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On Some Classes of Diffusion Equations
and Related Approximation Problems

Francesco Altomare and Ioan Rasa

Abstract. Of concern is a class of second-order differential operators on the
unit interval. The C0-semigroup generated by them is approximated by iter-
ates of positive linear operators that are introduced here as a modification of
Bernstein operators. Finally, the corresponding stochastic differential equa-
tions are also investigated, leading, in particular to the evaluation of the
asymptotic behaviour of the semigroup.

1. Introduction

In this paper we study the positive semigroups (T (t))t≥0 generated by the diffe-
rential operators

Wu(x) = x(1− x)u′′(x) + (a + 1− (a + b + 2)x)u′(x)

defined on suitable domains of C[0, 1] which incorporate several boundary condi-
tions.

In the spirit of a general approach introduced by the first author ([1], see
also, e.g., [4], [5], [7], [14], [23]–[25] and the references given there) we show that
the semigroups can be approximated by iterates of some positive linear operators
that are introduced here, perhaps, for the first time.

These operators are a simple modification of the classical Bernstein operators
and, as them, are of interpolatory type.

We also investigate some shape preserving properties of these operators that,
in turn, imply similar ones for the semigroup (T (t))t≥0.

By following a recent approach due to the second author ([24]–[25]) we also
consider the solutions (Yt)t≥0 of the stochastic equations associated with W and
which are formally related to the semigroups by the formula

T (t)f(x) = Exf(Yt) (0 ≤ x ≤ 1, t ≥ 0).



14 F. Altomare and I. Rasa

For suitable values of a and b we get information about (T (t))t≥0 and (Yt)t≥0, in
particular about their asymptotic behaviour. Analogous results have been obtained
in [25] considering the operators described in [16].

We finally point out that the generation properties of the operators W have
been also investigated in L1[0, 1] (see [7]). In the spirit of [24], Section 7, W may
be viewed also as generator of a C0-semigroup on L2[0, 1]; details will appear
elsewhere.

2. The semigroup

Let C[0, 1] be the space of all real-valued continuous functions, endowed with the
supremum norm and the usual order.

For a, b ∈ R consider the differential operator

Wu(x) = x(1− x)u′′(x) + (a + 1− (a + b + 2)x)u′(x) , 0 < x < 1, u ∈ C2(0, 1).

The corresponding diffusion equation, i.e.,

ut(t, x) = x(1 − x)uxx(t, x) + (a + 1− (a + b + 2)x)ux(t, x)

(0 < x < 1, t ≥ 0)
(1)

occurs in some stochastic model from genetics discussed in [13] (see also [9]
and [27]).

Usually the above diffusion equation is coupled with some initial boundary
conditions.

Let

DV (W ) = {u ∈ C[0, 1] ∩ C2(0, 1) : lim
x→0,1

Wu(x) = 0},

DM (W ) = {u ∈ C[0, 1] ∩ C2(0, 1) : Wu ∈ C[0, 1]},
DV M(W ) = {u ∈ C[0, 1] ∩ C2(0, 1) : lim

x→0
Wu(x) = 0, lim

x→1
Wu(x) ∈ R},

DMV (W ) = {u ∈ C[0, 1] ∩ C2(0, 1) : lim
x→1

Wu(x) = 0, lim
x→0

Wu(x) ∈ R}

and set

D(W ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
DV (W ), if a, b < 0;
DM (W ), if a, b ≥ 0;
DV M(W ), if a < 0, b ≥ 0;
DMV (W ), if a ≥ 0, b < 0.

For every u ∈ D(W ), Wu can be continuously extended to [0, 1].
We shall continue to denote by Wu this extension and so we obtain a linear

operator W : D(W ) −→ C[0, 1].
As a particular case of the results of [7], we have:

Theorem 2.1. In each of the following cases
1) a ≥ 0, 2) b ≥ 0, 3) a, b ≤ −1, 4) −1 < a, b < 0,
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(W, D(W )) is the infinitesimal generator of a strongly continuous positive semi-
group (T (t))t≥0 on C[0, 1]. Moreover, T (t)1 = 1, t ≥ 0, i.e., (T (t)) is a contraction
semigroup.

For u ∈ C[0, 1] ∩ C2(0, 1) define the boundary conditions:

Na

⎧⎪⎪⎨⎪⎪⎩
u ∈ C1[0, 1

2 ] , u′(0) = 0, lim
x→0

xu′′(x) = 0 if a < −1;

lim
x→0

xu′′(x) = 0 if a = −1;

u ∈ C1[0, 1
2 ], lim

x→0
xu′′(x) = 0 if a ≥ 0.

Nb

⎧⎪⎪⎨⎪⎪⎩
u ∈ C1[12 , 1], u′(1) = 0, lim

x→1
(1 − x)u′′(x) = 0 if b < −1;

lim
x→1

(1 − x)u′′(x) = 0 if b = −1;

u ∈ C1[12 , 1], lim
x→1

(1 − x)u′′(x) = 0 if b ≥ 0.

As a particular case of [7], Theorem 2.3, we get

Theorem 2.2. Let a, b ∈ (−∞,−1] ∪ [0, +∞) and u ∈ C[0, 1] ∩ C2(0, 1). Then
(i) u ∈ D(W ) if and only if u satisfies Na and Nb.
(ii) C2[0, 1] ∩D(W ) is a core of (W, D(W )).

3. Approximation of the semigroup by modified
Bernstein operators

In this section we shall introduce a modification of Bernstein operators and we
shall approximate the semigroup considered in the previous section by suitable
iterates of these modified operators.

From now on we shall assume that a, b ∈ [−1, +∞). For every n ≥ M0 :=
max{a + 1, b + 1} we shall consider the following positive linear operator Ln :
C[0, 1] −→ C[0, 1] defined by

Lnf(x) :=
n∑

h=0

(
n

h

)
xh(1− x)n−hf

((
1− a + b + 2

2n

)h

n
+

a + 1
2n

)
(2)

for every f ∈ C[0, 1] and x ∈ [0, 1].
Note that if we consider the auxiliary function

v(x) = a + 1− (a + b + 2)x (0 ≤ x ≤ 1) (3)

then
Lnf = Bn

(
f ◦

(
e1 +

v

2n

))
(f ∈ C[0, 1]) (4)

where Bn denotes the nth Bernstein operator and e1(x) := x (0 ≤ x < 1).
From formula (4) and from well-known properties of Bernstein operators it

is possible to obtain the approximation properties of the sequence (Ln)n≥M0 .
As usual we set ej(x) := xj (0 ≤ x ≤ 1), j = 0, 1, . . . .
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Then for every n ≥M0,
Lne0 = e0, (5)

Lne1 = e1 +
v

2n
, (6)

Lne2 =
(
1− a + b + 2

2n

)2(
e2 +

e1 − e2

n

)
+

a + 1
n

(
1− a + b + 2

2n

)
e1 +

(a + 1)2

4n2
e0.

(7)

We are now in the position to state the following result.

Theorem 3.1. For every f ∈ C[0, 1],

lim
n→∞Lnf = f uniformly on [0, 1].

Moreover, for every x ∈ [0, 1] and n ≥M0,

|Lnf(x)− f(x)| ≤ ω1

(
f,
|v(x)|
2n

)
+ Mω2

(
f,
(
1− a + b + 2

2n

)√x(1 − x)
n

)
,

where ω1 and ω2 denote the ordinary first and second moduli of smoothness and
M is a suitable constant independent of f, n and x.

Proof. The first statement follows from formulae (5)–(7) and the Korovkin theo-
rem. As regards the subsequent estimate, taking formula (5.2.43) of [4] into ac-
count, we get

|Lnf(x)− f(x)|

≤ |Bn

(
f ◦

(
e1 +

v

2n

))
(x) − f

(
x +

v(x)
2n

)
|+ |f

(
x +

v(x)
2n

)
− f(x)|

≤Mω2

(
f ◦

(
e1 +

v

2n

)
,

√
x(1 − x)

n

)
+ ω1

(
f,
|v(x)|
2n

)
≤Mω2

(
f,
(
1− a + b + 2

2n

)√x(1 − x)
n

)
+ ω1

(
f,
|v(x)|
2n

)
. �

We are now going to show some shape preserving properties of the operators
Ln. As usual, for 0 < α ≤ 1 and M ≥ 0 we set

Lip(α, M) := {f ∈ C[0, 1] : |f(x) − f(y)| ≤M |x− y|α for every x, y ∈ [0, 1]}.

Proposition 3.2. The following statements hold true:

(i) Each operator Ln maps increasing continuous functions into increasing con-
tinuous functions and convex continuous functions into convex continuous
functions.

(ii) For every n ≥M0, 0 < α ≤ 1, M ≥ 0,

Ln(Lip(α, M)) ⊂ Lip(α, M
(
1− a + b + 2

2n

)α)
.
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(iii) For every n ≥M0, f ∈ C[0, 1] and 0 ≤ ε ≤ 1/2,

ω1(Lnf, ε) ≤ 2ω1(f,
(
1− a + b + 2

2n

)
ε
)

and

ω2(Lnf, ε) ≤ 3ω2(f,
(
1− a + b + 2

2n

)
ε
)
.

Proof. Since the function v is affine and increasing statement (i) can be easily
proved by using (4) together with the property of Bernstein operators of leaving
invariant the cone of continuous increasing functions as well as the cone of convex
continuous functions.

As regards statement (ii), if f ∈ Lip(α, M) then

f ◦
(
e1 +

v

2n

)
∈ Lip

(
α, M

(
1− a + b + 2

2n

)α)
and then the result follows because Lip(α, M

(
1− a+b+2

2n

)α)
is invariant under the

Bernstein operator Bn. Finally, the inequalities

ω1(Bnϕ, ε) ≤ 2ω1(ϕ, ε) and ω2(Bnϕ, ε) ≤ 3ω2(ϕ, ε) (ϕ ∈ C[0, 1], ε > 0)

obtained, respectively, in [6] and [22], imply statement (iii) because

ωi(f ◦
(
e1 +

v

2n

)
, ε) ≤ ωi

(
f,
(
1− a + b + 2

n

)
ε
)
, i = 1, 2. �

The sequence (Ln)n≥M0 verifies the following asymptotic formula.

Theorem 3.3. For every f ∈ C2[0, 1],

lim
n→∞n(Lnf(x)− f(x)) =

x(1− x)
2

f ′′(x) +
v(x)

2
f ′(x)

uniformly with respect to x ∈ [0, 1].

Proof. Since

Lnf(x)− f(x) =
(
Bn

(
f ◦

(
e1 +

v

2n

))
(x)−Bnf(x)

)
+ (Bnf(x)− f(x)),

we have to determine only the limit of the expression

n
(
Bn

(
f ◦

(
e1 +

v

2n

))
(x)−Bnf(x)

)
,

because, as it is well known, n(Bnf(x)− f(x)) −→ x(1 − x)
2

f ′′(x) uniformly with

respect to x ∈ [0, 1].



18 F. Altomare and I. Rasa

Let pnk(x) =
(
n
k

)
xk(1 − x)n−k. The above-mentioned expression becomes

successively

n
n∑

k=0

pnk(x)
(
f
(k

n
+

1
2n

v
(k

n

))
− f

(k

n

))
= n

n∑
k=0

pnk(x)
1
2n

v
(k

n

)
f ′(cnk)

=
1
2

n∑
k=0

pnk(x)v
( k

n

)
f ′
(k

n

)
+

1
2

n∑
k=0

pnk(x)v
( k

n

)(
f ′(cnk)− f ′

(k

n

))
=

1
2

n∑
k=0

pnk(x)v
( k

n

)
f ′
(k

n

)
+

1
2

n∑
k=0

pnk(x)v
( k

n

)
f ′′(dnk)

(
cnk −

k

n

)
,

where cnk and dnk are between k
n and k

n + 1
2nv

(
k
n

)
.

As n→∞, the uniform limit of the first sum is 1
2v(x)f ′(x), while the uniform

limit of the second sum is zero. So the theorem is proved. �

By using Theorem 3.3 we can quickly proceed to give a representation of the
semigroup studied in Section 2 in terms of iterates of the operators Ln. However
this representation will be proved only for the particular cases a ≥ 0, b ≥ 0 or
a = −1 and b ≥ 0 or a ≥ 0 and b = −1. In the remaining cases, the problem
of constructing a suitable approximation process whose iterates approximate the
semigroup remains open.

We finally point out that, if a = b = −1, then Ln = Bn and the corre-
sponding result about the representation of the semigroup is well known (see, e.g.,
[4, Ch. VI]).
When a ≥ 0 and b ≥ 0, the semigroup can be also represented by iterates of the
operators introduced in [7, Theorem 4.6] or in [17] (see [23]).

According to the previous section we set

D(W ) =

⎧⎪⎨⎪⎩
DM (W ) if a ≥ 0, b ≥ 0,

DV M (W ) if a = −1, b ≥ 0,

DMV (W ) if a ≥ 0, b = −1

and denote by (T (t))t≥0 the semigroup generated by (W, D(W )).

Theorem 3.4. In each of the above-mentioned cases, for every f ∈ C[0, 1] and
t ≥ 0,

T (t)f = lim
n→∞ Lk(n)

n f uniformly on [0, 1]

where (k(n))n≥1 is an arbitrary sequence of positive integers such that k(n)
n → 2t

and L
k(n)
n denotes the iterate of Ln of order k(n).
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Proof. From Theorem 3.3 it follows that

lim
n→∞ n(Lnu− u) =

1
2
Wu in C[0, 1]

for every u ∈ C2[0, 1] ⊂ D(W ).
Since C2[0, 1] is a core for (W, D(W )) (see Theorem 2.2) and ||Lp

n|| ≤ 1 for
every n ≥ M0 and p ≥ 1, then, by a result of Trotter [27], denoting by (S(t))t≥0

the semigroup generated by (1
2W, D(W )), for every f ∈ C[0, 1] and t ≥ 0 and for

every sequence (k(n))n≥1 of positive integers such that
k(n)

n
→ t we have

S(t)f = lim
n→∞ Lk(n)

n f in C[0, 1].

Now the result obviously follows since T (t) = S(2t) for every t ≥ 0. �

Taking Theorem 3.4 and Proposition 3.2 into account, we can easily derive
the following properties of the semigroup (T (t))t≥0. These properties can be im-
mediately translated into the corresponding ones for the solutions u(t, x) of the
diffusion equation (1) coupled with an initial condition u0 ∈ D(W ) and which is
given by

u(t, x) = T (t)u0(x) (0 ≤ x ≤ 1, t ≥ 0).

Corollary 3.5. In each of the three cases considered in Theorem 3.4, the following
statements hold true:

(i) Each operator T (t) (t ≥ 0) maps increasing continuous functions into in-
creasing continuous functions as well as convex continuous functions into
convex continuous functions.

(ii) For every 0 < α ≤ 1, M ≥ 0 and t ≥ 0

T (t)(Lip(α, M)) ⊂ Lip(α, M exp(−(a + b + 2)αt)).

Proof. We need only to prove (ii). Let f ∈ Lip(α, M) and t ≥ 0. Consider a
sequence (k(n))n≥1 of positive integers such that k(n)

n → 2t. Replacing, if necessary,
f by f/M , we can always assume that M = 1. Then for every n ≥ 1

Lk(n)
n f ∈ Lip

(
α,
(
1− a + b + 2

2n

)αk(n))
.

Passing to the limit as n→∞ we get that T (t)f ∈ Lip(α, exp(−(a+ b+2)αt)) by
virtue of Theorem 3.4. �

The limit behaviour of the semigroup, i.e., the limit lim
t→∞T (t), will be studied

in the next section.
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4. The stochastic equation

Consider the stochastic equation associated to W :

dYt =
√

2Yt(1− Yt)dBt + (a + 1− (a + b + 2)Yt)dt , t ≥ 0,

with Y0 = x ∈ (0, 1). (see, e.g., [10], [11], [12], [15], [21], [26]).

Feller’s test is applicable; we omit the proof and give only the final result:

Theorem 4.1. Let ζ be the lifetime of the solution (Yt)t≥0.

(i) If a ≥ 0 and b ≥ 0, then P (ζ =∞) = 1 and
P ( inf

0≤t<∞
Yt = 0) = P ( sup

0≤t<∞
Yt = 1) = 1.

(ii) If a ≥ 0 and b < 0, we have P (ζ <∞) = 1 and
P ( inf

0≤t<ζ
Yt > 0) = P (lim

t→ζ
Yt = 1) = 1.

(iii) For a < 0 and b ≥ 0, P (ζ <∞) = 1 and
P (lim

t→ζ
Yt = 0) = P ( sup

0≤t<ζ
Yt < 1) = 1.

(iv) For a < 0 and b < 0, Eζ <∞ and
P (lim

t→ζ
Yt = 1) = 1− P (lim

t→ζ
Yt = 0) = ϕ(x), where

ϕ(x) =

x∫
0

u−a−1(1− u)−b−1du

1∫
0

u−a−1(1− u)−b−1du

.

For a ≥ 0 and b ≥ 0 it is possible to apply results from [18], [19] in order to
prove that the semigroup (T (t)) is compact and ||T (t)− T || −→ 0 exponentially,
as t→∞, where

Tf(x) =

∫ 1

0 ua(1 − u)bf(u)du∫ 1

0
ua(1 − u)bdu

, f ∈ C[0, 1], x ∈ [0, 1].

(See also [24], (10.8).)
The kernel of the integral representation of T (t) for a ≥ 0 and b ≥ 0 (see

[14], [8], and [18], Theorem 4.4) is

p(t, x, y) =
∞∑

n=0

e−n(n+a+b+1)tJ (a,b)
n (x)J (a,b)

n (y)ya(1− y)b,

where J
(a,b)
n (x) are the Jacobi polynomials orthonormal on the interval [0, 1] with

weight xa(1− x)b.

The asymptotic behavior of the semigroup (T (t)) in the remaining cases is
suggested by Theorem 4.1 (see also ([24], (10.10)) and described in
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Theorem 4.2. For all f ∈ C[0, 1],

1. lim
t→∞T (t)f = f(0) if a < 0, b ≥ 0;

2. lim
t→∞T (t)f = f(1) if a ≥ 0, b < 0;

3. lim
t→∞T (t)f = f(0)(1 − ϕ) + f(1)ϕ if a, b ≤ −1 or − 1 < a, b < 0, where
the function ϕ is defined in Theorem 4.1.

Proof. 1. Let v(x) = x−a, x ∈ [0, 1]. Then v ∈ C[0, 1] ∩ C2(0, 1) and Wv =
a(b + 1)v. We deduce that v ∈ DV M(W ) = D(W ) and

T (t)v = ea(b+1)tv, t ≥ 0.

Now let T : C[0, 1]→ C[0, 1], T f(x) = f(0), f ∈ C[0, 1], x ∈ [0, 1].
Then lim

t→∞T (t)1 = T 1 and lim
t→∞T (t)v = Tv.

An application of Theorem 3.4.3 [4] shows that

lim
t→∞T (t)f = Tf, f ∈ C[0, 1],

which is the first statement of the theorem.

2. The proof of the second statement is similar.

3. Let w(x) = x−a(1 − x)−b, x ∈ [0, 1]. Then w ∈ C[0, 1] ∩ C2(0, 1) and
Ww = (a + b)w. It follows that w ∈ DV (W ) = D(W ) and

T (t)w = e(a+b)tw, t ≥ 0.

On the other hand, ϕ ∈ C[0, 1]∩C2(0, 1) and Wϕ = 0, which means that T (t)ϕ =
ϕ, t ≥ 0.

Let T : C[0, 1]→ C[0, 1], T f = f(0)(1− ϕ) + f(1)ϕ, f ∈ C[0, 1]. For t→∞
we have T (t)1→ T 1, T (t)ϕ→ Tϕ, T (t)w→ Tw. To conclude the proof it suffices
to apply Theorem 3.4.3 [4]. �

From the above proof we can deduce also quantitative versions of Theorem 4.2:

1. Let a < 0, b ≥ 0. If f ∈ C[0, 1] and

|f(x)− f(0)| ≤ Cfx−a, x ∈ [0, 1] (8)

for some constant Cf , then

|T (t)f(x)− f(0)| ≤ Cfea(b+1)tx−a, x ∈ [0, 1], t ≥ 0.

2. Let a ≥ 0, b < 0, and f ∈ C[0, 1] with

|f(x)− f(1)| ≤ Kf (1− x)−b, x ∈ [0, 1]. (9)

Then we have

|T (t)f(x)− f(1)| ≤ Kfe(a+1)bt(1− x)−b, x ∈ [0, 1], t ≥ 0.
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3. Let a, b ≤ −1 or −1 < a, b < 0. Then ϕ satisfies both (8) and (9). If a
function f ∈ C[0, 1] also satisfies both (8) and (9), then for
x ∈ [0, 1], t ≥ 0,

|T (t)f(x)− f(0)(1− ϕ(x)) − f(1)ϕ(x)|
≤ (CfKϕ + CϕKf)e(a+b)tx−a(1− x)−b.

(10)

4. Let a = b = −1; then ϕ(x) = x. Let (T (t)) be the corresponding semigroup.
Consider also the semigroup(S(t)) associated with the classical Bernstein

operators (see [4], Theorem 6.3.5). The generator of (S(t)) is
1
2
W , which

means that S(t) = T (t/2). From (10) we get

|S(t)f(x)− f(0)(1− x) − f(1)x| ≤ (Cf + Kf)e−tx(1 − x). (11)

Another proof of (11) can be obtained using the approximation of S(t) by
iterates of classical Bernstein operators.

5. Explicit solutions

We shall use Lamperti’s method [12, pp. 294–295] and the method of Doss-Suss-
mann [12, pp. 295–296], [26, pp. 382–383] in order to get information about the
solution Yt.

By using Lamperti’s method in our setting, take U =
√

2arcsin
√

Y . Itô’s
formula yields

dU = dB +
a− b + (a + b + 1) cos(

√
2U)√

2 sin(
√

2U)
dt,

with U0 =
√

2 arcsin
√

x.

So the generator of the process (Ut)t≥0 is

1
2

d2

du2
+
√

2
2

(
a− b

sin(
√

2u)
+ (a + b + 1) cot(

√
2u)

)
d

du
.

In particular, for b = a the generator of U becomes

1
2

d2

du2
+
√

2
2

(2a + 1) cot(
√

2u)
d

du
,

which means that U is a Legendre process [26, p. 357].

So we have

Theorem 5.1. Yt = sin2 Ut√
2
. For b = a, U is a Legendre process.
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The Doss-Sussmann method yields

Theorem 5.2. Yt = sin2

(
Bt√

2
+ arcsin

√
Xt

)
, where Xt is the solution of the

equation

dX

dt
=

√
X(1−X)(a− b + (a + b + 1) cos(B

√
2 + 2 arcsin

√
X))

sin(B
√

2 + 2 arcsin
√

X)
,

with X0 = x.

When a = b = − 1
2 , the following explicit solution can be obtained by using

either Theorem 5.1 or Theorem 5.2:

Corollary 5.3. For a = b = −1
2

we have

Yt = sin2

(
Bt√

2
+ arcsin

√
x

)
, 0 ≤ t < ζ.

Similar solutions for corresponding problems are given in [15], Section 4.4,
and [21], Chapter 5.

We conclude with two examples.
I. Let a = b = − 1

2 , i.e.,

Wu(x) = x(1 − x)u′′(x) + (
1
2
− x)u′(x),

with D(W ) = DV (W ) described in Section 2.
By using the expression of Yt given in Corollary 5.3 it can be seen that
Wu = lim

n→∞n(Mnu− u) for every u ∈ C2[0, 1], where

Mnf(x) := Ef(Y1/n) = (W1/4n(f ◦ g))(g−1(x)),

g(x) = sin2(x) and (Wt)t>0 are the classical Gauss-Weierstrass convolution
operators (see [4], (5.2.78)).
Now let fn(x) = (arcsin

√
x)n , 0 ≤ x ≤ 1, n ≥ 1.

According to Corollary 5.3,

un(t, x) := Efn(Yt) = E
(( Bt√

2
+ arcsin

√
x
)n)

=
[n/2]∑
j=0

(
n

2j

)
(2j)!
j!

( t

4

)j

(arcsin
√

x)n−2j .

Consequently, the function un(t, x) satisfies⎧⎨⎩
∂

∂t
un(t, x) = Wun(t, x)

un(0, x) = fn(x)

for t ≥ 0, 0 ≤ x ≤ 1.
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Since f1 and u1(t, ·) are in D(W ), we get

T (t)f1(x) = u1(t, x) = f1(x).

Thus T (t)f1 = f1; this is also a consequence of the fact that Wf1 = 0.
II. Let now a ≥ 0, b ≥ 0. Then

WJ (a,b)
n = −n(n + a + b + 1)J (a,b)

n , n ≥ 0,

and
T (t)J (a,b)

n = e−n(n + a + b + 1)tJ (a,b)
n , n ≥ 0, t ≥ 0.

Since 0 and 1 are entrance boundaries, the diffusion (Yt) extends to a con-
tinuous Feller process on [0, 1] (see [11], Theorem 23.13). We have also

EJ (a,b)
n (Yt) = e−n(n + a + b + 1)tJ (a,b)

n (x).

Now it is possible to compute the moments of Yt. For example,

EYt =
a + 1

a + b + 2
+

1
a + b + 2

e−(a + b + 2)tj1(x)

and

EY 2
t =

(a + 1)(a + 2)
(a + b + 2)(a + b + 3)

+
2(a + 2)

(a + b + 2)(a + b + 4)
e−(a + b + 2)tj1(x)

+
1

(a + b + 3)(a + b + 4)
e−2(a + b + 3)tj2(x),

where
j1(x) = (a + b + 2)x− (a + 1)

and

j2(x) = (a + b + 3)(a + b + 4)x2 − 2(a + 2)(a + b + 3)x + (a + 1)(a + 2)

differ from J
(a,b)
1 (x), respectively J

(a,b)
2 (x), only by some constant factors.

Taking into account the asymptotic behavior of the semigroup (T (t))
we get also

lim
t→∞ E(Y n

t ) =
(a + 1)(a + 2) . . . (a + n)

(a + b + 2)(a + b + 3) . . . (a + b + n + 1)
.

The same results can be achieved by using the fact that the probability
density of Yt is the function p(t, x, ·) from Section 4.
Moreover,

EY −a
t = ea(b+1)tx−a,

E(1− Yt)−b = e(a+1)bt(1− x)−b,

EY −a
t (1− Yt)−b = e(a+b)tx−a(1 − x)−b.
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9–32.

[6] Anastassiou, G.A., Cottin, C. and Gonska, H.H., Global smoothness of approximating
functions, Analysis 11 (1991), 43–57.

[7] Attalienti, A. and Campiti, M., Degenerate evolution problems and Beta-type oper-
ators, Studia Math. 140 (2000), 117–139.

[8] Da Silva, M.R., Nonnegative order iterates of Bernstein polynomials and their lim-
iting semigroup, Portugal Math. 42 (1984), 225–248.

[9] Feller, W., Diffusion processes in genetics, Proceedings of the Second Berkeley Sym-
posium on Mathematical Statistics and Probability, 1951, 227–246.

[10] Hackenbroch, W. and Thalmaier, A., Stochastische Analysis, B.G. Teubner, Stutt-
gart (1994).

[11] Kallenberg, O., Foundations of Modern Probability, Springer-Verlag, New York
(2002).

[12] Karatzas, I. and Shreve, S.E., Brownian Motion and Stochastic Calculus, Springer-
Verlag, New York (2000).

[13] Karlin, S. and McGregor J., On a genetics model of Moran, Proceedings Cambridge
Ph. Soc., Math. and Physical Sciences, 58 (1962), 299–311.

[14] Karlin, S. and Ziegler, Z., Iteration of positive approximation operators, J. Ap-
prox. Theory 3 (1970), 310–339.



26 F. Altomare and I. Rasa

[15] Kloeden, P.E. and Platen, E., Numerical Solution of Stochastic Differential Equa-
tions, Springer-Verlag, Berlin (1999).
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