(M)
(iii) γ, δ ∈ L2((a, β]; w) for all β ∈ (a, b)
(iv) w−1M [γ], w−1M [δ] ∈ L2((a, β]; w) for all β ∈ (a, b)
(v) [γ, δ](x) = 1 for all x ∈ (a, b).

(11.4)

Let the basic solutions θ and ϕ of the equation (11.1) be determined, for the
parameter α ∈ [0, π), by the generalized initial conditions at the endpoint a

[θ(·, λ), γ(·)](a) = cos(α) and [θ(·, λ), δ(·)](a) = sin(α) (11.5)

and
[ϕ(·, λ), γ(·)](a) = − sin(α) and [ϕ(·, λ), δ(·)](a) = cos(α). (11.6)

Let the Sturm-Liouville boundary value problem be determined, in operator
theoretic form, by{

(i) D(T ) := {f ∈ D(T1) : [f, ϕ](a) = [f, κ](b) = 0}
(ii) Tf := w−1M [f ] for all f ∈ D(T ), (11.7)

where ϕ is the basic solution of the differential equation subject to (11.6), and
κ ∈ D(T1) defines the non-null boundary condition for the endpoint b; note that

[ϕ(·, λ), ϕ(·, λ)](a) = 0 for all λ ∈ C, and [κ, κ](b) = 0. (11.8)

Let m(·) be the m-coefficient for this boundary value problem, defined in Re-
mark 8.1, see Theorem 8.1. Let ρ be the spectral measure of m(·) and L2(R; ρ) be
its generated Hilbert function space.

1. For any function f ∈ L2((a, b); w) define the family

{Fα,β(·) : R→ C for all α, β with a < α < β < b}
by

Fα,β(t) :=
∫ β

α

ϕ(x, t)f(x)w(x) dx for all t ∈ R and all α, β ∈ (a, b); (11.9)
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then:
(i) Fα,β(·) ∈ L2(R; ρ) for all α, β ∈ (a, b)
(ii) the family {Fα,β : α, β ∈ (a, b)} converges in mean, as α → a and

β → b, in L2(R; ρ) to, say, F
(iii) Let f, g ∈ L2((a, b); w) generate F, G ∈ L2(R; ρ), respectively, as above;

then
(F, G)ρ = (f, g)w;

in particular ‖F‖ρ = ‖f‖w.

2. For any function G ∈ L2(R; ρ) define the family {gτ(·) : (a, b) → C for
all τ ∈ (0,∞)} by

gτ (x) :=
∫

[−τ,τ ]

ϕ(x, t)G(t) dρ(t) for all x ∈ (a, b) and all τ ∈ (0,∞); (11.10)

then:
(i) gτ (·) ∈ L2((a, b; w) for all τ ∈ (0,∞)
(ii) the family {gτ : τ ∈ (0,∞)} converges in mean, as τ → +∞, in

L2((a, b); w) to, say, g ∈ L2((a, b); w)
(iii) Let G, F ∈ L2(R; ρ) generate g, f ∈ L2((a, b); w), respectively, as above;

then
(f, g)w = (F, G)ρ;

in particular ‖g‖w = ‖G‖ρ.

3. Given f ∈ L2((a, b); w) and any G ∈ L2(R; ρ) let F be defined as in item 1,
(ii) and g defined as in item 2, (ii) above; then f = g in L2((a, b); w) if and
only if G = F in L2(R; ρ).

4. For all f, F and G, g defined as above we have the generalized Parseval equal-
ity ∫ b

a

f(x)g(x)w(x) dx =
∫

(−∞,+∞)

F (t)G(t) dρ(t). (11.11)

Proof. See the lemmas stated and proved in the following sections; in particular
Lemmas 15.2 and 15.3 of Section 15. �

Remark 11.1. Terminology

(i) F ∈ L2(R; ρ) is termed the generalized transform of f ∈ L2((a, b); w)
(ii) g ∈ L2((a, b); w) is termed the generalized inverse transform of G ∈ L2(R; ρ).

Corollary 11.1. (The eigenfunction expansion theorem)
Given f ∈ L2((a, b); w) define F ∈ L2(R; ρ), using convergence in mean in

L2(R; ρ), as in item 1 of Theorem 11.1 above, i.e.,

lim
α→a,β→b

∫
(−∞,+∞)

∣∣∣∣∣F (t)−
∫ β

α

f(x)ϕ(x, t)w(x) dx

∣∣∣∣∣
2

dρ(t) = 0; (11.12)
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then, with convergence in mean in L2((a, b); w), as in item 2 of Theorem 11.1
above,

lim
τ→+∞

∫ b

a

∣∣∣∣∣f(x)−
∫

[−τ,τ ]

F (t)ϕ(x, t) dρ(t)

∣∣∣∣∣
2

w(x) dx = 0. (11.13)

Proof. See the lemmas stated and proved in the following sections; in particular
Lemma 15.3 of Section 15. �

Corollary 11.2. We have

1. Given f ∈ L2((a, b); w) define F ∈ L2(R; ρ) as in (11.12) above, and define
the mapping U by

U : f ∈ L2((a, b); w)→ L2(R; ρ) by Uf := F for all f ∈ L2((a, b); w); (11.14)

then U is an isomorphic, isometric mapping on L2((a, b); w) onto L2(R; ρ).
2. Given F ∈ L2(R; ρ) define f ∈ L2((a, b); w) as in (11.13) above, and define

the mapping V by

V : L2(R; ρ)→ L2((a, b); w) by V F := f for all F ∈ L2(R; ρ); (11.15)

then V is an isomorphic, isometric mapping on L2(R; ρ) onto L2((a, b); w).
3. The mappings U and V are inverse to each other, i.e., V = U−1 and U =

V −1.

Proof. See the lemmas stated and proved in the following sections; in particular
Lemma 16.2 of Section 16. �

Remark 11.2. Given f ∈ L2((a, b); w) with F := Uf in (11.14), then F represents
the generalized “Fourier coefficients” of f ; similarly with f := V F in (11.15) this
result represents the generalized “Fourier expansion” of the original function f .

12. The resolvent function Φ

Following [22, Chapter II, Section 2.6] we define the mapping

Φ : (a, b)× C \ R× L2((a, b); w) → C

by

Φ(x, λ; f) := ψ(x, λ)
∫ x

a

ϕ(t, λ)f(t)w(t) dt + ϕ(x, λ)
∫ b

x

ψ(t, λ)f(t)w(t) dt (12.1)

for all x ∈ (a, b), all λ ∈ C\R and all f ∈ L2((a, b); w); this mapping is well defined
using (8.8) and Remark 8.1.

Lemma 12.1. For all x ∈ (a, b), all λ, µ ∈ C \ R and all f ∈ L2((a, b); w) the fol-
lowing properties of the resolvent function Φ hold, where I is the identity operator
in L2((a, b); w):
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1. Φ(·, λ; f) ∈ L2((a, b); w), in particular

‖Φ(·, λ; f)‖2w =
∫ b

a

w(x) |Φ(x, λ; f)|2 dx ≤
(
Im(λ)

)−2
∫ b

a

|f(x)|2 w(x) dx (12.2)

2. −(p(x)Φ′(x, λ; f))′ + q(x)Φ(x, λ; f) = λw(x)Φ(x, λ; f) + w(x)f(x)
3. [Φ(·, λ; f), ϕ(·, λ)](a) = [Φ(·, λ; f), κ(·)](b) = 0
4. Φ(·, λ; f) ∈ D(T ), with D(T ) given by (7.2)
5. Φ(x, λ; ·) is a bounded linear operator in L2((a, b); w)
6. (T − λI) (Φ(·, λ; f)) = f and Φ(·, λ; (T − λI)f) = f for f ∈ L2((a, b); w) and

f ∈ D(T ) respectively
7. (Φ(·, λ; f), g)w = (f, Φ(·, λ; g))w

8. Φ(x, λ; f)− Φ(x, µ; f) = (λ− µ)Φ(x, λ; Φ(·, µ; f))
9. Φ(x, ·; f) ∈ H(C \ R) for all x ∈ (a, b) and all f ∈ L2((a, b); w).

Proof. The proof of these results proceeds along the same lines as given by Titch-
marsh [22, Chapter II, Sections 2.6, 2.7 and 2.8] but with some additional analysis
due to the possible limit-circle case at the endpoint a.

The proof of item 8 is best given in the method of Kato [16, Chapter 1,
Section 5.2] and the operator results given in item 6.

The proof of item 9 follows from the analytical results given in Section 9,
Lemma 9.3. �

Remark 12.1. Essentially, the Titchmarsh resolvent function Φ is the resolvent
operator for the self-adjoint operator T in the Hilbert space L2((a, b); w).

13. Representation of the resolvent function Φ

We have the following lemma

Lemma 13.1. Given the resolvent function Φ for all f, g ∈ L2((a, b); w) there exists
a unique mapping

σ(f, g; ·) : R→ C (13.1)
with the properties:

(i) σ(f, g; ·) is right-continuous on R
(ii) σ(f, g; ·) is of total bounded variation on R with limt→−∞ σ(f, g; t) = 0
(iii) σ(f, f ; ·) is monotone non-decreasing on R
(iv) σ(f, g; ·) generates a totally bounded complex-valued Baire measure on the

Borel σ-algebra of R such that the Lebesgue-Stieltjes integral has the property∫
(−∞,+∞)

|dσ(f, g; ·)| ≤ ‖f‖w ‖g‖w (13.2)

(v) for all λ ∈ C \ R there is the Lebesgue-Stieltjes representation

(Φ(·, λ; f), g)w =
∫

(−∞,+∞)

1
t− λ

dσ(f, g; t) for all f, g ∈ L2((a, b); w). (13.3)



Titchmarsh-Weyl Theorem 155

Proof. To show uniqueness assume σ(t) := σ(f, g; t), for all t ∈ R, to be of total
bounded variation and∫

(−∞,+∞)

1
t− λ

dσ(t) = 0 for all λ ∈ C \ R.

It follows that ∫
(−∞,+∞)

{
1

t− λ
− 1

t− λ

}
dσ(t) = 0

so that, for λ = µ + iν,∫
(−∞,+∞)

ν

(t− µ)2 + ν2
dσ(t) = 0 for all µ ∈ R and all ν > 0.

Let A, B be points of continuity of σ(·); by absolute convergence of the integrals
we have

0 =
∫

[A,B]

dµ

∫
(−∞,+∞)

ν

(t− µ)2 + ν2
dσ(t)

=
∫

(−∞,+∞)

dσ(t)
∫ B

A

ν

(t− µ)2 + ν2
dµ

=
∫

(−∞,+∞)

(
arctan

(
B − t

ν

)
+ arctan

(
t−A

ν

))
dσ(t).

Since the points A, B do not carry σ-mass this last integral converges as ν → 0+,
by bounded convergence, to

π

∫
[A,B]

dσ(t)

and so σ(·) is constant on R.
Since the form (Φ(·, λ; f), g)w is sesquilinear in f, g then by item 7 of Lemma

12.1 it follows that σ(f, g; ·) is hermitian, supposing it to exist.
However, by items 7 and 8 of Lemma 12.1

Im ((Φ(·, λ; f), f)w)
Im(λ)

= ‖Φ(·, λ; f)‖2w ≥ 0 for all λ ∈ C \ R (13.4)

so that we may apply the Nevanlinna theory of Section 10 to the analytic function

(Φ(·, λ; f), f)w

defined on C\R; this application gives the existence of a monotonic non-decreasing
function, denoted by σ(f, f ; ·) to indicate its dependence on the choice of f ∈
L2((a, b); w), such that ∫

(−∞,+∞)

1
1 + t2

dσ(f, f ; t) < +∞,

and for real numbers A, B with B ≥ 0

(Φ(·, λ; f), f)w = A+Bλ+
∫

(−∞,+∞)

{
1

t− λ
− t

t2 + 1

}
dσ(f, f ; t) for all λ ∈ C\R.
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From item 1 of Lemma 12.1 the norm ‖f‖2w is a bound for the mapping

ν → ν (Φ(·, iν; f), f)w as |ν| → +∞;

the imaginary part of this mapping is

Bν2 +
∫

(−∞,+∞)

ν2

t2 + ν2
dσ(f, f ; t).

It follows that B = 0 and for all ν, ε > 0 we have
1

1 + ε2

∫
[−νε,νε]

dσ(f, f ; t) ≤ ‖f‖2w ;

thus first letting ν → +∞ and then letting ε→ 0+, we obtain∫
(−∞,+∞)

dσ(f, f ; t) ≤ ‖f‖2w .

We may now assume, without loss of generality, that the normalized condition

lim
t→−∞σ(f, f ; t) = 0

is satisfied.
Clearly ∫

(−∞,+∞)

|t|
1 + t2

dσ(f, f ; t) < +∞

and so we may write, with absolute convergence,

(Φ(·, λ; f), f)w = A′ +
∫

(−∞,+∞)

1
t− λ

dσ(f, f ; t) for all λ ∈ C \ R.

For λ = iν this last integral tends to zero as ν → +∞, by bounded convergence;
similarly for the term on the left-hand side on using (12.2); thus A′ = 0. Thus
(13.3) is now established in the case when f = g.

In the general case we have, from the polarization formula,

(Φ(·, λ; f), g)w = 1
4

3∑
k=0

ik
(
Φ(·, λ; f + ikg), f + ikg

)
w

;

we now obtain the required result (13.3)

(Φ(·, λ; f), g)w =
∫

(−∞,+∞)

1
t− λ

dσ(f, g; t)

on making the definition

σ(f, g; t) := 1
4

3∑
k=0

ikσ(f + ikg, f + ikg; t) for all t ∈ R.

The mapping σ(f, g; ·) : R→ C has the required normalization

lim
t→−∞σ(f, g; t) = 0

for all f, g ∈ L2((a, b); w).
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For f, g ∈ L2((a, b); w) the mapping

f, g →
∫

∆

dσ(f, g; t),

where ∆ is any interval of the real line, is a hermitian, semi-positive and bounded
(since it is bounded for f = g) form on the product of the Hilbert function spaces.
For any ∆ the Cauchy-Schwarz inequality yields∣∣∣∣∫

∆

dσ(f, g; t)
∣∣∣∣ ≤ {∫

∆

dσ(f, f ; t)
∫

∆

dσ(g, g; t)
}1/2

.

If {∆j : j = 1, 2, . . . , N} is any finite partition of R into disjoint intervals it follows
that

N∑
j=1

∣∣∣∣∣
∫

∆j

dσ(f, g; t)

∣∣∣∣∣ ≤
N∑

j=1

{∫
∆j

dσ(f, f ; t)
∫

∆j

dσ(g, g; t)

}1/2

≤

⎧⎨⎩
N∑

j=1

∫
∆j

dσ(f, f ; t)
N∑

j=1

∫
∆j

dσ(g, g; t)

⎫⎬⎭
1/2

≤ ‖f‖w ‖g‖w for all f, g ∈ L2((a, b); w),

and so the total variation of σ(f, g; ·) on R does not exceed ‖f‖w ‖g‖w to give the
required result (13.2).

Note that we have invoked the use of complex signed Baire measures in
defining the integrals from the function σ(f, g; ·) of total bounded variation on R;
see the definitions for such integration methods in [18, Chapter 11, Section 5].

This completes the proof of the lemma. �

Lemma 13.2. We have∫
(−∞,+∞)

dσ(f, g; t) = (f, g)w for all f, g ∈ L2((a, b); w) (13.5)

Proof. Let f ∈ D(T ) as defined in (7.2). Then from item 6 of Lemma 12.1 we can
write

f = Φ(·, λ; (T − λI)f) for all λ ∈ C \ R,

i.e.,

(f, g)w = (Φ(·, λ; Tf), g)w − λ (Φ(·, λ; f), g)w for all g ∈ L2((a, b); w).

Now take λ = iν and let ν tend to +∞ in this last result; using the representation
(13.3) for Φ it follows that the first term on the right-hand side tends to zero,
whilst the second term gives

lim
ν→+∞

{
−iν

∫
(−∞,+∞)

1
t− iν

dσ(f, g; t)

}
=
∫

(−∞,+∞)

dσ(f, g; t)

on using bounded convergence.
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Thus the required result (13.5) holds for all f ∈ D(T ) and all g ∈ L2((a, b); w);
since

f, g →
∫

(−∞,+∞)

dσ(f, g; t)

is a bounded, Hermitian form, and since the domain D(T ) of the self-adjoint oper-
ator T is dense in L2((a, b); w), the general result (13.5) now follows by continuity
arguments. �

14. Further properties of the resolvent Φ

Definition 14.1. For all f ∈ L2((a, b); w) with compact support in the open interval
(a, b) define F : C→ C by

F (λ) :=
(
f, ϕ(·, λ)

)
w

for all λ ∈ C, (14.1)

where ϕ is the solution of the differential equation (1.1) defined by the generalized
initial condition (6.7).

Lemma 14.1. With the function F defined by (14.1) it follows that

F (·) ∈ H for all f ∈ L2((a, b); w). (14.2)

Proof. This result follows from item (i) of Lemma 9.3. �

Lemma 14.2. Let f, g ∈ L2((a, b); w) both with compact support in (a, b); let the m-
coefficient be determined as in the statement of Theorem (11.1); then the function

(Φ(·, λ; f), g)w − F (λ)G(λ)m(λ),

defined for all λ ∈ C, belongs to the family of entire (integral) functions H.

Proof. This result follows from the definitions of the functions Φ, F, G and a
straightforward calculation. �

Lemma 14.3. Let the function ρ : R → R be monotonic non-decreasing and right-
continuous on R; assume that ρ is differentiable at the point 0; then the integral∫ 1

−1

{∫
(−1,1]

1√
t2 + s2

dρ(t)

}
ds (14.3)

is convergent.

Proof. We have on integration by parts∫
(−1,1]

1√
t2 + s2

dρ(t) =
ρ(1)− ρ(−1)√

1 + s2
−
∫ 1

−1

ρ(t)− ρ(0)
t

t
d

dt

1√
t2 + s2

dt.
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The first factor in the last integral is bounded since ρ′(0) exists, and the second
factor is negative since (t2 + s2)−1/2 decreases with |t|. Furthermore

−
∫ 1

−1

t
d

dt

1√
t2 + s2

dt =
−2√
1 + s2

+
∫ 1

−1

1√
t2 + s2

dt

=
−2√
1 + s2

− 1
2

ln
(
1 +

√
1 + s2

)
+

1
2

ln(|s|)

which is locally integrable. This gives the required result. �

Lemma 14.4. Let f, g ∈ L2((a, b); w) have compact supports in (a, b), and let A < B
be points of differentiability of the spectral function ρ of the defined m-coefficient;
see Section 8 and (10.2) and (10.3). Then

1
2πi

∫
Γ

(Φ(·, λ; f), g)w dλ = −
∫

[A,B]

F (t)G(t) dρ(t), (14.4)

where Γ is the positively orientated boundary of the rectangle with corners at A± i
and B ± i, and the integrals are absolutely convergent.

Proof. According to Lemma 14.2 and the Cauchy theory of analytic functions
1

2πi

∫
Γ

(Φ(·, λ; f), g)w dλ =
1

2πi

∫
Γ

F (λ)G(λ)m(λ) dλ, (14.5)

if either of these two integrals exists. However, by (10.1),

1
2πi

∫
Γ

F (λ)G(λ)m(λ) dλ

=
1

2πi

∫
Γ

{
F (λ)G(λ)

∫
(−∞,+∞)

(
1

t− λ
− t

1 + t2

)
dρ(t)

}
dλ. (14.6)

This double integral converges except possibly where t = λ; thus it is enough to
verify existence of the integral

1
2π

∫ 1

−1

{∫
[µ−1,µ+1]

F (µ + is)G(µ− is)
1

t− µ− is
dρ(t)

}
ds

for µ = A, B. However, Lemma 14.3 assures the absolute convergence of this last
integral.

Changing then the order of integration in (14.6) we obtain

1
2πi

∫
Γ

F (λ)G(λ)m(λ) dλ

=
∫

(−∞,+∞)

{
1

2πi

∫
Γ

F (λ)G(λ)
(

1
t− λ

− t

1 + t2

)
dλ

}
dρ(t)

= −
∫

[A,B]

F (t)G(t) dρ(t) .
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This last result follows since for any t ∈ (A, B) the residue of the inner integral is
−F (t)G(t), whereas the points A, B do not carry any mass; also the inner integrand
is regular for t < A and t > B.

Thus the integral on the left-hand side of (14.5) exists and the required result
(14.4) follows. �

15. Transform theory

We start now on the proof of the transform theory as given in Theorem 11.1.

Lemma 15.1. Let f, g ∈ L2((a, b); w) be given with compact support in (a, b); let
F, G be defined, respectively, as in Definition 14.1. Then

(i) F, G ∈ L2(R; ρ)
(ii) σ(f, g; t) =

∫
(−∞,t] F (s)G(s) dρ(s) for a dense set of values of t in R

(iii) (f, g)w = (F, G)ρ.

Proof. Let A, B ∈ R, with A < B, be points of differentiability of ρ(·) and of
continuity of σ(f, g; ·); these points exist almost everywhere (Lebesgue) on R.
From (13.3) of Lemma 13.1 we have

(Φ(·, λ; f), g)w =
∫

(−∞,+∞)

1
t− λ

dσ(f, g; t) for all λ ∈ C \ R.

Repeating the method used in Lemma 14.4 with the rectangular contour Γ, and
inverting the integrals,

1
2πi

∫
Γ

(Φ(·, λ; f), g)w dλ =
1

2πi

∫
Γ

{∫
(−∞,+∞)

1
t− λ

dσ(f, g; t)

}
dλ

=
∫

(−∞,+∞)

{
1

2πi

∫
Γ

1
t− λ

dλ

}
dσ(f, g; t)

= −
∫

[A,B]

dσ(f, g; t).

From (14.4) we now obtain∫
[A,B]

dσ(f, g; t) =
∫

[A,B]

F (t)G(t) dρ(t)

for this dense set of points A, B. Letting A→ −∞ we obtain, changing notations,∫
(−∞,t]

dσ(f, g; s) = lim
τ→−∞

∫
[τ,t]

F (s)G(s) dρ(s) for a dense set of t in R. (15.1)

Now take g = f to give∫
(−∞,t]

dσ(f, f ; s) =
∫

(−∞,t]

|F (s)|2 dρ(s)
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and ∫
(−∞,+∞)

dσ(f, f ; s) =
∫

(−∞,+∞)

|F (s)|2 dρ(s).

Thus F ∈ L2(R; ρ), and similarly we have G ∈ L2(R; ρ); this establishes item
(i) of this theorem. Hence∫

(−∞,t]

dσ(f, g; s) =
∫

(−∞,t]

F (s)G(s) dρ(s) for a dense set of t in R. (15.2)

From (15.1) it now follows that item (ii) is established, i.e., for a dense set
of values of t in R

σ(f, g; t) =
∫

(−∞,t]

dσ(f, g; s) =
∫

(−∞,t]

F (s)G(s) dρ(s).

Finally, from (13.5), we have

(f, g)w =
∫

(−∞,+∞)

dσ(f, g; s) =
∫

(−∞,+∞)

F (s)G(s) dρ(s) = (F, G)ρ (15.3)

to give item (iii) and to complete the proof of the lemma. �

Remark 15.1. Given f ∈ L2((a, b); w) with compact support the function F ∈
L2(R; ρ), as defined above, is called the generalized Fourier transform of f ; in the
next lemma this definition is extended to the case of any f ∈ L2((a, b); w) as
required for Theorem 11.1.

Lemma 15.2. Given f, g ∈ L2((a, b); w) the generalized Fourier transforms F, G ∈
L2(R; ρ) can be defined with the properties:

(i) F, G ∈ L2(R; ρ)
(ii) σ(f, g; t) =

∫
(−∞,t] F (s)G(s) dρ(s) for a dense set of values of t in R

(iii) (f, g)w = (F, G)ρ.

Proof. Given any f ∈ L2((a, b); w) and any compact interval [α, β] ⊂ (a, b) define
fαβ : (a, b)→ C by

fαβ(x) := f(x) for all x ∈ [α, β]

:= 0 for all x ∈ (a, b) \ [α, β];

then fαβ has compact support and its transform Fαβ : R→ C is defined as above
by

Fαβ(t) :=
∫ b

a

fαβ(x)ϕ(x, t)w(x) dx =
∫ β

α

fαβ(x)ϕ(x, t)w(x) dx;

then Fαβ ∈ L2(R; ρ) and
‖Fαβ‖ρ = ‖fαβ‖w .

Given the interval [α′, β′] such that [α, β] ⊂ [α′, β′] ⊂ (a, b) then

‖Fα′β′ − Fαβ‖ρ = ‖fα′β′ − fαβ‖w ;
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if now we choose a family {[α, β] ⊂ [α′, β′]} such that lim[α, β] = (a, b) then, since
f ∈ L2((a, b); w),

lim ‖Fα′β′ − Fαβ‖ρ = lim ‖fα′β′ − fαβ‖w = 0

and there exists a unique element F ∈ L2(R; ρ) such that

lim
[α,β]→(a,b)

‖F − Fαβ‖ρ = 0.

This element F ∈ L2(R; ρ) is by definition the generalized transform of f ∈
L2((a, b); w); similarly for the pair g, G; item (i) of this lemma now follows.

Since σ(f, g)(·) is a bounded hermitian form on L2((a, b); w) item (ii) of this
lemma follows now by continuity.

To prove item (iii) we have, from above and the result (15.3) for compact
support functions,

(f, g)w = lim
[α,β]→(a,b)

(fαβ , gαβ)w = lim
[α,β]→(a,b)

(Fαβ , Gαβ)ρ = (F, G)ρ. (15.4)

�

Remark 15.2. We note now that item 1 of Theorem 11.1 has been proved.

Lemma 15.3. Let G ∈ L2(R; ρ); then the generalized inverse Fourier transform of
G is g ∈ L2((a, b); w) defined by

lim
τ→+∞

∫ b

a

∣∣∣∣∣g(x)−
∫

[−τ,τ ]

G(t)ϕ(x, t) dρ(t)

∣∣∣∣∣
2

w(x) dx = 0;

moreover ‖g‖w = ‖G‖ρ.
If G is the transform of g0 ∈ L2((a, b); w) then g = g0 in L2((a, b); w).
The inverse transform g is the null element of L2((a, b); w) if and only if G

is orthogonal in L2(R; ρ) to all generalized transforms from L2((a, b); w).

Proof. Let G ∈ L2(R; ρ) have compact support in (−∞, +∞); if g : (a, b) → C is
defined by

g(x) :=
∫

(−∞,+∞)

G(t)ϕ(x, t) dρ(t) for all x ∈ (a, b),

then g is continuous on (a, b).
Given [α, β] ⊂ (a, b) define gαβ : (a, b)→ C by

gαβ(x) := g(x) for all x ∈ [α, β]

:= 0 for all x ∈ (a, b) \ [α, β];

then gαβ ∈ L2((a, b); w) and has a transform Gαβ ∈ L2(R; ρ), where

Gαβ(t) =
∫ β

α

gαβ(x)ϕ(x, t)w(x) dx for all t ∈ (−∞, +∞).
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We have, using the results in Lemma 15.2 and inverting the double integral
by absolute convergence,

∫ β

α

|g(x)|2 w(x) dx =
∫ β

α

{∫
(−∞,+∞)

G(t)ϕ(x, t) dρ(t)

}
g(x)w(x) dx

=
∫

(−∞,+∞)

G(t)

{∫ β

α

g(x)ϕ(x, t)w(x) dx

}
dρ(t) (15.5)

=
∫

(−∞,+∞)

G(t)

{∫ β

α

gαβ(x)ϕ(x, t)w(x) dx

}
dρ(t)

≤ ‖G‖ρ ‖Gαβ‖ρ = ‖G‖ρ ‖gαβ‖w .

Now let [α, β]→ (a.b) to give ‖g‖w ≤ ‖G‖ρ and so g ∈ L2((a, b); w).

If now G ∈ L2(R; ρ) is arbitrary, then for any τ ∈ (1,∞) define gτ : (a, b)→ C
by

gτ (x) :=
∫

[−τ,τ ]

G(t)ϕ(x, t) dρ(t) for all x ∈ (a, b). (15.6)

This integral exists since for each x ∈ (a, b) the solution ϕ(x, ·) is bounded on
[−τ, τ ].

Regarding, in this definition (15.6), G as having compact support in [−τ, τ ] ⊂
(−∞, +∞) it follows, from (15.5), that∫ b

a

|gτ (x)|2 w(x) dx ≤
∫

[−τ,τ ]

|G(t)|2 dρ(t) ≤ ‖G‖2ρ < +∞;

thus gτ ∈ L2((a, b); w).
If now τ ′ ∈ (τ,∞) then a computation shows that

1
2
‖gτ ′ − gτ‖2w ≤

∫
[−τ ′,τ ]

|G(t)|2 dρ(t) +
∫

[τ,τ ′]
|G(t)|2 dρ(t).

Letting τ, τ ′ → +∞ shows that {gτ : τ ∈ (0, +∞)} is a Cauchy family in
L2((a, b); w); let g ∈ L2((a, b); w) be the limit in this space of this Cauchy family.

In passing we note that, from the definitions (15.6) and of g,

lim
τ→+∞

∫ b

a

∣∣∣∣∣g(x)−
∫

[−τ,τ ]

G(t)ϕ(x, t) dρ(t)

∣∣∣∣∣
2

w(x) dx = 0

as required for (11.13) of Corollary 11.1.
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If now f is any element of L2((a, b); w) let F be the generalized Fourier
transform of f , as in Lemma 15.2. Then∫

[−τ,τ ]

G(t)

{∫ β

α

f(x)ϕ(x, t)w(x) dx

}
dρ(t)

=
∫ β

α

f(x)

{∫
[−τ,τ ]

G(t)ϕ(x, t) dρ(t)

}
w(x) dx,

since the integrals may be inverted by absolute convergence. In this last result let
τ → +∞ to give∫

(−∞,+∞)

G(t)

{∫ β

α

f(x)ϕ(x, t)w(x) dx

}
dρ(t) =

∫ β

α

f(x)g(x)w(x) dx,

and then let [α, β]→ (a, b) to obtain

(G, F )ρ = (g, f)w for all f ∈ L2((a, b); w). (15.7)

Here we have called upon dominated convergence in the two limit processes.
If, additionally, we suppose that G is the transform of g0 ∈ L2((a, b); w) then

from (15.4) we have

(G, F )ρ = (g0, f)w for all f ∈ L2((a, b); w). (15.8)

Thus (g − g0, f)w = 0 for all f ∈ L2((a, b); w) and so g0 = g in L2((a, b); w).
Similarly G is orthogonal in L2(R; ρ) to all transforms F if and only if g = 0. �

16. Unitary mappings

This section and succeeding sections are concerned with the proof of Corollaries
11.1 and 11.2.

Let G ∈ L2(R; ρ) and f ∈ L2((a, b); w); then in the notation of these corol-
laries we can write, from (15.7),

(f, V G)w = (Uf, G)ρ. (16.1)

This shows that the generalized inverse Fourier transform

V : L2(R; ρ)→ L2((a, b); w)

is the adjoint operator of the generalized Fourier transform U : L2((a, b); w) →
L2(R; ρ).

The basic difficulty that remains is to prove that these mappings U and V
are one-to-one and inverses of each other.

Lemma 16.1. Let f ∈ L2((a, b); w) and let λ ∈ C \R; then the generalized Fourier
transform U(Φ(·, λ; f)) of the resolvent function Φ(·, λ; f) is given by

U(Φ(·, λ; f))(t) =
F (t)
t− λ

for all t ∈ R, (16.2)

where F = Uf .
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Proof. From item (ii) of Lemma 15.2

σ(f, g; t) =
∫

(−∞,t]

F (s)G(s) dρ(s) (16.3)

for a dense set of values of t in R. From item (v) of Lemma 13.1, see (13.3),

(Φ(·, λ; f), g)w =
∫

(−∞,+∞)

1
t− λ

dσ(f, g; t) for all f, g ∈ L2((a, b); w). (16.4)

From (16.3) and (16.4) (using Radon-Nikodym theory, see [18, Chapter 11, Section
6]) we obtain by setting Fλ(t) := F (t)/(t− λ)

(Φ(·, λ; f), g)w = (Fλ, G)ρ. (16.5)

Using item (iii) of Lemma 15.2, (13.4), (16.4) and finally (16.3) in the case g = f ,
we have

‖U(Φ(·, λ; f))‖2ρ = ‖Φ(·, λ; f)‖2w =
Im ((Φ(·, λ; f), f)w)

Im(λ)

=
∫

(−∞,+∞)

1
|t− λ|2

dσ(f, f ; t) = ‖Fλ‖2ρ.

It follows, using (16.5) with g = Φ(·, λ; f), that

‖Fλ − U(Φ(·, λ; f))‖2ρ = 0

and (16.2) is established. �

Lemma 16.2. Let the mappings U and V be defined as in Corollary 11.2; then
(i) U is defined on L2((a, b); w) and is onto L2(R; ρ)
(ii) V is defined on L2(R; ρ) and is onto L2((a, b); w)
(iii) V −1 = U and U−1 = V
(iv) U and V are unitary mappings.

Proof. We need to show, following Lemma 15.3, that if F ∈ L2(R; ρ) has a null
inverse map in L2((a, b); w) then F = 0.

Now, according to Lemma 16.1, if G is a transform then so is the function
(t−λ)−1G(·) for all λ ∈ C\R. Thus if F is orthogonal in L2(R; ρ) to all transforms
then so is (t−λ)−1F (·) and so is F (·)

(
(t− λ)−1 − (t− λ)−1

)
, both for all λ ∈ C\R.

Hence for all µ ∈ R and all ν > 0 the function, for all t ∈ R,

t �−→ νF (t)
(t− µ)2 + ν2

is orthogonal to all transforms. Thus even the function

t �−→ F (t)
∫ B

A

ν

(t− µ)2 + ν2
dµ (16.6)

is orthogonal to all transforms for any compact interval [A, B] and all ν > 0, since
the corresponding Riemann sums in forming the integral converge in L2(R; ρ),
being bounded by F (·). If now we choose A and B to be points of continuity of
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the monotonic non-decreasing function ρ and let ν → 0+ in (16.6) then we obtain
in this limit, in the space L2(R; ρ), the function FA,B where

FA,B(t) =
{

F (t) for all t ∈ [A, B]
0 for all t ∈ R \ [A, B].

}
The inverse transform of FA,B is thus the null function in L2((a, b); w) for almost
all A, B with respect to Lebesgue measure.

Since, by the existence theorem for solutions of the differential equation (1.1),
the functions ϕ(·, t) and (pϕ′)(·, t) are both locally absolutely continuous on (a, b),
and locally uniformly so with respect to t ∈ R, the two integrals∫ B

A

F (t)ϕ(·, t) dρ(t) and
∫ B

A

F (t)(pϕ′)(·, t) dρ(t) (16.7)

are both locally absolutely continuous on (a, b), and identically zero for almost all
A, B ∈ R. Thus, using the symplectic form [·, ·] of (4.4), and {γ, δ} of Lemma 5.1,
we have

0 =

[∫ B

A

F (t)ϕ(·, t) dρ(t), cos(α)δ(·)− sin(α)γ(·)
]

=
∫ B

A

F (t) [ϕ(·, t), cos(α)δ(·)− sin(α)γ(·)] dρ(t) =
∫ B

A

F (t) dρ(t)

for almost all A, B ∈ R, thus showing that F is the null element of L2(R; ρ).
This completes the proof of the lemma. �

17. Self-adjoint operator T

The self-adjoint operator T in L2((a, b); w) is defined in Section 7 above, see (7.2)
and (7.3); if f ∈ D(T ) then f satisfies the separated boundary conditions

[f, χ](a) ≡ [f, ϕ(·, λ)](a) = 0 and [f, κ](b) = 0. (17.1)

Lemma 17.1. Let f ∈ D(T ) with transform F . Then for some f̃ ∈ L2((a, b); w) it
follows that M [f ] = wf̃ ; this implies that the transform of f̃ is G ∈ L2(R; ρ) where

G(t) = tF (t) for ρ-almost all t ∈ R. (17.2)

Conversely, if F and G are both in L2(R; ρ) then F is the transform of some
f ∈ D(T ).

Proof. The element f satisfies the condition f ∈ D(T ) if and only if

f(x) = Φ(x, λ; f̃ − λf) for all x ∈ (a, b), (17.3)

see (6) of Lemma 12.1; according to Lemmas 15.3 and 16.1 this holds if and only if

F (t) =
F̃ (t)− λF (t)

t− λ
, i.e., F̃ (t) = tF (t) for ρ-almost all t ∈ R. �
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18. The Green’s function

We define the Green’s function g for the differential operator T in L2((a, b); w),
where

g : (a, b)× (a, b)× C \ R→ C, (18.1)
by

g(x, ξ; λ) :=
{

ψ(x, λ)ϕ(ξ, λ) a < ξ < x < b
ϕ(x, λ)ψ(ξ, λ) a < x ≤ ξ < b

}
. (18.2)

From this definition it follows that, for all x, ξ ∈ (a, b), all λ, µ ∈ C \ R and all
f ∈ L2((a.b); w)

(i) Φ(x, λ; f) =
∫ b

a

f(ξ)g(x, ξ; λ)w(ξ) dξ = (f, g(x, ·; λ))w = (f, g(x, ·; λ))w

(18.3)

(ii) g(x, ·; λ) ∈ L2((a, b); w) (18.4)

(iii) g(x, ξ; λ) = g(ξ, x; λ) (18.5)
(iv) from items 7 and 8 of Lemma 12.1

g(x, ξ; λ)− g(x, ξ; µ) = (λ− µ)
∫ b

a

g(x, ζ; λ)g(ζ, ξ; µ)w(ζ) dζ

= (λ− µ)(g(x, ·; λ), g(·, ξ; µ))w. (18.6)

Lemma 18.1. We have
(i) The transform of the Green’s function g(x, ·; λ) is given, for all x ∈ (a, b) and

all λ ∈ C \ R, by

G(x, t; λ) =
ϕ(x, t)
t− λ

for almost all t ∈ R. (18.7)

(ii) The transform of the solution ψ(·, λ) is given, for all λ ∈ C \ R, by

Ψ(t, λ) =
1

t− λ
for all t ∈ R. (18.8)

Proof. We have

Φ(x, λ; f) = (f, g(x, ·; λ))w = (F (·), G(x, ·; λ))ρ (18.9)

by the formula of Parseval. On the other hand the Fourier transform of Φ(·, λ; f)
is F (t)/(t− λ) so that

lim
τ→+∞

∫ +τ

−τ

F (t)
t− λ

ϕ(·, t) dρ(t) = Φ(·, λ; f) (18.10)

with mean convergence; thus with ordinary convergence almost everywhere on
(a, b) as τ → +∞, for some infinite sequence. It follows that

G(x, t; λ) =
ϕ(x, t)
t− λ

, (18.11)

and incidentally that ϕ(x, ·)/(· − λ) ∈ L2(R; ρ), both for all x ∈ (a, b).
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Since, for all x ∈ (a, b),

p(x)
∂Φ
∂x

(x, λ; f) =
∫ b

a

f(ξ)p(x)
∂g

∂x
(x, ξ; λ)w(ξ) dξ (18.12)

we obtain similarly

p(x)
∂G

∂x
(x, t; λ) =

(pϕ′)(x, t)
t− λ

. (18.13)

Thus, from the definition (18.2) of g and the representation (18.7) of its generalized
transform G, the right-hand side of (18.13) is also in the space L2(R; ρ) for all
x ∈ (a, b).

In particular, the generalized Fourier transform of

ψ(x, λ) = lim
ξ→a

[g(ξ, x; λ), cos(α)δ(ξ) − sin(α)γ(ξ)] (18.14)

is given by, for all t ∈ R,

Ψ(t, λ) = lim
ξ→a

[G(ξ, t; λ), cos(α)δ(ξ)− sin(α)γ(ξ)]

= lim
ξ→a

1
t− λ

[ϕ(ξ, λ), cos(α)δ(ξ)− sin(α)γ(ξ)]

=
1

t− λ
. (18.15)

�

To prove Corollary 18.1, as given below, we require

Lemma 18.2. If the sequence {fj ∈ L2((a, b); w) : j ∈ N} converges to f in
L2((a, b); w) then the two following sequences converge locally uniformly in (a, b)
and C to the limits shown

lim
j→∞

Φ(x, λ; fj) = Φ(x, λ; f) and lim
j→∞

(pΦ′)(x, λ; fj) = (pΦ′)(x, λ; f). (18.16)

Proof. A direct calculation shows that ‖g(x, ·; λ)‖w is locally uniformly bounded
in (a, b) and C. Thus

|Φ(x, λ; fj)− Φ(x, λ; f)| = |Φ(x, λ; fj − f)| ≤ ‖fj − f‖w ‖g(x, ·; λ)‖w

from which result the first sequential convergence in (18.16) follows.
The second sequential convergence in (18.16) follows from a similar inequality. �

Corollary 18.1. If, see Section 7, f ∈ D(T ) and so satisfies the boundary conditions
(7.3), and if M [f ] = wf̃ with f̃ ∈ L2(R; ρ), then the generalized inverse transform
of F , see Remark 11.1, converges absolutely and locally uniformly in (a, b) to f , i.e.,

f(x) = lim
τ→+∞

∫
[−τ,τ ]

F (t)ϕ(x, t) dρ(t) for all x ∈ (a, b)

=
∫

(−∞,+∞)

F (t)ϕ(x, t) dρ(t) for all x ∈ (a, b). (18.17)
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Proof. From Corollary 11.1 and the theory of mean convergence in L2((a, b); w),
we obtain

f(x) = lim
τ→+∞

∫
[−τ,τ ]

F (t)ϕ(x, t) dρ(t)

with convergence in C for almost all (Lebesgue) x ∈ (a, b).
Thus, since f is continuous on (a, b), it is sufficient to prove that F (·)ϕ(x, ·) ∈

L1(R; ρ) for all x ∈ (a, b); this last result follows from, for all λ ∈ C \ R,

lim
τ→+∞

∫
[−τ,τ ]

F (t)ϕ(x, t) dρ(t) = lim
τ→+∞

∫
[−τ,τ ]

[(t− λ)F (t)]
[
ϕ(x, t)
t− λ

]
dρ(t)

=
∫

(−∞,+∞)

[
F̃ (t)− λF (t)

]
G(x, t; λ) dρ(t),

and the last integral is absolutely convergent.
Now, since f ∈ D(T ) it follows that, for all λ ∈ C \ R,

f(x) = Φ(x, λ; Tf − λf) for all x ∈ (a, b).

Setting
G = U(Tf − λf),

so that G ∈ L2(R; ρ), and defining the sequence {Gj ∈ L2(R; ρ) : j ∈ N} by

Gj(t) =
{

G(t) for all t ∈ [−j, j]
0 for all t ∈ R \ [−j, j]

}
we have limj→∞ Gj = G in L2(R; ρ); hence, defining gj := V (Gj) for all j ∈ N, we
have limj→∞ gj = Tf − λf in the space L2((a, b); w).

From Lemma 18.2 it now follows that

lim
j→∞

∫
[−j,j]

F (t)ϕ(x, t) dρ(t) = f(x)

with local uniform convergence on (a, b), as required.
This result completes the proof of the corollary. �

19. A property of the m-coefficient

A final result in this account is, from the results in Section 18,

Corollary 19.1. In the Nevanlinna representation of the m-coefficient, see (10.1)
of Section 10, the coefficient B = 0, i.e.,

m(λ) = A +
∫

(−∞,+∞)

{
1

t− λ
− t

t2 + 1

}
dρ(t) for all λ ∈ C \ R. (19.1)

Proof. We have

B +
∫

(−∞,+∞)

1
|t− λ|2

dρ(t) =
Im(m(λ))

Im(λ)
= ‖ψ(·, λ)‖2w =

∥∥∥∥ 1
t− λ

∥∥∥∥2

ρ

(19.2)

to give B = 0. �
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Sturm’s Theorems on Zero Sets
in Nonlinear Parabolic Equations

Victor A. Galaktionov and Petra J. Harwin

Abstract. We present a survey on applications of Sturm’s theorems on zero
sets for linear parabolic equations, established in 1836, to various problems in-
cluding reaction-diffusion theory, curve shortening and mean curvature flows,
symplectic geometry, etc. The first Sturm theorem, on nonincrease in time of
the number of zeros of solutions to one-dimensional heat equations, is shown to
play a crucial part in a variety of existence, uniqueness and asymptotic prob-
lems for a wide class of quasilinear and fully nonlinear equations of parabolic
type. The survey covers a number of the results obtained in the last twenty-
five years and establishes links with earlier ones and those in the ODE area.

Mathematics Subject Classification (2000). 35K55.

Keywords. Sturm theorems, multiple zeros, nonlinear parabolic equations, in-
tersection comparison, blow-up, asymptotic behavior.

1. Introduction: Sturm’s theorems for parabolic equations

In 1836 C. Sturm published two celebrated papers in the first volume of J. Li-
ouville’s Journal de Mathématique Pures et Appliquées. The first paper [125] on
zeros of solutions u(x) of second-order ordinary differential equations such as

u′′ + q(x)u = 0, x ∈ R, (1.1)

very quickly exerted a great influence on the general theory of ODEs. Then and
nowadays Sturm’s oscillation, comparison and separation theorems can be found
in most textbooks on ODEs with various generalizations to other equations and
systems of equations. In general, such theorems classify and compare zeros and
zero sets {x ∈ R : u(x) = 0} of different solutions u1(x) and u2(x) of (1.1) or
solutions of equations with different continuous ordered potentials q1(x) ≥ q2(x).
We refer to other papers of the present volume containing a detailed survey of this
classical theory.

Research supported by RTN network HPRN-CT-2002-00274.
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The second paper [126] was devoted to the evolution analysis of zeros and
zero sets {x : u(x, t) = 0} for solutions u(x, t) of partial differential equations of
parabolic type, for instance,

ut = uxx + q(x)u, x ∈ [0, 2π], t > 0, (1.2)

with the same ordinary differential operator as in (1.1) and the Dirichlet boundary
condition u = 0 at x = 0 and x = 2π and given smooth initial data at t = 0. Two
of Sturm’s results on PDEs like (1.2) can be stated as follows:

First Sturm Theorem: nonincrease with time of the number of zeros (or sign
changes) of solutions;

Second Sturm Theorem: a classification of blow-up self-focusing formations and
collapses of multiple zeros.

We will refer to both of Sturm’s Theorems together as the Sturmian argument
on zero set analysis. Most of Sturm’s PDE paper [126] was devoted to the second
Theorem on striking evolution “dissipativity” properties of zeros of solutions of lin-
ear parabolic equations, where a detailed backward-forward continuation analysis
of the collapse of multiple zeros of solutions was performed. The first Theorem
was formulated as a consequence of the second one (it is a form of the strong
Maximum Principle (MP) for parabolic equations). As a by-product of the first
Theorem, Sturm presented an evolution proof of bounds on the number on zeros
of eigenfunction expansions. For finite Fourier series

f(x) =
∑

L≤k≤M (ak cos kx + bk sin kx), x ∈ [0, 2π], (1.3)

by using the PDE (1.2), q ≡ 0 (with periodic boundary conditions), it was proved
that f(x) has at least 2L and at most 2M zeros.1 Sometimes the lower bound on
zeros is referred to as the Hurwitz Theorem, which was better known than the first
Sturm PDE Theorem. This Sturm-Hurwitz Theorem is the origin of many striking
results, ideas and conjectures in topology of curves and symplectic geometry.

Unlike the classical Sturm theorems on zeros of solutions of second-order
ODEs, Sturm’s evolution zero set analysis for parabolic PDEs did not attract
much attention in the nineteenth century and, in fact, was forgotten for almost a
century. It seems that G. Pólya (1933) [112] was the first person in the twentieth
century to revive interest in the first Sturm Theorem for the heat equation. (The
earlier extension by A. Hurwitz (1903) [71] of Sturm’s result on zeros of (1.3)
to infinite Fourier series with M = ∞ did not use PDEs.) Since the 1930s the
Sturmian argument has been rediscovered in part several times. For instance, a
key idea of the Lyapunov monotonicity analysis in the famous KPP-problem, by
A.N. Kolmogorov, I.G. Petrovskii and N.S. Piskunov (1937) [82] on the stability
of travelling waves (TWs) in reaction-diffusion equations, was based on the first
Sturm Theorem in a simple geometric configuration with a single intersection
between solutions. This was separately proved there by the Maximum Principle.

1Sturm also presented an ODE proof.
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From the 1980s the Sturmian argument for PDEs began to penetrate more
and more into the theory of linear and nonlinear parabolic equations and was found
to have several fundamental applications. These include asymptotic stability the-
ory for various nonlinear parabolic equations, orbital connections and transversal-
ity of stable-unstable manifolds for semilinear parabolic equations such as Morse-
Smale systems, unique continuation theory, Floquet bundles and a Poincaré-
Bendixson theorem for parabolic equations and problems of symplectic geometry
and curve shortening flows. A survey on Sturm’s ideas in PDEs will be continued
in Section 2, where we present the statements of both of Sturm’s Theorems, and in
Section 3, where we describe further related results and generalizations achieved
in the twentieth century.

2. Sturm’s theorems for linear parabolic equations

2.1. First Sturm Theorem: nonincrease of the number of sign changes

Let D and J be open bounded intervals in R. Consider in S = D × J the linear
parabolic equation

ut = a(x, t)uxx + b(x, t)ux + c(x, t)u. (2.1)

Given a constant τ ∈ J , we denote the parabolic boundary of the domain Sτ =
S ∩ {t < τ}, i.e., the lateral sides and the bottom of the boundary of Sτ , by ∂Sτ .
Given a solution u defined on Sτ , the positive and negative sets of u are defined
as follows:

U+ = {(x, t) ∈ Sτ : u(x, t) > 0}, U− = {(x, t) ∈ Sτ : u(x, t) < 0}. (2.2)

A component of U+ (or U−) is a maximal open connected subset of U+ (or U−).
Given a t ∈ J , the number (finite or infinite) of components of {x ∈ D :

u(x, t) �= 0}minus one is called the number of sign changes of u(x, t) and is denoted
by Z(t, u). Alternatively, let K be the supremum over all natural numbers k such
that there exist k points from D, x1 < x2 < · · · < xk, satisfying

u(xj , t) · u(xj+1, t) < 0 for all j = 1, 2, . . . , k − 1,

then Z(t, u) = K − 1.

Theorem 2.1 (First Sturm Theorem: sign changes). Let a, b, c be continuous,
bounded and a ≥ µ > 0 in S for some constant µ. Let u(x, t) be a solution of (2.1)
in S that is continuous on S.

(i) Suppose that on ∂Sτ there are precisely n (respectively m) disjoint intervals
where u is positive (respectively negative). Then U+ (resp. U−) has at most n
(resp. m) components in Sτ and the closure of each component must intersect
∂Sτ in at least one interval.

(ii) The number of sign changes Z(τ, u) of u(x, τ) on D is not greater than the
number of sign changes of u on ∂Sτ .
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The first Sturm Theorem is formulated on p. 431 in [126]. The present proof
of Theorem 2.1 is taken from [118] (similar to that in [105]).

Proof. The proof is based on the strong Maximum Principle.
(i) Let I ⊂ ∂Sτ be a maximal interval where u > 0. Suppose that two open
connected subsets F1, F2 ⊂ U+ intersect ∂Sτ in disjoint open intervals I1, I2 ⊂ I.
Since u is continuous in Sτ , there exists an open set G ⊂ U+ whose closure in
Sτ contains I. Then G must contain points of both F1 and F2 so that these must
belong to the same open component of U+. Thus, at most one component of U+

intersects each of the n open intervals on ∂Sτ where u > 0. The same result holds
for the components of U−. Therefore, it suffices to show that every component of
U+ (or U−) intersects ∂Sτ in one or more intervals.

We can assume that c ≤ 0 in Sτ . Otherwise, we set u = eλtv (U± stay the
same for v), where v then solves equation (2.1) with the last coefficient c on the
right-hand side replaced by c− λ and we can choose the constant λ ≥ sup c.

Let F ⊂ U+ be a component in Sτ . Since u is continuous, it must attain
a positive maximum on F . Then c ≤ 0 implies ut ≤ auxx + bux in F, and, by
continuity, u = 0 at any boundary point of F which is interior to Sτ . By the MP,
u cannot attain its maximum at an interior point of F or on the line {t = τ}.
Hence, F must have a boundary point Q ∈ ∂Sτ such that u(Q) > 0 and by
continuity u is positive in an interval of ∂Sτ about Q.
(ii) is a straightforward consequence of (i). �

The first Sturm Theorem is true for wider classes of linear parabolic equations
that are sufficiently regular (so the strong MP can be applied). An important
example is the radial parabolic equation in RN with continuous coefficients and
a ≥ µ > 0,

ut = a(r, t)∆u + b(r, t)ur + c(r, t)u, (2.3)

where r = |x| ≥ 0 denotes the radial variable and ∆ = d2

dr2 + N−1
r

d
dr is the radial

Laplace operator. Bearing in mind that we consider smooth bounded solutions
satisfying the symmetry condition at the origin, ur(0, t) = 0 for t ∈ J , the MP
applies to equation (2.3) in S = D × J , where D = {r < R} is a ball in RN , and
the first Sturm Theorem holds.

2.2. Second Sturm Theorem: formation and collapse of multiple zeros

Results in the class of analytic functions. We consider parabolic equations with
analytic coefficients admitting analytic solutions. Then any zero of u(x, t) has finite
multiplicity. Under this assumption, the following result is true:

Theorem 2.2 (Second Sturm Theorem: multiple zeros). Let O = (0, 0) ∈ S and
u ∈ C∞(S)∩C(S) be a solution of equation (2.1) with C∞-coefficients a, b, c, where
a ≥ µ > 0 in S. Assume that u(x, t) does not change sign on the lateral boundary
of S, and u(x, 0) has a zero of order m ≥ 2 at the origin x = 0, i.e.,

Dk
xu(0, 0) = 0 for k = 0, 1, . . . , m− 1 and Dm

x u(0, 0) = m!A �= 0. (2.4)
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Then Z(t, u) decreases at t = 0, and for any t1 < 0 < t2 near t = 0, there holds

Z(t1, u)− Z(t2, u) ≥ {m, if m is even; m− 1, if m is odd}. (2.5)

In the proof of Theorem 2.2 we will follow Sturm’s original computations
and analysis in [126], pp. 417–427, which was done for the following semilinear
parabolic equation on a bounded interval

gut = (kux)x − lu, x ∈ (x, X), t > 0, (2.6)

with smooth functions g, k and l depending on x and t. The main calculations
were performed for g, k, l depending on x only. A comment on p. 431 extends the
results to allow dependence on t. Third type (Robin) boundary conditions were
incorporated:

kux − hu = 0 at x = x, kux + Hu = 0 at x = X, (2.7)

where h, H are constants but also can depend on t, see p. 431. (Zero Dirichlet
boundary conditions are also mentioned there.) Sturm’s analysis on pp. 428–430
includes the case of multiple zeros occurring at boundary points x or X.

Proof. By Taylor’s formula near the origin we have

u(x, 0) = Axm + O(xm+1). (2.8)

Using a Taylor expansion in t, we have

u(x, t) = u(x, 0)+ut(x, 0)t+ 1
2! utt(x, 0)t2 + · · ·+ 1

n! Dn
t u(x, 0)tn +O(tn+1), (2.9)

where n = m/2 if m is even and n = (m − 1)/2 if m is odd. Let us estimate
the coefficients. Let dj = m!/(m − 2j)! for j = 0, 1, . . . , n. It follows from the
parabolic equation (2.1) and (2.8) that ut(x, 0) = a(x, 0)uxx(x, 0)+b(x, 0)ux(x, 0)+
c(x, 0)u(x, 0) = a0Ad1x

m−2+O(xm−1), where a0 = a(0, 0) and a(x, 0) = a0+O(x).
Differentiating the equation and using expansion (2.8) again, we obtain, keeping
the leading terms only,

utt(x, 0) = autxx + · · · = a2
0Ad2x

m−4 + O(xm−3),

and finally Dn
t u(x, 0) = Dn−1

t a0uxx(0, 0)+ · · · = an
0Adnxm−2n +O(xm−2n+1). The

Taylor expansion in both independent variables, x and t, takes the form

u(x, t) = A(xm+a0d1x
m−2t+ 1

2! a2
0d2x

m−4t2+· · ·+ 1
n! an

0dnxm−2ntn)+O(·) (2.10)

with the remainder O(·) = O(|x|m+1 + |x|m−1|t|+ · · ·+ |x|m−2n+1|t|n + |t|n+1).
(i) Backward continuation. Consider the behavior for t ≈ 0−. The dimensional
structure of the right-hand side of (2.10) suggests rewriting this expansion in terms
of the rescaled Sturm backward continuation variable

z = x/
√

a0(−t) for t < 0. (2.11)

Substituting x = z
√

a0(−t), we obtain that

A−1a
−m/2
0 (−t)−m/2u(x, t) = Pm(z) + O((−t)1/2(1 + |z|m+1)), (2.12)
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where Pm(z) =
∑n

j=0(−1)j dj

j! zm−2j. The mth order polynomial Pm(z) is the
Hermite polynomial Hm(z) (up to a constant multiplier which we omit in what
follows). Each orthogonal polynomial Hm(z) has exactly m simple zeros {zi, i =
1, . . . , m} with H ′

m(zi) �= 0. Sturm proved this separately on p. 426. This is the
classical theory of orthogonal polynomials, see G. Szegö’s book [128], Chapter 6.

A similar expansion for the derivative ux(x, t) shows that (2.12) can be dif-
ferentiated in x giving the derivative P ′

m(z) in the right-hand side. It follows from
the expansions of u(x, t) and ux(x, t) near the multiple zero that for any t ≈ 0−,
the solution u(x, t) has m simple zeros {xi(t), i = 1, . . . , m}, ux(xi(t), t) �= 0, with
the following asymptotic behavior: xi(t) = zi(−t)1/2 + O(−t) → 0 as t → 0−, so
that exactly m smooth zero curves intersect each other at the origin (0, 0).

(ii) Forward continuation. Following Sturm’s analysis, we consider the behavior of
the solution u(x, t) as t→ 0+. Introducing the heat kernel rescaled variable of the
forward continuation

z = x/
√

a0t for t > 0, (2.13)

instead of (2.12) we obtain another polynomial on the right-hand side

A−1a
−m/2
0 t−m/2u(x, t) = Qm(z) + O(t1/2(1 + |z|m+1)), (2.14)

where Qm(z) =
∑n

j=0
dj

j! zm−2j. The mth order polynomial Qm(z) has positive
coefficients. If m is odd, then it is strictly increasing with Qm(0) = 0. If m is even,
then it has a single positive minimum at z = 0. Therefore, (2.14) implies that for
small t > 0 on compact subsets {|x| ≤ ct1/2} with any c > 0, the solution u(x, t)
has a unique simple zero x̃1(t) = O(t) if m is odd, and no zeros if m is even. This
is Sturm’s analysis on p. 423.

In order to complete the proof, it suffices to observe that if m is even and, say,
A > 0, by continuity and the strong MP, there exists a small interval (−ε, ε) such
that u(x, t) becomes strictly positive on (−ε, ε) for all small t > 0. This means that
at least m zero curves disappear at (0, 0). If m is odd and A > 0, then applying
Theorem 2.1 to the domain S = (−ε, ε)× (0, ε) we have that on (−ε, ε) for t > 0
there exists a unique continuous curve of simple zeros x̃1(t) starting from (0, 0).
In this case at least m− 1 zero curves disappear at the origin as t→ 0−. �

Such a complete analysis of the evolution of multiple zeros in 1D applies
to more general parabolic equations. In particular, in N -dimensional geometry
similar results are true for radial solutions u = u(r, t) of parabolic equations (2.3)
with analytic coefficients; see the next section.

Sturm’s proof, consisting of two parts (i) and (ii), exhibits typical features of
the asymptotic evolution analysis for general linear uniformly parabolic equations:

(i) A finite-time formation of a multiple zero as t→ 0− as a singularity formation
(single point blow-up self-focusing of zero curves);

(ii) Disappearance of multiple zeros at t = 0+, i.e., instantaneous collapse of a
singularity and a unique continuation of the solution beyond the singularity.
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Regarding this part of Sturm’s analysis, we present the result separately as follows.

Corollary 2.1. Under the assumptions of Theorem 2.2, the following results hold:
(i) As t→ 0−, the rescaled solution converges uniformly on any compact subset
{|z| ≤ const.} to the mth order Hermite polynomial with finite oscillations:

A−1a
−m/2
0 (−t)−m/2u(x, t)→ Hm(z). (2.15)

(ii) As t → 0+, the rescaled solution converges uniformly on compact subsets to
the non-oscillating mth order polynomial:

A−1a
−m/2
0 t−m/2u(x, t)→ Qm(z). (2.16)

Phenomena of singularity blow-up formation, collapse and proper solution
extensions beyond singularities are important subjects of general PDE theory. In
applications to semilinear and quasilinear parabolic equations of reaction-diffusion
type, the perturbation techniques for infinite-dimensional dynamical systems plays
a key role; see various examples in [58]. We briefly comment on Sturm’s analysis
using the perturbation theory of linear operators.
(i) Formation of multiple zeros: backward continuation. Using Sturm’s backward
rescaled variable (2.11), we introduce the rescaled solution

u(x, t) = θ(z, τ), z = x/
√

a0(−t), (2.17)

where τ = − ln(−t)→ +∞ as t→ 0− is the new time variable. Substituting (2.17)
into equation (2.1) yields the rescaled equation

θτ = B θ + C(τ)θ, (2.18)

where B is the linear operator

B =
d2

dz2
− 1

2
z

d
dz
≡ 1

ρ

d
dz

(
ρ

d
dz

)
, where ρ(z) = e−z2/4, (2.19)

which is symmetric in L2
ρ(R

N ) (see below). The non-autonomous perturbation in
(2.18) has the form

C(τ)θ =
(

a− a0

a0

)
θzz + e−τ/2 b√

a0
θz + e−τc θ,

where for the regular coefficient a, (a(x, t)−a0)/a0 ≡ (a(z[a0(−t)]1/2, t)−a0)/a0 =
O(e−τ/2). This means that for smooth solutions, the perturbation

C(τ)θ = e−τ/2[θzz O(1) + ba
−1/2
0 θz + e−τ/2c θ]

is exponentially small as τ → ∞. Equation (2.18) is an exponentially small per-
turbation of the autonomous equation

θτ = B θ. (2.20)

The operator B is known to be self-adjoint in the weighted space L2
ρ(R) with

the inner product (v, w)ρ =
∫∞
−∞ ρ(z)v(z)w(z)dz. Its domain D(B) = H2

ρ(R) is a
Hilbert space of functions v satisfying v, v′, v′′ ∈ L2

loc(R) with the inner product
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〈v, w〉ρ = (v, w)ρ + (v′, w′)ρ + (v′′, w′′)ρ and the induced norm ‖v‖2ρ = 〈v, v〉ρ.
Moreover, B has compact resolvent and its spectrum only consists of eigenvalues:

σ(B) = {λk = −k
2 , k = 0, 1, . . .}.

The eigenfunctions are orthonormal Hermite polynomials H̃k(z) = ckHk(z), ck

being normalization constants. These are classical results of the theory of linear
self-adjoint operators in Hilbert spaces. We refer to the first chapters of the book
[22] (see p. 48 on Hermite polynomials in RN ). Using eigenfunction expansions
and semigroup estimates (see Section 3) yields that the exponentially perturbed
dynamical system (2.18) on L2

ρ(R
N ) admits a discrete subset of asymptotic pat-

terns. These coincide with those for the unperturbed equation (2.20) exhibiting the
asymptotic behavior on tangent stable (λm < 0) eigenspaces of B. Hence (2.15)
holds. As τ →∞, uniformly on compact subsets we have

θ(z, τ) = CeλmτHm(z) + O(eλm+1τ ) with a constant C �= 0. (2.21)

(ii) Collapse of multiple zero on the spatial structure of adjoint polynomials: for-
ward continuation. For t > 0, we use the forward rescaled variable (2.13). Similarly,
we deduce that the rescaled function u(x, t) = g(z, s), where the time variable is
s = ln t→ −∞ as t→ 0+, solves the exponentially perturbed equation as s→ −∞

gs = (B∗ − 1
2I)g + C(s)g, (2.22)

where I denotes identity and B∗ is the adjoint differential operator

B∗ =
d2

dz2
+

1
2
z

d
dz

+
1
2
I ≡ 1

ν

d
dz

(
ν

d
dz

)
+

1
2
I with weight ν(z) = ez2/4.

As in the backward analysis, the perturbation term C(s)g = O(es/2) → 0 as
s→ −∞ and is exponentially small for smooth solutions on compact subsets. B∗

is self-adjoint in L2
ν(R), D(B∗) = H2

ν (R), with the point spectrum σ(B∗) = σ(B)
and a complete set of orthonormal eigenfunctions.

Unlike the phenomenon of the evolution blow-up formation of multiple zeros,
in the asymptotic analysis as s→ −∞ spectral properties and eigenfunctions of B∗

play no role. The limit t→ 0+ corresponds to the collapse of the initial singularity
created by the preceding singularity formation as t→ 0−. The behavior of u(x, t)
as t → 0+ is uniquely determined by the initial data u(x, 0). Consider (2.21)
for |z| � 1. Since Pm(z) ≡ Hm(z) = zm + · · · as z → ∞, it can be shown
(a compactness argument is necessary at this step to extend the behavior from
compact subsets {|z| ≤ c} to {0 < |x| � 1}) that passing to the limit t→ 0− gives
u(x, 0) as follows:

u(x, t) = C(−t)−λmxma
−m/2
0 (−t)−m/2 + · · · → Ca

−m/2
0 xm + · · · . (2.23)

The solution g(z, s) of the rescaled equation (2.22) with initial data calculated in
(2.23) has the expansion

g(z, s) = C̃e−λmsQm(z) + · · · , C̃ �= 0, (2.24)



Sturm’s Theorems on Zero Sets in Nonlinear Parabolic Equations 181

where Qm is the polynomial solution of the linear equation (B∗− 1
2I)Qm = m

2 Qm.
We thus arrive at the linear problem for the “adjoint” polynomials {Qm}. No-
tice that these have nothing to do with the orthogonal subset of eigenfunctions
{exp(−z2/4)Hm(z)} of the adjoint operator B∗. Moreover Qm �∈ L2

ν(R). In order
to match (2.24) and the initial condition (2.23), by a similar local extension to
{0 < |x| � 1} we have that

g(z, s) = C̃t−λmxma
−m/2
0 t−m/2 + · · · → C̃a

−m/2
0 xm + · · · as t→ 0+.

By matching with (2.23), this uniquely determines the constant C̃ = C in (2.24)
and completes the asymptotic analysis of both the backward and forward evolution
of multiple zeros.
Results in classes of finite regularity. Fix finite T > 0 and let J = (0, T ). If
u(x, t) �≡ 0 is a solution, analytic in x, of the linear parabolic equation (2.1)
with analytic coefficients a, b, c, then for any t ∈ (0, T ), all the zeros of u(x, t) are
isolated and hence the number of sign changes Z(t, u) is finite even if Z(0, u) =∞.
A similar result holds in classes of solutions and equations of finite regularity. We
present without proofs two results by S. Angenent [7]; more references are given
in Section 3. We begin with initial-boundary value problems.

Theorem 2.3. Let u be a bounded solution of (2.1) in S = D × (0, T ) which does
not change sign on the lateral boundary of S. Assume that the coefficients a, b and
c of the equation are such that

a, a−1, ax, axx, b, bt, bx, c ∈ L∞(S).

Then the number of sign changes of u(·, t) satisfies:
(i) Z(t, u) is finite and nonincreasing on (0, T );
(ii) If x = x0 ∈ D is a multiple zero of u(x, t0) for some t0 ∈ (0, T ), then for all

0 < t1 < t0 < t2 < T the strict inequality Z(t1, u) > Z(t2, u) holds, so that
Z(t, u) is strictly decreasing at t = t0.

As a consequence, any global solution u(x, t) defined in S = D × R+ has
only simple zeros for all t� 1. A similar result is valid for parabolic equations in
unbounded domains if we restrict the analysis to classes of functions with a fixed
growth at infinity, similar to Tikhonov’s classes of uniqueness. Let D = R, and
consider the following linear parabolic equation:

ut = uxx + q(x, t)u in S = R× (0, T ). (2.25)

Theorem 2.4. Let q ∈ L∞(S), and let u(x, t) be a solution of (2.25) in the class
{|u(x, t)| ≤ AeBx2

in S} for some positive constants A and B. Then for each
t ∈ (0, T ), the zero set of the solution {x ∈ R : u(x, t) = 0} is a discrete subset of R.

As a direct consequence of this we have that if x = ±∞ are not accumulation
points of zeros of u(x, 0), then statements (i) and (ii) of Theorem 2.3 hold. Theorem
2.4 is true for more general equations like (2.1) in unbounded domains in suitable
classes of uniqueness. Equation (2.1) can be reduced to (2.25) by the Liouville
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transformation. Using the new spatial coordinate y =
∫ x

0
(a(s, t))−1/2 ds, we have

that u = u(y, t) satisfies the equation

ut = uyy + b̃(y, t)uy + c̃(y, t)u.

Substituting v(y, t) = exp{ 1
2

∫ y

0 b̃(s, t) ds}u(y, t), yields equation (2.25) for v(y, t)
with a potential q̃(y, t). Checking necessary properties of q̃(y, t) one deduces that
Sturm’s results are valid in the corresponding uniqueness classes.

3. Survey on Sturm’s theorems and ideas in parabolic PDEs

We begin our survey with those ODE results that fall into the scope of the PDE
theory or can admit a PDE treatment or proof. The rest is devoted to applications
of Sturm’s Theorems in areas where parabolic PDEs occur.

3.1. On some ODE results

Classical Sturm results on zeros for a single second-order ODE like

y′′ + q(t)y = 0, t ∈ (0, 2π), (3.1)

can be stated in a topological form describing rotations in the phase space of
equations (this form is convenient for extensions to higher-order equations). Let

Y (t) =
(

y1(t) y2(t)
y′
1(t) y′

2(t)

)
satisfying Y (0) = E2 =

(
1 0
0 1

)
be a matrix solution of (3.1), where y1(t) and y2(t) are linearly independent solu-
tions. Then the vector z(t) = y1(t)+ iy2(t) moves counterclockwise in the complex
plane. Indeed, since by construction the Wronskian W (y1, y2)(t) = detY (t) ≡ 1,
we have that arg z(t) = tan−1(y2(t)/y1(t)) satisfies d

dtarg z = W (y1, y2)/(y2
1+y2

2) =
1/(y2

1 + y2
2) > 0. Sturm’s theorems follow from this monotonicity property.

The first generalizations of Sturm’s theorems to the case of vector-valued
operators and to systems (3.1) with symmetric matrices q(t) are due to M. Morse
(1930) [101], [102], where variational methods are applied. Oscillatory theorems
for general canonical systems of 2kth order were first established by V.B. Lidskii
(1955) [88] for the equation

y′ = IH(t)y, I =
(

0 Ek

−Ek 0

)
,

where Ek is the k × k identity matrix and H(t) is a 2k × 2k real continuous
symmetric matrix (the Hamiltonian). We present brief comments on these results.
Let Y (t) with Y (0) = E2k be a matrix solution. Then Y (t) is symplectic: Y ∗IY ≡
I. Denote

H(t) =
(

h11(t) h12(t)
h21(t) h22(t)

)
and Y (t) =

(
y11(t) y12(t)
y21(t) y22(t)

)
,

where hij(t) and yij(t) are k × k blocks. Consider the non-singular matrix z(t) =
y11(t) + iy12(t) (cf. the case k = 1 above), and set u(t) = (z(t))−1z(t). Then u(t)
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is unitary and symplectic. The alternation theorem of Lidskii is as follows. Let
h22(t) > 0 (for (3.1) with k = 1, h22 ≡ 1). Then the eigenvalues ρ1(t), . . . , ρk(t) of
u(t) move counterclockwise around the unit circle: d

dtarg ρs(t) > 0 for s = 1, . . . , k.
For ρs(t) = −1 (resp., ρs(t) = +1) the matrix u(t) has the same zero subspace as
y11(t) (resp., y12(t)), i.e., the “zeros” of the matrices y11(t) and y12(t) alternate.
Lidskii also proved an analogue of the Sturm comparison theorem. Consider two
canonical systems

Y ′
1 = IH1(t)Y1 and Y ′

2 = IH2(t)Y2, where H1(t) > H2(t).

Then specially enumerated eigenvalues ρ
(1)
s (t) and ρ

(2)
s (t) of the unitary matrices

u(1)(t) and u(2)(t) satisfy arg ρ
(1)
s (t) > arg ρ

(2)
s (t), s = 1, . . . , k, i.e., ρ

(1)
s (t) moves

“ahead” of ρ
(2)
s (t).

Variational approaches to Sturm’s theorems for self-adjoint linear 2kth order
systems were also developed by R. Bott (1959) [24] and by H.H. Edwards (1964)
[39]. (See the books [115] and [20] for a detailed presentation.) These results were
related to the Maslov index [95]. In 1985 V.I. Arnold [14] characterized this as
follows: “. . . numerous authors writing on the Maslov index, symplectic geometry,
geometric quantization, Lagrangian analysis, etc., starting with [13], have not no-
ticed the earlier works by Lidskii [88], as well as the earlier works of Bott [24] and
Edwards [39], in which a Hermitian version of the theory of the Maslov index and
Sturm intersections were constructed.”

A survey of earlier results concerning distribution and alternation of zeros
for nth order linear ODEs can also be found in [87], where, as well as in the
books mentioned above, various links to other related subjects are described in
detail. These include S.A. Chaplygin’s comparison theorem (1932) [30] closely con-
nected with the theory of positive operators, W.A. Markov’s theorem (1916) [94]
on the conservation of the alternation of zeros of polynomials under differentiation,
C. de la Vallée-Poussin’s theorem (1929) [38] and G. Pólya’s (1924) [111] criterion
on non-oscillation (the first non-oscillation test of best-possible character is due
to N.E. Zhukovskii (1892) [136]), F.R. Gantmakher (1936) [59] and M.G. Krein’s
(1939) [83] theory of oscillating kernels [60] (a direction originated with O.D. Kel-
logg’s work (1922) [78] on symmetric kernels), S.N. Bernstein results (1938) [21]
on connections between Chebyshev and Cartesian systems, etc. See also Hinton’s
survey [69].

Sturmian methods for ODEs can be applied to investigations in the complex
plane, see [68], Chapter 8. The classical Sturm comparison theorem for ODEs
admits special extensions to linear and quasilinear elliptic and parabolic PDEs,
see first results in [108], the book [127] and [2], as well as to ODEs in Hilbert
spaces [75]. More recent extensions of Sturm’s comparison theorems to quasilinear
elliptic equations can be found in [3], [4], where extra references are available.

Sturm’s Theorem on the number of distinct real roots of polynomials by
computing the number of sign changes in Sturm sequences (1835) [124] is well
known in algebra, see, e.g., [86] and [23]. In constructing Sturm sequences the
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first step is differentiation, establishing a link to ODEs (Sturm’s comparison or
oscillation theorems).

As with respect to ODEs, Sturm’s ideas have applications in the classical
problem on zeros of complete Abelian integrals defined by means of a planar Hamil-
tonian flow, which is closely related to Hilbert’s 16th problem (the so-called weak-
ened, infinitesimal or tangential Hilbert problem). Abelian integrals were known
to satisfy a system of Picard-Fuchs ODEs [61], see also [72] for further references.
This is a part of a general problem on zeros of Pfaffian functions and the fewno-
mials theory, [79], [80], where the eventual reduction to polynomial structures is
used. In particular, algorithmic consistency problems for systems of Pfaffian equa-
tions and inequalities occur (with applications to computer sciences); see [50] and
references therein.

Let us return to the Sturm-Hurwitz theorem establishing that the finite
Fourier series (1.3) has at least 2L and at most 2M zeros. On pp. 436–444 of
the PDE paper [126], Sturm presented an ODE proof of the result. Sturm’s ODE
proof, as well as Liouville’s one in [89] published in the same volume, exhibit cer-
tain features of a discrete evolution analysis (to be compared with Sturm’s PDE
proof via parabolic evolution equation with continuous time variable). A. Hurwitz
(1903) [71] extended this result to Fourier series with M =∞.

Further extension is due to O.D. Kellog (1916) [77] who proved oscillation the-
orems for linear combinations of real continuous functions φ0(x), φ1(x), . . . , φn(x)
that are orthonormal in L2((0, 1)). These are not eigenfunctions of a Sturm-
Liouville problem. The main assumption is as follows (we keep the original no-
tation). For any n ≥ 1, let the determinants

D(x0, x1, . . . , xn) =

∣∣∣∣∣∣∣∣
φ0(x0) φ1(x0) . . . φn(x0)
φ0(x1) φ1(x1) . . . φn(x1)

. . . . . . . . . . . .
φ0(xn) φ1(xn) . . . φn(xn)

∣∣∣∣∣∣∣∣
be positive for any 0 < x0 < x1 < · · · < xn < 1 (D0(x0) being understood as
φ0(x0)). Let

Φm,n(x) = cmφm(x) + · · ·+ cnφn(x).

Then, among other results, it is established that:
(i) Φ0,n(x) cannot vanish at n + 1 distinct points in (0, 1) without vanishing

identically;
(ii) φn(x) vanishes exactly n times and changes sign at each zero;
(iii) every continuous function ψ(x) orthogonal to φ0(x), . . . , φn(x) changes sign

at least n + 1 times;
(iv) Φm,n(x) changes sign at least m times and at most n times.
The infinitesimal version of the discriminants with xk+1−xk → 0, k = 0, 1, . . . , n−
1, defines the Wronskians of the given functions. Hence some of the assumptions
are valid for eigenfunctions of regular Sturm-Liouville problems. On the other
hand, Kellogg’s results do not cover those of Sturm, see p. 5 in [77].
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The Sturm-Hurwitz Theorem plays a fundamental role in topological prob-
lems in wave propagation theory (topology of caustics and wave fronts), the ge-
ometry of plane and spherical curves and in general symplectic geometry and
topology, see [14], [16], [17], [19] and references therein. Alternating, oscillating
and non-oscillating Sturm theorems have multi-dimensional symplectic analogues
and describe rotation of a Lagrangian subspace of the phase space [14]. For in-
stance, the Sturm-Hurwitz theorem proves a generalization [129] of the classical
four vertex theorem by S. Mukhopadyaya [103] and A. Kneser [81] asserting that a
plane closed non-self-intersecting curve has at least four vertices (critical points of
the curvature). It is pointed out in [17] that the same minimal number occurs in:

(i) theorems on four cusps of general caustics on every convex surface of positive
curvature (the related conjecture goes back to C.G.J. Jacobi (1884) [74]),

(ii) four cusps of the envelope of the family of perturbed Larmor orbits of given
energy,

(iii) the tennis-ball theorem (a closed curve on the sphere without self-inter-
sections, a smooth embedding S1 → S2, dividing the sphere into two parts of
equal area, has at least four points of spherical inflection with zero curvature),

(iv) the four equilibrium points theorem,
(v) the four flattening points theorem for perturbed convex curves of positive

curvature on a plane lying in three-dimensional space, etc.

Infinitesimal versions of such topological theorems (for infinitely small perturba-
tions of curves) follow from the Sturm-Hurwitz theorem. For finite perturbations,
some of these results can be proved by means of evolution Sturm theorems on
zeros for parabolic PDEs to be discussed later on.

Half of Arnold’s third lecture in the Fields Institute (1997) [18] was devoted
to Sturm’s theory on Fourier series, which “provides one of the manifestations
of the general principle of economy in algebraic geometry” (related to Arnold’s
conjecture (1965) and the symplectification of topology). In particular, the Morse
inequality (in the simplest version it says that the number of critical points of
functions on the circle is at least 2) is the Sturm-Hurwitz theorem with L = 1.

The Sturm-Hurwitz theorem was first proved by the PDE method [126], pp.
431–436, in the general form including any (finite) series composed from eigen-
functions of a Sturm-Liouville problem. These extensions of Sturm’s ideas have
many other applications to be discussed below.

Extensions of Sturm’s results on zeros (nodal sets) of linear combinations
of eigenfunctions to standard self-adjoint elliptic operators (e.g., the Laplacian
∆) in bounded smooth domains Ω ⊂ RN , N ≥ 2, are unknown; see [17] and
[18]. In particular, the so-called Herrmann theorem announced in [37], p. 454: a
linear combination of the first n eigenfunctions divides the domain, by means of
its nodes (piecewise smooth nodal surfaces), into not more than n subdomains,
fails to hold for the spherical Laplacian [18]. Courant’s Theorem on p. 452 asserts
that the nodes of the nth eigenfunction divide the domain into no more than n
subdomains.
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In dimensions N ≥ 2, given a linear combination f(x) of eigenfunctions of
∆, the structure of the nodal set itself N (f) = {x ∈ Ω : f(x) = 0} is not sufficient
to define a kind of a Sturmian “index” of the surface z = f(x), similar to the
number of zeros in 1D, which can inherit a certain numerical property (say, a
lower bound) from the lowest harmonic of the series. Such an index should depend
on global properties of f(x) at all points x ∈ Ω including those far away from
N (f). It seems reasonable that for a proper definition of a Sturmian index, it is
necessary to control the intersections of the graph of the function f with the graphs
of the functions in the finite-dimensional set B = {Vν(x)} containing functions
associated with the operator ∆. Roughly speaking, this would mean that such a
“local” characteristic as the number of zeros of f(x) on an interval from R cannot
work in RN , where any possible nonincreasing property of, say, the number of
maximal connected subdomains of the positivity subset {f(x) > 0} should include
some global properties of the function formulated in an unknown way. In any case,
a proper definition of Sturmian index of surfaces governed by parabolic equations
in RN is not expected to admit a simple formulation or such easy and effective
applications as it has in the 1D case.

3.2. Parabolic PDEs and Sturm’s theorems

The Sturmian argument for 1D parabolic equations turns out to be an extremely
effective technique in the study of different aspects of the theory of nonlinear
parabolic equations. In the twentieth century the argument was partially and in-
dependently rediscovered several times. We will mention some of the papers pub-
lished at least twenty years ago, but of course there are many other interesting
and important papers published more recently, which are not referred to here.

G. Pólya (1933) [112] paid special attention to Sturm’s zero set properties
of periodic solutions to the heat equation. He studied the number of “Nullstellen”
of u(x, t), i.e., the number of x ∈ [0, 2π] such that u(x, t) = 0, on the basis of
Sturm’s approach with a reference to [126]. Radial and cylindrical solutions were
considered and zero properties of convolution integrals were also studied.

The celebrated KPP-paper (1937) [82] was devoted to the stability analysis
of the minimal travelling wave (TW) for a semilinear heat equation

ut = uxx + f(u) in R× R+,

with the typical nonlinearity f(u) = u(1 − u). There the construction of a geo-
metric Lyapunov function in Theorem 11 was based on the following intersection
comparison argument: the initial 1-step function u0(x) = 1 for x > 0 and 0 for
x ≤ 0 intersects any smooth travelling wave profile exactly at a single point and
there exists a unique intersection curve for t > 0. In our notation this means that
the number of intersections Int(t, V ) ≡ 1 for any TW V (x, t) = g(x − λ0t + a)
and any t > 0, where λ0 > 0 is the minimal speed. In general, the number of
intersections can be treated as a discrete nonincreasing Lyapunov function. On
the other hand, it gives a standard monotone Lyapunov function: on any fixed
level {u(x, t) = c ∈ (0, 1)} the derivative ux(x, t) < 0 is monotone increasing in
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t and bounded above. Then passage to the limit t → ∞ establishes the conver-
gence to the minimal TW profile in the hodograph plane {u, ux} or in the moving
coordinate system in the {x, u}-plane.

K. Nickel’s paper (1962) [105] (see also [106]) established nonincrease of the
number of sign changes of solutions of parabolic equations (more precisely, of the
number of relative maxima of a solution profile, i.e., the number of zeros of the
derivative ux(x, t)). Nickel’s results are explained in detail relative to general fully
nonlinear parabolic equations in W. Walter’s books [134] and [133], Section 27.
R.M. Redheffer and W. Walter (1974) [114] extended such results to more general
classes of equations. For particular linear parabolic equations in R, these results
were proved by S. Karlin (1964) [76], whose analysis was based on ideas of total
positivity of Green’s functions and applied to Brownian motion processes. Related
questions and techniques were discussed by I.K. Ivanov (1965) [73] (the number
of changes of sign was considered), by E.K. Godunova and V.I. Levin (1966) [62]
(a proof of existence of a single maximum was based on the theory of probabilis-
tic distributions; eventual single maximum distribution and eventual concavity
of solutions were also established) and by E.M. Landis (1966) [85] (properties of
evolution of level sets for (2.1) were investigated). D.H. Sattinger’s results (1969)
[118] on sign changes for linear parabolic equations are similar to those obtained
by Nickel and Walter. Observe that in the proof of Theorem 7 on exponential de-
cay of total variation, Sattinger uses a reflection technique and studies zeros of the
differences u(x, t) and the reflected solution u(2l− x, t), see p. 88 in [118]. Such a
combination of Sturm’s theorems and A.D. Aleksandrov’s Reflection Principle and
ideas (1960) [1] later became a powerful tool in the asymptotic theory for nonlinear
singular parabolic equations. Papers by A.N. Stokes (1977) [122] and [123] used
the nonincrease of zero number with application to stability analysis of travelling
waves. Here the basic idea of proving a Lyapunov monotonicity property in the
hodograph plane is essentially the same as in the KPP-analysis [82]. A general
stability analysis of TWs in analytic semilinear parabolic equations via zero set
properties was performed in [12].

H. Matano (1978) [96] proved the first Sturm Theorem and applied it to es-
tablishing that the ω-limit set of any bounded solution to a semilinear parabolic
equation ut = (a(x)ux)x + f(x, u) on (0, L)× R+, a ≥ a0 > 0, with smooth coef-
ficients and Robin boundary conditions contains at most one stationary point. At
that time such a result was already known [135] for smooth uniformly parabolic
equations ut = a(x, u, ux)uxx + b(x, u, ux) with general nonlinear boundary con-
ditions. It was proved by constructing a standard (integral) Lyapunov functional
by the method of characteristics, a fruitful idea which applies to 1D quasilinear
parabolic equations. The geometric proof by Matano is more general and can be
applied to fully nonlinear parabolic equations

ut = F (x, u, ux, uxx). (3.2)

More detailed results related to the first Sturm Theorem were published in [97].
A finite difference approach to some of these Sturmian properties was developed
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earlier by M. Tabata (1980) [130]. An application of intersection comparison to
blow-up solutions of quasilinear parabolic equations ut = (k(u)ux)x + Q(u) was
given in [52].

Computations similar to those of Sturm in the proof of Theorem 2.2 in Sec-
tion 2 can be found in [12], Section 5. For radial equations (2.3) with N > 1 such
computations for t < 0 lead to Laguerre polynomials Lγ

m(z) of order γ = N/2,
see Section 3 in [8]. Perturbation techniques for the operator (2.19) were devel-
oped in [65], [7], [32]. Sturm’s backward parabolic rescaling with z = x/(−t)1/2

plays an important role in continuation theorems and topology of nodal sets for
linear parabolic equations in RN [32]. A weak form of the continuation analysis
[113] based on a monotonicity formula and weighted inequalities (this idea goes
back to T. Carleman (1939) [29] with applications to elliptic equations), which
are convolutions with the backward heat kernel, uses the same Sturm backward
variable.

The evolution proof of the Sturm-Hurwitz Theorem on zeros of (finite) linear
combinations of eigenfunctions {Vk(x), k = 1, 2, . . .}, where each Vk has exactly
k− 1 simple transversal zeros, of a Sturm-Liouville operator given by (2.6), (2.7),

Y (x) = CiVi(x) + Ci+1Vi+1(x) + · · ·+ CpVp(x)

is given on pp. 431-444 in [126] and is as follows (we keep the original notation).
Consider the solution

u(x, t) = CiVi(x)e−ρit + Ci+1Vi+1(x)e
−ρi+1t + · · ·+ CpVp(x)e−ρpt (3.3)

of the parabolic equation (2.6) with u(x, 0) ≡ Y (x), where the sequence of eigen-
values {−ρk} is strictly decreasing. Then for t� 1, the first harmonic is dominant
and hence u(x, t) has exactly i− 1 zeros. Since the number of zeros of u(x, t) does
not increase, u(x, t) has at least i−1 zeros for all t ∈ R, and hence at t = 0. On the
other hand, for t� −1 the last harmonic in (3.3) is dominant, u(x, t) has exactly
p−1 zeros, so that by Sturm’s Theorem, u(x, t) has at most p−1 zeros for all t ∈ R.

On p. 436 Sturm compares his proof with that by J. Liouville [89] “. . . with-
out using consideration of the auxiliary variable t . . . ” (by means of an ODE
argument). In Section XXVI Sturm presents his own ODE proof. Corollary 2.1 is
a paraphrase of Sturm’s calculations. The proof of Theorems 2.3 and 2.4 are given
in [7]. Finiteness of Z(t, u) on (0, 1) for t > 0 was also established in [84] for coeffi-
cients a ∈ H1, b ∈ W 1,∞ and c ∈ L∞ depending on x only. The second Sturm The-
orem on formation of multiple zeros remains valid for W 2,1

p,loc solutions (p > 1) from
Tikhonov’s uniqueness class for linear uniformly parabolic equations in RN with
bounded coefficients [32] (the proof uses Sturmian backward rescaling). The ana-
lytic case was treated in [12]. Eventual simplicity of zeros was first observed in [26].

An evolution approach to connections of equilibria for semilinear parabolic
equations was introduced by D. Henry [65], where such a time-dependent Sturm-
Liouville theory was rigorously established (including completeness of asymptotic
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limits in Theorem 4 proved by Agmon’s estimates). This theory was used in com-
pleting the proof that, under some hypotheses, a general semilinear parabolic equa-
tion ut = uxx + f(x, u, ux) in (0, 1) × R+, with Dirichlet or nonlinear boundary
conditions, represents a Morse-Smale system. It is established that given a hetero-
clinic connection ū(x, t) of two hyperbolic (linearly nondegenerate) equilibria φ±,
u(x,−∞) = φ−(x) and u(x, +∞) = φ+(x), the stable manifold W s(φ+) and the
unstable one Wu(φ−) meet transversally at ū(·, t) for each t. See also [6] for the
case f = f(x, u) ∈ C2. This transversality result was used in [65] to describe all
connecting orbits between equilibria for the Chafee-Infante problem with f = f(u),
f(0) = 0. For earlier results on connections for parabolic equations see [64] and
[25]. For more general f ∈ C2 such connections were established in [27]. See also
the survey [44].

A spectrum of Hermite polynomials occurred in the zero set analysis by
D. Henry [65] and S.B. Angenent [7]. Zero set results played a role in the analyticity
study of solutions of the porous medium equation (PME) [8]. A few years after
papers [65], [6] and [7] on parabolic Morse-Smale systems, the same linearized
operators, with eigenfunctions composed from Hermite polynomials, were obtained
in the center and stable manifold behavior in the study of blow-up solutions of
the semilinear parabolic equations from combustion theory ut = ∆u + up, p > 1
and ut = ∆u+eu (the nonstationary Frank-Kamenetskii equation), see [132], [47],
[66], [131] and [99].

Sturm’s Theorems play a key role in the analysis of other aspects of be-
haviour in infinite-dimensional dynamical systems associated with nonlinear par-
abolic equations. These are convergence to periodic solutions and related ques-
tions for periodic equations [33], [28] (results apply to general 1D fully nonlinear
equations), [43], [31] (transversality properties), [109], [67] and [34] (applied to
N -dimensional semilinear parabolic equations by means of symmetrization and
moving plane techniques), [120] (almost periodicity). Zero set analysis is a lead-
ing ingredient of a Poincaré-Bendixson theorem for semilinear heat equations,
[12], [98], [45], and in the construction of G. Floquet bundles (see [48] and re-
sults by A.M. Lyapunov [91]) for linear parabolic equations in periodic and non-
periodic cases (solutions un(x, t) having exactly n zeros for all t ∈ R) [35], [36]
(a generalization of Sturm-Liouville theory to the time-dependent case, results in-
clude exponential dichotomies and other estimates). Such Floquet-type solutions
{un(x, t), t > 0} exist for the semilinear heat equation ut = uxx − |u|p−1u in
R× R+ with exponential decay as t → ∞ depending on n [100]. The nonincreas-
ing number of zeros plays a key role in the problems of Morse decomposition [92]
and connections of Morse sets [46] for the monotone feedback differential delay
equation

u̇(t) = f(u(t), u(t− 1)), u ∈ R.

Nonincrease of the number of zeros per unit interval for such linear equations
was first established by A.D. Myschkis (1955), see Theorem 32 in [104]. It is
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also true for monotone cyclic feedback systems [93] u̇i = fi(ui, ui−1), ui ∈ R,
i mod n.

Sturm’s intersection ideas play a fundamental role in curve shortening or
flows by mean curvature problems for curves on surfaces. For curves on a surface
M with a Riemannian metric g, such a motion is described by the curve shortening
equation

v⊥ = V (t, k), (3.4)

where v⊥ is the normal velocity of the curve, k is the curvature and V is a C1,1

function satisfying ∂V/∂k > 0. The reason that Sturm’s results apply to such
evolution problems (though some of the properties are intuitively obvious for in-
tersections of curves) is that (3.4) reduces to a nonlinear parabolic equation for the
curvature k or, after a suitable parametrization, for a function u(x, t) satisfying
a fully nonlinear parabolic equation (3.2), where F depends on V . [See the first
results in [70], [119] and [51] (a parabolic PDE for curvature kτ = k2(kθθ + k) was
derived for the flow v⊥ = k), and [41], [63].] A general approach to curve short-
ening flows via 1D parabolic equations was developed in [9], [10] (where Sturm’s
intersection theory is described), see also [117]. The mean curvature flows can
generate different types of singularities.

Parabolic properties of a curve shortening evolution can be used in a number
of well-known problems concerning plane curves. As a first example, a Birkhoff
curve shortening evolution was a basic idea in proving the theorem of the three
geodesics (any Riemannian 2-sphere has at least three simple closed geodesics) by
L.A. Lusternik and L.G. Schnirelman (1929) [90]. A smooth evolution via curva-
ture was used in [63] based on Uhlenbeck’s suggestion of using the curvature flow.

Sturm’s evolution PDEs approach on zero sets can give a new insight to a
number of topological problems of plane and spherical curves, caustics, and re-
lated topics of symplectic geometry briefly outlined above. For instance, three of
Arnold’s theorems [15] on the number of inflection points (at least four for any
embedded curve in S2, the “tennis ball theorem”; and at least three for any non-
contractible embedded curve in RP2) and extatic points (at least six for any plane
convex curve) can be proved by using a suitable parabolic mean curvature evolu-
tion (the affine one for extatic points), see [11] and comments in [18]. Namely, the
asymptotic expansion of the solution u(x, t) as t→∞ describing the convergence
to limiting geodesics via a 1D parabolic equation determines a minimally possible
number of critical points. Then the result follows from Sturm’s result on the non-
increase with time of the number of such points (e.g., inflections which are zeros
of the curvature). While the Sturm-Hurwitz theorem can deal with infinitesimal
perturbations of curves (see above), Sturm’s evolution analysis extends the results
to any finite perturbation. It follows that the statements from [17], p. 14, “ The
tennis ball theorem asserts that the result remains true for finite perturbations,
even very large ones,” and “. . . the tennis-ball theorem may be considered as a
generalization of Hurwitz’ theorem to the case of multi-valued functions” are cov-
ered by the first Sturm Theorem on zeros of single-valued functions (solutions of
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the PDE) since a suitable parabolic 1D evolution is available. The case of finite
perturbations reduces via parabolic evolution to the infinitesimal one, and then
Sturm’s Theorem establishes that the number of critical points (zeros, inflections,
extatic points, etc.) cannot be less than the eventual, infinitesimal one for arbi-
trarily small perturbations where a standard linearization applies. If a suitable
parabolic evolution exists, the Sturm-Hurwitz theorem guarantees that the “infin-
itesimal geometric characteristic” of convergence (the number of critical points) is
the optimal lower bound for any finite, arbitrarily large perturbation.

After a suitable surface parametrization, the quasilinear parabolic equation

ut = uxx/[1 + (ux)2]− (N − 2)/u

describes the evolution of cylindrically symmetric hypersurfaces moving by mean
curvature in RN , N ≥ 3, [42], [121], [5]. A similar singular lower-order term occurs
in the Prandtl boundary layer equations, which by von Mises non-local transfor-
mation reduce to the PME with an extra term ut = (uux)x + g(t)/u where g
depends on the velocity of the potential flow (though in the original setting no
singularities occur); see Section 30 in [134].

It is known that the first Sturm Theorem cannot be generalized to parabolic
equations in RN in the sense that such a general “order structure” does not exist;
see [49] and the detailed survey [110].

The Sturmian classification of multiple zeros holds for a system of parabolic
inequalities. Rescaling by Sturm’s backward variable shows that Sturm’s Theorems
are true for W 2,1

p,loc solutions (from Tikhonov’s class) of a system of parabolic
inequalities

|ut − uxx| ≤M1|ux|+ M0|u|, x ∈ R, t ∈ J.

See [32], where such rescaling detailed analyses of nodal sets were carried out for
equations in RN , namely the heat equation:

ut = ∆u in RN × (−∞, 0).

In terms of Sturm’s backward variable z = x/(−t)1/2 this reduces to the rescaled
equation

uτ = Bu in RN × R+, where τ = − ln(−t)→∞ as t→ 0−, (3.5)

with the symmetric second-order operator

Bu = ∆u − 1
2 z · ∇u ≡ 1

ρ ∇ · (ρ∇u), ρ(z) = e−|z|2/4. (3.6)

It is self-adjoint in L2
ρ(RN ) with the domain H2

ρ(RN ) and a point spectrum σ(B) =
{λβ = −|β|/2, |β| = 0, 1, . . .} (β = (β1, . . . , βN ) is a multiindex, |β| = β1 +
· · · + βN ) and the eigenfunctions Φ = {Hβ(z) = ρ−1(z)Dβρ(z)} are Hermite
polynomials in RN ; see [22], p. 48. The asymptotic structures CeλβτHβ(z) with
any eigenvalue λβ < 0 describe for τ → ∞ all possible types of multiple zeros of
the heat equation in RN . This makes it possible to study general properties (e.g.,
Hausdorff dimension) of nodal sets of general solutions [32].
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The main principles of Sturm’s evolution analysis of multiple zeros also re-
main valid for 2mth order linear parabolic equations. Since the analysis is essen-
tially local in a shrinking neighborhood of zero (according to Sturm’s variable
z = x/(−t)1/2), without loss of generality, we consider the canonical 2mth order
parabolic equation with constant coefficients

ut = −(−∆)mu in RN × (−∞, 0).

Sturm’s backward variable takes the form

z = x/(−t)1/2m

and we arrive at the equation (cf. (3.5))

uτ = Bu, where B = −(−∆)m − 1
2m z · ∇, τ = − ln(−t). (3.7)

For any m > 1, this operator is not self-adjoint in any weighted space L2
ρ(R

N )
unlike the second-order case m = 1. We introduce the space L2

ρ(R
N ) with the ex-

ponential weight ρ(z) = e−a|z|α > 0 in RN , where α = 2m/(2m− 1) ∈ (1, 2) and
a = a(m, N) > 0 is a sufficiently small constant. For m = 1 we have α = 2, a = 1/4
and ρ(z) = e−|z|2/4 is the rescaled Gaussian kernel as in (3.6). In L2

ρ(RN ) the oper-
ator B, with domain H2m

ρ (RN ) being a weighted Sobolev space, admits the point
spectrum σ(B) = {λβ = −|β|/2m ≤ 0, |β| = 0, 1, . . . }. The subset of eigenfunc-
tions {ψβ(z)} (Kummer’s polynomials in RN of order |β|) is complete in L2

ρ(RN )
[40], [54]. For m = 1, these are the Hermite polynomials. In view of completeness
of polynomials, in the existence class {|u(x, t)| ≤ Aea|x|α}, a, A > 0, any solution
of (3.5), (3.7) has the eigenfunction expansion u(z, τ) =

∑
Cβeλβτψβ(z). As a

consequence, the complete subset of polynomials {ψβ(z)} describes in the rescaled
form possible types of formation of multiple zeros occurring for this higher-order
parabolic equation and describing local properties of nodal sets, [55]. Of course,
the first Sturm Theorem in 1D (nonincrease of the number of zeros) is no longer
available for 2mth order equations, where new zeros can occur with evolution.

Finally, we notice that Sturm’s zero-set ideas often play a crucial role in the
asymptotic analysis of nonlinear parabolic PDEs admitting finite-time singularities
or free boundaries of different types. A large amount of mathematical literature
was devoted to these subjects during the last twenty years. An extensive list of ref-
erences on geometric Sturmian approaches to nonlinear parabolic equations with
applications to singularity formation phenomena (like blow-up, extinction or fo-
cusing) and regularity analysis of free-boundary problems are available in books
[58] and [56] and in the survey papers [57] and [53].



Sturm’s Theorems on Zero Sets in Nonlinear Parabolic Equations 193

References

[1] A.D. Aleksandrov, Certain estimates for the Dirichlet problem, Soviet Math. Dokl.
1 (1960), 1151–1154.

[2] W. Allegretto, A comparison theorem for nonlinear operators, Ann. Scuola Norm.
Sup. Pisa, Cl. Sci (4), 25 (1971), 41–46.

[3] W. Allegretto, Sturm type theorems for solutions of elliptic nonlinear problems,
Nonl. Differ. Equat. Appl. 7 (2000), 309–321.

[4] W. Allegretto, Sturm Theorems for degenerate elliptic equations, Proc. Amer.
Math. Soc. 129 (2001), 3031–3035.

[5] S. Altschuler, S. Angenent and Y. Giga, Mean curvature flow through singularities
for surfaces of rotation, J. Geom. Anal. 5 (1995), 293–358.

[6] S.B. Angenent, The Morse-Smale property for a semi-linear parabolic equation, J.
Differ. Equat. 62 (1986), 427–442.

[7] S. Angenent, The zero set of a solution of a parabolic equation, J. reine angew.
Math. 390 (1988), 79–96.

[8] S. Angenent, Solutions of the one-dimensional porous medium equation are deter-
mined by their free boundary, J. London Math. Soc. (2) 42 (1990), 339–353.

[9] S. Angenent, Parabolic equations for curves on surfaces. Part I. Curves with p-
integrable curvature, Ann. Math. 132 (1990), 451–483.

[10] S. Angenent, Parabolic equations for curves on surfaces. Part II. Intersections,
blow-up and generalized solutions, Ann. Math. 133 (1991), 171–215.

[11] S. Angenent, Inflection points, extatic points and curve shortening, In: Proceedings
of the Conference on Hamiltonian Systems with 3 or More Degrees of Freedom,
S’Agarro, Catalunia, Spain, 1995.

[12] S.B. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction
diffusion equations, Trans. Amer. Math. Soc. 307 (1988), 545–568.

[13] V.I. Arnold, On the characteristic class entering in quantization condition, Funct.
Anal. Appl. 1 (1967), 1–14.

[14] V.I. Arnold, The Sturm theorems and symplectic geometry, Funct. Anal. Appl. 19
(1985), 251–259.

[15] V.I. Arnold, Topological Invariants of Plane Curves and Caustics, A.M.S. University
Lecture Series 5, 1994.

[16] V.I. Arnol’d, The geometry of spherical curves and the algebra of quaternions,
Russian Math. Surveys 50 (1995), 3–68.

[17] V.I. Arnold, Topological problems of the theory of wave propagation, Russian Math.
Surveys 51 (1996), 1–47.

[18] V.I. Arnold, Topological problems in wave propagation theory and topological econ-
omy principle in algebraic geometry, Third Lecture by V. Arnold at the Meeting in
the Fields Institute Dedicated to His 60th Birthday, Fields Inst. Commun., 1997.

[19] V.I. Arnold, Symplectic geometry and topology, J. Math. Phys. 41 (2000), 3307–
3343.

[20] F.V. Atkinson, Discrete and Continuous Boundary Problems, Acad. Press, New
York/London, 1964.

[21] S.N. Bernstein, The basis of a Chebyshev system, Izv. Akad. Nauk SSSR, Ser. Mat.
2 (1938), 499–504.



194 V.A. Galaktionov and P.J. Harwin

[22] M.S. Birman and M.Z. Solomjak, Spectral Theory of Self-Adjoint Operators in
Hilbert Space, D. Reidel Publ. Comp., Dordrecht/Tokyo, 1987.

[23] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Springer-Verlag,
Berlin/New York, 1998.

[24] R. Bott, On the iteration of closed geodesics and the Sturm intersection theory,
Comm. Pure Appl. Math. 70 (1959), 313–337.
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A Survey of Nonlinear
Sturm-Liouville Equations

Chao-Nien Chen

Abstract. This note gives a brief survey of existence, uniqueness and bifur-
cation results for nonlinear Sturm-Liouville equations. Early in 1960, Nehari
made an interesting proposal to study solutions with a prescribed number of
nodes. His ideas have had a great influence on critical point theory as a branch
of the calculus of variations. Rabinowitz established a global bifurcation the-
orem based on the nodal properties of solutions. Some results on bifurcation
from the lowest point of the continuous spectrum will also be discussed.

1. Introduction

Let Lu = −(p(x)u′)′ + q(x)u, where p is positive and continuously differentiable
and q is continuous. Consider the Sturm-Liouville boundary value problem

Lu = λr(x)u + h(x, u, u′, λ), a < x < b, (1.1)
α1u(a)− β1u

′(a) = 0, α2u(b)− β2u
′(b) = 0,

where λ is a parameter, r is positive and continuous, and (α2
1 + β2

1)(α2
2 + β2

2) �= 0.
A well-known example of a nonlinear Sturm-Liouville equation is the pendulum
equation

−u′′ = λ sin u.

Here the position of the pendulum is described by u, which is the angle between
the rod and the downward vertical direction; λ is a constant depending on the
gravitational acceleration and on properties of the pendulum.

Early in 1960, Nehari [23] started to investigate nonlinear Sturm-Liouville
equations of the form

−u′′ = F (x, u2)u, a < x < b, (1.2)
u(a) = u(b) = 0,

This work is supported in part by the National Science Council of the Republic of China.
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where the function F (x, ξ) satisfies the following conditions:
(F1) F (x, ξ) is continuous in x and ξ for a ≤ x ≤ b and 0 ≤ ξ < ∞ respectively,

and F (x, ξ) > 0 if ξ > 0.
(F2) There exists a positive number σ such that, for any x in [a, b], ξ−σF (x, ξ) is

a non-decreasing function of ξ for ξ ∈ [0,∞).
The solutions of (1.2) obtained in [23] are continuously differentiable func-

tions. If F (x, ξ) is jointly continuous, i.e., F ∈ C([a, b] × [0,∞), R), then such
solutions are twice continuously differentiable. In order to study the oscillation
properties of second-order nonlinear differential equations, Nehari made an in-
teresting proposal to study solutions with a prescribed number of nodes. Using
constrained minimization arguments, he established the following existence result
for (1.2).

Theorem 1.1. Under the above hypotheses on F , for each j ∈ N there exist at least
a pair of solutions which possess precisely j − 1 zeros in (a, b).

A simple example for (1.2) is

−u′′ = w(x)|u|δu,

where δ > 0 and w is a positive continuous function on [a, b]. Recall that in case
h ≡ 0, associated with (1.1) is the linear Sturm-Liouville eigenvalue problem

Lv = λr(x)v, a < x < b, (1.3)
α1v(a) − β1v

′(a) = 0, α2v(b)− β2v
′(b) = 0.

Let λ1 < λ2 < · · · < λj < · · · be the eigenvalues of (1.3). It is known that λj is a
simple eigenvalue, and that any eigenfunction vj corresponding to λj has exactly
j− 1 zeros in (a, b) where all zeros of vj in [a, b] are simple. (A simple zero of vj is
a point x at which vj(x) = 0 and v′j(x) �= 0.) It is convenient to introduce for each
j ∈ N the set S+

j of ψ ∈ C1([a, b], R) such that ψ satisfies the boundary conditions
of (1.1), ψ > 0 in a deleted neighborhood of x = a, ψ has exactly j − 1 zeros in
(a, b), and all zeros of ψ in [a, b] are simple. Set S−

j = −S+
j and Sj = S+

j ∪ S−
j .

Then S+
j , S−

j and Sj are open subsets of

E = {ψ ∈ C1[a, b], R) | ψ satisfies the boundary conditions of (1.1)}.
Moreover vj defined above belongs to Sj and can be made unique by requiring
that vj ∈ S+

j and ‖vj‖ = 1. Here the C1-norm is taken as the norm of E:

‖ψ‖ = max
x∈[a,b]

|ψ(x)|+ max
x∈[a,b]

|ψ′(x)|.

The above remarks show that (1.3) possesses the family of trivial solutions
{(λ, 0) | λ ∈ R} together with, for each j ∈ N, a line of nontrivial solutions

{(λj , αvj) | α ∈ R} ⊂ ({λj} × Sj) ∪ {(λj , 0)}.
Rabinowitz [25] showed that a nonlinear analogue of this situations holds for (1.1)
if h satisfies the following condition:
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(h1) h is a continuous function and h(x, ξ, η, λ) = o((ξ2 + η2)
1
2 ) as (ξ, η)→ (0, 0)

uniformly on bounded λ intervals.

Theorem 1.2. If (h1) is satisfied, then, for each j ∈ N, (1.1) possesses a continuum
of solutions Cj in R× E with Cj ⊂ (R× Sj) ∪ {(λj , 0)} and Cj unbounded.

In fact, by a strong version of Theorem 1.2, (1.1) possesses two unbounded
continua of solutions, C+

j and C−
j , with C+

j ⊂ (R × S+
j ) ∪ {(λj , 0)} and C−

j ⊂
(R× S−

j ) ∪ {(λj , 0)}.
A familiar physical example of bifurcation is the buckling of a column [1].

This example was first studied by Euler in 1744. Consider a thin straight column
subjected to an axial compression. Suppose the column lies on the x-axis. If the
magnitude of the compression is small, the column remains linear; however if the
force exceeds a certain critical level, the column buckles, i.e., it deflects out of its
linear state. If the length of the column is π, u(x) denotes the angle between the
tangent to the column at point x and the x-axis, and λ is the applied thrust (a
measure of the magnitude of the compressive force), then u satisfies the equation

−u′′ = λ sin u, 0 < x < π,

u′(0) = u′(π) = 0.

Thus u ≡ 0 corresponds to the unbuckled state and is a solution of (1.2) for all
values of λ. As will be seen, a buckled state appears when λ exceeds 1.

There is a sizable literature [2, 4–10, 14–25, 27–29, 32–37] on the study of
nonlinear Sturm-Liouville equations. Therefore it is far beyond the scope of this
report to cover all related results of this subject. Nehari’s works initiated new
developments in the study of nonlinear differential equations. These ideas have had
a great influence on critical point theory as a branch of the calculus of variations,
and will be considered in Section 2.

The global bifurcation theorem established by Rabinowitz covers a large va-
riety of nonlinearities. As will be seen in Section 3, by carefully studying the
qualitative behavior of the sets C+

j and C−
j , many existence results can be unified

by skillful applications of the global bifurcation theorem. A useful tool for this
purpose is the Sturm Comparison Theorem. The interested reader may consult
[29] for more complete references and related results.

Section 4 deals with nonlinear Sturm-Liouville problems on unbounded inter-
vals, where the linearization at zero solution could have no point spectrum. Some
examples of bifurcation from the lowest point of the continuous spectrum will be
discussed [6, 8, 14–16, 18, 20, 21, 32–34]. Unlike Theorem 1.2, two continua with
different nodal properties could merge together, in which case the phenomenon of
“losing nodes at infinity” takes place.
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2. Nehari’s variational method

Consider the functional

I(u) =
∫ b

a

[
(u′(x))2 −

∫ (u(x))2

0

F (x, ξ)dξ
]
dx (2.1)

within the class Γ0 of continuous functions u(x) which have a piecewise continu-
ous derivative in [a, b] and satisfy u(a) = u(b) = 0. Although (1.2) is the Euler-
Lagrange equation corresponding to (2.1), it is easy to check that I(u) is neither
bounded from above nor from below as u(x) ranges over the class of functions in
question.

To obtain an extremum of I, Nehari imposed a constraint on u:∫ b

a

(u′(x))2dx =
∫ b

a

u2F (x, u2)dx. (2.2)

This constraint is satisfied by solutions of (1.2), which can easily be confirmed by
multiplying both sides of (1.2) by u(x) and integrating by parts. For any y �≡ 0,
it is always possible to find a positive number α such that u(x) = αy(x) satisfies
(2.2). This is equivalent to finding an α such that∫ b

a

(y′(x))2dx =
∫ b

a

y2F (x, α2y2)dx, (2.3)

and the truth of the assertion follows from the observation that the right-hand
side of (2.3) is a continuous function of α which, in accordance with (F2), tends
to 0 as α→ 0 and to ∞ as α→∞.

For given b > a, define Γ = {u | u ∈ Γ0 and u satisfies (2.2)} and ν(a, b) =
infu∈Γ I(u).

Theorem 2.1. For any fixed interval (a, b), one has ν(a, b) > 0 and there exists a
function u ∈ Γ such that I(u) = ν(a, b). Moreover, if u ∈ Γ and I(u) = ν(a, b),
then |u| > 0 in (a, b) and |u| is a positive solution of (1.2).

Nehari showed that (1.2) has an infinite number of other solutions in addition
to the positive one. These can be obtained by minimizing I under increasingly
restrictive side conditions. Pick j + 1 distinct points xk such that a = x0 < x1 <
x2 < · · · < xj−1 < xj = b. In the interval [xk−1, xk], consider functions y which
are piecewise continuously differentiable, vanish at x = xk−1 and x = xk (but not
identically) and are normalized by∫ xk

xk−1

(y′(x))2dx =
∫ xk

xk−1

y2F (x, y2)dx.

Observe that −|u| is a negative solution of (1.2) if I(u) = ν(a, b). Theorem 2.1
shows that it is sufficient to consider the following minimum problem (2.4) for
functions y(x) which in the intervals [xk−1, xk] coincide, respectively, with the
solutions uk(x) of (1.2) which vanish at x = xk−1 and x = xk, and whose existence
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has already been established. For x ∈ [xk−1, xk], assign y(x) = (−1)k+1|uk(x)| and
set I(y) = νj−1(x1, x2, . . . , xj−1) with

νj−1(x1, x2, . . . , xj−1) =
j∑

k=1

ν(xk−1, xk), (2.4)

where y ranges over the class of all functions with the indicated properties. Nehari
proved that the set of numbers x1, . . . , xj−1 for which the right-hand side of (2.4)
attains its minimum is such that the corresponding solutions (−1)k+1|uk(x)| of
(1.2) combine to a single solution y(x) of (1.2) in the interval [a, b]. This solution
y(x) vanishes for x = a and x = b and has precisely j − 1 zeros in (a, b).

The existence of a solution y ∈ Sj of (1.2) will be a consequence of the
following properties of ν(a, b) as a function of a and b.

Lemma 2.1. The function ν(a, b) is continuous with respect to both a and b. If
a ≤ ā < b̄ ≤ b, then ν(a, b) ≤ ν(ā, b̄). Moreover, ν(a, b)→∞ as b− a→ 0.

Lemma 2.1 implies that νj−1 is bounded from below and that there exists
a set of j − 1 distinct points x1, x2, . . . , xj−1 ∈ (a, b) for which νj−1 attains its
minimum. It remains to show that

lim
x→x−

k

y′(x) = lim
x→x+

k

y′(x). (2.5)

Observe that (2.5) is equivalent to

|u′
k(xk)| = |u′

k+1(xk)|. (2.6)

If (2.6) fails to hold at some xk, Nehari proved that νj−1(x1, x2, . . . , xj−1) is not
a minimum of (2.4). The details, as well as the proof of Lemma 2.1, can be found
in [23].

3. A global bifurcation theorem and its applications

Let E be a real Banach space and G : R × E → E. Consider the bifurcation
problem for solutions of the operator equation

u = G(λ, u). (3.1)

Suppose G(λ, 0) = 0 for all λ ∈ R so G possesses the family of trivial solutions
T = {(λ, 0) | λ ∈ R}. A point (λ̂, 0) is said to be a bifurcation point for solutions
of (3.1) if every neighborhood of (λ̂, 0) contains a solution of (3.1) not in T . Let S
denote the closure in R×E of the set of nontrivial solutions of (3.1). The following
bifurcation result was proved by Rabinowitz [26].

Theorem 3.1. Suppose G(λ, u) = λLu + H(λ, u) where L is a linear compact
operator, H is compact and H(λ, u) = o(‖u‖) as u → 0 uniformly on bounded λ
intervals. Let σ(L) be the spectrum of L. If µ−1 ∈ σ(L) is of odd multiplicity, then
S contains a component C containing (µ, 0). Moreover C is either unbounded in
R× E or C contains (γ, 0), where γ−1 ∈ σ(L) and γ �= µ.
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Remark 3.1. The multiplicity of the spectral point µ−1 is defined to be the dimen-
sion of

⋃
j∈N

N
(
(id− µL)j

)
, where N(A) denotes the null space of A.

Theorem 1.2 is a global bifurcation theorem for nonlinear Sturm-Liouville
equations and can be deduced from Theorem 3.1. The proof of Theorem 1.2 may
be divided into two steps. The case that zero is not an eigenvalue of (1.3) is treated
first and then this restriction is removed by using an approximation argument. Two
preliminary results are needed.

Lemma 3.1. If (λ, u) is a solution of (1.1) and u has a double zero, i.e., there is a
ξ ∈ [a, b] such that u(ξ) = 0 and u′(ξ) = 0, then u(ξ) ≡ 0.

Proof. Consider the following linear equation:

Lv = λrv +
h(x, u(x), u′(x), λ)

u(x)2 + u′(x)2
(u(x)v(x) + u′(x)v′(x)). (3.2)

If u(x) is a solution of (1.1), assumption (h1) implies that (3.2) has continuous
coefficients. With the initial conditions v(ξ) = v′(ξ) = 0 we see that v(x) ≡ 0 is a
solution. But v(x) = u(x) is also a solution. The basic existence and uniqueness
theorem for the initial value problem implies that u(x) ≡ 0. �
Lemma 3.2. There exists a neighborhood Nj of (λj , 0) such that if (λ, u) is a
nontrivial solution of (1.1) and (λ, u) ∈ Nj, then u ∈ Sj.

Proof. Suppose the assertion of the lemma is false. Then there is a sequence of
nontrivial solutions (γn, un) such that (γn, un) → (λj , 0) and un /∈ Sj . Since
un/‖un‖ is bounded in E, the C1 bound for {un} together with (1.1) shows {un}
is bounded in C2. The Arzelà-Ascoli Theorem implies that, for some subsequence,
(γn, un/‖un‖) converges to (λj , v), where ‖v‖ = 1. Furthermore, condition (h1)
implies that v satisfies (1.3). In other words, v = βvj for some β �= 0. Since Sj is
an open set, it follows that for this subsequence un/‖un‖ ∈ Sj for large n. This
leads to a contradiction, in view of the fact that Sj is invariant under multiplication
by nonzero scalars. �
Proof of Theorem 1.2. In case zero is not an eigenvalue of (1.3), there exists a
Green’s function g with the aid of which (1.1) can be converted into an equivalent
operator equation of the form

u = λLu + H(λ, u).

Furthermore, L and H satisfy the hypotheses of Theorem 3.1 and one has σ(L) =
{λ−1

j | j ∈ N}. Hence for each j ∈ N, there is a component Cj satisfying the
alternative of Theorem 3.1. By Lemma 3.2, Cj ∩Nj ⊂ (R× Sj) ∪ {(λj , 0)}.

Suppose there is a point (λ̄, ū) ∈ ∂(R × Sj) ∩ Cj and (λ̄, ū) /∈ Nj , then
∂(R×Sj) = R×∂Sj implies that ū has a double zero. Lemma 3.1 shows that ū ≡ 0,
consequently (λ̄, ū) = (λk, 0) for some k �= j. Since Sj ∩ Sk = φ if j �= k, Lemma
3.2 shows Cj cannot contain (λk, 0) for k �= j and hence must be unbounded in
(R× Sj) ∪ {(λj , 0)}.
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Next, consider the case where zero is an eigenvalue of (1.3). In this case, an
approximation argument will be employed, variants of which are useful in other
situations in which the Global Bifurcation Theorem is not directly applicable. Let
Lε = L+εr. The eigenvalues of Lε are λj +ε and the corresponding eigenfunctions
are vj . Hence for ε �= 0 and small, there is a component Cj(ε) of solutions of

Lεu = λr(x)u + h(x, u, u′, λ), a < x < b, (3.3)
α1u(a)− β1u

′(a) = 0, α2u(b)− β2u
′(b) = 0,

with Cj(ε) unbounded in (R × Sj) ∪ {(λj + ε, 0)}. Let O be any bounded open
neighborhood of (λj , 0). Then for ε �= 0 and small, (λj +ε, 0) ∈ O and Cj(ε)∩∂O �=
φ. Choose a sequence εn → 0 and (γn, un) ∈ Cj(εn) ∩ ∂O. Then (γn, un) are
bounded in R × E, and the C1 bound for {un} together with (3.3) shows that
{un} is bounded in C2. The Arzelà-Ascoli Theorem implies that a subsequence
of (γn, un) converges in R × E, and (3.3) shows that it converges in R × C2 to
a solution (β̄, ū) of (1.1). Moreover, (β̄, ū) ∈ ∂O ∩ (R × S̄j). If ū ∈ ∂Sj , Lemma
3.1 implies ū ≡ 0. Using an argument analogous to the proof of Lemma 3.2 shows
that β̄ = λj . But (λj , 0) ∈ O and (β̄, ū) ∈ ∂O, so this is impossible. Hence
(β̄, ū) ∈ ∂O ∩ (R× Sj).

Since O can be any bounded open neighborhood of (λj , 0), this implies that
there exists Cj as in the statement of Theorem 1.2. �

Next, the qualitative behavior of the sets Cj will be explored under further
assumptions on h(x, u, u′, λ). As an instructive example of what the sets Cj can
look like, consider

−u′′ = λ(1 + φ(u2 + (u′)2, λ))u, 0 < x < π,
u(0) = 0 = u(π), (3.4)

where φ(0, λ) = 0. Trying for a solution of (3.4) of the form (λ, δ sin x) yields
λ−1 = φ(δ2, λ) + 1 and the variety of possible choices of φ indicates the wealth of
possibilities for C1.

For ease of exposition, most examples displayed in the remainder of this
section will be of a simpler form such as

−u′′ = λ(r(x) + ψ(x, u, u′))u
u(0) = 0 = u(π), (3.5)

where ψ is a continuous function, ψ(x, 0, 0) = 0 and r is a positive function. All
of the results are true for some general L′s and boundary conditions, although
possibly with some qualification in their statements.

Proposition 3.1. If (λ, u) is a solution of (3.5), ψ ≥ 0 (resp. ψ ≤ 0), and u ∈ Sj,
then λ ≤ λj (resp. λ ≥ λj) with strict inequality unless ψ(x, u, u′) ≡ 0.

Proof. It is known that λj > 0 for every j ∈ N. Consider the case ψ ≥ 0. If λ > λj

or λ = λj and ψ(x, u, u′) �≡ 0, λ(a + ψ) ≥ λja with strict inequality for at least
one point. By the Sturm Comparison Theorem, u must have a zero between any
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pair of adjacent zeros of vj ; that is, u has at least j zeros in (0, π), contrary to
u ∈ Sj .

The case ψ ≤ 0 is treated as above, reversing the roles of vj and u. �
In the next two propositions, S denotes the closure in R × E of the set of

nontrivial solutions of (3.5).

Proposition 3.2. Suppose for (3.5) there is a function Mj ∈ C([0,∞), R+) such
that (λ, u) ∈ S ∩ (R× Sj) implies ‖u‖ ≤Mj(λ). Then the projection of Cj on R+

contains the interval (λj ,∞). Moreover if Mj is independent of j, then for each
λ ∈ (λj ,∞), (3.5) possesses at least j distinct solutions.

Proof. It is easy to see that u ≡ 0 is the only solution of (3.5) if λ = 0. Since λj > 0,
it follows that Cj is unbounded in {(λ, u) | λ > 0, ‖u‖ ≤ Mj(λ)}. Therefore its
projection on R contains (λj ,∞). If furthermore Mj does not depend on j, the
projections of each of C1, . . . , Cj contain λ if λ > λj . �
Example 1. Consider

−u′′ = λ sin u, 0 < x < π
u(0) = 0 = u(π). (3.6)

This is of the form (3.5) with ψ(u) = (sin u − u)u−1 and r(x) ≡ 1. Moreover,
ψ(u) ≤ 0 for small u, so Cj bifurcates to the right of (λj , 0) for each j ∈ N. If
(λ, u) is a solution of (3.6), u′ has at least one zero, say at z ∈ (0, π). Thus

u(x) = λ

∫ x

0

ds

∫ z

s

sin u(t)dt,

from which it follows that ‖u‖L∞ ≤ λπ2. Similarly, since

u′(x) = λ

∫ z

x

sin u(t)dt, (3.7)

we have ‖u′‖L∞ ≤ λπ. Hence ‖u‖ ≤ λ(π + π2) and Proposition 3.2 applies here
with Mj independent of j.

Similar reasoning can be used to obtain information on the solutions of Euler’s
elasticity equation, where different boundary conditions need to be dealt with.

Example 2. Consider

−u′′ = λ(a(x) − ψ(x, u))u, 0 < x < π,
u(0) = 0 = u(π), (3.8)

where ψ ≥ 0 and ψ(x,±A) > a(x) for some A > 0 and all x ∈ [0, π]. Set ψ̄(x, ξ) =
ψ(x, ξ) if |ξ| ≤ A, ψ̄(x, ξ) = ψ(x, A) if ξ > A, and ψ̄(x, ξ) = ψ(x,−A) if ξ < −A.
Suppose u is a solution of

−u′′ = λ(a(x) − ψ̄(x, u))u, 0 < x < π,
u(0) = 0 = u(π). (3.9)

At a positive maximum of u, −u′′(x) ≥ 0 while if u(x) > A, the right-hand side
of (3.9) is less than zero. Hence u(x) ≤ A. Using a similar argument at a negative
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minimum of u yields u(x) ≥ −A. Thus any solution of (3.9) is a solution of (3.8).
Moreover the L∞ bound for solutions of (3.9) and an argument as in (3.7) show
there is an M(λ) such that ‖u‖ ≤ M(λ) for all solutions (λ, u) of (3.9). It then
follows from Proposition 3.2 that for any λ > λk, (3.8) has at least k distinct
solutions.

Proposition 3.3. Suppose for (3.5), ψ ≥ 0 and there exists a function Mj ∈
C((0, λj ], R) such that (λ, u) ∈ S ∩ (R × Sj) implies ‖u‖ ≤ Mj(λ). Then the
projection of Cj on R contains the interval (0, λj).

Proof. If λ = 0, u ≡ 0 is the only solution of (3.5). Moreover Proposition 3.1
shows (λ, u) ∈ S ∩ (R × Sj) implies λ ≤ λj . Thus Cj must be in the region
(0, λj ]× E ∩ {(λ, u) | ‖u‖ ≤Mj(λ)}. �

Remark 3.2. Proposition 3.3 can be applied to (3.5) where the nonlinear term
ψ(x, u) has the property ψ(x, ξ)ξ−1 →∞ as |ξ| → ∞.

There are some applications of Theorem 1.2 to situations in which bifurcation
does not occur. For example, consider

−u′′ = f(x, u)u, 0 < x < π,
u(0) = u(π) = 0.

(3.10)

Theorem 3.2. Suppose f ∈ C([0, π] × R, R), f ≥ 0, f(x, 0) = 0, and f(x, ξ) → ∞
as |ξ| → ∞ uniformly for x ∈ [0, π]. Then for each j ∈ N, (3.10) possesses a
solution uj ∈ Sj.

A strategy used here is to apply Theorem 1.2 to another related equation:

−u′′ + u = λ(1 + f(x, u))u, 0 < x < π,
u(0) = 0 = u(π). (3.11)

Thus (3.11) possesses a component of solutions Cj which is unbounded in R× Sj .
Moreover, by Proposition 3.1, Cj is in (0, j2 +1]×Sj. Since for λ = 1, any solution
of (3.11) is a solution of (3.10), it suffices to find a function Mj ∈ C([1, j2 + 1], R)
such that (λ, u) ∈ [1, j2 +1]×Sj implies ‖u‖ ≤Mj(λ). We refer to [29] for detailed
analysis of such estimates.

The next application concerns a rather different kind of situation:

−u′′ = λf(x, u)u, 0 < x < π,
u(0) = u(π) = 0,

(3.12)

where f is continuous in its arguments, f(x, 0) = 0 and f satisfies
(f1) there is a ρ > 0 such that f(x, ξ) > 0 for 0 < |ξ| < ρ,
(f2) there is a z > 0 such that f(x, ξ) < 0 if |ξ| = z.
A simple example is f(x, ξ) = ξ2 − ξ4.

Theorem 3.3. Under the above hypotheses on f , for each j ∈ N, there exists
dj > 0 such that for each λ > dj, (3.12) possesses at least two distinct solutions
(λ, ūj), (λ, uj) with ūj, uj ∈ Sj.
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The main idea used in the proof of Theorem 3.3 is as follows: For ε > 0,
consider

−u′′ = λ
(
ε + f(x, u)

)
u, 0 < x < π,

u(0) = u(π) = 0.
(3.13)

As a consequence of Theorem 1.2, (3.13) possesses a component, Cj(ε), of solutions
unbounded in (R×Sj)∪{(j2ε−1, 0)}. By carefully studying the resulting behavior
of Cj(ε) as stated in the next lemma, the desired solutions of (3.12) can be obtained
through the approximation as ε→ 0. The details can be found in [29].

Lemma 3.3.

(i) There exist ε̄ > 0 and K > 0 such that, if (λ, u) is a solution of (3.13) with
ε ∈ [0, ε̄], then ‖u‖L∞ ≤ K.

(ii) There exists λ > 0 such that if (λ, u) is a solution of (3.13) with λ ∈ [0, λ],
then u ≡ 0.

(iii) If (λ, u) is a solution of (3.13) with u ∈ Sj and ‖u‖L∞ < ρ, then λ ≤ j2ε−1.
(iv) Let δ ∈ (0, ρ). For each j ∈ N, there exists dj = dj(δ) such that if (λ, u) is a

solution of (3.13) with ε ∈ [0, ε̄], u ∈ Sj, and ‖u‖L∞ = δ, then λ < dj(δ).

4. Bifurcation from continuous spectrum

In this section we turn to the Sturm-Liouville problem on the half-line:

−u′′ = λr(x)u − F (x, u)u, 0 < x < +∞, (4.1)
u(a) cos θ − u′(a) sin θ = 0, u ∈ L2[a,∞),

where a ≥ 0, θ ∈ [0, π
2 ], r ∈ C([0,∞), (0,∞)) and 0 < r1 ≤ r(x) ≤ r2 < +∞ for

x ∈ [0,∞). It is assumed that F satisfies the following conditions:

(F3) F : [0,∞)×R→ [0,∞) is continuous, and lim|ξ|→0 F (x, ξ) = 0 uniformly on
compact subsets of [0,∞).

(F4) There exist positive numbers σi and continuous functions ωi : [0,∞)→ (0,∞)
which satisfy

∫∞
0 ω

−2/σi

i dx < +∞, i = 1, 2, such that F (x, ξ) ≥ ω1(x)|ξ|σ1

for x ∈ [0,∞), ξ ≥ 0 and F (x, ξ) ≥ ω2(x)|ξ|σ2 for x ∈ [0,∞), ξ < 0.
(F5) For fixed x ∈ [0,∞), F (x, ξ) is a strictly increasing function of ξ if ξ > 0 and

a strictly decreasing function of ξ if ξ < 0.

For j ∈ N, let Ω+
j (λ) (resp. Ω−

j (λ)) denote the set of u ∈ C2[0,∞)∩H1(0,∞)
such that u satisfies (4.1), u > 0 (resp. < 0) in a deleted neighborhood of x = 0
and u has exactly j − 1 simple zeros in (0,∞).

It is known that the linearization of (4.1) at u ≡ 0 has a purely continu-
ous spectrum equal to [0,∞). Although Theorem 3.1 is not directly applicable,
variational methods provide a way to obtain the following existence result.

Theorem 4.1. Let λ > 0 and θ ∈ [0, π/2] be given. Then one of the following
alternatives must occur:
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(i) Ω+
j (λ) �= φ and Ω−

j (λ) �= φ for all j ∈ N.
(ii) Ω−

2k−1(λ) �= φ and Ω+
2k(λ) �= φ for all k ∈ N. Moreover, there exist an even

number m ∈ N and an odd number � ∈ N, with |m − �| = 1, such that
Ω−

2k(λ) �= φ for 2k < m, Ω−
2k(λ) = φ for 2k ≥ m and Ω+

2k−1(λ) �= φ for
2k − 1 ≤ �, Ω+

2k−1(λ) = φ for 2k − 1 > �.
(iii) Interchange “+” and “−” in statement (ii).

An example of solutions having infinitely many zeros was given by Heinz
[16], where he also gave a sufficient condition which prohibits the existence of such
solutions.

In the proof of Theorem 4.1, since the case of θ ∈ (0,
π

2
] requires more work,

only the case u(a) = 0 will be treated. The existence of positive and negative solu-
tions of (4.1) can be obtained by using an approximation method. The assumption
(F5) implies that positive and negative solutions are unique. To obtain solutions
with a prescribed number of nodes, Nehari’s idea that pieces together alternately
positive and negative solutions on adjacent intervals is used. Nevertheless, different
techniques are needed for using variational arguments to find solutions of (4.1). It
is known [17] that there exist a unique positive solution V+(λ, a, b, x) and a unique
negative solution V−(λ, a, b, x) of

−u′′ = λr(x)u − F (x, u)u, a < x < b,
u(a) = 0, u(b) = 0,

(4.2)

provided that λ > λ1(a, b), where λ is an eigenvalue parameter and λj(a, b) denotes
the jth eigenvalue of

−v′′ = λr(x)v, a < x < b,
v(a) = 0, v(b) = 0.

On the other hand, if λ ≤ λ1(a, b) the only solution of (4.2) is u ≡ 0. For given
λ > 0 and 0 ≤ a < b ≤ ∞, define the number Λ+[a, b] (resp. Λ−[a, b]) by

Λ+[a, b] (resp. Λ−[a, b])

=
∫ b

a

[
λr(x)u2(x)− (u′(x))2 − 2

∫ u(x)

0

F (x, ξ)ξdξ
]
dx,

where λ1(a,∞) is set to be zero and

u =
{

0 if λ ≤ λ1(a, b)
V+(λ, a, b, ·)(resp. V−) if λ > λ1(a, b).

Also, it is convenient to adopt the notation V+(λ, a, b, x) ≡ 0 and V−(λ, a, b, x) ≡ 0
whenever λ ≤ λ1(a, b). Let V ′

+(λ, a, b, x) = d/dxV+(λ, a, b, x) and V ′
−(λ, a, b, x) =

d/dx V−(λ, a, b, x). The following proposition plays an important role in finding
solutions with a prescribed number of nodes.
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Proposition 4.1. For a < b ≤ ∞, Λ+[a, b] (resp. Λ−[a, b]) is a differentiable func-
tion of a and b, with derivatives given by

∂Λ+

∂a
= −(V ′

+(λ, a, b, a))2 (resp.
∂Λ−

∂a
= −(V ′

−(λ, a, b, a))2)

and
∂Λ+

∂b
= (V ′

+(λ, a, b, b))2 (resp.
∂Λ−

∂b
= (V ′

−(λ, a, b, b))2).

The proposition was proved by Hempel [17] in the case of bounded intervals.
The generalization to the unbounded case was obtained in [5].

If F is an even function of ξ, u ∈ Ω+
j (λ) if and only if −u ∈ Ω−

j (λ); in other
words, only (i) of Theorem 4.1 can occur. In this situation, Λ+[a, b] = Λ−[a, b] and
will be simply denoted by Λ[a, b]. For j ∈ N, set x0 = a, xj+1 =∞ and

Aj = {(x1, x2, . . . , xj) | a ≤ x1 ≤ x2 · · · ≤ xj < +∞}.
Then, for fixed λ > 0, define a function Gj on Aj by

Gj(x1, x2, . . . , xj) =
j+1∑
i=1

Λ[xi−1, xi].

Since Λ[xi−1, xi] ≥ 0 and is positive for at least one value of i, Gj(x1, x2, . . . , xj)
> 0 for all (x1, x2, . . . , xj) ∈ Aj and hence InfAj Gj(x1, x2, . . . , xj) exists. Suppose
Gj attains its global infimum at an interior point (z1, z2, . . . , zj) of Aj ; that is,
0 < z1 < z2 < · · · < zj <∞. Then for i = 1, 2, . . . , j,

∂Gj

∂xi
(z1, z2, . . . , zj)

= [V ′
+(λ, zi−1, zi, zi)]2 − [V ′

+(λ, zi, zi+1, zi)]2 = 0, (4.3)

where z0 = 0 and zj+1 = ∞. Also, if λ ≤ λ1(zk−1, zk) for some k, let � ≥ k be
the largest value such that λ < λ1(z�−1, z�) and λ > λ1(z�, z�+1). This implies
V ′

+(λ, z�−1, z�, z�) = 0 and V ′
+(λ, z�, z�+1, z�) �= 0, which contradicts (4.3). Thus

for i = 1, 2, . . . , j + 1, λ > λ1(zi−1, zi) and if

u(x) = (−1)iV+(λ, zi, zi+1, x) for x ∈ [zi, zi+1),

then u ∈ C1[a,∞) is the desired j-node solution with nodes z1, z2, . . . , zj.
It now remains to show that Gj attains its infimum at an interior point

(z1, z2, . . . , zj) of Aj . To achieve this goal it is sufficient to prove, by induction,
the following statement:

If, for 1 ≤ k ≤ j − 1,

Gk attains its global minimum at an interior point of Ak

and

MinAk
Gk(x1, x2, . . . , xk) > InfAk+1Gk+1(x1, x2, . . . , xk+1),

then these statements also hold for k = j.
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In case of j = 1, it is easy to check that G1(a) = Λ[a,∞] and lim
x→∞G1(x)=

Λ[a,∞]. Since lim
b→a+

λ1(a, b) =∞, there is an ε > 0 such that λ < λ1(a, x) for

x ∈ (a, a + ε). Hence, G′
1(x) < 0 if x ∈ (a, a + ε). Consequently G1 must attain its

infimum at some point z ∈ (a + ε,∞).
The remainder of the proof is technically quite involved. Detailed arguments

can be found in [5, 7].
The second part of this section will deal with uniqueness theorems [6, 9, 15]

for (4.1) under the assumptions that r(x) ≡ 1 and F has a special form as follows:
(F6) There are ψ1, ψ2 ∈ C1([0,∞), [0,∞)), with ψ1(0) = ψ2(0) = 0, ψ′

1 > 0,
ψ′

2 > 0 in (0,∞), and a positive number σ such that

F (x, ξ) =
{

ψ1(w(x)|ξ|σ), ξ ≥ 0, x ∈ [0,∞)
ψ2(w(x)|ξ|σ), ξ < 0, x ∈ [0,∞),

where w ∈ C1([0,∞), [0,∞)) and w′w−1 is nondecreasing on [0,∞).

Theorem 4.2. Under the above hypotheses on r and F , for each j ∈ N, (4.1)
possesses at most one solution in Ω+

j (λ), and also in Ω−
j (λ).

Now with the aid of Theorem 4.2, it can be shown that the lowest point λ = 0
of the continuous spectrum is a bifurcation point.

Theorem 4.3. Let E be the Banach space H1[0,∞) ∩ L∞[0,∞). If F (x, ξ) =
F (x,−ξ) then for each j ∈ N, (4.1) possesses two curves of solutions C±

j in R×E,
with C±

j = {(λ, u±
j (λ)) | λ > 0} ∪ {(0, 0)} and u±

j (λ) ∈ Ω±
j (λ).

In case F is not an even function of ξ, C+
j could merge with C+

j−1 as illustrated
in the next example. Let

F (x, ξ) =
{

δex|ξ| if ξ ≥ 0
ex|ξ| if ξ < 0.

Here δ can be chosen small enough so that for λ = 1 alternative (ii) of Theorem
4.1 holds with m = 2 and � = 1; that is

Ω−
j (1) �= φ for j ∈ I1 = {2k − 1 | k ∈ N},

Ω+
j (1) �= φ for j ∈ I2 = {1} ∪ {2k | k ∈ N},

Ω−
j (1) = φ for j ∈ I3 = {2k | k ∈ N} and

Ω+
j (1) = φ for j ∈ I4 = {2k + 1 | k ∈ N}.

Moreover, the same is true for all λ ≥ 1. By Theorem 4.2, if λ > 0 is fixed,
there is at most one solution in each nodal class. Indeed, there are infinitely many
curves of solutions C+

j and C−
j in R × E, emanating from (0, 0), such that if

(λ, u) ∈ C±
j and λ ∈ (0, δ2) then u ∈ Ω±

j (λ). Also, there exists a continuous
function M : (0,∞) → (0,∞) such that if u ∈ Ω±

j (λ) then ‖u‖E ≤ M(λ). Hence,
for all λ > 0, C+

j ∩ ({λ} × E) �= φ if j ∈ I2 and C−
j ∩ ({λ} × E) �= φ if j ∈ I1.
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However, for those C+
j , j ∈ I4, and C−

j , j ∈ I3, they merge with C+
j−1 and C−

j−1

respectively at some λ∗ ∈ (δ2, 1]. We refer to [8] for a detailed proof.
Theorem 4.2 can be proved using a shooting argument. Let λ be fixed and

let U(ζ, x) denote the unique solution of

−u′′ = λu − F (x, u)u, u(a) = 0, u′(a) = ζ,

which is understood to be extended to its maximal interval of definition. For j ∈ N,
let Dj be the set of ζ > 0 such that U(ζ, ·) has at least j zeros in (a,∞). Ordering
the zeros as an increasing sequence, a < z1(ζ) < z2(ζ) < · · · < zj(ζ) < · · · , the
function zj(ζ) satisfies the equation U(ζ, zj(ζ)) = 0. By the Implicit Function
Theorem there is a maximal open neighborhood of ζ on which zj is of class C1 in
its argument. The goal here is to show that there exists at most one ξj ∈ (0,∞)
such that U(ξj , ·) ∈ Ω+

j (λ). With the aid of the Sturm Comparison Theorem, it
was proved [6, 15] that for every j ∈ N, Dj = (0, τj) and ∂zj/∂ζ > 0 on Dj , where
{τj} is a non-increasing sequence. This together with other comparison arguments
completes the proof of Theorem 4.2. Details can be found in [6]. An alternative
proof of Theorem 4.2 was given in [9].
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Boundary Conditions and Spectra of
Sturm-Liouville Operators

Rafael del Rı́o

Abstract. This is a discussion of some aspects of the relation between bound-
ary conditions and spectra of Sturm-Liouville operators. It is intended to
review results which show how the spectrum behaves when the boundary
condition changes. The absolutely continuous part will normally be stable
and the more interesting problems concern the behavior of the singular part
and coexistence of different spectral types.

1. Introduction

This paper is a survey of some aspects of the relation between boundary conditions
and spectrum of Sturm-Liouville operators. The main problem is to understand
how the spectrum behaves when the boundary condition varies. In particular it is
of interest to study the behavior of the different parts of the spectrum (for example
singular and absolutely continuous). These operators were introduced in [38, 39].

A key tool of some developments I intend to describe is the so-called Weyl
m-function. This function is analytic in the upper half-plane and closely connected
to the resolvent of the operator. Its study will allow us to clarify what happens
with the spectrum when the boundary condition changes.

In 1910 H. Weyl proved that the essential spectrum, which in this case is
just the set of accumulation points of the spectrum, is stable when the boundary
condition is modified. What changes in fact are the isolated points. In 1957 several
remarkable papers were published. M. Rosenblum [35] and T. Kato [23] proved
stability of absolutely continuous spectra for self-adjoint operators under trace
class perturbations and N. Aronszajn [1] showed that the absolutely continuous
parts of spectral measures of Sturm-Liouville problems corresponding to different
boundary conditions are equivalent1, whereas their singular parts are mutually

Partially supported by Project 37444E CONACyT.
1i.e., they lead to the same null sets.
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singular measures2. To the best of my knowledge this is the first study of singular
continuous spectra of differential operators.

Since the absolutely continuous part is stable, it is of particular interest
to understand the behavior of the singular part, especially that part which is
embedded in the essential spectrum. As was already noticed by Aronszajn, this
part is very unstable. In fact it is not possible for all boundary conditions to
allow eigenvalues embedded in the essential spectrum. This kind of spectra will
have to disappear when the boundary condition changes. We can nevertheless have
singular spectrum which is embedded in the absolutely continuous spectrum, for
all boundary conditions. In this review the above-mentioned result of Aronszajn
will be described and several other theorems which clarify to some extent the
behavior of the embedded singular part will be sketched. I will concentrate mainly
on results that are more familiar to me.

After a brief description of the result on stability proven by Aronszajn, a
theorem due to Hartman and Wintner on the behavior of isolated eigenvalues
is stated. This result mainly says that isolated eigenvalues, that is eigenvalues
that are in gaps of the essential spectrum, behave smoothly under the considered
perturbations and that the complement of the essential spectrum is contained
in the interior of the set of points λ ∈ R for which there are L2 solutions of
−u′′ + v(x)u = λu.

Following this, the problem of embedded singular spectrum is considered.
The basic tools used are properties of the Weyl m-function and some results of
[1]. It is shown that coexistence of singular and absolutely continuous spectrum
is possible for large sets of boundary conditions. Here is explained in more detail
a result that gives conditions on the length of an interval for the parameter of
boundary conditions which imply that this interval contains a set of full measure
where singular and absolutely continuous spectra coexist.

Thereafter, an example of a very explicit spectral function is given which
generates a situation with mixed spectra for all boundary conditions with the ex-
ception of one. Using the inverse spectral theorem of Gelfand-Levitan it is known
that Sturm-Liouville operators with this kind of spectral function exist, and there-
fore that mixed situations even for large sets of boundary conditions are possible.
It remains to carry out an explicit construction of such operators.

Finally some results on inverse spectral theory of regular problems are con-
sidered. If the spectra are known for two boundary conditions, the Sturm-Liouville
operator can be uniquely reconstructed [2] (see also the article by M. Malamud in
this volume). It happens that if we know something about the potential then we
need less information about the spectra. This kind of problem is very different from
those considered above and illustrates the role of the relation between boundary
conditions and spectra in other settings.

I hope this text will be useful to those wishing to understand the important
relations between boundary conditions and spectra of Sturm-Liouville operators.

2i.e., they are concentrated on mutually disjoint sets of Lebesgue measure zero.
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2. Some classical results

We consider one-dimensional Schrödinger equations

Ly = −y′′(x) + v(x) y(x) = λy(x), 0 ≤ x <∞, (1)

and the associated self-adjoint operators

Hα = − d2

dx2
+ v(x) in L2(0,∞)

generated by the boundary condition

y(0) cosα− y′(0) sin α = 0, α ∈ [0, π). (2)

Here we assume that the real function v is locally of class L1 on [0,∞) and that
the limit point case holds at ∞.

Let u1(x, z) and u2(x, z) be solutions of

Lu = zu (3)

which satisfy

u1(0, z) = sin α,
u2(0, z) = − cosα,

u′
1(0, z) = cosα,

u′
2(0, z) = sin α.

For every non-real z there exists a function

ϕα(x, z) = u2(x, z) + mα(z)u1(x, z)

which is a solution of (3) and belongs to L2(0,∞). Note that u1 satisfies the
boundary condition (2). In the limit point case at ∞ (see [41]), for each z the
complex number mα(z) is defined uniquely. This is called the Weyl m-function for
the boundary condition (2) given by α and has an integral representation of the
form

mα(z) = c +
∫

R

(
1

µ− z
− µ

µ2 + 1

)
dρα(µ), (4)

where ρα is a Lebesgue-Stieltjes measure uniquely determined by mα. The measure
dρα is called the spectral measure, and ρα is called the spectral function, of the
operator Hα. We shall denote by ρα(S) the spectral measure of a set S.

The spectral density dρα/dλ is given almost everywhere by

dρα(λ)
dλ

= lim
E→0+

1
π

Im
(
mα(λ + iE)

)
=:

1
π

Im
(
mα(λ + i0)

)
,

and may be thought of as a local probability density for the energy of the system.
Once we have a family of operators Hα depending on a parameter α ∈ R, it

is quite natural to ask what happens when α varies. Are all Hα the same at least
in some sense? How do properties or objects associated with Hα behave as we
change α? H. Weyl in [41, 42] (cf. also [3]) proved that the essential spectrum of
Hα, denoted by σess, that is the set of points of accumulation of the spectrum, is
independent of α and that point spectra corresponding to two different boundary
conditions do not intersect. In the same paper Weyl states that he could not be
sure that a similar stability result would hold for the continuous spectra.
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It was N. Aronszajn who solved this problem in [1]. Since the methods used
in his paper were the key to later developments, I shall try to explain their main
aspects.

First note that the following relation holds for m:

mα(z) =
mβ(z) cos(α − β)− sin(α− β)
mβ(z) sin(α− β) + cos(α− β)

. (5)

Once we have (5), we would like to know how the various spectral measures ρα

are related, since spectral information about Hα is contained in the corresponding
ρα.

In [1] minimal supports Mac, Ms, Msc and Mp of the absolutely continu-
ous, singular, singular continuous and point parts of ρα, denoted respectively by
ρac

α , ρs
α, ρsc

α and ρp
α, are given as follows

Mα
ac =

{
x ∈ E | 0 < Im

(
mα(x + i0)

)
<∞

}
,

Mα
s =

{
x ∈ E | Im

(
mα(x + i0)

)
=∞

}
,

Mα
sc =

{
x ∈ E | Im

(
mα(x + i0)

)
=∞, ρα{x} = 0

}
,

Mα
p =

{
x ∈ E | Im

(
mα(x + i0)

)
=∞, ρα{x} > 0

}
,

where
Im
(
mα(x + i0)

)
:= lim

y↓0
Im
(
mα(x + iy)

)
and E = {x | Im

(
mα(x + i0)

)
exists}. Using (5) one observes that

Mα
ac = Mβ

ac, and Mα
s ∩Mβ

s = ∅ for α �= β.

This implies that the absolutely continuous parts of ρα are equivalent for all α,
whereas their singular parts are mutually singular.

I should mention a remarkable paper due to D. Gilbert and D. Pearson [17]
where the notion of subordinate solution is introduced and the above-mentioned
supports are related to the behavior of solutions of the Schrödinger equation near
the end points of the interval. See the contribution of D. Gilbert in this volume
[16].

Since we have stability for the absolutely continuous part, the natural ques-
tions which arise concern the behavior of the singular part. For the singular part
in the complement of the essential spectrum the following result holds (see [19],
[20], [3] or [14, Theorem 2.5.3]).

Theorem 1. Let the open interval I be a gap in σess and let λ be a point in I. Then
there is a unique α such that λ ∈ σαd. Writing α as α(λ), α can be taken to be a
continuous increasing function of λ in I.

Here σαd denotes the set of isolated eigenvalues of Hα. In particular, from
this result it follows that �σess ⊂ S0 where S0 is the interior of the set

S = {λ ∈ R | ∃u a solution of Lu = λu such that
∫ ∞

0

|u(t)|2dt <∞}.
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The problem whether the sets �σess and S0 are always equal was first studied in
[20] and it was shown in [6], [32] that equality does not always hold. However,
if the spectrum is a perfect set, that is, equal to the set of its limit points, then
S0 = �σess. See [6].

3. Embedded singular spectrum

Now we turn to the study of the singular part which is embedded in the essen-
tial spectrum. Since the supports of the singular parts corresponding to different
boundary conditions are mutually disjoint, we cannot expect much stability of this
part. We already saw that the way isolated eigenvalues move when the boundary
condition varies is very smooth. No such smoothness occurs for the embedded
singular part.

Eigenvalues embedded in the essential spectrum may “live” only in a set of
first category in the sense of Baire. In fact this is a general statement when we
talk of supports of the various spectral measures ρα. Let I be an interval such
that the spectrum is essentially dense in I, meaning that ρ0(J) > 0 for every
subinterval J of I. Then there exists a set F of first category which supports each
of the measures ρα (not just the point part), i.e., such that ρα(I\F ) = 0 for all α.
See [11].

A basic tool for the understanding of the behavior of embedded eigenvalues
is the following theorem of Aronszajn [1].

Theorem 2. Consider the Sturm-Liouville equation (1) and two different bound-
ary conditions corresponding to α �= β mod π. In order that ξ be in the point
spectrum relative to the boundary condition β, it is necessary and sufficient that∫

R
(λ− ξ)−2dρα(λ) <∞ and that mα(ξ) + cot(β − α) = 0.

Let us define G(ξ) =
∫

R
(λ−ξ)−2dρ0(λ). In [10] it was proven that {y | G(y) =

∞} is a dense Gδ set in supp (dρ0), the support of dρ0. (Remember that a Gδ is
a set which is a countable intersection of open sets.)

If we assume that an interval is contained in the spectrum, then the comple-
ment of {y | G(y) =∞} cannot contain this interval; moreover the support of the
point part embedded in the spectrum has to be small in Baire sense, that is of
first category.

Now we can use properties of m0 to map this set of first category in the spec-
trum to a set of first category in the boundary conditions to obtain the following
theorem [10].

Theorem 3. The set {α | Hα has no eigenvalues in the spectrum of H0} is a dense
Gδ in [0, π].

Therefore the set of α for which Hα may have embedded eigenvalues is of first
category in [0, π]. This theorem tells us that dense point spectra are very unstable
and that even a very small perturbation of the boundary condition will make the
whole point part disappear.
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In some sense the essential spectrum prevents the existence of point spectra
for many boundary conditions. An example where the above applies is given by
the operator H = d2/dx2 + cos(

√
x) on L2(0,∞).

It was shown that for any boundary condition α the spectrum of the operator
is absolutely continuous on (1,∞) [37] and that Hα has pure point spectrum in
[-1,1] for a.e. α [24]. From what was mentioned above, it follows that for a dense
Gδ of α, Hα has only singular continuous spectrum in [−1, 1]. An open problem is
to exhibit a α where this happens.

In 1993, N. Makarov [27] made the conjecture that

|{α | Hα has only p.p. spectrum}| · |{α | Hα has only s.c. spectrum}| = 0 ;

here and in the sequel, | · | denotes Lebesgue measure. As far as I know this remains
an open question. In this context, natural questions arise about the possibility
of coexistence of different types of spectra for large sets of boundary conditions
α, in particular the coexistence of absolutely continuous and singular spectra. It
is known that if the potential v is in L2, then there can be singular spectrum
at positive energies only for a set of boundary conditions of measure zero. This
follows from a result of [4] which states that the support of the singular part in
this case has Lebesgue measure zero and formula (7) below.

As mentioned above, the singular spectrum may be very unstable. Neverthe-
less, the property of having singular spectra for a set of boundary conditions of
positive measure is preserved under L1 perturbations to the potential; see [25],
[12]. It is also worth mentioning that the exact Hausdorff dimension of the spec-
tral measures may be the same for all boundary conditions, at least in the discrete
case. See Theorem 4.3 in the contribution of Y. Last to this volume [26].

4. Sketch of a result on coexistence

It is possible to have absolutely continuous spectrum for all boundary conditions
and singular spectrum for some boundary conditions. In [33] an example was con-
structed where for a set of boundary conditions of positive measure there is singular
spectrum supported on a Cantor type set. This construction can be modified to
have singular spectrum supported on a dense set (see [40]). In this example there
is not much information about the set of boundary conditions with mixed spectra
other than that this set is of positive measure. In what follows I shall sketch a
result (see [13]) which gives a clearer idea of this set.

The following equality holds∫ β

α

ρθ(A)dθ =
1
π

∫
A

arg
[

cosβ + sinβ m0(λ + i0)
cosα + sinα m0(λ + i0)

]
dλ, (6)

which is a generalization of the well-known result, (see [36]):∫ π

0

ρθ(A)dθ = |A|. (7)
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Let us define ΛM := {λ | Im
(
m0(λ+ i0)

)
> M}. Then we have the following

bound:

Lemma 1.∫ β

α

ρθ

(
I ∩ ΛM

)
dθ ≤ 2

π
arctan

( 1
2M

(cotα− cotβ)
)∣∣∣I ∩ ΛM

∣∣∣.
Proof. The statement of the lemma follows if we put together equality (6) and the
definition of ΛM . Observe that the transformation

w = Tz =
z sinβ + cosβ

z sinα + cosα

maps the half-plane Im z > M onto the disk (see the figure)(
x− sin β

sin α

)2

+
(

y − sin(β − α)
2M sin2 α

)2

<

(
sin(β − α)
2M sin2 α

)2

;

�

�

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ��
��

��
��

��
��

��

sin(β−α)

2M sin2 α

sin β
sin α

therefore Im
(
m0(λ + i0)

)
> M implies that

argT (m0(λ + i0)) ≤ 2 arctan
( 1

2M
(cotα− cotβ)

)
.

Using this and (6) we obtain∫ β

α

ρθ

(
I ∩ ΛM

)
=

1
π

∫
I∩ΛM

arg
(
T (m0(λ + i0)

)
dλ

≤ 2
π

∫
I∩ΛM

arctan
( 1

2M
(cotα− cotβ)

)
dλ

=
2
π

arctan
( 1

2M
(cotα− cotβ)

)∣∣∣ΛM ∩ I
∣∣∣ . �
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We also need a bound from below, for which the following theorem [34] will
be useful.

Theorem 4. Let λi, λj be eigenvalues of

−y′′(x) + v(x)y(x) = λy(x) x ∈ [0, N ],

y(0) cosα− y′(0) sinα = 0,

y(N) cosβ − y′(N) sin β = 0.

Let dρ̃ be the spectral measure of this problem. Then

ρ̃ ((λi, λj)) = min
ρ∈MN

ρ ((λi, λj)) .

Here MN is a family of measures which contains the spectral measure of the
half-line problem. The bound from below that we need is given by the following
lemma.

Lemma 2. Let N be a positive real number and assume that v(x) = 0 for all x ∈
[0, N ]. Set I =

((
πk
N

)2
,
(

π(k+2)
N

)2
)

where k ∈ N; then

∫ β

α

ρθ(I)dθ ≥ 2π(k + 1)
N2

∫ N
π(k+1) cot α

N
π(k+1) cot β

dx

1 + x2
.

Proof. The function

ψα

(
x,

πk

N

)
=

1
2

[
sin α +

N

iπk
cosα

]
e

iπk
N x +

1
2

[
sin α− N

iπk
cosα

]
e

−iπk
N x

is a solution of

− ψ′′(x) =
(

πk

N

)2

ψ(x),

ψ(0) cosα− ψ′(0) sin α = 0,

ψ(N) cos α− ψ′(N) sin α = 0.

Observe that we have the same eigenvalues
(

πk
N

)2
for all α ∈ [0, π). Since

‖ψα‖2 =
∫ N

0

|ψα(x)|2dx =
(sin α)2

2
N +

1
2
N

(
N cosα

πk

)2

we get from Theorem 4:

ρθ(I) ≥ ρ̃(I) =
∥∥∥∥ψθ

(
x,

π(k + 1)
N

)∥∥∥∥−2

,∫ β

α

ρθ(I)dθ ≥
∫ β

α

‖ψθ‖−2dθ =
2π(k + 1)

N2

∫ N
π(k+1) cot α

N
π(k+1) cot β

(1 + x2)−1dx. �
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If we put together the bounds from above and below we obtain the following
result:

Theorem 5. Let N ∈ R+, k ∈ N, and assume that v(x) = 0 for all x ∈ [0, N ]. Set

I =
((

πk
N

)2
,
(

π(k+2)
N

)2
)

and let 0 < α < β < π. If the following inequality is

satisfied:

2π(k + 1)
N2

N
π(k+1) cot α∫

N
π(k+1) cot β

dx

1 + x2
>

2|ΛM ∩ I|
π

1
2M (cot α−cot β)∫

0

dx

1 + x2
,

then ∫ β

α

ρθ(I ∩ �ΛM )dθ > 0.

Proof. The upper and lower bounds given by Lemmas 1 and 2, together with the
hypotheses of the theorem imply∫ β

α

ρθ(I)dθ >

∫ β

α

ρθ(I ∩ ΛM )dθ.

Since ∫ β

α

ρθ(I)dθ =
∫ β

α

ρθ(I ∩ �ΛM )dθ +
∫ β

α

ρθ(I ∩ ΛM )dθ,

we have ∫ β

α

ρθ(I ∩ �ΛM )dθ > 0. �

The theorem above can be used to analyze the set of boundary conditions
θ which give rise to some singular spectrum. For this purpose we only need to
consider the case M = 0, since Λ0 happens to be a support for the absolutely
continuous part of the spectral measure. Let us consider some examples.

Example 1. If we choose in the theorem above the parameters k = 1, N = 2π and
M = 0, then we obtain that the condition

β − α > π|Λ0 ∩ I|,
where I =

(
1
4 , 9

4

)
, implies ∫ β

α

ρθ

(
I ∩ �Λ0

)
dθ > 0.

Since �Λ0 is a support of the singular part we get the existence of a set B ⊂ (α, β) of
positive measure such that for θ ∈ B the operator H0 has some singular spectrum
in I. Changing the parameters k and N , we can get similar statements for other
intervals.
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Example 2. The theorem can also be applied to the examples constructed by
Remling. He considers in [33] potentials of the form

v(x) =
∞∑

n=1

gnvn(x− an),

where gn > 0, vn ∈ L1[−Bn, Bn], vn(x) = χ(−Bn,Bn)(x)w(x),

w(x) =
∫

F

cos(2kx) dk.

The intervals [an −Bn, an + Bn] are assumed to be disjoint and the set F , which
appears in the definition of the barriers w, is Cantor type in an interval [a, b] with
Lebesgue measure any positive number less than b − a. The function χ(−Bn,Bn)

denotes the characteristic function of the set (−Bn, Bn).
Let Ln = an − Bn − an−1 − Bn−1 with a0 = B0 = 0. In [33], under minor

assumptions on F the following was proved:

Theorem 6. Let gn = n−1/2, Bn = nβ with (2 − 4/γ)−1 < β < γ/8, where
γ > 6, and assume nβ/2γLn−1/Ln → 0 as n→∞. Then the half-line Schrödinger
operators Hα with potential v given as above satisfy σac(Hα) = σess(Hα) =
[0,∞), σd(Hα) ∩ (0,∞) = ∅, and σsc(Hα) ∩ (0,∞) �= ∅ for a set of boundary
conditions α of positive measure.

In proving this result it is shown that the singular part of the spectral mea-
sures ρα corresponding to Hα are supported on F 2 = {k2 : k ∈ F}. In this theorem
the potential can be chosen to be zero in an interval [0, N ].

We can apply Theorem 5 as we did in Example 1 taking k = 1, N = 2π
and M = 0. The requirement to have singular continuous spectrum for a set of
boundary conditions of positive measure in (α, β) is

β − α > π|Λ0 ∩ I| = |(�F 2) ∩ I|,
where I =

(
1
4 , 9

4

)
. Observe that we can control the measure of F 2 and therefore,

by modifying |F |, we can choose the length of (α, β).

5. Coexistence for all boundary conditions

As mentioned above, it is possible to have absolutely continuous spectrum and
singular spectrum even for all boundary conditions. In fact very simple spectral
measures generate this coexistence [7]. Consider, for example, a fixed interval I
and take a set E ⊂ I such that for every subinterval J ⊂ I we have

0 < |E ∩ J | < |J |,
where | · | denotes the Lebesgue measure, that is, E and �E are essentially dense
in I. We need this property of E in order to get genuinely mixed spectra.
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Let

u(x) =

{
1 x ∈ E

0 x �∈ E

and define dµπ/2 = udx. We have to define µπ/2 outside I so that∫
R

dµπ/2(t)
1 + t2

<∞

and the necessary decay conditions required by the Gelfand-Levitan inverse theo-
rem [31, Chapter VIII] are satisfied. The measure µπ/2 will be the spectral measure
of a Sturm-Liouville operator Hπ/2 and we denote by µβ the spectral measures of
Hβ , where µs

β and µac
β stand for their singular and absolutely continuous compo-

nents respectively.
The family of measures µβ so generated have the following properties:

Theorem 7.

a) µs
β(J) > 0 for every subinterval J ⊂ I, β ∈

(
−π

2 , π
2

)
.

b) µac
β (J) > 0 for every subinterval J ⊂ I, β ∈

(
−π

2 , π
2

]
.

Before we prove this theorem we need a preliminary result. For real θ consider
the family of functions

fθ(z) =
cos θ + z sin θ

sin θ − z cos θ
. (8)

Observe that using (5) we have fθ(mπ/2(z)) = mθ(z). For each θ, fθ is an analytic
function that maps the upper half-plane into itself. We shall refer to such functions
as Pick functions (also known as Nevanlinna or Herglotz functions). Given a Pick
function F it has an integral representation of the form

F (z) = a + bz +
∫

R

(
1

t− z
− t

1 + t2

)
dµ(t). (9)

The integral on the right-hand side is the Cauchy integral of µ in the upper half-
plane. The Weyl functions mα are Pick functions and the spectral measure ρα is
the measure that appears in the integral representation of these functions.

Let L be a Pick function such that 0 ≤ Im L(z) ≤ π. For any α ∈ R, set

Mα(z) := fα

(
L(z)

)
and Nα(z) := fα

(
exp L(z)

)
.

Both Mα and Nα are Pick functions admitting representations similar to (9). We
denote by µα and να the associated measures that appear in the integral repre-
sentations. The singular parts of these measures νs

α and µs
α satisfy the following

relation:

Lemma 3. Define a function α : (−π
2 , π

2 )→ (0, π
2 ) by

α(β) = arctan (exp tanβ) with β ∈
(
−π

2 , π
2

)
.

Then
µs

β = α′(β)νs
α(β).
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Sketch of proof. First we show that

lim
y↓0

Im Mβ(x + iy)
ImNα(x + iy)

= α′(β) for µs
β-a.e. x. (10)

To see this, using the definition of Mβ and Nα we have

lim
y↓0

ImMβ(z)
ImNα(z)

= lim
y↓0

ImL(z)
Im exp L(z)

∣∣∣∣sin α− exp L(z) cosα

sin β − L(z) cosβ

∣∣∣∣2 .

From the definition of α

sin α− exp L(z) cosα

sin β − L(z) cosβ
=

cosα

cosβ
· exp(tanβ)− expL(z)

tanβ − L(z)
. (11)

It is well known that for µs
β-a.e. x the Cauchy integral of µβ at x + iε tends

to infinity as ε→ 0. Therefore Mβ(x+ iε) −→∞ as ε ↓ 0. The formula for fβ and

the definition of Mβ now imply that for µs
β-a.e. x, L(x + iε)

ε↓0−→ tan β. Hence the
expression in the right-hand side of (11) tends to

cosα

cosβ
exp(tan β) when ε ↓ 0

and we obtain∣∣∣∣sin α− exp L(z) cosα

sin β − L(z) cosβ

∣∣∣∣2 ε↓0−→
(

cosα

cosβ

)2

(exp tanβ)2 for µs
β-a.e. x. (12)

Once (10) is obtained, it follows that∣∣∣∣ Im Mβ(x + iy)
Im Nα(x + iy)

− µβ(x− y, x + y)
να(x − y, x + y)

∣∣∣∣ y↓0
−→ 0

for µs
β-a.e. x and from here the assertion of the lemma follows. �

Proof of Theorem 7. Let

Fνπ/2(z) := exp
(

C +
∫

R

(
1

λ− z
− λ

λ2 + 1

)
dµπ/2(λ)

)
, (13)

where C is chosen so that

C +
∫

R

(
1

λ− z
− λ

λ2 + 1

)
dµπ/2(λ) = mπ/2(z ),

that is, log Fνπ/2 is the Weyl function of some Sturm-Liouville operator with bound-
ary condition α = π

2 . Fνπ/2 is a Pick function. Then recalling the definition of µπ/2

we get

u(x) =
1
π

arg Fνπ/2(x + i0),

where arg stands for the principal branch of argument, taking values in (−π, π].
Therefore

Im Fνπ/2(x + i0) = 0 for a.e. x ∈ I.



Boundary Conditions and Spectra of Sturm-Liouville Operators 229

Since the support of the absolutely continuous part of να is the set

{x | Im Fνπ/2(x + i0) > 0},

it follows that να is purely singular in I for every α ∈ (−π
2 , π

2 ).
Given an interval J ⊂ I assume that νπ/2(J) = 0. Then Fνπ/2(z) can be

extended analytically across J and from (13) the same follows for mπ/2(z). Since
this implies µπ/2(J) = 0, we get a contradiction to the construction of µπ/2. Hence
νπ/2(J) > 0 for every J ⊂ I. Therefore νs

α(J) > 0 for every α ∈ (−π
2 , π

2 ) (see for
instance [14]).

Now to obtain part a) in the theorem we just recall Lemma 3, and we have
for every Borel set A and every β ∈ (−π

2 , π
2 ):

µs
β(A) = α′(β)νs

α(β)(A).

Part b) follows from the well-known stability of the absolutely continuous part.
�

6. Some inverse spectral theory

Let us now refer briefly to the inverse spectral theory of regular Sturm-Liouville
operators in relation to dependence on the boundary conditions. We shall consider
the operator −d2/dx2 + q in L2(0, 1) with boundary conditions

y(0) cosα− y′(0) sin α = 0, (14)

y(1) cos θ − y′(1) sin θ = 0,

where q ∈ L1(0, 1). We denote this operator again by Hα (we shall mostly consider
various values of α for fixed θ). It was G. Borg in 1946 [2] who proved the following:

Theorem 8. The spectra of Hα for two values of α uniquely determine q.

This statement should be interpreted as follows. Denote by σ(q; α) the spec-
trum of −d2/dx2 + q, with boundary conditions (14), where α ∈ [0, π). Let
q1, q2 ∈ L1(0, 1) be such that σ(q1; α1) = σ(q2; α1) and σ(q1; α2) = σ(q2; α2)
for some α1, α2 (α1 �= α2). Then q1(x) = q2(x) for a.e. x ∈ [0, 1].

If we know more about the potential, then we need less information about
the spectra as the following theorem of Hochstadt-Lieberman [21] states:

Theorem 9. The spectrum of Hα for one value of α together with the values of q
on [0, 1

2 ] uniquely determine q on [12 , 1].

For interesting generalizations of these theorems to the case of matrix equa-
tions, see [28] as well as the contribution by M. Malamud [29] in this volume.

It is remarkable that we need exactly half of the potential q, since the knowl-
edge of q on [0, 1

2 − ε] for any ε > 0 and the spectrum for one boundary condition
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is not enough to reconstruct q. This can be seen for instance for Dirichlet bound-
ary conditions if we observe that in that case reflecting q at the point 1

2 does not
change the spectrum and then take

q(x) =

⎧⎪⎨⎪⎩
c if x ∈ [0, 1

2 − ε],
v(x) �= c if x ∈ (1

2 − ε, 1
2 ),

c if x ∈ [12 , 1],

so that q and its reflection will coincide in [0, 1
2 − ε] but will differ on (1

2 − ε, 1
2 ) ∪

(1
2 , 1

2 + ε). In [15] the following was proved (we refer to that reference for a precise
definition of the meaning of “half the spectrum”; for example it suffices to enu-
merate the eigenvalues in increasing order and take the lowest two eigenvalues and
then every second one):

Theorem 10. Half the spectrum of one Hα together with the values of q on [0, 3
4 ]

uniquely determine q.

In [8] results of the following kind are presented.

Theorem 11. Let α1, α2, α3 ∈ [0, π) and denote by σj the spectrum of Hαj , j =
1, 2, 3. Assume Sj ⊂ σj, and suppose that for all sufficiently large λ0 > 0 we have

#
{
λ ∈ {S1 ∪ S2 ∪ S3} with λ ≤ λ0

}
≥ 2

3
#
{
λ ∈ {σ1 ∪ σ2 ∪ σ3} with λ ≤ λ0

}
− 1.

Then q is uniquely determined a.e. on [0, 1].

In particular, two thirds of three spectra determine q. Another result (involv-
ing the values α = π/2 and α = 0) is the following:

Theorem 12. Let σN and σD be the eigenvalues of Hπ/2 and H0 respectively. Let
SN ⊂ σN , SD ⊂ σD. Fix a ∈ (0, 1). Suppose that for all λ0 > 0 sufficiently large
we have

#
{
λ ∈ {SN ∪ SD} with λ ≤ λ0

}
≥ (1− a)#

{
λ ∈ {σN ∪ σD} with λ ≤ λ0

}
.

Then SN , SD and q on [0, a] uniquely determine q a.e. on [0, 1].

For example if a = 1
4 , then knowing q on [0, 1

4 ], all the Neumann eigenvalues
and half the Dirichlet eigenvalues, uniquely determine q a.e. on [0, 1]. Generaliza-
tions of some of the above results can be found in a paper by M. Horváth [22].

The strategy to prove the theorems just mentioned is to use the fundamental
result of Marchenko, see Theorem 13 below, and to prove a general theorem that
knowing m at points λ0, λ1, . . . determines m as long as {λn} has enough density.

Since we are considering the regular case, we define the Weyl function m as

mθ(z) =
u′

θ(0, z)
uθ(0, z)

, z ∈ C,
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where uθ(x, z) solves −u′′(x, z) + q(x)u(x, z) = zu(x, z) with boundary condition
(14) at x = 1.

Theorem 13. [30] The Weyl m-function uniquely determines q a.e. in [0, 1].

Another result that should be possible to prove for Sturm-Liouville operators
(I know the proof only for Dirac systems [9]) is the following statement in which, for
q ∈ L2(0, 1) and θ ∈ [0, π), we denote by µm(q; θ) (m = 1, 2, 3, . . . ) the eigenvalues
of H = −d2/dx2+q in L2(0, 1) taken in increasing order, with boundary conditions
(14) in the case α = 0:

Let a ∈ [0, 1] and let l, k be positive integers satisfying 1
l + 1

k ≥ 2a. For
some q1, q2 ∈ L2(0, 1) and θ1, θ2 ∈ [0, π) with θ1 �= θ2, suppose that µln(q1; θ1) =
µln(q2; θ1) and µkn(q1; θ2) = µkn(q2; θ2) for each n ∈ N. Suppose moreover that
q1(x) = q2(x) a.e. on the interval [a, 1]. Then q1(x) = q2(x) a.e. in [0, 1].

Thus the sets {µln(q; θ1) | n ∈ N} and {µkn(q; θ2) | n ∈ N} together with
q|[a,1] uniquely determine q. The result should also hold if we allow l = ∞ or
k =∞, where for example in the case l =∞, the set {µkn(q; θ) | n ∈ N} for some
θ, together with q|[a,1], uniquely determine q a.e. in [0, 1].

For particular values of a, k, l, one would then obtain:

– Borg type theorem: two spectra uniquely determine q on [0, 1] (a = 1, l =
k = 1).

– Hochstadt-Lieberman type theorem: one spectrum and q on [1/2, 1] uniquely
determine q on [0, 1] (a = 1/2, l = 1, k =∞).

Actually the above result would include many more general cases such as, for
example:

– half of one spectrum and q on [1/4, 1] uniquely determine q on [0, 1] (a = 1/4,
l = 2, k =∞).

– half of two spectra and q on [1/2, 1] uniquely determine q on [0, 1] (a = 1/2,
l = k = 2).

In results of the above kind involving spectra with different boundary con-
ditions at one endpoint, it is important to take note of the endpoint at which the
boundary condition may vary, relative to that at which the potential is given. As
an example, consider the following situation: suppose that q1(x) = q2(x) a.e. on
[0, 1/2] and that µn(q1; θ1) = µn(q2; θ2) for all n ∈ N and some θ1, θ2 ∈ [0, π). A
result of Hald [18] implies that q1(x) = q2(x) a.e. on [0, 1] (and hence θ1 = θ2). A
similar uniqueness result would not, however, hold if the boundary condition at
x = 0, rather than at x = 1, was varied. This may be shown as follows (see [5]).

Let p be an arbitrary but fixed point in the open interval (0,1). For x ∈ [p, 1]
consider the problem

−y′′(x) + v(x)y(x) = µy(x) (15)
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with boundary conditions

y(p)− y′(p) = 0,

y(1) = 0,

where v is an arbitrary integrable function. We denote by {µi}∞i=0 the eigenvalues
and by {φi}∞i=0 the corresponding eigenfunctions.

Now consider the potential q defined for x ∈ [0, 1] as follows:

q(x) =

{
1 + µ0 if x ∈ [0, p]
v(x) if x ∈ (p, 1]

and the problem

−y′′(x) + q(x)y(x) = λy(x), x ∈ [0, 1] (16)

with boundary conditions

y(0)− y′(0) = 0, (17)

y(1) = 0.

Let us define

g0(x) =

{√
2 ex for x ∈ [0, p],

φ0(x) for x ∈ (p, 1],

where we have normalized φ0 in such a way that φ0(p) =
√

2 ep holds. The function
g0 is continuously differentiable, solves (16), (17) for λ = µ0, and since µ0 is the
first eigenvalue of (15), g0 does not have any zeros in [0, 1). Define

q1(x) := q(x) − 2
d2

dx2
log
(

1 +
∫ x

0

g2
0(s)ds

)
.

It is easy to see that q1 is integrable on [0, 1]. The following result is proved in [5]:

Theorem 14. The problems

−y′′ + q1(x)y = λy x ∈ [0, 1],

y(0) + y′(0) = 0,

y(1) = 0,

and

−y′′ + q(x)y = λy x ∈ [0, 1],

y(0)− y′(0) = 0,

y(1) = 0,

have the same spectrum {λi}∞i=1. In addition to this: q1(x) = q(x) for x ∈ [0, p]
and q1 �= q as elements of L1(0, 1).
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c© 2005 Birkhäuser Verlag Basel/Switzerland

Uniqueness of the Matrix Sturm-Liouville
Equation given a Part of the Monodromy
Matrix, and Borg Type Results

Mark M. Malamud

Abstract. Uniqueness of the matrix Sturm-Liouville equation is investigated,
given a part of its monodromy matrix. Generalizations of Borg’s theorem and
the Hochstadt-Lieberman result for the matrix Sturm-Liouville equation are
presented.

Mathematics Subject Classification (2000). 34B10, 47E05.

Keywords. Inverse Sturm-Liouville problems, monodromy matrix, Borg type
results, Hochstadt-Lieberman type results.

1. Introduction

Consider the scalar Sturm-Liouville differential equation

−y′′ + q(x)y = zy (1.1)

on the interval [0, 1], with real potential q = q ∈ L1[0, 1] and spectral parameter
z. Denote by S(q; h0, h1) the spectrum of equation (1.1) subject to the boundary
conditions

y′(0)− h0y(0) = 0, y′(1)− h1y(1) = 0, (1.2)

where hj ∈ R∪{∞}, j ∈ {0, 1} (with hj =∞ shorthand for the boundary condition
y(j) = 0).

Alongside equation (1.1) we consider similar equations with real q̃ ∈ L1[0, 1]
in place of q. The starting point of this paper is summarized by the following
classical results of Borg [4] and Hochstadt-Lieberman [25].

Theorem 1.1. [4] Suppose that S(q; h0, h1) = S(q̃; h0, h1) and that S(q; h0, h2) =
S(q̃; h0, h2) for some h0, h1, h2 with h1 �= h2. Then q(x) = q̃(x) for almost all
x ∈ [0, 1], that is, two spectra S(q; h0, h1) and S(q; h0, h2) uniquely determine q.
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Theorem 1.2. [25] Let S(q; h0, h1) = S(q̃; h0, h1) for some h0 and h1, and let
q(x) = q̃(x) for almost all x ∈ [0, 1/2]. Then q(x) = q̃(x) for almost all x ∈ [0, 1].

We shall use the following notations. Cn×n stands for the set of n × n ma-
trices with complex entries, In is the identity matrix in Cn×n, and On := 0 · In;
diag(λ1, . . . , λn) stands for the diagonal matrix in Cn×n with entries λ1, . . . , λn;
col(a1, . . . , an) stands for a column-vector with entries a1, . . . , an. For a function
F of two real variables, we denote by DjF its derivative with respect to the jth
argument (j ∈ {1, 2}).

The main purpose of the paper is to consider the matrix Sturm-Liouville
equation

−y′′ + Q(x)y = λ2y, y = col(y1, . . . , yn) (1.3)

with a potential matrix Q(·) ∈ L1[0, 1] ⊗ Cn×n, not necessarily self-adjoint. We
present generalizations of Theorems 1.1 and 1.2 to the case of the matrix equation
(1.3). Both generalizations are essentially based on results on unique recovery of
the equation (1.3) (the potential matrix Q) from a part of its monodromy matrix.

Define n×n matrix solutions C(x, λ) and S(x, λ) of (1.3) obeying the initial
conditions

C(0, λ) = S′(0, λ) = In, S(0, λ) = C′(0, λ) = On. (1.4)

Denote by W (λ) the (canonical) monodromy matrix of equation (1.3),

W (λ) :=
(

C(1, λ) S(1, λ)
C′(1, λ) S′(1, λ)

)
. (1.5)

Here, as in the sequel, prime denotes differentiation with respect to x.
The paper is organized as follows. In Section 2 we recall (with proofs) some

basic facts on existence of triangular transformation operators for equation (1.3)
and some properties of monodromy matrices.

In Section 3 we show that equation (1.3) is uniquely determined by one of
the columns of the monodromy matrix (Proposition 3.1) as well as by its first row(
C(1, λ) S(1, λ)

)
(Propositions 3.5 and 3.6). Note that in the case of self-adjoint

potential matrix Q(·) = Q(·)∗ Proposition 3.6 has recently been proved by R.
Carlson [9] who used quite different methods for this purpose.

Both results are obtained by the method proposed by the author in [35] for
the proof of Borg’s theorem as well as its generalizations for ODEs of order n, and
even nonintegral order n−ε (see also [38, 36, 37] for further applications). Namely,
using triangular transformation operators (see (2.18)) we reduce both problems to
an investigation of uniqueness for certain Goursat type problems for the hyperbolic
equation

D2
xR(x, t)−D2

t R(x, t) = [Q̃(x)−Q(t)]R(x, t), (1.6)

in the triangle " = {(u, v) : 0 ≤ v ≤ u ≤ 2 − v}. Here R(·, ·) is the kernel of the
transformation operator. Note also that equation (1.3) is not uniquely determined
by the second row

(
C′(1, λ) S′(1, λ)

)
of the monodromy matrix W (λ) nor by either

of its diagonals.
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In Section 4 we improve the second result (Proposition 3.6) by showing
that equation (1.3) is uniquely determined by the meromorphic matrix function
S(1, λ)−1C(1, λ) (see Theorem 4.1). Based on this result we prove an analogue of
Borg’s Theorem 1.1. Namely, it is shown (see Theorem 4.3) that the potential ma-
trix Q is uniquely determined by n2 +1 spectra of the respective (Sturm-Liouville
type) boundary value problems for equation (1.3). Moreover, the number of spectra
can be reduced to n(n + 1)/2 + 1 if Q = Q∗.

In Section 5 we show that equation (1.3) is uniquely determined by the Weyl
function C′(1, λ)C−1(1, λ). This result yields one more generalization of Borg’s
Theorem 1.1 (see Theorem 5.3).

In Section 6, Theorem 1.2 of Hochstadt-Lieberman is generalized to the case
of the matrix equation (1.3). Namely we show that equation (1.3) is uniquely de-
termined by one of the entries of the monodromy matrix if Q(·) is known on half
of the segment [0, 1]. The proof is similar to that of Propositions 3.1 and 3.5 and is
based on reduction of the problem to a Goursat type problem for equation (1.6).

Note in conclusion that all uniqueness results involving monodromy matrices
remain valid (without changes in the proofs) for operator-valued potentials Q.

2. Preliminaries

2.1. Transformation operators

Consider the matrix Sturm-Liouville equation

−y′′ + Q(x)y = λ2y, y = col(y1, y2, . . . , yn), x ∈ [0, 1] (2.1)

with an n × n matrix potential Q(·) ∈ L1[0, 1] ⊗ Cn×n, which is not assumed to
be self-adjoint. Denote by Y (x, λ) the n× n matrix solution of (2.1) obeying the
initial conditions

Y (0, λ) = In, Y ′(0, λ) = H (∈ Cn×n). (2.2)

The following proposition is well known (see [32, 41, 42]).

Proposition 2.1. Suppose that the potential matrix Q is summable on [0, 1]. Then
there exists an n × n-matrix kernel K(·, ·) ∈ C(Ω) ⊗ Cn×n, where Ω = {(x, t) :
0 ≤ t ≤ x ≤ 1}, such that

Y (x, λ) = cos(λx) · In +
∫ x

0

K(x, t) cos(λt)dt =: (I + K) cos(λx). (2.3)

Moreover, K(·, ·) belongs to W 1
1 (Ω)⊗ Cn×n, where W 1

1 (Ω) stands for the Sobolev
space, and satisfies (in the sense of distributions) the following boundary value
problem:

D2
xK(x, t)−Q(x)K(x, t) = D2

t K(x, t), (2.4)

K(x, x) = H +
1
2

∫ x

0

Q(s)ds, x ∈ [0, 1], (2.5)

DtK(x, t)|t=0 = 0. (2.6)
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If additionally Q(·) ∈ C1[0, 1] ⊗ Cn×n, then K(·, ·) ∈ C2(Ω) ⊗ Cn×n and is a
classical solution of the problem (2.4)–(2.6).

Proof. (i) Assume that formula (2.3) is valid and the kernel K(·, ·) ∈ C2(Ω)⊗Cn×n.
Substituting the expression (2.3) into (2.1) we derive after simple transformations
that K(·, ·) is a solution of the problem (2.4)–(2.6) in Ω. Conversely, to prove
formula (2.3) with smooth K(·, ·)

(
∈ C2(Ω) ⊗ Cn×n

)
it suffices to show that the

problem (2.4)–(2.6) has a (unique) solution. In order to prove this statement we
impose the additional condition

K(x, 1− x) = 0, x ∈ [0, 1] (2.7)

and consider alongside problem (2.4)–(2.6) the Goursat problem (2.4), (2.5), (2.7).
First we show that the Goursat problem has a unique solution in Ω. Setting u =
x + t, v = x − t and P1(u, v) = K

(
(u + v)/2, (u − v)/2

)
we rewrite system (2.4),

(2.5),(2.7) in the equivalent form

4DuDvP1(u, v) = Q((u + v)/2)P1(u, v), (u, v) ∈ ∆, (2.8)

4P1(u, 0) = 4H +
∫ u

0

Q(s/2)ds, u ∈ [0, 2], (2.9)

P1(1, v) = 0, v ∈ [0, 1], (2.10)

where " := {(u, v) : 0 ≤ v ≤ u ≤ 2 − v}. Integrating the system (2.8) along
the characteristics and taking conditions (2.9),(2.10) into account we arrive at the
following integral equation:

P1(u, v) = H +
1
4

∫ u

0

Q(s/2)ds− 1
4

∫ v

0

dµ

∫ 1

u

Q(
ξ + µ

2
)P1(ξ, µ)dξ. (2.11)

This is a Volterra type integral equation of the second kind. The existence and
uniqueness of a solution of (2.11) can easily be proved by the method of successive
approximations.

Let P1(·, ·) be the (unique) solution of (2.11). It is clear that P1(·, ·) is also
the unique solution of the problem (2.8)–(2.10).

(ii) We put K1(x, t) := P1(x + t, x − t). It follows from (2.11) that if Q ∈
C1[0, 1] ⊗ Cn×n, then the derivatives D2

uP1(u, v) and D2
vP1(u, v) exist and are

continuous in ∆. Therefore in this case K1(·, ·) ∈ C2(Ω) ⊗ Cn×n and satisfies
equation (2.4) and conditions (2.5) and (2.7).

Next we show that for any matrix function Φ ∈ C2[0, 1]⊗Cn×n with Φ(0) =
On the function

K(x, t) = K1(x, t) + Φ(x − t) +
∫ x

t

K1(x, s)Φ(s− t)ds (2.12)

satisfies the problem (2.4),(2.5). Indeed K(x, x) = K1(x, x) + Φ(0) = K1(x, x),
from which (2.5) follows. Further, denote by L the operator in (2.4), that is L :=
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D2
x−D2

t −Q(x). Applying the operator L to (2.12) and taking (2.5) into account
we find

LK = LK1 −Q(x)Φ(x − t) +
dK1(x, x)

dx
Φ(x− t) + K1(x, x)Φ′(x− t)

+ [DxK1(x, s)]s=x ·Φ(x− t)−K1(x, t)Φ′(0)+
∫ x

t

[(D2
x−Q(x))K1(x, s)]Φ(s− t)ds

−
∫ x

t

K1(x, s)Φ′′(s− t)ds = −Q(x)Φ(x − t) +
dK1(x, x)

dx
Φ(x− t)

+ [(Dx + Dt)K1(x, t)]|t=x · Φ(x− t) +
∫ x

t

[(LK1)(x, s)]Φ(s − t)ds = 0.

Thus every K(·, ·) of the form (2.12) satisfies equation (2.4) and condition (2.5). It
remains to choose Φ(∈ C2[0, 1]⊗Cn×n) so that K(·, ·) will satisfy condition (2.6).
Starting with (2.12) and setting g(x) := DtK1(x, t)|t=0, we can determine Φ from
the following equation

Φ′(x) +
∫ x

0

K1(x, s)Φ′(s)ds = g(x). (2.13)

This is a Volterra integral equation of the second kind with respect to the unknown
matrix function Φ1 := Φ′. Therefore it has a unique solution Φ1 ∈ C1[0, 1]⊗Cn×n,
since K1(·, ·) ∈ C1(Ω) ⊗ Cn×n and g ∈ C1[0, 1] ⊗ Cn×n. The required matrix
function Φ ∈ C2[0, 1] ⊗ Cn×n is then given by Φ(x) :=

∫ x

0
Φ1(s)ds. Thus the

kernel K(·, ·) determined by (2.12), (2.13), satisfies the boundary value problem
(2.4)–(2.6), hence the representation (2.3) holds with K(·, ·) ∈ C2(Ω)⊗ Cn×n.

(iii) Let now Q ∈ L1[0, 1] ⊗ Cn×n. Then the solution P1(·, ·) of (2.11) is
absolutely continuous with respect to u (resp. v) for every fixed v ∈ [0, 1] (resp.
u ∈ [0, 2]). Moreover, it follows from (2.11) that D2P1(·, v) is absolutely contin-
uous for every fixed v ∈ [0, 1]. Therefore P1(·, ·) satisfies equation (2.8) for a.e.
(u, v) ∈ " and the conditions (2.9)–(2.10) in the classical sense. Now equation
(2.13) has a unique solution Φ1 ∈ L1[0, 1]⊗ Cn×n, since K1(·, ·) ∈ C(Ω) ⊗ Cn×n

and g ∈ L1[0, 1]⊗Cn×n. Hence Φ(x) :=
∫ x

0 Φ1(s)ds belongs to W 1
1 [0, 1]⊗Cn×n. The

corresponding kernel K(·, ·) determined by (2.12) has the required properties. In-
deed, choosing a sequence Qm ∈ C1[0, 1]⊗Cn×n approaching Q in L1[0, 1]⊗Cn×n,
we easily find that the corresponding sequence of kernels Km(·, ·) approaches the
kernel K(·, ·) in the Sobolev space W 1

1 (Ω)⊗ Cn×n. �

Remark 2.2. It follows from (2.11) and (2.12) that K(·, t) (resp. K(x, ·) ) is
absolutely continuous for every fixed t ∈ [0, 1] (respectively x ∈ [0, 1]) if Q ∈
L1[0, 1]⊗ Cn×n. Nevertheless the kernel K(·, ·) (resp. K1(·, ·)) is a solution of the
problem (2.4)–(2.6) (resp. (2.4), (2.5), (2.7)) only in the sense of distributions,
since the classical derivatives D2

xK(x, t) and D2
t K(x, t) do not exist in general if

Q /∈ C1[0, 1]⊗ Cn×n.
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However, we emphasize that P (u, v) := K
(
(u + v/2), (u − v)/2

)
, as well as

P1(u, v), satisfy equation (2.8) for a.e. (u, v) ∈ " if Q ∈ L1[0, 1]⊗Cn×n. We shall
systematically use this fact in the sequel.

The following proposition can be proved in just the same way as Proposi-
tion 2.1.

Proposition 2.3. Let S(·, λ) be the n×n matrix solution of (2.1) obeying S(0, λ) =
On, S′(0, λ) = In. Then there exists an n× n-matrix kernel K2(·, ·), such that

λS(x, λ) = sin(λx)In +
∫ x

0

K2(x, t) sin(λt)dt =: (I + K2) sin(λx). (2.14)

Moreover, K2(·, ·) belongs to W 1
1 (Ω) ⊗ Cn×n and satisfies (in the sense of dis-

tributions) the boundary value problem (2.4)–(2.5) with H = On and the further
condition

K(x, 0) = 0, x ∈ [0, 1], (2.15)

in place of (2.6). If additionally Q(·) ∈ C1[0, 1]⊗ Cn×n, then K2(·, ·) ∈ C2(Ω) ⊗
Cn×n and is a classical solution of the problem (2.4), (2.5), (2.15).

Alongside equation (2.1) consider the equation

−y′′ + Q̃(x)y = λ2y, y = col(y1, y2, . . . , yn), x ∈ [0, 1], (2.16)

with summable n × n matrix potential Q̃(·). Denote by Ỹ (·, ·) the n × n matrix
solution of (2.16) obeying the initial conditions

Ỹ (0, λ) = In, Ỹ ′(0, λ) = H̃ (∈ Cn×n). (2.17)

Proposition 2.4. Suppose that the potential matrices Q and Q̃ are summable on
[0, 1]. Then there exists an n × n-matrix kernel R(·, ·) ∈ C(Ω) ⊗ Cn×n, where
Ω = {(x, t) : 0 ≤ t ≤ x ≤ 1}, such that

Ỹ (x, λ) = Y (x, λ) +
∫ x

0

R(x, t)Y (t, λ)dt =: (I + R)Y (x, λ). (2.18)

Moreover, R(·, ·) belongs to W 1
1 (Ω)⊗Cn×n and satisfies (in the sense of distribu-

tions) the following boundary value problem:

D2
xR(x, t)− Q̃(x)R(x, t) = D2

t R(x, t)−Q(t)R(x, t), (2.19)

R(x, x) = H̃ −H +
1
2

∫ x

0

[Q̃(s)−Q(s)]ds, (2.20)

[DtR(x, t)−HR(x, t)]|t=0 = 0. (2.21)

If additionally Q(·), Q̃(·) ∈ C1[0, 1]⊗Cn×n, then R(·, ·) ∈ C2(Ω)⊗Cn×n and R(·, ·)
is a classical solution of the problem (2.19)–(2.21).
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The proof is similar to that of Proposition 2.1. On the other hand, starting
with representations (2.3) for Ỹ (·, ·) and Y (·, ·) with kernels K̃(·, ·) and K(·, ·),
respectively, we immediately arrive at the representation (2.18) with I + R =
(I + K̃)(I + K)−1 = (I + K̃)(I + K1), where K1 is the Volterra operator with the
n× n-matrix kernel K1(·, ·) satisfying

K1(x, t) + K(x, t) +
∫ x

t

K1(x, s)K(s, t)ds = 0. (2.22)

Let C(·, λ) and S(·, λ) be the n × n matrix solutions of (2.1) obeying the
initial conditions

C(0, λ) = S′(0, λ) = In, C′(0, λ) = S(0, λ) = On. (2.23)

Finally we consider representations (2.3) and (2.14) for equation (2.1) with
a constant potential matrix Q(x) = µ2 · In, µ ∈ C. As usual, J1(·) stands for the
Bessel function

J1(z) =
∞∑

k=0

(−1)k

(k + 1)!k!

(z

2

)2k+1

. (2.24)

Lemma 2.5. The following representations hold:

cos(
√

λ2 + µ2x) · In = cos(λx) · In +
∫ x

0

P1(x, t; µ) cos(λt)dt, (2.25)

sin(
√

λ2 + µ2x)√
λ2 + µ2

· In =
sin(λx)

λ
· In +

∫ x

0

P2(x, t; µ)
sin(λt)

λ
dt, (2.26)

where Pj(x, t; µ) := pj(x, t; µ) · In, j ∈ {1, 2}, and

p1(x, t; µ) = −xµ
J1(µ

√
x2 − t2)√

x2 − t2
, p2(x, t; µ) = −tµ

J1(µ
√

x2 − t2)√
x2 − t2

. (2.27)

Proof. Note that C(x, λ) = cos(
√

λ2 + µ2x)·In and that S(x, λ) = sin(
√

λ2+µ2x)√
λ2+µ2

·In

are the solutions of equation (2.1) with Q(x) = −µ2 ·In obeying (2.23). By Propo-
sition 2.1, C(x, λ) admits representation (2.3), where the kernel P1(x, t; µ) solves
problem (2.4)–(2.6) with Q(x) = −µ2 · In and H = On. It is easily seen that this
solution is

P1(x, t; µ) =
x

2

∞∑
k=1

(−1)kµ2k (x2 − t2)k−1

4k−1k!(k − 1)!
· In. (2.28)

Combining (2.28) with (2.24), we arrive at the representation (2.25) with P1(x, t; µ)
as in (2.27).

Similarly, using Proposition 2.3 in place of Proposition 2.1, we obtain (2.26)
with P2(x, t; µ) as in (2.27). �
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2.2. The monodromy matrix identities

Alongside equation (2.1) we consider the equation

−y′′ + Q(x)∗y = λ2y, y = col(y1, y2, . . . , yn), (2.29)

where Q(x)∗ is the adjoint matrix of Q(x). Denote also by C∗(·, λ) and S∗(·, λ)
the n× n matrix solutions of (2.29) obeying the initial conditions (2.23).

Next we denote by W (λ) and W∗(λ) the canonical monodromy matrices of
equations (2.1) and (2.29) respectively, that is

W (λ) :=
(

C(1, λ) S(1, λ)
C′(1, λ) S′(1, λ)

)
, W∗(λ) :=

(
C∗(1, λ) S∗(1, λ)
C′

∗(1, λ) S′
∗(1, λ)

)
. (2.30)

Lemma 2.6. The following identity holds

W (λ)JW∗(λ)∗ = J :=
(

0 I
−I 0

)
, λ ∈ C. (2.31)

In particular,
C(1, λ)S∗(1, λ)∗ = S(1, λ)C∗(1, λ)∗, λ ∈ C. (2.32)

Proof. First we prove the identity W∗(λ)∗JW (λ) = J . This is equivalent to the
following three identities

C∗(1, λ)∗C′(1, λ) = C′
∗(1, λ)∗C(1, λ), S∗(1, λ)∗S′(1, λ) = S′

∗(1, λ)∗S(1, λ),
(2.33)

and
C∗(1, λ)∗S′(1, λ)− C′

∗(1, λ)∗S(1, λ) = I. (2.34)

Let us prove (2.34). If follows from (2.1) and (2.29) that

−C∗(x, λ)∗S′′(x, λ) + C∗(x, λ)∗Q(x)S(x, λ) = λ2C∗(x, λ)∗S(x, λ),

−C′′
∗ (x, λ)∗S(x, λ) + C∗(x, λ)∗Q(x)S(x, λ) = λ2C∗(x, λ)∗S(x, λ).

Subtracting we obtain C∗(x, λ)∗S′(x, λ) − C′
∗(x, λ)∗S(x, λ) = const. Substituting

x = 0 and then x = 1 we get the required result. The identities (2.33) are proved
similarly.

Thus, W∗(λ)∗JW (λ) = J . It follows that both matrices W (λ) and W∗(λ) are
invertible. Taking the inverse we get W−1(λ)J

(
W∗(λ)∗

)−1 = J . Hence one has
W (λ)JW∗(λ)∗ = J . �

In the sequel we need also the following straightforward lemma.

Lemma 2.7. Let Y be the n × n matrix solution of (2.1) obeying Y (0, λ) =
A, Y ′(0, λ) = B. Suppose also that Y1 is the n × n matrix solution of (2.29)
obeying Y1(0, λ) = A1, Y ′

1(0, λ) = B1. If A∗
1B = B∗

1A then the following identity
holds:

Y1(x, λ)∗Y ′(x, λ) = Y ′
1(x, λ)∗Y (x, λ), λ ∈ C. (2.35)
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3. Uniqueness of the potential matrix given a part
of the monodromy matrix

3.1. Uniqueness of the potential matrix given a column of the monodromy matrix

First we show that the potential matrix is uniquely determined by a column of the
monodromy matrix.

Proposition 3.1. Let Y (x, λ) (resp. Ỹ (x, λ)) be the n × n matrix solution of the
problem (2.1)–(2.2) (resp. (2.16)–(2.17)). If

Y (1, λ) = Ỹ (1, λ) and Y ′(1, λ) = Ỹ ′(1, λ) for λ ∈ C,

then H = H̃ and Q(x) = Q̃(x) for a.e. x ∈ [0, 1].

Proof. (i) By Proposition 2.4, the solutions Ỹ (x, λ) and Y (x, λ) are connected
by formula (2.18) where the kernel R(·, ·) satisfies (in the sense of distributions)
the boundary value problem (2.19) – (2.21). After making the substitutions u =
x+ t, v = x− t we see that P (u, v) := R

(
(u+v)/2, (u−v)/2

)
is a classical solution

of the problem

4DuDvP (u, v) = [Q̃((u + v)/2)−Q((u− v)/2)]P (u, v), (3.1)

[P (u, v)H − (Du −Dv)P (u, v)]|u=v = 0, (3.2)

4P (u, 0) = 4(H − H̃) +
∫ u

0

[Q̃(s/2)−Q(s/2)]ds. (3.3)

Since Ỹ (1, λ) = Y (1, λ) and Ỹ ′(1, λ) = Y (1, λ) we easily get from (2.18) and (2.3)
that R(1, t) = DxR(1, t)

(
:= [DxR(x, t)]|x=1

)
= 0. Therefore

P (u, 2− u) = 0, DuP (u, v)|v=2−u = DvP (u, v)|v=2−u = 0. (3.4)

(ii) We will now show that the problem (3.1), (3.2), (3.4) has only the trivial
solution P (u, v) = 0 in the triangle ∆ = {(u, v) : 0 ≤ v ≤ u ≤ 2− v}.

For the triangle ∆1 = {(u, v) : 1 ≤ u ≤ 2 − v, v ≥ 0} this follows since this
region is characteristic, and problem (3.1), (3.4) is a Cauchy problem in ∆1 with
zero data on the non-characteristic base u + v = 2. Furthermore, this is easily
derived by integrating equation (3.1) along characteristics and taking (3.4) into
account. Letting Q(u, v) := Q̃((u+v)/2)−Q((u−v)/2), we arrive at the following
Volterra type equation in ∆1:

P (u, v) =
1
4

∫ 2−v

u

∫ 2−α

v

Q(α, β)P (α, β)dβdα,

which has only the trivial solution P (u, v) = 0, (u, v) ∈ ∆1. Hence

P (1, v) = 0, DvP (1, v) = 0. (3.5)

(iii) Turning now to the triangle ∆2 = {(u, v) : 0 ≤ v ≤ u ≤ 1}, we use the
condition (3.2) in the form

dP (u, u)
du

−HP (u, u) = 2D2P (u, u)
(
:= 2DvP (u, v)|v=u

)
.
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A solution of this equation obeying the condition P (1, 1) = 0 has the form

P (u, u) = 2
∫ u

1

eH(u−α)D2P (α, α)dα. (3.6)

Integrating (3.1) and taking (3.5) into account, we then obtain

−DvP (u, v) =
1
4

∫ 1

u

Q(α, v)P (α, v)dα. (3.7)

Integrating (3.7) with respect to the second variable from v to u and taking (3.6)
into account, we obtain

P (u, v) =
1
4

∫ 1

u

∫ u

v

Q(α, β)P (α, β)dβdα

+
1
2

∫ 1

u

∫ α

u

eH(u−β)Q(α, β)P (α, β)dβdα.

Hence, observing that v ≤ u ≤ α ≤ 1, we derive the inequality

‖P (u, v)‖ ≤ C

∫ 1

u

∫ α

v

‖Q(α, β)‖ · ‖P (α, β)‖dβdα, (3.8)

where ‖P (·, ·)‖ stands for the matrix norm of P (·, ·).
By Gronwall’s inequality we conclude from (3.8) that P (u, v) = 0 for (u, v) ∈

∆2. Thus P (u, v) = 0 for (u, v) ∈ ∆.
It follows now from (3.3) that Q̃(x) = Q(x) for a.e. x ∈ [0, 1]. �

Consider the scalar case, n = 1. In this case we write q, h(∈ C) and y in
place of Q, H and Y , respectively. Similarly, we write q̃, h̃ and ỹ in place of Q̃, H̃

and Ỹ , respectively.

Corollary 3.2. Let n = 1 and y′(1, λ)y(1, λ)−1 = ỹ′(1, λ)ỹ(1, λ)−1 for λ ∈ G (G an
open set in C). Then h̃ = h and q̃(x) = q(x) for a.e. x ∈ [0, 1].

Proof. It follows from the uniqueness theorem for the equation (2.1) that the
(scalar) entire functions y(1, λ) and y′(1, λ) have no common zeros. Therefore
the sets of zeros of the entire functions y(1, λ) and ỹ(1, λ) (resp. y′(1, λ) and
ỹ′(1, λ)) coincide, taking account of multiplicities, with the set of zeros (resp. poles)
of the meromorphic function M(λ) := y′(1, λ)y(1, λ)−1

(
= ỹ′(1, λ)ỹ(1, λ)−1

)
. It

follows from (2.3) that both y(1, λ) and ỹ(1, λ) are (scalar) even entire functions of
exponential type one. Therefore y(1, λ) (resp. ỹ(1, λ)) is uniquely (up to a constant
factor) determined by its zeros, hence ỹ(1, λ) = ay(1, λ). It follows from (2.3) that
both y(1, λ) and ỹ(1, λ)) approach cos(λ) when λ→∞ in every sector Sε := {λ :
arg λ ∈ (ε, π − ε), ε > 0}. Hence a = 1, ỹ(1, λ) = y(1, λ) and ỹ′(1, λ) = y′(1, λ).
By Proposition 3.1 we get h̃ = h and q̃(x) = q(x) for a.e. x ∈ [0, 1]. �
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Denote by S(q; h0, h1) the spectrum (that is, the set of the eigenvalues λ2,
counting their multiplicities) of the problem

−y′′ + q(x)y = λ2y, y′(0)− h0y(0) = 0, y′(1)− h1y(1) = 0, (3.9)

where h0, h1 ∈ C ∪ {∞}, with h0 =∞ (resp. h1 =∞) shorthand for the Dirichlet
condition y(0) = 0 (resp. y(1) = 0).

Corollary 3.3. Suppose that h0, hj, h̃j ∈ C ∪ {∞}, j ∈ {1, 2}, h1 �= h2 and

S(q; h0, hj) = S(q̃; h̃0, h̃j), j ∈ {1, 2}. (3.10)

Then h0 = h̃0, hj = h̃j for j ∈ {1, 2} and q(x) = q̃(x) for a.e. x ∈ [0, 1].

Proof. We confine ourselves to the case |h1| + |h2| < ∞. The other cases can be
treated in just the same way. It is easily seen that the spectrum S(q; h0, hj) (resp.
S(q̃; h̃0, h̃j)) coincides with the set of squares of zeros, counting multiplicities, of the
entire function ϕj(λ) := y′(1, λ) + hjy(1, λ) (resp. ϕ̃j(λ) := ỹ′(1, λ) + h̃j ỹ(1, λ)).
Since ϕj (resp. ϕ̃j), being an even entire function of exponential type one, is
uniquely determined (up to a constant factor) by its zeros (cf. the proof of Corol-
lary 3.2), we get from (3.10) that ϕ̃j(λ) = cjϕj(λ), j ∈ {1, 2}. On the other hand
by (2.3) both ϕj and ϕ̃j approach λ sin(λ) as λ tends to infinity in every sector
Sε := {λ : arg λ ∈ (ε, π − ε)}. Hence cj = 1, j ∈ {1, 2}, and y(1, λ) = aỹ(1, λ)
where a = (h1 − h2)−1(h̃1 − h̃2). It follows from (2.3) that a = 1.

Therefore the equation ϕ̃1(λ) = ϕ1(λ) becomes ỹ′(1, λ) − y′(1, λ) = (h1 −
h̃1)y(1, λ). Note however, that (2.18) yields ỹ′(1, λ)− y′(1, λ)→ 0 as λ = λ→∞.
Combining these relations we get h̃1 = h1 and ỹ′(1, λ) = y′(1, λ). It remains to
apply Proposition 3.1. �

Remark 3.4. The proof of Proposition 3.1 is borrowed from [35], where it was stated
(and proved) only in the scalar case. Corollary 3.3 generalizes classical results of
G. Borg [4] in the self-adjoint case, and the non-self-adjoint case is already implicit
in the work of V.A. Marchenko [40]. Corollary 3.2 has also been proved in [5] and
[40] even for the equation on the half-line. Note that Corollary 3.2 is implied by
Corollary 3.3 with h1 = ∞ and h2 = 0. Different proofs of Borg’s result can be
found in [27, 31, 32, 34, 41, 45].

A complete solution to the classical two-spectra inverse problem for the scalar
Sturm-Liouville equation with real potential has been obtained by Levitan and
Gasymov [33]. Namely, they have obtained necessary and sufficient conditions for
two sequences {λk}∞1 and {µk}∞1 of real numbers to be the spectra of two boundary
value problems (3.9) with fixed h = h and different h1 = h1 �= h2 = h2.

3.2. Uniqueness of the Sturm-Liouville equation given the first row
of its monodromy matrix

Proposition 3.5. For j ∈ {1, 2} let Yj(x, λ) (resp. Ỹj(x, λ)) be the solution of the
equation (2.1) (resp. (2.16)) obeying the initial conditions

Yj(0, λ) = In, Y ′
j (0, λ) = Hj

(
resp. Ỹj(0, λ) = In, Ỹ ′

j (0, λ) = H̃j

)
. (3.11)
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Suppose that 0 ∈ ρ(H1 −H2), where ρ(·) denotes the resolvent set, and that

Yj(1, λ) = Ỹj(1, λ), λ ∈ C, j ∈ {1, 2}. (3.12)

Then Hj = H̃j , j ∈ {1, 2} and Q(x) = Q̃(x) for a.e. x ∈ [0, 1].

Proof. (i) By Proposition 2.4 the solutions Ỹj(x, λ) and Yj(x, λ) are connected by
means of the triangular transformation operator (see (2.18))

Ỹj(x, λ) = Yj(x, λ) +
∫ x

0

Rj(x, t)Yj(t, λ)dt, j ∈ {1, 2}. (3.13)

Moreover, Rj ∈ C(Ω)⊗Cn×n and Rj(x, ·) (resp. Rj(·, t)) is absolutely continuous
for every x ∈ [0, 1] (resp. t ∈ [0, 1]) and satisfies in Ω = {(x, t) : 0 ≤ t ≤ x ≤ 1}
(in the sense of distributions) the boundary value problem (2.19)–(2.21) with Hj

and H̃j in place of H and H̃ , respectively. Furthermore, if we define Pj(u, v) :=
Rj

(
(u + v)/2, (u− v)/2

)
, j ∈ {1, 2}, then Pj is a classical solution of (3.1).

It follows from (3.12) and (3.13) that
∫ 1

0
Rj(1, t)Yj(t, λ)dt = 0, j ∈ {1, 2}. On

the other hand, by Proposition 2.1, Yj admits a representation (2.3) with Kj(·, ·)
in place of K(·, ·). Therefore

0 =
∫ 1

0

Rj(1, t)Yj(t, λ)dt =
∫ 1

0

Rj(1, t)
[
cos(λt) +

∫ t

0

Kj(t, s) cos(λs)ds
]
dt

=
∫ 1

0

[
Rj(1, s) +

∫ 1

s

Rj(1, t)Kj(t, s)dt
]
cos(λs)ds, j ∈ {1, 2}.

Since the cosine-Fourier transform is injective, we arrive at the following matrix
Volterra type integral equation of the second kind

Rj(1, s) +
∫ 1

s

Rj(1, t)Kj(t, s)dt = 0, j ∈ {1, 2}.

Hence
R1(1, t) = R2(1, t) = 0, t ∈ [0, 1]. (3.14)

Setting R := R2−R1 and taking (3.14) into account we derive from (2.19), (2.21),
after making the substitutions u = x + t, v = x − t, that the function P (u, v) :=
R
(
(u + v)/2, (u− v)/2

)
is a (classical) solution of the problem

4DuDvP (u, v) = [Q̃((u + v)/2)−Q((u− v)/2)]P (u, v), (3.15)

P (u, 0) = 0, u ∈ [0, 2], P (u, 2− u) = 0, u ∈ [1, 2]. (3.16)

in the triangle " := {(u, v) : 0 ≤ v ≤ u ≤ 2− v}.
We now prove that P (u, v) = 0 for (u, v) ∈ ".
(ii) First we show that

P (u, v) = 0, (u, v) ∈ "1 = {(u, v) : 1 ≤ u ≤ 2− v, v ≥ 0}. (3.17)
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Setting Q(u, v) := Q̃((u + v)/2) − Q((u − v)/2) and integrating equation (3.15)
along characteristics while taking (3.16) into account, we arrive at the equation

−P (u, v) =
1
4

∫ 2−v

u

∫ v

0

Q(α, β)P (α, β)dβdα. (3.18)

Note that equation (3.18) is a Volterra type integral equation of the second kind
since Q ∈ L1(")⊗ Cn×n. Therefore P (u, v) = 0 for (u, v) ∈ ∆1.

(iii) In this step we establish that

P (u, v) = 0 for (u, v) ∈ "2 = {(u, v) : 0 ≤ v ≤ u ≤ 1}. (3.19)

Since P (u, v) = 0 in "1 we have in particular that P (1, v) = 0. Therefore P (·, ·)
is a (generalized) solution in "2 of the equation (3.15) satisfying the boundary
conditions

P (u, 0) = 0, u ∈ [0, 1], P (1, v) = 0, v ∈ [0, 1]. (3.20)

Integrating equation (3.15) along characteristics and taking (3.20) into account we
arrive at the equation

−P (u, v) =
1
4

∫ 1

u

∫ v

0

Q(α, β)P (α, β)dβdα. (3.21)

This being a Volterra type equation of the second kind, there is only the trivial
solution, and hence (3.19) holds. Thus R1(x, t) = R2(x, t) for (x, t) ∈ Ω.

(iv) Finally we prove that R1(x, t) = 0 for (x, t) ∈ Ω. Recall that Rj(·, ·) is
a generalized solution of equation (2.19) obeying conditions (2.20)–(2.21), with
Hj and H̃j (j ∈ {1, 2}) in place of H and H̃ , respectively. Since R1(x, t) =
R2(x, t), (x, t) ∈ Ω, we have

[DtR1(x, t) −HjR1(x, t)]|t=0 = 0, j ∈ {1, 2}.
Since 0 ∈ ρ(H1 −H2), this is equivalent to

R1(x, 0) = 0, [DtR1(x, t)]|t=0 = 0. (3.22)

After making the substitutions u = x+ t, v = x− t and taking (3.14) into account
we see that P1(u, v) := R1

(
(u + v)/2, (u − v)/2

)
is a (classical) solution of the

problem
4DuDvP1(u, v) = Q(u, v)P1(u, v), (3.23)

P1(u, u) = 0, DuP1(u, v)|v=u = DvP1(u, v)|v=u = 0, (3.24)

P1(u, 2− u) = 0, u ∈ [1, 2]. (3.25)
This problem has only the trivial solution in ". Indeed, for the triangle "2 =
{(u, v) : 0 ≤ v ≤ u ≤ 1} this follows since the non-characteristic Cauchy problem
(3.23), (3.24) is reduced to the following Volterra-type equation in "2:

P1(u, v) = −1
4

∫ u

v

∫ α

v

Q(α, β)P1(α, β)dβdα, (3.26)

which has only the trivial solution P1(u, v) = 0 for (u, v) ∈ "2.



250 M.M. Malamud

Turning to the triangle "1 = {(u, v) : 1 ≤ u ≤ 2 − v, v ≥ 0} we consider the
problem (3.23), (3.25) and use the further condition P1(1, v) = 0. Every solution
of this problem is also a solution of the following Volterra-type equation in "1 :

P1(u, v) = −1
4

∫ 2−u

v

∫ u

1

Q(α, β)P1(α, β)dαdβ (3.27)

and conversely. This equation has only the trivial solution P1(u, v) = 0 for (u, v) ∈
"1. Thus P2(u, v) = P1(u, v) = 0 for (u, v) ∈ ".

It now follows from (2.20) that Hj = H̃j , j ∈ {1, 2}, and Q(x) = Q̃(x) for
a.e. x ∈ [0, 1]. �

Next we present an analogue of Proposition 3.5 for the canonical monodromy
matrix. In order to state the corresponding result we denote by C(x, λ) and S(x, λ)
the n× n matrix solutions of (2.1) obeying

C(0, λ) = S′(0, λ) = In, S(0, λ) = C′(0, λ) = On. (3.28)

Let also C̃(x, λ) and S̃(x, λ) be the solutions of (2.16) obeying the same initial
conditions (3.28).

Proposition 3.6. Let C̃(1, λ) = C(1, λ) and S̃(1, λ) = S(1, λ) for λ ∈ C. Then
Q̃(x) = Q(x) for a.e. x ∈ [0, 1].

Proof. By Proposition 2.4 the solutions C̃(x, λ) and C(x, λ) are related by (2.18),
where the kernel R1(·, ·) is a generalized solution (in the sense of distributions) of
the problem (2.19)–(2.21) with H̃ = H = On. Moreover, the solutions S̃(x, λ) and
S(x, λ) are related by the equality

S̃(x, λ) = S(x, λ) +
∫ x

0

R2(x, t)S(t, λ)dt, (3.29)

in which the kernel R2(·, ·) satisfies equation (2.19) and condition (2.20) as well as

R2(x, 0) = 0, x ∈ [0, 1], (3.30)

in place of (2.21). The rest of the proof is similar to that of Proposition 3.5. �

Corollary 3.7. Let n = 1 and S̃(1, λ)−1C̃(1, λ) = S(1, λ)−1C(1, λ) for λ ∈ G

(where G is an open set in C). Then Q̃(x) = Q(x) for a.e. x ∈ [0, 1].

Proof. The proof is similar to that of Corollary 3.2. It is only necessary to note,
following from the uniqueness theorem for equation (2.1), that the (scalar) entire
functions C(1, λ) and S(1, λ) have no common zeros. �

Remark 3.8. Proposition 3.6 has recently been proved by R. Carlson [9] in the
self-adjoint case (Q = Q∗). The main idea of his proof has been borrowed from
Levinson [31] who found an alternative method for establishing Borg’s result [4].
Our proof of Propositions 3.5 and 3.6 essentially differs from that in [9] and is
close to that of Proposition 3.1.
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4. Borg type results

4.1. Uniqueness of the potential matrix given S(1, λ)−1C(1, λ)

Here we generalize Corollary 3.3 to the case of matrix equations.

Theorem 4.1. Let C(x, λ), S(x, λ), C̃(x, λ) and S̃(x, λ) be defined as in Subsec-
tion 3.2 and G an open set in C. If

S(1, λ)−1C(1, λ) = S̃(1, λ)−1C̃(1, λ) λ ∈ G, (4.1)

then Q(x) = Q̃(x) for a.e. x ∈ [0, 1].

Proof. (i) As in Section 2 we denote by C∗(·, λ) and S∗(·, λ) the n × n matrix
solutions of (2.29) obeying the initial conditions

C∗(0, λ) = S′
∗(0, λ) = In, S∗(0, λ) = C′

∗(0, λ) = On. (4.2)

By Lemma 2.6, C(1, λ)S∗(1, λ)∗ = S(1, λ)C∗(1, λ)∗ (see identity (2.32)), so that
we can rewrite (4.1) in the form

C∗(1, λ)∗
(
S∗(1, λ)∗

)−1 = S̃(1, λ)−1C̃(1, λ), λ ∈ G. (4.3)

Since C∗(1, λ)∗, S∗(1, λ)∗, S̃(1, λ)−1 and C̃(1, λ) are entire matrix functions, equal-
ity (4.3) is equivalent to

S̃(1, λ)C∗(1, λ)∗ = C̃(1, λ)S∗(1, λ)∗, λ ∈ C . (4.4)

By Proposition 2.4 the solutions C̃(·, λ) and C(·, λ) are connected by means of
(2.18) with the Volterra operator R1, that is C̃(x, λ) = (I + R1)C(x, λ). Substi-
tuting this representation for C̃ and the representation (3.29) for S̃ in (4.4), and
setting Rj(t) := Rj(1, t) (j ∈ {1, 2}), we easily find∫ 1

0

R2(t)S(t, λ)dt · C∗(1, λ)∗ =
∫ 1

0

R1(t)C(t, λ)dt · S∗(1, λ)∗. (4.5)

By Proposition 2.1, C∗(t, λ) and S∗(t, λ) admit the representations

C∗(t, λ) = cos(λt)In +
∫ t

0

K∗1(t, s) cos(λs)ds,

λS∗(t, λ) = sin(λt)In +
∫ t

0

K∗2(t, s) sin(λs)ds. (4.6)

Moreover, both C(t, λ) and S(t, λ) admit similar representations with kernels
K1(t, s) and K2(t, s) in place of K∗1(t, s) and K∗2(t, s) respectively. Setting

Φj(t) := Rj(t) +
∫ 1

t

Rj(s)Kj(s, t)ds, j ∈ {1, 2} (4.7)
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we easily find ∫ 1

0

R1(t)C(t, λ)dt =
∫ 1

0

Φ1(t) cos(λt)dt =: a(λ), (4.8)

λ

∫ 1

0

R2(t)S(t, λ)dt =
∫ 1

0

Φ2(t) sin(λt)dt =: b(λ). (4.9)

Finally, letting
kj(t) := K∗j(1, t)∗, j ∈ {1, 2} (4.10)

and taking (4.6)–(4.10) into account we rewrite (4.5) as

a(λ)·[sin(λ)In+
∫ 1

0

k2(t) sin(λt)dt] = b(λ)·[cos(λ)In+
∫ 1

0

k1(t) cos(λs)ds]. (4.11)

Let A(·) and B(·) be any summable n×n matrix functions. Using the simple
identities∫ 1

0

eiλtA(t)dt ·
∫ 1

0

e−iλtB(t)dt =
∫ 1

0

eiλtdt

∫ 1

t

A(s)B(s − t)ds

+
∫ 1

0

e−iλtdt

∫ 1−t

0

A(s)B(t + s)ds,∫ 1

0

eiλtA(t)dt ·
∫ 1

0

eiλtB(t)dt =
∫ 2

0

eiλtdt

∫ t

0

A(s)B(t− s)ds, (4.12)

and the corresponding identities with λ replaced by −λ, we can rewrite (4.11) in
the form ∫ 2

0

eiλtΨ1(t)dt =
∫ 2

0

Ψ2(t)e−iλtdt,

with some summable n×n matrix functions Ψ1(·) and Ψ2(·). This identity yields

Ψ1(t) = 0, t ∈ [0, 2], Ψ2(t) = 0, t ∈ [0, 2]. (4.13)

The precise calculation of Ψj(·), j ∈ {1, 2}, shows that the first (as well as the
second) equation in (4.13) is equivalent to the following system of two integral
equations:

Φ1(t− 1)− Φ2(t− 1) =
∫ t

0

[Φ2(s)k1(t− s)− Φ1(s)k2(t− s)]ds, t ∈ [1, 2], (4.14)

Φ1(1− t) + Φ2(1− t) +
∫ 1

0

[Φ1(s)k̃2(t, s)− Φ2(s)k̃1(t, s)]ds

+
∫ 1−t

0

[Φ1(s)k2(t + s) + Φ2(s)k1(t + s)]ds = 0, t ∈ [0, 1]. (4.15)

Here k̃j(t, s), j ∈ {1, 2} is determined by

k̃j(t, s) =

{
kj(t− s), 0 ≤ s ≤ t,

(−1)j+1kj(s− t), t ≤ s ≤ 1.
(4.16)
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In the sequel we assume the matrix functions Φj and kj defined by (4.7) and
(4.10) to be extended by zero outside the segment [0, 1]. Taking this agreement
into account and setting t′ = t − 1 in (4.14) and t′ = 1 − t in (4.15), we rewrite
the system (4.14)–(4.15) as

Φ1(t)− Φ2(t) +
∫ 1

t

[Φ1(s)k2(t + 1− s)− Φ2(s)k1(t + 1− s)]ds = 0,

Φ1(t) + Φ2(t) +
∫ 1

0

[Φ1(s)k̃2(1 − t, s)− Φ2(s)k̃1(1 − t, s)]ds

+
∫ t

0

[Φ1(s)k2(1 − t + s) + Φ2(s)k1(1− t + s)]ds = 0, (4.17)

where t ∈ [0, 1].
(ii) In this step we show that system (4.17) has only the trivial solution

Φ1 = Φ2 = 0.
Consider equation (2.1) (resp. (2.16)) with a potential matrix Qµ := Q−µ2·In

(resp. Q̃µ := Q̃−µ2 · In) in place of Q (resp. Q̃), where µ ∈ C. Denote by Cµ(x, λ)
and Sµ(x, λ) the n× n-matrix solution of equation (2.1) (resp. (2.16)) subject to
(3.28), with Qµ in place of Q. Similarly C̃µ(x, λ) and S̃µ(x, λ) (resp. C∗µ(x, λ) and
S∗µ(x, λ)) stand for such n × n-matrix solutions of equation (2.16) (resp. (2.29))
with the potential Q̃µ (resp. Q∗

µ := Q∗ − µ2 · In) in place of Q (resp. Q∗).

It is clear that C̃µ = (I + R1)Cµ and S̃µ = (I + R2)Sµ. On the other hand,
combining representations (2.25) and (2.26) with (4.6) we arrive at the following
representations for the n× n-matrix solutions C∗µ and S∗µ of (2.29):

C∗µ(x, λ) = (I + K∗1) cos
(√

λ2 + µ2x
)

= (I + K∗1)(I + P1µ) cos(λx),

S∗µ(x, λ) = (I + K∗2)
sin(

√
λ2 + µ2x)√

λ2 + µ2
= (I + K∗2)(I + P2µ)

sin(λx)
λ

. (4.18)

Here P1µ and P2µ stand for the Volterra operators having the representations
(2.25) and (2.26)) respectively, with kernels Pj(x, t; µ) = pj(x, t; µ) · In, j ∈ {1, 2}
determined by (2.27). Setting

K∗j(x, t; µ) := K∗j(x, t) + Pj(x, t; µ) +
∫ x

t

K∗j(x, s)Pj(s, t; µ)ds,

Kj(x, t; µ) := Kj(x, t) + Pj(x, t; µ) +
∫ x

t

Kj(x, s)Pj(s, t; µ)ds, j ∈ {1, 2}, (4.19)

and denoting by K∗jµ the Volterra operator with kernel K∗j(x, t; µ), j ∈ {1, 2},
we rewrite (4.18) as

C∗µ(x, λ) = (I + K∗1µ) cos(λx), λS∗µ(x, λ) = (I + K∗2µ)sin(λx). (4.20)
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Next we set kj(t; µ) := K∗j(1, t; µ)∗, j ∈ {1, 2} and

Φj(t; µ) := Rj(t) +
∫ 1

t

Rj(s)Kj(s, t; µ)ds, j ∈ {1, 2}. (4.21)

Since Sµ(1, λ) = S(1,
√

λ2 + µ2) and Cµ(1, λ) = C(1,
√

λ2 + µ2), the identity (4.1)
yields

Sµ(1, λ)−1Cµ(1, λ) = S̃µ(1, λ)−1C̃µ(1, λ).

Starting with this identity instead of (4.1) and repeating the above arguments
we arrive at the system (4.17) with Φj(t; µ) and kj(t, s; µ) in place of Φj(t) and
kj(t, s), j ∈ {1, 2}.

According to the well-known asymptotic behavior of the Bessel function
J1(µ), we easily get from (2.27) the following asymptotic formulas

p1(x, t; µ) = −x
√

µ
cos(µ

√
x2 − t2 − 3

4π)√
π(x2 − t2)3/4

[1 + o(1)] + O
( √

µ

(x2 − t2)3/4

)
, (4.22)

p2(x, t; µ) = −t
√

µ
cos(µ

√
x2 − t2 − 3

4π)√
π(x2 − t2)3/4

[1 + o(1)] + O
( √

µ

(x2 − t2)3/4

)
, (4.23)

as µ→∞, | argµ| ≤ π − ε < π.
It easily follows from (4.19) and (4.22)–(4.23) that

K∗j(x, t; iµ) = K∗j(x, t;−iµ) = Pj(x, t; iµ)[1 + o(1)], as µ→ +∞. (4.24)

Using (4.22)–(4.24) we obtain from first Volterra type equation (4.17) (with
Φj(t; µ) in place of Φj(t)) that Φ1(t; µ) = Φ2(t; µ). Now the second of equations
(4.17) (with Φj(t; iµ) in place of Φj(t)) takes the form

− 2Φ1(t; iµ) =
∫ t

0

Φ1(s; iµ)G1(1− t− s; iµ)ds

−
∫ 1

t

Φ1(s; iµ)G2(s + t− 1; iµ)ds +
∫ t

0

Φ1(s; iµ)G3(1− t + s; iµ)ds, (4.25)

where G1(1 − t − s; µ) := k2(1 − t − s; µ) − k1(1 − t − s; µ), G2(s + t − 1; µ) :=
k2(s+t−1; µ)+k1(s+t−1; µ) and G3(1−t+s; µ) := k2(1−t+s; µ)+k1(1−t+s; µ).

It follows from (4.22)–(4.24) that

G1(1− t− s; iµ) = −
√

µ(t + s)1/4ei3π/4

√
π(2− t− s)3/4

eµ
√

(t+s)(2−t−s) · In

(
1 + o(1)

)
,

G3(1 − t + s; iµ) = −
√

µ(2− t + s)1/4ei3π/4

√
π(t− s)3/4

eµ
√

(t−s)(2−t+s) · In

(
1 + o(1)

)
,

(4.26)

as µ → +∞. Moreover, G2(s + t − 1; iµ) and G1(1 − t − s; iµ) have the same
asymptotic behavior as µ→ +∞.
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To prove that
(
ϕij(t; µ)

)n
i,j=1

:= Φ1(t; µ) ≡ 0, we suppose the contrary and
choose any t0 such that Φ1(t0; µ) �≡ 0. Then, it is clear from (4.21) and (4.22)–
(4.24) that Φ1(t0; µ) is a matrix function with entries being entire functions of
exponential type and completely regular growth (see [30]). Suppose for definite-
ness that ϕ12(t0; µ) is one of the entries of maximal growth along the imaginary
semi-axis iR+.

Setting
(
gij(t; µ)

)n
i,j=1

:= G1(t; µ) and
(
ψij(t; µ)

)n
i,j=1

:= Φ1(t; µ)G(1−2t; µ),
we get

ψ12(t0; iµ) =
n∑

j=1

ϕ1j(t0; iµ)gj2(1− 2t0; iµ). (4.27)

It follows from the asymptotic formula (4.26) that

g2j(1− t− s; iµ)g−1
22 (1− t− s; iµ)→ 0 as µ→∞, j �= 2. (4.28)

Combining (4.27) with (4.28) we obtain that

ψ12(t0; iµ) = φ12(t0; iµ)g22(1− 2t0; iµ)[1 + o(1)], as µ→ +∞.

Since both φ12(t0; ·) and g22(1 − 2t0; ·) are entire functions of completely regular
growth, the indicator diagram of the product φ12(t0; ·)g22(1 − 2t0; ·) is the sum
of the indicator diagrams of its two factors. Hence and from (4.26) we get that
ψ12(t0; ·) is a (nonzero) entire function of exponential type with

σ
(
ψ12(t0; ·)

)
= σ

(
φ12(t0; ·)

)
+ 2

√
t0(1− t0), (4.29)

where σ(f) stands for the type of the entire function f . Further, suppose first of
all that t0 > 1/2. It is easily seen that

σ
(
ψ12(s; ·)

)
> σ

(
φ12(t0; ·)

)
+ 2

√
t0(1− t0), s ∈ [1− t0, t0). (4.30)

Denoting by Ij := Ij(t; iµ) the jth summand in the right-hand side of (4.25), we
derive from (4.30) that

σ
(
I1(t0; ·)

)
> σ

(
φ12(t0; ·)

)
+ 2

√
t0(1 − t0). (4.31)

On the other hand, denoting by a the smallest number in the interval [0, 1] such
that supp‖R1(·)‖ ⊂ [0, a], we find from (4.21) and (4.26) that

I2(t; iµ) = o
(
eµ(

√
a2−t2+2

√
t(1−t))

)
, as µ→ +∞. (4.32)

Combining (4.31) with (4.32) we obtain

σ
(
I1(t0; ·)

)
> σ

(
I2(t0; ·)

)
. (4.33)

Next, the inequality (t+ s)(2− t− s) > (t− s)(2− t+ s) together with the asymp-
totic formulas (4.26) yield σ

(
I1(t0; ·)

)
> σ

(
I3(t0; ·)

)
. Combining this inequality

with (4.33), yields σ(I1) > max{σ(I2), σ(I3)}. Hence σ(I1 + I2 + I3) = σ(I1). It
follows now from (4.25) and (4.31) that

σ
(
Φ1(t0; ·)

)
= σ

(
I1(t0; ·)

)
> σ

(
ϕ12(t0; ·)

)
= σ

(
Φ1(t0; ·)

)
. (4.34)
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This inequality contradicts the assumption Φ1(t0; µ) �= 0. Thus, Φ1(t; µ) = 0 for
t ∈ [1/2, 1]. The case t ∈ (0, 1/2) is considered similarly.

Thus, Φ1(t; µ) = Φ2(t; µ) ≡ 0. It follows now either from (4.7) or from (4.21)
that R1(t) = R2(t) = 0, t ∈ [0, 1]. In turn the integral representations (2.18) and
(3.29) yield C̃(1, λ) = C(1, λ) and S̃(1, λ) = S(1, λ). To complete the proof it
remains only to apply Proposition 3.6. �

Remark 4.2. We show that, for Q small enough, step (ii) of the proof can be
considerably shortened. Taking the sum and difference of equations (4.17), we
arrive at the following equivalent system of integral equations

−2Φj(t) =
∫ 1

0

[Φ1(s)G2j(t, s) + Φ2(s)G2j−1(t, s)]ds, j ∈ {1, 2}, (4.35)

with some kernels Gj(t, s), j ∈ {1, 2, 3, 4}.
Denote by T the integral operator with 2n × 2n matrix kernel G(t, s) :=(

G2 G1

G4 G3

)
acting in C[0, 1] ⊗ C2n×2n and put Φ := col(Φ1, Φ2). Then system

(4.35) can be rewritten as TΦ = −2Φ.
The required statement is obvious if ‖T ‖ < 2. In turn, this bound holds

provided we assume ‖Q‖L1⊗Cn×n < ε with ε small enough. Thus, in this case
system (4.35) has only the trivial solution Φ1 = Φ2 = 0.

4.2. Borg type results

Consider equation (2.1) subject to the boundary conditions

y′(0, λ)−Hy(0, λ) = 0, y(1, λ) = 0, H ∈ Cn×n (4.36)

and denote by S(Q; H, D) the spectrum of the problem (2.1), (4.36).
Recall that, by definition, S(Q; H, D) is the set of eigenvalues of the problem

(2.1), (4.36), that is the set of values λ2
0 such that (2.1), (4.36) has a nontrivial so-

lution y(x, λ0). The root subspace N(λ2
0) is the set of eigenfunctions and associated

functions corresponding to the eigenvalue λ2
0.

Denote also by S(Q; D, D) the spectrum of the Dirichlet problem

y(0, λ) = 0, y(1, λ) = 0, (4.37)

for equation (2.1).

Theorem 4.3. Let Q, Q̃ ∈ L1[0, 1]⊗ Cn×n and Hj ∈ Cn×n, j ∈ {1, . . . , n2}. Sup-
pose that the matrices Hj , j ∈ {1, . . . , n2}, are linearly independent and that the
equations (2.1) and (2.16) have n2 + 1 equal spectra:

S(Q; D, D) = S(Q̃; D, D), S(Q; Hj, D) = S(Q̃; Hj , D), j ∈ {1, . . . , n2}.
(4.38)

Then Q(x) = Q̃(x) for almost all x ∈ [0, 1].
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Proof. (i) Denote by Yj(x, λ) (resp. Ỹj(x, λ)) the n×n-matrix solution of equation
(2.1) (resp.(2.16)) satisfying the initial conditions

Ỹj(0, λ) = Yj(0, λ) = In, Ỹ ′
j (0, λ) = Y ′

j (0, λ) = Hj , j ∈ {1, . . . , n2}. (4.39)

As above, we denote by S(x, λ) and C(x, λ) the n×n-matrix solutions of equation
(2.1) obeying the initial conditions (3.28). It is clear that

Yj(x, λ) = C(x, λ) + S(x, λ)Hj , j ∈ {1, . . . , n2}. (4.40)

Note that every determinant

Fj(λ) := det
(
C(1, λ) + S(1, λ)Hj

)
, j ∈ {1, . . . , n2}, (4.41)

is an even entire function because so are C(1, λ) and S(1, λ).
It is easily seen that the spectrum S(Q; Hj, D) of the problem (2.1), (4.36)

coincides with the set of squares of roots of the determinant Fj(·). Moreover,
the dimension of the root subspace N(µ0) corresponding to the eigenvalue µ0 =
λ2

0 equals the multiplicity of the root λ0 of the entire function Fj(λ). Note that
multiplicities of the roots ±λ0 coincide since Fj is an even function.

Similarly, the spectrum S(Q̃; Hj , D) of the problem (2.16), (4.39) coincides
(taking multiplicities into account) with the roots of the entire function

F̃j(λ) := det
(
C̃(1, λ) + S̃(1, λ)Hj

)
, j ∈ {1, . . . , n2}. (4.42)

Hence the equality of the spectra (4.38) is equivalent to the equality of the zeros
(counted with multiplicities) of the entire functions Fj and F̃j , j ∈ {1, . . . , n2}.

By Proposition 2.1 the solutions Yj(x, λ) and Ỹj(x, λ) admit the representa-
tions (2.3) with kernels Kj(x, t) and K̃j(x, t), respectively. Therefore both Fj and
F̃j , of the form (4.41) and (4.42) respectively, are even entire functions of expo-
nential type. So Fj (resp. F̃j) is uniquely (to within a constant factor) determined
by its zeros. Since they have the same zeros (taking account of multiplicities), they
can differ only by a constant factor, F̃j(λ) = ajFj(λ). It also follows from (2.3),
(4.41) and (4.42) that aj = 1 for j ∈ {1, . . . , n2}. Similarly, the first equality in
(4.38) yields det S̃(1, λ) = detS(1, λ).

(ii) For simplicity, we consider the boundary conditions (4.36) with special
matrices Hj . Namely, we choose the basis Eij = (δkiδmj)n

k,m=1 (i, j ∈ {1, . . . , n})
in Cn×n and consider equalities (4.38) with Hj replaced by Eij . Using definitions
(4.41) and (4.42) and setting

M0(λ) := S(1, λ)−1C(1, λ) and M̃0(λ) := S̃(1, λ)−1C̃(1, λ)

we obtain

Fij(λ) := det
(
C(1, λ) + S(1, λ)Eij

)
= detS(1, λ) · det

(
M0(λ) + Eij

)
= detS(1, λ)[m(λ) + Aij(λ)] = det S̃(1, λ)[m̃(λ) + Ãij(λ)], (4.43)
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where Aij(λ) (resp. Ãij(λ)) is a cofactor of the element aij(λ) (resp. ãij(λ)) of the
matrix M0(λ) (resp. M̃0(λ)), m(λ) := detM0(λ) and m̃(λ) := det M̃0(λ). Since
detS(1, λ) = det S̃(1, λ) we get from (4.43) that

bij(λ) := Aij(λ) + m(λ) = Ãij(λ) + m̃(λ), i, j ∈ {1, . . . , n2}. (4.44)

Setting

A(λ) :=
(
Aij(λ)

)n
i,j=1

, B(λ) :=
(
bij(λ)

)n
i,j=1

and E =
∑
i,j

Eij

and noting that det
(
A(λ)

)
= m(λ)n−1, we derive from (4.44) that

m(λ)n−1 = det
(
B(λ)−m(λ)E

)
= det

(
B(λ)− m̃(λ)E

)
= m̃(λ)n−1.

It follows that both m(λ) and m̃(λ) satisfy the equation

zn−1 = b0(λ)− b1(λ)z, (4.45)

where b0(λ) := detB(λ), b1(λ) :=
∑

1≤j≤n detBj(λ) and Bj is the n× n-matrix
obtained from B(λ) by replacing the jth column by the column col(1, 1, . . . , 1).

Since both m(·) and m̃(·) are the roots of equation (4.45) we have

(
m̃(λ) −m(λ)

) [n−2∑
k=0

m̃(λ)km(λ)n−2−k + b1(λ)

]
= 0. (4.46)

On the other hand, it follows from (2.3) and (2.14) that M0(−iy) = iIn +On(−iy)
and M̃0(−iy) = iIn + Õn(−iy), where On(λ) =

(
Oij(λ)

)n
i,j=1

and where Õn(λ) =(
Õij(λ)

)n
i,j=1

are n×n-matrix functions satisfying Oij(−iy) = o(1) and Õij(−iy) =
o(1) as y → +∞. Hence m(−iy) = in + o(1), m̃(−iy) = in + o(1) as y → +∞.
These relations imply

n−2∑
k=0

m̃(−iy)km(−iy)n−2−k = (n−1)in−2+o(1), b1(−iy) = n·i(n−1)2+o(1) (4.47)

as y → +∞. In turn, by (4.47), the expression in the square brackets of (4.46)
differs from zero for λ = −iy with y large enough. Therefore we have from (4.46)
that m(λ) = m̃(λ). Combining this equality with (4.44) yields Aij(λ) = Ãij(λ)
for i, j ∈ {1, . . . , n2}. Hence M0(λ) = M̃0(λ). To complete the proof it suffices to
apply Theorem 4.1. �

Corollary 4.4. Let Q(x) = Q(x)∗ and Q̃(x) = Q̃(x)∗ for a.e. x ∈ [0, 1]. Suppose
that S(Q; D, D) = S(Q̃; D, D) and

S(Q; Eij , D) = S(Q̃; Eij , D), 1 ≤ i ≤ j ≤ n. (4.48)

Then Q(x) = Q̃(x) for a.e. x ∈ [0, 1].
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Proof. Since Q(x) = Q(x)∗ we have S(x, λ) = S∗(x, λ) and C(x, λ) = C∗(x, λ).
Therefore, by (2.32), M0(λ) := S(1, λ)−1C(1, λ) = M0(λ)∗. Hence M0(λ) =
M0(λ)∗ and M̃0(λ) = M̃0(λ)∗ for λ ∈ R. Starting with (4.48) and repeating the
arguments of the proof of Theorem 4.3, we obtain

bij(λ) := Aij(λ) + m(λ) = Ãij(λ) + m̃(λ), 1 ≤ i ≤ j ≤ n. (4.49)

Combining (4.49) with the identities Aij(λ) = Aji(λ), Ãij(λ) = Ãji(λ), λ ∈ R,
we arrive at (4.44). Hence M0(λ) = M̃0(λ) for λ ∈ R and Q(x) = Q̃(x) for a.e.
x ∈ [0, 1] by Theorem 4.1. �

5. Borg type results: second approach

5.1. Uniqueness of the potential matrix given the Weyl function

Theorem 5.1. Let Y (resp. Ỹ ) be the n×n matrix solutions of (2.1) (resp. (2.16))
obeying the initial conditions (2.2) (resp. (2.17)), and G an open set in C. If

Y ′(1, λ) · Y (1, λ)−1 = Ỹ ′(1, λ) · Ỹ (1, λ)−1 ∀λ ∈ G, (5.1)

then H = H̃ and Q(x) = Q̃(x) for a.e. x ∈ [0, 1].

Proof. Denote by Y∗(·, ·) the n × n matrix solution of (2.29) obeying the initial
conditions Y∗(0, λ) = In, Y ′

∗(0, λ) = H∗ and note that both Y and Y∗ satisfy
the conditions of Lemma 2.7. Therefore in view of (2.35) identity (5.1) may be
rewritten as(

Y∗(1, λ)∗
)−1 · Y ′

∗(1, λ)∗ = Ỹ ′(1, λ) · Ỹ (1, λ)−1, λ ∈ G. (5.2)

Hence
Y ′
∗(1, λ)∗ · Ỹ (1, λ) = Y∗(1, λ)∗ · Ỹ ′(1, λ), λ ∈ C. (5.3)

By Proposition 2.1, the solutions Y (x, λ) and Ỹ (x, λ) are connected by means of
formula (2.18). Let us set

R0(t) := R(1, t) and R1(t) := DxR(x, t)|x=1. (5.4)

Substituting (2.18) into (5.3) and taking into account identity (2.35) as well as the
notation (5.4) we arrive at

Y ′
∗(1, λ)∗

∫ 1

0

R0(t)Y (t, λ)dt = Y∗(1, λ)∗
∫ 1

0

R1(t)Y (t, λ)dt

+ Y∗(1, λ)∗R(1, 1)Y (1, λ). (5.5)

By the Riemann-Lebesgue lemma both the first and the second term in (5.5) tend
to zero as λ→ ±∞, hence R0(1) = R(1, 1) = 0.

Consider the representation (2.3) for Y (x, λ) with kernel K(x, t), and put

Φj(t) := Rj(t) +
∫ 1

t

Rj(s)K(s, t)ds, j ∈ {0, 1}. (5.6)
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Combining (2.3) with (5.6) and noting that Φ0 ∈ AC[0, 1] we easily find∫ 1

0

R0(t)Y (t, λ)dt =
∫ 1

0

Φ0(t) cos(λt)dt = −
∫ 1

0

Φ
′
0(t)

sin(λt)
λ

dt =: a(λ),∫ 1

0

R1(t)Y (t, λ)dt =
∫ 1

0

Φ1(t) cos(λt)dt =: b(λ). (5.7)

Taking (5.7) into account and using R(1, 1) = 0, we rewrite (5.5) as

Y ′
∗(1, λ)∗ · a(λ) = Y∗(1, λ)∗ · b(λ). (5.8)

According to Proposition 2.1, Y∗(x, λ) admits a representation similar to that for
Y (cf. (2.3)), so that we have

Y∗(x, λ) = cos(λx) · In +
∫ x

0

K∗(x, t) cos(λt)dt, (5.9)

where the n× n-matrix kernel K∗(x, t) is absolutely continuous with respect to x
(respectively t) for every fixed t ∈ [0, 1] (respectively x ∈ [0, 1]).

Let us write

k0(t) := K∗(1, t)∗ and k1(t) := DxK∗(x, t)∗|x=1 (5.10)

and assume for brevity that K∗(1, 1) = 0. Substituting (5.9) into (5.8) and taking
(5.10) into account we arrive at the identity[
−λ sin(λ)In +

∫ 1

0

k1(t) cos(λt)dt

]
· a(λ) =

[
cos(λ)In +

∫ 1

0

k0(t) cos(λt)dt

]
· b(λ).

(5.11)
Repeating the arguments of the proof of Theorem 4.1 and setting

k̃j(t, s) :=

{
kj(1− t− s), 0 ≤ s + t ≤ 1
kj(t + s− 1), 1 ≤ s + t ≤ 2.

for j ∈ {0, 1}, we arrive at the following system of integral equations:

Φ′
0(t) + Φ1(t)−

∫ 1

t

[k0(1 + t− s)Φ1(s) + k1(1 + t− s)Φ0(s)]ds = 0,

− Φ′
0(t) + Φ1(t) +

∫ 1

0

[k̃0(t, s)Φ1(s)− k̃1(t, s)Φ0(s)]ds +∫ t

0

[k0(1− t + s)Φ1(s)− k1(1− t + s)Φ0(s)]ds = 0, t ∈ [0, 1]. (5.12)

Starting with the system (5.12) and following the proof of Theorem 4.1 we obtain
Φ′

0(t) = Φ1(t) = 0. Since Φ0(0) = 0 we get Φ0(t) = Φ1(t) = 0. It follows from (5.6)
that R0(t) = R1(t) = 0 for t ∈ [0, 1]. In turn, due to (2.18), we have Y (1, λ) =
Ỹ (1, λ) and Y ′(1, λ) = Ỹ ′(1, λ) for λ ∈ C. To complete the proof it suffices to
apply Proposition 3.1. �
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Remark 5.2. Theorem 5.1 extends to the matrix case the classical result due to
Borg and Marchenko, which states that the half-line m-function uniquely deter-
mines the corresponding real potential coefficient. Another proof of the Borg-
Marchenko result has recently been proposed by B. Simon [44] (see also the paper
of Gesztesy and Simon [22]). As mentioned in [44], the proof remains valid for ma-
trix Sturm-Liouville operators with self-adjoint Q(·) = Q(·)∗. Note, however, that
the proofs contained in [44] and [22] cannot be extended to the non-self-adjoint
case. Nevertheless Theorem 5.1 seems to be known implicitly for non-self-adjoint
matrix functions Q(·) as well. Although I was not able to find this result in the
literature, it can apparently be extracted from the result on unique recovery of the
potential matrix from the generalized spectral function (see [42]); however, the
proof given here seems to be simpler.

5.2. A further Borg type result

Consider equation (2.1) subject to the boundary conditions

y′(0, λ)−Hy(0, λ) = 0, y′(1, λ) + Hjy(1, λ) = 0, H, Hj ∈ Cn×n, (5.13)

and denote by S(Q; H, Hj) the spectrum of the problem (2.1), (5.13). As in Sec-
tion 4 we denote by S(Q; D, D) the spectrum of the Dirichlet problem (2.1), (4.37).

Theorem 5.3. Let Q, Q̃ ∈ L1[0, 1]⊗Cn×n and Hj ∈ Cn×n, j ∈ {1, . . . , n2}. Suppose
that the matrices Hj , j ∈ {1, . . . , n2}, are linearly independent and that equations
(2.1) and (2.16) have n2 + 1 equal spectra

S(Q; D, D) = S(Q̃; D, D), S(Q; H, Hj) = S(Q̃; H, Hj), j ∈ {1, . . . , n2}.
(5.14)

Then Q(x) = Q̃(x) for almost all x ∈ [0, 1].

The proof is similar to that of Theorem 4.3. It is only necessary to use The-
orem 5.1 in place of Theorem 4.1 and the asymptotic behavior

M(λ) := Y ′(1, λ)Y (1, λ)−1 = i
√

λ(
(
In + o(1)

)
, (5.15)

as |λ| → ∞ with arg(λ) ∈ (−π/2 + ε,−ε), ε > 0, in place of the asymptotic
formulas for M0(λ) = S(1, λ)−1C(1, λ).

Note also that another proof of Theorem 5.3 has been previously obtained by
M. Lesch (private communication). While his proof is based on results from [6, 7],
he also used algebraic formulas similar to (4.43) and (4.44).

5.3. Dirac-type operators

Let B = diag(λ1In, λ2In) (∈ R2n×2n) be a diagonal 2n× 2n matrix and let Q(·)
and Q̃(·) be 2n × 2n potential matrices having block representations (with zero
diagonals)

Q(x) =
(
Qij(x)

)2
i,j=1

, Q̃(x) =
(
Q̃ij(x)

)2
i,j=1

, Qii(x) = Q̃ii(x) = 0, (5.16)

with respect to the decomposition C2n = Cn ⊕ Cn.
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Here we present an analogue of Theorem 5.1 for the following Dirac type
system of ordinary differential equations:

B
dy(x, λ)

dx
+ Q(x)y(x, λ) = λy(x, λ), y = col(y1, . . . , y2n). (5.17)

To state the corresponding result, consider alongside equation (5.17) the analogous
equation

B
dy(x, λ)

dx
+ Q̃(x)y(x, λ) = λy(x, λ), y = col(y1, . . . , y2n). (5.18)

with a potential matrix Q̃(·) of the form (5.16).

Theorem 5.4. [38] Let B = diag(λ1In, λ2In) where λ1 > 0, λ2 < 0, and let Q and
Q̃ be potential matrices of the form (5.16) belonging to L∞(Ω)⊗ C2n×2n. Let

Y (x, λ) =
(

Y1(x, λ)
Y2(x, λ)

)
and Ỹ (x, λ) =

(
Ỹ1(x, λ)
Ỹ2(x, λ)

)
(5.19)

be 2n × n matrix solutions of equations (5.17), (5.18), respectively, obeying the
initial conditions

Y (0, λ) = Ỹ (0, λ) = col(In, A1), A1 ∈ Cn×n, det A1 �= 0. (5.20)

If in some open set G ⊂ C,

Y1(1, λ)Y2(1, λ)−1 = Ỹ1(1, λ)Ỹ2(1, λ)−1, λ ∈ G, (5.21)

then Q(x) = Q̃(x) for almost all x ∈ [0, 1].

Remark 5.5. Local uniqueness results for Dirac-type operators in terms of expo-
nentially small differences of Weyl-Titchmarsh matrices with applications to other
Borg-type uniqueness theorems appeared in [11]. Analogous results for Schrödinger
and Jacobi operators can be found in [3], [12], [18], and [23].

Note in conclusion that different uniqueness results concerning first-order
systems of ODE’s as well as canonical (Hamiltonian) systems can be found in [1],
[2], [8], [9], [10]–[15], [17], [18], [22], [29], [36]–[38], [43] (see also the references cited
therein).

Next we present a generalization of Theorem 4.1 to the case of Dirac type
systems (5.17).

Theorem 5.6. Let B = diag(λ1In, λ2In) where λ1 > 0, λ2 < 0, and let Q and Q̃
be potential matrices of the form (5.16) belonging to L∞(Ω)⊗C2n×2n. Let Y and
Ỹ be as in Theorem 5.4 and

Z(x, λ) =
(

Z1(x, λ)
Z2(x, λ)

)
, Z̃(x, λ) =

(
Z̃1(x, λ)
Z̃2(x, λ)

)
, (5.22)

be 2n × n matrix solutions of equations (5.17), (5.18), respectively, obeying the
initial conditions

Z(0, λ) = Z̃(0, λ) = col(In, A2), A2 ∈ Cn×n, det A2 �= 0. (5.23)
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Assume that 0 ∈ ρ(A1 −A2) and that, for all λ in some open set G ⊂ C:

Y1(1, λ)Z1(1, λ)−1 = Ỹ1(1, λ)Z̃1(1, λ)−1. (5.24)

Then Q(x) = Q̃(x) for almost all x ∈ [0, 1].

The proof of Theorem 5.6 will be published elsewhere [39]. We note only
that it is based on the following analogue of Proposition 3.5: a potential matrix
of equation (5.17) is uniquely determined by the row

(
Y1(1, λ) Z1(1, λ)

)
of the

corresponding monodromy matrix.

6. A generalization of the Hochstadt-Lieberman result

6.1. The case of Sturm-Liouville operators

Here we obtain an extension of the Hochstadt-Lieberman theorem [25] to the
matrix Sturm-Liouville operator.

Consider two Sturm-Liouville equations

−y′′ + Q(x)y = λ2y, −ỹ′′ + Q̃(x)ỹ = λ2ỹ (6.1)

with n × n potential matrices Q(x) and Q̃(x), respectively; in general, they are
non-self-adjoint.

First we show that the n × n potential matrix Q is uniquely determined by
a quarter of the monodromy matrix W (λ) if Q(·) is known on half of an interval.
Our proof is similar to that of Proposition 3.1.

Theorem 6.1. [38] Let Q, Q̃ ∈ L1[0, 1] ⊗ C n×n and let Q(x) = Q̃(x) for almost
all x ∈ [1/2, 1]. Let Y (x, λ) and Ỹ (x, λ) be n × n matrix solutions of the Cauchy
problems

Y (0, λ) = Ỹ (0, λ) = In, Y ′(0, λ) = H1, Ỹ ′(0, λ) = H̃1 (6.2)

for the first and second equation (6.1), respectively. If

Y ′(1, λ) + H2Y (1, λ) = Ỹ ′(1, λ) + H2Ỹ (1, λ), λ ∈ C, (6.3)

for some matrix H2 ∈ C n×n, then H1 = H̃1 and Q(x) = Q̃(x) for almost all
x ∈ [0, 1].

Proof. (i) By Proposition 2.4 the solutions Ỹ (x, λ) and Y (x, λ) of the Cauchy
problems (6.1), (6.2) are related by

Ỹ (x, λ) = Y (x, λ) +
∫ x

0

R(x, t)Y (t, λ) dt, (6.4)

where R(·, ·) ∈ W 1
1 (Ω)⊗ C n×n.

Moreover, the n×n matrix kernel R(·, ·) is a generalized solution (in the sense
of distributions) of the Goursat problem (2.19)–(2.21). Furthermore, P (u, v) :=
R
(
(u + v)/2, (u − v)/2

)
is a classical solution of the Goursat problem (3.1)–(3.3)

in the triangle " = {(u, v) : 0 ≤ v ≤ u ≤ 2− v}.
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(ii) First we show that P (u, v) = 0 in the triangle "1 := {(u, v) : 1 ≤ u ≤
2−v, v ≥ 0}. To show this, we observe that, by (6.4), the equality (6.3) is equivalent
to the following two equations:

[DxR(x, t) + H2R(x, t)]|x=1 = 0 and R(1, 1) = 0,

which in turn are equivalent to the similar equations for P (u, v):[
(Du + Dv)P (u, v) + H2P (u, v)

]∣∣
v=2−u

= 0, u ∈ [1, 2], P (2, 0) = 0. (6.5)

By rewriting these equalities as

dP (u, 2− u)
du

−H2P (u, 2− u) = 2D1P (u, 2− u), P (2, 0) = 0,

and integrating, we obtain

P (u, 2− u) = 2
∫ u

2

eH2(u−α)D1P (α, 2 − α) dα, u ∈ [1, 2]. (6.6)

Since Q(x) = Q̃(x) for almost all x ∈ [1/2, 1], equality (3.3) yields

DuP (u, 0) = 0, u ∈ [1, 2]. (6.7)

Taking (6.7) into account, we integrate (3.1) with respect to the second variable.
Thus we obtain the equation

DαP (α, v) =
1
4

∫ v

0

Q(α, β)P (α, β) dβ, α ∈ [1, 2], (6.8)

where Q(α, β) := Q̃((α + β)/2) − Q((α − β)/2). Integrating equation (6.8) with
respect to α and using (6.6), we obtain the following equation for P (u, v) in "1:

P (u, v) = −1
4

∫ 2−v

u

∫ v

0

Q(α, β)P (α, β) dβ dα

− 1
2

∫ 2

2−v

eH2(2−v−α)

∫ 2−α

0

Q(α, β)P (α, β) dβ dα. (6.9)

Observing that v ≥ 2− α, it follows from (6.9) that

‖P (u, v)‖ ≤ C1

∫ 2

u

∫ v

0

‖Q(α, β)‖ · ‖P (α, β)‖ dβ dα, (u, v) ∈ "1, (6.10)

where C1 =
(
1/4 + 1/2 maxu∈[0,1] ‖ exp(−H2u)‖

)
.

Note that the operator T : C("1)⊗ Cn×n → C("1)⊗ Cn×n, given by

T : P (u, v) �→
∫ 2

u

∫ v

0

Q(α, β)P (α, β) dβ dα,

is a Volterra operator, since the kernel Q(·, ·) can be approximated in L1("1) ⊗
Cn×n by bounded kernels. Therefore (6.10) yields the required equality P (u, v) = 0
for (u, v) ∈ "1.
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(iii) It remains to show that P (u, v) = 0 in the triangle "2 = {(u, v) : 0 ≤
v ≤ u ≤ 1}. From the previous step, we have

P (1, v) = DvP (1, v) = 0, v ∈ [0, 1]. (6.11)

Adding condition (3.2) to (6.11) we obtain a Goursat problem in "2 for the equa-
tion (3.1). The required assertion P (u, v) = 0 in "2 has already been proved in
step (iii) of the proof of Proposition 3.1.

Thus P (u, v) = 0 everywhere in the triangle ". Therefore P (u, 0) = 0 for
u ∈ [0, 2], and by condition (3.3) we have H1 = H̃1 and Q̃(x) = Q(x) for almost
all x ∈ [0, 1]. �

Remark 6.2. (a) The conclusion of Theorem 6.1 remains valid if condition (6.3) is
replaced by the condition Y (1, λ) = Ỹ (1, λ). The proof follows the same arguments,
but with some simplifications. Indeed, we now obtain the condition P (u, 2−u) = 0
for u ∈ [1, 2] in place of (6.5), and we find

P (u, v) =
1
4

∫ 2−v

u

∫ v

0

Q(α, β)P (α, β) dβ dα

in place of (6.9). The proof then runs as before.
(b) The case of the alternative initial conditions Y (0, λ) = Ỹ (0, λ) = On,

Y ′(0, λ) = H1, Ỹ ′(0, λ) = H̃1 can be treated in a similar manner.

Let us briefly consider the scalar (n = 1) Sturm-Liouville equation. Denote
by S(q; h1, h2) the spectrum of the problem with separated boundary conditions
for the first equation (6.1):

−y′′ + q(x)y = λ2y, y′(0)− h1y(0) = 0, y′(1) + h2y(1) = 0. (6.12)

Corollary 6.3. Let n = 1 and suppose that q, q̃ are complex-valued summable po-
tentials on [0, 1] satisfying the condition q(x) = q̃(x) for almost all x ∈ [1/2, 1]. If,
moreover, S(q; h1, h2) = S(q̃; h̃1, h2), then h1 = h̃1 and q(x) = q̃(x) for almost all
x ∈ [0, 1].

Proof. Since the entire function y′(1, λ) + h2y(1, λ) is uniquely determined by its
zeros, i. e., by the spectrum S(q; h1, h2), the proof follows by an application of
Theorem 6.1. �

Corollary 6.4. Let n = 1 and q(x) = q̃(x) for almost all x ∈ [0, 1/2]. If, moreover,
S(q; h1, h2) = S(q̃; h1, h̃2), then h2 = h̃2 and q(x) = q̃(x) for almost all x ∈ [0, 1].

Remark 6.5. Corollary 6.3 was first obtained by Hochstadt and Lieberman [25]
under the assumption h1 = h̃1, and in full generality (for h1 �= h̃1) by other
methods in [24] and [45].
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The conditions of Corollary 6.3 are sharp. Namely:

(i) It has been shown in [24], [13] that one cannot take different boundary con-
ditions at the point x0 = 1; i.e., the implication

S(q; h1, h2) = S(q̃; h1, h̃2) =⇒ q(x) = q̃(x) for almost all x ∈ [0, 1] (6.13)

does not hold, in general, without the further assumption h2 = h̃2;
(ii) The interval [1/2, 1] cannot be replaced by a smaller interval (see [21] or the

article by R. del Rı́o in this volume);
(iii) Under the assumption q, q̃ ∈ C[0, 1], the requirement of equality of the

spectra can be replaced by the requirement of equality of all but one corre-
sponding eigenvalue (see [45]). Contrary to an assertion in [45], the condition
of continuity of potentials is essential for this result (see [21] or [24]).

Note also that Gesztesy and Simon [19]–[22] and Gesztesy, Simon and del
Rio [14], [15] have developed an original and promising approach to Hochstadt-
Lieberman type results, as well as to other inverse problems (e. g., on a half-line
or a line) with partial information on the potential. This enabled them to obtain a
number of results on uniqueness of the potential given the potential on the interval
[1/2− ε, 1] and some part of the spectrum.

Typical results obtained by Gesztesy and Simon are the following:

Theorem 6.6. [21] Let L = −d2/dx2 + q in L2[0, 1] with boundary conditions
y′(0) − h1y(0) = 0, y′(1) + h2y(1) = 0 and h1, h2 ∈ R. Suppose q is of class C2k

on the interval (1
2 − ε, 1

2 + ε), for some k = 0, 1, 2 . . . , and for some ε > 0. Then q
on [0, 1/2], h1, and all except (k + 1) eigenvalues of L uniquely determine h2 and
q on the whole of [0, 1].

Theorem 6.7. [21] Let L = −d2/dx2 + q in L2[0, 1] with boundary conditions
y′(0) − h1y(0) = 0, y′(1) + h2y(1) = 0 and h1, h2 ∈ R. Then q on [0, (1 + α)/2]
for some α ∈ (0, 1), h1, and a subset S ⊆ σ(L) of all the eigenvalues σ(L) of L,
satisfying

#{λ ∈ S | λ ≤ λ0} ≥ (1− α)#{λ ∈ σ(L) | λ ≤ λ0}+ (α/2) (6.14)

for all sufficiently large λ0 ∈ R, uniquely determine h2 and q on the whole of [0, 1].

Remark 6.8.

(i) As a typical example, knowing slightly more than half the eigenvalues and
knowing q on [0, 3/4] determines q uniquely on the whole of [0, 1].

(ii) As in the case α = 0, there is an extension of the same type as Theorem 6.6.
Explicitly, if q is assumed to be C2k near x = (1 + α)/2, one only needs

#{λ ∈ S | λ ≤ λ0} ≥ (1− α)#{λ ∈ σ(L) | λ ≤ λ0}+ (α/2)− (k + 1)

instead of (6.14).
(iii) The case k = 0 of Theorem 6.6 is due to Hald [24].
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For further discussion of results of this kind, see the article of R. del Rio in this
volume. Note also that there are no known generalizations of Theorems 6.6 and
6.7 to the vector case.

6.2. The case of Dirac-type operators

In this subsection we present an analogue of the Hochstadt-Lieberman theorem
[25] for the system (5.17).

Theorem 6.9. [38] Let B = diag(λ1In, λ2In) where λ1 > 0, λ2 < 0, and let Q and
Q̃ be potential matrices of the form (5.16), which belong to L∞(Ω)⊗ C2n×2n. Let

Y (x, λ) =
(

Y1(x, λ)
Y2(x, λ)

)
and Ỹ (x, λ) =

(
Ỹ1(x, λ)
Ỹ2(x, λ)

)
(6.15)

be 2n × n matrix solutions of equations (5.17), (5.18), respectively, obeying the
initial conditions

Y (0, λ) = Ỹ (0, λ) = col(A1, A2), detAj �= 0, j ∈ {1, 2}. (6.16)

Assume in addition that:
1) the equality

Y1(1, λ)−HY2(1, λ) = Ỹ1(1, λ)−HỸ2(1, λ), λ ∈ C, (6.17)

holds, where H ∈ Cn×n and detH �= 0;
2) Q(x) = Q̃(x) for almost all x ∈ [x0, 1], where

x0 = min{|λ1|(|λ1|+ |λ2|)−1, |λ2|(|λ1|+ |λ2|)−1}. (6.18)

Then Q(x) = Q̃(x) for almost all x ∈ [0, 1].

As a corollary, we state the corresponding result for the Dirac system.

Corollary 6.10. [38] Under the assumptions of Theorem 6.9, let λ1 = 1, λ2 = −1.
Moreover, let condition (6.17) be fulfilled and Q(x) = Q̃(x) for almost all x ∈
[1/2, 1]. Then Q(x) = Q̃(x) for almost all x ∈ [0, 1].

Passing to the scalar case, n = 1, denote by S(Q; h, h1) the spectrum (taking
account of multiplicities) of equation (5.17) subject to the boundary conditions

y2(0, λ)− hy1(0, λ) = 0, y2(1, λ)− h1y1(1, λ) = 0. (6.19)

Corollary 6.11. For n = 1, let Q(x) and Q̃(x) be complex-valued summable 2 × 2
potential matrices of the form (5.16), and let h, h1 ∈ C \ {0}. If Q(x) = Q̃(x) for
almost all x ∈ [x0, 1], where x0 is defined by (6.18), and S(Q; h, h1) = S(Q̃; h, h1),
then Q(x) = Q̃(x) for almost all x ∈ [0, 1].

Proof. Let y = col(y1, y2) be the solution of equation (5.17) obeying the initial
conditions y1(0, λ) = 1, y2(0, λ) = h. It is easily seen (compare the proof of
Corollary 3.3) that the entire function F (λ) := y2(1, λ) − h1y1(1, λ) is uniquely
determined by the spectrum S(Q; h, h1) of the boundary value problem (5.17),
(6.19). Therefore the required conclusion follows directly from Theorem 6.9. �
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Remark 6.12. In the special case of a 2×2 Dirac system, that is the system (5.17)
with B = diag(1,−1), Corollary 6.11 has independently been discovered by R.
del Rio and B. Grebert [16] and M. Horváth [26]. Their proofs differ from that
proposed in [38]. Moreover, these authors have generalized Theorems 6.6 and 6.7
to the case of 2× 2 Dirac systems.
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1. Introduction

The idea for this paper follows from the conference entitled:
Bicentenaire de Charles François Sturm

held at the University of Geneva, Switzerland from 15 to 19 September 2003. One
of the main interests for this meeting involved the development of the theory of
Sturm-Liouville differential equations. This theory began with the original work of
Sturm from 1829 to 1836 and was then followed by the short but significant joint
paper of Sturm and Liouville in 1837, on second-order linear ordinary differential
equations with an eigenvalue parameter. Details for the 1837 paper are given as
reference [78] in this paper; for a complete set of historical references see the
historical survey paper [58] of Lützen.

This present catalogue of examples of Sturm-Liouville differential equations
is based on four main sources:

1. The list of 32 examples prepared by Bailey, Everitt and Zettl in the year 2001
for the final version of the computer program SLEIGN2; this list is to be found
within the LaTeX file xamples.tex contained in the package associated with
the publication [11, Data base file xamples.tex]; all these 32 examples are
contained within this catalogue.

2. A selection from the set of 59 examples prepared by Pryce and published in
1993 in the text [69, Appendix B.2]; see also [70].

3. A selection from the set of 217 examples prepared by Pruess, Fulton and Xie
in the report [68].

4. A selection drawn up from a general appeal, made in October 2003, for ex-
amples but with the request relayed in the following terms: examples to be
included should satisfy one or more of the criteria

(i) The solutions of the differential equation are given explicitly in terms
of special functions; see for example Abramowitz and Stegun [1], the
Erdélyi et al. Bateman volumes [27], the recent text of Slavyanov and
Lay [77] and the earlier text of Bell [16].

(ii) Examples with special connections to applied mathematics and mathe-
matical physics.

(iii) Examples with special connections to numerical analysis; see the work
of Zettl [82] and [83].

The overall aim was to be content with about 50 examples, as now to be seen
in the list given below.

The naming of these examples of Sturm-Liouville differential equations is
somewhat arbitrary; where named special functions are concerned the chosen name
is clear; in certain other cases the name has been chosen to reflect one or more of
the authors concerned.
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2. Notations

The real and complex fields are represented by R and C respectively; a general
interval of R is represented by I; compact and open intervals of R are represented
by [a, b] and (a, b) respectively. The prime symbol ′ denotes classical differentiation
on the real line R.

Lebesgue integration on R is denoted by L, and L1(I) denotes the Lebesgue
integration space of complex-valued functions defined on the interval I. The local
integration space L1

loc(I) is the set of all complex-valued functions on I which are
Lebesgue integrable on all compact sub-intervals [a, b] ⊆ I; if I is compact then
L1(I) ≡ L1

loc(I).
Absolute continuity, with respect to Lebesgue measure, is denoted by AC; the

space of all complex-valued functions defined on I which are absolutely continuous
on all compact sub-intervals of I, is denoted by ACloc(I).

A weight function w on I is a Lebesgue measurable function w : I → R
satisfying w(x) > 0 for almost all x ∈ I.

Given an interval I and a weight function w the space L2(I; w) is defined as
the set of all complex-valued, Lebesgue measurable functions f : I → C such that∫

I

|f(x)|2 w(x) dx < +∞.

Taking equivalent classes into account L2(I; w) is a Hilbert function space with
inner product

(f, g)w :=
∫

I

f(x)g(x)w(x) dx for all f, g ∈ L2(I; w).

3. Sturm-Liouville differential expressions and equations

Given the interval (a, b), then a set of Sturm-Liouville coefficients {p, q, w} has to
satisfy the minimal conditions

(i) p, q, w : (a, b)→ R
(ii) p−1, q, w ∈ L1

loc(a, b)
(iii) w is a weight function on (a, b).

Note that in general there is no sign restriction on the leading coefficient p.
Given the interval (a, b) and the set of Sturm-Liouville coefficients {p, q, w}

the associated Sturm-Liouville differential expression M(p, q) ≡M [·] is the linear
operator defined by

(i) domain D(M) := {f : (a, b)→ C : f, pf ′ ∈ ACloc(a, b)}
(ii)

{
M [f ](x) := −(p(x)f(x)′)′ + q(x)f(x) for all f ∈ D(M)
and almost all x ∈ (a, b).

We note that M [f ] ∈ L1
loc(I) for all f ∈ D(M); it is shown in [63, Chapter V,

Section 17] that D(M) is dense in the Banach space L1(a, b).
Given the interval (a, b) and the set of Sturm-Liouville coefficients {p, q, w}

the associated Sturm-Liouville differential equation is the second-order linear or-
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dinary differential equation

M [y](x) ≡ −(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ (a, b),

where λ ∈ C is a complex-valued spectral parameter.
The above minimal conditions on the set of coefficients {p, q, w} imply that

the Sturm-Liouville differential equation has a solution to any initial value problem
at a point c ∈ (a, b); see the existence theorem in [63, Chapter V, Section 15], i.e.,
given two complex numbers ξ, η ∈ C and any value of the parameter λ ∈ C, there
exists a unique solution of the differential equation, say y(·, λ) : (a, b) → C, with
the properties:

(i) y(·, λ) and (py′)(·, λ) ∈ ACloc(a, b)
(ii) y(c, λ) = ξ and (py′)(c, λ) = η
(iii) y(x, ·) and (py′)(x, ·) are holomorphic on C.

4. Operator theory

Full details of the following quoted operator theoretic results are to be found in
[63, Chapter V, Section 17] and [34, Sections I, IV and V].

The Green’s formula for the differential expression M is, for any compact
interval [α, β] ⊂ (a, b),∫ β

α

{
g(x)M [f ](x) − f(x)M [g](x)

}
dx = [f, g](β)− [f, g](α) for all f, g ∈ D(M),

where the symplectic form [·, ·](·) : D(M)×D(M)× (a, b)→ C is defined by

[f, g](x) := f(x)(pg′)(x) − (pf ′)(x)g(x).

Incorporating now the weight function w and the Hilbert function space
L2((a, b); w), the maximal operator T1 generated from M is defined by

(i) T1 : D(T1) ⊂ L2((a, b); w)→ L2((a, b); w)
(ii) D(T1) := {f ∈ D(M) : f, w−1M [f ] ∈ L2((a, b); w)}
(iii) T1f := w−1M [f ] for all f ∈ D(T1).

We note that, from the Green’s formula, the symplectic form of M has the
property that, for all f, g ∈ D(T1), the following limits

[f, g](a) := lim
x→a+

[f, g](x) and [f, g](b) := lim
x→b−

[f, g](x)

both exist and are finite in C.
The minimal operator T0 generated by M is defined by

(i) T0 : D(T0) ⊂ L2((a, b); w) → L2((a, b); w)
(ii) D(T0) := {f ∈ D(T1) : [f, g](b) = [f, g](a) = 0 for all g ∈ D(T1)
(iii) T0f := w−1M [f ] for all f ∈ D(T0).

With these definitions the following properties hold for T0 and T1, and their
adjoint operators

(i) T0 ⊆ T1
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(ii) T0 is closed and symmetric in L2((a, b); w)
(iii) T ∗

0 = T1 and T ∗
1 = T0

(iv) T1 is closed in L2((a, b); w)
(v) T0 has equal deficiency indices (d, d) with 0 ≤ d ≤ 2.

Self-adjoint extensions T of T0 exist and satisfy

T0 ⊆ T ⊆ T1

where the domain D(T ) is determined, as a restriction of the domain D(T1),
by applying symmetric boundary conditions to the elements of the maximal do-
main D(T1).

5. Endpoint classification

Suppose given the interval (a, b) and the set of coefficients {p, q, w}.
We now give the classification of the endpoints a and b of the differential

equation valid under the coefficient conditions in Section 3 above; details are given
for the endpoint a but there is a similar classification scheme for the endpoint b.

Throughout this classification scheme let c ∈ (a, b); however the classification
that emerges is independent of the choice of the point c.

Additionally the scheme involves a choice of λ but again the classification
can be shown to be independent of this spectral parameter.

Regular
The endpoint a is regular (notation R) if{

(i) a ∈ R, i.e., a > −∞, and
(ii) p−1, q, w ∈ L1(a, c].

Singular
The endpoint a is singular (notation S) if it is not R, i.e.,{

(i) either a = −∞
(ii) or a ∈ R but

∫ c

a
{|p(x)|−1 + |q(x)|+ w(x)}dx = +∞.

If a is S then there are two main classification sub-cases as follows:

Limit-point. The endpoint a is limit-point (notation LP) if a is S and for some
λ ∈ C there exists at least one solution y(·, λ) of the differential equation such that∫ c

a

w(x) |y(x, λ)|2 dx = +∞.

Limit-circle. The endpoint a is limit-circle (notation LC) if a is S and for some
λ ∈ C all solutions y(·, λ) of the differential equation satisfy∫ c

a

w(x) |y(x, λ)|2 dx < +∞.
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The LC classification has two sub-cases:

1. Limit-circle non-oscillatory
The endpoint a is limit-circle non-oscillatory (notation LCNO) if there

exists a point d ∈ (a, c), a real value λ ∈ R and a solution y(·, λ) with the
property

y(x, λ) > 0 for all x ∈ (a, d).

2. Limit-circle oscillatory
The endpoint a is limit-circle oscillatory (notation LCO) if⎧⎨⎩

(i) for any λ ∈ R and any non-null solution y(·, λ),
(ii) for any d ∈ (a, c],
(iii) there exists a point ξ ∈ (a, d] such that y(ξ, λ) = 0.

Remark 5.1.

1. We stress the point made above that although the spectral parameter λ is
involved in the endpoint classification it can be shown that this classification
is independent of λ and depends only on the interval (a, b) and the set of
coefficients {p, q, w}.

2. When a is R the initial value problem, as detailed above at the end of Section
3, can be solved at the endpoint a to give a unique solution on the interval
[a, b).

3. The classification a is R can be considered as a special case of the LCNO
classification at a.

4. When a is R or LCNO the differential equation, for any real value λ ∈ R,
has two linearly independent solutions u(·, λ), v(·, λ) : (a, b) → R, such that
for some c ∈ (a, b)⎧⎨⎩
(i) u(x, λ) > 0 and v(x, λ) > 0 for all x ∈ (a, c),
(ii) limx→a+ u(x, λ)/v(x, λ) = 0,
(iii)

∫ c

a
{p(x)u(x, λ)2}−1dx = +∞ and

∫ c

a
{p(x)v(x, λ)2}−1dx < +∞.

The solution u(·, λ) is unique, up to scalar multiples, and is called the princi-
pal solution of the differential equation for this value of the parameter λ. The
solution v(·, λ) is called a non-principal solution, noting that this solution is
not unique.

In particular when a is R, a principal solution u(·, λ) is determined by
the initial conditions

u(a, λ) = 0 and (pu′)(a) �= 0.

5. When a is LCO then for any real λ ∈ R all solutions of the differential
equation have infinitely many zeros in any right-neighborhood (a, d) of a.

6. All the above remarks apply equally well, with change of notation, to the
classification cases of endpoint b; note that the classification of a and of b are
independent of each other.



A Catalogue of Sturm-Liouville Equations 279

6. Endpoint boundary condition functions

Given the interval (a, b) of R and a set of coefficients {p, q, w}, we can create a
Sturm-Liouville differential equation with classified endpoints.

There is a very complete account of separated and coupled boundary con-
ditions for the associated Sturm-Liouville boundary value problems, in the paper
[10, Section 5].

Here, for use in cataloguing the Sturm-Liouville examples, we give informa-
tion concerning the use of boundary condition functions at any endpoint in the
LC classification. The use of these boundary condition functions takes the same
form in both LCNO and LCO cases.

Let a be R; then a separated boundary condition at this endpoint, for a
solution y of the Sturm-Liouville differential equation M [y] = λwy on (a, b), takes
the form, where A1, A2 ∈ R with A2

1 + A2
2 > 0,

A1y(a) + A2(py′)(a) = 0.

If b is R then there is a similar form for a separated boundary condition

B1y(b) + B2(py′)(b) = 0.

Let a be LC; then a separated boundary condition at this endpoint, for a
solution y ∈ D(T1) of the Sturm-Liouville differential equation M [y] = λwy on
(a, b), takes the form,

A1[y, u](a) + A2[y, v](a) = 0
where

(i) A1, A2 ∈ R with A2
1 + A2

2 > 0
(ii) u, v : (a, b)→ R
(iii) u, v ∈ D(T1)
(iv) [u, v](a) �= 0.

Such pairs {u, v} of elements from the maximal domain D(T1) always exist under
the LC classification on the endpoint a, see [10, Section 5].

If b is LC then there is a similar form for a separated boundary condition
involving a pair {u, v} of boundary condition functions, in general a different pair
from the pair required for the endpoint a, to give

B1[y, u](b) + B2[y, v](b) = 0.

For any given particular Sturm-Liouville differential equation the search for
pairs of such boundary condition functions may start with a study of the solutions
of the differential equation M [y] = λwy on (a, b), and also with a direct search
within the elements of the maximal domain D(T1).

For the examples given in the catalogue a suitable choice of these boundary
condition functions is given, for endpoints in the LC case.

Remark 6.1. In practice it is sufficient to determine the pair {u, v} in a neigh-
borhood (a, c] of a, or [c, b) of b, so that they are locally in the maximal domain
D(T1); this practice is adopted in many of the examples given in this catalogue.
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7. The Liouville transformation

The named Liouville transformation, see [30, Section 4.3] and [17, Chapter 10,
Section 10] for details, of the general Sturm-Liouville differential equation

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ (a, b)

provides a means, under additional conditions on the coefficients {p, q, w}, to yield
a simpler Sturm-Liouville form of the differential equation

−Y ′′(X) + Q(X)Y (X) = λY (X) for all X ∈ (A, B).

The minimal additional conditions required, see [30, Section 4.3], are

(i) p and p′ ∈ ACloc(a, b), and p(x) > 0 for all x ∈ (a, b)
(ii) w and w′ ∈ ACloc(a, b), and w(x) > 0 for all x ∈ (a, b).

The Liouville transformation changes the variables x and y to X and Y as
follows, see [30, Section 4.3]:

(i) For k ∈ (a, b) and K ∈ R the mapping X(·) : (a, b) → (A, B) defines a new
independent variable X(·) by

X(x) = l(x) := K +
∫ x

k

{w(t)/p(t)}1/2 dt for all x ∈ (a, b)

A := K −
∫ k

a

{w(t)/p(t)}1/2 dt and B := K +
∫ b

k

{w(t)/p(t)}1/2 dt

where −∞ ≤ A < B ≤ +∞; there is then an inverse mapping L(·) : (A, B)→
(a, b).

(ii) Define the new dependent variable Y (·) by

Y (X) := {p(x)w(x)}1/4y(x) for all x ∈ (a, b)

:= {p(L(X))w(L(X))}1/4y(L(X)) for all X ∈ (A, B).

The new coefficient Q is given by

Q(X) = w(x)−1q(x)− {w(x)−3p(x)}1/4(p(x)({p(x)w(x)}−1/4)′)′ for all x ∈ (a, b).

An example of this Liouville transformation is worked in Section 11 for one
form of the Bessel equation.

8. Fourier equation

This is the classical Sturm-Liouville differential equation, see [79, Chapter I, and
Chapter IV, Section 4.1],

−y′′(x) = λy(x) for all x ∈ (−∞, +∞)

with solutions
cos(x

√
λ) and sin(x

√
λ).
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Endpoint classification in L2(−∞, +∞):

Endpoint Classification
−∞ LP
0 R

+∞ LP

This is a simple constant coefficient equation; for any self-adjoint bound-
ary value problem on a compact interval the eigenvalues can be characterized in
terms of the solutions of a transcendental equation involving only trigonometric
functions.

For a study of boundary value problems on the half-line [0,∞) or the whole
line (−∞,∞) see [79, Chapter IV, Section 4.1] and [2, Volume II, Appendix 2,
Section 132, Part 2].

9. Hypergeometric equation

The standard form for this differential equation is, see [46, Chapter 4, Section
3], [81, Chapter XIV, Section 14.2], [16, Chapter 9, Section 9.2], [27, Chapter II,
Section 2.1.1], [1, Chapter 15, Section 15.5] and [79, Chapter IV, Sections 4.18 to
4.20],

z(1− z)y′′(z) + [c− (a + b + 1)z]y′(z)− aby(z) = 0 for all z ∈ C

where, in general a, b, c ∈ C. In terms of the hypergeometric function 2F1, so-
lutions of this equation are, with certain restrictions on the parameters and the
independent variable z,

2F1(a, b; c; z) and z1−c
2F1(a + 1− c, b + 1− c; 2− c; z).

For consideration of this hypergeometric equation in Sturm-Liouville form we
replace the variable z by the real variable x ∈ (0, 1). Thereafter, on multiplying by
the factor xα(1−x)β and rearranging the terms gives the Sturm-Liouville equation,
for all α, β ∈ R,

−
(
xα+1(1− x)β+1y′(x)

)′
= λxα(1− x)βy(x) for all x ∈ (0, 1).

In this form the relationship between the parameters {a, b, c} and {α, β, λ} is

c = α + 1 a + b = α + β + 1 ab = −λ;

these equations can be solved for {a, b, c} in terms of {α, β, λ} as in [79, Chapter
IV, Section 4.18].

Given α, β ∈ R and λ ∈ C the solutions of this Sturm-Liouville equation can
then be represented in terms of the hypergeometric function 2F1, as above.

For the case when λ = 0 the general solution of this differential equation
takes the form, for c ∈ (0, 1),

y(x) = k

∫ x

c

1
tα+1(1− t)β+1

dt + l for all x ∈ (0, 1)
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where the numbers k, l ∈ C. From this representation it may be shown that the
following classifications, in the space L2((0, 1); xα(1−x)β), of the endpoints 0 and
1 hold:

Endpoint Parameters α, β Classification
0 For α ∈ (−1, 0) and all β ∈ R R
0 For α ∈ [0, 1) and all β ∈ R LCNO
0 For α ∈ (−∞,−1] ∪ [1,∞) and all β ∈ R LP
1 For β ∈ (−1, 0) and all α ∈ R R
1 For β ∈ [0, 1) and all α ∈ R LCNO
1 For β ∈ (−∞,−1] ∪ [1,∞) and all α ∈ R LP

For the endpoint 0, for α ∈ [0, 1) and for all β ∈ R the LCNO boundary
condition functions u, v take the form, for all x ∈ (0, 1),

Parameter u v
α = 0 1 ln(x)

α ∈ (0, 1) 1 x−α

For the endpoint 1, for β ∈ [0, 1) and for all α ∈ R the LCNO boundary
condition functions u, v take the form, for all x ∈ (0, 1),

Parameter u v
β = 0 1 ln(1 − x)

β ∈ (0, 1) 1 (1 − x)−β

Another form of the hypergeometric differential equation is obtained if in the
original equation above the independent variable z is replaced by −z to give

z(1 + z)y′′(z) + [c + (a + b + 1)z]y′(z) + aby(z) = 0 for all z ∈ C

with general solutions

2F1(a, b; c;−z) and z1−c
2F1(a + 1− c, b + 1− c; 2− c;−z);

see the account in [79, Chapter IV, Section 4.18].
For consideration of this hypergeometric equation in Sturm-Liouville form we

replace the variable z by the real variable x ∈ (0,∞). Thereafter, on multiplying
by the factor xα(1 + x)β and rearranging the terms gives the Sturm-Liouville
equation, for all α, β ∈ R,

−
(
xα+1(1 + x)β+1y′(x)

)′
= λxα(1 + x)βy(x) for all x ∈ (0,∞).

In this form the relationship between the parameters {a, b, c} and {α, β, λ} is

c = α + 1 a + b = α + β + 1 ab = λ;

these equations can be solved for {a, b, c} in terms of {α, β, λ} as in [79, Chapter
IV, Section 4.18].

Given α, β ∈ R and λ ∈ C the solutions of this Sturm-Liouville equation can
then be represented in terms of the hypergeometric function 2F1, as above.
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For the case when λ = 0 the general solution of this differential equation
takes the form, for c ∈ (0,∞),

y(x) = k

∫ x

c

1
tα+1(1 + t)β+1

dt + l for all x ∈ (0,∞)

where the numbers k, l ∈ C. From this representation it may be shown that the
following classifications, in the space L2((0,∞); xα(1 + x)β), of the endpoints 0
and +∞ hold:

Endpoint Parameters α, β Classification
0 For α ∈ (−1, 0) and all β ∈ R R
0 For α ∈ [0, 1) and all β ∈ R LCNO
0 For α ∈ (−∞,−1] ∪ [1,∞) and all β ∈ R LP

+∞ For all α, β ∈ R LP

For the endpoint 0, for α ∈ [0, 1) and for all β ∈ R the LCNO boundary
condition functions u, v take the form, for all x ∈ (0, 1),

Parameter u v
α = 0 1 ln(x)

α ∈ (0, 1) 1 x−α

The spectral properties of these hypergeometric Sturm-Liouville differential
equations seem not to have been studied in detail; however there are a number of
very interesting special cases, together with their spectral properties, considered
in [79, Chapter IV, Sections 4.18 to 4.20].

10. Kummer equation

The Kummer differential equation is a special case of the confluent hypergeometric
differential equation

zw′′(z) + (b− z)y′(z)− aw(z) = 0 for z ∈ C.

Taking the parameter b ∈ R to be real-valued, putting λ = −a ∈ C, replacing the
independent variable z by x ∈ R, and then writing the resulting differential equa-
tion in Lagrange symmetric form, gives the Sturm-Liouville differential equation

−(xb exp(−x)y′(x))′ = λxb−1 exp(−x)y(x) for all x ∈ (0,∞).

Solutions of this Sturm-Liouville differential equation are given in the form,
using the Kummer functions M and U ,

M(−λ, b, x) and U(−λ, b, x) for all x ∈ (0,∞), b ∈ R and λ ∈ C;

see [1, Chapter 13, Section 13.1].
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Endpoint classification in L2((0, +∞); xb−1 exp(−x)):

Endpoint Parameter b Classification
0 For b ≤ 0 LP
0 For 0 < b < 1 R
0 For 1 ≤ b < 2 LCNO
0 For b ≥ 2 LP
∞ For all b ∈ R LP

For the endpoint 0 and then for b ∈ (0, 2), the LCNO boundary condition
functions u, v take the form, for all x ∈ (0,∞),

Parameter u v
b = 1 1 ln(x)

1 < b < 2 1 x1−b

See also the Laguerre differential equation given in Section 27 below.

11. Bessel equation

The Bessel differential equation has many different forms, see [80, Chapter IV], [1,
Chapters 9 and 10], [27, Volume II, Chapter VII], [46, Chapter 8], [16, Chapter 4];
see in particular [52, Part C, Section 2.162].

One elegant Sturm-Liouville form, see [33, Section 1], of this differential equa-
tion is, where the parameter α ∈ R,

−(x2α+1y′(x))′ = λx2α+1y(x) for all x ∈ (0,∞).

Solutions of this differential equation are, for all α ∈ R,

x−αJα(x
√

λ) and x−αYα(x
√

λ) for all x ∈ (0,∞)

where Jα and Yα are the classical Bessel functions, and the power x−α is defined
by x−α := exp(−α ln(x)) for all x ∈ (0,∞).

For the case when λ = 0 the general solution of this differential equation
takes the form, for c ∈ (0,∞),

y(x) = k

∫ x

c

1
t2α+1

dt + l for all x ∈ (0,∞)

where the numbers k, l ∈ C. From this representation it may be shown that the
following classifications, in the space L2((0,∞); x2α+1), of the endpoints 0 and
+∞ hold:

Endpoint Parameter α Classification
0 For α ∈ (−1, 1) LCNO
0 For α ∈ (−∞,−1] ∪ [1,∞) LP
∞ For all α ∈ R LP
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For the endpoint 0 and then for α ∈ (−1, 1), the LCNO boundary condition
functions u, v take the form, for all x ∈ (0,∞),

Parameter u v
α = 0 1 ln(x)

α ∈ (−1, 0) ∪ (0, 1) 1 x−2α

As an example of the Liouville transformation, see Section 7 above, let k = 1
and K = 1 to give, for the form of the Bessel differential equation above,

X(x) = 1 +
∫ x

1

dt = x for all x ∈ (0,∞);

a computation then shows that

Q(X) = (α2 − 1/4)x−2 = (α2 − 1/4)X−2 for all X ∈ (0,∞).

Thus the Liouville form of this Bessel differential equation is

−Y ′′(X) + (α2 − 1/4)X−2Y (X) = λY (X) for all X ∈ (0,∞),

where we can now take the parameter α ∈ [0,∞).

12. Bessel equation: Liouville form

In the Liouville normal form, see Sections 7 and 11 above, the Bessel differential
equation appears as

−y′′(x) +
(
ν2 − 1/4

)
x−2y(x) = λy(x) for all x ∈ (0, +∞),

with the parameter ν ∈ [0, +∞); this differential equation is extensively studied in
[79, Chapter IV, Sections 4.8 to 4.15]; see also [2, Volume II, Appendix 2, Section
132, Part 5]. In this form the equation has solutions

x1/2Jν(x
√

λ) and x1/2Yν(x
√

λ).

Endpoint classification in L2(0, +∞):

Endpoint Parameter ν Classification
0 For ν = 1/2 R
0 For all ν ∈ [0, 1) but ν �= 1/2 LCNO
0 For all ν ∈ [1,∞) LP

+∞ For all ν ∈ [0,∞) LP

For endpoint 0 and ν ∈ [0, 1) but ν �= 1/2, the LCNO boundary condition
functions u, v are determined by, for all x ∈ (0, +∞),

Parameter u v

ν ∈ (0, 1) but ν �= 1/2 xν+1/2 x−ν+1/2

ν = 0 x1/2 x1/2 ln(x)
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(a) Problems on (0, 1] with y(1) = 0:
For 0 ≤ ν < 1, ν �= 1

2 : the Friedrichs case: A1 = 1, A2 = 0 yields the classical
Fourier-Bessel series; here λn = j2

ν,n where {jν,n : n = 0, 1, 2, . . .} are the
zeros (positive) of the Bessel function Jν(·).
For ν ≥ 1; LP at 0 so that there is a unique boundary value problem with
λn = j2

ν,n as before.
(b) Problems on [1,∞) all have continuous spectrum on [0,∞):

For Dirichlet and Neumann boundary conditions there are no eigenvalues.
For A1 = A2 = 1 at 1 there is one isolated negative eigenvalue.

(c) Problems on (0,∞) all have continuous spectrum on [0,∞):
For ν ≥ 1 there are no eigenvalues.
For 0 ≤ ν < 1 the Friedrichs case is given by A1 = 1, A2 = 0; there are no
eigenvalues.
For ν = 0.45 and A1 = 10, A2 = −1 there is one isolated eigenvalue near to
the value −175.57.

One of the interesting features of this Liouville form of the Bessel equation is that
it is possible to choose purely imaginary values of the order ν of the Bessel function
solutions. If ν = ik, with k ∈ R, then the Liouville form of the equation becomes

−y′′(x)−
(
k2 + 1/4

)
x−2y(x) = λy(x) for all x ∈ (0, +∞)

with solutions

x1/2Jik(x
√

λ) and x1/2Yik(x
√

λ).

This differential equation is considered below in Section 44 under the name
of the Rellich equation.

13. Bessel equation: form 1

This special case of the Bessel equation is

−y′′(x)− xy(x) = λy(x) for all x ∈ [0,∞).

This differential equation has explicit solutions in terms of Bessel functions of
order 1/3; see [1, Chapter 10, Section 10.4], [28, Section 3], [29, Section 4] and [79,
Chapter IV, Section 4.13].

Endpoint classification in L2(0, +∞):

Endpoint Classification
0 R

+∞ LP



A Catalogue of Sturm-Liouville Equations 287

14. Bessel equation: form 2

This special case of the Bessel equation is

−(xβy′(x))′ = λxαy(x) for all x ∈ (0,∞)

with the parameters α > −1 and β < 1. This differential equation has solutions of
the form, see [52, Section C, Equation 2.162 (1a)] and [35, Section 2.3],

y(x, λ) = x
1
2 (1−β)Zν

(
k−1xk

√
λ
)

for all x ∈ (0,∞) and all λ ∈ C

where the real parameters ν and k are defined by

ν := (1− β)/(α − β + 2) and k := 1
2 (α− β + 2),

and Zν is any Bessel function, Jν , Yν , H
(1)
ν , H

(2)
ν , of order ν. A calculation shows

that with the given restrictions on α and β we have

0 < ν < 1 and k > 0.

Endpoint classification in L2((0, +∞); xα), for all α and β as above,

Endpoint Classification
0 R

+∞ LP

15. Bessel equation: form 3

This special case of the Bessel equation is

−(xτy′(x))′ = λy(x) for all x ∈ [1,∞).

where the real parameter τ ∈ (−∞,∞). This differential equation has solutions of
the form, see [52, Section C, Equation 2.162] and [32, Section 5],

y(x, λ) = x
1
2 (1−τ)Zv

(
2(2− τ)−1x

1
2 (2−τ)

√
λ
)

for all x ∈ [1,∞) and all λ ∈ C

where the real parameter ν is defined by

ν := (1− τ)/(2 − τ) ,

and where Zν is any Bessel function, Jν , Yν , H
(1)
ν , H

(2)
ν , of order ν. The case when

τ = 2 requires special attention; the solutions can then be expressed in elementary
terms.

Endpoint classification in L2(1,∞), for all τ ∈ (−∞,∞),

Endpoint Classification
1 R

+∞ LP
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16. Bessel equation: form 4

This special case of the Bessel equation is, with a > 0,

−y′′(x) + (ν2 − 1/4)x−2y(x) = λy(x) for all x ∈ [a,∞).

This equation is a special case of the Liouville form of the Bessel differential
equation, see Section 12 above, with the parameter ν ≥ 0 and considered on the
interval [a,∞) to avoid the singularity at the endpoint 0. The reason for this
choice of endpoint is to relate to the Weber integral transform as considered in
[79, Chapter IV, Section 4.10]. As in Section 12 above this equation has solutions

x1/2Jν(x
√

λ) and x1/2Yν(x
√

λ) for all x ∈ [a,∞)

but now the endpoint classification in L2[a,∞) is

Endpoint Classification
a R

+∞ LP

17. Bessel equation: modified form

The modified Bessel functions, notation Iν and Kν, are best defined, on the real
line R, in terms of the classical Bessel functions Jν and Yν by, see [16, Chapter 4,
Section 4.7],

Iν(x) := i−νJν(ix) and Kν(x) :=
π

2
iν+1{Jν(ix) + iYν(ix)} for all x ∈ R.

The properties of these special functions are considered in [16, Chapter 4, Section
4.7 to 4.9].

With careful attention to the branch definition of the powers of the factors
iν it may be shown that

Iν(·) : R→ R and Kν(·) : R→ R.

The functions Iν(x
√

λ) and Kν(x
√

λ) form an independent basis of solutions
for the differential equation

(xy′(x))′ − ν2x−1y(x) = λxy(x) for all x ∈ (0,∞)

and have properties similar to the classical Bessel functions Jν(x
√

λ) and Yν(x
√

λ),
respectively, when x ∈ R and λ ∈ C.

If the Liouville transformation is applied to this last equation, or if in the
Bessel Liouville differential equation of Section 12 above, the formal transformation
x �−→ ix is applied, then the resulting differential equation has the form

y′′(x)−
(
ν2 − 1/4

)
x−2y(x) = λy(x) for all x ∈ (0,∞).

This gives one interesting property of the Liouville form of the differential equation
for the modified Bessel functions: in the standard Sturm-Liouville form given in
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Section 3 above the leading coefficient p has to be taken as negative-valued on the
interval (0,∞), i.e.,

p(x) = −1 q(x) = −
(
ν2 − 1/4

)
x−2 w(x) = 1 for all x ∈ (0,∞).

The independent solutions of this Liouville form are

x1/2Iν(x
√

λ) and x1/2Kν(x
√

λ) for all x ∈ (0,∞).

Endpoint classification in L2(0, +∞):

Endpoint Parameter ν Classification
0 For ν = 1/2 R
0 For all ν ∈ [0, 1) but ν �= 1/2 LCNO
0 For all ν ∈ [1,∞) LP

+∞ For all ν ∈ [0,∞) LP

For endpoint 0 and ν ∈ [0, 1) but ν �= 1/2, the LCNO boundary condition
functions u, v are determined, for all x ∈ (0, +∞), by

Parameter u v

ν ∈ (0, 1) but ν �= 1/2 xν+1/2 x−ν+1/2

ν = 0 x1/2 x1/2 ln(x)

18. Airy equation

The Airy differential equation, in Sturm-Liouville form, is

−y′′(x) + xy(x) = λy(x) for all x ∈ R.

The solutions of this equation can be expressed in terms of the Bessel functions
J1/3 and J−1/3, or in terms of the Airy functions Ai(·) and Bi(·). For a detailed
study of the properties of these functions see [1, Chapter 10, Section 10.4]; see also
the results in [29, Section 5].

Endpoint classification in L2(−∞,∞):

Endpoint Classification
−∞ LP
+∞ LP

The spectrum of the boundary value problem on the interval (−∞,∞) has no
eigenvalues and is continuous on the real line in C; the spectrum for any problem
on the interval [0,∞) is discrete.
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19. Legendre equation

The standard form for this differential equation is, see [81, Chapter XV],

−
((

1− x2
)
y′(x)

)′
+ 1

4y(x) = λy(x) for all x ∈ (−1, +1);

see also [1, Chapter 8], [27, Volume I, Chapter III], [16, Chapter 3] and [2, Vol-
ume II, Appendix 2, Section 132, Part 3].

Endpoint classification in L2(−1, +1):

Endpoint Classification
−1 LCNO
+1 LCNO

For both endpoints the boundary condition functions u, v are given by (note
that u and v are solutions of the Legendre equation for λ = 1/4)

u(x) = 1 v(x) =
1
2

ln
(

1 + x

1− x

)
for all x ∈ (−1, +1).

(i) The Legendre polynomials are obtained by taking the principal (Friedrichs)
boundary condition at both endpoints ±1: enter A1 = 1, A2 = 0, B1 =
1, B2 = 0; i.e., take the boundary condition function u at ±1; eigenvalues:
λn = (n+1/2)2 ; n = 0, 1, 2, . . . ; eigenfunctions: Legendre polynomials Pn(x).

(ii) Enter A1 = 0, A2 = 1, B1 = 0, B2 = 1, i.e., use the boundary condition
function v at ±1; eigenvalues: µn; n = 0, 1, 2, . . . but no explicit formula is
available; eigenfunctions are logarithmically unbounded at ±1.

(iii) Observe that µn < λn < µn+1; n = 0, 1, 2, . . . .

The Liouville normal form of the Legendre differential equation is

−y′′(x) + 1
4 sec2(x)y(x) = λy(x) for all x ∈

(
− 1

2π, 1
2π
)
;

this form of the equation is studied in detail in [79, Chapter IV, Sections 4.5 to 4.7].

20. Legendre equation: associated form

This Sturm-Liouville differential equation is an extension of the classical Legendre
equation of Section 19:

−
((

1− x2
)
y′(x)

)′
+

µ2

1− x2
y(x) = λy(x) for all x ∈ (−1, +1)

where the parameter µ ∈ [0,∞); see [1, Chapter 8], [27, Volume I, Chapter III],
[16, Chapter 3, Section 3.9] and [79, Chapter IV, Section 4.3].
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Endpoint classification in L2(−1, +1):

Endpoint Parameter Classification
−1 0 ≤ µ < 1 LCNO
−1 1 ≤ µ LP

Endpoint Parameter Classification
+1 0 ≤ µ < 1 LCNO
+1 1 ≤ µ LP

For the endpoint −1 and for the LCNO cases the boundary condition func-
tions u, v are determined by

Parameter u v

µ = 0 1 ln
(

1 + x

1− x

)
0 < µ < 1 (1− x2)µ/2 (1− x2)−µ/2

For the endpoint +1 and for the LCNO cases the boundary condition func-
tions u, v are determined by

Parameter u v

µ = 0 1 ln
(

1 + x

1− x

)
0 < µ < 1 (1− x2)µ/2 (1− x2)−µ/2

If the spectral parameter λ is written as λ = ν(ν + 1) then the solutions of
this modified Legendre equation are the associated Legendre functions Pµ

ν (x) and
Qµ

ν (x) for x ∈ (−1, +1); see [1, Chapter 8] and [16, Chapter 3, Section 3.9].

21. Hermite equation

The most elegant Sturm-Liouville form for this differential equation is

−(exp(−x2)y′(x))′ = λ exp(−x2)y(x) for all x ∈ (−∞,∞).

For all n ∈ N0 = {0, 1, 2, . . .} and for λ = 2n + 1 this equation has the Hermite
polynomials Hn for solutions. These polynomials are orthogonal and complete in
the Hilbert function space L2((−∞,∞); exp(−x2)).

Endpoint classification in L2((−∞,∞); exp(−x2)):

Endpoint Classification
−∞ LP
+∞ LP
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22. Hermite equation: Liouville form

The Liouville transformation applied to the Hermite differential equation gives

−y′′(x) + x2y(x) = λy(x) for all x ∈ (−∞, +∞).

For all n ∈ N0 = {0, 1, 2, . . .} and for λ = 2n + 1 this equation has the Hermite
functions exp(− 1

2x2)Hn for solutions. These functions are orthogonal and complete
in the Hilbert function space L2(−∞,∞).

Endpoint classification in L2(−∞, +∞):

Endpoint Classification
−∞ LP
+∞ LP

For a classical treatment see [79, Chapter IV, Section 2].
This differential equation is also called the harmonic oscillator equation; see

example 15 in the list to be found within the LaTeX file xamples.tex contained
in the package associated with the publication [11, Data base file xamples.tex;
example 15].

This differential equation is also considered under the name of the parabolic
cylinder equation; see [1, Chapter 19].

23. Jacobi equation

The general form of the Jacobi differential equation is

−
(
(1− x)α+1(1 + x)β+1y′(x)

)′
= λ(1 − x)α(1 + x)βy(x) for all x ∈ (−1, +1),

where the parameters α, β ∈ (−∞, +∞). Apart from an isomorphic transformation
of the independent variable this differential equation coincides with the Sturm-
Liouville form of the hypergeometric equation considered in Section 9 above.

Endpoint classification in the weighted space L2((−1, +1); (1−x)α(1+x)β)):

Endpoint Parameter Classification
−1 β ≤ −1 LP
−1 −1 < β < 0 R
−1 0 ≤ β < 1 LCNO
−1 1 ≤ β LP

Endpoint Parameter Classification
+1 α ≤ −1 LP
+1 −1 < α < 0 R
+1 0 ≤ α < 1 LCNO
+1 1 ≤ α LP
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For the endpoint −1 and for the LCNO cases the boundary condition func-
tions u, v are determined by

Parameter u v

β = 0 1 ln
(

1 + x

1− x

)
0 < β < 1 1 (1 + x)−β

For the endpoint +1 and for the LCNO cases the boundary condition func-
tions u, v are determined by

Parameter u v

α = 0 1 ln
(

1 + x

1− x

)
0 < α < 1 1 (1− x)−α

To obtain the classical Jacobi orthogonal polynomials it is necessary to take
−1 < α, β; then note the required boundary conditions:

Endpoint −1:

Parameter Boundary condition
−1 < β < 0 (py′)(−1) = 0 or [y, v](−1) = 0
0 ≤ β < 1 [y, u](−1) = 0

Endpoint +1:

Parameter Boundary condition
−1 < α < 0 (py′)(+1) = 0 or [y, v](+1) = 0
0 ≤ α < 1 [y, u](+1) = 0

For the classical Jacobi orthogonal polynomials the eigenvalues are given by:

λn = n(n + α + β + 1) for n = 0, 1, 2, . . .

and this explicit formula can be used to give an independent check on the accuracy
of the results from the SLEIGN2 code.

It is interesting to note that the required boundary condition for these Jacobi
polynomials is the Friedrichs condition in the LCNO cases.

In addition to the cases of the Jacobi equation mentioned in this section,
there are other values of the parameters α and β which lead to important Sturm-
Liouville differential equations; see the paper [53] and the book [3].

24. Jacobi equation: Liouville form

The Liouville transformation applied to the Jacobi differential equation gives

−y′′(x) + q(x)y(x) = λy(x) for all x ∈ (−π/2, +π/2)



294 W.N. Everitt

where the coefficient q is given by, for all x ∈ (−π/2, +π/2),

q(x) =
β2 − 1/4

4 tan2((2x + π)/4)
+

α2 − 1/4
4 tan2((2x− π)/4)

− 4αβ + 4β + 4α + 3
8

=
β2 − 1/4

4 sin2((2x + π)/4)
+

α2 − 1/4
4 sin2((2x− π)/4)

− (α + β + 1)2

4
.

Here the parameters α, β ∈ (−∞, +∞).
Endpoint classification in the space L2(−π/2, +π/2):

Endpoint Parameter Classification
−π/2 β ≤ −1 LP
−π/2 −1 < β < 1 but β2 �= 1/4 LCNO
−π/2 β2 = 1/4 R
−π/2 1 ≤ β LP

Endpoint Parameter Classification
+π/2 α ≤ −1 LP
+π/2 −1 < α < 1 but α2 �= 1/4 LCNO
+π/2 α2 = 1/4 R
+π/2 1 ≤ α LP

For the endpoint −π/2 and for LCNO cases the boundary condition functions
u, v are determined by, where b(x) = π/2 + x for all x ∈ (−π/2, +π/2),

Parameter u v

−1 < β < 0 b(x)
1
2−β b(x)

1
2+β

β = 0
√

b(x)
√

b(x) ln(b(x))
0 < β < 1 b(x)

1
2+β b(x)

1
2−β

For the endpoint +π/2 and for LCNO cases the boundary condition functions
u, v are determined by, where a(x) = π/2− x for all x ∈ (−π/2, +π/2),

Parameter u v

−1 < α < 0 a(x)
1
2−α a(x)

1
2+α

α = 0
√

a(x)
√

a(x) ln(a(x))
0 < α < 1 a(x)

1
2+α a(x)

1
2−α

The classical Jacobi orthogonal polynomials are produced only when both
α, β > −1. For α, β > +1 the LP condition holds and no boundary condition is
required to give the polynomials. If −1 < α, β < 1 then the LCNO condition holds
and boundary conditions are required to produce the Jacobi polynomials; these
conditions are as follows:

Endpoint −π/2:

Parameter Boundary condition
−1 < β < 0 [y, v](−π/2) = 0
0 ≤ β < 1 [y, u](−π/2) = 0
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Endpoint +π/2:

Parameter Boundary condition
−1 < α < 0 [y, v](+π/2) = 0
0 ≤ α < 1 [y, u](+π/2) = 0

Recall from Section 23 for the classical orthogonal Jacobi polynomials the
eigenvalues are given explicitly by:

λn = n(n + α + β + 1) for n = 0, 1, 2, . . .

25. Jacobi function equation

This is another Jacobi differential equation which corresponds to the hypergeo-
metric differential equation considered over the half-line [0,∞), see the second
equation in Section 9 above, and the paper [37].

This equation is written in the form

−(ω(x)y′(x))′ − ρ2ω(x)y(x) = λω(x)y(x) for all x ∈ (0,∞)

where
(i) α ≥ β ≥ −1/2
(ii) ρ = α + β + 1
(iii) ω(x) ≡ ω(x)α,β = 22ρ(sinh(x))2α+1(cosh(x))2β+1 for all x ∈ (0,∞).

Endpoint classification, for all β ∈ [−1/2,∞), in L2((0,∞); ω):

Endpoint Parameter α Classification
0 For α ∈ [−1/2, 0) R
0 For α ∈ [0, 1) LCNO
0 For α ∈ [1,∞) LP

+∞ For all α ∈ [−1/2,∞) LP

For the endpoint 0, for α ∈ [0, 1) and for all β ∈ [1/2,∞) the LCNO boundary
condition functions u, v take the form, for all x ∈ (0, 1),

Parameter u v
α = 0 1 ln(x)

α ∈ (0, 1) 1 x−2α

26. Jacobi function equation: Liouville form

In the Liouville normal form, see Sections 7 and 11 above, the Jacobi function
differential equation of Section 25 above appears as

−y′′(x) + q(x)y(x) = λy(x) for all x ∈ (0,∞),

where the coefficient q is determined, again with α ≥ β ≥ −1/2, by

q(x) =
α2 − 1/4
(sinh(x))2

− β2 − 1/4
(cosh(x))2

for all x ∈ (0,∞).
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Endpoint classification, for all β ∈ [−1/2,∞), in L2(0,∞):

Endpoint Parameter α Classification
0 For α = −1/2 R
0 For α ∈ (−1/2, 1/2) LCNO
0 For α = 1/2 R
0 For α ∈ (1/2, 1) LCNO
0 For α ∈ [1,∞) LP

+∞ For all α ∈ [−1/2,∞) LP

For the endpoint 0, for α ∈ [−1/2, 1) but |α| �= 1/2 and for all β ∈ [−1/2,∞)
the LCNO boundary condition functions u, v take the form, for all x ∈ (0, 1),

Parameter u v

α = 0 x1/2 x1/2 ln(x)
α ∈ [−1/2, 1) but |α| �= 1/2 x|α|+1/2 x−|α|+1/2

27. Laguerre equation

The general form of the Laguerre differential equation is

−(xα+1 exp(−x)y′(x))′ = λxα exp(−x)y(x) for all x ∈ (0, +∞)

where the parameter α ∈ (−∞, +∞).
Endpoint classification in the weighted space L2((0, +∞); xα exp(−x)):

Endpoint Parameter Classification
0 α ≤ −1 LP
0 −1 < α < 0 R
0 0 ≤ α < 1 LCNO
0 1 ≤ α LP

+∞ α ∈ (−∞, +∞) LP

For these LCNO cases the boundary condition functions u, v are given by:

Endpoint Parameter u v
0 α = 0 1 ln(x)
0 0 < α < 1 1 x−α

This is the classical form of the differential equation which for parameter
α > −1 produces the classical Laguerre polynomials as eigenfunctions; for the
boundary condition [y, 1](0) = 0 at 0, when required, the eigenvalues are then
(remarkably!) independent of α and given by λn = n (n = 0, 1, 2, . . . ); see [1,
Chapter 22, Section 22.6].

See also the Kummer differential equation given in Section 10 above.
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28. Laguerre equation: Liouville form

The Liouville transformation applied to the Laguerre differential equation gives

−y′′(x) +
(

α2 − 1/4
x2

− α + 1
2

+
x2

16

)
y(x) = λy(x) for all x ∈ (0, +∞)

where the parameter α ∈ (−∞, +∞).
Endpoint classification in the space L2(0, +∞):

Endpoint Parameter Classification
0 α ≤ −1 LP
0 −1 < α < 1, but α2 �= 1/4 LCNO
0 α2 = 1/4 R
0 1 ≤ α LP

+∞ α ∈ (−∞, +∞) LP

For these LCNO cases the boundary condition functions u, v are given by:

Endpoint Parameter u v

0 −1 < α < 0 but α �= −1/2 x
1
2−α x

1
2+α

0 α = −1/2 x 1
0 α = 0 x1/2 x1/2 ln(x)
0 0 < α < 1 but α �= 1/2 x

1
2+α x

1
2−α

0 α = 1/2 x 1

The Laguerre polynomials are produced as eigenfunctions only when α > −1.
For α ≥ 1 the LP condition holds at 0. For 0 ≤ α < 1 the appropriate boundary
condition is the Friedrichs condition: [y, u](0) = 0; for −1 < α < 0 use the non-
Friedrichs condition: [y, v](0) = 0. In all these cases λn = n for n = 0, 1, 2, . . . .

29. Heun equation

One Sturm-Liouville form of the general Heun differential equation is

−(py′)′ + qy = λwy on (0, 1)

where the coefficients p, q, w are given explicitly, for all x ∈ (0, 1), by

p(x) = xc(1 − x)d(x + s)e

q(x) = abxc(1− x)d−1(x + s)e−1

w(x) = xc−1(1 − x)d−1(x + s)e−1.

The parameters a, b, c, d, e and s are all real numbers and satisfy the following two
conditions

(i) s > 0 and c ≥ 1, d ≥ 1, a ≥ b,
and

(ii) a + b + 1− c− d− e = 0.
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From these conditions it follows that

a ≥ 1, b ≥ 1, e ≥ 1 and a + b − d ≥ 1.

The differential equation above is a special case of the general Heun equation

d2w(z)
dz2

+
(

γ

z
+

δ

z − 1
+

ε

z − a

)
dw(z)

dz
+

αβz − q

z(z − 1)(z − a)
w(z) = 0

with the general parameters α, β, γ, δ, ε replaced by the real numbers a, b, c, d, e,
a replaced by −s, and q replaced by the spectral parameter λ. For general infor-
mation concerning the Heun equation see [27, Chapter XV, Section 15.3], [77] and
the compendium [74]; for the special form of the Heun equation considered here,
and for the connection with confluence of singularities and applications, see the
recent paper [55].

We note that the coefficients of the Sturm-Liouville differential equation
above satisfy the conditions

1. q, w ∈ C[0, 1] and w(x) > 0 for all x ∈ (0, 1)
2. p−1 ∈ L1

loc(0, 1), p(x) > 0 for all x ∈ (0, 1)
3. p−1 /∈ L1(0, 1/2] and p−1 /∈ L1[1/2, 1).

Thus both endpoints 0 and 1 are singular for the differential equation. Anal-
ysis shows that the endpoint classification for this equation is

Endpoint Parameter Classification
0 c ∈ [1, 2) LCNO
0 c ∈ [2, +∞) LP
1 d ∈ [1, 2) LCNO
1 d ∈ [2, +∞) LP

For the endpoint 0 and for LCNO cases the boundary condition functions
u, v are determined by:

Parameter u v
c = 1 1 ln(x)

1 < c < 2 1 x1−c

For the endpoint 1 and for LCNO cases the boundary condition functions
u, v are determined by:

Parameter u v
d = 1 1 ln(1− x)

1 < d < 2 1 (1− x)1−d

Further it may be shown that the spectrum of any self-adjoint problem on
(0, 1), with the parameters a, b, c, d, e and s satisfying the above conditions, and
considered in the space L2((0, 1); w) with either separated or coupled boundary
conditions, is bounded below and discrete. For the analytic properties, and proofs
of the spectral properties of this Heun differential equation, see the paper [7].
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30. Whittaker equation

The general form of the Whittaker differential equation is

−y′′(x) +
(

1
4

+
k2 − 1

x2

)
y(x) = λ

1
x

y(x) for all x ∈ (0, +∞)

where the parameter k ∈ [1, +∞).
Endpoint classification in the space L2((0, +∞); x−1), for all k ∈ [1, +∞):

Endpoint Classification
0 LP

+∞ LP

This equation is studied in [49, Part II, Section 10], where there it is shown
that the LP case holds at +∞ and also at 0 for k ≥ 1; the general properties of
Whittaker functions are given in [1, Chapter 13, Section 13.1.31]. The spectrum
of the boundary value problem on (0,∞) is discrete and is given explicitly by:

λn = n + (k + 1)/2, n = 0, 1, 2, 3, . . . .

31. Lamé equation

This differential equation has many forms; there is an extensive literature devoted
to the definition, theory and properties of this equation and the associated Lamé
functions; see [81, Chapter XXIII, Section 23.4] and [27, Chapter XV, Section
15.2]. The Lamé equation is a special case of the Heun equation; see [27, Chapter
XV, Section 15.3] and Section 29 above.

Here we consider two cases of the Lamé equation involving the Weierstrass
doubly periodic elliptic function ℘, considered for the special case when the fun-
damental periods 2ω1 and 2ω2 of ℘ satisfy

ω1 ∈ (0,∞) and ω2 = iχ where χ ∈ (0,∞).

We note that the lattice of double poles for ℘ is rectangular with points [2mω1 +
2nω2 : m, n ∈ Z} of C.

For the general theory of the Weierstrass elliptic function ℘ see [22, Chapter
XIII] and [81, Chapter XX].

1. Consider the Sturm-Liouville differential equation

−y′′(x) + k℘(x)y(x) = λy(x) for all x ∈ (0, 2ω1)

where k is a real parameter, k ∈ R. We note that ℘(·) : (0, 2ω1) → R and
that ℘(·) ∈ L1

loc(0, 2ω1); from [81, Chapter XX, Section 20.2] and [22, Chapter
XIII, Section 13.4] it follows that

℘(x) = x−2 + O(x2) as x→ 0+ and

℘(x) = (2ω1 − x)−2 + O((2ω1 − x)2) as x→ 2ω−
1 .
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These order results for the coefficient ℘, at the endpoints of the interval
(0, 2ω1), taken together with the parameter k, allow of a comparison between
this form of the Lamé equation and (a) the Liouville Bessel equation of
Section 12 when k ∈ [−1/4, +∞), and (b) the Rellich equation of Section
44 when k ∈ (−∞,−1/4). This comparison leads to the following endpoint
classification for this Lamé equation in the space L2(0, 2ω1) :

Endpoint Parameter k Classification
0 For k ∈ (−∞,−1/4) LCO
0 For k ∈ [−1/4, 0) LCNO
0 k = 0 R
0 For k ∈ (0, 3/4) LCNO
0 For k ∈ [3/4,∞) LP

and
Endpoint Parameter k Classification

2ω1 For k ∈ (−∞,−1/4) LCO
2ω1 For k ∈ [−1/4, 0) LCNO
2ω1 k = 0 R
2ω1 For k ∈ (0, 3/4) LCNO
2ω1 For k ∈ [3/4,∞) LP

The boundary condition functions u, v for the LCO and LCNO classi-
fications at the endpoint zero can be copied from the corresponding cases
for the Liouville Bessel equation in Section 12, and for the Rellich equation
Section 44; similarly for the endpoint 2ω1.

2. Consider the Sturm-Liouville differential equation

−y′′(x) + k℘(x + ω2)y(x) = λy(x) for all x ∈ (−∞, +∞)

where k is a real parameter, k ∈ R.
From the information about the fundamental periods 2ω1 and 2ω2 given

in case 1 above, it follows that ℘(·+ ω2) is real-valued, periodic with period
2ω1, and real-analytic on R, see [1, Chapter 18, Section 18.1]; see also the
corresponding case for the algebro-geometric form 3 differential equation, in
Subsection 40.3.

Endpoint classification in L2(−∞, +∞) for all k ∈ (−∞, 0) ∪ (0, +∞):

Endpoint Classification
−∞ LP
+∞ LP

This differential equation is of the Mathieu type, see Section 32 be-
low, and the general properties of Sturm-Liouville differential equations with
periodic coefficients given in [26, Chapter 2].
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32. Mathieu equation

The general form of the Mathieu differential equation is

−y′′(x) + 2k cos(2x)y(x) = λy(x) for all x ∈ (−∞, +∞),

where that parameter k ∈ (−∞, 0) ∪ (0, +∞).
Endpoint classification in L2(−∞, +∞), for all k ∈ (−∞, 0) ∪ (0, +∞):

Endpoint Classification
−∞ LP
+∞ LP

The classical Mathieu equation has a celebrated history and voluminous lit-
erature; for the general properties of the Mathieu functions see [1, Chapter 20],
[26, Chapter 2, Section 2.5], [27, Volume III, Chapter XVI, Section 16.2] and [81,
Chapter XIX, Sections 19.1 and 19.2]. For the general properties of Sturm-Liouville
differential equations with periodic coefficients see the text [26].

There are no eigenvalues for this problem on (−∞, +∞). There may be one
negative eigenvalue of the problem on [0,∞) depending on the boundary condition
at the endpoint 0. The continuous (essential) spectrum is the same for the whole
line or half-line problems and consists of an infinite number of disjoint closed
intervals. The endpoints of these – and thus the spectrum of the problem – can be
characterized in terms of periodic and semi-periodic eigenvalues of Sturm-Liouville
problems on the compact interval [0, 2π]; these can be computed with SLEIGN2.

The spectrum depends quantitatively but not qualitatively upon the param-
eter k.

The above remarks also apply to the general Sturm-Liouville equation with
periodic coefficients of the same period, the so-called Hill’s equation.

Of special interest is the starting point of the continuous spectrum – this is
also the oscillation number of the equation. For the Mathieu equation (p = 1, q =
cos(2x), w = 1) on both the whole line and the half-line it is approximately -0.378;
this result may be obtained by computing the first eigenvalue λ0 of the periodic
problem on the interval [0, 2π].

For extensions of this theory to Sturm-Liouville differential equations with
almost periodic coefficients see the paper [59] and the text [66].

33. Bailey equation

The general form of the Bailey differential equation, see [11, Data base file xam-
ples.tex; example 7], is

−(xy′(x))′ − x−1y(x) = λy(x) for all x ∈ (−∞, 0) ∪ (0, +∞).
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Endpoint classification in L2(−∞, 0)∪ L2(0, +∞):

Endpoint Classification
−∞ LP
0− LCO
0+ LCO
+∞ LP

For both endpoints 0− and 0+:

u(x) = cos (ln(|x|)) v(x) = sin (ln(|x|)) for all x ∈ (−∞, 0) ∪ (0, +∞).

This example is based on the earlier studied Sears-Titchmarsh equation; see
Section 58 below.

For numerical results see [11, Data base file xamples.tex; example 7].

34. Behnke-Goerisch equation

The general form of the Behnke-Goerisch differential equation, see [11, Data base
file xamples.tex; example 28], is

−y′′(x) + k cos2(x)y(x) = λy(x) for all x ∈ (−∞, +∞)

where the parameter k ∈ (−∞, +∞),
Endpoint classification in the space L2(−∞, +∞), for all k ∈ (−∞, +∞):

Endpoint Classification
−∞ LP
+∞ LP

This is a form of the Mathieu equation. In [15] the authors computed a
number of Neumann eigenvalues of this equation, on certain compact intervals,
using interval arithmetic to obtain rigorous bounds for the eigenvalues.

35. Boyd equation

The general form of the Boyd equation, see [11, Data base file xamples.tex; example
4], is

−y′′(x) − x−1y(x) = λy(x) for all x ∈ (−∞, 0) ∪ (0, +∞).
Endpoint classification in L2(−∞, 0) ∪ L2(0, +∞):

Endpoint Classification
−∞ LP
0− LCNO
0+ LCNO
+∞ LP

For both endpoints 0− and 0+

u(x) = x v(x) = x ln(|x|) for all x ∈ (−∞, 0) ∪ (0, +∞).
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This equation arises in a model studying eddies in the atmosphere; see [18].
There is no explicit formula for the eigenvalues of any particular boundary condi-
tion; eigenfunctions can be given in terms of Whittaker functions; see [8, Exam-
ple 3].

36. Boyd equation: regularized

The form of this regularized Boyd equation is

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for all x ∈ (−∞, 0) ∪ (0, +∞)

where
p(x) = r(x)2 q(x) = −r(x)2 (ln(|x|)2 w(x) = r(x)2

with
r(x) = exp (−(x ln(|x|)− x)) for all x ∈ (−∞, 0) ∪ (0, +∞).

Endpoint classification in L2((−∞, 0); w)∪ L2((0, +∞); w):

Endpoint Classification
−∞ LP
0− R
0+ R
+∞ LP

This is a regularized R form of the Boyd equation in Section 35; the LCNO
singularity at zero has been made R but requiring the introduction of quasi-
derivatives. There is a close relationship between these two forms of the Boyd
equation; in particular they have the same eigenvalues – see [4]. For a general
discussion of regularization using non-principal solutions see [65]. For numerical
results see [8, Example 3].

37. Dunford-Schwartz equation

This differential equation is considered in detail in [25, Chapter VIII, Pages 1515–
20];

−
(
(1− x2)y′(x)

)′
+
(

2α2

(1 + x)
+

2β2

(1 − x)

)
y(x) = λy(x) for all x ∈ (−1, +1)

where the independent parameters α, β ∈ [0, +∞).
Boundary value problems for this differential equation are discussed in [25,

Chapter XIII, Section 8].
Endpoint classification in the space L2(−1, +1) for −1:

Parameter Classification
0 ≤ α < 1/2 LCNO

1/2 ≤ α LP
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Endpoint classification in the space L2(−1, +1) for +1:

Parameter Classification
0 ≤ β < 1/2 LCNO

1/2 ≤ β LP

For the LCNO cases the boundary condition functions u, v are given by

Endpoint Parameter u v

−1 α = 0 1
1
2

ln
(

1 + x

1− x

)
−1 0 < α < 1/2 (1 + x)α (1 + x)−α

+1 β = 0 1
1
2

ln
(

1 + x

1− x

)
+1 0 < β < 1/2 (1− x)β (1− x)−β

Note that these u and v are not solutions of the differential equation but
maximal domain functions.

In the case when α ∈ [0, 1/2) and β ∈ [0, 1/2) it is shown in [25, Chapter
XIII, Section 8, Page 1519] that the boundary value problem determined by the
boundary conditions

[y, u](−1) = 0 = [y, u](1)

has a discrete spectrum with eigenvalues given by the explicit formula

λn = (n + α + β + 1)(n + α + β) for n = 0, 1, 2, . . . ;

the eigenfunctions are determined in terms of the hypergeometric function 2F1.

38. Dunford-Schwartz equation: modified

This modification of the Dunford-Schwartz equation replaces one of the LCNO
singularities by a LCO singularity;

−
(
(1− x2)y′(x)

)′
+
( −2γ2

(1 + x)
+

2β2

(1 − x)

)
y(x) = λy(x) for all x ∈ (−1, +1)

where the independent parameters γ, β ∈ [0, +∞).
Endpoint classification in the space L2(−1, +1) for −1:

Parameter Classification
γ = 0 LCNO
0 < γ LCO

Endpoint classification in the space L2(−1, +1) for +1:

Parameter Classification
0 ≤ β < 1/2 LCNO

1/2 ≤ β LP
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For these LCNO/LCO cases the boundary condition functions u, v are given by

Endpoint Parameter u v

−1 γ = 0 1
1
2

ln
(

1 + x

1− x

)
−1 0 < γ cos(γ ln(1 + x)) sin(γ ln(1 + x))

+1 β = 0 1
1
2

ln
(

1 + x

1− x

)
+1 0 < β < 1/2 (1 − x)β (1− x)−β

This is a modification of the Dunford-Schwartz equation above, see Section
37, which illustrates an LCNO/LCO mix obtained by replacing α with iγ; this
changes the singularity at −1 from LCNO to LCO.

Again these u and v are not solutions of the differential equation but maximal
domain functions.

39. Hydrogen atom equation

It is convenient to take this equation in two forms:

−y′′(x) + (kx−1 + hx−2)y(x) = λy(x) for all x ∈ (0, +∞) (1)

where the two independent parameters h ∈ [−1/4, +∞) and k ∈ R, and

−y′′(x) + (kx−1 + hx−2 + 1)y(x) = λy(x) for all x ∈ (0, +∞) (2)

where the two independent parameters h ∈ (−∞,−1/4) and k ∈ R.
Note that form (2) is introduced as a device to aid the numerical computa-

tions in the difficult LCO case; it forces the boundary value problem to have a
non-negative eigenvalue.

Endpoint classification, for both forms (1) and (2), in L2(0, +∞):

Endpoint Form Parameters Classification
0 1 h = k = 0 R
0 1 h = 0, k ∈ R \ {0} LCNO
0 1 −1/4 ≤ h < 3/4, h �= 0, k ∈ R LCNO
0 1 h ≥ 3/4, k ∈ R LP
0 2 h < −1/4, k ∈ R LCO

+∞ 1 and 2 h, k ∈ R LP

This is the two parameter version of the classical one-dimensional equation
for quantum modelling of the hydrogen atom; see [49, Section 10].

For form (1) and all h, k there are no positive eigenvalues; form (2) is best
considered in the single LCO case when some eigenvalues are positive; in form
(1) there is a continuous spectrum on [0,∞); in form (2) there is a continuous
spectrum on [1,∞).

If k = 0 and h = ν2 − 1/4 then form (1) reduces to the Liouville form of the
Bessel equation, see Section 12 above.
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39.1. Results for form 1

In all cases below ρ is defined by

ρ := (h + 1/4)1/2 for all h ≥ −1/4.

(a) For h ≥ 3/4 and k ≥ 0 no boundary conditions are required; there is at most
one negative eigenvalue and λ = 0 may be an eigenvalue; for h ≥ 3/4 and
k < 0 there are infinitely many negative eigenvalues given by

λn =
−k2

(2n + 2ρ + 1)2
, ρ = (h + 1/4)1/2 > 0, n = 0, 1, 2, 3, . . .

and λ = 0 is not an eigenvalue.
(b) For h = 0 and k ∈ R \ {0} a boundary condition is required at 0 for which

u(x) = x v(x) = 1 + k x ln(x).

For some computed eigenvalues see [8] and [49, Section 10].
(c) For −1/4 < h < 3/4, i.e., 0 < ρ < 1, and h �= 0, i.e., ρ �= 1/2, then a

boundary condition is required at 0 for which, for all x ∈ (0, +∞),

u(x) = x
1
2+ρ v(x) = x

1
2−ρ +

k

1− 2ρ
x

3
2−ρ.

The following results hold for the non-Friedrichs boundary condition
[y, v](0) = 0, i.e., A1 = 0, A2 = 1:

1. k > 0, 0 < ρ < 1/2 there are no negative eigenvalues
2. k > 0, 1/2 < ρ < 1 there is exactly one negative eigenvalue given by

λ0 =
−k2

(2ρ− 1)2

3. if k < 0, 0 < ρ < 1/2 there are infinitely many negative eigenvalues
given by

λn =
−k2

(2n− 2ρ + 1)2
, n = 0, 1, 2, 3, . . .

4. if k < 0, 1/2 < ρ < 1 there are infinitely many negative eigenvalues
given by

λn =
−k2

(2n− 2ρ + 3)2
, n = 0, 1, 2, 3, . . .

5. for k = 0 and A1A2 < 0 there is exactly one negative eigenvalue given
by:

λ0 =
4A1Γ(1 + ρ)

A2Γ(1− ρ)1/ρ
.

(d) For h = −1/4, k ∈ R , the LCNO classification at 0 prevails and a boundary
condition is required for which, for all x ∈ (0, +∞),

u(x) = x1/2 + kx3/2 v(x) = 2x1/2 +
(
x1/2 + kx3/2

)
ln(x).
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For k = 0 and A1A2 < 0 there is exactly one negative eigenvalue given by:

λ0 = −c exp(2A1/A2), c = 4 exp(4− 2γ)

where γ is Euler’s constant: γ = 0.5772156649 . . ..

39.2. Results for form 2

For h < −1/4, k ∈ R, the equation is LCO at 0 (recall that we added 1 to the
coefficient q(·) for this case, thus moving the start of the continuous spectrum from
0 to 1). On defining

σ := (−h− 1/4)1/2,

then, for all x ∈ (0, +∞),

u(x) = x1/2
[
(1 − (4h)−1kx) cos(σ ln(x)) + kσx sin(σ ln(x))/2

]
v(x) = x1/2

[
(1 − (4h)−1kx) sin(σ ln(x)) + kσx cos(σ ln(x))/2

]
;

(i) when k = 0 this equation reduces to the Rellich equation, see Section 44
below (but note that the notation is different)

(ii) when k �= 0 explicit formulas for the eigenvalues are not available; however we
report here on the qualitative properties of the spectrum for any boundary
condition at 0:

(α) for all k ∈ R there are infinitely many negative eigenvalues tending
exponentially to −∞

(β) for k > 0 there are only a finite number of eigenvalues in any
bounded interval, in particular they do not accumulate at 1

(γ) for k ≤ 0 the eigenvalues accumulate also at 1.
(δ) for k = 0 and A1A2 < 0 there is exactly one negative eigenvalue

given by:

λ0 =
4A1Γ(1 + ρ)

A2Γ(1− ρ)1/ρ
.

Most of these results are due to Jörgens, see [49, Section 10]; a few new results
were established by the authors of [11, Data base file xamples.tex; example 13].

40. Algebro-geometric equations

A potential q of the one-dimensional Schrödinger equation

L[y](x) := −y′′(x) + q(x)y(x) = λy(x) for all x ∈ I ⊆ R

is called an algebro-geometric potential if there exists a linear ordinary differential
expression P of odd-order and leading coefficient 1, which commutes with L. There
are deep relationships between algebro-geometric equations and the Korteweg-de
Vries hierarchy of non-linear differential equations. An overview of these properties
and results can be found in the survey article [44] which contains a substantial list
of references.
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The main structure and properties of the algebro-geometric equations can
only be observed when the differential equations are considered in the complex
plane, which would take the contents of this catalogue outside the environment
of the Sturm-Liouville symmetric differential equations as described in Section 3
above.

However, three forms of algebro-geometric differential equations are given
here; all three examples are Sturm-Liouville equations; two cases are related to
other examples in this catalogue. However, all of these three examples have to be
seen within the structure of algebro-geometric potentials and the relationships to
non-linear differential equations.

40.1. Algebro-geometric form 1

Let l ∈ N0; then the differential equation is

−y′′(x) + l(l + 1)x−2y(x) = λy(x) for all x ∈ (0,∞).

This equation is a special case of:
(i) the hydrogen atom equation of Section 39 above, which gives the endpoint

classification on (0,∞) for this example
(ii) the Liouville form of the Bessel differential equation, see Section 12 above,

when the parameter ν = l + 1/2; these cases of Bessel functions are named
as the “spherical” Bessel functions; see [1, Chapter 10, Section 10.1] and [80,
Chapter III, Section 3.41].
Endpoint classification in L2(0, +∞):

Endpoint Parameter Classification
0 l = 0 R
0 l ∈ N LP

+∞ l ∈ N0 LP

It is shown in [44] that this differential equation has two solutions of the form

y(x, λ) = exp (ixs)

⎛⎝sl +
l∑

j=0

aj
sl−j

xj

⎞⎠ for all x ∈ (0,∞) and all λ ∈ C,

where:
(i) s2 := λ
(ii) the coefficients {aj : j ∈ N0} are determined by

a0 = 1 and an+1 = i
l(l + 1)− n(n + 1)

2(n + 1)
for all n ∈ N.

40.2. Algebro-geometric form 2

Let g ∈ N0; then the differential equation is

−y′′(x) − g(g + 1)
cosh(x)2

y(x) = λy(x) for all x ∈ (−∞,∞);

this equation is a special case of:
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(i) the hypergeometric differential equation, see Section 9 above but in particular
[79, Chapter IV, Section 4.19].

(ii) the Liouville form of the Jacobi function differential equation, see Section 26
above, with the special case of α = −1/2 and β = g + 1/2; here, the interval
(0,∞) for the equation can be extended to (−∞,∞) since the origin 0 is no
longer a singular point of the equation when α = −1/2.
Endpoint classification in L2(−∞, +∞):

Endpoint Parameter Classification
−∞ g ∈ N0 LP
+∞ g ∈ N0 LP

It is shown in [44] that this differential equation has two solutions of the form

y(x, λ) = exp (ixs)

(
g∑

n=0

an(s) tanh(x)n

)
for all x ∈ (−∞,∞) and all λ ∈ C,

where:
(i) s2 := λ
(ii) the coefficients {an : n = 0, . . . , g} are determined by a five-term recurrence

relation.

40.3. Algebro-geometric form 3

Let g ∈ R; then this differential equation is a special case of Lamé’s equation, see
Section 31 above, and is given by

−y′′(x) + g(g + 1)℘(x + ω′)y(x) = λy(x) for all x ∈ (−∞,∞),

where ℘ is the Weierstrass elliptic function with fundamental periods 2ω and 2ω′,
with ω real and ω′ purely imaginary.

In this situation ℘(· + ω′) is real-valued, periodic with period 2ω, and real-
analytic on R, see [1, Chapter 18, Section 18.1].

Endpoint classification in the space L2(−∞,∞):

Endpoint Parameter Classification
−∞ g ∈ R LP
+∞ g ∈ R LP

When g ∈ N0, it is shown in [44] that this differential equation (which is an
example of the general Lamé differential equation) has solutions of the form

y(a, x) = σ(x + ω′)−g

g∏
j=1

σ(x + ω′ − aj) exp

⎛⎝x

g∑
j=1

ζ(aj)

⎞⎠ for all x ∈ (−∞,∞),

where the vector a = (a1, a2, . . . , ag) has to satisfy the conditions
g∑

j=1
j 
=k

(ζ(aj − ak)− ζ(aj) + ζ(ak)) = 0 for k = 1, 2, · · · , g
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and the spectral parameter λ is then given by

λ = (1− 2g)
g∑

j=1

℘(aj).

Here σ and ζ are the Weierstrass-σ and Weierstrass-ζ functions respectively, see
[1, Chapter 18, Section 18.1].

The spectrum of the unique self-adjoint operator, in the Hilbert function
space L2(−∞,∞), generated by this example of the Lamé differential equation,
consists of g+1 disjoint intervals, one of which is a semi-axis; these are the spectral
bands of this differential operator.

Note that a satisfies the constraints mentioned if and only if −a satisfies
the same constraint, since ζ is an odd function; as ℘ is an even function these
properties lead to the same value of λ. Both the functions y(a, ·) and y(−a, ·) do
then satisfy the same differential equation; they are linearly independent except
when λ is one of the 2g + 1 band edges.

For these results and additional examples of algebro-geometric differential
equations see the survey paper [44].

40.4. Algebro-geometric form 4

This form is named as the N -soliton potential.
We introduce the N ×N matrix, for 1 ≤ j, k ≤ N and all x ∈ (−∞,∞),

CN (x) =
(
cjck(κj + κk)−1 exp(−(κj + κk)x

)
with

cj > 0, κj > 0, κj �= κk for all 1 ≤ j, k ≤ N with j �= k;

the N -soliton potential qN : (−∞,∞)→ R is then defined by

qN (x) := −2
d2

dx2
ln(det(IN + CN (x))) for all x ∈ (−∞,∞)

(with IN the identity matrix in CN ). The corresponding Sturm-Liouville differen-
tial equation then reads

−y′′(x) + qN (x)y(x) = λy(x) for all x ∈ (−∞,∞) and λ ∈ C.

Since

qN ∈ C∞(−∞,∞), qN (x) = O(exp(−2κj0 |x|)) for |x| → ∞,

where κj0 = min1≤j≤N (κj), the endpoint classification in L2(−∞,∞) is

Endpoint Classification
−∞ LP
+∞ LP
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Defining

cN,j,+ := cj , cN,j,− := c−1
j ×

⎧⎪⎨⎪⎩
2κ1, j = N = 1,

2κj

N∏
k=1

κj + κk

κj − κk
with k �= j, 1 ≤ j ≤ N, N ≥ 2

two independent solutions of the differential equation, associated with qN , are then
given by

fN,±(x, λ) :=

⎡⎣1− i

N∑
j=1

(
√

λ + iκj)−1cN,j,±ψN,j(x) exp (∓κjx)

⎤⎦ exp(±i
√

λx),

for all λ ∈ C with Im(
√

λ) ≥ 0, and all x ∈ (−∞,∞). Here {ψN,j(·) : j =
1, 2, . . . , N} are given as follows; define the column vector

Ψ0
N (x) := (c1 exp(−κ1x), . . . , cN exp(−κNx))�,

and then ΨN(·) by

ΨN(x) := [IN + CN (x)]−1ψ0
N (x) for all x ∈ (−∞,∞),

both for all x ∈ (−∞,∞). Writing now

ΨN(x) = (ψN,1(x), . . . , ψN,N(x))�

this defines the components {ψN,j(·) : j = 1, 2, . . . , N} and completes the definition
of the two solutions fN,±.

Now let HN denote the (maximally defined) self-adjoint Schrödinger operator
with potential qN in L2(−∞,∞). Then ψN,j ∈ C∞(−∞,∞) are exponentially de-
caying eigenfunctions of HN as |x| → ∞, corresponding to the negative eigenvalues
−κ2

j ; thus

HNψN,j = −κ2
jψN,j, 1 ≤ j ≤ N.

Moreover, HN has spectrum

{−κ2
j : 1 ≤ j ≤ N} ∪ [0,∞)

and qN satisfies

qN (x) = −4
N∑

j=1

κjψN,j(x)2 < 0, 0 < −qN (x) ≤ 2κ̂2,

where κ̂ := max1≤j≤N (κj) for all x ∈ R.
The potentials qN are reflectionless since the corresponding 2 × 2 scattering

matrix SN (λ) is of the form

SN (λ) =
(

TN (λ) Rr
N (λ)

R�
N (λ) TN (λ)

)
for all λ ≥ 0,
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with transmission coefficients given by

TN(λ) =
N∏

j=1

√
λ + iκj√
λ− iκj

for all λ ≥ 0

and vanishing reflection coefficients from the right and left incidence

Rr
N (λ) = R�

N (λ) = 0 for all λ ≥ 0.

Thus, the N -soliton potentials qN can be thought of as a particular construc-
tion of reflectionless potentials that add N negative eigenvalues −κ2

j , 1 ≤ j ≤ N ,
to the spectrum of H0, where H0 = −d2/dx2 is the Schrödinger operator in
L2(−∞,∞) associated with the trivial potential q0(x) = 0 for all x ∈ R, and
spectrum [0,∞).

It can be shown that qN satisfies a particular Nth stationary KdV equation,
see [40, Section 1.3]. In addition, introducing an appropriate time-dependence in
cj leads to KdV N -soliton potentials, see [40, Section 1.4].

We also note that qg(x) = −g(g + 1)[cosh(x)]−2, treated in Subsection 40.2
above, is a special case of qN for N = g and a particular choice of κj and cj ,
1 ≤ j ≤ N .

Reflectionless potentials qN were first derived by Kay and Moses [51] (see
also [23], [24], [39], and [41] for detailed discussions).

41. Bargmann potentials

Let ϕ0(x, λ) = s−1 sin(sx) for λ = s2 ∈ C and x ∈ [0,∞); then for N ∈ N introduce
the N ×N matrix

BN (x) = (BN,j,k(x)) for 1 ≤ j, k ≤ N and all x ∈ [0,∞)

given by

BN,j,k(x) =
∫ x

0

Cjϕ0(t,−γ2
j )ϕ0(t,−γ2

k) dt

= Cj(2γjγk)−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2γj)−1 sinh(2γjx)− x,

for j = k,

(γj + γk)−1 sinh((γj + γk)x) − (γj − γk)−1 sinh((γj − γk)x),
for j �= k,

Cj > 0, γj > 0 for 1 ≤ j, k ≤ N.

Bargmann potentials qN are then defined by

qN (x) = −2
d2

dx2
ln(det(IN + BN (x))) for all x ∈ [0,∞)

(IN the identity matrix in CN ), and the associated Sturm-Liouville differential
equation reads

−y′′(x) + qN (x)y(x) = λy(x) for all x ∈ [0,∞) and λ ∈ C.
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It can be shown that ∫ ∞

0

(1 + x)|qN (x)| dx <∞.

Actually, much more detailed information can be obtained to give

qN (x) =
x↓0
−4

⎛⎝ N∑
j=1

Cjx

⎞⎠+ o(x)

qN (x) =
x↑∞

−2C−1
j0

(2γj0)
5 exp(−2γj0x)[1 + o(1)],

where γj0 = min1≤j≤N (γj) and Cj0 is the corresponding normalization constant.
Hence the endpoint classification of this equation in L2(0, +∞) is

Endpoint Classification
0 R

+∞ LP

The regular solution ϕN (·, λ) associated with qN is then given by

ϕ(x, λ) =
det

∣∣∣∣IN + BN (x) ψ(x)
β(x, λ) ϕ0(x, λ)

∣∣∣∣
det(IN + BN (x))

, x ∈ [0,∞), λ ∈ C,

where the matrix in the numerator is obtained by adding to IN +BN (x) the column
ψ, the row β, and the last diagonal element ϕ0. Here ψ and χ are vectors with
components Cjϕ0(x,−γ2

j ) and ϕ0(x,−γ2
j ), respectively, and

β(x, λ) =
∫ x

0

χ(t)�ϕ0(t, λ) dt.

Similarly, the Jost solution f(x, λ) corresponding to qN can be computed, but
we omit the lengthy expression; the Jost function F (s) associated with qN finally
reads

F (s) = f(0, λ) =
N∏

j=1

s− iγj

s + iγj
with λ = s2.

This shows that the Schrödinger operator HN in L2(0, +∞) associated with qN

and a Dirichlet boundary condition at x = 0 has spectrum

{−γ2
j : 1 ≤ j ≤ N} ∪ [0,∞).

Next we denote by q0 the trivial potential q0(x) = 0 for all x ∈ [0,∞), and
by H0 = −d2/dx2 the corresponding Schrödinger operator in L2(0, +∞) with a
Dirichlet boundary condition at x = 0; the operator H0 then has spectrum [0,∞).

In comparison with the trivial potential q0(x) = 0, the Bargmann potential
qN (x) is constructed such that the corresponding operator HN has N additional
strictly negative eigenvalues at −γ2

j for 1 ≤ j ≤ N . Put differently, N negative
eigenvalues −γ2

j have been added to the spectrum of H0.
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However, since |F (s)| = 1 for all s ≥ 0, the spectral densities of HN and H0

coincide for λ ≥ 0 (recall λ = s2). Explicitly, the spectral function ρN (λ), for all
λ ∈ (−∞, +∞), of HN is of the form

ρN(λ) =

{
(2/3)π−1λ3/2, λ ≥ 0,∑N

j=1 Cjθ(λ + γ2
j ), λ < 0

(here θ(t) = 1 for t > 0, θ(t) = 0 for t < 0), which should be compared with the
spectral function ρ0(λ) of H0,

ρ0(λ) =

{
(2/3)π−1λ3/2, λ ≥ 0,

0, λ < 0.

For Bargmann’s original work we refer to [13], [14]; more details on Bargmann
potentials can be found in [21, Sections III.2, IV.1 and IV.3], and the references
therein (see also [42, Section 11]).

42. Halvorsen equation

The Halvorsen differential equation exhibits the difficulties created at R endpoints,
both analytically and numerically, in certain circumstances:

−y′′(x) = λx−4 exp(−2/x)y(x) for all x ∈ (0, +∞).

The endpoint classification in the space L2((0, +∞); x−4 exp(−2/x)):

Endpoint Classification
0 R

+∞ LCNO

For the endpoints 0 and +∞ in the R and LCNO classification the boundary
condition functions u, v are determined by

Endpoint u v
0 x 1

+∞ 1 x

In this example the LC boundary condition form can be used at the R endpoint
0, with u and v as shown.

Since this equation is R at 0 and LCNO at +∞ the spectrum is discrete and
bounded below for all boundary conditions. However, this example illustrates that
even a R endpoint can cause difficulties for computation; details of the computation
of eigenvalues are given in [11, Data base file xamples.tex; example 3].

At 0, the principal boundary condition entry is A1 = 1, A2 = 0; at ∞ with
u(x) = 1, v(x) = x the principal boundary condition entry is also A1 = 1, A2 = 0,
but note the interchange of the definitions of u and v at these two endpoints.
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43. Jörgens equation

We have this example due to Jörgens [49]:

−y′′(x) + (exp(2x)/4− k exp(x))y(x) = λy(x) for all x ∈ (−∞, +∞)

where the parameter k ∈ (−∞, +∞).
Endpoint classification in the space L2(−∞, +∞), for all k ∈ (−∞, +∞):

Endpoint Classification
−∞ LP
+∞ LP

This is a remarkable example from Jörgens; numerical results are given in
[11, Data base file xamples.tex; example 27]. Details of this problem are given in
[49, Part II, Section 10]. For all k ∈ (−∞, +∞) the boundary value problem on
the interval (−∞, +∞) has a continuous spectrum on [0, +∞); for k ≤ 1/2 there
are no eigenvalues; for h = 0, 1, 2, 3, . . . and then k chosen by h < k− 1/2 ≤ h + 1,
there are exactly h+1 eigenvalues and these are all below the continuous spectrum;
these eigenvalues are given explicitly by

λn = −(k − 1/2− n)2, n = 0, 1, 2, 3, . . . , h.

44. Rellich equation

The Rellich differential equation is, where the parameter K ∈ R,

−y′′(x) + Kx−2y(x) = λy(x) for all x ∈ (0, +∞);

this equation has a long and interesting history as indicated in the references, see
[72], [64], [54], [20] and [43].

Here, we consider the equation in the form, where the parameter k ∈ (0, +∞),

−y′′(x) + (1− (k2 + 1/4)x−2)y(x) = λy(x) for all x ∈ (0, +∞)

as discussed by Krall in the paper [54], and in view of the connection with the
computer program SLEIGN2, see [8] and [10].

Endpoint classification, for all k ∈ (0, +∞), in the space L2(0, +∞):

Endpoint Classification
0 LCO

+∞ LP

This example should be seen as a special case of the Liouville form of the
Bessel equation as discussed at the end of Section 12 above; solutions can be
obtained in terms of the modified Bessel functions.

To help with the computations for this example the spectrum is translated
by a term +1; this simple device is used for numerical convenience.

For problems with a boundary condition at the endpoint 0 there is a contin-
uous spectrum on [1,∞) with a discrete (and simple) spectrum on (−∞, 1). This
discrete spectrum has cluster points at both −∞ and 1.
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For the LCO endpoint at 0 the boundary condition functions are given by

u(x) = x1/2 cos(k ln(x)) v(x) = x1/2 sin(k ln(x)).

For the boundary value problem on [0,∞) with boundary condition [y, u](0) =
0 let the following conditions and notations apply:

(i) suppose Γ(1 + i) = α + iβ and µ > 0 satisfies tan
(
ln(1

2µ)
)

= −α/β
(ii) θ = Im(log(Γ(1 + i)))
(iii) ln(1

2µ) = 1
2π + θ + sπ for s = 0,±1,±2, . . .

(iv) µ2
s =

(
2 exp(θ + 1

2π)
)2 exp(2sπ), s = 0,±1,±2, . . .

then the eigenvalues are given explicitly by λn = −µ2
−(n+1)+1 (n = 0,±1,±2, . . . ).

This problem creates major computational difficulties; see [11, Data base
file xamples.tex; example 20]. The program SLEIGN2 can compute only six of
these eigenvalues in a normal UNIX server, even in double precision, specifically
λ−3 to λ2; other eigenvalues are, numerically, too close to 1 or too close to −∞.
Here we list these SLEIGN2 computed eigenvalues in double precision in a normal
UNIX server and compare them with the same eigenvalues computed from the
transcendental equation given above; for the problem on (0,∞) with k = 1 and
A1 = 1, A2 = 0, the results are:

Eigenvalue eig from SLEIGN2 eig from trans. equ.
−3 −276, 562.5 −14, 519.130
−2 −27, 114.48 −27, 114.67
−1 −49.62697 −49.63318
0 0.9054452 0.9054454
1 0.9998234 0.9998234
2 0.9999997 0.9999997

45. Laplace tidal wave equation

This differential equation is given by:

−(x−1y′(x))′ +
(
kx−2 + k2x−1

)
y(x) = λy(x) for all x ∈ (0, +∞),

where the parameter k ∈ (−∞, 0) ∪ (0, +∞). This equation has been studied by
many authors, in particular by Homer in his doctoral thesis [47] where a detailed
list of references is to be found.

Endpoint classification in L2(0,∞):

Endpoint Classification
0 LCNO

+∞ LP

For the endpoint 0:

u(x) = x2 v(x) = x− k−1 for all x ∈ (0, +∞).

This equation is a particular case of the more general equation with this
name; for details and references see [47].
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There are no representations for solutions of this differential equation in terms
of the well-known special functions. Thus to determine boundary conditions at the
LCNO endpoint 0 use has to be made of maximal domain functions; see the u, v
functions given above. Numerical results for some boundary value problems and
certain values of the parameter k are given in [11, Data base file xamples.tex;
example 8].

46. Latzko equation

This differential equation is given by

−((1− x7)y′(x))′ = λx7y(x) for all x ∈ (0, 1].

Endpoint classification in L2(0, 1]:

Endpoint Classification
0 R
1 LCNO

For the endpoint 1:

u(x) = 1 v(x) = − ln(1− x) for all x ∈ (0, 1).

This differential equation has a long and celebrated history; in particular it
has been studied by Fichera, see [36, Pages 43 to 45]. There is a LCNO singularity
at the endpoint 1 which requires the use of maximal domain functions; see the u, v
functions given above. The endpoint 0 is R but there are computational difficulties
in general when a weight has the property w(0) = 0.

This example is similar in some respects to the Legendre equation of Section
19 above.

For numerical results see [11, Data base file xamples.tex; example 7].

47. Littlewood-McLeod equation

This important example gives a Sturm-Liouville boundary value problem that has
a discrete spectrum that is unbounded above and below; the differential equation is

−y′′(x) + x sin(x)y(x) = λy(x) for all x ∈ [0, +∞).

Endpoint classification in the space L2(0, +∞):

Endpoint Classification
0 R

+∞ LP

This differential equation is an example of the LPO endpoint classification intro-
duced in [69, Chapter 7], see item 6 of Remark 5.1 above.

The spectral analysis of this differential equation is considered in [56] and
[61]; the equation is R at 0 and LP at +∞. All self-adjoint operators in L2[0,∞)
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have a simple, discrete spectrum {λn : n = 0,±1,±2, . . .} that is unbounded both
above and below, i.e.,

lim
n→−∞λn = −∞ lim

n→+∞λn = +∞.

Every eigenfunction has infinitely many zeros in (0,∞).
SLEIGN2, and all other codes, fail to compute the eigenvalues for this type

of LP oscillatory problem. However there is qualitative information to be obtained
by considering regular problems on [0, X ] with, say, Dirichlet boundary conditions
y(0) = y(X) = 0.

48. Lohner equation

This Sturm-Liouville example was one of the first differential equations to be
subjected to the Lohner code, see [57], for computing guaranteed numerical bounds
for eigenvalues of boundary value problems, but see the earlier paper of Plum [71].

The differential equation is

−y′′(x) − 1000xy(x) = λy(x) for all x ∈ (−∞, +∞).

Endpoint classification in the space L2(−∞, +∞):

Endpoint Classification
−∞ LP
+∞ LP

In [57] Lohner computed the Dirichlet eigenvalues of certain regular problems
on compact intervals, using interval arithmetic, and obtained rigorous bounds. In
double precision SLEIGN2 computed eigenvalues to give numerical values that are
in good agreement with these guaranteed bounds.

49. Pryce-Marletta equation

This differential equation presents a difficult problem for computational programs;
it was devised by Pryce, see [69, Appendix B, Problem 60], and studied by Marletta
[60]; the differential equation is:

−y′′(x) +
3(x− 31)

4(x + 1)(x + 4)2
y(x) = λy(x) for all x ∈ [0, +∞).

Endpoint classification in L2(0, +∞):

Endpoint Classification
0 R

+∞ LP

For this differential equation boundary value problems on the interval [0,∞) are
considered. Since q(x) → 0 as x → ∞ the continuous spectrum consists of [0,∞)
and every negative number is an eigenvalue for some boundary condition at 0.
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For the boundary condition A1 = 5, A2 = 8 at the endpoint 0, there is
a negative eigenvalue λ0 near −1.185. However the equation with λ = 0 has a
solution

y(x) =
1− x2

(1 + x/4)5/2
for all x ∈ [0,∞),

that satisfies this boundary condition, which is not in L2(0,∞) but is “nearly”
in this space. This solution deceives most computer programs; however SLEIGN2
correctly reports that λ0 is the only eigenvalue, and the start of the continuous
spectrum at 0.

Additional details of this example are to be found in the Marletta certification
report on SLEIGN [60].

50. Meissner equation

The Meissner equation has piecewise constant but discontinuous coefficients; it has
a remarkable distribution of simple and double eigenvalues for periodic boundary
conditions on the interval (−1/2, 1/2): the differential equation is

−y′′(x) = λw(x)y(x) for all x ∈ (−∞, +∞),

where the weight coefficient w is defined by

w(x) = 1 for all x ∈ (−∞, 0]

= 9 for all x ∈ (0, +∞).

Endpoint classification in the space L2(−∞, +∞):

Endpoint Classification
−∞ LP
+∞ LP

This equation arose in a model of a one-dimensional crystal. For this constant
coefficient equation with a weight function which has a jump discontinuity the
eigenvalues can be characterized as roots of a transcendental equation involving
only trigonometrical and inverse trigonometrical functions. There are infinitely
many simple eigenvalues and infinitely many double ones for the periodic case;
they are given by:

Periodic boundary conditions on (−1/2, +1/2), i.e.,

y(−1/2) = y(+1/2) y′(−1/2) = y′(+1/2).

We have λ0 = 0 and for n = 0, 1, 2, . . .

λ4n+1 = (2nπ + α)2; λ4n+2 = (2(n + 1)π − α))2;

λ4n+3 = λ4n+4 = (2(n + 1)π))2.

where α = cos−1(−7/8)
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Semi-periodic boundary conditions on (−1/2, +1/2), i.e.,

y(−1/2) = −y(+1/2) y′(−1/2) = −y′(+1/2).

With β = cos−1((1 +
√

33)/16) and γ = cos−1((1 −
√

33)/16) these are all
simple and given by, for n = 0, 1, 2, . . .

λ4n = (2nπ + β)2; λ4n+1 = (2nπ + γ)2;

λ4n+2 = (2(n + 1)π − γ)2; λ4n+3 = (2(n + 1)π − β)2.

For the general theory of periodic differential boundary value problems see [26];
for a special case with discontinuous coefficients see [45].

51. Morse equation

This differential equation has exponentially small and large coefficients; the differ-
ential equation is

−y′′(x) + (9 exp(−2x)− 18 exp(−x))y(x) = λy(x) for all x ∈ (−∞, +∞).

Endpoint classification in the space L2(−∞, +∞):

Endpoint Classification
−∞ LP
+∞ LP

This differential equation on the interval (−∞,∞) is studied in [5, Example
6]; the spectrum has exactly three negative, simple eigenvalues, and a continuous
spectrum on [0,∞); the eigenvalues are given explicitly by

λn = −(n− 2.5)2 for n = 0, 1, 2.

52. Morse rotation equation

This differential equation is considered in [5] and is given as

−y′′(x) + (2x−2 − 2000(2e(x)− e(x)2))y(x) = λy(x) for all x ∈ (0, +∞),

where
e(x) = exp(−1.7(x− 1.3)) for all x ∈ (0, +∞).

Endpoint classification in the space L2(0, +∞)

Endpoint Classification
0 LP

+∞ LP

This classical problem on the interval (0,∞) has a continuous spectrum on
[0,∞) and exactly 26 negative eigenvalues; it provides an invaluable numerical test
for computer programs.



A Catalogue of Sturm-Liouville Equations 321

53. Brusencev/Rofe-Beketov equations

53.1. Example 1

The Sturm-Liouville differential equation

−(x4y′(x))′ − 2x2y(x) = λy(x) for all x ∈ (0,∞)

is considered in the paper [19]; this example provides a LC case with special
properties.

Endpoint classification in L2(0, +∞):

Endpoint Classification
0 LP

+∞ LCNO

For the endpoint +∞ in the LCNO classification the boundary condition
functions u, v are determined by

Endpoint u v
+∞ x−1 x−2

53.2. Example 2

The Sturm-Liouville differential equation

−y′′(x)−
(
x10 + x4sign(sin(x))

)
y(x) = λy(x) for all x ∈ [0,∞)

is considered in the paper [73]; this example provides a LC case with special
properties.

Endpoint classification in L2(0, +∞):

Endpoint Classification
0 R

+∞ LCO

For the endpoint +∞ in the LCO classification the boundary condition func-
tions u, v may be determined as the real and imaginary parts of the expression

x−5/2 exp(ix6/6)Y (x) for all x ∈ [1,∞),

where the function Y (·) is the solution of the integral equation, for x ∈ [1,∞),

Y (x) = 1 +
i

2

∫ ∞

x

(
t−1sign(sin(t)) +

35
4

t−7

)[
exp

(
i

3
(t6 − x6)

)
− 1

]
Y (t) dt.

The solution Y (·) of this integral equation may be obtained by the iteration method
of successive approximations; in this process it has to be noted that the integrals
concerned are only conditionally convergent.
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54. Slavyanov equations

In the important text [77] the authors give a systematic presentation of a unified
theory of special functions based on singularities of linear ordinary differential
equations in the complex plane C. In particular, in [77, Chapter 3], there is to
be found an authoritative account of the definition and properties of the Heun
differential equation.

In [77, Chapter 4] there is a chapter devoted to physical applications, in-
cluding the use of the Heun differential equation, resulting from the application
of separation techniques to boundary value problems for linear partial differential
equations. From this chapter we have selected three examples of Sturm-Liouville
differential equations; each equation contains a number of symbols denoting phys-
ical constants and parameters which are given here without explanation. To allow
the quoted examples to be given in Sturm-Liouville form the notation for one
of these parameters has been changed to play the role of the spectral parameter
λ ∈ C.

The resulting Sturm-Liouville examples given below have not yet been con-
sidered for their endpoint classification, nor for their boundary condition functions
if required for LC endpoints.

54.1. Example 1

The hydrogen-molecule ion problem, see [77, Chapter 4, Section 4.1.3], gives the
two differential equations:

−
(
(1− η2)Y ′(η)

)′
+
(
n2(1− η2)−1 − µ

)
Y (η) = λη2Y (η) for all η ∈ (−1, 1)

and

−
(
(1− ξ2)X ′(ξ)

)′
+
(
κξ + n2(1− ξ2)− µ

)
X(ξ) = λξ2X(ξ) for all ξ ∈ (1,∞).

54.2. Example 2

The Teukolsky equations in astrophysics gives the equation, see [77, Chapter 4,
Section 4.2.1]:

−((1− u2)X ′(u))′ +
(
2 + (m− 2u)2(1− u2)−1 − 4aωu− a2ω2u2

)
X(u) = λX(u)

for all u ∈ (−1, 1).

54.3. Example 3

The theory of tunnelling in double-well potentials, see [77, Chapter 4, Section 4.4],
gives the differential equation

−y′′(x) + V (x)y(x) = λy(x) for all x ∈ (−∞,∞)

with the potential V determined by

V (x) = −A(sech2(x + x0) + sech2(x− x0)) for all x ∈ (−∞,∞);

here A is a number and x0 is a parameter.
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55. Fuel cell equation

This Sturm-Liouville differential equation

−(xy′(x))′ − x3y(x) = λxy(x) for all x ∈ (0, b]

plays an important role in a fuel cell problem as discussed in the paper [6].
Endpoint classification in the space L2((0, b); x):

Endpoint Classification
0 LCNO
b R

For the LCNO endpoint at 0 the u, v boundary condition functions can be
taken as, see [6, Section 8]:

u(x) = 1 and v(x) = ln(x) for all x ∈ (0, b].

Various boundary value problems are considered in [6, Section 8]; the techni-
cal requirements of the fuel cell problem require a study of the analytic properties
of these boundary value problems, as the endpoint b tends to zero.

56. Shaw equation

This Sturm-Liouville differential equation is considered in the paper [76] and has
the form

y′′(x) −Q(x)y(x) = λy(x) for all x ∈ (0,∞)

where

Q(x) = A−B exp(−Cx) + Dx−2 for all (0,∞)

for positive real numbers A, B, C, D with D ≥ 3/4.
Endpoint classification in L2(0, +∞):

Endpoint Classification
0 LP

+∞ LP

In the paper [76] the following specific values for A, B, C, D are used in con-
nection with the chemical photodissociation of methyl iodide:

A = 19362.8662 B = 19362.8662× 46.4857

C = 1.3 D = 2.0.
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57. Plum equation

This Sturm-Liouville equation is one of the first to be considered for numerical
computation using interval arithmetic: the equation is

−y′′(x) + 100 cos2(x)y(x) = λy(x) for all x ∈ (−∞, +∞).

Endpoint classification in L2(−∞, +∞):

Endpoint Classification
−∞ LP
+∞ LP

In [71] the first seven eigenvalues for periodic boundary conditions on the
interval [0, π], i.e.,

y(0) = y(π) y′(0) = y′(π),
are computed using a numerical homotopy method together with interval arith-
metic; rigorous bounds for these seven eigenvalues are obtained.

58. Sears-Titchmarsh equation

This differential equation is considered in detail in [79, Chapter IV, Section 4.14]
and [75]; the equation is

−y′′(x)− exp(2x)y(x) = λy(x) for all x ∈ (−∞,∞)

and has solutions of the form, using the Bessel function Jν and writing
√

λ = s =
σ + it,

y(x, λ) = Jis(exp(x)) for all x ∈ (−∞,∞);

in the space L2(−∞,∞) this equation is LP at −∞ and is LCO at +∞. This
differential equation is then another example of equations derived from the original
Bessel differential equation.

This Sears-Titchmarsh differential equation is the Liouville form, see Section
7 above, of the Sturm-Liouville equation

−(xy′(x))′ − xy(x) = λx−1y(x) for all x ∈ (0, +∞).

In the space L2((0,∞); x−1) this differential equation is LP at 0 and is LCO at
+∞.

Endpoint classification in L2((0,∞); x−1):

Endpoint Classification
0 LP

+∞ LCO

For the LCO endpoint +∞ the boundary condition functions can be chosen
as, for all x ∈ (0, +∞),

u(x) = x−1/2 (cos(x) + sin(x)) v(x) = x−1/2 (cos(x) − sin(x)) .
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For details of boundary value problems for this Sturm-Liouville equation,
on [1,∞) see [8, Example 4]. For problems on [1,∞) the spectrum is simple and
discrete but unbounded both above and below, since the endpoint +∞ is LCO.

Numerical results are given in [11, Data base file xamples.tex; example 6].

59. Zettl equation

This differential equation is closely linked to the classical Fourier equation 8;

−(x1/2y′(x))′ = λx−1/2y(x) for all x ∈ (0, +∞).

Endpoint classification in L2((0, +∞); x−1/2)

Endpoint Classification
0 R

+∞ LP

This is a devised example to illustrate the computational difficulties of reg-
ular problems which have mild (integrable) singularities, in this example at the
endpoint 0 of (0,∞).

The differential equation gives p(0) = 0 and w(0) = ∞ but nevertheless 0 is
a regular endpoint in the Lebesgue integral sense; however this endpoint 0 does
give difficulties in the computational sense.

The Liouville normal form of this equation is the Fourier equation, see Section
8 above; thus numerical results for this problem can be checked against numerical
results from

(i) an R problem,
(ii) the roots of trigonometrical equations, and
(iii) as an LCNO problem (see below).
There are explicit solutions of this equation given by

cos(2x1/2
√

λ) ; sin(2x1/2
√

λ)/
√

λ.

If 0 is treated as an LCNO endpoint then u, v boundary condition functions are

u(x) = 2x1/2 v(x) = 1.

The regular Dirichlet condition y(0) = 0 is equivalent to the singular con-
dition [y, u](0) = 0. Similarly the regular Neumann condition (py′)(0) = 0 is
equivalent to the singular condition [y, v](0) = 0.

The following indicated boundary value problems have the given explicit
formulae for the eigenvalues:

y(0) = 0 or [y, u](0) = 0, and y(1) = 0 gives

λn = ((n + 1)π)2/4 (n = 0, 1, . . . )

(py′)(0) = 0 or [y, v](0) = 0, and (py′)(1) = 0 gives

λn =
(
(n + 1

2 )π
)2

/4 (n = 0, 1, . . . ).



326 W.N. Everitt

60. Remarks

1. The author has made use of an earlier collection of examples of Sturm-
Liouville differential equations drawn up by Bailey, Everitt and Zettl, in con-
nection with the development and testing of the computer program SLEIGN2;
see [8] and [10].

2. The author has made use of major collections of Sturm-Liouville differential
equations from Pryce [69] and [70], and from Fulton, Pruess and Xie [38]
and [68].

3. This catalogue will continue to be developed; the author welcomes corrections
to the present form, and information about additional examples to extend
the scope, of the catalogue.
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