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José Antonio Adell and Alberto Lekuona
Best Poisson Approximation of Poisson Mixtures.
A Linear Operator Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Francesco Altomare and Ioan Rasa
On Some Classes of Diffusion Equations and
Related Approximation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Jean-Paul Berrut, Richard Baltensperger and Hans D. Mittelmann
Recent Developments in Barycentric Rational Interpolation . . . . . . . . . 27

Dietrich Braess
Approximation on Simplices and Orthogonal Polynomials . . . . . . . . . . . 53

Marcel G. de Bruin and Detlef H. Mache
(0, 2) Pál-type Interpolation: A General Method for Regularity . . . . . . 61

Emil Cătinaş
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Preface

During the last years, constructive approximation has reached out to encom-
pass the computational and approximation-theoretical aspects of different fields
in applied mathematics, including multivariate approximation methods, quasi-
interpolation, and multivariate approximation by (orthogonal) polynomials, as
well as modern mathematical developments in neuro fuzzy approximation, RBF-
networks, industrial and engineering applications.

Following the tradition of our international Bommerholz conferences in 1995,
1998, and 2001 we regard this 4th IBoMAT meeting as an important possibility
for specialists in the field of applied mathematics to communicate about new ideas
with colleagues from 15 different countries all over Europe and as far away as New
Zealand and the U.S.A. The conference in Witten Bommerholz was, as always,
held in a very friendly and congenial atmosphere.

The IBoMAT-series editor Detlef H. Mache (Bochum) would like to congrat-
ulate Marcel de Bruin (Delft) and József Szabados (Budapest) for an excellent
editing job of this 4th volume about Trends and Applications in constructive ap-
proximation.

After the previous three published books in Akademie Verlag (1995) and
Birkhäuser Verlag (1999 and 2003) we were pleased with the high quality of the
contributions which could be solicited for the book. They are refereed and we
should mention our gratitude to the referees and their reports.

At this point we also thank the Deutsche Forschungsgemeinschaft (DFG,
Bonn) for providing the majority of the financial support of this 4th conference
and the publisher Birkhäuser / Springer Publishing Group for accepting the pro-
ceedings into its International Series of Numerical Mathematics.

Also we would like to thank all participants for their efforts in making IBoMat
2004 a more than successful conference.

Finally, we would like to express our special thanks to Petra Mache who
assisted in the preparation of this book and Jennifer Meyer who produced the
manuscript in a camera-ready form. We wish to express our appreciation of their
friendly assistance and wonderful cooperation.

The very positive resonance of the IBoMAT conferences in the years 1995,
1998, 2001 and 2004 will encourage us to continue this successful series in Witten-
Bommerholz with new international developments in applied mathematics and
applications in constructive approximation.

Witten-Bommerholz, January 2005 Marcel de Bruin (Delft)
Detlef H. Mache (Bochum)
József Szabados (Budapest)
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CH-1700 Fribourg / Pérolles, Switzerland;
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Best Poisson Approximation
of Poisson Mixtures.
A Linear Operator Approach

José Antonio Adell and Alberto Lekuona

Abstract. We provide closed form solutions, in an asymptotic sense, to the
problem of best choice of the Poisson parameter in Poisson approximation
of Poisson mixtures, with respect to the Kolmogorov and the Fortet-Mourier
metrics. To do this, we apply a differential calculus based on different Taylor’s
formulae for the Poisson process, either in terms of the forward differences of
the function under consideration or in terms of the Charlier polynomials,
which allows us to give simple unified proofs. This approach also shows that
the zeros of a suitable linear combination of the first and second Charlier
polynomials play a key role in determining the leading coefficient of the main
term of the approximation.

1. Introduction

It is known that a large class of one-dimensional positive linear operators L0, usu-
ally considered in the literature of approximation theory, allow for a probabilistic
representation of the form

L0φ(t) = Eφ(Z0(t)), t ∈ I, (1)

where I is a subinterval of the real line, Z0 := (Z0(t), t ∈ I) is a stochastic
process of I-valued random variables and φ : I → R is any measurable function
such that L0|φ|(t) < ∞, t ∈ I. In such a case, L0 is said to be represented by
Z0. Typical examples are the following. The classical nth Bernstein polynomial is
represented by

Bnφ(t) :=
n∑

k=0

φ

(
k

n

)(
n

k

)
tk(1 − t)n−k = Eφ

(
Sn(t)

n

)
, t ∈ [0, 1],

where Sn(t) :=
∑n

k=1 1[0,t](Uk), (Uk)k≥1 is a sequence of independent and on
the interval [0, 1] uniformly distributed random variables, and 1A stands for the
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indicator function of the set A. Also, for any r > 0, the Szász operator Sr is
represented by

Srφ(t) := e−rt
∞∑

k=0

φ

(
k

r

)
(rt)k

k!
= Eφ

(
N(rt)

r

)
, t ∈ [0,∞), (2)

where (N(t), t ≥ 0) is the standard Poisson process. Many other examples can be
found in Adell and de la Cal [2] and Altomare and Campiti [7, Chap. 5].

Concerning operators of the form (1), an interesting question is to determine
which properties of φ are retained by L0φ. It is known that many usual operators
preserve properties of first order, such as monotonicity, moduli of continuity, Lip-
schitz constants or ϕ-variation (cf. Kratz and Stadtmüller [18], Khan and Peters
[17], Altomare and Campiti [7, Chap. 5] and Adell and de la Cal [3]), as well as
properties of second order, such as convexity and moduli of continuity and Lips-
chitz classes of second order (cf. Cottin and Gonska [10], Adell et al. [1] and Zhou
[25]). Here, we are mainly interested in preservation of convex functions of arbi-
trary order, because this property is closely connected with a differential calculus
for positive linear operators. Indeed, it is shown in Adell and Lekuona [5, Theorem
3] that, under appropriate integrability assumptions on Z0, the operator L0 in (1)
preserves generalized convex functions of order n if and only if there are posi-
tive linear operators Lk represented by I-valued processes Zk := (Zk(t), t ∈ I),
k = 1, . . . , n, having right-continuous nondecreasing paths, satisfying the following
Taylor’s formula of order n for any smooth enough function φ

L0φ(t)− L0φ(s) =
n−1∑
k=1

Lkφ(k)(s)Πk(Ck(s, t])

+
∫

(s,t]

Lnφ(n)(u)Πn−1(Cn−1[u, t])dmn−1(u), s, t ∈ I, s ≤ t.

(3)

In (3), mk(t) := EZk(t), t ∈ I, Πk is the product measure on Ik given by Πk

:= m0×· · ·×mk−1 and Ck(s, t] is a simplex-type set in Ik. The operator Lk (resp.
its associated process Zk as in (1)) is called the derived operator of L0 (resp. the
derived process of Z0) of order k. Of course, if Z0(t) = t, t ∈ I, (3) gives us the
classical Taylor’s formula for differentiable functions. On the other hand, applying
(3) to the Szász operator S1 defined in (2), we obtain (cf. Adell and Lekuona [5,
Corollary 1 and Proposition 4]) that

S1φ(t) = Eφ(N(t)) =
n−1∑
k=0

(t− s)k

k!
Eφ(k)(N(s) + Vk)

+
∫ t

s

Eφ(n)(N(u) + Vn)
(u − s)n−1

(n− 1)!
du, 0 ≤ s ≤ t,

(4)

where Vk := U1 + · · · + Uk and (Ui)i≥1 is a sequence of independent and on the
interval [0,1] uniformly distributed random variables. A striking feature is that, in
many cases, a Taylor’s formula similar to (3) holds for non-smooth functions. This
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is due to the fact that the operator L0 takes non-smooth into smooth functions,
as it happens when L0 = S1. Therefore, in this case, we can obtain in a very easy
way sharp estimates of the distance between N(t) and N(s) in different metrics
by considering suitable sets of test functions φ, even if the parameter t is replaced
by a random variable T .

The aim of this paper is to apply the differential calculus outlined above in
order to give closed form solutions, in an asymptotic sense, to the problem of best
Poisson approximation of Poisson mixtures, with respect to the Kolmogorov and
the Fortet-Mourier metrics. Such results complement those obtained in a previous
paper (cf. Adell and Lekuona [6]).

To this respect, recall that a mixing random variable T is a nonnegative
random variable with distribution function F independent of the standard Poisson
process (N(t), t ≥ 0). The random variable N(T ) is called a Poisson mixture with
mixing random variable T and its probability law is given by

P (N(T ) = k) =
∫

[0,∞)

e−ttk

k!
dF (t), k = 0, 1, . . . . (5)

For instance, if T has the gamma density

ρb,s(θ) :=
bbs

Γ(bs)
θbs−1e−bθ, θ > 0 (b > 0, s > 0),

then N(T ) has the negative binomial distribution given by

P (N(T ) = k) =
(

bs + k − 1
k

)(
1

b + 1

)k (
b

b + 1

)bs

, k = 0, 1, . . . .

Poisson mixtures are commonly used in modelling different phenomena in applied
probability and statistics. A variety of examples coming from biology, physics,
reliability or insurance can be found in Johnson et al. [16], Grandell [15] and
Denuit and Van Bellegem [14]. As follows from (5), the probability law of a Poisson
mixture is, in general, rather involved or quite complex to work with. It seems
therefore natural to approximate a Poisson mixture N(T ) by a Poisson random
variable N(s), provided T be close to s. In this sense, the problem of best Poisson
approximation consists of finding the Poisson distribution closest to a Poisson
mixture with respect to a given metric. Such a problem was first posed by Serfling
[24] in the context of Poisson approximation of Bernoulli convolutions with regard
to the total variation distance. In the same context, a deeper approach to the
problem, using semigroup techniques, has been developed by Deheuvels and Pfeifer
[11, 12] and Deheuvels et al. [13]. Finally, Pfeifer [19] and Adell and Lekuona [6]
have considered the problem in the context of Poisson mixtures.

In a strict sense, the problem of best Poisson approximation, with respect
to a given probability metric d, consists of finding the parameter µ solving the
equation

inf
s

d(N(T ), N(s)) = d(N(T ), N(µ)).



4 J.A. Adell and A. Lekuona

As observed in Deheuvels et al. [13, p. 192], there are examples showing that
“we cannot hope for an explicit closed solution for the problem . . . , not even for
commonly used distance measures”. The problem, however, may be posed from an
asymptotic point of view as follows. Suppose that (Tn)n≥0 is a sequence of mixing
random variables such that ETn = s > 0, n ≥ 0, and that µ2(n) := E(Tn−s)2 → 0
as n→∞. If we are able to prove that

d
(
N(Tn), N

(
s− a

2s
µ2(n)

))
= C(s, a)µ2(n) + o(µ2(n)), (6)

then it is possible to find the parameter a∗ := a∗(s) which minimizes the leading
constant C(s, a).

Closed form solutions in the aforementioned asymptotic sense are provided
in Section 3, when d is the Kolmogorov or the Fortet-Mourier metric. In the first
case, C(s, a∗) depends of the integer parts of the roots of a suitable linear combi-
nation of the first and second Charlier polynomials, while, in the second, C(s, a∗)
depends on the mean absolute deviation with respect to the median of the Poisson
distribution with mean s (see Theorems 3.2 and 3.3, which are the main results of
this paper). Such results are based on different Taylor’s formulae for the standard
Poisson process concerning arbitrary exponential bounded functions, as stated in
Theorem 2.1 and Corollary 2.3 in Section 2.

2. Differential calculus for the Poisson process

Let us start by giving some notations. We denote by N the set of nonnegative
integers and by N∗ := N \ {0}. Every function φ is a real measurable function
defined on [0,∞) and ‖φ‖ is its usual sup-norm. All of the random variables ap-
pearing under the same expectation sign E are supposed to be mutually indepen-
dent. For any m ∈ N∗, βm stands for a random variable having the beta density
ρm(θ) := m(1 − θ)m−1, θ ∈ [0, 1], while β0 := 1. For any α ≥ 0, E(α) is the set of
all functions φ such that |φ(x)| ≤ Ceαx, x ≥ 0, for some constant C ≥ 0. By �mφ
we denote the mth forward difference of φ, i.e.,

�mφ(x) :=
m∑

k=0

(−1)m−k

(
m

k

)
φ(x + k), x ≥ 0, m ∈ N. (7)

Finally, we denote by Cm(s; x) the mth Charlier polynomial with respect to N(s),
that is,

Cm(s; x) :=
m∑

k=0

(
m

k

)(
x

k

)
k!(−s)−k, x ≥ 0, s > 0, m ∈ N. (8)

Such polynomials satisfy the orthogonality property (cf. Chihara [9, p. 4])

ECk(s; N(s))Cm(s; N(s)) =
m!
sm

δk,m, k, m ∈ N. (9)
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Forward differences and Charlier polynomials are related by the following formula

Eφ(N(s))Cm(s; N(s)) = (−1)kE�kφ(N(s))Cm−k(s; N(s)), (10)

where φ ∈ E(α), s > 0, m ∈ N and k = 0, . . . , m. The proof of (10) is based on the
three-term recurrence relation satisfied by the Charlier polynomials (see Barbour
et al. [8, Lemma 9.1.4] or Roos [21, formula (6)]). An extension of (10) when the
parameter s is replaced by a mixing random variable T may be found in Adell and
Lekuona [6, Lemma 2.1].

With the preceding notations, we enunciate the following.

Theorem 2.1. Let t ≥ 0, s > 0 and m ∈ N∗. Denote by γm := γm(s, t) = s + (t−
s)βm. Then, for any φ ∈ E(α), we have

Eφ(N(t)) =
m−1∑
k=0

(t− s)k

k!
E�kφ(N(s)) +

(t− s)m

m!
E�mφ(N(γm))

=
m−1∑
k=0

(−1)k(t− s)k

k!
Eφ(N(s))Ck(s; N(s))

+
(−1)m(t− s)m

m!
Eφ(N(γm))Cm(γm; N(γm))

=
m−1∑
k=0

Eφ(N(s))Ck(s; N(s))
EC2

k(s; N(s))
ECk(s; N(t))

+
Eφ(N(γm))Cm(γm; N(γm))

ECm(s; N(γm))Cm(γm; N(γm))
ECm(s; N(t)).

Proof. The first two equalities in Theorem 2.1 have been shown in Adell and
Lekuona [6, Theorem 2.1]. On the other hand, if φ is m times differentiable, it can
be checked by induction that

�kφ(x) = Eφ(k)(x + Vk), x ≥ 0, k = 0, . . . , m, (11)

where Vk := U1 + · · · + Uk and (Ui)i≥1 is a sequence of independent and on the
interval [0, 1] uniformly distributed random variables.

Let m ∈ N∗ and k = 0, . . . , m. From (11), se see that �lCk(s; x) = 0, x ≥ 0,
whenever l > k. Therefore, applying the first two equalities in Theorem 2.1 to
φ(x) = Ck(s; x) and using the orthogonality property in (9), we obtain

ECk(s; N(t)) =
(−1)k(t− s)k

k!
EC2

k(s; N(s)), k = 0, . . . , m− 1, (12)

as well as

ECm(s; N(t)) =
(−1)m(t− s)m

m!
ECm(s; N(γm))Cm(γm; N(γm)).

This shows the third equality and completes the proof of Theorem 2.1. �
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Remark 2.2. Full expansions in Theorem 2.1 are also valid. For instance, we can
write

Eφ(N(t)) =
∞∑

k=0

(t− s)k

k!
E�kφ(N(s)), φ ∈ E(α),

as the series above absolutely converges. This readily follows from (7).

Although the third equality in Theorem 2.1 will not be used in this paper, it
may be of interest in the theory of orthogonal polynomials. Actually, L2-expansions
of the form

φ(x) ∼
∞∑

k=0

Eφ(N(s))Ck(s; N(s))
EC2

k(s; N(s))
Ck(s; x), φ ∈ L2(µL), (13)

where µL stands for the Lebesgue measure, are well known (cf. Chihara [9, p. 17]).
Remark 2.2 and formulae (10) and (12) imply that if we randomize x by N(t) in
(13) and then integrate, we obtain usual convergence rather than L2-convergence,
as we have

Eφ(N(t)) =
∞∑

k=0

Eφ(N(s))Ck(s; N(s))
EC2

k(s; N(s))
ECk(s; N(t)), φ ∈ E(α).

On the other hand, setting φ = 1{n}, n ∈ N, in the second equality in
Theorem 2.1, we obtain

P (N(t) = n) =
m−1∑
k=0

(−1)k(t− s)k

k!
Ck(s; n)P (N(s) = n)

+
(−1)m(t− s)m

m!
E1{n}(N(γm))Cm(γm; N(γm)),

(14)

where γm := s + (t − s)βm. We point out that (14) coincides, up to changes of
notation, with the formula obtained by Roos [22, Lemma 2 and formula (9)] using
a different approach. In turn, the formulae in Theorem 2.1 can be derived from
(14) by integration. Finally, a multivariate version of (14) is given in Roos [23,
Lemma 1].

Let s > 0 be fixed and let (Tn, n ∈ N) be a sequence of mixing random
variables converging to s as n → ∞. For any k, n ∈ N, we denote by µk(n) :=
µk,s(n) = E(Tn − s)k, whenever the expectation exists.

Replacing t by Tn in Theorem 2.1 and applying Fubini’s theorem, we obtain
the following.

Corollary 2.3. Let s > 0 and m, n ∈ N. Assume that E|Tn − s|m < ∞. Then, for
any φ ∈ E(α) such that ‖�mφ‖ <∞, we have

Eφ(N(Tn)) =
m∑

k=0

µk(n)
k!

E�kφ(N(s))

+
1

m!
E(Tn − s)m(�mφ(N(s + (Tn − s)βm))−�mφ(N(s))).

(15)
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Formula (15) constitutes our main tool to deal with the problem of best
Poisson approximation of Poisson mixtures. Finally, since in the following section
we shall need to bound the remainder term in (15), we give the following inequality

|Eφ(N(t)) − Eφ(N(s))| ≤ (‖φ+‖+ ‖φ−‖)(1− e−|t−s|), s, t ≥ 0, (16)

where φ+ := max(φ, 0) and φ− := max(−φ, 0). For a proof of (16), see Adell and
Lekuona [6, Lemma 2.2].

3. Best Poisson approximation

When estimating the distance between random variables, the Kolmogorov and
the Fortet-Mourier metrics are among the most commonly used (see, for instance,
Pfeifer [19], Deheuvels et al. [13], Rachev [20] and Roos [21, 22], where other
probability metrics are also considered). Recall that given two N-valued random
variables X and Y , the Kolmogorov and the Fortet-Mourier distances between X
and Y are, respectively, defined by

d0(X, Y ) := sup
l∈N

|E1[l,∞)(X)− E1[l,∞)(Y )|

and

d1(X, Y ) :=
∞∑
l=0

|E1[l,∞)(X)− E1[l,∞)(Y )|.

From now on, we fix s > 0 and assume that the sequence of mixing random
variables (Tn, n ∈ N) satisfies ETn = s and µ2(n) := E(Tn − s)2 <∞, n ∈ N. For
any real a, let Pa(s; x) be the quadratic polynomial

Pa(s; x) := C2(s; x) − a

s
C1(s; x) =

1
s2

(x2 − (2s + 1− a)x + s(s− a)), (17)

where the last equality follows from (8). The roots of Pa(s; x) are

ri(a) := s +
1− a

2
+ (−1)i

√
s +

(
1− a

2

)2

, i = 1, 2. (18)

It turns out that the integer parts of these roots are relevant in the problem at
hand. The following technical lemma can be easily checked.

Lemma 3.1. Let ri(a), i = 1, 2, be the functions defined in (18). Then,

(a) r1(a) is a decreasing function, r1(a) < 0 for a > s, and

lim
a→−∞ r1(a) = s and lim

a→∞ r1(a) = −∞.

(b) r2(a) is a decreasing function, r2(a) ≥ s for any real a, and

lim
a→−∞ r2(a) =∞ and lim

a→∞ r2(a) = s.
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For any real numbers x and y, we denote by x ∨ y := max(x, y) and by 
x�
the integer part of x. Also, we consider the functions

fs(a) := E1{n1(a)}(N(s))
(
C1(s; N(s))− a

s

)
, a ∈ R (19)

and
gs(a) := E1{n2(a)}(N(s))

(a

s
− C1(s; N(s))

)
, a ∈ R, (20)

where ni(a) := 
ri(a)�, i = 1, 2.
Having in mind the preceding notations, we state the main results of this

paper.

Theorem 3.2. Assume that µ2(n)→ 0 and that E|Tn− s|3 = o(µ2(n)), as n→∞.
Then for any a ≤ (2s2)/µ2(n), we have∣∣∣∣d0

(
N(Tn), N

(
s− a

2s
µ2(n)

))
− µ2(n)

2
(fs(a) ∨ gs(a))

∣∣∣∣
≤ 2

3
E|Tn − s|3 +

( a

2s
µ2(n)

)2

.

(21)

Moreover, for large enough n, we have

inf
{

fs(a) ∨ gs(a) : a ≤ 2s2

µ2(n)

}
= fs(a∗), (22)

where a∗ is the unique solution to the equation fs(a) = gs(a). Equivalently,

a∗ = inf {a ≤ s : fs(a) ≤ gs(a)}

= inf
{

a ≤ s : (s− a− n1(a))
sn1(a)

n1(a)!
≤ (a + n2(a)− s)

sn2(a)

n2(a)!

}
.

(23)

Theorem 3.3. In the setting of Theorem 3.2, we have∣∣∣∣d1

(
N(Tn), N

(
s− a

2s
µ2(n)

))
− µ2(n)

2s
E|N(s)− (s− a)|

∣∣∣∣
≤ 2

3
E|Tn − s|3 +

( a

2s
µ2(n)

)2

.

(24)

Moreover, for large enough n, we have

inf
{

E|N(s)− (s− a)| : a ≤ 2s2

µ2(n)

}
= E|N(s)−Me(s)|, (25)

where Me(s) stands for the median of N(s).

Concerning Theorems 3.2 and 3.3, some remarks are in order. First, inequali-
ties (21) and (24) show that the distances d0 and d1 fulfill (6). Second, formula (23)
allows us to obtain explicit values of a∗ for small values of s, as done in Deheuevels
and Pfeifer [12, Example 3.1] and Deheuvels et al. [13, Lemma 2.3], in the context
of Poisson approximation of Bernoulli convolutions. Third, for arbitrary values of
s, formula (23) provides an algorithm to evaluate a∗ in a finite number of steps.
Such an algorithm can be implemented in a system for mathematical computation
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such as MAPLE. Actually, as follows from (19) and (20), the function fs is piece-
wise linear and decreasing, while gs is piecewise linear and increasing. In addition,
it follows from Lemma 3.1 that fs and gs have decreasing sequences of knots at
{r−1

1 (i), i ≤ 
s� − 

s�s−1�} and {r−1
2 (i), i ≥ 
s� + 1}, respectively, where it is

understood that i is an arbitrary integer. Therefore, to compute a∗, we give the
following algorithm

a∗ =
(s− k)m!− (m− s) k! sm−k

m! + k! sm−k
,

where k and m are defined by

r−1
1 (k) := min

{
r−1
1 (i) : fs(r−1

1 (i)) ≤ gs(r−1
1 (i)), i ≤ 
s� −

⌊
s�
s

⌋}
and

r−1
2 (m) := min

{
r−1
2 (i) : fs(r−1

2 (i)) ≤ gs(r−1
2 (i)), i ≥ 
s�+ 1

}
.

With respect to the Fortet-Mourier metric d1, we see from Theorem 3.3 that
the best Poisson parameter is

s +
Me(s)− s

2s
µ2(n),

for which the leading coefficient of the main term of the approximation is
E|N(s) −Me(s)|/(2s). Sharp lower and upper bounds for Me(s) − s and closed
form expressions for the mean absolute deviation E|N(s) −Me(s)| are obtained
in Adell and Jodrá [4].

Proof of Theorem 3.2. Let n ∈ N and let φ be a function such that ‖�2φ‖ < ∞.
Using a Taylor expansion of second order around N(s) as in Corollary 2.3 and
Theorem 2.1, we obtain

Eφ(N(Tn))−Eφ
(
N(s− a

2s
µ2(n))

)
=

µ2(n)
2

Eφ(N(s))Pa(s; N(s))+Rn(φ), (26)

where Pa(s; x) is the polynomial defined in (17) and

Rn(φ) :=
1
2

E(Tn − s)2
(
�2φ(N(s + (Tn − s)β2))−�2φ(N(s)

)
+

a

2s
µ2(n)E

(
�1φ(N(s − a

2s
µ2(n)β1))−�1φ(N(s))

)
.

(27)

To obtain the main term in (21), denote by bl := E1[l,∞)(N(s))Pa(s; N(s)),
l ∈ N. Since

b0 = 0, bl+1 − bl = −E1{l}(N(s))Pa(s; N(s)), l ∈ N,

we see that the sequence (bl, l ∈ N) attains its minimum at n1(a) + 1 (whenever
n1(a) ≥ 0) and its maximum at n2(a) + 1. Therefore, we have from (10), (19) and
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(20) that

sup
l∈N

|E1[l,∞)(N(s))Pa(s; N(s))| = max
i=1,2

{
|E1[ni(a)+1,∞)(N(s))Pa(s; N(s))|

}
= fs(a) ∨ gs(a).

(28)

With respect to the error bound in (21), we apply (16) and Fubini’s theorem
in (27) to obtain

sup
l∈N

Rn(1[l,∞)) ≤ 2E(Tn − s)2
(
1− e−|Tn−s|β2

)
+
|a|
s

µ2(n)E
(
1− e−

|a|
2s µ2(n)β1

)
≤ 2

3
E|Tn − s|3 +

( a

2s
µ2(n)

)2

,

(29)

where we have used the inequality 1− e−|x| ≤ |x|, x ≥ 0 and the fact that Eβm =
1/(m + 1), m ∈ N. Therefore, (21) follows from (26)–(29).

On the other hand, as follows from (19) and (20), the function fs(a) is piece-
wise linear and decreasing, while gs(a) is piecewise linear and increasing. Therefore,
there is a unique solution a∗ to the equation fs(a) = gs(a), at which the infimum in
(22) is attained. Finally, since n1(a) < 0 for a > s, as follows from Lemma 3.1(a),
we see that fs(a) = 0 for a > s. Consequently,

a∗ = inf {a ≤ s : fs(a) ≤ gs(a)} ,

which shows (23) and completes the proof of Theorem 3.2. �

Proof of Theorem 3.3. By (10) and (17), we have
∞∑

n=0

|E1[n,∞)(N(s))Pa(s; N(s))| =
∞∑

n=0

∣∣∣E1{n−1}(N(s))
(
C1(s; N(s))− a

s

)∣∣∣
=

1
s

E|N(s)− (s− a)|.
(30)

On the other hand, it has been shown in Adell and Lekuona [6, formula (4.8)]
that for any u, v > 0 and k ∈ N∗, we have

∞∑
l=0

∣∣E�k1[l,∞)(N(u))− E�k1[l,∞)(N(v))
∣∣ ≤ 2k

(
1− e−|u−v|

)
. (31)

As in the proof of (21), inequality (24) follows by applying (26) and (27) to the
function φ := 1[l,∞), l ∈ N and taking into account (30) and (31). Finally, state-
ment (25) follows from the well-known fact that the median of a random variable
minimizes its mean absolute deviation with respect to an arbitrary point. The
proof of Theorem 3.3 is complete. �
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On Some Classes of Diffusion Equations
and Related Approximation Problems

Francesco Altomare and Ioan Rasa

Abstract. Of concern is a class of second-order differential operators on the
unit interval. The C0-semigroup generated by them is approximated by iter-
ates of positive linear operators that are introduced here as a modification of
Bernstein operators. Finally, the corresponding stochastic differential equa-
tions are also investigated, leading, in particular to the evaluation of the
asymptotic behaviour of the semigroup.

1. Introduction

In this paper we study the positive semigroups (T (t))t≥0 generated by the diffe-
rential operators

Wu(x) = x(1− x)u′′(x) + (a + 1− (a + b + 2)x)u′(x)

defined on suitable domains of C[0, 1] which incorporate several boundary condi-
tions.

In the spirit of a general approach introduced by the first author ([1], see
also, e.g., [4], [5], [7], [14], [23]–[25] and the references given there) we show that
the semigroups can be approximated by iterates of some positive linear operators
that are introduced here, perhaps, for the first time.

These operators are a simple modification of the classical Bernstein operators
and, as them, are of interpolatory type.

We also investigate some shape preserving properties of these operators that,
in turn, imply similar ones for the semigroup (T (t))t≥0.

By following a recent approach due to the second author ([24]–[25]) we also
consider the solutions (Yt)t≥0 of the stochastic equations associated with W and
which are formally related to the semigroups by the formula

T (t)f(x) = Exf(Yt) (0 ≤ x ≤ 1, t ≥ 0).
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For suitable values of a and b we get information about (T (t))t≥0 and (Yt)t≥0, in
particular about their asymptotic behaviour. Analogous results have been obtained
in [25] considering the operators described in [16].

We finally point out that the generation properties of the operators W have
been also investigated in L1[0, 1] (see [7]). In the spirit of [24], Section 7, W may
be viewed also as generator of a C0-semigroup on L2[0, 1]; details will appear
elsewhere.

2. The semigroup

Let C[0, 1] be the space of all real-valued continuous functions, endowed with the
supremum norm and the usual order.

For a, b ∈ R consider the differential operator

Wu(x) = x(1− x)u′′(x) + (a + 1− (a + b + 2)x)u′(x) , 0 < x < 1, u ∈ C2(0, 1).

The corresponding diffusion equation, i.e.,

ut(t, x) = x(1 − x)uxx(t, x) + (a + 1− (a + b + 2)x)ux(t, x)

(0 < x < 1, t ≥ 0)
(1)

occurs in some stochastic model from genetics discussed in [13] (see also [9]
and [27]).

Usually the above diffusion equation is coupled with some initial boundary
conditions.

Let

DV (W ) = {u ∈ C[0, 1] ∩ C2(0, 1) : lim
x→0,1

Wu(x) = 0},

DM (W ) = {u ∈ C[0, 1] ∩ C2(0, 1) : Wu ∈ C[0, 1]},
DV M(W ) = {u ∈ C[0, 1] ∩ C2(0, 1) : lim

x→0
Wu(x) = 0, lim

x→1
Wu(x) ∈ R},

DMV (W ) = {u ∈ C[0, 1] ∩ C2(0, 1) : lim
x→1

Wu(x) = 0, lim
x→0

Wu(x) ∈ R}

and set

D(W ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
DV (W ), if a, b < 0;
DM (W ), if a, b ≥ 0;
DV M(W ), if a < 0, b ≥ 0;
DMV (W ), if a ≥ 0, b < 0.

For every u ∈ D(W ), Wu can be continuously extended to [0, 1].
We shall continue to denote by Wu this extension and so we obtain a linear

operator W : D(W ) −→ C[0, 1].
As a particular case of the results of [7], we have:

Theorem 2.1. In each of the following cases
1) a ≥ 0, 2) b ≥ 0, 3) a, b ≤ −1, 4) −1 < a, b < 0,
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(W, D(W )) is the infinitesimal generator of a strongly continuous positive semi-
group (T (t))t≥0 on C[0, 1]. Moreover, T (t)1 = 1, t ≥ 0, i.e., (T (t)) is a contraction
semigroup.

For u ∈ C[0, 1] ∩ C2(0, 1) define the boundary conditions:

Na

⎧⎪⎪⎨⎪⎪⎩
u ∈ C1[0, 1

2 ] , u′(0) = 0, lim
x→0

xu′′(x) = 0 if a < −1;

lim
x→0

xu′′(x) = 0 if a = −1;

u ∈ C1[0, 1
2 ], lim

x→0
xu′′(x) = 0 if a ≥ 0.

Nb

⎧⎪⎪⎨⎪⎪⎩
u ∈ C1[12 , 1], u′(1) = 0, lim

x→1
(1 − x)u′′(x) = 0 if b < −1;

lim
x→1

(1 − x)u′′(x) = 0 if b = −1;

u ∈ C1[12 , 1], lim
x→1

(1 − x)u′′(x) = 0 if b ≥ 0.

As a particular case of [7], Theorem 2.3, we get

Theorem 2.2. Let a, b ∈ (−∞,−1] ∪ [0, +∞) and u ∈ C[0, 1] ∩ C2(0, 1). Then
(i) u ∈ D(W ) if and only if u satisfies Na and Nb.
(ii) C2[0, 1] ∩D(W ) is a core of (W, D(W )).

3. Approximation of the semigroup by modified
Bernstein operators

In this section we shall introduce a modification of Bernstein operators and we
shall approximate the semigroup considered in the previous section by suitable
iterates of these modified operators.

From now on we shall assume that a, b ∈ [−1, +∞). For every n ≥ M0 :=
max{a + 1, b + 1} we shall consider the following positive linear operator Ln :
C[0, 1] −→ C[0, 1] defined by

Lnf(x) :=
n∑

h=0

(
n

h

)
xh(1− x)n−hf

((
1− a + b + 2

2n

)h

n
+

a + 1
2n

)
(2)

for every f ∈ C[0, 1] and x ∈ [0, 1].
Note that if we consider the auxiliary function

v(x) = a + 1− (a + b + 2)x (0 ≤ x ≤ 1) (3)

then
Lnf = Bn

(
f ◦

(
e1 +

v

2n

))
(f ∈ C[0, 1]) (4)

where Bn denotes the nth Bernstein operator and e1(x) := x (0 ≤ x < 1).
From formula (4) and from well-known properties of Bernstein operators it

is possible to obtain the approximation properties of the sequence (Ln)n≥M0 .
As usual we set ej(x) := xj (0 ≤ x ≤ 1), j = 0, 1, . . . .
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Then for every n ≥M0,
Lne0 = e0, (5)

Lne1 = e1 +
v

2n
, (6)

Lne2 =
(
1− a + b + 2

2n

)2(
e2 +

e1 − e2

n

)
+

a + 1
n

(
1− a + b + 2

2n

)
e1 +

(a + 1)2

4n2
e0.

(7)

We are now in the position to state the following result.

Theorem 3.1. For every f ∈ C[0, 1],

lim
n→∞Lnf = f uniformly on [0, 1].

Moreover, for every x ∈ [0, 1] and n ≥M0,

|Lnf(x)− f(x)| ≤ ω1

(
f,
|v(x)|
2n

)
+ Mω2

(
f,
(
1− a + b + 2

2n

)√x(1 − x)
n

)
,

where ω1 and ω2 denote the ordinary first and second moduli of smoothness and
M is a suitable constant independent of f, n and x.

Proof. The first statement follows from formulae (5)–(7) and the Korovkin theo-
rem. As regards the subsequent estimate, taking formula (5.2.43) of [4] into ac-
count, we get

|Lnf(x)− f(x)|

≤ |Bn

(
f ◦

(
e1 +

v

2n

))
(x) − f

(
x +

v(x)
2n

)
|+ |f

(
x +

v(x)
2n

)
− f(x)|

≤Mω2

(
f ◦

(
e1 +

v

2n

)
,

√
x(1 − x)

n

)
+ ω1

(
f,
|v(x)|
2n

)
≤Mω2

(
f,
(
1− a + b + 2

2n

)√x(1 − x)
n

)
+ ω1

(
f,
|v(x)|
2n

)
. �

We are now going to show some shape preserving properties of the operators
Ln. As usual, for 0 < α ≤ 1 and M ≥ 0 we set

Lip(α, M) := {f ∈ C[0, 1] : |f(x) − f(y)| ≤M |x− y|α for every x, y ∈ [0, 1]}.

Proposition 3.2. The following statements hold true:

(i) Each operator Ln maps increasing continuous functions into increasing con-
tinuous functions and convex continuous functions into convex continuous
functions.

(ii) For every n ≥M0, 0 < α ≤ 1, M ≥ 0,

Ln(Lip(α, M)) ⊂ Lip(α, M
(
1− a + b + 2

2n

)α)
.
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(iii) For every n ≥M0, f ∈ C[0, 1] and 0 ≤ ε ≤ 1/2,

ω1(Lnf, ε) ≤ 2ω1(f,
(
1− a + b + 2

2n

)
ε
)

and

ω2(Lnf, ε) ≤ 3ω2(f,
(
1− a + b + 2

2n

)
ε
)
.

Proof. Since the function v is affine and increasing statement (i) can be easily
proved by using (4) together with the property of Bernstein operators of leaving
invariant the cone of continuous increasing functions as well as the cone of convex
continuous functions.

As regards statement (ii), if f ∈ Lip(α, M) then

f ◦
(
e1 +

v

2n

)
∈ Lip

(
α, M

(
1− a + b + 2

2n

)α)
and then the result follows because Lip(α, M

(
1− a+b+2

2n

)α)
is invariant under the

Bernstein operator Bn. Finally, the inequalities

ω1(Bnϕ, ε) ≤ 2ω1(ϕ, ε) and ω2(Bnϕ, ε) ≤ 3ω2(ϕ, ε) (ϕ ∈ C[0, 1], ε > 0)

obtained, respectively, in [6] and [22], imply statement (iii) because

ωi(f ◦
(
e1 +

v

2n

)
, ε) ≤ ωi

(
f,
(
1− a + b + 2

n

)
ε
)
, i = 1, 2. �

The sequence (Ln)n≥M0 verifies the following asymptotic formula.

Theorem 3.3. For every f ∈ C2[0, 1],

lim
n→∞n(Lnf(x)− f(x)) =

x(1− x)
2

f ′′(x) +
v(x)

2
f ′(x)

uniformly with respect to x ∈ [0, 1].

Proof. Since

Lnf(x)− f(x) =
(
Bn

(
f ◦

(
e1 +

v

2n

))
(x)−Bnf(x)

)
+ (Bnf(x)− f(x)),

we have to determine only the limit of the expression

n
(
Bn

(
f ◦

(
e1 +

v

2n

))
(x)−Bnf(x)

)
,

because, as it is well known, n(Bnf(x)− f(x)) −→ x(1 − x)
2

f ′′(x) uniformly with

respect to x ∈ [0, 1].
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Let pnk(x) =
(
n
k

)
xk(1 − x)n−k. The above-mentioned expression becomes

successively

n
n∑

k=0

pnk(x)
(
f
(k

n
+

1
2n

v
(k

n

))
− f

(k

n

))
= n

n∑
k=0

pnk(x)
1
2n

v
(k

n

)
f ′(cnk)

=
1
2

n∑
k=0

pnk(x)v
( k

n

)
f ′
(k

n

)
+

1
2

n∑
k=0

pnk(x)v
( k

n

)(
f ′(cnk)− f ′

(k

n

))
=

1
2

n∑
k=0

pnk(x)v
( k

n

)
f ′
(k

n

)
+

1
2

n∑
k=0

pnk(x)v
( k

n

)
f ′′(dnk)

(
cnk −

k

n

)
,

where cnk and dnk are between k
n and k

n + 1
2nv

(
k
n

)
.

As n→∞, the uniform limit of the first sum is 1
2v(x)f ′(x), while the uniform

limit of the second sum is zero. So the theorem is proved. �

By using Theorem 3.3 we can quickly proceed to give a representation of the
semigroup studied in Section 2 in terms of iterates of the operators Ln. However
this representation will be proved only for the particular cases a ≥ 0, b ≥ 0 or
a = −1 and b ≥ 0 or a ≥ 0 and b = −1. In the remaining cases, the problem
of constructing a suitable approximation process whose iterates approximate the
semigroup remains open.

We finally point out that, if a = b = −1, then Ln = Bn and the corre-
sponding result about the representation of the semigroup is well known (see, e.g.,
[4, Ch. VI]).
When a ≥ 0 and b ≥ 0, the semigroup can be also represented by iterates of the
operators introduced in [7, Theorem 4.6] or in [17] (see [23]).

According to the previous section we set

D(W ) =

⎧⎪⎨⎪⎩
DM (W ) if a ≥ 0, b ≥ 0,

DV M (W ) if a = −1, b ≥ 0,

DMV (W ) if a ≥ 0, b = −1

and denote by (T (t))t≥0 the semigroup generated by (W, D(W )).

Theorem 3.4. In each of the above-mentioned cases, for every f ∈ C[0, 1] and
t ≥ 0,

T (t)f = lim
n→∞ Lk(n)

n f uniformly on [0, 1]

where (k(n))n≥1 is an arbitrary sequence of positive integers such that k(n)
n → 2t

and L
k(n)
n denotes the iterate of Ln of order k(n).
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Proof. From Theorem 3.3 it follows that

lim
n→∞ n(Lnu− u) =

1
2
Wu in C[0, 1]

for every u ∈ C2[0, 1] ⊂ D(W ).
Since C2[0, 1] is a core for (W, D(W )) (see Theorem 2.2) and ||Lp

n|| ≤ 1 for
every n ≥ M0 and p ≥ 1, then, by a result of Trotter [27], denoting by (S(t))t≥0

the semigroup generated by (1
2W, D(W )), for every f ∈ C[0, 1] and t ≥ 0 and for

every sequence (k(n))n≥1 of positive integers such that
k(n)

n
→ t we have

S(t)f = lim
n→∞ Lk(n)

n f in C[0, 1].

Now the result obviously follows since T (t) = S(2t) for every t ≥ 0. �

Taking Theorem 3.4 and Proposition 3.2 into account, we can easily derive
the following properties of the semigroup (T (t))t≥0. These properties can be im-
mediately translated into the corresponding ones for the solutions u(t, x) of the
diffusion equation (1) coupled with an initial condition u0 ∈ D(W ) and which is
given by

u(t, x) = T (t)u0(x) (0 ≤ x ≤ 1, t ≥ 0).

Corollary 3.5. In each of the three cases considered in Theorem 3.4, the following
statements hold true:

(i) Each operator T (t) (t ≥ 0) maps increasing continuous functions into in-
creasing continuous functions as well as convex continuous functions into
convex continuous functions.

(ii) For every 0 < α ≤ 1, M ≥ 0 and t ≥ 0

T (t)(Lip(α, M)) ⊂ Lip(α, M exp(−(a + b + 2)αt)).

Proof. We need only to prove (ii). Let f ∈ Lip(α, M) and t ≥ 0. Consider a
sequence (k(n))n≥1 of positive integers such that k(n)

n → 2t. Replacing, if necessary,
f by f/M , we can always assume that M = 1. Then for every n ≥ 1

Lk(n)
n f ∈ Lip

(
α,
(
1− a + b + 2

2n

)αk(n))
.

Passing to the limit as n→∞ we get that T (t)f ∈ Lip(α, exp(−(a+ b+2)αt)) by
virtue of Theorem 3.4. �

The limit behaviour of the semigroup, i.e., the limit lim
t→∞T (t), will be studied

in the next section.
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4. The stochastic equation

Consider the stochastic equation associated to W :

dYt =
√

2Yt(1− Yt)dBt + (a + 1− (a + b + 2)Yt)dt , t ≥ 0,

with Y0 = x ∈ (0, 1). (see, e.g., [10], [11], [12], [15], [21], [26]).

Feller’s test is applicable; we omit the proof and give only the final result:

Theorem 4.1. Let ζ be the lifetime of the solution (Yt)t≥0.

(i) If a ≥ 0 and b ≥ 0, then P (ζ =∞) = 1 and
P ( inf

0≤t<∞
Yt = 0) = P ( sup

0≤t<∞
Yt = 1) = 1.

(ii) If a ≥ 0 and b < 0, we have P (ζ <∞) = 1 and
P ( inf

0≤t<ζ
Yt > 0) = P (lim

t→ζ
Yt = 1) = 1.

(iii) For a < 0 and b ≥ 0, P (ζ <∞) = 1 and
P (lim

t→ζ
Yt = 0) = P ( sup

0≤t<ζ
Yt < 1) = 1.

(iv) For a < 0 and b < 0, Eζ <∞ and
P (lim

t→ζ
Yt = 1) = 1− P (lim

t→ζ
Yt = 0) = ϕ(x), where

ϕ(x) =

x∫
0

u−a−1(1− u)−b−1du

1∫
0

u−a−1(1− u)−b−1du

.

For a ≥ 0 and b ≥ 0 it is possible to apply results from [18], [19] in order to
prove that the semigroup (T (t)) is compact and ||T (t)− T || −→ 0 exponentially,
as t→∞, where

Tf(x) =

∫ 1

0 ua(1 − u)bf(u)du∫ 1

0
ua(1 − u)bdu

, f ∈ C[0, 1], x ∈ [0, 1].

(See also [24], (10.8).)
The kernel of the integral representation of T (t) for a ≥ 0 and b ≥ 0 (see

[14], [8], and [18], Theorem 4.4) is

p(t, x, y) =
∞∑

n=0

e−n(n+a+b+1)tJ (a,b)
n (x)J (a,b)

n (y)ya(1− y)b,

where J
(a,b)
n (x) are the Jacobi polynomials orthonormal on the interval [0, 1] with

weight xa(1− x)b.

The asymptotic behavior of the semigroup (T (t)) in the remaining cases is
suggested by Theorem 4.1 (see also ([24], (10.10)) and described in
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Theorem 4.2. For all f ∈ C[0, 1],

1. lim
t→∞T (t)f = f(0) if a < 0, b ≥ 0;

2. lim
t→∞T (t)f = f(1) if a ≥ 0, b < 0;

3. lim
t→∞T (t)f = f(0)(1 − ϕ) + f(1)ϕ if a, b ≤ −1 or − 1 < a, b < 0, where
the function ϕ is defined in Theorem 4.1.

Proof. 1. Let v(x) = x−a, x ∈ [0, 1]. Then v ∈ C[0, 1] ∩ C2(0, 1) and Wv =
a(b + 1)v. We deduce that v ∈ DV M(W ) = D(W ) and

T (t)v = ea(b+1)tv, t ≥ 0.

Now let T : C[0, 1]→ C[0, 1], T f(x) = f(0), f ∈ C[0, 1], x ∈ [0, 1].
Then lim

t→∞T (t)1 = T 1 and lim
t→∞T (t)v = Tv.

An application of Theorem 3.4.3 [4] shows that

lim
t→∞T (t)f = Tf, f ∈ C[0, 1],

which is the first statement of the theorem.

2. The proof of the second statement is similar.

3. Let w(x) = x−a(1 − x)−b, x ∈ [0, 1]. Then w ∈ C[0, 1] ∩ C2(0, 1) and
Ww = (a + b)w. It follows that w ∈ DV (W ) = D(W ) and

T (t)w = e(a+b)tw, t ≥ 0.

On the other hand, ϕ ∈ C[0, 1]∩C2(0, 1) and Wϕ = 0, which means that T (t)ϕ =
ϕ, t ≥ 0.

Let T : C[0, 1]→ C[0, 1], T f = f(0)(1− ϕ) + f(1)ϕ, f ∈ C[0, 1]. For t→∞
we have T (t)1→ T 1, T (t)ϕ→ Tϕ, T (t)w→ Tw. To conclude the proof it suffices
to apply Theorem 3.4.3 [4]. �

From the above proof we can deduce also quantitative versions of Theorem 4.2:

1. Let a < 0, b ≥ 0. If f ∈ C[0, 1] and

|f(x)− f(0)| ≤ Cfx−a, x ∈ [0, 1] (8)

for some constant Cf , then

|T (t)f(x)− f(0)| ≤ Cfea(b+1)tx−a, x ∈ [0, 1], t ≥ 0.

2. Let a ≥ 0, b < 0, and f ∈ C[0, 1] with

|f(x)− f(1)| ≤ Kf (1− x)−b, x ∈ [0, 1]. (9)

Then we have

|T (t)f(x)− f(1)| ≤ Kfe(a+1)bt(1− x)−b, x ∈ [0, 1], t ≥ 0.
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3. Let a, b ≤ −1 or −1 < a, b < 0. Then ϕ satisfies both (8) and (9). If a
function f ∈ C[0, 1] also satisfies both (8) and (9), then for
x ∈ [0, 1], t ≥ 0,

|T (t)f(x)− f(0)(1− ϕ(x)) − f(1)ϕ(x)|
≤ (CfKϕ + CϕKf)e(a+b)tx−a(1− x)−b.

(10)

4. Let a = b = −1; then ϕ(x) = x. Let (T (t)) be the corresponding semigroup.
Consider also the semigroup(S(t)) associated with the classical Bernstein

operators (see [4], Theorem 6.3.5). The generator of (S(t)) is
1
2
W , which

means that S(t) = T (t/2). From (10) we get

|S(t)f(x)− f(0)(1− x) − f(1)x| ≤ (Cf + Kf)e−tx(1 − x). (11)

Another proof of (11) can be obtained using the approximation of S(t) by
iterates of classical Bernstein operators.

5. Explicit solutions

We shall use Lamperti’s method [12, pp. 294–295] and the method of Doss-Suss-
mann [12, pp. 295–296], [26, pp. 382–383] in order to get information about the
solution Yt.

By using Lamperti’s method in our setting, take U =
√

2arcsin
√

Y . Itô’s
formula yields

dU = dB +
a− b + (a + b + 1) cos(

√
2U)√

2 sin(
√

2U)
dt,

with U0 =
√

2 arcsin
√

x.

So the generator of the process (Ut)t≥0 is

1
2

d2

du2
+
√

2
2

(
a− b

sin(
√

2u)
+ (a + b + 1) cot(

√
2u)

)
d

du
.

In particular, for b = a the generator of U becomes

1
2

d2

du2
+
√

2
2

(2a + 1) cot(
√

2u)
d

du
,

which means that U is a Legendre process [26, p. 357].

So we have

Theorem 5.1. Yt = sin2 Ut√
2
. For b = a, U is a Legendre process.
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The Doss-Sussmann method yields

Theorem 5.2. Yt = sin2

(
Bt√

2
+ arcsin

√
Xt

)
, where Xt is the solution of the

equation

dX

dt
=

√
X(1−X)(a− b + (a + b + 1) cos(B

√
2 + 2 arcsin

√
X))

sin(B
√

2 + 2 arcsin
√

X)
,

with X0 = x.

When a = b = − 1
2 , the following explicit solution can be obtained by using

either Theorem 5.1 or Theorem 5.2:

Corollary 5.3. For a = b = −1
2

we have

Yt = sin2

(
Bt√

2
+ arcsin

√
x

)
, 0 ≤ t < ζ.

Similar solutions for corresponding problems are given in [15], Section 4.4,
and [21], Chapter 5.

We conclude with two examples.
I. Let a = b = − 1

2 , i.e.,

Wu(x) = x(1 − x)u′′(x) + (
1
2
− x)u′(x),

with D(W ) = DV (W ) described in Section 2.
By using the expression of Yt given in Corollary 5.3 it can be seen that
Wu = lim

n→∞n(Mnu− u) for every u ∈ C2[0, 1], where

Mnf(x) := Ef(Y1/n) = (W1/4n(f ◦ g))(g−1(x)),

g(x) = sin2(x) and (Wt)t>0 are the classical Gauss-Weierstrass convolution
operators (see [4], (5.2.78)).
Now let fn(x) = (arcsin

√
x)n , 0 ≤ x ≤ 1, n ≥ 1.

According to Corollary 5.3,

un(t, x) := Efn(Yt) = E
(( Bt√

2
+ arcsin

√
x
)n)

=
[n/2]∑
j=0

(
n

2j

)
(2j)!
j!

( t

4

)j

(arcsin
√

x)n−2j .

Consequently, the function un(t, x) satisfies⎧⎨⎩
∂

∂t
un(t, x) = Wun(t, x)

un(0, x) = fn(x)

for t ≥ 0, 0 ≤ x ≤ 1.
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Since f1 and u1(t, ·) are in D(W ), we get

T (t)f1(x) = u1(t, x) = f1(x).

Thus T (t)f1 = f1; this is also a consequence of the fact that Wf1 = 0.
II. Let now a ≥ 0, b ≥ 0. Then

WJ (a,b)
n = −n(n + a + b + 1)J (a,b)

n , n ≥ 0,

and
T (t)J (a,b)

n = e−n(n + a + b + 1)tJ (a,b)
n , n ≥ 0, t ≥ 0.

Since 0 and 1 are entrance boundaries, the diffusion (Yt) extends to a con-
tinuous Feller process on [0, 1] (see [11], Theorem 23.13). We have also

EJ (a,b)
n (Yt) = e−n(n + a + b + 1)tJ (a,b)

n (x).

Now it is possible to compute the moments of Yt. For example,

EYt =
a + 1

a + b + 2
+

1
a + b + 2

e−(a + b + 2)tj1(x)

and

EY 2
t =

(a + 1)(a + 2)
(a + b + 2)(a + b + 3)

+
2(a + 2)

(a + b + 2)(a + b + 4)
e−(a + b + 2)tj1(x)

+
1

(a + b + 3)(a + b + 4)
e−2(a + b + 3)tj2(x),

where
j1(x) = (a + b + 2)x− (a + 1)

and

j2(x) = (a + b + 3)(a + b + 4)x2 − 2(a + 2)(a + b + 3)x + (a + 1)(a + 2)

differ from J
(a,b)
1 (x), respectively J

(a,b)
2 (x), only by some constant factors.

Taking into account the asymptotic behavior of the semigroup (T (t))
we get also

lim
t→∞ E(Y n

t ) =
(a + 1)(a + 2) . . . (a + n)

(a + b + 2)(a + b + 3) . . . (a + b + n + 1)
.

The same results can be achieved by using the fact that the probability
density of Yt is the function p(t, x, ·) from Section 4.
Moreover,

EY −a
t = ea(b+1)tx−a,

E(1− Yt)−b = e(a+1)bt(1− x)−b,

EY −a
t (1− Yt)−b = e(a+b)tx−a(1 − x)−b.
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Recent Developments in
Barycentric Rational Interpolation

Jean-Paul Berrut, Richard Baltensperger and Hans D. Mittelmann

Abstract. In 1945, W. Taylor discovered the barycentric formula for evalu-
ating the interpolating polynomial. In 1984, W. Werner has given first con-
sequences of the fact that the formula usually is a rational interpolant. We
review some advances since the latter paper in the use of the formula for
rational interpolation.
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1. Introduction: polynomial interpolation in barycentric form

Interpolation is one of the central tools of (numerical) mathematics: analysis prob-
lems are being solved by first choosing from the infinite complexity of an arbitrary
function a few of its (possibly unknown) values and replacing it with an interpolant
of these values. The solution of the original problem is then approximated with
the solution of the corresponding problem for the interpolant. Examples abound:
differentiation, integration, multistep methods for ordinary differential equations,
collocation methods for partial differential equations and other functional equa-
tions, etc. Interpolation is therefore a core subject of any course in numerical
analysis and most books devote a chapter to it. They usually start with Lagrange
interpolation, before enumerating its supposed practical drawbacks [Ber-Tre] and
going over to presumably better methods.

This view of Lagrange interpolation contrasts with its ubiquity in practice
and research: almost every volume of a numerical analysis journal contains some
application of Lagrange cardinal functions. The present paper reviews some of the
recent advances in the practical use of interpolation in the form of the so-called
barycentric formula.

This work has been supported by the Swiss National Science Foundation, grant Nr. 20–66754.01.
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We will focus on the simplest case, namely interpolation in one dimension
between distinct points in an interval I. Many extensions, e.g., interpolation using
information on derivatives at some or all interpolation points [Bul-Rut, Hen1] as
well as interpolation in several dimensions [Bul-Rut, Bal-Ber2, She] can be handled
in the barycentric setting as well.

Let thus N +1 distinct interpolation points (nodes) xj , j = 0(1)N , be given,
together with corresponding numbers fj , j = 0(1)N , which can be values of a
function f

(
fj := f(xj)

)
or not. Our aim is to find an infinitely differentiable

interpolant of f between the xj . We will denote by Pm the linear space of all
polynomials of degree at most m. The simplest problem is that of finding p ≡
pN ∈ PN for which

p(xj) = fj , j = 0(1)N
and its solution is given by the Lagrange interpolation formula

p(x) =
N∑

j=0

fjj(x), j(x) :=

∏
k �=j

(x− xk)∏
k �=j

(xj − xk)
. (1.1)

As mentioned already, many books list drawbacks of this representation of the
(unique) interpolating polynomial, in particular the fact that each evaluation of
p at some x requires O(N2) floating point operations (flops). However, if one has
first computed the denominators of the Lagrange fundamental polynomials j as

wj :=
1∏

k �=j

(xj − xk)
, j = 0(1)N, (1.2)

in O(N2) flops, then every evaluation of p written as

p(x) = (x)
N∑

j=0

wj

x− xj
fj , (1.3)

where
(x) := (x− x0)(x− x1) · · · (x− xN ),

needs only O(N) flops [Hen1, Ber-Tre].  is often denoted by ω or Ω in the litera-
ture. wj is called the weight corresponding to the point xj . For particular sets of
points, such as equidistant or Chebyshev ones, the weights can be computed ana-
lytically [Hen1]. Nodes like Chebyshev’s, distributed like 1

/√
1− x2 , are especially

important since they lead to exponential convergence for holomorphic functions
(see [Ber-Tre] for citations). Exponential convergence is a special case of spectral
convergence, i.e., faster than polynomial.

N. Higham [Hig] has just shown that (1.3) is the formula of choice if one
wishes to evaluate p as stably as possible (even when p is a very bad approximant
of f). 20 years ago already, W. Werner [WeW] has given an algorithm for updating
the weights wj in O(N) operations when a point is added. Werner’s algorithm
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contains an unstable expression for the weight corresponding to the new point.
In [Ber-Tre], the first author1 and N. Trefethen have suggested to use (1.2) for
this point also, that way maintaining the stability of the formula. Their algorithm
used with formula (1.3) sweeps up the last arguments against scalar Lagrange
interpolation: (1.3) is the formula to use if one wishes the result to be as close as
possible to the value of the interpolating polynomial.

Higham has also proven the stability of the so-called barycentric formula
[Hen1, Ber-Tre]

p(x) =

N∑
j=0

wj

x− xj
fj

N∑
j=0

wj

x− xj

(1.4)

when the set of nodes is such that interpolating constant functions is as well-
conditioned a problem as the original one of interpolating f . (1.4) is obtained
from (1.3) by dividing by the corresponding interpolant for the function 1 and
simplifying (x). Since interpolating with nodes leading to ill-conditioned interpo-
lation of constant functions is seldom indicated (see however [Gau] for an example),
the barycentric formula is usually the method of choice for evaluating p.

(1.4) indeed has several advantages over (1.3) [Ber-Tre], some of which we
will encounter on our way. First of all, the weights now arise in the denominator
as well as in the numerator, so that any common factor independent of j may
be ignored, leading to so-called simplified weights w∗

j [Hen1]. Most important in
practice (see [Mul-Hua-Slo, Tre, Bat-Tre] and below) are the so-called Chebyshev
points of the second kind

xj = cos j
π

N
, j = 0(1)N, (1.5)

for which one simply has [Sal]

w∗
j = w

(2)
j := (−1)jδj , δj =

{
1/2, j = 0 or j = N,

1, otherwise,
(1.6)

so that the barycentric formula reads

p(x) =

N∑
j=0

′′
(−1)j

x− xj
fj

N∑
j=0

′′
(−1)j

x− xj

, (1.7)

1When authors are not specified we mean “of the present work”.
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where the double prime means that the first and last terms of the sum should be
halved. These factors 1/2 at the extremities of the interval come from the fact
that Chebyshev interpolation is in fact even trigonometric interpolation between
equidistant points, and that on the circle the interior points arise twice, the ex-
tremal points a single time [Ber1]. Polynomials interpolating between Chebyshev
points may also be evaluated rapidly and stably by means of the fast Fourier
transform, albeit less transparently and more expensively for a small number of
evaluation points x. Since Chebyshev nodes are located in the interval [−1, 1], the
interpolation problem is often considered to have been moved there, something we
will also assume in most of what follows.

Formula (1.7) is extremely stable: it has been used with N up to tens of
thousands [Ber2, Bat-Tre], whereas MATLAB’s polyfit does not even handle
N = 50 with the same points.

Another sign of the importance of Chebyshev points is the fact that they
are clustered at the extremities of the interval of interpolation in just the right
way for the corresponding linear projection to have a small norm – see [Ber-Tre]
for a short description of such norms, called Lebesgue constants, and books on
interpolation [Dav, Sza-Vér, Phi] for a more thorough treatment. Chapter 6 of
[Mas-Han] contains further results on interpolation between Chebyshev nodes.

In this context, we draw the reader’s attention to the new MATLAB soft-
ware for functions, called @chebfun and due to Battles and Trefethen [Bat-Tre],
in which an object is not a vector of the standard MATLAB, but a vector of val-
ues of a function f at enough Chebyshev points of the second kind for f to be
approximated with machine precision by the corresponding interpolating polyno-
mial. The subroutines then perform the classical operations of calculus such as
differentiation, integration, etc., by Chebyshev methods.

2. From polynomial to rational interpolation

What about the barycentric formula (1.4) with points for which interpolating
constant functions is ill-conditioned? The formula will likely be unstable, the com-
puted p̃ far away from p. Is that bad? Not necessarily! Indeed, the condition of
p itself will likely be poor and p should not be used for solving problems. This
is the case when the weights vary enormously, i.e., when the quotient max |wj|

min |wj | is
large [Ber-Tre]. In particular, the computed denominator (multiplied back by )
will not be the function 1, but another polynomial in PN . The right-hand side of
(1.4) becomes a rational function r ∈ RN,N , where Rm,n denotes the set of all
rationals with numerator in Pm and denominator in Pn. By the following lemma,
r interpolates the value fj at xj whenever wj �= 0.

Lemma 2.1. Let {(xj , fj)}, j = 0(1)N , be N+1 pairs of real numbers with xj �= xk,
j �= k, and let {uj} be N + 1 real numbers. Then
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a) if uk �= 0, the rational function

r(x) =

N∑
j=0

uj

x− xj
fj

N∑
j=0

uj

x− xj

∈ RN,N (2.1)

interpolates fk at xk: limx→xk
r(x) = fk;

b) conversely, every rational interpolant r ∈ RN,N of the fj may be written as
in (2.1) for some uj.

Proof. Statement a) is just an immediate calculation. For b), let q denote the
denominator of r and let qj := q(xj), j = 0(1)N . Lagrange formula (1.3) then
permits to write q as q(x) = (x)

∑N
j=0

wjqj

x−xj
. Moreover, the qj determine the

numerator as the polynomial p ∈ PN with p(xj) = qjf(xj). (2.1) with uj := wjqj ,
all j, then is a representation of r. �

a) expresses a second advantage of the barycentric formula: interpolation is
warranted even when the wj are computed with errors. This opens a wide field of
research: whereas polynomial interpolation merely permits the choice of the nodes
xj , rational interpolation allows for that of the uj also. The proof further shows
that the rational interpolation problem is completely solved once the values of q
at the nodes are known.

Why use rational interpolation? For two reasons, at least:
– when one cannot choose the nodes, polynomial interpolation may diverge

even for well-behaved functions. An especially important case is when the
fj are the result of sampling at equidistant points. Then the sequence of
p for increasing N will not converge if the fj are the values of a function
with singularities not too far from the interval of interpolation, as in Runge’s
example [Epp].

– even when one can choose nodes with a good distribution on the interval,
such as those of Chebyshev and Legendre, polynomial interpolation may not
be the answer for it may converge much too slowly for practical purposes.
Indeed, Markov’s inequality implies that a polynomial of moderate degree
cannot have a large slope on an interval where it does not take large values.
On the interval [−1, 1] the inequality says that any polynomial q of degree at
most n satisfies

‖q′‖∞ ≤ n2‖q‖∞,

where ‖ · ‖∞ denotes the maximum or L∞-norm. It follows that, for a
polynomial p of degree n to be a good approximation of f with p′ a good
approximation of f ′, one must have

n ≥
√
‖f ′‖∞/‖f‖∞.
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Approximating a function that behaves like erf(δx), where erf denotes the
error function, therefore requires too large an N with very large δ (see Figure
3 in [Ber-Mit2]).

The classical answer to these difficulties is to use piecewise functions as ap-
proximants. Our interest here, however, is to stay with analytic functions. They
are simpler to program and often converge faster, i.e., exponentially or spectrally
[Ber-Tre]. Rational interpolation is the next such possibility, and the function
1/(1 + ax2) for large a shows that no limitation such as Markov’s inequality is in
the way there.

3. Classical rational interpolation

The problem here is to find r ∈ Rm,n that interpolates the fj, i.e., p ∈ Pm and
q ∈ Pn such that

r(xj) =
p(xj)
q(xj)

= fj, j = 0(1)N. (3.1)

In the canonical representation, p and q together have m + n + 2 coefficients,
of which one may be set to 1 by dividing both polynomials by it. The N + 1
interpolation conditions (3.1) thus are equally numerous as the coefficients when

N = m + n. (3.2)

This condition characterizes the classical rational interpolation problem, see [Sto]
(or [Gut] for a more general treatment). Grosse’s catalogue [Gro] contains a long
list of papers on rational interpolation.

The problem need not have a solution (see the examples in [Sto, p. 50] or
[Ber-Mit1, p. 367]), but it usually does and, if so, then the solution is unique [Sto,
p. 51] and may be written in barycentric form (Lemma 2.1).

3.1. Classical rational interpolation in barycentric form

Schneider and Werner [Sch-Wer] have been the first to determine barycentric rep-
resentations of rational interpolants. Their method uses a classical way of deter-
mining the Newton form of the interpolant before applying an algorithm of Werner
to pass from the Newton to the barycentric form. In [Ber-Mit1], the first and last
authors have given a method for directly finding the corresponding weights uj

when n ≤ m.

Theorem 3.1. If a solution r of the classical rational interpolation problem (3.1)–
(3.2) with n ≤ m exists, then u = [u0, u1, . . . , uN ] is a vector of weights in one of
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its barycentric representations (2.1) iff u belongs to the kernel of the N × (N +1)-
matrix

A :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
x0 x1 x2 · · · xN

x2
0 x2

1 x2
2 · · · x2

N
...

...
...

...
xm−1

0 xm−1
1 xm−1

2 · · · xm−1
N

f0 f1 f2 · · · fN

f0x0 f1x1 f2x2 · · · fNxN

f0x
2
0 f1x

2
1 f2x

2
2 · · · fNx2

N
...

...
...

...
f0x

n−1
0 f1x

n−1
1 f2x

n−1
2 · · · fNxn−1

N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.3)

In order to save space, we introduce some notation: VP,Q, P ≤ Q, will be the
matrix made up of the first P rows of the transposed Vandermonde matrix corre-
sponding to the Q + 1 values x0, . . . , xQ, and FQ = diag(f0, . . . , fQ) ∈ RQ+1,Q+1

will be the diagonal matrix of values f0, . . . , fQ. Then A in (3.3) may be written
A = [VT

m,N ,FT
NVT

n,N ]T .
The proof of Theorem 3.1 consists in showing that the first m equations

express that the degree of the denominator written in the form (x)
∑N

j=0
uj

x−xj
in

(2.1) is at most n, the last n equations that the numerator degree is at most m.
Lemma 2.1 a) implies that r in (2.1) interpolates in xj if uj �= 0; the latter is not
necessary, though.

As a corollary, Theorem 3.1 delivers the kernel of the matrix VN−1,N : it is
just the space spanned by the vector of the polynomial barycentric weights wj .

The customary way of coping with the case n > m is to determine the
reciprocal of r by interpolating the values 1/fj. This requires a special treatment
in case some of the fj vanish. Brimmeyer [Bri] has discovered how to stay within
the barycentric context by considering the corresponding xj as poles and using
the method given in [Ber5] and described below to preassign such poles in the
determination of the weights of 1/r.

In our experience, the algorithm given in [Ber-Mit1] for computing the kernel
of A in (3.3) is much more efficient than computing the singular value decom-
position of A with MATLAB’s routine svd. It consists in triangulating (3.3) in
two steps: one analytical, which leads to divided differences, the other numerical,
through Gaussian elimination with column pivoting. Though, in contrast with p,
r is a good approximation even with equidistant interpolation points for N large
enough, Chebyshev nodes again lead to much better conditioned problems. Note,
however, that these nodes must be reordered for a stable computation of the di-
vided differences. The algorithm is then extremely stable, see the examples in
[Ber-Mit1].

As with the interpolating polynomial, the degrees of p and q may be smaller
than m and n. This manifests itself in the kernel of A having dimension larger
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than 1. A way of coping with this, suggested in [Ber-Mit1], is to decrease n by 1,
restart the computation, and repeat until a kernel of dimension 1 is obtained for
some n∗ < n. u then yields the barycentric representation (2.1) of a reduced r, i.e.,
one in which the linear factors corresponding to common zeros of p and q have
been simplified. We will denote it by r∗. If uk = 0 for some k and r∗(xk) �= fk, then
xk is an unattainable point [Sto] and the problem does not have a solution. This
is the first part of the following theorem, due to Schneider and Werner [Sch-Wer,
Ber-Mit1], which allows an easy detection of two drawbacks of classical rational
interpolation directly from the weights.

Theorem 3.2. Let u be barycentric weights of a reduced rational interpolant r∗ =
p∗/q∗. Then

a) a point xk is unattainable iff uk = 0;
b) if uk �= 0 for all k, if the interpolation points have been ordered as x0 <

x1 < · · · < xN and if signuj = signuj+1, then r∗ has an odd number of poles
between xj and xj+1.

Proof. a) follows from the above discussion and Lemma 2.1a, b) from noticing
that q∗ changes sign, thus has a zero, between xj and xj+1, and p∗ does not, for
otherwise r∗ would not be reduced. �

uk = 0 in (2.1) simply means that the node xk is ignored. One may then
eliminate the pair (xk, fk) and solve the problem inRm,n, m+n = N−1, n = n∗−1
[Ber5]. (Such elimination of data might be problematic if several uj vanish.)

Zhu and Zhu [Zhu-Zhu] have recently suggested an equivalent, and maybe
even more elegant way of finding r by directly determining the values q :=
[q0, q1, . . . , qN ]T of its denominator. Let W := diag(w0, w1, . . . , wN ) be the diago-
nal matrix of the polynomial weights to x0, x1, . . . , xN . Then the proof of Lemma
2.1 shows that one has the bijective map u = Wq; the kernel equation Au = 0
may thus be written AWq = 0.

Corollary 3.3. If a solution r of the classical rational interpolation problem (3.1)–
(3.2) with n ≤ m exists, then the vector q of its denominator values belongs to the
kernel of the N × (N + 1)-matrix AW.

The elements of AW are given in [Zhu-Zhu].

3.2. Reduced complexity barycentric rational interpolation

Besides its many advantages, the barycentric representation of r ∈ Rm,n also has
some disadvantages in comparison with the canonical r(x) = (amxm + · · ·+ a1x+
a0)/(bnxn+· · ·+b1x+b0). One of them is the fact that its evaluation at a particular
point x requires about twice as many flops.

In [Ber6], the first author has suggested a method for improving upon this.
Since the numerator and the denominator have degrees at most L := max{m, n},
they may both be written as interpolating polynomials between any number of
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points larger than L. Let therefore M with L ≤ M ≤ N be given. By Lemma
2.1b, the solution of problem (3.1) may be written as

r(x) =
M∑

j=0

uj

z − zj
fj

/
M∑

j=0

uj

z − zj
. (3.4)

(3.4) has been called a reduced complexity barycentric representation of r in [Ber6].
With it, only M + 1 unknown uj , j = 0(1)M , are to be determined, but interpo-
lation is guaranteed by Lemma 2.1b only at the corresponding xj , called primary
nodes in [Ber6]. The degree conditions that make up the matrix A in Theorem
3.1 are also less numerous, since the denominator, respectively numerator degree
must be decreased merely by M − n, resp. M − m units. In total, N −M less
weights are to be determined, but 2(N −M) less degree diminishing conditions
hold. The remaining N −M equations are the interpolation conditions at the sec-
ondary nodes xM+1, xM+2, . . . , xN . Interpolation is warranted at any of these xk

by [Ber6]
M∑

j=0

f [xj , xk]uj = 0, (3.5)

where as usual f [xi0 , . . . , xis ] denotes the divided difference of order s for the
points xi0 , . . . , xis .

The matrix B with elements bij := f [xi, xj ], i = 0(1)M , j = M + 1(1)N , of
the divided differences in (3.5) is the Löwner matrix corresponding to the sets of
points {x0, . . . , xM} and {xM+1, . . . , xN}.

Theorem 3.4. If a solution r of the classical rational interpolation problem (3.1)–
(3.2) with n ≤ m exists, and if x0, . . . , xM are the primary nodes, then any vector
u = [u0, . . . , uM ] of its weights in a reduced complexity barycentric representation
(3.4) belongs to the kernel of the M × (M + 1)-matrix

A =

⎡⎣ VM−n,M

VM−m,MFM

B

⎤⎦ ,

where B is the Löwner matrix given above.

The partitioning of the nodes in primary and secondary ones is important.
Numerical experiments demonstrate in particular that the extreme points should
be primary nodes, for otherwise the interpolation at the secondary ones, enforced
by the equations Bu = 0, may not be accurate.

The decisive advantages of the reduced complexity representation are the
smaller number of points in the (often ill-conditioned) Vandermonde matrices and
the fact that the divided differences arising in the computation of the kernel of
A have only M − n + 2 arguments, as opposed to N − n + 1 when working with
the representation (2.1) and the matrix (3.3). The improvement in equidistant
interpolation may be spectacular, see Table 3 in [Ber6].
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Steffen [Ste] has adapted the above reduced complexity rational interpolation
to the method of Zhu and Zhu, thereby computing only the M + 1 values of the
denominator at the primary nodes. Her numerical results are very close to those
of [Ber6].

3.3. Monitoring the poles

The poles are at the same time the curse and the blessing of classical rational
interpolation. Their bright side, mentioned above, is their capability of accomo-
dating large gradients of f . Their dark side is the fact that, for N small, they may
show up about everywhere in the plane, thus also in the immediate vicinity of,
or even on, the interval of interpolation when interpolating a perfectly innocuous
function (see Cordellier’s example in [WeH] or [Ber-Mit2]; one may also read p.
357 of [Ber-Mit1]). When more is known about f than just the interpolated points
in the plane, one should therefore try to incorporate the extra information into
the interpolant to monitor the poles.

Sometimes the location of some or all of the poles is known a priori (see § 8
below for an example). The above method for determining the barycentric weights
may be modified to determine the rational interpolant in this case [Ber5]. Assume
that P poles of the denominator are prescribed; denote them by zk, k = 1, . . . , P

and their multiplicity by νk with ν :=
∑P

k=1 νk; assume further that zk �= xj for all
j and all k. The problem is now to compute rational interpolants with prescribed
poles, i.e., to find

r = p/q ∈ Rm,n+ν , m + n = N, n + ν ≤ N,

such that (3.1) is satisfied and r has the ν preassigned poles. If the interpolant
exists, its denominator will contain as a factor the polynomial

d(z) := a

P∏
k=1

(z − zk), a �= 0 ∈ C arbitrary. (3.6)

Let

dj := d(xj), j = 0(1)N, (3.7)

be the values of d at the nodes. Then the part of r remaining to be determined,

r∗ = p∗/q∗ := r · d ∈ Rm,n, m ≥ n,

must take the values

r∗(xj) = gj , gj := fj · dj , j = 0(1)N, (3.8)

at the nodes. Accounting for the difficulties of unattainable points and/or multiple
solutions mentioned above, we are left with the following problem:

(R) Find the largest possible n∗ ≤ n and the corresponding unique r∗ ∈ Rm∗,n∗

with m∗ + n∗ = N , n∗ ≤ m∗, that satisfies the interpolation conditions (3.8).
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Theorem 3.1 implies as a corollary that, if such a r∗ exists, its barycentric weights
b = [b0, b1, . . . , bN ]T make up the one-dimensional kernel of the matrix

A =
[

Vm∗,N

Vn,NGN

]
,

where GN = diag(g0, g1, . . . , gN). Once this kernel has been determined, e.g., by
the algorithm of [Ber-Mit1], barycentric weights of r in (3.1) are given by [Ber5]

uj = dj · bj ,

a result extended in the following theorem proven in [Ber5].

Theorem 3.5. If some r ∈ Rm,n+ν , n ≤ m ≤ N , n+ν ≤ N , exist with r(xj) = fj,
j = 0(1)N , and with poles of order νk at the points zk, k = 1(1)P , then one of
them is given by (3.1) with uj = djbj. On the other hand, if

N∑
j=0

∏
k �=j

(xj − zk)fj �= 0, (3.9)

r as in (2.1) with uj = djbj has a pole at zk.

The proof implies that, if the numerator has degree ≤ N − ν, the conditions
(3.9) are not satisfied, meaning that r cannot be guaranteed to display the pre-
scribed poles. This may reflect the fact that there is no r ∈ RN,N interpolating
the values fj and possessing the desired poles. For instance, for c ∈ R constant
there is no r �≡ c interpolating the values fj ≡ c∀j, since every r as in (3.1) with
constant fj is this same constant for all choices of uj. This is reasonable from an
approximation point of view. Whether (3.9) is necessary for the presence of a pole
at zk is an open question.

When all the poles are prescribed, one has n = 0, r∗ is the interpolating
polynomial and one gets the following corollary, which will be important in the
subsequent sections.

Corollary 3.6. If r ∈ RN,ν , ν ≤ N , exists with r(xj) = fj, j = 0(1)N , and with
poles of order νk at zk, k = 1(1)P , ν :=

∑P
k=1 νk, then its barycentric weights are

given up to a constant by uj = wjbj, j = 0(1)N .

r is then the quotient of the polynomial of degree at most N interpolating
f ·d between the xj and the polynomial d [Ber-Mit2]. It cannot have any other pole
than the zk, which eliminates the potentially harmful free poles of classical rational
interpolation. The rational interpolants arising in the optimal approximation of
functionals in the Hardy space H2 make an interesting example [Ber3].

4. Optimal attachment of poles to the interpolating polynomial

Corollary 3.6 shows that, when one can give all of the poles of the interpolant,
rational interpolation is as simple as polynomial interpolation. Though in some
cases the poles can be obtained a priori (see below), this is usually not the case.



38 J.-P. Berrut, R. Baltensperger and H.D. Mittelmann

In [Ber-Mit2], the first and last authors have suggested a way of determining an
optimal position of the poles when the function f taking the values f(xi) = fi is
known everywhere on the interval I (as in the application of § 9).

Consider the (potential) poles zk, k = 1(1)P , in a rational interpolant

r(x) =

N∑
j=0

wjdj

x− xj
fj

N∑
j=0

wjdj

x− xj

=

N∑
j=0

wj

P∏
k=1

(
1− xj

zk

)
x− xj

fj

N∑
j=0

wj

P∏
k=1

(
1− xj

zk

)
x− xj

(4.1)

with denominator d as in (3.6) as variables (the last equality of (4.1) only holds
when zk �= 0∀k and is obtained by dividing by

∏P
k=1(−zk) – to simplify the

notation, we consider from here on a pole of multiplicity νk as νk separate poles).
The goal is to choose the zk in such a way that the interpolant r in (4.1) is as good
an approximation of f as possible. It has been suggested in [Ber-Mit2] to consider
functions continuous on I and to minimize the infinity norm of r− f , i.e., to solve
the following min-max, or nonlinear Chebyshev, approximation problem:
(A) Minimize ‖r − f‖∞ := maxx∈I |r(x) − f(x)|, with r as in (4.1), with respect

to the zk, k = 1(1)P .

Theorem 4.1 (Ber-Mit2). Problem (A) always has a solution.

As mentioned in [Ber-Mit2], the solution is usually not unique (constant
functions are counterexamples). The more interesting question of the unicity of
the optimal interpolant r is open.

These interpolants have very nice properties. There can be no unattainable
point nor unwanted pole. r is always at least as good as the interpolating polyno-
mial, for the latter is the case when all zk are at infinity

(
see the right-hand side

of (4.1)
)
. Moreover, attachment of another pole can never result in a worsening of

the approximation, since the already optimized poles constitute a feasible point
for the optimization.

The optimization problem has been numerically solved with success in [Ber-
Mit2] with standard modern optimization algorithms. The nice properties just
mentioned occur in practice, and the numerical results, e.g., with Cordellier’s ex-
ample, for which classical rational interpolation with small N is useless, are quite
impressive.

We mention that the authors of [Ber-Mit2] originally intended to solve the
more ambitious problem of minimizing ‖r − f‖∞ with respect to all uj in a rep-
resentation (2.1) of r, but that they encountered difficulties, both theoretical ones
(existence of an optimum, of an alternating sequence, etc.) and practical ones (too
many parameters to optimize).
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5. Differentiation of rational interpolants

Already in their 1986 paper [Sch-Wer] Schneider and Werner have given very
elegant general formulae for the derivatives of rational interpolants in the form
(2.1). These formulae, one for differentiation between the nodes and one at the
nodes, cover arbitrary orders of differentiation. Outside the nodes they are just
barycentric formulae with the values fi at the nodes replaced by divided differences
of the corresponding order. For simplicity, we give them here only for the first and
second order derivatives that will be needed in an application below:

r′(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N∑
j=0

uj

x− xj
r[x, xj ]

/
N∑

j=0

uj

x− xj
, x �= xi, i = 0(1)N,

−
( N∑

j=0
j �=i

ujr[xi, xj ]
)/

ui, x = xi

(5.1a)

and

r′′(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

N∑
j=0

uj

x− xj
r[x, x, xj ]

/
N∑

j=0

uj

x− xj
, x �= xi, i = 0(1)N,

−2
( N∑

j=0
j �=i

ujr[xi, xi, xj ]
)/

ui, x = xi,
(5.1b)

with r[z, z, xj ] = r′(z)−r[z,xj]
z−xj

.

6. From nonlinear to linear rational interpolation

With all approximants given in §§ 3 and 4 except that for which all the poles
are prescribed (Corollary 3.6), the barycentric weights uj , and therefore the de-
nominator, depend on the interpolated function: the approximation operator is
nonlinear. In practice, however, many problems are addressed by means of lin-
ear approximants: also nonlinear ones are often solved with a sequence of linear
approximations.

To every fixed set of nodes xj and every set of corresponding fixed weights
uj there corresponds a linear interpolant: for example, with uj = wj∀j this is
just polynomial interpolation. For Chebyshev points such as (1.5), the polynomial
weights (1.2) lead to a very well-conditioned polynomial interpolant, whereas this
notoriously is not the case with equidistant nodes. It seems therefore natural to
try finding good weights corresponding to a given set of nodes {xj}.

For a given vector of nodes, the vector of weights b = [b0, b1, . . . , bN ]T defines
the linear vector space R(b)

N of all rational interpolants (1.4) with these weights
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[Bal-Ber2]. The set of rational functions

L
(b)
j (x) :=

bj

x− xj

/
N∑

k=0

bk

x− xk
, j = 0, 1, . . . , N, (6.1)

constitutes a basis of R(b)
N .

The first author has suggested in [Ber2] to use the weights (1.6), i.e., the
interpolant (1.7), for every set of nodes. This linear rational interpolant never has
poles in the interval of interpolation and is extremely well conditioned in practice,
even with random points. Unfortunately, its convergence is not fast enough for
approximating higher order derivatives for many sets of nodes, in particular for
the very important equidistant grid (the first author will give a description of this
convergence in a forthcoming paper). There are, however, some sets of nodes for
which it converges about as fast as the best polynomial interpolation: conformal
maps of Chebyshev nodes!

7. Conformal point shifts

Polynomial interpolation between Chebyshev points is trigonometric interpolation
of even functions between equidistant points [Ber1, Tre]. It has very nice proper-
ties: fast convergence for very smooth functions, small operator norm (Lebesgue
constant), very stable barycentric formula. It also has some drawbacks, in partic-
ular the O(N−2)-concentration of the nodes at the extremities of the interval of
interpolation, which results in (at least) three difficulties:

a) ill-conditioning of the derivative near the extremities;

b) bad distribution of the information over the interval;

c) mediocre approximation of functions with shocks close to the center, where
points are scarcer.

Several experts in the solution of differential equations by means of Chebyshev
interpolants [Bay-Tur, Boy, Kos-Tal] have suggested to address these difficulties
by a conformal shift of the nodes toward the equidistant position. This does not
change the order of convergence of the interpolant.

To be more precise, consider, beside the x-space in which f is to be approx-
imated, another space, with variable y, and the N + 1 Chebyshev points of the
second kind yj = cos jπ/N , j = 0(1)N , on the interval J := [−1, 1] in this y-space.
Let further g be a conformal map from a domain D1 containing J (in the y-space)
to a domain D2 containing I (in the x-space). This defines new interpolation points
on I, xj := g(yj), and the conformal transplantation [Hen2] F (y) := f(x) of any
function in the x-space back into y-space. (The transplantation of an x-space-
function will be denoted by the corresponding upper case letter.) Then, one may
consider at least two approximants of a function f :
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– the transplantation aN of the polynomial AN interpolating F between the yj :

AN (y) :=
N∑

j=0

F (yj)Lj(y) =
N∑

j=0

f(xj)Lj

(
g−1(x)

)
=: aN (x); (7.1)

– the rational interpolant mentioned at the end of § 6:

rN (x) =
N∑

j=0

w
(2)
j

x− xj
fj

/
N∑

j=0

w
(2)
j

x− xj
, w

(2)
j from (1.6). (7.2)

The most favorable case is that in which the function f to be interpolated
is analytic in a domain containing I. It follows from a classical result that, if
f : D2 �→ C is such that the composition f ◦ g : D1 �→ C is analytic inside and
on an ellipse Eρ with foci at ±1 and sum of its axes equal to 2ρ, ρ > 1, then
[For, p. 28]

|aN (x)− f(x)| = |AN (y)− F (y)| = O(ρ−N ) for every x ∈ [−1, 1].

The corresponding result for rN in (7.2) has been proven in [Bal-Ber-Noë]:

Theorem 7.1. Let D1, D2 be two domains of C containing J = [−1, 1], respectively
I (∈ R), let g be a conformal map D1 → D2 such that g(J) = I, and f be a
function D2 → C such that the composition f ◦ g : D1 → C is analytic inside and
on an ellipse Cρ (⊂ D1), ρ > 1, with foci at ±1 and with the sum of its major
and minor axes equal to 2ρ. Let rN be the rational function (7.2) interpolating f
between the transformed Chebyshev points xk := g(yk). Then, for every x ∈ [−1, 1],

|rN (x)− f(x)| = O(ρ−N ).

Conformal point shifts thus preserve exponential convergence. They may
markedly lessen (though not eliminate) the difficulties a)–c) enumerated at the
section’s onset. The ill-conditioning of the derivatives near the extremities with
Chebyshev points is due to the accumulation of points there, which for large N are
so close that a small change in a fj has a strong impact on the derivative around xj .
(This may be quantitatively studied with the pseudospectrum, see [Tre, p. 108].)
Following Kosloff and Tal-Ezer, one may improve upon this by moving the points
closer to equidistant. With the approximation (7.1), the derivatives are given by

a′
N (x) = A′

N (y) ·
[
g−1(x)

]′
=

A′
N (y)

g′(y)
(7.3a)

and

a′′
N (x) =

1
[g′(y)]2

A′′
N (y)− g′′(y)

[g′(y)]3
A′

N (y), (7.3b)

in which A′
N (y) and A′′

N (y) may be computed by (5.1). With the approximation
(7.2), the derivatives are simply given by the formulae (5.1) with uj = w

(2)
j ∀j.
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Kosloff and Tal-Ezer have suggested the map

g(y) =
arcsin(αy)
arcsinα

, 0 < α < 1. (7.4)

In the limiting cases, α→ 0 keeps the points at their Chebyshev position, whereas
α → 1 renders them equidistant. The derivatives of g to be used in (7.3) are
given by

g′(y) =
α

arcsinα

1√
1− (αy)2

, g′′(y) =
α3

arcsinα

y√(
1− (αy)2

)3 ,

so that in (7.3b)
g′′(y)

[g′(y)]3
= (arcsin2 α)y.

The effect of this map upon the derivatives has been extensively studied,
see, e.g., [Red-Wei-Nor, Mea-Ren, Abr-Gar]. It is indeed significant. And the map
is even more successful in alleviating the drawbacks b) and c) mentioned above:
through the refurbishment of the center with nodes it approximates functions
with steep gradients or oscillations there much better than the simple polynomial
interpolating between Chebyshev points, see the examples in [Ber-Mit4].

One may combine such changes of variable with the optimal attachment of
poles of § 4. In [Ber-Mit4], the first and last authors have done this by attaching
poles vk to AN in y-space, which corresponds to attaching poles zk := g(vk) to aN

in x-space. For a function with a steep gradient in the center of the interval, such
as Hemker’s example

f(x) = cosπx +
erf(δx)
erf(δ)

, δ =
√

250, −1 ≤ x ≤ 1,

the improvement obtained by means of the poles is still more pronounced than
that coming from the change of variable. However, this is no longer the case with
a function oscillating in the center: the optimization problem with a number of
poles large enough to cope with the oscillations seems beyond the capability of
existing optimization software.

The second author has just noticed that the pole attachment may usually also
be performed with rN from (7.2) by multiplying every weight w

(2)
j by

∏
k(xj−zk).

The resulting rational interpolant is the quotient of two rational functions with
the same denominator as rN , one interpolating f ·d, the other interpolating d from
(3.6). Contrary to the attachment via (7.1), further poles than the zk may arise
in C, but they move infinitely far as N → ∞. One advantage is the more elegant
formula (5.1) for the derivatives which avoids the chain rule. Exponential conver-
gence is maintained, as will be shown in further work. The numerical examples in
[Bal-Ber2] suggest that this interpolant should be just a little less good (no more
than one digit) than aN with the same attached poles.
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8. An application: the linear rational pseudospectral method
for boundary value problems

In order to demonstrate the use of linear rational interpolation in practical prob-
lems we shall now solve the following simple boundary value problem: find u on
the interval [−1, 1] that satisfies the differential equation

u′′(x) + p(x)u′(x) + q(x)u(x) = h(x) (8.1a)

at every x ∈ (−1, 1) and takes the values

u(−1) = u�, u(1) = ur (8.1b)

at the boundary points. We assume that the functions p, q, and h are such that
the problem is well posed.

Suppose first that one knows a good location for poles zk of an approximation
of u, e.g., because the equation is fuchsian or from an application of the WKB-
method [Wei, Bal-Ber-Dub]. To solve (8.1), one may then try substituting for u a
linear rational interpolant ũ written in the basis (6.1),

ũ(x) =
N∑

j=0

ujL
(b)
j (x), (8.2)

to obtain∑
j

ujL
(b)
j

′′
(x) + p(x)

∑
j

ujL
(b)
j

′
(x) + q(x)

∑
j

ujL
(b)
j (x) = h(x). (8.3)

Since the boundary values should enter the solution of the problem, one takes here
a set of nodes containing −1 and 1, e.g., Chebyshev points of the second kind. Then
(8.3) yields an equation for the unknown values u1, . . . , uN−1 of ũ at x1, . . . , xN−1

(u0 and uN being known from the boundary conditions). If the exact solution does
not miraculously happen to belong to R(b)

N , (8.3) does not have a solution (8.2)
and one may collocate, i.e., merely require that the two sides of (8.3) agree in as
many values xi of x as there are unknowns, here N − 1:∑

j

ujL
(b)
j

′′
(xi)+p(xi)

∑
j

ujL
(b)
j

′
(xi)+q(xi)

∑
j

ujL
(b)
j (xi) = h(xi), i = 1(1)N−1.

(8.4)
This is a system of linear equations for the unknown values u1, . . . , uN−1, which
may be written as

Au = h (8.5)
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with A := D(2) + PD(1) + Q and

u := [u1, u2, . . . , uN−1]
T

,

D(1) =
(
D

(1)
ij

)
, D

(1)
ij := L

(b)
j

′
(xi),

D(2) =
(
D

(2)
ij

)
, D

(2)
ij := L

(b)
j

′′
(xi),

P := diag
(
p(xi)

)
, Q := diag

(
q(xi)

)
,

h := [h(xi)− ur

(
L

(b)
0

′′
(xi) + p(xi)L

(b)
0

′
(xi)

)
− u�

(
L

(b)
N

′′
(xi) + p(xi)L

(b)
N

′
(xi)

)
]T ,

i, j = 1, . . . , N − 1.

An advantage of the barycentric representation of ũ is the simplicity of the
formulae for the elements of D(1) and D(2), which may be given as

D
(1)
ij =

⎧⎪⎨⎪⎩
bj/bi

xi − xj
, i �= j,

−∑
k �=i

D
(1)
ik , i = j,

D
(2)
ij =

⎧⎪⎨⎪⎩
2D

(1)
ij

(
D

(1)
ii − 1

xi − xj

)
, i �= j,

−∑
k �=i

D
(2)
ik , i = j.

(8.6)

The weights bj enter explicitly only through the remarkably simple formula for
the non-diagonal elements of D(1)! The use of these formulae was first advocated
in [Bal-Ber1] for the polynomial case, in [Bal-Ber2] and [Ber-Bal] for the rational
case. They may be obtained from (5.1); a simple direct proof is given in [Ber-Tre].

The matrix A in (8.5) is full, as opposed to those of the finite difference and
the finite element methods. The reason for the efficiency of the method already in
the polynomial case lies in the spectral convergence of ũ toward u – for good nodes
– when all functions arising in the problem are analytic within ellipses containing
the interval [−1, 1] in their interior, see the examples in [Tre]. This remains true
when one takes bj = wjdj as in (4.1) to solve a problem whose solution has the
same poles zk:

Theorem 8.1 (Bal-Ber-Dub). Let the solution u of (8.1) be meromorphic with poles
at z1, . . . , zP . Then the linear rational collocation method with trial function (8.2)
for Chebyshev points of the second kind converges exponentially toward u, and at
least as fast as the corresponding polynomial collocation solution of an associated
boundary value problem for u · d.

The associated boundary value problem is explictly known [Pér-Cas-Hay, Ber-
Bal-Dub]. Of particular importance is the fact that prescribing the poles results
in a better solution for small N . Indeed, when using spectral elements in several
dimensions, one cannot increase N at will in each element since the system of
equations would become too large. The figure displays the solution of Example 2
of [Bal-Ber-Dub] with N = 17 together with the polynomial solution (left) and
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Comparison of two pseudospectral solutions of a boundary value problem (8.1)

the rational solution with the correct poles (right). Note in particular that the uj

(big dots) are very good approximations to u(xj) in the second case: they could be
interpolated with splines to avoid oscillations for N small. Weideman has proposed
in [Wei] a method that is mathematically equivalent to ours when all the poles are
fixed a priori but that does not employ the barycentric representation.

Every set of points xj and every set of bj determine another linear rational
collocation method. A natural choice are shifted points xj and the weights bj =
w

(2)
j ∀j. R

(b)
N then is the set of all interpolants (7.2) and takes advantage of the

improved condition of the derivatives and/or of the better approximation in the
center of I, see § 7.

The better condition of the derivatives is not so important when solving (8.5)
directly, that is by Gaussian elimination, for this amounts to applying A−1, i.e.,
to integration [Ber4, Tan-Tru]. However, it might be important when solving (8.5)
for more complicated problems, and is definitely an advantage when one applies
A itself, e.g.:

– when solving time evolution partial differential equations with the pseu-
dospectral method of lines (pseudospectral discretization in space followed
by a time-stepping algorithm such as extrapolation or Runge-Kutta for solv-
ing the resulting system of ordinary differential equations in time). This is
the application that led Kosloff and Tal-Ezer to advocate their shift (7.4).
The use of the corresponding points xj in the just mentioned R(b)

N has been
studied in [Bal-Ber2]. It decreases the number of time steps by a factor of two
to three without any noticeable change in the computing effort for spectral
discretization.

– when solving spatial systems of equations such as (8.5) by iteration [Ber-
Bal]: a good choice of the parameter α in (7.4) (about α = .99) may decrease
the number of iterations by a third, and this again with no change in the
computer code but the command computing the xj .
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9. Back to nonlinear: adaptive point shifts and poles

As already mentioned in § 7, a side effect of Kosloff and Tal-Ezer’s point shift is the
improvement in the approximation of functions with steep gradients in the center
of I by polynomials interpolating between Chebyshev points; in many examples
it becomes the most desirable effect. It is too blunt, however: it materializes only
when there is only one front and when the latter lies precisely in the center. This
is by no means the usual case: fronts may arise everywhere in I and there may be
several of them.

To cope with the first difficulty, Bayliss and Turkel [Bay-Tur] have studied
some two-parameter shifts, with one parameter for the location of the front, the
other for its intensity. The following observation then led the first and last authors
to a solution of the several fronts problem: with one steep front, the inverse change
of variable is itself steep at the front, but has about zero slope away from it, so
that adding another inverse shift preserves both slopes. This naturally leads to the
inverse shift [Ber-Mit5]

y(x) = g[−1](x) = µ +
1
λ

Q∑
q=1

arctan[αq(x− βq)], (9.1)

where the parameters βq and αq determine location and intensity of the qth front,
and where λ and µ ensure that g[−1](−1) = −1 and g[−1](1) = 1. Whenever
needed, the shift g(y) itself is obtained by inverting g[−1], a simple task in the two-
front case [Ber-Mit5]. In many instances, as in the solution of differential equations
below, only g[−1] (or, rather, its derivatives) arises in the solution of the collocation
problem; g is just needed for evaluating the final solution between the nodes.

For approximation, if one has some (possibly vague) information about lo-
calization and intensity of the front, one may try adjusting the parameters αq and
βq by trial and error; this may be quite effective in practice. In [Ber-Mit5], the
parameters were optimized in a more sophisticated way by minimizing

‖R− F‖∞ := max
y∈[−1,1]

|R(y)− F (y)|,

where R denotes the rational approximation in y-space, with modern simulated
annealing software. The effect of the shift is quite impressive for interior fronts,
much more pronounced than that of the optimized poles.

The latter are still useful, though. Firstly, they may bring a noticeable bit of
extra precision at the fronts. Secondly, and more importantly, they are necessary
for accomodating boundary layers. Indeed, by moving the points toward the in-
terior fronts, the shifts have the negative effect of depleting the extremities, thus
worsening the approximation of incidental boundary layers. Poles, which may be
located everywhere and in particular have real part outside I, remain efficient in
that case, as the results of [Ber-Mit5] demonstrate. We just reproduce here Table 1,
whose captions should be self explanatory and may be found in [Ber-Mit5].
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β α Poles ‖r − f‖ ‖r′ − f ′‖ ‖r′′ − f ′′‖
∗ ∗ 1.867e − 1 2.361e + 1 3.454e + 3

∗ ∗ (−.4902,±2.011e − 2) 5.224e − 4 2.158e − 1 8.241e + 1
(−.5056,±2.228e − 2)
(−.5178,±5.613e − 2)

−.5185 7.408 9.447e − 9 5.012e − 6 1.138e − 2

−.4976 8.273 (−1.027,±3.147e − 3) 1.279e − 11 6.270e − 9 1.654e − 5

−.4981 8.519 (−1.030,±3.574e − 3) 2.495e − 12 1.754e − 9 5.659e − 6
(1.062,±5.346e − 3)

Table 1. Effect of an optimized Bayliss-Turkel point shift on rational approximation
with and without optimized poles in an example with N = 100

The advances in approximation brought by optimized poles and point shifts
may be used for improving solutions of problems. As an example we take again
the boundary value problem (8.1). By means of the chain rule one sees that the
point shift transplants (8.1a) into the equation

[y′(x)]2U ′′(y) + [y′′(x) + P (y)y′(x)]U ′(y) + Q(y)U(y) = H(y) (9.2)

in y-space, which will be solved by collocation at Chebyshev points of the second
kind yj.

The first and last authors have suggested in [Ber-Mit3] and [Ber-Mit6] the
following two-step recursive procedure for solving (9.2):

Step 1. Compute the approximate solution U(k) = [U (k)
1 , . . . , U

(k)
N−1]

T of (9.2) –
with the boundary conditions (8.1b) – by the linear rational collocation method
with bj = wjdj , dj =

∏P
k=1(yj − vk), with the poles v1, . . . , vP in y-space (dj ≡ 1

for k = 1) and the inverse point shift (9.1). This amounts to solving a system (8.5)
with matrix

A := G2
1D

(2) + (G2 + G1P)D(1) + Q,

where D1 and D2 are the Chebyshev differentiation matrices (8.6) and where G1

and G2 denote the diagonal matrices of the derivatives of g[−1] at the nodes xi,

G1 = diag
(
y′(x1), . . . , y′(xN−1)

)
, G2 = diag

(
y′′(x1), . . . , y′′(xN−1)

)
,

while P and Q contain the values P (yi) = p(xi), resp. Q(yi) = q(xi).

Step 2. Minimize the residual norm

‖[y′]2R′′ + [y′′ + Py′]R′ + QR−H‖∞
of the differential equation for the rational interpolant

R(y) :=
N∑

j=0

w
(2)
j

P∏
�=1

(
1− yj

v�

)
y − yj

U
(k)
j

/
N∑

j=0

w
(2)
j

P∏
�=1

(
1− yj

v�

)
y − yj
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with respect to the poles vk in y-space, k = 1, . . . , P , and the shift parameters αq,
βq, q = 1, . . . , Q. This changes the bj to yield a new interpolant to the U

(k)
j .

The derivatives y′(x) and y′′(x) needed in the computation of G1 and G2 are given
by the simple formulae

y′(x) =
1
λ

Q∑
q=1

αq

1 + s2
q

,

y′′(x) = − 2
λ

Q∑
q=1

α2
qsq

(1 + s2
q)2

, sq := αq(x− βq).

In all the examples we tried [Ber-Mit6] the method approximates the solution
with an error merely about ten times as large as the direct approximation of the
exact solution in [Ber-Mit5] (one example of which is given in the table above),
a splendid performance. The convergence of the method has not been proven yet;
however, an L2-Galerkin version has been shown to reduce the energy norm of the
error at each step of the algorithm.

10. Conclusion

We hope that the present article has convinced the reader that applications of the
barycentric representation of rational interpolants brings interesting advances in
infinitely smooth practical approximation. Its use in classical rational interpolation
yields a very stable way of computing the interpolant and allows for a relatively
simple detection of unattainable points and poles. The latter may also be easily
monitored in the complex plane and their location optimized to yield new rational
interpolants which approximate a given function with an error that diminishes
with the number of the poles. In view of the globality of the interpolants, fronts
are handled with conformal shifts of variables which may be optimized as well.
Though expensive to determine, the resulting approximants display an impressive
accuracy. They may be used in the solution of problems such as differential and
integral equations.

Acknowledgement

This work has been supported by the Swiss National Science Foundation, grant
Nr. 20-66754.01.

References
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Approximation on Simplices and
Orthogonal Polynomials

Dietrich Braess

Abstract. Inequalities of Jackson and Bernstein type are derived for polyno-
mial approximation on simplices with respect to Sobolev norms. Although we
do not find simple bases when looking at 120 years of research of orthogonal
polynomials on triangles, sharp estimates are obtained from a decomposition
into orthogonal subspaces. The formulas reflect the symmetries of simplices,
but analogous estimates on rectangles show that we cannot expect rotational
invariance of the terms with derivatives. An essential tool are selfadjoint dif-
ferential operators that have already been used by other authors for the study
of various approximation properties.

1. Introduction

The approximation of functions by polynomials with respect to a weighted L2-
norm is strongly related to orthogonal polynomials. This is well known for functions
on the real interval [−1, +1]. The orthogonal polynomials for constant weights are
the Legendre polynomials Pn which satisfy

+1∫
−1

PnPmdx =
2

2n + 1
δnm.

The Legendre polynomials are eigenfunctions of the singular Legendre differential
operator,

LPn = µnPn, µn = n(n + 1)
where L is given by (Lv)(x) := −((1 − x2)v′)′. We therefore have also orthogo-
nality of the derivatives with respect to a weight function which vanishes at the
boundaries

+1∫
−1

(1− x2)P ′
nP ′

mdx = µn
2

2n + 1
δnm.
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If we expand an L2-function with respect to the Legendre polynomials for the

natural normalization v =
∞∑

k=0

bk

(
k + 1

2

)1/2
Pk, then we have obviously,

‖v‖20 :=
+1∫
−1

v2dx =
∞∑

k=0

|bk|2,

|v|21,w :=
+1∫
−1

(1− x2)(v′)2dx =
∞∑

k=1

µk|bk|2 (1)

and more generally, for any  ∈ N0,

|v|2�,w := (−1)�

+1∫
−1

vL�vdx =
∞∑

k=1

(µk)�|bk|2

which is to be understood in the sense that the series converge if and only if |v|�,w
is finite. We obtain from the definitions for v, with |v|m,w <∞, , m ∈ N0, m ≥ ,
the approximation property (direct estimate)

inf
p∈Pn

|v − p|�,w ≤ (µn+1)−(m−�)/2|v|m,w (2)

and the inverse estimate

|p|m,w ≤ (µn)(m−�)/2|p|�,w for p ∈ Pn. (3)

Remark 1.1. This fits into the following general framework. Let X be a Banach
space which is compactly imbedded into Y . Therefore ‖ · ‖X is a finer norm than
‖ · ‖Y . Moreover, let Vm, m ∈ N be a family of finite-dimensional subspaces of X.
The pair X, Y is appropriate for the family (Vm) if there are parameters cm and
a constant C such that the direct approximation property

inf
p∈Vm

‖v − p‖Y ≤ cm‖v‖X ∀v ∈ X (4)

and the inverse estimate

‖p‖X ≤ C c−1
m ‖p‖Y ∀p ∈ Vm

hold. [We note that we cannot have ‖p‖X ≤ o(c−1
m )‖p‖Y ∀p ∈ Vm together with

(4).] – Classical pairs of spaces that fit in this sense are given by C0 and Cm due
to Jackson’s and Bernstein’s theorems. Finite element spaces are another example;
see, e.g., [4, p. 85] for h-FEM, i. e. when convergence is achieved by refinements of
the meshes. Recently the p-FEM has attracted much interest, i. e. the approxima-
tion is improved by increasing the degree of the polynomials [21]. Here the theory
is less complete.

Direct and inverse estimates for the rectangle are easily obtained from these
results by tensor product arguments [5]. Those results show already that we cannot
expect rotational invariance of the inequalities.

The situation on triangles and more generally on simplices in Rd is more
involved. There are two approaches in the literature for orthogonal polynomials
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on triangles/simplices, but none of them can be used directly for our purpose.
We will demonstrate that by an algebraic counterpart. The remedy is that we are
content with a decomposition into orthogonal subspaces. In particular, we will use
some selfadjoint differential operators that have been discovered independently by
several authors for different purposes.

2. Orthogonal polynomials on triangles

The one-dimensional example in the introduction showed already the relation be-
tween orthogonal polynomials and the approximation problem under considera-
tion. There are two different approaches to orthogonal polynomials on triangles.

In 1881 Appell [1] introduced polynomials Fmn which give rise to a biorthogo-
nal system Fmn and Emn on triangles. The polynomials (and some generalizations)

Fmn(x, y) :=
∂m+n

∂xm∂yn

[
xmyn(1− x− y)m+n

]
are now called Appell’s polynomials. Obviously Fmn is a polynomial of degree
m + n.

Let

PN := span{xmyn; m + n ≤ N} and QN := PN ∩ P⊥
N−1.

Then Fmn is orthogonal to Pm+n−1.
We provide the (simple) proof since the technique (from 1881) is typical also

for recent constructions. It is sufficient to verify the orthogonality for monomials
xkyl with k + l ≤ m + n. Without loss of generality we assume that k < m. By
partial integration we obtain∫ 1−y

0

xkyl ∂m+n

∂xm∂yn

[
xm+αyn+β(1− x− y)m+n+γ

]
dx

= (−1)m

∫ 1−y

0

(
∂m

∂xm
xkyl

)
∂n

∂yn

[
xm+αyn+β(1 − x− y)m+n+γ

]
dx

= 0

for 0 < y < 1. This is a standard argument with Rodriguez’ formula. After inte-
grating over y we have the orthogonality. �

Although Appell’s polynomials Fmn, m + n ≤ N , spanQN , the polynomials
Fmn and Fkl with k+ l = m+n and (k, l) �= (m, n) are unfortunately not orthogo-
nal. It is difficult to provide an orthogonal basis without destroying the symmetry
of the triangle.

[The situation is comparable to that of the eigenvalue problem with the ma-
trix ⎛⎝−2 1 1

1 −2 1
1 1 −2

⎞⎠ .
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The matrix is invariant under permutations of the coordinates. There is an eigen-
vector (1, 1, 1) with the eigenvalue 0. The orthogonal subspace consists of eigen-
vectors, but we cannot provide a basis without destroying the symmetry.] – We
will refer to invariant subspaces due to this feature.

Investigations of orthogonal polynomials based on Appell’s polynomials were
done e. g. by Appell and Kampé de Fériet (1926), Gröbner (1948), Erdélyi, Magnus,
Oberhettinger, and Tricomi (1953), Fackerell and Littler (1974), Derriennic (1985).

Another approach to orthogonal polynomials is obtained from a transforma-
tion of the triangle to the square; see Proriol (1957), Karlin and McGregor (1964),
Szegő (1974), Koornwinder (1975), Mysovski (1981), Dunkl (1984), Suetin (1988),
Dubiner (1991), Xu (1998). Consider the product

pm(
x

1 − y
)(1 − y)mqn,m(y) (5)

where pm is the mth orthogonal polynomial for the weight 1 and qn,m is the nth
orthogonal polynomial for the weight (1 − y)m. Obviously the products provide
orthogonal polynomial for the triangle and can be expressed in terms of Jacobi
polynomials. Unfortunately these polynomials are less suited for our intention since
the transformation makes that the derivatives of the fractions in (5) give rise to
expressions that are more involved.

For completeness we also refer to [17].

3. Estimates on the simplex in Rd

Now we are prepared to consider the original approximation problem on a d-
simplex Sd. The simplex is the convex hull of its d + 1 vertices a0, a1, . . . , ad ∈ Rd

which do not lie on a (d−1)-dimensional hyperplane. In order to keep the symmetry
we refer to the barycentric coordinates λ0, λ1, . . . , λd of the points x =

∑
j λjaj ∈

Sd. Specifically we have

λj ≥ 0, j = 0, 1, . . . , d,
∑

j

λj = 1,

We will make use of multiindex notation, in particular

λm := λm0
0 λm1

1 . . . λmd

d , λα = λα0
0 λα1

1 . . . λαd

d ,

and |m| =
∑

j mj , |α| =
∑

j αj . We assume that αj > −1 for all j. Hence,
wα := λα is a weight function for which the inner product

(f, g) =
∫

Sd

fgwα (6)

and the weighted L2-norm ‖f‖20,w := (f, f) is well defined. As before, we set

Pn := span{λm; |m| ≤ n} and Qn := Pn ∩ P⊥
n−1.
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Due to the condition
∑

λj = 1, the representation of a function given in terms
of barycentric coordinates is not unique. Nevertheless we can write the directional
derivative for the direction from ak to aj in the form

∂

∂λj
− ∂

∂λk
or for short ∂j − ∂k.

Lemma 3.1. Let j �= k. Then the differential operator of second order

L0 := −λ−α(∂j − ∂k)λjλkλα (∂j − ∂k) (7)

is selfadjoint with respect to the inner product (·, ·). It maps Pn into Pn and Qn

into Qn.

Sketch of proof. Consider a segment on a line parallel to the direction from ak to
aj . The product λjλk vanishes at the two points at which the line intersects the
boundary of Sd. No boundary terms occur when performing partial integration.
Therefore L0 is selfadjoint.

The degree of a polynomial is not augmented by the application of L0 since
the multiplication by the quadratic polynomials is compensated by two differenti-
ations. The arguments of Appell show that also the orthogonal complement Qn is
mapped into itself. �

Now combinations of the differential operators of the form (7) have been used
for several purposes [3, 5, 6, 8, 7, 14, 20, 24]. In particular,

Lw := −λ−α
∑
j<k

(∂j − ∂k)λjλkλα(∂j − ∂k) (8)

can be regarded as a Laplacian for the simplex due to its symmetry. Special cases
of the eigenvalue problem (9) have already been stated by Appell and Kampé de
Fériet [2] in terms of Appell’s polynomials. Proofs can be found in the literature
cited above. A simple proof in [5] makes use of the fact that Lw maps Qn into
itself and that it is sufficient to determine the image Lwp merely modulo Pn−1.

Theorem 3.2. The operator Lw is selfadjoint and

Lwp = µnp for all p ∈ Qn. (9)

with the eigenvalues µn explicitly given by

µn = µn(d, α) := n(n + d + |α|), n = 1, 2, . . . . (10)

In accordance with (1) we now define a weighted H1-seminorm which will
form an appropriate pair together with ‖ · ‖0,w

|f |21,w :=
∑
j<k

∫
Sd

|(∂j − ∂k)f |2λjλkwα.

We obtain our essential tool from the fact that Lw is selfadjoint

|f |21,w =
∫

Sd

f(Lwf)wα. (11)



58 D. Braess

In particular assume that f is expanded into polynomials from the orthogonal
subspaces

f =
∞∑

k=0

pk with pk ∈ Qk.

From the orthogonality of Qk and Ql, k �= l, and Theorem 3.2 we conclude that

‖f‖20,w =
∞∑

k=0

‖pk‖20,w ,

|f |21,w =
∞∑

k=0

∫
Sd

pk(Lwpk)wα =
∞∑

k=0

µk‖pk‖20,w ,

and, more generally, for any  ∈ N0,

|f |2�,w :=
∞∑

k=0

∫
Sd

pk(L�
wpk)wα =

∞∑
k=0

(µn)�‖pk‖20,w.

The last equality is understood in the sense that the infinite series converges if and
only if |f |�,w is finite. Similar to |f |1,w, the seminorm |f |�,w admits the following
representation in terms of f and its derivatives:

|f |2�,w =

⎧⎪⎨⎪⎩
∫

Sd

(Lm
w f)2wα if  = 2m,∫

Sd

(Lm
w f)Lw(Lm

w f)wα if  = 2m + 1.
(12)

Accordingly, for m ∈ N0, we define the weighted spaces

V m
w (Sd) :=

{
v ∈ L2(Sd); |f |�,w <∞ for  = 0, 1, . . . , m

}
.

In the literature cited above there are several results on the approximation by
polynomials on simplices. The following theorem from [5] fits into the framework
of Remark 1.1 and admits a formulation such that there is no gap between the
direct and the inverse estimate.

Theorem 3.3. Let , m be nonnegative integers and m ≥  and denote by µn =
n(n+d+ |α|) the eigenvalues of Lw. Then, for any v ∈ V m

w (Sd), the approximation
property

inf
p∈Pn

|v − p|�,w ≤ (µn+1)−(m−�)/2 |v|m,w n = 0, 1, 2, . . .

holds, and for any p ∈ Pn we have the inverse estimate

|p|m,w ≤ (µn)(m−�)/2 |p|�,w.

Both inequalities are sharp.

The operator Lw annihilates constants, but its kth power does not annihilate
Pk−1. Recently, Jetter and Stöckler [14] have constructed symmetric differential
operators of higher order which do not have this defect. Their operators can be
used for improving the results of Theorem 3.3.
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(0, 2) Pál-type Interpolation:
A General Method for Regularity

Marcel G. de Bruin and Detlef H. Mache

Abstract. The methods of proof of regularity for interpolation problems often
are dependent on the problem at hand. In case of given pairs of node gen-
erating polynomials the method of deriving an ordinary differential equation
for the interpolating polynomial or that of exploiting the specific form of the
node generator have mainly been used up to now.
Recently another method was used in the case of Pál-type interpolation where
‘only’ one of the node generators is fixed in advance: a ‘general’ method of
deriving a companion generator that leads to a regular interpolation problem.
Using (0, 2) Pál-type interpolation, it is shown that each of the methods has
its merits and for sake of simplicity we will restrict ourselves to the case
that the nodes are the zeros of pairs of polynomials of the following form:
{p(z)q(z), p(z)} with p, q co-prime and both having simple zeros.

Mathematics Subject Classification (2000). 41A05.

Keywords. Pál type interpolation, regularity.

1. Introduction

The study of Hermite-Birkhoff interpolation is a well-known subject (cf. the ex-
cellent book [2]). Recently the regularity of some interpolation problems on non-
uniformly distributed nodes on the unit circle has been studied.

Along with the continuing interest in interpolation in general, a number of
papers on Pál-type interpolation have appeared, cf. [3], [4], [6].

In this paper the attention will be focused on so-called (0, 2) Pál-type inter-
polation problems on the pair of node generators {p(z)q(z), p(z)}:

– given two co-prime polynomials p(z) resp. q(z), with simple zeros {zi}ni=1 ∈ C

resp. {wj}mj=1 ∈ C (nodes generators),

– given data {ci}n+m
i=1 , {dj}nj=1 ∈ C,

find Pk ∈ Πk, k = m + 2n− 1 with Pk(zi) = ci (1 ≤ i ≤ n), Pk(wj) = cn+j (1 ≤
j ≤ m) and P ′′

k (zi) = di (1 ≤ i ≤ n).
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Here Πk is the set of polynomials of degree at most k with complex coefficients.
This type of interpolation problems started with the paper [1] by L.G. Pál in 1975.

Although very often the method of proof of regularity depends on the problem
at hand, one can, nevertheless, distinguish two main tools as indicated in [5]:

A. Prove that the square system of homogeneous linear equations for the un-
known coefficients of the polynomial Pk has a non-vanishing determinant.

B. Find a differential equation for Pk (or for a factor of Pk) and show that if
this equation has a polynomial solution, the solution must be the trivial one.

Recently a new method has been introduced by the authors in [7] for (0, 1) Pál-type
interpolation:

C. Given p(z) ‘only’, apply a ‘reduction method’ and determine ‘companion
polynomial(s)’ q(z) that make the problem regular.

The layout of the paper is as follows: in section 2 general results for method C will
be given, followed in section 3 by new results on (0, 2) Pál-type interpolation. In
section 4 the general theorems from section 2 will be proved and in section 5 the
proofs for the new examples will be given, using each of the methods A, B and C,
along with a discussion of the relative merits of the three methods. Finally some
references will be given.

2. General results for method C

Consider the node-generating polynomials

p(z) =
n∏

i=1

(z − zi) (1)

and

q(z) =
m∏

j=1

(z − wj), (2)

co-prime and each having simple zeros.

Remark. It is not allowed that p and q have (a) common zero(es).

We then have the following result

Theorem 2.1. If there exist polynomials g(z), r1(z), r2(z) such that

2p′(z)q(z) = (α0 + α1z)g(z) + r1(z)p(z), (3a)

p′′(z)q(z) + 2p′(z)q′(z) = β0g(z) + r2(z)p(z), (3b)
satisfying the condition

α0 + α1z �≡ 0, g(zi) �= 0, 1 ≤ i ≤ n, (4)

then (0, 2) Pál-type interpolation on the zeros of {p(z)q(z), p(z)} is regular
1. for α1 = 0 if and only if β0 �= 0,
2. for α1 �= 0 if and only if −β0/α1 �∈ {0, 1, 2, . . . , n− 1}.
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Remark. The case α0 = α1 = 0 leads to a contradiction with (3a) as the zeros of
p are simple and the polynomials p, q are co-prime.

More general, using simple conditions on the factors of g(z) from (5a), (5b):

Theorem 2.2. If there exist polynomials g(z), r1(z), r2(z) such that

2p′(z)q(z) = (α0 + α1z + α2z
2)g(z) + r1(z)p(z), (5a)

with α0 + α1z + α2z
2 having two different (complex) roots σ1, σ2, and

p′′(z)q(z) + 2p′(z)q′(z) = (β0 + β1z)g(z) + r2(z)p(z), (5b)

satisfying the conditions
g(zi) �= 0, 1 ≤ i ≤ n, (6)

and

A :=
β0 + β1σ1

σ1 − σ2
> 0, B :=

β0 + β1σ2

σ2 − σ1
> 0, (7)∫ σ2

σ1

(ζ − σ1)A−1(ζ − σ2)B−1p(ζ)dζ �= 0, (8)

then the (0, 2) Pál-type interpolation problem on the zeros of {p(z)q(z), p(z)} is
regular.

3. New regular problems

In this section some new results on regularity are given.

Theorem 3.1. The (0, 2) Pál-type interpolation problem on the zeros of the pair
{p(z)q(z), p(z)}, with p, q co-prime and having simple zeros, is regular for the
following choices of the node generators:

1. p(z) = zn − αn, α �= 0; q(z) = z, n ≥ 1.
2. p(z) = zn − αn, α �= 0; q(z) = zn − βn, β �= 0 and{

αn �= βn for n = 1,

αn �= βn, (3n + 2k − 1)αn �= (n + 2k − 1)βn for n ≥ 2.

3. p(z) = zn − αn, q(z) = (zkn − αkn)/(zn − αn), α �= 0, k ≥ 2.
4. p(z) = zn − αn, q(z) = z(z − z0)(zn − 3n+1

n+1 αn) with

α, z0 �= 0; z0 �= α exp (
2πik

n
), k = 0, 1, . . . , n− 1; zn

0 �=
3n + 1
n + 1

αn.

5. p(z) = zn − αn, q(z) = z(z2 − ξ2)(zn − 3n+1
n+1 αn) with

α, ξ �= 0; ξ2 �= α2;

{
ξn �= ±αn, ± 3n+1

n+1 αn for n odd,

ξn �= αn, 3n+1
n+1 αn, (n + 1)αn for n even.
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4. Proofs for method C

The interpolation problem has been formulated in the introduction as:

– given polynomials p(z) and q(z) of degrees n and m,
– with simple zeros zi, wj , respectively, all different,
– find a polynomial P (z) of degree at most n + m− 1 with

P (zi) = P (wj) = 0, P ′′(zi) = 0. (9)

Because of the first two sets of conditions in (9), we can write

P (z) = p(z)q(z)Q(z), degreeQ(z) ≤ n− 1. (10)

The final conditions of (9) then lead to

2p′(zi)q(zi)Q′(zi) + {p′′(zi)q(zi) + 2p′(zi)q′(zi)}Q(zi) = 0, (11)

with zi the n zeros of p(z).

Proof of Theorem 2.1. Inserting (3) into (11) and using (4) we find

(α0 + α1zi)Q′(zi) + β0Q(zi) = 0, 1 ≤ i ≤ n. (12)

Because of the degree restriction on Q, at most n− 1, this immediately implies

(α0 + α1z)Q′(z) + β0Q(z) = 0. (13)

Solving this linear first order ordinary differential equation for the cases α1 = 0
(distinguishing α0 = 0 or α0 �= 0) and α1 �= 0, we find that Q(z) has to be
identically zero under the condition stated in the theorem (α1 �= 0 was the only
case that (13) really had a non-trivial polynomial solution of degree at most n−1;
that is where −β0/α1 �∈ {1, 2, . . . , n− 1} comes in). �

Proof of Theorem 2.2. Proceeding as in the previous proof, but now the degree of
the polynomial on the left-hand side of the equation could be equal to the degree
of p(z) ,we arrive at the differential equation

(α0 + α1z + α2z
2)Q′(z) + (β0 + β1z)Q(z) = Cp(z) (14)

for the polynomial Q of degree at most n − 1. The equation (14) can be solved
with an integrating factor µ(z) following from

µ′(z)
µ(z)

=
β0 + β1z

α0 + α1z + α2z2

and we find

(α0 + α1z + α2z
2)Q(z) = C

∫ z

σ1

(ζ − σ1)A−1(ζ − σ2)B−1p(ζ)dζ + D. (15)

Now the left-hand side has a zero for z = σ1 and z = σ2; the first gives D = 0
and the second, in view of the condition stated in (8), that C = 0. Thus Q ≡ 0,
implying P ≡ 0. �
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5. Proofs for the new regular problems

The five cases of theorem 3.1 will each be proved using each of the methods A, B
and C.

5.1. Method A

Proof of 1. The interpolating polynomial has degree at most 2n; write

P (z) =
n−1∑
k=0

akzk +
n−1∑
k=0

bkzn+k + cz2n.

This has to vanish at the n zeros zj of zn − αn:
n−1∑
k=0

(ak + αnbk)zk + cα2n = 0,

leading to a polynomial of degree at most n− 1 having n zeros, thus:

a0 + αnb0 + α2nc0 = 0, (16a)

ak + αnbk = 0, 1 ≤ k ≤ n− 1. (16b)

The condition P (0) = 0 implies:
a0 = 0. (17)

As the derivative only has to be looked at in the points zj �= 0, we can as well put
z2

j P ′′(zj) = 0:

n−1∑
k=0

{k(k − 1)ak + (n + k)(n + k − 1)αnbk} zk + 2n(2n− 1)α2nc = 0,

which implies
n(n− 1)αnb0 + 2n(2n− 1)αnc0 = 0, (18a)

k(k − 1)ak + (n + k)(n + k − 1)αnbk = 0, 1 ≤ k ≤ n− 1. (18b)

The equations (16b) and (18b) immediately imply ak =bk =0 for 1 ≤ k ≤ n−1 (the
determinant of the matrix for the 2× 2 system for fixed k is n(n+2k− 1)αn �= 0).

Inserting (17) in (16a) and (18a) gives a 2 × 2 system for b0, c0 with deter-
minant n(3n− 1)α3n �= 0, leading to b0 = c0 = 0 and thus P ≡ 0. �
Proof of 2. This time the interpolating polynomial has degree at most 3n− 1 and
we write

P (z) =
n−1∑
k=0

(
ak + bkzn + ckz2n

)
zk

This has to vanish at the zeros of both zn − αn and zn − βn; as in the previous
proof, we find

ak + αnbk + α2nck = 0, 0 ≤ k ≤ n− 1, (19a)

ak + βnbk + β2nck = 0, 0 ≤ k ≤ n− 1. (19b)
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Moreover, the second derivative of P has to vanish in the zeros of zn − αn and,
looking at z2P ′′(z) as before, we find

k(k−1)ak +(n+k)(n+k−1)αnbk +(2n+k)(2n+k−1)α2nck = 0, 0 ≤ k ≤ n−1.
(20)

Combining (19) and (20), we see that the triple {ak, bk, ck} satisfies, for each fixed
k from {0, 1, . . . , n− 1} the linear system

Ak

⎛⎝ak

bk

ck

⎞⎠ =

⎛⎝0
0
0

⎞⎠
with

Ak =

⎛⎝ 1 αn α2n

1 βn β2n

k(k − 1) (n + k)(n + k − 1)αn (2n + k)(2n + k − 1)α2n

⎞⎠ .

As
detAk = nαn(βn − αn) [(3n + 2k − 1)αn − (n + 2k − 1)βn] �= 0,

we conclude that, given the conditions, the system has the trivial solution only. �

Proof of 3. In this case we incorporate the node generator zkn−αkn in the definition
of the interpolating polynomial:

P (z) =
kn−1∑
j=0

(
aj + bjz

kn
)
zj

with bj = 0 for n ≤ j ≤ kn−1. Using the method as in the previous cases, we find

aj + αknbj = 0, 0 ≤ j ≤ kn− 1.

Combining this with the known values for the bj , this leads to aj = 0 for n ≤ j ≤
kn− 1; thus the interpolating polynomial reduces to

P (z) =
n−1∑
j=0

(
aj + bjz

kn
)
zj

with
aj + αknbj = 0, 0 ≤ j ≤ n− 1. (21)

Just as in the previous cases, the conditions z2
j P ′′(zj) = 0 give

j(j − 1)aj + (nk + j)(nk + j − 1)αknbj = 0, 0 ≤ j ≤ n− 1. (22)

Combination of (21) and (22) leads, for each fixed j in the range, to a system with
non-vanishing determinant [here knαkn(kn + 2j − 1)]. �

Proof of 4. and 5. It is quite obvious that the method used in the previous proofs
does not lead to a ‘linear algebra’ problem that can be managed so easily. �
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5.2. Method B

Proof of 1. Put
P (z) = z(zn − αn)Q(z)

with deg Q ≤ n− 1. Inserting the zeros zj of zn − αn in the second derivative, we
find

0 = P ′′(zj) = 2nzn
j Q′(zj) + n(n + 1)zn−1

j Q(zj).

Dividing by zn−1
j �= 0, we see that the polynomial

zQ′(z) +
n + 1

2
Q(z),

which is of degree at most n− 1, has n zeros. Therefore it satisfies

zQ′(z) +
n + 1

2
Q(z) = 0.

This differential equation has the solution Cz−(n−1)/2: for n ≥ 2 the only polyno-
mial solution is the trivial one. Moreover, from the method of proof it is clear that
in the case n = 1 we do not find a differential equation, but just Q(α) = 0 with Q
a constant: Q ≡ 0. �
Proof of 2. This time we put

P (z) = (zn − αn)(z − βn)Q(z) with deg Q ≤ n− 1.

Inserting the zeros zj of zn − αn in the second derivative, we find

0 = P ′′(zj) = 2nzn−1
j Q′(zj) + {n(n− 1)zn−2

j (αn − βn) + 2n2zn−2
j }Q(zj),

and after simplification

zjQ
′(zj) +

(3n− 1)αn − (n− 1)βn

2(αn − βn)
Q(zj) = 0.

Dropping the index on z we again arrive at a polynomial having more zeros than its
degree, showing that Q satisfies a simple linear, homogenous differential equation
of order 1. The solution can be written as

Q(z) = Ce−ξz, C ∈ C, ξ =
(3n− 1)αn − (n− 1)βn

2(αn − βn)
.

Under the conditions on α, β given in the theorem, Q never reduces to a polynomial
of degree at most n− 1: the problem is regular. �
Proof of 3. Now the interpolating polynomial is determined by

P (z) = (zkn − αkn)Q(z) with degQ ≤ n− 1.

As in the previous proofs, the interpolation conditions for the second derivative
lead to an ordinary differential equations for Q:

zQ′(z) +
kn− 1

2
Q(z) = 0.

Just as in the proof for case 1. this leads to Q ≡ 0. �
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Proof of 4. Put

P (z) = z(z − z0)(zn − αn)(zn − 3n + 1
n + 1

αn)Q(z)

with deg Q ≤ n− 1. Proceeding as before, we find after simplification

(zj − z0)Q′(zj) + Q(zj) = 0, 1 ≤ j ≤ n.

Again the number of zeros implies a differential equation

(z − z0)Q′(z) + Q(z) = 0

which can be integrated immediately: (z − z0)Q(z) = C, showing that Q ≡ 0.
The conditions on α, z0 ensure that p(z) and q(z) have simple zeros only. �

Proof of 5. Now

P (z) = z(z2 − ξ2)(zn − αn)(zn − 3n + 1
n + 1

αn)Q(z)

with deg Q ≤ n− 1. Proceeding as in 4. the differential equation for Q turns out
to be

(z2 − ξ2)Q′(z) + 2zQ(z) = C(zn − αn)
as the degree on the right-hand side is equal to the number of zero conditions.

Solving this equation we find

(z2 − ξ2)Q(z) = C

∫ z

0

(t(n− αn)dt + D = Cz

(
zn

n + 1
− αn

)
+ D.

As the left-hand side has a zero for z = ±ξ, this leads to a 2 × 2 system for the
unknown constants C, D with determinant

ξ

[
{1 + (−1)n} ξn

n + 1
− 2αn

]
and the conditions on α, ξ ensure that this system has the trivial solution only. �

5.3. Method C

Proof of 1. The choices

α0 = 0, α1 = 2n, β0 = n(n + 1), r1(z) = −2nz, r2(z) = −n(n + 1),

leading to g(z) = zn +zn−1−αn show that the conditions (3) and (4) are satisfied;
thus the case α0 = 0, β0 �= 0 applies. �
Proof of 2. The case n = 1 can be resolved using

α0 = −2β, α1 = 2, β0 = 2, r1(z) = −2(z − β), r2(z) = −2

leading to g(z) = z − α + 1.
For n ≥ 2 take:

α0 = 0, α1 = 2(αn − βn), β0 = (3n− 1)αn − (n− 1)βn,

r1(z) = 2nzn−1, r2(z) = n(3n− 1)zn−2

leading to g(z) = nzn−2. �
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Proof of 3. Use

α0 = 0, α1 = 2, β0 = nk − 1, g(z) = nkznk−2

and

r1(z) =
[
2nzn−1 zkn − αkn

zn − αn
− 2knzkn−1

]
/(zn − αn),

r2(z) =
[
n(n− 1)zn−2 zkn − αkn

zn − αn
+ 2nzn−1×

× d
dz

(
zkn − αkn

zn − αn

)
− kn(kn− 1)zkn−2

]
/(zn − αn).

The conditions are easily checked. �
Proof of 4. Choose

α0 + α1z = z − z0, β0 = 1, r1(z) = −2nzn z − z0

z0
, r2(z) = −2nzn−1 z − z0

z0
.

The conditions follow from the requirements that p and q are co-prime and
have simple zeros and from the condition (4) for

g(z) = nz
{
(3n2 + 4n + 1)z2n − (3n2 + 2n− 1)z0z

2n−1 (23)

− (3n2 + 4n + 1)αnzn + (3n2 − 2n− 1)z0α
nzn−1

}
/((n + 1)z0). �

Proof of 5. The proof uses

α0 + α1z + α2z
2 = z2 − ξ2, β0 + β1z = 2z,

r1(z) = −n(3n + 1)zn(z2 − ξ2)2/(2ξ2), r2(z) = −n(3n + 1)zn−1(z2 − ξ2)2/ξ2

and g(z) given by

n[(3n2 + 4n + 1)(zn − αn)zn+2 + ξ2zn
{
(3n2 − 8n− 3)αn − 3(n− 1)zn)

}
]

2(n + 1)ξ2
.

The conditions a.o come in to ensure that q has simple zeros. The condition (6) is
automatically satisfied because g(zj) = −4n2α2n/(n + 1).

The condition (8), in the integral A = B = 1, is automatically satisfied for n
odd and leads to ξn �= (n + 1)αn for n even. �

Discussion

From the proofs it has become clear that method A necessitates a very special form
for the node generating polynomials, while method B depends on the possibility of
degree reduction in order to find a differential equation that can be solved without
too many difficulties.

The fact that there does not appear to be much difference between the ap-
plicability of the methods B and C lies in the fact that both methods exploit the
method of reducing the differential equation for the intermediary Q to a simple
one.
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The advantage of method C then lies in the fact that it enables one to find
‘companion’ node generating polynomials q(z) to a given node generating polyno-
mial p(z) that lead to a regular (0, 2) Pál-type interpolation problem on the nodes
{p(z)q(z), p(z)}.
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Sufficient Convergence Conditions for Certain
Accelerated Successive Approximations

Emil Cătinaş

Abstract. We have recently characterized the q-quadratic convergence of the
perturbed successive approximations. For a particular choice of the parame-
ters, these sequences resulted as accelerated iterations toward a fixed point.

We give here a Kantorovich-type result, which provides sufficient con-
ditions ensuring the convergence of the accelerated iterates.

1. Introduction

Let (X, ‖·‖) be a Banach space and G : Ω ⊆ X → Ω a nonlinear mapping having
x∗ ∈ intΩ as fixed point:

x∗ = G(x∗).
We are interested in the q-quadratic convergence toward x∗ of the sequences

of successive approximation type. Recall that an arbitrary sequence (yk)k≥0 ⊂ X
converges (q-)quadratically to its limit ȳ ∈ X if [11], [12], [13]

inf
{
α ∈ [1, +∞) : Qα{yk} = +∞

}
= 2,

where

Qα{yk} =

⎧⎪⎪⎨⎪⎪⎩
0, if yk = ȳ, for all but finitely many k,

lim sup
k→∞

‖yk+1 − ȳ‖
‖yk − ȳ‖α , if yk �= ȳ, for all but finitely many k,

+∞, otherwise.

In the case when 0 < Q2{yk} < +∞, one obtains the well-known estimate of the
form

‖yk+1 − ȳ‖ ≤
(
Qp{yk}+ ε

)
‖yk − ȳ‖2 , for all k ≥ k0

(in the sense that for all ε > 0 there exists k0 ≥ 0 such the above inequalities
hold).

The successive approximations converging quadratically to x∗ are character-
ized by the following result.
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Theorem 1.1. [6] Assume that G is differentiable on a neighborhood D of x∗, with
the derivative G′ Lipschitz continuous:

‖G′(x)−G′(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ D.

Suppose further that for a certain initial approximation x0 ∈ D, the successive
approximations

xk+1 = G(xk), k ≥ 0,

converge to x∗, and I −G′(xk) are invertible starting from a certain step.
Then the convergence is with order 2 if and only if G′ has a zero eigenvalue

and, starting from a certain step, the corrections xk+1 − xk are corresponding
eigenvectors:

G′(x∗)(xk+1 − xk) = 0, ∀k ≥ k0.

This condition holds equivalently iff the errors xk−x∗ are corresponding eigenvec-
tors:

G′(x∗)(xk − x∗) = 0, ∀k ≥ k0,

or iff
xk ∈ x∗ + KerG′(x∗), ∀k ≥ k0.

This result implies that if G′ has no eigenvalue 0, there exists no sequence of
successive approximations converging to x∗ with order 2. 1 In such a case, one may
choose to consider for some (δk)k≥0 ⊂ X the perturbed successive approximations

xk+1 = G(xk) + δk, k ≥ 0. (1)

Their quadratic convergence is characterized by the following result, which does
not require the existence of the eigenvalue 0.

Theorem 1.2. [6] Suppose that G satisfies the assumptions of Theorem 1.1, and
that the sequence (1) of perturbed successive approximations converges to x∗. Then
the convergence is with q-order 2 iff

‖G′(xk)(xk −G(xk)) + (I −G′(xk))δk‖ = O(‖xk −G(xk)‖2), as k →∞. (2)

In [5] we have shown that if we write

δk = (I −G′(xk))−1
(
G′(xk)(G(xk)− xk) + γk

)
with (γk)k≥0 ⊂ X, then condition

γk = O(‖xk −G(xk)‖2), as k →∞,

is equivalent to (2).
We have also noticed in [5] that, under the assumption ‖G′(x)‖ ≤ q < 1 for

all x in a certain neighborhood of x∗, and for a given K > 0, a natural choice
(implied by the Banach lemma) for δk is:

δk =
(
I + · · ·+ G′(xk)ik

)
G′(xk)(G(xk)− xk),

1In this case, the successive approximations cannot converge faster than q-linearly [6].
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with ik such that
qik+2

1−q ≤ K‖xk −G(xk)‖. (3)
When applying Theorem 1.2 to characterize the quadratic convergence of the

resulting sequence

xk+1 = G(xk) +
(
I + · · ·+ G′(xk)ik

)
G′(xk)(G(xk)− xk), k ≥ 0, (4)

with ik given by (3), we must assume that this sequence converges to the fixed
point x∗. But is this assumption reasonable? The purpose of this note is to show
that under certain natural conditions the sequence converges to x∗, so the answer
is positive.

2. Main result

First of all, we remark that the fixed point problem is equivalent to solving

F (x) = 0, with F (x) = x−G(x),

for which the Newton method generates the iterates

sN
k = −F ′(xk)−1F (xk) (5)

xk+1 = xk + sN
k , k = 0, 1, . . . .

In this setting, iterations (4) may be rewritten as

xk+1 = xk + (I + G′(xk) + · · ·+ G′(xk)ik+1)(G(xk)− xk) (6)
:= xk + sk, k = 0, 1, . . . ,

with ik s.t. qik+2

1−q ≤ K‖F (xk)‖,
i.e., as quasi-Newton iterations (see, e.g., [11], [8], [7]).

We obtain the following sufficient Kantorovich-type conditions for the con-
vergence to x∗ of these iterates.

Theorem 2.1. Assume that G is differentiable on the domain Ω, with G′ bounded
on Ω by

‖G′(x)‖ ≤ q < 1, ∀x ∈ Ω, (7)
and Lipschitz continuous:

‖G′(x) −G′(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Ω.

Let x0 ∈ Ω and K > 0 be chosen such that

ν =
(

L
2(1−q)2 + K(1 + q)

)
‖F (x0)‖ < 1, (8)

and suppose that B̄r(x0) =
{
x ∈ X : ‖x− x0‖ ≤ r

}
⊆ Ω for

r = 1
(1−ν)(1−q) ‖F (x0)‖ .

Then the elements of the sequence defined by (6) remain in the ball B̄r(x0)
and converge to a fixed point x∗ of G, which is unique in this ball. According to
Theorem 1.2, the convergence is quadratic.
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Proof. Recall first [11, 3.2.12] that the Lipschitz hypothesis on G′ implies that

‖G(y)−G(x) −G′(x)(y − x)‖ ≤ L
2 ‖y − x‖2 , ∀x, y ∈ Ω,

while (7) implies the existence of (I −G′(x))−1 = I + G′(x) + · · ·+ G′(x)k + · · ·
and the bound ∥∥(I −G′(x))−1

∥∥ ≤ 1
1−q , ∀x ∈ Ω.

Our hypotheses imply the following inequalities:

‖s0‖ ≤ 1
1−q ‖F (x0)‖ ,

i.e., x1 ∈ B̄r(x0) and also

‖F (x1)‖ =
∥∥F (x1)− F (x0)− F ′(x0)sN

0

∥∥ (by (5))

≤ ‖F (x1)− F (x0)− F ′(x0)s0‖+
∥∥F ′(x0)(sN

0 − s0)
∥∥

≤ ‖G(x1)−G(x0)−G′(x0)s0‖+ (1 + q)
∥∥sN

0 − s0

∥∥
≤ L

2 ‖s0‖2 + (1 + q)
∥∥G′(x0)i0+2(I + G′(x0) + · · · )F (x0)

∥∥
≤ L

2 (1 + q + · · ·+ qi0+1)2 ‖F (x0)‖2 + qi0+2

1−q (1 + q) ‖F (x0)‖

≤ L(1−qi0+2)2

2(1−q)2 ‖F (x0)‖2 + K(1 + q) ‖F (x0)‖2 ≤ ν ‖F (x0)‖ .
In an analogous fashion, we obtain by induction that for all k ≥ 2

‖F (xk)‖ ≤
(

L
2(1−q)2 + K(1 + q)

)
‖F (xk−1)‖2

≤ ν ‖F (xk−1)‖
...
≤ νk ‖F (x0)‖ ,

‖xk − xk−1‖ = ‖sk−1‖ ≤ 1
1−q ‖F (xk−1)‖ ≤ νk−1

1−q ‖F (x0)‖ ,

‖xk − x0‖ ≤ ‖xk − xk−1‖+ · · ·+ ‖x1 − x0‖ ≤ 1
(1−ν)(1−q) ‖F (x0)‖ = r.

It follows that

‖xk+m − xk‖ ≤ ‖xk+m − xk+m−1‖+ · · ·+ ‖xk+1 − xk‖
≤ νk+m−1+···+νk

(1−q) ‖F (x0)‖ ≤ νk

(1−ν)(1−q) ‖F (x0)‖ ,

which shows that (xk)k≥0 is a Cauchy sequence, and therefore converges to a
certain x∗ ∈ B̄r(x0). By the definition and continuity of F, x∗ is a fixed point of
G, which is unique in B̄r(x0) (and also in Ω) since G is a contraction. �

We note that condition (8) contains certain natural demands: ‖F (x0)‖ is
sufficiently small (which holds, e.g., when x0 is sufficiently close to x∗), q is suf-
ficiently small (in accordance with the results in [6]), the Lipschitz constant L
is sufficiently small (the graph of G is close to a constant in case X = R) and
K is sufficiently small (the linear systems are solved with increasingly precision,
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the iterates approaching to those given by the Newton method – see the classical
results of Dennis and Moré [8]).
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The Combined Shepard-Lidstone
Bivariate Operator

Teodora Cătinaş

Abstract. We extend the Shepard operator by combining it with the Lidstone
bivariate operator. We study this combined operator and give some error
bounds.

1. Preliminaries

1.1. The Shepard bivariate operator

Recall first some results regarding the Shepard operator for the bivariate case [7],
[17]. Let f be a real-valued function defined on X ⊂ R2, (xi, yi) ∈ X, i = 0, . . . , N
some distinct points and ri (x, y), the distances between a given point (x, y) ∈ X
and the points (xi, yi) , i = 0, 1, . . . , N .

The Shepard interpolation operator is defined by

(Sf) (x, y) =
N∑

i=0

Ai (x, y) f (xi, yi) ,

where

Ai (x, y) =

N∏
j=0
j �=i

rµ
j (x, y)

N∑
k=0

N∏
j=0
j �=k

rµ
j (x, y)

, (1)

with µ ∈ R+.
It follows that

N∑
i=0

Ai (x, y) = 1. (2)

0This work has been supported by CNCSIS under Grant 8/139/2003.
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Because of its small degree of exactness we are interested in extending the
Shepard operator S by combining it with some other operators. Let Λ := {λi : i =
0, . . . , N} be a set of functionals and P the corresponding interpolation operator.
We consider the subsets Λi ⊂ Λ , i = 0, . . . , N such that

⋃N
i=0 Λi = Λ and

Λi

⋂
Λj �= ∅, excepting the case Λi = {λi} , i = 0, . . . , N, when Λi

⋂
Λj = ∅ for i �=

j. We associate the interpolation operator Pi to each subset Λi, for i = 0, . . . , N .
The combined operator of S and P , denoted by SP , is defined in [9] by

(SP f) (x, y) =
N∑

i=0

Ai (x, y) (Pif) (x, y) .

Remark 1.1. [16] If Pi, i = 0, . . . , N, are linear and positive operators then SP is
a linear and positive operator.

Remark 1.2. [16] Let Pi, i = 0, . . . , N, be some arbitrary linear operators. If
dex (Pi) = ri, i = 0, . . . , N, then

dex (SP ) = min {r0, . . . , rN} .

1.2. Two variable piecewise Lidstone interpolation

We recall first some results from [1] and [2]. Consider a, b, c, d ∈ R, a < b, c < d
and let ∆ : a = x0 < x1 < . . . < xN+1 = b and ∆′ : c = y0 < y1 < . . . <
yM+1 = d denote uniform partitions of the intervals [a, b] and [c, d] with stepsizes
h = (b−a)/(N +1) and l = (d−c)/(M +1), respectively. Denote by ρ = ∆×∆′ the
resulting rectangular partition of [a, b] × [c, d]. For the univariate function f and
the bivariate function g and each positive integer r we denote by Drf = drf/dxr,
Dr

xg = ∂rg/∂xr and Dr
yg = ∂rg/∂yr.

Definition 1.3. [2] For each positive integer r and p, 1 ≤ p ≤ ∞, let PCr,p[a, b] be
the set of all real-valued functions f such that:

(i) f is (r − 1) times continuously differentiable on [a, b];
(ii) there exist si, 0 ≤ i ≤ L + 1 with a = s0 < . . . < sL+1 = b, such that on each

subinterval (si, si+1), 0 ≤ i ≤ L, Dr−1f is continuously differentiable;
(iii) the Lp-norm of Drf is finite, i.e.,

‖Drf‖p =
( L∑

i=0

∫ si+1

si

|Drf(x)|p dx

)1/p

<∞.

For the case p =∞ it reduces to

‖Drf‖∞ = max
0≤i≤L

sup
x∈(si,si+1)

|Drf(x)| <∞.

Definition 1.4. [2] For each positive integer r and p, 1 ≤ p ≤ ∞, let PCr,p([a, b]×
[c, d]) be the set of all real-valued functions f such that:

(i) f is (r − 1) times continuously differentiable on [a, b] × [c, d], i.e., Dµ
xDν

yf,
0 ≤ µ + ν ≤ r − 1, exist and are continuous on [a, b]× [c, d];
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(ii) there exist si, 0 ≤ i ≤ L + 1 and vj , 0 ≤ j ≤ R + 1 with a = s0 < . . . <
sL+1 = b and c = v0 < v1 < . . . < vR+1 = d, such that on each open
subrectangle (si, si+1) × (vj , vj+1), 0 ≤ i ≤ L, 0 ≤ j ≤ R and for all 0 ≤
µ ≤ r − 1, 0 ≤ ν ≤ r − 1 with µ + ν = r − 1, Dµ

xDν
yf are continuously

differentiable;
(iii) for all 0 ≤ µ ≤ r, 0 ≤ ν ≤ r such that µ + ν = r, the Lp-norm of Dµ

xDν
yf is

finite, i.e.,∥∥Dµ
xDν

yf
∥∥

p
=
( L∑

i=0

R∑
j=0

∫ si+1

si

∫ vj+1

vj

∣∣Dµ
xDν

yf(x, y)
∣∣p dxdy

)1/p

<∞.

For the particular case p =∞ it reduces to∥∥Dµ
xDν

yf
∥∥
∞ = max

0≤i≤L
0≤j≤R

sup
(x,y)∈(si,si+1)×(vj ,vj+1)

∣∣Dµ
xDν

yf(x, y)
∣∣ <∞.

Definition 1.5. [2] Let PCr1,r2,p([a, b]× [c, d]) be the set of all real-valued functions
f such that:

(i) Dµ
xDν

yf, 0 ≤ µ ≤ r1−1, 0 ≤ ν ≤ r2−1 exist and are continuous on [a, b]×[c, d];
(ii) on each open subrectangle (si, si+1) × (vj , vj+1), 0 ≤ i ≤ L, 0 ≤ j ≤ R and

for all 0 ≤ µ ≤ r1, 0 ≤ ν ≤ r2, Dµ
xDν

yf exist and are continuous;
(iii) for all 0 ≤ µ ≤ r1, 0 ≤ ν ≤ r2 the Lp-norm of Dµ

xDν
yf is finite.

The Lidstone polynomial is the unique polynomial Λn of degree 2n+1, n ∈ N

on the interval [0, 1], defined by (see, e.g., [1], [2])

Λ0(x) = x,

Λ′′
n(x) = Λn−1(x),

Λn(0) = Λn(1) = 0, n ≥ 1.

As in [1] and [2], for a fixed partition ∆ denote the set Lm(∆) =
{
h ∈

C[a, b] : h is a polynomial of degree at most 2m− 1 in each subinterval [xi, xi+1],
0 ≤ i ≤ N

}
. Its dimension is 2m(N + 1)−N.

Definition 1.6. [2] For a given function f ∈ C2m−2[a, b] we say that L∆
mf is the

Lidstone interpolant of f if L∆
mf ∈ Lm(∆) with

D2k(L∆
mf)(xi) = f (2k)(xi), 0 ≤ k ≤ m− 1, 0 ≤ i ≤ N + 1.

According to [2], for f ∈ C2m−2[a, b] the Lidstone interpolant L∆
mf uniquely

exists and on the subinterval [xi, xi+1], 0 ≤ i ≤ N can be explicitly expressed as

(L∆
mf)|[xi,xi+1](x) =

m−1∑
k=0

[
Λk

(xi+1−x
h

)
f (2k)(xi) + Λk

(
x−xi

h

)
f (2k)(xi+1)

]
h2k. (3)

It follows that

(L∆
mf)(x) =

N+1∑
i=0

m−1∑
j=0

rm,i,j(x)f (2j)(xi),
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where rm,i,j , 0 ≤ i ≤ N + 1, 0 ≤ j ≤ m − 1 are the basic elements of Lm(∆)
satisfying

D2νrm,i,j(xµ) = δiµδ2ν,j , 0 ≤ µ ≤ N + 1, 0 ≤ ν ≤ m− 1 (4)

and

rm,i,j(x) =

⎧⎪⎨⎪⎩
Λj

(xi+1−x
h

)
h2j , xi ≤ x ≤ xi+1, 0 ≤ i ≤ N

Λj

(x−xi−1
h

)
h2j , xi−1 ≤ x ≤ xi, 1 ≤ i ≤ N + 1

0, otherwise.

Proposition 1.7. [1], [11] The Lidstone operator L∆
m is exact for the polynomials

of degree not greater than 2m− 1.

We have the interpolation formula

f = L∆
mf + R∆

mf,

where R∆
mf denotes the remainder.

Taking into account Theorem 5.4.3. from [2] we have for f ∈ PC2m−2,∞[a, b]
the following estimation of the remainder:∥∥R∆

mf
∥∥
∞ ≤ (5)

≤ d2m−2,0 · h2m−2 max
0≤i≤N

sup
x∈(xi,xi+1)

∣∣∣f (2m−2)(x) − xi+1−x
h f (2m−2)(xi)−

− x−xi

h f (2m−2)(xi+1)
∣∣∣

≤ 2d2m−2,0 · h2m−2‖f (2m−2)‖∞,

where d2m,k, 0 ≤ k ≤ 2m− 2 are the numbers given by

d2m,k =

⎧⎪⎪⎨⎪⎪⎩
(−1)m−iE2m−2i

22m−2i(2m−2i)! , k = 2i, 0 ≤ i ≤ m

(−1)m−i+1 2(22m−2i−1)
(2m−2i)! B2m−2i, k = 2i + 1, 0 ≤ i ≤ m− 1

2, k = 2m + 1,

(6)

E2m and B2m being the 2mth Euler and Bernoulli numbers (see, e.g., [2]). After
some computations we get

d2m,0 =

⎧⎨⎩1, m = 0
4

π2m+1

∞∑
k=0

sin(2k+1)πt
(2k+1)2m+1 , m ≥ 1.

(7)
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For a fixed rectangular partition ρ = ∆×∆′ of [a, b]× [c, d] the set Lm(ρ) is
defined as follows (see, e.g., [1] and [2]):

Lm(ρ) =Lm(∆)⊗ Lm(∆′)

=Span
{
rm,i,µ(x)rm,j,ν(y)

}N+1 m−1 M+1 m−1

i=0 µ=0 j=0 ν=0

=
{

h ∈ C([a, b]× [c, d]) : h is a two-dimensional polynomial

of degree at most 2m− 1 in each variable and subrectangle

[xi, xi+1]× [yj , yj+1]; 0 ≤ i ≤ N, 0 ≤ j ≤M
}

and its dimension is (2m(N + 1)−N)(2m(M + 1)−M).

Definition 1.8. [2] For a given function f ∈ C2m−2,2m−2([a, b]× [c, d]) we say that
Lρ

mf is the two-dimensional Lidstone interpolant of f if Lρ
mf ∈ Lm(ρ) with

D2µ
x D2ν

y (Lρ
mf)(xi, yj) = f (2µ,2ν)(xi, yj),

0 ≤ i ≤ N + 1, 0 ≤ j ≤M + 1, 0 ≤ µ, ν ≤ m− 1.

According to [2], for f ∈ C2m−2,2m−2([a, b]× [c, d]), the Lidstone interpolant
Lρ

mf uniquely exists and can be explicitly expressed as

(Lρ
mf)(x, y) =

N+1∑
i=0

m−1∑
µ=0

M+1∑
j=0

m−1∑
ν=0

rm,i,µ(x)rm,j,ν(y)f (2µ,2ν)(xi, yj), (8)

where rm,i,j , 0 ≤ i ≤ N + 1, 0 ≤ j ≤ m − 1 are the basic elements of Lm(ρ)
satisfying (4).

Lemma 1.9. [2] If f ∈ C2m−2,2m−2([a, b]× [c, d]) then

(Lρ
mf)(x, y) = (L∆

mL∆′
m f)(x, y) = (L∆′

m L∆
mf)(x, y).

Corollary 1.10. [2] For a function f ∈ C2m−2,2m−2([a, b]× [c, d]), from Lemma 1.9
we have that

f − Lρ
mf = (f − L∆

mf) + L∆
m(f − L∆′

m f) (9)

= (f − L∆
mf) +

[
L∆

m(f − L∆′
m f)− (f − L∆′

m f)
]
+ (f − L∆′

m f).

1.3. Estimation of the error for the Shepard-Lidstone univariate interpolation

We recall some results regarding error bounds for the Shepard-Lidstone univariate
interpolation formula, obtained by us in [4].

With the previous assumptions we denote by L∆,i
m f the restriction of the

Lidstone interpolation polynomial to the subinterval [xi, xi+1], 0 ≤ i ≤ N, given
by (3), and in analogous way we obtain the expression of the restriction L∆′,i

m f
to the subinterval [yi, yi+1] ⊆ [c, d], 0 ≤ i ≤ N . We denote by SL the univariate
combined Shepard-Lidstone operator, given by

(SLf)(x) =
N∑

i=0

Ai(x)(L∆,i
m f)(x).
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We have obtained the following result regarding the estimation of the remain-
der RLf of the univariate Shepard-Lidstone interpolation formula

f = SLf + RLf. (10)

Theorem 1.11. [4] If f ∈ PC2m−2,∞[a, b] then

‖RLf‖∞ ≤ (11)

≤ d2m−2,0 · h2m−2 max
0≤i≤N

sup
x∈(xi,xi+1)

∣∣∣f (2m−2)(x) − xi+1−x
h f (2m−2)(xi)−

− x−xi

h f (2m−2)(xi+1)
∣∣∣

≤ 2d2m−2,0 · h2m−2‖f (2m−2)‖∞,

with d2m,0 given by (7).

2. The combined Shepard-Lidstone bivariate interpolation

2.1. The combined Shepard-Lidstone bivariate operator

We consider f ∈ C2m−2,2m−2([a, b]× [c, d]) and the set of Lidstone functionals

Λi
Li = {f(xi, yi), f(xi+1, yi+1), . . . , f (2m−2,2m−2)(xi, yi), f (2m−2,2m−2)(xi+1, yi+1)}

regarding each subrectangle [xi, xi+1]× [yi, yi+1], 0 ≤ i ≤ N, with
∣∣Λi

Li

∣∣ = 4m, 0 ≤
i ≤ N . We denote by Lρ,i

m f the restriction of the polynomial given by (8) to the
subrectangle [xi, xi+1]×[yi, yi+1], 0 ≤ i ≤ N. This 2m−1 degree polynomial in each
variable solves the interpolation problem corresponding to the set Λi

Li, 0 ≤ i ≤ N
and it uniquely exists.

We have

(Lρ,i
m f)(2ν,2ν)(xk, yk) = f (2ν,2ν)(xk, yk),

0 ≤ i ≤ N ; 0 ≤ ν ≤ m− 1; k = i, i + 1.

We denote by SLi the Shepard operator of Lidstone type, given by

(SLif)(x, y) =
N∑

i=0

Ai(x, y)(Lρ,i
m f)(x, y), (12)

where Ai, i = 0, . . . , N are given by (1). We call SLi the combined Shepard-
Lidstone bivariate operator.

Theorem 2.1. The operator SLi is linear.
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Proof. For arbitrary h1, h2 ∈ C2m−2,2m−2([a, b]× [c, d]) and α, β ∈ R one gets

SLi(αh1 + βh2)(x, y) =
N∑

i=0

Ai(x, y)Lρ,i
m (αh1 + βh2)(x, y)

= α

N∑
i=0

Ai(x, y)(Lρ,i
m h1)(x, y) + β

N∑
i=0

Ai(x, y)(Lρ,i
m h2)(x, y)

= αSLi(h1)(x, y) + βSLi(h2)(x, y). �

Theorem 2.2. The operator SLi has the interpolation property:

(SLif)(2ν,2ν)(xk, yk) = f (2ν,2ν)(xk, yk), 0 ≤ ν ≤ m− 1, 0 ≤ k ≤ N + 1, (13)

for µ > 4m− 4.

Proof. It is not difficult to show the following relations [8]

A
(p,q)
k (xi, yi) = 0, 0 ≤ i ≤ N ; 0 ≤ p, q ≤ 2m− 2, i �= k,

A
(p,q)
k (xk, yk) = 0, p + q ≥ 1,

for all k = 0, . . . , N and µ > max{p + q | 0 ≤ p, q ≤ m− 1}.
From

(SLif)(2ν,2ν)(xk, yk) =
N∑

i=0

(
Ai(x, y)(Lρ,i

m f)
)(2ν,2ν)(xk, yk),

we obtain

(SLif)(2ν,2ν)(xk, yk) =
N∑

i=0

Ai(xk, yk)(Lρ,i
m f)(2ν,2ν)(xk, yk),

and taking into account the cardinality property of Ai’s we get (13). �
Theorem 2.3. The degree of exactness of the combined operator SLi is dex(SLi) =
2m− 1.

Proof. By Proposition 1.7 we have that dex(Lρ,i
m ) = 2m−1. This implies Lρ,i

m epq =
epq, where epq(x, y) = xpyq, for p, q ∈ N, with p+ q ≤ 2m−1. Taking into account
(2), we get

(SLiepq)(x, y) =
N∑

i=0

Ai(x, y)(Lρ,i
m epq)(x, y)

=
N∑

i=0

Ai(x, y)epq(x, y)

= epq(x, y)
N∑

i=0

Ai(x, y) = epq(x, y), for p + q ≤ 2m− 1.

Therefore the result is proved. �
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2.2. Estimation of the error for the Shepard-Lidstone bivariate interpolation

We obtain the bivariate Shepard-Lidstone interpolation formula,

f = SLif + RLif,

where SLif is given by (12) and RLif denotes the remainder term.

Theorem 2.4. If f ∈ PC2m−2,2m−2,∞([a, b]× [c, d]) then∥∥RLif
∥∥
∞ ≤4d2m−2,0 · h2m−2

∥∥f (2m−2)
∥∥
∞+

+ 2d2m−2,0 · h2m−2 max
0≤i≤N

∥∥(f − L∆′,i
m f)(2m−2)

∥∥
∞ (14)

≤2d2m−2,0 · h2m−2
[
2
∥∥f (2m−2)

∥∥
∞ +

∥∥(f − L∆′
m f)(2m−2)

∥∥
∞
]
,

with d2m−2,0 given by (7).

Proof. Taking into account (12) and (2) we get

(RLif)(x, y) = f(x, y)− (SLif)(x, y)

= f(x, y)−
N∑

i=0

Ai(x, y)(Lρ,i
m f)(x, y)

=
N∑

i=0

Ai(x, y)f(x, y)−
N∑

i=0

Ai(x, y)(Lρ,i
m f)(x, y)

=
N∑

i=0

Ai(x, y)
[
f(x, y)− (Lρ,i

m f)(x, y)
]
.

Next, applying formulas (9) and (2) we get

(RLif)(x, y) =
N∑

i=0

Ai(x, y)
{

(f − L∆,i
m f)(x, y) +

[
L∆,i

m (f − L∆′,i
m f)(x, y)−

− (f − L∆′,i
m f)(x, y)

]
+ (f − L∆′,i

m f)(x, y)
}

=
N∑

i=0

Ai(x, y)(f − L∆,i
m f)(x, y)

+
N∑

i=0

Ai(x, y)
[
L∆,i

m (f − L∆′,i
m f)(x, y)− (f − L∆′,i

m f)(x, y)
]

+
N∑

i=0

Ai(x, y)(f − L∆′,i
m f)(x, y)
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=
[
f(x, y)

N∑
i=0

Ai(x, y) −
N∑

i=0

Ai(x, y)(L∆,i
m f)(x, y)

]
−

N∑
i=0

Ai(x, y)
[
(f − L∆′,i

m f)(x, y)− L∆,i
m (f − L∆′,i

m f)(x, y)
]

+
[
f(x, y)

N∑
i=0

Ai(x, y)−
N∑

i=0

Ai(x, y)(L∆′,i
m f)(x, y)

]
=
[
f(x, y)−

N∑
i=0

Ai(x, y)(L∆,i
m f)(x, y)

]
−

N∑
i=0

Ai(x, y)
[
(f − L∆′,i

m f)(x, y)− L∆,i
m (f − L∆′,i

m f)(x, y)
]

+
[
f(x, y)−

N∑
i=0

Ai(x, y)(L∆′,i
m f)(x, y)

]
,

whence it follows that∥∥RLif
∥∥
∞ ≤

∥∥∥f − N∑
i=0

AiL
∆,i
m f

∥∥∥
∞

+ max
0≤i≤N

sup
x∈(xi,xi+1)

∣∣∣(f − L∆′,i
m f)− L∆,i

m (f − L∆′,i
m f)

∣∣∣
+
∥∥∥f − N∑

i=0

Ai(L∆′,i
m f)

∥∥∥
∞

.

We have f(·, y) ∈ PC2m−2,∞[a, b], (f − L∆′,i
m f)(·, y) ∈ PC2m−2,∞[a, b], for all

y ∈ [c, d] and f(x, ·) ∈ PC2m−2,∞[c, d], for all x ∈ [a, b]. From (11) we get that∥∥RLif
∥∥
∞ ≤4d2m−2,0 · h2m−2

∥∥f (2m−2)
∥∥
∞

+ max
0≤i≤N

sup
x∈(xi,xi+1)

∣∣∣(f − L∆′,i
m f)− L∆,i

m (f − L∆′,i
m f)

∣∣∣ (15)

and from (5) we obtain

max
0≤i≤N

sup
x∈(xi,xi+1)

∣∣∣(f − L∆′,i
m f)− L∆,i

m (f − L∆′,i
m f)

∣∣∣ ≤ (16)

≤ 2d2m−2,0 · h2m−2 max
0≤i≤N

∥∥(f − L∆′,i
m f)(2m−2)

∥∥
∞

≤ 2d2m−2,0 · h2m−2
∥∥(f − L∆′

m f)(2m−2)
∥∥
∞.

Finally, replacing (16) in (15) we are led to (14). �

Next, we give an estimation of the approximation error in terms of the mesh
length and using the modulus of smoothness of order k.
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Recall that the k−th modulus of smoothness of f ∈ Lp[a, b], 0 < p < ∞, or
of f ∈ C[a, b], if p =∞, is defined by ( see, e.g., [13]):

ωk(f ; t)p = sup
0<h≤t

∥∥∆k
hf(x)

∥∥
p
,

where

∆k
hf(x) =

k∑
i=0

(−1)k+i
(
k
i

)
f(x + ih).

We will use some results for spline approximation given in [12].

Definition 2.5. [12, p.134] Let T := (ti)s
1 or T := (ti)+∞

−∞ be a finite or infinite
strictly increasing sequence of points of R; in the second case, we assume that
|ti| → ∞ for i → ±∞. A function S on R is a spline of order r (r = 1, 2, . . . ),
equivalently of degree m = r−1, with the breakpoints T if on each interval (ti, ti+1),
and on the intervals (−∞, t1), (ts, +∞) if T is finite, it is a polynomial of degree
≤ m, and on one of them of degree exactly m. At the breakpoints ti, S and its
derivatives (which are also splines) are defined by continuity.

Definition 2.6. [12, p. 135] For given A = [a, b] and T = (ti)s
1 (we assume that

a < ti < b, i = 1, . . . , s) we form the Schoenberg space, denoted by Sr(T, A), which
is the space of all splines of order ≤ r on A whose breakpoints are contained in T,
and of smoothness ≥ mi at ti (0 ≤ mi ≤ r), i = 1, . . . , s.

A Schoenberg space Sr(T, A) contains the space Pr−1, of polynomials of de-
gree ≤ r − 1 [12, p. 135].

Definition 2.7. [12, p. 144] A projection operator Q from L1 onto the Schoenberg
space Sr := Sr(T, A), and thereby from each Lp onto Sr, for each 1 ≤ p ≤ ∞, is
called a quasi-interpolant of order r.

Theorem 2.8. [12, Th. 7.3., p. 225] Given a quasi-interpolant Q of order r, for
each f ∈ C[a, b], one has the following estimation:

‖f −Q(f)‖∞ ≤ Crωr (f ; δ)∞ ,

where Cr is a constant and δ is defined by:

δ := max
0≤j≤N

(xi+1 − xi).

By Definition 2.7, it follows that the operators L∆
m and L∆′

m , given in Subsec-
tion 1.3 are quasi-interpolants of order 2m. Therefore, we can apply Theorem 2.8
for f ∈ C[a, b] and g ∈ C[c, d] and we obtain∥∥f − L∆

m(f)
∥∥
∞ ≤ C2mω2m (f ; δ1)∞ , (17)

‖g − L∆′
m (g)‖∞ ≤ C′

2mω2m (g; δ2)∞ ,
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where

δ1 = max
0≤j≤N

(xi+1 − xi), (18)

δ2 = max
0≤j≤N

(yj+1 − yj),

and C2m, C′
2m are some constants.

We obtain an estimation of RLf from (10), in terms of the modulus of smooth-
ness of high order.

Theorem 2.9. If f ∈ PC2m−2,∞[a, b] then

‖RLf‖∞ ≤ C2mω2m (f ; δ1)∞ , (19)

with
δ1 = max

0≤j≤N
(xi+1 − xi).

Proof. We have

(RLf)(x) = f(x)−
N∑

i=0

Ai(x)(L∆,i
m f)(x)

=
N∑

i=0

Ai(x)f(x) −
N∑

i=0

Ai(x)(L∆,i
m f)(x)

=
N∑

i=0

Ai(x)[f(x) − (L∆,i
m f)(x)],

and taking into account that
∑N

i=0|Ai(x)| = 1 and (17), the conclusion follows. �
We obtain an estimation of the remainder for the bivariate Shepard-Lidstone

formula, in terms of the modulus of smoothness of high order.

Theorem 2.10. If f ∈ PC2m−2,2m−2,∞([a, b]× [c, d]) then∥∥RLif
∥∥
∞ ≤C2m max

y∈[c,d]
ω2m (f(·, y); δ1)∞

+ C2m max
y∈[c,d]

ω2m

(
(f − L∆′

m f)(·, y); δ1

)
∞

+ C′
2m max

x∈[a,b]
ω2m (f(x, ·); δ2)∞ ,

where δ1 and δ2 are given in (18) and C2m, C′
2m are some constants.

Proof. This result follows using the same procedure as in proof of Theorem 2.4
and applying formula (17) and two times Theorem 2.9. �
Example 2.11. Let f : [−2, 2]× [−2, 2]→ R,

f(x, y) = xe−(x2+y2)

and consider the nodes z1 = (−1,−1), z2 = (−0.5,−0.5), z3 = (−0.3,−0.1),
z4 = (0, 0), z5 = (0.5, 0.8), z6 = (1, 1). Below we plot the graphics of f and SLif.
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Figure 1. The graphic of f(x, y) = xe−(x2+y2) (left) and SLif for
µ = 1 (right).
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proximation Theory, vol. I, Presa Universitară Clujeană, 2001 (in Romanian).
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Local RBF Approximation for Scattered Data
Fitting with Bivariate Splines

Oleg Davydov, Alessandra Sestini and Rossana Morandi

Abstract. In this paper we continue our earlier research [4] aimed at devel-
oping efficient methods of local approximation suitable for the first stage of a
spline based two-stage scattered data fitting algorithm. As an improvement to
the pure polynomial local approximation method used in [5], a hybrid polyno-
mial/radial basis scheme was considered in [4], where the local knot locations
for the RBF terms were selected using a greedy knot insertion algorithm.
In this paper standard radial local approximations based on interpolation or
least squares are considered and a faster procedure is used for knot selection,
significantly reducing the computational cost of the method. Error analysis
of the method and numerical results illustrating its performance are given.

1. Introduction

Let X ⊂ Ω, be a set of scattered distinct sites and {(x, fx) : x ∈ X, fx ∈ R} the
set of data points to be approximated, Ω ⊂ Rd. The idea of the two-stage method
[16] is to compute in the first stage a large number of local approximations to the
data and use them in the second stage as a source of information (e.g., function
values and gradients at vertices of a triangulation) for building a global spline ap-
proximation of the full data set using a localized quasi-interpolation type operator.
This helps to avoid solving large linear systems and large scale optimization prob-
lems arising if the interpolating, smoothing or minimal energy spline is directly
computed from the data. For a long time it has been believed that two-stage meth-
ods cannot produce approximations of the same quality as the above-mentioned
global methods.

Recently, a promising two-stage bivariate spline algorithm has been developed
and tested in [5, 9]. Convincing numerical evidence has been provided that the
new method is efficient, robust and avoids the drawbacks usually associated with
the two-stage methods. One of the goals of [4] and this paper is to improve the
performance of this method at the first stage by achieving the approximation
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quality of the radial basis function (RBF) methods [2], in the same time also
avoiding their well-known computational difficulties, by applying them only to
small subsets of the data.

In the original approach (see [5]) the local polynomial approximations are
computed as discrete least squares, with the polynomial degree automatically ad-
justed to local data by taking into account the estimates of the approximation
power of local least squares [3]. In [4] and here we consider local approximation
schemes defining non-polynomial approximations which are later converted into
polynomials and then extended to a spline by the same method as in [5]. In [4] we
have provided numerical evidence that better accuracy of the approximation may
be achieved if local polynomials are augmented by linear combinations of radial
basis functions, so defining hybrid approximations which are still computed by
discrete least squares. The knot set used for each local hybrid approximation is
chosen using an adaptive greedy algorithm based on successive knot insertion and
estimates from [3].

In this paper we consider the standard radial approximations in the local
stage that are computed by interpolation or by the least-squares method, with the
local knots selected using a thinning algorithm similar to that suggested in [7] in
the context of multiresolution. (Note that our motivation for thinning is entirely
based on the computational considerations since the condition numbers of the
matrices arising in the RBF method depend on the so-called separation distance
of the knots.)

The paper is organized as follows. In Section 2 we introduce the local ap-
proximation scheme. In Section 3 we provide an error analysis of this version of
the two-stage method based on available estimates for the RBF interpolants. Sec-
tions 4 and 5 are devoted to extensive numerical tests with two goals: to verify the
approximation order of the method, and to compare the performance of this new
method with the method of [4] for some real world data sets.

2. Local RBF approximation

At the first stage of a two-stage method, the local approximations are needed for
each cell T of a partition of Ω associated with the spline method used. (Such
a cell is usually a d-dimensional simplex or cube.) The task of the first stage
is to find a good approximation of the underlying function on T . To this end,
the data from some domain ω, where T ⊂ ω ⊂ Ω, are used. As in [4, 5, 9], we
select the domain ω initially as a ball with center at the barycenter of T and of
radius equal to the diameter of T . If the number of data points located in this
ball is smaller than a user specified number Mmin, then the radius of the ball ω is
enlarged until this number is achieved. Another user specified parameter, Mmax,
controls the maximal number of points to be used, and a uniform type thinning
is employed, if needed. Thus, this data selection procedure delivers a set of data
sites Xω = {x1, . . . ,xNω} ⊂ X ∩ ω, where

Nω ≤Mmax. (1)
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The local RBF approximation has the following form

ω(·) =
m∑

j=1

aj pj(·) +
nω∑
j=1

bj φω(‖ · −yj‖2), (2)

where the set of knots Yω = {yj : j = 1, . . . , nω} is a subset of Xω , {p1, . . . , pm},
m =

(
d+q

d

)
, is a suitable basis for the space Πd

q of d-variate polynomials of total
degree q ≥ 0, and φω : R≥0 → R is a radial basis function, i.e., a positive definite
function or a conditionally positive definite function of order s ≤ q + 1 on Rd [2],
adjusted to the size of ω by scaling. Thus, we take

φω(r) = φ
( r

δdω

)
, r ≥ 0, (3)

where φ is a fixed radial basis function, dω is the diameter of ω, and δ is a user
specified parameter.

In this paper we consider only positive definite radial basis functions or condi-
tionally positive definite radial basis functions of order 1. Therefore, it is sufficient
to take

q = 0.

The function ω of the form (2) is selected by using interpolation on the
coarse set Yω , i.e. requiring

ω(yj) = fyj , j = 1, . . . , nω, (4)

with additional orthogonality condition
nω∑
j=1

bj = 0. (5)

The existence and uniqueness of such a function is guaranteed for any Yω (see,
e.g., [2]). In particular, the matrix of the corresponding linear system,[

eT AYω

0 e

]
,

where e := (1, . . . , 1),

AYω :=

⎡⎢⎣ φω(‖y1 − y1‖2) . . . φω(‖y1 − ynω‖2)
...

...
φω(‖ynω − y1‖2) . . . φω(‖ynω − ynω‖2)

⎤⎥⎦ ,

is nonsingular as soon as all knots y1, . . . ,ynω are distinct.
Since the linear system arising in this interpolation problem is of the size

nω + 1 ≤Mmax + 1, its solution can be easily computed if Mmax is not large, and
if the matrix AYω is well conditioned.

To complete the description of the method we now explain how we choose
Yω. It is known that the condition number of AYω can be bounded in terms of
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the reciprocal of the separation distance

s(Yω) =
1
2

min
1≤i<j≤nω

‖yi − yj‖2.

Therefore, we choose Yω such that

dω/s(Yω) ≤ S, (6)

where S is again a user specified number. To guarantee (6), the thinning algorithm
from [7] is adapted.

As an alternative to interpolation, the discrete least squares approach [10, 12]
can also be considered, i.e., ω of the form (2) can be selected via the minimization
of the least-squares error (the 2-norm of the residual on Xω),( Nω∑

i=1

(fi − ω(xi))2
)1/2

, (7)

using the orthogonality condition (5) as a linear equality constraint. The exis-
tence and uniqueness of the least squares approximation follows from the theory
of constrained least squares, see [1].

Regardless whether we use interpolation or least squares, and besides the
choice of the radial basis function φ, the scheme depends on the following param-
eters that are supposed to be specified by the user globally, i.e., the same values
are used for all local approximations:

Mmin, Mmax, δ, S. (8)

In real world applications these parameters have to be adjusted to a particular
type of data by some calibration procedure. The local error estimates discussed in
the next section can also be useful for this.

3. Error bounds

To facilitate a correct comparison to the approximation results for global methods,
we mention that the approximation order of a two-stage method is the minimum
of the order of the spline operator and that of the local scheme [16]. More precisely,
let us assume for simplicity that the subdomains where local approximations are
needed are the cells T of a uniform partition � of Ω associated with the spline
space, which is the case for the splines used in [5]. Then the approximation error
of the two-stage scheme in the uniform norm for a sufficiently smooth function can
be estimated by

C1 hp+1 + C2 max{eT : T ∈ �}, (9)

where h is the diameter of the cells, p + 1 is the approximation order of the spline
quasi-interpolation operator, eT is the error of local approximation, and C1, C2

are some positive constants.
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To assess the approximation error of the first stage of the two-stage method
we invoke some results from the approximation theory of radial basis functions on
bounded domains.

Let ω(f) be the sum (2) determined by the conditions (4) and (5) with
fyj = f(yj), j = 1, . . . , nω, for a function f : Rd → R. We assume that f is
smooth enough to belong to the native space Fφω associated with the radial basis
function φω ,

Fφω = {f ∈ L2(Rd) : |f |φω <∞},
where

|f |φω :=
(∫

Rd

|f̂(x)|2

Φ̂ω(x)
dx
)1/2

, Φω(·) := φω(‖ · ‖2),

and f̂ denotes the generalized Fourier transform.
Well known error bounds for the interpolation with radial basis functions

(see, e.g., [2, 11, 13, 17]) lead in the case q = 0 to the estimate

|f(x)− ω(f,x)| ≤ 2
√

E0(Φω)C(Bh(x,Yω )) |f |φω , x ∈ R
d, (10)

where h(x,Yω) is the distance between x and Yω,

h(x,Yω) := inf
y∈Yω

‖x− y‖2,

E0(Φω)C(Bh(x,Yω )) is the error of the best constant approximation of Φω,

E0(Φω)C(Bh(x,Yω )) = inf
p∈Πd

0

‖f − p‖C(Bh(x,Yω)),

and Br denotes the ball in Rd with center 0 and radius r.
Assuming that φ is monotone (which is true for all available radial basis

functions at least in a neighborhood of zero) and considering the fill distance of
Yω with respect to T ,

h(T,Yω) = sup
x∈T

h(x,Yω),

we have for all x ∈ T ,

E0(Φω)C(Bh(x,Yω )) ≤ E0(Φω)C(Bh(T,Yω)) =
1
2
|φω(h(T,Yω))− φω(0)|,

which leads to the estimate

‖f − ω(f)‖C(T ) ≤
√

2|φω(h(T,Yω))− φω(0)| · |f |φω . (11)

Obviously, h(T,Yω) ≤ dω, and taking into account (3) we have

|φω(h(T,Yω))− φω(0)| =
∣∣∣φ(h(T,Yω)

δdω

)
− φ(0)

∣∣∣ ≤ |φ(1/δ)− φ(0)|, (12)

which shows that increasing the value of the parameter δ may have a positive effect
on the error. It should, however, be taken into account that the seminorm |f |φω

also depends on δ, in view of (3).
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Among the most commonly used radial basis functions are the thin plate
splines

φTP,β(r) =

{
(−1)
β/2�rβ , β ∈ R>0 \ 2N,

(−1)β/2+1rβ log r, β ∈ 2N,
(13)

that are conditionally positive definite of order �β/2� if β ∈ R>0 \ 2N, and β/2+1
if β ∈ 2N. (Here �x� denotes the smallest integer greater or equal to x ∈ R.)
Therefore they can be used in our scheme (where the polynomial degree is q = 0)
if 0 < β < 2.

The approximation order of the thin plate splines is understood better than
that of the other available RBFs because their Fourier transform is homogeneous,
Φ̂TP,β(x) = K‖x‖−β−d

2 , with some constant K independent of x. Therefore,

|f |2
φTP,β

ω
= (δdω)β |f |2φTP,β ,

and we obtain from (11) and (12),

‖f − ω(f)‖C(T ) ≤
√

2 h(T,Yω)β |f |φ, 0 < β < 2. (14)

By our algorithm (see Section 2), we always have dω ≥ 2h, where h is the
diameter of the cell T , which is the same for all cells in our setting. On the other
hand, we may assume that there is enough data so that dω ≤ ch, for a constant c.
Taking into account (6) and the obvious inequality s(Yω) ≤ h(T,Yω), we have

2h/S ≤ dω/S ≤ h(T,Yω) ≤ dω ≤ ch.

Therefore, (9) and (14) suggest that the approximation order of the two-stage
method with thin plate splines in the local stage should be O(hmin{β/2,p+1}) or,
assuming that p is high enough, O(hβ/2). Note that since the cell T where we use
the local approximations covers only the central part of ω, the deterioration of the
error near the boundary of ω only affects the quality of the local approximations
at the boundary of the entire domain Ω.

Finally, we mention that the above estimates can be improved if f satisfies
some more stringent requirements than f ∈ Fφω , see [2, 14, 15]. The improvement
amounts basically (up to a constant factor) to removing the square root sign in
(10), (11) and (14), and replacing the seminorm |f |φω with a stronger seminorm
|f |, whose boundedness requires “higher smoothness” of f .

In particular, for the thin plate splines the approximation order becomes
O(hβ). Moreover, in this case the order O(hβ+d/2) for scattered data and O(hβ+d)
for grid data has been proved (see [2]).

4. Numerical results: Approximation order

In our numerical experiments we restrict ourselves to the two-dimensional case
d = 2. This section is devoted to numerical tests with randomly generated data
for the well-known Franke test function [8]. The goals of the tests are to measure
the approximation order of the two-stage method, compare it with the theoretical
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error bounds, and get hints for the selection of good values of the parameters (8)
for the local approximation.

More precisely, 40 different random data sets Xi, i = 1, . . . , 40, of cardinality
#Xi = N were generated in the reference square [0, 1]2, for N = 102, 103, 104, 105.
For the second stage of the two-stage method we have chosen the method SQav

2 of
[5] which produces C2 piecewise sextic splines on the four directional mesh. Based
on our experiments with the Franke test function in [4], we take the grid size for the
spline space to be n×n, where n is the closest integer to

√
N/2. The experiments

have been performed using the implementation of the spline operators in [6].
To measure the approximation error, we compute the maximum error εi of

the spline relative to the exact function values on a dense (10n + 1) × (10n + 1)
grid in a suitably reduced window ([0.2, 0.8]2) for every data set Xi and take the
geometric average max = exp( 1

40

∑40
i=1 ln εi) of these errors. We think that the

geometric average is the most appropriate way of averaging for the approximation
order tests. The motivation for using the reduced window is our desire to avoid
boundary effects.

In the local stage we use the interpolation method described in Section 2
above and choose 1) the thin plate spline φ(r) = −rβ , β = 3/2 or β = 7/4, and
2) the multiquadrics φ(r) = −

√
1 + r2 for the experiments. We have chosen a

high value Mmax = 400 to eliminate the influence of this parameter and tried
to find nearly optimal values for Mmin, S and δ. The results are presented in
Tables 1 and 2.

N spline grid max (β = 3/2) max (β = 7/4)
102 5× 5 8.55 · 10−2 6.92 · 10−2

103 16× 16 5.22 · 10−3 3.37 · 10−3

104 50× 50 2.60 · 10−4 1.17 · 10−4

105 158× 158 2.37 · 10−5 7.09 · 10−6

Table 1. Maximum error using the local RBF interpolation scheme
based on φ(r) = −rβ , β = 3/2 and 7/4. Parameter values: Mmin = 100,
S = 100, δ = 1.

For the thin plate spline (Table 1), the experiments confirm that the parame-
ter δ does not influence the error significantly. Therefore, we have chosen a nominal
value δ = 1. Note that the average number of RBF knots in the local approxima-
tions approaches 140 for the larger data sets, which makes these tests particularly
slow. Although an increase of Mmin was always profitable for φ(r) = −rβ , fewer
knots were sufficient to achieve nearly optimal errors for N < 105. In this sense
nearly optimal values of the parameter Mmin are: Mmin = 20 for N = 102 (28
knots), Mmin = 30 for N = 103 (45 knots), and Mmin = 60 for N = 104 (65
knots). (We have taken S = Mmin in these tests.)
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Table 1 suggests the approximation order about hβ+1, which conforms nicely
to the available theoretical results, see the comments at the end of Section 3. Note
that the approximation error of the spline operator SQav

2 is O(h7) [5] and hence
it is negligible for this test.

N δ = 0.4 δ = 0.8 δ = 1.2 δ = 1.6
S = 40 S = 20 S = 40/3 S = 10

102 2.27 · 10−2 2.81 · 10−2 3.66 · 10−2 4.48 · 10−2

103 1.26 · 10−5 4.44 · 10−6 6.13 · 10−5 5.42 · 10−4

104 4.20 · 10−6 1.98 · 10−7 1.00 · 10−7 2.36 · 10−7

105 2.03 · 10−6 9.28 · 10−8 3.54 · 10−8 5.60 · 10−8

#knots (N = 105) 122.2 87.2 60.4 42.8

Table 2. Maximum error using the local RBF interpolation scheme
based on φ(r) = −

√
1 + r2 for different values of δ. The spline grid is

the same as in Table 1. Other parameters: Mmin = 20 if N = 102 and
Mmin = 100 otherwise.

It is clear from Table 2 that in the case of multiquadrics the correct choice
of the parameter δ (which clearly is related to the reciprocal of the classical mul-
tiquadric coefficient c in

√
c2 + r2) is important. However, we had to choose the

separation parameter S such that δS ≤ 16 since otherwise the computation with
multiquadrics turned out numerically instable. (Note that for the real world data,
like those tested below in Section 5, δS must be even smaller.) The values of Mmin

lower than 100 were disadvantageous in our experiments for all N except N = 102.
In the case N = 102, however, Mmin = 100 delivers relatively high errors: 1.94·10−2

for δ = 0.2, S = 80, 3.75 · 10−2 for δ = 0.4, S = 40, 6.59 · 10−2 for δ = 0.8, S = 20,
1.08 · 10−1 for δ = 1.2, S = 40/3, 1.65 · 10−1 for δ = 1.6, S = 10. (Note that
N = Mmin = 100 means, in fact, that all local approximations are the same, and,
hence, our spline does not differ much from the corresponding global multiquadric
approximation.) Therefore, we use Mmin = 20 if N = 102, and Mmin = 100 for
other N . The value Mmin > 100 may be advantageous for smaller δ. For example,
for N = 103 and Mmin = 200 we have 3.36 ·10−6 if δ = 0.4, S = 40, and 1.26 ·10−5

if δ = 0.8, S = 20.
The results in Table 2 confirm that greater values of δ tend to provide better

errors. Indeed, for higher N we have to increase δ in order to obtain the best errors,
even though numerical stability considerations force us to take smaller S, which
in turn leads to the reduction of the number of RBF knots (see the last row of the
table). For any fixed δ, however, Table 2 shows a substantial deterioration of the
approximation order as N increases. The estimates of Section 2 do not provide a
full theoretical explanation for this behavior. In particular, (11) includes the term
|f |φω , whose behavior for dω → 0 is not clear to us in the case of multiquadrics.
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5. Numerical results: Real world data

The second group of our experiments is aimed at verifying the performance of the
proposed scheme compared with the hybrid approach introduced in [4].

To this end we consider the same real-world data sets as in [4, 5], namely,
the Glacier data (GL, 8345 points), the Black Forest data (BF, 15885 points) and
the Rotterdam Port data (RP, 621624 points after cleaning, see [5]). Referring to
[4, 5] for the description of these data sets, we only mention that GL is available
from [8] and that RP has been provided by Quality Positioning Services (Zeist,
The Netherlands), and it has been recorded using the QINSy software.

Note that in the first stage we use the least-squares method as described at the
end of Section 2 since it consistently produced better results than interpolation for
the real world data in our tests. To solve the constrained least squares problems we
employ the routine DGESDD from LAPACK. (Note that the interpolation method
in our implementation is also treated as special case of least squares.)

The results are reported in Table 3, where maximum (max), mean (mean)
and root mean square (rms) errors at the data points, the average number of RBF
knots (#knots) used for the local approximations, and the computational time
(time) are shown. Results obtained with the method suggested in this paper (R)
are compared with the hybrid approach (H) of [4]. As in [4], we use multiquadric
RBF in these tests. The degree q of the polynomial term is 0 in all tests except
RP/H, where q = 1. In the second stage we use the spline methods RQav

2 (piecewise
sextic) for GL and BF and Qav

1 (piecewise cubic) for RP, as in the respective tests
in [4, 5]. The computer used for these experiments is a Pentium 4m / 1.9 GHz /
768 MB RAM.

GL/H GL/R BF/H BF/R RP/H RP/R
max 15.6 m 17.8 m 32.0 m 30.0 m 92.5 cm 90.2 cm
mean 1.57 m 1.49 m 1.39 m 1.25 m 5.46 cm 5.23 cm
rms 2.26 m 2.19 m 2.17 m 2.00 m 7.46 cm 7.22 cm

#knots 14.9 20.8 12.2 8.2 5.4 11.6
time 33.0 sec 3.7 sec 134 sec 7.11 sec 316 sec 97.3 sec

Table 3. Results for the data sets GL, BF and RP. Parameters (see [4]
for the meaning of κP and κH): 1) GL. Spline grid 20× 24, Mmin = 60,
Mmax = 160, δ = 0.4 for both H and R methods, κH = 105 for H, and
S = 8 for R. 2) BF. Spline grid 80× 80, Mmax = 100 for both H und R
methods, Mmin = 12, δ = 0.3, κH = 104 for H, and Mmin = 3, δ = 0.4,
S = 7 for R. 3) RP. Spline grid 100 × 281, Mmin = 3, Mmax = 100,
δ = 0.4 for both H and R, κP = 100, κH = 2·104 for H, and S = 5 for R.

In addition to Table 3, we provide Figures 1–3 that present zooms into the
same subareas of the surfaces as ones used in [4]. They are produced with MATLAB
using dense grid evaluations of the spline surfaces (see [4]). The figures confirm
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the high visual quality of our approximations, as they show no artifical oscillation
or other unnatural behaviour. Table 3 also shows that the errors for both H and R
methods are comparable, whereas the computational time for the method of this
paper is substantially lower.

Figure 1. Glacier test.
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Figure 3. Rotterdam Port test.
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Evolutionary Optimization of Neural Systems:
The Use of Strategy Adaptation

Christian Igel, Stefan Wiegand and Frauke Friedrichs

Abstract. We consider the synthesis of neural networks by evolutionary algo-
rithms, which are randomized direct optimization methods inspired by neo-
Darwinian evolution theory. Evolutionary algorithms in general as well as
special variants for real-valued optimization and for search in the space of
graphs are introduced. We put an emphasis on strategy adaptation, a feature
of evolutionary methods that allows for the control of the search strategy
during the optimization process.

Three recent applications of evolutionary optimization of neural systems
are presented: topology optimization of multi-layer neural networks for face
detection, weight optimization of recurrent networks for solving reinforcement
learning tasks, and hyperparameter tuning of support vector machines.

1. Introduction

The information processing capabilities of vertebrate brains outperform technical
systems in many respects. Abstract models of neural networks (NNs) exist, which
can – in principle – simulate all Turing machines and exhibit universal approx-
imation properties (e.g., [40, 42, 44]). However, the general question of how to
efficiently design an appropriate neural system for a given problem remains open
and complexity theory reveals the need for using heuristics (e.g., [41]). The answer
is likely to be found by investigating the three major organization principles of
biological NNs: evolution, self-organization, and learning.

In the following, we consider the synthesis of NNs by evolutionary algo-
rithms (EAs), which are randomized direct optimization methods inspired by
neo-Darwinian evolution theory. We focus on strategy adaptation, a feature of
evolutionary methods that enables control of the search strategy during the opti-
mization process. Two related ways of adapting search strategies in evolutionary
computation are presented. First, we describe the CMA evolution strategy [19],
an efficient method for adjusting the covariance matrix of the search distribution
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in real-valued optimization. Second, we introduce an algorithm that adapts the
probabilities of variation operators [24]. We sketch applications of these methods
to the design of different types of neural systems: topology optimization of multi-
layer NNs for face detection [49], weight optimization of recurrent networks for
solving reinforcement learning tasks [21], and model selection for support vector
machines [14].

An introduction to NNs is beyond the scope of this article, the reader is
referred to the standard literature, for example the collection [1]. The articles [12, 4]
provide starting points for reading about the theory of evolutionary computation.
General surveys of evolutionary optimization of neural networks can be found in
[29, 30, 39, 52].

2. Evolutionary computation

Evolutionary algorithms (EAs) can be considered as a special class of global ran-
dom search algorithms. Let the search problem under consideration be described
by a quality function f : G → F to be optimized, where G denotes the search space
(i.e., the space of candidate solutions) and F the (at least partially) ordered space
of cost values. The general global random search scheme can be described – with
slight modifications – as follows [54, 25]:

1 Choose a joint probability distribution P
(t)

Gλ on Gλ. Set t← 1.

2 Obtain λ points g
(t)
1 , . . . , g

(t)
λ by sampling from the distribution P

(t)

Gλ . Evaluate
these points using f .

3 According to a fixed (algorithm dependent) rule construct a new probability
distribution P

(t+1)

Gλ on Gλ.

4 Check for some appropriate stopping condition; if the algorithm has not ter-
minated, substitute t← t + 1 and return to step [2].

Random search algorithms can differ fundamentally in the way they describe (pa-
rameterize) and alter the joint distribution P

(t)

Gλ , which is typically represented by
a semi-parametric model.

The scheme of a canonical EA is shown in figure 1. In evolutionary computa-
tion, the iterations of the algorithm are called generations. The search distribution
of an EA is given by the parent population, the variation operators, and the strategy
parameters.

The parent population is a multiset of µ points g̃
(t)
1 , . . . , g̃(t)

µ ∈ G. Each
point corresponds to the genotype of an individual. In each generation, λ off-
spring g

(t)
1 , . . . , g

(t)
λ ∈ G are created by the following procedure: Individuals for

reproduction are chosen from g̃
(t)
1 , . . . , g̃(t)

µ . This is called mating selection and can
be deterministic or stocastic (where the sampling can be with or without replace-
ment). The offspring’s genotypes result from applying variation operators to these
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selected parents. Variation operators are deterministic or partially stochastic map-
pings from Gk to Gl, 1 ≤ k ≤ µ, 1 ≤ l ≤ λ. An operator with k = l = 1 is called
mutation, whereas recombination operators involve more than one parent and can
lead to more than one offspring. Multiple operators can be applied consecutively to
generate offspring. For example, an offspring g

(t)
i can be the product of applying re-

combination orec : G2 → G to two randomly selected parents g̃
(t)
i1

and g̃
(t)
i2

followed

by mutation omut : G → G, that is, g
(t)
i = omut

(
orec

(
g̃

(t)
i1

, g̃
(t)
i2

))
. Evolutionary

algorithms allow for incorporation of a priori knowledge about the problem by
using tailored variation operators combined with an appropriate encoding of the
candidate solutions.

Let the probability that parents g̃
(t)
1 , . . . , g̃(t)

µ lead to offspring g
(t)
1 , . . . , g

(t)
λ

be described by the conditional probability distribution

PGλ

(
g1, . . . , gλ | g̃(t)

1 , . . . , g̃(t)
µ ; θ(t)

)
= P

(t)

Gλ (g1, . . . , gλ) . (1)

This distribution is additionally parameterized by some external strategy parame-
ters θ(t) ∈ Θ, which may vary over time. In some EAs, the offspring are created
independently of each other based on the same distribution. In this case, the joint
distribution P

(t)

Gλ can be factorized as

P
(t)

Gλ (g1, . . . , gλ) = P
(t)
G (g1) · · · · · P (t)

G (gλ) . (2)

Evaluation of an individual corresponds to determining its fitness by assigning the
corresponding cost value given by the quality function f . Evolutionary algorithms
can handle optimization problems that are non-differentiable, non-continuous,
multi-modal, and noisy. They are easy to parallelize by distributing the fitness
evaluations of the offspring.

Updating the search distribution consists of two steps, environmental selec-
tion and sometimes strategy adaptation of external strategy parameters: A se-
lection method chooses µ new parents g̃

(t+1)
1 , . . . , g̃(t+1)

µ from g̃
(t)
1 , . . . , g̃(t)

µ and

g
(t)
1 , . . . , g

(t)
λ . This second selection process is called environmental selection and

may be deterministic or stochastic. Either the mating or the environmental se-
lection must be based on the objective function values of the individuals and
must prefer those with better fitness – this is the driving force of the evolutionary
adaptation process. An example of fitness-dependent environmental selection is
choosing the µ best individuals out of λ > µ offspring. In addition, the EA may
update external strategy parameters as discussed in the following section.

2.1. Strategy adaptation

Strategy adaptation, that is the automatic adjustment of the search strategy dur-
ing the optimization process, is a key concept to improve the performance in evo-
lutionary computation [11, 24, 43]. It is necessary because the best search strategy
for a problem is usually not known in advance and typically changes (e.g., from
coarse to fine) during optimization. Examples of strategy parameters that can be
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loop

initialization  1

fitness evaluation  1
(maybe after local search)

fitness evaluation  2
(maybe after local search)

recombination  2

mating selection  2

mutation  2

strategy
adaption  3

environmental
selection  3

[termination]  4

Figure 1. Basic EA loop. The numbers indicate the corresponding
steps in the random search scheme. When optimizing adaptive systems,
the local search usually corresponds to some learning process.

controlled externally include population sizes, the probabilities that certain varia-
tion operators are applied, and parameters that determine the mutation strength.

In the following section, we describe an efficient algorithm for adjusting the
covariance matrix of Gaussian mutations in EAs. Thereafter, we present a way for
adaptation of the application probabilities of variation operators. Both methods
are deterministic and monitor the effects of the variation operators over the gener-
ations. They are based on the same rule of thumb that recent beneficial mutations
are also likely to be beneficial in the following generations.

2.1.1. The CMA evolution strategy. Evolution strategies (ES, [3, 32, 38]) are one
of the main branches of EAs. In the following, we describe the covariance matrix
adaptation ES (CMA-ES) proposed in [18, 19], which performs efficient real-valued
optimization. Each individual represents an n-dimensional real-valued object vari-
able vector. These variables are altered by two variation operators, intermediate
recombination and additive Gaussian mutation. The former corresponds to com-
puting the center of mass of the µ individuals in the parent population. Mutation
is realized by adding a normally distributed random vector with zero mean. In the
CMA-ES, the complete covariance matrix of the Gaussian mutation distribution is
adapted during evolution to improve the search strategy. More formally, the object
parameters g

(t)
k of offspring k = 1, . . . , λ created in generation t are given by

g
(t)
k = 〈g̃〉(t) + σ(t)B(t)D(t)z

(t)
k , (3)
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z
(g+1)
l D(g)z

(g+1)
l B(g)D(g)z

(g+1)
l

× × ×

Figure 2. The dashed lines schematically visualize an error / fitness
surface (landscape) for G ⊂ R2, where each line represents points of
equal fitness and the × symbol marks the optimum. The dot corre-
sponds to the center of mass of the parent population and the solid
lines indicate the mutation (hyper-) ellipsoids (i.e., surfaces of equal
probability density to place an offspring) of the random vectors after
the different transformations.
Evolution strategies that adapt only one global step size can only pro-
duce mutation ellipsoids as shown in the left plot. Algorithms that adapt
n different step sizes, one for each object variable, can produce muta-
tion ellipsoids scaled along the coordinate axes like the one shown in the
center plot. Only if the complete covariance matrix is adapted, arbitrary
normal distributions can be realized as shown in the right picture.

where 〈g̃〉(t) = 1
µ

∑µ
i=1 g̃i

(t) is the center of mass of the parent population in gen-

eration t and the z
(t)
k ∼ N (0, I) are independent realizations of an n-dimensional

normally distributed random vector with zero mean and covariance matrix equal
to the identity matrix I. The covariance matrix C(t) of the random vectors

σ(t)B(t)D(t)z
(t)
k ∼ N (0, C(t)) (4)

is a symmetric positive n× n matrix with

C′(t) = C(t)/σ(t)2 = B(t)D(t)
(
B(t)D(t)

)T

. (5)

The columns of the orthogonal n×n matrix B(t) are the normalized eigenvectors of
C ′(t) and D(t) is a n×n diagonal matrix with the square roots of the corresponding
eigenvalues. Figure 2 schematically shows the transformations of z

(t)
k by B(t) and

D(t).
The strategy parameters, both the matrix C ′(t) and the so-called global

step-size σ(t), are updated online using the covariance matrix adaptation (CMA)
method. The key idea of the CMA is to alter the mutation distribution in a de-
terministic way such that the probability to reproduce steps in the search space
that have led to the current population is increased. This enables the algorithm
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to detect correlations between object variables and to become invariant under or-
thogonal transformations of the search space (apart from the initialization). In
order to use the information from previous generations efficiently, the search path
of the population over a number of past generations is taken into account.

In the CMA-ES, rank-based (µ, λ)-selection is used for environmental selec-
tion. That is, the µ best of the λ offspring form the next parent population. After
selection, the strategy parameters are updated:

s(t+1) = (1− c) · s(t) + cu ·
√

µB(t)D(t) 〈z〉(t)µ︸ ︷︷ ︸
√

µ

σ(t)

(
〈g̃〉(t+1) − 〈g̃〉(t)

)
(6)

C ′(t+1) = (1− ccov) ·C ′(t) + ccov · s(t+1)
(
s(t+1)

)T

. (7)

Herein, s(t+1) ∈ Rn is the evolution path – a weighted sum of the centers of the
population over the generations starting from s(2) =

√
µ B(1)D(1) 〈z〉(1)µ (the fac-

tor
√

µ compensates for the loss of variance due to computing the center of mass).
The parameter c ∈ ]0, 1] controls the time horizon of the adaptation of s; we set
c = 1/

√
n. The constant cu =

√
c(2− c) normalizes the variance of s (viewed as

a random variable) as 12 = (1 − c)2 + c2
u. The expression 〈z〉(t)µ = 1

µ

∑µ
i=1 z

(t)
i:λ is

the average of the realizations of the random vector that led to the new parent
population, where i:λ denotes the index of the offspring having the ith best fit-
ness value of all offspring in the current generation, that is {{g(t)

1:λ, . . . , g
(t)
µ:λ}} =

{{g̃(t+1)
1 , . . . , g̃(t+1)

µ }}. The parameter ccov ∈ [0, 1[ controls the update of C ′(t) and
we set it to ccov = 2/(n2 + n).

The update rule (7) shifts C′(t) towards the n × n matrix s(t+1)
(
s(t+1)

)T

making mutation steps in the direction of s(t+1) more likely. The vector s does
not only represent the last (adaptive) step of the parent population, but a time
average over all previous adaptive steps. The influence of previous steps decays
exponentially, where the decay rate is controlled by c.

The adaptation of the global step-size parameter σ is done separately on
a shorter timescale (a single parameter can be estimated based on less samples
compared to the complete covariance matrix). We keep track of a second evolution
path sσ without the scaling by D:

s(t+1)
σ = (1− cσ) · s(t)

σ + cuσ
· √µ B(t) 〈z〉(t+1)

µ︸ ︷︷ ︸
B(t)

(
D(t)

)−1 (
B(t)

)−1 √
µ

σ(t)

(
〈g〉(t+1)

µ − 〈g〉(t)µ

)
(8)

σ(t+1) = σ(t) · exp

(
‖s(t+1)

σ ‖ − χ̂n

d · χ̂n

)
, (9)
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where χ̂n is the expected length of a n-dimensional, normally distributed random
vector with covariance matrix I. The damping parameter d ≥ 1 decouples the
adaptation rate from the strength of the variation. We set d =

√
n and start from

s
(2)
σ =

√
µ B(1) 〈z〉(1)µ . The parameter cσ ∈ ]0, 1] controls the update of sσ. Here,

we use cσ = c. Setting cuσ
=
√

cσ(2− cσ) normalizes the variance of sσ.
The evolution path sσ is the sum of normally distributed random variables.

Because of the normalization, its expected length would be χ̂n if there were no
selection. Hence, the rule (9) basically increases the global step-size if the steps
leading to selected individuals have been larger than expected and decreases the
step size in the opposite case.

The CMA-ES needs only small population sizes. These are chosen according
to the heuristic λ = 4+
3 lnn� and µ = 
λ/4�. Note that almost all the parameters
of the algorithm can be set to the default values given in [18, 19]. The initializations
of C ′ and σ allow for incorporation of prior knowledge about the scaling of the
search space. In the following, we set C′(1) = I and choose σ(1) dependent on the
problem.

2.1.2. Adaptation of operator probabilities. The search strategy is mainly deter-
mined by the variation operators and the probabilities of their application. In the
CMA-ES, there is only one mutation and one recombination operator, which are
both always applied, and strategy adaptation corresponds to adjusting the param-
eters of the mutation operator. Now we consider the case when there are several
mutation operators and the strategy parameters to adapt are the probabilities of
application of these operators.

The algorithm we propose combines concepts from [10] and from the CMA-
ES. Let Ω denote a set of mutation operators. Each time an offspring g

(t)
i is created

from a parent, first the number v
(t)
i of variations is determined, then v

(t)
i operators

are randomly chosen from Ω and applied successively. Let p
(t)
o be the probability

that o ∈ Ω is chosen at generation t. Further, let O
(t)
o contain all offspring produced

in generation t by an application of the operator o. The case when an offspring
is produced by applying more than one operator is treated as if the offspring has
been generated several times, once by each of the operators involved. The operator
probabilities are updated every τ generations. This period is called an adaptation
cycle. The average performance achieved by an operator o over an adaptation cycle
is measured by

q(t,τ)
o =

τ−1∑
i=0

∑
g∈O

(t−i)
o

max(0, f(g)− f(parent(g)))
/ τ−1∑

i=0

∣∣O(t−i)
o

∣∣ , (10)

where parent(g) denotes the parent of offspring g (and we assume a fitness maxi-
mization task). The operator probabilities p

(t+1)
o are adjusted every τ = 4 gener-
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ations according to

s(t+1)
o =

{
cΩ · q(t,τ)

o /q
(t,τ)
all + (1 − cΩ) · s(t)

o if q
(t,τ)
all > 0

cΩ/|Ω|+ (1 − cΩ) · s(t)
o otherwise

(11)

and
p(t+1)

o = pmin + (1− |Ω| · pmin)s(t+1)
o

/∑
o′∈Ω

s
(t+1)
o′ . (12)

The factor q
(t,τ)
all =

∑
o′∈Ω q

(t,τ)
o′ is used for normalization and s

(t+1)
o stores the

weighted average of the quality of the operator o, where the influence of previous
adaptation cycles decreases exponentially. The rate of this decay is controlled by
cΩ ∈ (0, 1], which is set to cΩ = 0.3 in our experiments. The operator probabil-
ity p

(t+1)
o is computed from the weighted average s

(t+1)
o , such that all operator

probabilities sum to one and are bounded from below by pmin < 1/|Ω|. Initially,
s
(0)
o = p

(0)
o for all o ∈ Ω. Note that so has a similar function as the evolution paths

in the CMA-ES.
A more detailed description and an empirical evaluation of the operator adap-

tation algorithm is given in [24].

3. Evolutionary optimization of neural networks

Learning of an adaptive (e.g., neural) system can be defined as goal-directed, data-
driven changing of its behavior. The major components of an adaptive system can
be described by a triple (S,A,D), where S stands for the structure or architecture
of the adaptive system, A is a learning algorithm that operates on S and adapts
flexible parameters of the system, and D denotes the sample data.

Examples of learning algorithms for technical NNs include gradient-based
heuristics, see Section 3.1, or quadratic program solvers, see Section 3.3. Such
“classical” optimization methods are usually considerably faster than pure evolu-
tionary optimization of NN parameters [22, 26, 45], although they might be more
prone to getting stuck in local minima. However, there are cases where “classical”
optimization methods are not applicable, for example when the neural model or
the objective function is non-differentiable as in Section 3.2. Still, the main appli-
cation of evolutionary optimization in the field of neurocomputing is adapting the
structures of neural systems, that is, optimizing those parts that are not altered
by the learning algorithm. Both in biological and technical neural systems the
structure is crucial for the learning behavior – the evolved structures of brains are
an important reason for their incredible learning performance: “development of in-
telligence requires a balance between innate structure and the ability to learn” [2].
Hence, it appears to be obvious to apply evolutionary methods for adapting the
structure of neural systems for technical applications, a task for which generally
no efficient “classical” methods exist. A prototypical example of evolutionary op-
timization of a neural architecture on which a learning algorithm operates is given
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Figure 3. Left, the input data to the face detection network are pre-
processed 20× 20 pixel grayscale images showing either frontal, upright
faces or nonface examples. Right, scheme of the delete-node operator.
The linewidths indicate the magnitude of the corresponding weight val-
ues.

in the following Section 3.1, where the topology and the weights of multi-layer
perceptron network are optimized. Adopting the extended definition of structure
as that part of the adaptive system that cannot be optimized by the learning al-
gorithm itself, Section 3.3 presents the optimization of the “structure” of support
vector machines.

3.1. Evolving neural networks for face detection

Feed forward NNs have proven to be powerful tools in pattern recognition [53].
For example, they can be used to decide whether images of a fixed size contain a
complete frontal upright face or not, see Fig. 3 (left). In the following, we discuss
the evolutionary optimization of a feed forward multi-layer perceptron for such a
face detection task. The optimization process has two objectives: improving the
classification accuracy and the speed of processing.

3.1.1. Feed forward multi-layer perceptrons. The structure of a multi-layer per-
ceptron (MLP, a good introduction is given in [5]) is given by a connected directed
graph G = (V , E) with vertices V and edges E ⊆ V × V . We identify the vertices
with neurons and edges with connecting synapses. If G is acyclic it describes a feed
forward MLP. The nout nodes without successors are called the output neurons.
The nin + 1 nodes without predecessors are the input neurons and an additional
bias unit. The nhidden nodes with at least one successor and at least one predeces-
sor are called hidden neurons. Each feed forward MLP represents a static function
that maps an input x ∈ Rnin to an output value y ∈ Rnout . Traversing the graph
from the input neurons, we compute the activation zi of each neuron i. The ac-
tivation of the input nodes is equal to the corresponding component of the input
pattern x, the activation of the additional node without predecessors (the bias
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node) is constantly equal to 1. For the other nodes the activation is given by

zi = g

⎛⎝ ∑
j∈pred(i)

wijzj

⎞⎠ , (13)

where pred(i) ⊂ V is the set of predecessors, wij is the weightening factor of the
connection from neuron j to neuron i, and g is a non-linear transfer function, here
the sigmoidal g(u) = u/(|u|+ 1). The activations of the output nodes correspond
to the components of the output y of the network.

Learning of a MLP means adapting the weights wij based on some sample
input-output patterns {(x1, y1), . . . , (x�, t�)}. This is usually done by gradient-
based minimization of the (squared) differences between the targets ti and the
corresponding outputs yi of the NN given the input xi. The goal is not to learn
the training patterns by heart, but to find a statistical model for the underlying
relationship between input and output data. Such a model will generalize well, that
is, will make good predictions for cases other than the training patterns. A critical
issue is therefore to avoid overfitting during the learning process: The NN should
just fit the signal and not the noise. This is usually achieved by restricting the
effective complexity of the network, for example by regularization of the learning
process.

3.1.2. Evolving neural face detectors. Real-time face recognition requires both
fast and accurate face detection methods. Recognition speed may be crucial, for
example when processing a huge amount of data from video streams.

As stated in a recent survey “The advantage of using neural networks for
face detection is the feasibility of training a system to capture the complex class
conditional density of face patterns. However, one drawback is that the network
architecture has to be extensively tuned (number of layers, number of nodes, learn-
ing rates, etc.) to get exceptional performance” [51]. In the following, we show how
evolutionary computation can help to overcome this drawback. We optimize the
weights and the structure of an already existing neural face classifier, which is part
of a complex face detection system similar to the one described in [35]. We con-
sider an implementation in which the speed of classification scales approximately
linearly with the number of hidden neurons. Therefore our goal is to reduce the
number of neurons of a NN without loss of classification accuracy, whereas we
tolerate an increase in the number of connections.

We apply an EA combined with gradient-based learning as schematically
shown in Fig. 1. Each individual encodes a NN. In every generation, each parent
creates one offspring, which inherits its parent’s genotype. The offspring’s geno-
type is then altered by elemental variation operators. These are chosen randomly
from a set Ω of 8 different operators and are applied sequentially. The process of
choosing and applying an operator is repeated 1 + κ times, where κ is an individ-
ual realization of a Poisson distributed random number with mean 1. There are 5
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basic operators: add-connection, delete-connection, add-node, delete-node, and jog-
weights. Their effects on the network graph represented by the genotype becomes
obvious from their names, probably except for the operator jog-weights. The latter
adds Gaussian noise to the weights in order to push the weight configuration out of
local minima. The elemental deletion operators are based on the magnitude based
pruning heuristic (see [33]), which assigns a higher probability to the deletion of
small weights. As an example, the delete-node operator is schematically depicted
in Fig. 3 (right).

In addition to the 5 basic operators, there are 3 task-specific mutations in-
spired by the concept of “receptive fields” (RFs). These RF-operators add-RF-
connection, delete-RF-connection, and add-RF-node behave as their basic counter-
parts, but act on groups of connections. These groups are defined by rectangular
regions of the input image, see the input layer in Fig. 3 (right). The RF-operators
consider the topology of the image plane by taking into account that “isolated”
processing of pixels is rarely useful for object detection. Not all operators might
be necessary at all stages of the evolutionary process and questions such as when
fine-tuning becomes more important than operating on receptive fields cannot be
answered in advance. Hence, the application probabilities of the 8 variation oper-
ators are adapted using the method described in Section 2.1.2.

An inner loop of learning is embedded, just before fitness evaluation in order
to fine-tune all weights. An iterative learning algorithm is used, namely the im-
prove Rprop algorithm [23, 34]. Learning is done for a fixed number of iterations1

and is stopped earlier when the generalization performance of the network, which
is measured using a validation data set, decreases. The weight configuration with
the smallest error on training and validation sample data found during network
learning is regarded as the outcome of the learning process and is stored in the
genome of the corresponding individual (this principle is often called Lamarckian
inheritance). Based on this weight configuration the fitness of the individual, a
weighted sum of the classification accuracy and the number of neurons, is calcu-
lated.

3.1.3. Experimental evaluation. We initialized the 25 individuals in the population
of our EA with the expert-designed architecture proposed in [35]. This network
has been tailored to the face detection task and has become the standard reference
for neural network based face detection, see [51]. In the following, all results are
given relative to the properties of the initial architecture.

Our EA successfully tackled the problem of reducing the number of hidden
neurons of the face detection network without loss of detection accuracy [49]. The
numbers of hidden neurons of the evolved networks are reduced by 27-35%. This
means, we could improve the speed of classification whether an image region cor-
responds to a face or not by approximately 30%. By speeding up classification,
the rate of complete scans of video-stream images of face recognition systems can

1A method that automatically adjusts the length of the learning period similar to the evolutionary
strategy adaptation described in Section 2.1 has been proposed in [20].
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be increased leading to a more accurate recognition. A generalization performance
test on an external data set, which is independent from all data used for opti-
mization, demonstrates that most of our considerably smaller networks perform
at least as good as the expert-designed architecture. Some of the evolved classifiers
even show an improvement of the classification accuracy by more than 10%.

3.2. Adapting the weights of networks for reinforcement learning tasks

Reinforcement (RL, [47]) learning is an important, biologically plausible learning
paradigm. In RL the feedback about the performance of an adaptive system may
be sparse, unspecific, and delayed. Evolutionary algorithms have proven to be
powerful and competitive approaches compared to standard RL methods [28].
The recent success of evolved NNs in game playing [7] underlines the potential of
the combination of NNs and evolutionary computation for RL. In the following,
we describe an application of the CMA-ES to the adaptation of the weights of a
NN for solving a RL task. In this scenario, no gradient information is available to
adapt the NN parameters.

3.2.1. Reinforcement learning. In the standard RL scenario, an agent interacts
with its environment at discrete time steps t. It perceives the environment to be
in state st ∈ S and chooses a behavior at from the set of actions A according to
its policy π : S → A. After the execution of action at, the environment makes
a possibly stochastic transition to a perceived state st+1 and thereby emits a
possibly stochastic numerical reward rt+1 ∈ R. The objective of the agent is to
adapt its policy such that the expected discounted cumulative future reward Rt =∑∞

t′=t+1 γt′−t−1rt′ with discount rate γ ∈]0, 1] is maximized.
Two different (model-free) approaches to solve RL problems can be dis-

tinguished. The most common methods such as temporal-difference learning al-
gorithms adapt value functions [47]. Usually, they learn a state-value function
V : S → R or a state-action-value function Q : S × A → R for judging states or
state-action pairs, respectively. The policy π is then defined on top of this function.
The second approach is to search directly in the space of policies [28]. However, the
gradient ∂Rt / ∂πt can usually not be computed (this problem can be circumvented
be actor-critic architectures, see [47]). When S or A is too large or generalization
from experiences to new states and actions is desired, function approximators like
NNs are used to model Q, V , or π.

The potential advantages of direct search methods like EAs compared to
standard RL methods are that they

1. allow for direct search in the policy space,
2. are often easier to apply and are more robust with respect to the tuning of

the meta-parameters (learning rates, etc.),
3. can be applied if the function approximators are non-differentiable, and
4. can also optimize the underlying structure of the function approximators.

In the following, we describe an application of the CMA-ES to the adaptation of
the weights of an NN that directly represents a policy π.
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Figure 4. Double pole balancing problem. The parameters x, θ1, and
θ2 are the offset of the cart from the center of the track and the angles
from the vertical of the long and short pole, respectively.

3.2.2. Evolving networks for pole balancing. Pole balancing problems (also known
as inverted pendulum problems) are standard benchmark tasks for EAs that adapt
NNs for control, see [50] for early and [46] for recent references. In our example, the
task is to balance two poles hinged on a wheeled cart, which can move on a finite
length track, by exerting forces either left or right on the cart. The movements
of the cart and the poles are constrained within the vertical plane. A balanc-
ing attempt fails if either the angle from the vertical of any pole exceeds a certain
threshold or the cart leaves the track. Figure 4 illustrates the task (the correspond-
ing equations of motion are given, e.g., in [21, 50]). The problem of designing a
controller for the cart can be viewed as a RL task, where the actions are the applied
forces and the perceived state corresponds to the information about the system
provided to the controller.

We consider the double pole without velocities scenario, where the controller
gets only x, θ1, and θ2 as inputs and the output is a force between −10 N and 10 N .
The environment is only partially observable as information about the velocity of
the cart and the angle velocities are needed for a successful control strategy. In
order to distinguish between system states, e.g., whether a pole is moving up or
down, the controller needs the capability to exploit history information. This can
be achieved by recurrent neural networks (RNNs).

In our example, we use the following simple RNN architecture. Let zi(t) for
0 < i ≤ nin be the activation of the nin input units at time step t of a network
with a total of nneurons neurons. The activation of the other neurons is given by

zi(t) = g

(
nin∑
j=1

wijzj(t) +
nneurons∑
j=nin+1

wijzj(t− 1)

)
(14)
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for nin < i ≤ nneurons, where the wij are the weights and g is a non-linear transfer
function, see Section 3.1.1. All RNNs in this study have a single output neuron
and the input signals provided to the networks are appropriately scaled.

The weights of the RNNs are adapted by the CMA-ES [21]. We use the same
fitness function as in [17], see also [16, 21, 46]. This quality measure consists of
two additive terms. The first addend is proportional to the number of time steps
the controller manages to balance the poles starting from a fixed initial position
(i.e., we do not test for generalization). The second term penalizes oscillations in
order to exclude the control strategy to balance the poles by just moving the cart
quickly back and forth from the set of solutions. A trial is stopped and regarded
as successful when the fittest individual in the population balances the poles for
105 time steps.

method evaluations population size
ESP 6213 100
NEAT 6326 100
CMA-ES, nhidden = 3 3521 13
CMA-ES, nhidden = 5 4856 13
CMA-ES, nhidden = 7 5029 16

Table 1. Number of balancing attempts needed to find an appropriate
control strategy averaged over 75 (ESP and NEAT) and 50 (CMA-
ES) trials, respectively. Additionally, the population sizes used in the
experiments are given.

The results of our experiments using RNN architectures with different num-
bers of neurons are shown in table 1. They are compared to the best performing
methods for evolving RNNs for this task so far, the Enforced Sub-Population (ESP,
[16]) and the NeuroEvolution of Augmenting Topologies (NEAT, [46]) algorithm.
In contrast to our approach, NEAT does not only adapt the weights of NNs, but
also their structure – this weakens the comparison. Note that the ESP and NEAT
results are better than those reported in [16, 21, 46], because they refer to new trials
with optimized settings of the algorithms, in particular with reduced population
sizes (Kenneth O. Stanley, private communication). However, even for nhidden = 7
the CMA-ES performs statistically significantly better (t-test, p < .05) than the
ESP method. The smaller the network size, the better are the results obtained by
the CMA-ES.

Our experiments show that that standard RNN architectures combined with
the CMA-ES are sufficient for achieving good results on pole balancing tasks when
the architecture of the NNs are fixed. The efficient adaptation of the search strat-
egy by the CMA-ES allows for fast optimization of the network weights by detect-
ing correlations between object variables without requiring large population sizes.
Still, the network structure matters, which becomes obvious from the differences
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between architectures with different numbers of hidden neurons. Hence, methods
are required that evolve both the structure and the weights of NNs for RL tasks –
although for nearly all initializations our approach outperformed the existing al-
gorithms that additionally adapt the topology (more results and details are given
in [21]).

3.3. Evolutionary tuning of support vector machines

Support vector machines (SVMs, e.g., [9, 37, 48]), which can be viewed as spe-
cial regularization networks (at least there is a very close relation, see [13]), have
become a standard method in machine learning. The main idea of SVMs for bi-
nary classification is to map the input vectors to a feature space and to classify
the transformed data by a linear function that promises good generalization. The
transformation is done implicitly by a kernel, which computes an inner product in
the feature space. Constructing the linear decision function is a convex optimiza-
tion problem that can be solved using quadratic programming. Thus, the problem
of designing an appropriate model is elegantly separated into two stages: First,
the kernel function (and its parameters) has to be chosen. In the general case of
non-separable data, one also has to select a regularization parameter, which con-
trols the trade-off between minimizing the training error and the complexity of the
decision function. Second, the corresponding convex optimization problem has to
be solved.

The first stage can be identified with choosing the structure of the adaptive
systems, and the second stage with adapting its parameters by learning. The latter
can be solved efficiently by “classical” algorithms, the former is a difficult multi-
modal optimization task requiring the use of heuristics. Often a parameterized
family of kernel functions is considered and the kernel adaptation reduces to finding
an appropriate parameter vector for the given problem. These parameters together
with the regularization parameter are called the hyperparameters of the SVM.

In practice the hyperparameters are usually determined by grid search. That
is, the hyperparameters are varied with a fixed step-size through a wide range
of values and the performance of every combination is assessed using some per-
formance measure. Because of the computational complexity, grid search is only
suitable for the adjustment of very few parameters. Perhaps the most elaborate
alternative techniques for choosing multiple hyperparameters are gradient descent
methods [6, 8, 15]. However, these approaches have some severe drawbacks, for
example: The kernel function has to be differentiable, which excludes for example
string kernels. The score function for assessing the performance of the hyperpa-
rameters (or at least an accurate approximation of this function) also has to be
differentiable with respect to kernel and regularization parameters, which excludes
reasonable measures such as the number of support vectors.

In the following, we present the application of the CMA-ES for optimizing
SVM hyperparameters – a new approach that does not suffer from the limitations
described above [14]. Beforehand, we give a concise formal description of SVMs.



118 C. Igel, S. Wiegand and F. Friedrichs

3.3.1. Support vector machines. We consider L1-norm soft margin SVMs for the
discrimination of two classes. Let (xi, ti), 1 ≤ i ≤ , be the training examples,
where ti ∈ {−1, 1} is the label associated with input pattern xi ∈ Rnin . The map-
ping φ : Rnin → F of the input vectors to the feature space F is implicitly done by
a kernel K : Rnin×Rnin → R. The kernel computes an inner product in the feature
space, that is K(xi, xj) = 〈φ(xi), φ(xj)〉. The linear function for classification in
the feature space is chosen according to a bound on the generalization error. This
bound takes a target margin and the margin slack vector into account (cf. [9, 37]).
The latter corresponds to the amounts by which individual training patterns fail
to meet the target margin. This leads to the SVM decision function

h(x) = sign

(
�∑

i=1

tiα
∗
i K(xi, x) + b

)
, (15)

where we define sign(x) = −1 if x < 0 and sign(x) = 1 otherwise. The coefficients
α∗

i are the solution of the following quadratic optimization problem:

maximize W (α) =
�∑

i=1

αi −
1
2

�∑
i,j=1

titjαi, αjK(xi, xj) (16)

subject to
�∑

i=1

αiti = 0

0 ≤ αi ≤ C, i = 1, . . . , .

The optimal value for b can then be computed based on the solution α∗. The
vectors xi with αi > 0 are called support vectors. The regularization parameter C
controls the trade-off between maximizing the target margin and minimizing the
L1-norm of the margin slack vector of the training data.

3.3.2. Evolving SVM hyperparameters. We consider general Gaussian kernels

KA(x, x′) = e−(x−x′)T A(x−x′) , (17)

where x, x′ ∈ Rnin and A is a symmetric positive definite nin × nin matrix. We
allow arbitrary symmetric positive definite matrices A; this means the input space
can be scaled and rotated. The individuals in the ES encode C and the kernel
parameters. When encoding A, we have to ensure that after variation the genotype
still corresponds to a feasible (i.e., symmetric, positive definite) matrix. We make
use of the fact that for any symmetric and positive definite n× n matrix A there
exists an orthogonal n×n matrix T and a diagonal n× n matrix D with positive
entries such that A = T T DT and

T =
n−1∏
i=1

n∏
j=i+1

R(αi,j) , (18)
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data accuracy on test set #SV
Breast-Cancer grid-search 74.51 113.52

evolutionary tuned 75.38± 0.42� 112.70± 0.68�

Diabetes grid-search 76.67 247.83
evolutionary tuned 76.73± 0.32 235.73± 3.43�

Heart grid-search 84.79 106.33
evolutionary tuned 85.14± 0.33� 75.51± 1.5�

Thyroid grid-search 95.83 16.36
evolutionary tuned 96.01± 0.05� 15.42± 0.18�

Table 2. Results averaged over 20 trials ± standard deviations. The
first column specifies the medical benchmark. The second column in-
dicates whether the results refer to the initial grid search values or to
the evolutionary optimized kernels. The percentages of correctly classi-
fied patterns on the test sets (averaged over 100 different partitions into
training and test data) are given as well as the average numbers of sup-
port vectors (#SV). Results that are statistically significantly better
compared to grid-search are marked with � (two-sided t-test, p < .05).

as proven in [36]. The n × n matrices R(αi,j) are elementary rotation matrices.
These are equal to the unit matrix except for [R(αi,j)]ii = [R(αi,j)]jj = cosαij

and [R(αi,j)]ji = − [R(αi,j)]ij = sinαij .
When using the evolution strategy, each genotype encodes the nin + (nin

2 −
nin)/2 + 1 parameters

(C′, d1, . . . , dnin , α1,2, α1,3, . . . , α1,nin , α2,3, α2,4, . . . , α2,nin , . . . , αnin−1,nin) . (19)

We encode A according to (18) and set D = diag(|d1|, . . . , |dn|) and C = |C′|.
We evaluated our approach on common medical benchmark problems [14],

namely Breast-Cancer, Diabetes, Heart, and Thyroid preprocessed and partitioned
as proposed in [31]. These are binary classification problems where the task is
to predict whether a patient suffers from a certain disease or not. There are 100
partitions of each dataset into disjoint training and test sets. In [27], appropriate
SVM hyperparameters C and a for Gaussian kernels with A = aI are determined
using a two-stage grid search. For each hyperparameter combination, five SVMs
are constructed using the training sets of the first five data partitions and the
average of the classification rates on the corresponding five test sets determines
the score value of this parameter vector. The hyperparameter vector with the best
score is selected and its performance is finally measured by calculating the score
function using all 100 partitions.

We initialized our populations with the values found in [27] and used the same
score function to determine the fitness. The results are shown in table 2. Except
for one case, the scaled and rotated kernels led to significantly (p < .05) better
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results. There is another remarkable advantage of the scaled and rotated kernels:
The number of support vectors – and therefore the execution time and storage
complexity of the classifier – decreases. For a detailed description and additional
results see [14].

4. Conclusions

Finding an appropriate neural system for a given task usually requires the solution
of difficult optimization problems. These include adapting the hyperparameters of
support vector machines or finding the right topology of a multi-layer perceptron
network. Evolutionary algorithms (EAs) are particularly well suited for such kinds
of tasks, especially when higher order optimization methods cannot be applied.
We demonstrated three successful applications of evolutionary computation to the
optimization of neural systems, where the EAs made use of deterministic strategy
adaptation to improve the search performance.

Of course, it is appealing to use evolutionary methods for the design of neural
networks, because this resembles the natural evolution of nervous systems. How-
ever, as our examples have shown, evolutionary methods should be regarded as the
state-of-the-art choice for many neural network optimization tasks not because of
the biological metaphor but because they are highly competitive approaches often
superior to alternative methods.
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Finding Relevant Input Arguments
with Radial Basis Function Networks

Detlef H. Mache and Jennifer Meyer

Abstract. In this paper we will give new aspects of the problem of finding
relevant input arguments. This topic is of great interest in several scientific
fields, such as complexity reduction or in applications in the areas of medicine,
biology or technical fields.
Approximation theorists know well the problem of the curse of dimension,
which causes problems for applications using approximation methods.
Here we give an approach which makes use of the scattered data interpolation
abilities of Radial Basis Function Networks to handle this problem.

1. Introduction

Our aim is to demonstrate that neural structures are good tools to handle com-
plexity reduction problems. In fact the algorithm that will be introduced in this
paper is based on a neural structure (a Radial Basis Function Network) and is
able to detect relevant input arguments behind which a very complex and highly
nonlinear structure is found.

To provide a first insight into how complexity problems are present in nature
we take a look at the human brain: There is an unlimited number of information
in the world between which the brain has to select the important ones and for that
the brain has to find methods to present it compressed. This is a very complex
task and how the brain functions in detail is in a lot of aspects unknown, but some
concepts are still clear. Thus mathematicians, computerscientists and engineers are
working on artificial intelligence strategies in the hope that evolution has found
good ideas and so rebuilding that ideas might be powerful. What we know is that
the brain consists of over 1011 little subunits, that work as tiny processors, called
neurons and even 1014 synaptic connections between that neurons and that all
in a brain of only about 1.35 kg. There is no computer that can simulate the
possibilities that a human brain offers. But we still establish algorithms that make
use of learning-strategies and structures we know from the brain.

In this article we thought about how useful computational neural networks
are to do some special kind of complexity reduction.
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2. About relevance

To achieve the competence to talk about complexity reduction by means of finding
relevant input arguments in a complex dataset, we first of all have to discuss what
is meant with the expression relevance. A lot of different definitions of relevance
can be found in literature each of it serves its special use and aim. For our purpose
we use a definition of Caruana and Freitag in [1] which describes the word
relevance with the expression incremetally useful under certain conditions:

Definition 2.1. Let L be a learning algorithm and X = X1×· · ·×Xd, d ∈ N be the
set of attributes that is potentially available to L and S ∈ XN , N ∈ N is a given
dataset. The attribute Xi, i ∈ {1, . . . , d}, is incrementally useful to L in respect
to X, if the result of L with regard to X \Xi on S is worse than the result of L
on S with regard to X.

Our learning algorithm is a special computational neural network, called Ra-
dial Basis Function Network, that is a three-layered, feedforward network, that
uses positive definite functions or conditionally positive definite functions as ker-
nel functions (see for this [4]). Let us formulate the following definition of RBF-
Networks by using Gaussian kernel functions:

Definition 2.2. A Radial Basis Function Network (RBF-Network) is a function of
the following form:

φ : R
d → R,

φ(x) =
p∑

i=1

wie
−q‖x−xi‖2

2 , q > 0,

where xi ∈ Rd, with i = 1, . . . , p ∈ N, are the interpolation points and the centres
of the Gaussian Basis Functions and wi ∈ R, i ∈ 1, . . . , p, are the so-called weights.
d ∈ N denotes the input dimension of the RBF-Network.

In Fig. 1 the neural structure of an RBF-Network as a function approximator
– as it will be used in this paper – is schematically shown.

Micchelli and others started around 1986 a function theory on the solv-
ability of the interpolation problem with RBF-Networks, see for this [4].

We will now come to formulate the details of our algorithm that serves as an
approach to detect the relevant input arguments.

3. Neural cross-validation with RBF-networks
for finding relevant input arguments

The fundametal question is, if a neural network can be used to analyse the structure
of a dataset in that way, to find those input arguments, that are relevant. If the
human brain is so effective in its function to receive signals from the world and to
compute them and to create actions, why should we not use some structures of the
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Figure 1. The neural structure of an RBF-Network

brain to analyse for example complex datasets and try to reduce their complexity
by finding the irrelevant features?

The idea is now, to check how useful it is to use RBF-Networks for complexity
reduction prolems. The choice of RBF-Networks emerged because of our need for a
scattered data function approximation method, a field in which RBF-Networks es-
tablished during the last few decades. The approach was a so-called cross-validated
use of RBF-Networks. Therefore we will first of all present the following definition
of a k-fold cross-validation that follows [5].

Figure 2. Schematic representation of the error minimization strategy

Definition 3.1. A k-fold cross-validation, k ∈ N, is the following proceeding:
Let E be a set of examples and L be a learning process. Partition E into k parts of
about equal size E[1], . . . , E[k]. Hypothesise the results h1, . . . , hk on the following
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basis: hi is for all i = 1, . . . , k defined as the result of L on the set of examples
E \E[i]. The error of L on E can be estimated as

errorCV (E[1],...,E[k])(L, E) :=
∑k

i=1 errorE[i](hi)
k

.

For understanding how RBF-Networks are used in our context to detect the
relevant input arguments, we will first of all introduce one main idea behind our
algorithm. Fig. 2 depicts the framework of our approach:

The available dataset consists of pairs of the form (xi ∈ Rd, yi ∈ R), with
i = 1, . . . , p. We take this dataset and divide it into two parts, one for learning and
the other for propagation. The one for learning trains 2d neural networks. Each
of the 2d networks considers one pattern of input dimension-combination, which
is in the figure indicated by means of showing a 1, if the dimension is regarded
and showing a 0 if the dimension is not regarded. As a result we have 2d neural
networks, which all represent one input pattern. We propagate each such network
with the retained propagation data and build for them a reconstructed output
vector ŷ = (ŷ1, . . . , ŷp)t. For the case, that this output pattern differs from the
actual output vector y = y1, . . . , yp (which is the default case) we measure an
error value, for example the mean squared error (mse) between the two vectors,

emse(yi, ŷi) =
1
p

p∑
i=1

(yi − ŷi)2. (1)

As a result we receive 2d error values and we simply take the best value, that
is the smallest one. The corresponding network now presents our model and the
corresponding input combination is consequently defined as the best one.

Of cause we have to think about the exponential time, but instead using every
2d networks it is also possible to use some evolutionary strategies or greedy ideas
with time O(n), see for this [2]. We now did a kind of a k-fold cross-validation
strategy which is described in the following algorithm, in which some of the yet
described ideas are sketched in a very short form:

1. Divide the given dataset S into two disjoint parts of equal size S = SCV ∪SP .
The elements of the dataset can be randomly chosen. The part SCV is that
one to be taken for training with the cross-validation method and the part SP
denotes the part that is retained for later propagation and error evaluation.

2. Then do a k-fold cross-validation on the part SCV , but in each of the k
learning-steps take every 2d networks with each possible input argument-
combination. Choose in each step the best network and the according best
combination of input arguments with the belonging error-value.

3. Now we have k best input argument combinations. Take the data SP and
propagate these best networks with SP and choose that network and its
corresponding input combination with the smallest error.
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We choose the mean-squared-error (1) as the error-measurement to take more
emphasis on larger errors which is not the case if the mean absolute error (mae)

emae(y, ŷ) =
1
p

p∑
i=1

|yi − ŷi|

is considered. The whole algorithm is – for giving some overview – schematically
summarized in Fig. 3.

Figure 3. Schematic representation of the algorithm NCVRelevance

4. Some examples

In this section we will demonstrate how the algorithm works on some examples of
data. We are going to construct artificial data with the help of common functions
like Rosenbrock’s bananafunction (visualized in Fig. 4) and the so-called Ras-

Figure 4. Rosenbrock’s function f(x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)2
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trigin’s function (see Fig. 5). Both functions are commonly used and famous for
testing optimization strategies.

The generation of the dataset of 400 data points proceeds as following:
We build over 400 times two input arguments randomly between defined

bounds (in the case of normalized data between −1 and 1). Then we construct
two further 400 randomly distributed input data in the defined bounds and com-

Figure 5. Rastrigin’s function f(x1, x2) = 10+(x2
1−10 cos(2πx1))+

(x2
2 − 10 cos(2πx2))

pute the belonging output of each function to these 400 pairs. We receive for each
function data of over 400 data points of each four input data arguments and the
according output data argument that stands in functional correlation with two of
the input data. The question was now, if our algorithm is able to detect in both
cases the two relevant input data arguments. In the case, where we use Rosen-
brock’s banana function for the output data, we put the output of the function in
functional dependence of the first and forth input argument. In the case, where we
use Rastringin’s function we take the output data of the function in dependence
of the first and third input argument.
Our algorithm now easily finds the relevant arguments as shown in Fig. 6 and
Fig. 7. Some graphical tools for giving visual outputs such as linear ranking (see
for this [7]) methods for stressing differences between the relevance of input argu-
ments form the basis of the graphic 6. There are some types of functions generating
datasets, that make it hart to algorithms to detect the right input arguments. Ex-
periments with common algorithms (Rinciple Component Analysis (PCA, first
described in [6], entropy-approaches (Shannon1948), etc.) on such data showed
that these functions show in common a very rough structure. In Fig. 8 we present
such a function that shows a very oscillating behaviour. Our algorithm NCVRel-
evance (Neural Cross-Validation on Relevance) has no problems to detect the
right arguments as shown in Fig. 9. We tested further the algorithm [2] of Kiendl,
Mache, Meyer and Schauten on this data, the result is shown in Fig. 10, where
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Figure 6. The visual output of the algorithm with k = 5 on data,
that have been generated with Rosenbrock’s function. The first input
argument corresponds to x1, the forth to x2. The second and third input
argument are in no functional correlation to the output argument.

we can see that only one argument is detected as to be relevant, the second one is
not found: The algorithm [2] has in fact problems to detect that argument of the
function, that produces the oscillating structure.

5. Conclusions

In this article we showed some examples for demonstrating how the algorithm
works and for giving an impression of the established software NCVRelevance.
We tested it in fact on numerous data, among that industrial, medical and further
artificial data. But in that more real datasets the correct answer which input
arguments are relevant is often not clear at all or only to some extend, so that
our result cannot be proven to be correct. One main interesting fact we found
out is that our algorithm is able to detect input arguments behind which a very
rough structure is found, like it is the case in the example of data generated by
the function in Fig. 8. We suppose that the reason for that are the high nonlinear
structure of our used basis functions and the good abilities of RBF-Networks as
scattered data approximators. In addition we found out that our algorithm often
better detects irrelevant input arguments than other tested algorithms such as
that of Kiendl, Mache, Meyer and Schauten described in [2]. We tested that
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Figure 7. The visual output of the algorithm with k = 5 on data,
that has been generated with Rastrigin’s function. The first input
argument corresponds to x1, the third to x2. The second and forth
input argument are in no functional correlation to the output argument.

Figure 8. f(x1, x2) = cos(100x1) + 0.5x2

hypotheses on especially artificially constructed datasets with functions of difficult
structures, such as functions that are very few smooth or oscillate very strong etc.

In conclusion we can summarize that, as expected, neural structures are good
tools for complexity reduction, like detecting relevant input arguments and further
research on a skilled use of neural structures in this issue is sincerely desirable.
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Figure 9. The visual output of the algorithm with k = 5 on data, that
has been generated with the function f(x1, x2) = cos(100x1) + 0.5x2.
The second input argument corresponds to x1, the third to x2. The first
and fourth input argument are in no functional correlation to the output
argument.

Figure 10. Visual output of the algorithm [2]. The second output cor-
responds to x1 and is not detected to be relevant.
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Subdivision Schemes and Non Nested Grids

Marie-Laurence Mazure

Abstract. Spline subdivision suggests the necessity of possibly using non
nested grids to analyse the convergence of subdivision schemes, and also of
changing grids to prove the smoothness of the limit curves. Inspired by this
example, we introduce both non nested binary grids and equivalent grids. We
give a sufficient condition for convergence, and we show how to use it through
changes of grids to guarantee smoothness.

1. Introduction

As is well known, curve subdivision schemes are systematic procedures to build
curves as limits of sequences of polygonal lines in R

d, for some d ≥ 1. At each level,
each vertex of the polygonal line is calculated from the vertices of the polygonal
line of the previous level. In some schemes this is done in a purely geometrical way,
e.g., in the very first subdivision schemes considered (see [13]), which we refer to
as the de Rham schemes, and which we shall describe below. Once and for all, a
positive number γ is selected. At each level, place two consecutive points of the
next level on each segment of the polygonal line, so that they divide the segment
with ratios 1 : γ : 1. Denoting by fj,k, k ∈ Z, the vertices of level j ≥ 0, this can
be explicitly done through the following equalities:

fj+1,2k =
1 + γ

2 + γ
fj,k−1 +

1
2 + γ

fj,k, fj+1,2k+1 =
1

2 + γ
fj,k−1 +

1 + γ

2 + γ
fj,k. (1)

On the other hand, some schemes do involve a grid in their definition, e.g., all
Lagrange interpolatory subdivision schemes. For all j ≥ 0, and all k ∈ Z, set
xj,k := 2−jk. Given some fixed positive integer N , the vertices of level (j + 1) are
now defined from those of level j by (see [6,9])

fj+1,2k := fj,k, fj+1,2k+1 := Pj,k(xj+1,2k+1), (2)

where Pj,k denotes the polynomial function of degree at most 2N-1 with values
in R

d which satisfies the Lagrange interpolating conditions Pj,k(xj,r) := fj,r for
k−N +1 ≤ r ≤ k+N . Both examples (1) and (2) are classical and they will serve
as references in our introduction.
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Now, whether or not a grid is involved in the definition of a given subdivision
scheme, the simplest idea to analyse its convergence is to introduce parameterisa-
tions of the polygonal lines. This is generally done by reference to a regular grid,
that is, by studying the convergence of the sequence of piecewise affine functions
parameterising the polygonal line of level j, with knots at the points 2−jk, k ∈ Z.
This choice seems especially logical for all subdivision schemes which, like our two
reference schemes, are regular both in space (uniform schemes: the procedure does
not depend on k) and in time (stationary schemes: the procedure is the same at any
level). Nonetheless, it is quite usual to also resort to regular grids for nonstation-
ary/nonuniform schemes (see, for instance, [8]). Still, the necessity of considering
irregular grids recently came out, in particular in relation with the construction of
second generation wavelets. In [10], this was our original motivation for studying
non regular Lagrange interpolatory schemes. Such schemes are defined exactly as
in (2), but using now non regularly spaced points xj,k (see also [4]), assumed to
satisfy xj,k < xj,k+1, along with the nestedness condition: xj+1,2k = xj,k for all
j ≥ 0 and all k ∈ Z. This in turn justified our interest in convergence of general
subdivision schemes in connection with irregular grids. In particular, inspired by a
well-known necessary and sufficient condition for stationary and uniform schemes
associated with the regular grid [7], we established in [10] an interesting sufficient
condition of convergence in terms of the difference schemes. We also showed how
to guarantee smoothness of the limit curves by applying the sufficient condition
to the derived schemes. Most logically, the grid which intervenes for the study of
Lagrange interpolatory schemes is the grid composed of the points xj,k involved
in its definition.

Let us now come back to the de Rham scheme (1) associated with the par-
ticular value γ = 2: two consecutive vertices of level j + 1 are then located at
one fourth and three fourths respectively on a given segment of level j. This is
also known as the Chaikin algorithm [1]. It is well known that each step describes
insertion of knots for quadratic C1 polynomial spline curves with regularly spaced
knots at each level. The limit curve is then the quadratic spline the poles of which
are the initial vertices [14]. Hence, although not visible at first sight, the Chaikin
algorithm does implicitly involve a regular grid. This can be seen as one more
justification for analysing its convergence using the points 2−jk. Knot insertion
for splines is not limited to the case of regularly spaces knots, so let us see if this
is confirmed by the extension to the nonregular case. At a given level j, we start
with a strictly increasing sequence of non regularly spaced knots xj,k, k ∈ Z, and
for each k, we insert a new knot xj+1,2k+1, while keeping all old knots through the
nestedness condition xj+1,2k = xj,k. The poles (see section 4) fj+1,k, k ∈ Z, of level
j + 1 are then obtained from those of level j by means of the following equalities:⎧⎪⎪⎨⎪⎪⎩

fj+1,2k =
xj+1,2k+1 − xj,k+2

xj,k − xj,k+2
fj,k−1 +

xj+1,2k+1 − xj,k

xj,k+2 − xj,k
fj,k,

fj+1,2k+1 =
xj+1,2k+3 − xj,k+2

xj,k − xj,k+2
fj,k−1 +

xj+1,2k+3 − xj,k

xj,k+2 − xj,k
fj,k.

(3)
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At first sight, the nested grid composed of the knots xj,k may seem the natural grid
to associate with the subdivision scheme (3). Still, it is not so. This becomes to-
tally clear when trying to use derived schemes to verify the smoothness of the limit
curves, but it was already suggested by the fact that the pole fj,k is not linked to
one of the knots of level j, but to a couple of consecutive knots. Both reasons clearly
indicate that the proper grid is that composed of all points (xj,k+1 + xj,k+2)/2. It
is easy to check that this is not a nested grid. In the Chaikin algorithm we should
thus use the points 2−j(k + 3

2 ), but the regularity makes it possible to replace it
by the usual nested regular grid as well.

Therefore, spline subdivision does highlight the necessity of not limiting our-
selves to nested grids, and it was the actual motivation of the present work. As a
matter of fact, there is a crucial difference between Lagrange interpolatory schemes
and de Rham schemes: the former are interpolatory, in the sense that all vertices
of level j are maintained at level j + 1 by the left equality in (2), while the lat-
ter are not. Being nested is for grids the exact analogue of being interpolary for
subdivision schemes. Therefore, while it is most logical to use nested grids for the
study of interpolatory schemes, it is no longer so for non interpolatory ones. On
the other hand, considering spline subdivision of higher degrees suggests another
crucial idea, namely the fact that we have to reserve the right to change grid as
we want to prove more smoothess of the limit curves.

The need of choosing a grid adapted to the subdivision scheme when leaving
the interpolatory framework was already pointed out in the most interesting paper
[5], in particular in order to construct derived schemes. In the latter paper too non
nested grids are considered, which in some sense become nested at infinite, but
both the definitions and the purposes are different from ours.

The paper is organized as follows. The second section contains all necessary
definitions and technical results about grids and convergence of sequences of poly-
gonal lines. The two main ideas are the use of non nested binary grids, supposed
to meet as weak as possible requirements, and the possibility of changing grids
to analyse the smoothness of the limit curves. In the third section we recall the
basic tools concerning subdivision schemes and we extend to non nested grids the
sufficient condition for convergence established for nested ones in [10]. We also
show how to use the results of the first section to guarantee smoothness of limit
curves produced by subdivision schemes. Finally, the fourth section illustrates all
results of the previous one through the example of spline subdivision.

2. Preliminaries

This section contains preliminaries about curves obtained as limits of sequences
of polygonal lines. A natural way to define such limits is to involve parameterisa-
tions relative to grids. Such grids are generally assumed to be nested. However,
motivated by the example of spline subdivision, in the present paper we relax the
assumption of nestedness.
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2.1. Convergence of polygonal lines

In this subsection we are concerned with the convergence of sequences of polygonal
lines. Let Lj , j ≥ 0, be such a sequence in the space R

d, d ≥ 1. At each level j, we
assume that the polygonal line Lj is given by its vertices fj,k ∈ R

d, k ∈ Z. The
simplest idea to define the convergence is to introduce parameterisations and to
consider the convergence of the corresponding sequence of parameterisations.

With this in mind, for each j ≥ 0, we choose a grid of level j, that is, a
bi-infinite sequence Xj :=

(
xj,k

)
k∈Z

, of real numbers, meeting the following two
basic requirements:

(G1) xj,k < xj,k+1 for all k ∈ Z;

(G2) limk→−∞ xj,k = −∞, limk→+∞ xj,k = +∞.

Without any more requirements, we shall refer to the sequence X :=
(
Xj

)
j≥0

as
the chosen grid. The two properties (G1) and (G2) are exactly what is needed to
ensure that, for any nonnegative integer j, the function Fj : R→ R

d such that

Fj(xj,k) = fj,k, Fj is affine on [xj,k, xj,k+1], k ∈ Z, (4)

is well defined. However, through elementary examples, it is easy to get convinced
that defining the convergence of the sequence Lj, j ≥ 0, through the convergence
of the sequence of functions Fj , j ≥ 0, (pointwise for instance) would be nonsense
without some additional requirement on how consecutive levels are linked. This
can be done for instance by considering binary grids, that is grids X in which any
two points xj+1,2k and xj+1,2k+1 of level j + 1 are “affiliated” in some sense to
the point xj,k of level j. This affiliation is generally meant as the fact that that
xj+1,2k = xj,k for all k ∈ Z, and therefore, for all k ∈ Z, xj+1,2k+1 is located in the
interval ]xj,k, xj,k+1[. In such a case we shall say that the grid is a nested binary
grid. In the present paper, the expression binary grid is to be understood with the
following larger meaning:

(G3) the grid X is said to be binary if there exist two integers N1, N2 ∈ Z

such that:

xj+1,2k+N1 ≤ xj,k ≤ xj+1,2k+N2 , k ∈ Z, j ≥ 0. (5)

The particular case of nested binary grid thus corresponds to N1 = N2 = 0. Of
course, when the grid is binary, it is sufficient to require (G2) to be satisfied by the
grid of level 0. The latter definition of binary grids is inspired by the example of
spline subdivision as we shall see in Section 4. Clearly, the definition could easily
be adapted to ternary grids, or more generally to p-ary grids.

Definition 2.1. We say that the sequence of polygonal lines Lj, j ≥ 0, converges if
there exists a binary grid X such that the corresponding sequence of parameterisa-
tions Fj , j ≥ 0, converges uniformly on any compact subset of R. If so, we shall
say that the sequence of polygonal lines converges relative to the grid X .
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Given another binary grid X̂ =
(
X̂j

)
j≥0

, with X̂j :=
(
x̂j,k

)
k∈Z

, consider the
piecewise affine functions ϕj : R→ R, j ≥ 0, defined by:

ϕj(xj,k) = x̂j,k, ϕj is affine on [xj,k, xj,k+1], k ∈ Z. (6)

Due to (G1), each function ϕj is strictly increasing on R. The convergence of the
same sequence of polygonal lines Lj, j ≥ 0, will now be studied by considering
the convergence of the piecewise affine functions F̂j defined as in (4) but using the
new grid X̂ , so that

Fj = F̂j ◦ ϕj , j ≥ 0. (7)

The following statement makes Definition 2.1 consistent.

Proposition 2.2. If a sequence of polygonal lines in R
d converges relative to two

binary grids X and X̂ , then the corresponding limit curves C and Ĉ are identical.

Proof. Denote by N̂1, N̂2 the two integers provided by (G3) concerning the grid
X̂ . Then, applying (5) repeatedly gives, for any k ∈ Z:

xj,2jk+(2j−1)N1 ≤ x0,k ≤ xj,2jk+(2j−1)N2 ,

x̂j,2jk+(2j−1)N̂1
≤ x̂0,k ≤ x̂j,2jk+(2j−1)N̂2

.
(8)

Let t0 be a real number. Due to (G1) and (G2) we can consider the two integers
0 and r0 uniquely defined by x0,�0 := Max{x0,k, k ∈ Z and x0,k ≤ t0} and
x0,r0 := Min{x0,k, k ∈ Z and x0,k ≥ t0}. From the left part of (8) we can deduce
that, for all j ≥ 0,

xj,2j�0+(2j−1)N1 ≤ t0 ≤ xj,2jr0+(2j−1)N2 ,

whence, using definition (6):

x̂j,2j�0+(2j−1)N1 ≤ ϕj(t0) ≤ x̂j,2jr0+(2j−1)N2 .

Using now the right part of (8), this ensures that:

x̂0,k1 ≤ ϕj(t0) ≤ x̂0,k2 , j ≥ 0,

where k1, k2 are any two integers chosen so that

k1 ≤ 0 + (1 − 2−j)(N1 − N̂2), k2 ≥ r0 + (1 − 2−j)(N2 − N̂1) for all j ≥ 0.

In the compact interval [x̂0,k1 , x̂0,k2 ] we can find a convergent subsequence ϕjr (t0),
r ≥ 0. Set t̂0 := limr→+∞ ϕjr (t0). On account of (7), the uniform convergence of
the sequence F̂j , j ≥ 0, to a function F̂ , guarantees that F (t0) = F̂ (t̂0). Therefore,
the two sets C := {F (t), t ∈ R} and Ĉ := {F̂ (t), t ∈ R} are identical, i.e., the
functions F and F̂ are two different parameterisations of the same curve. �

Remark 2.3. Due to the two assumptions (G1) and (G2), for any given t0 ∈ R,
and any j ≥ 0, we can choose an integer kj(t0) such that

|xj,kj(t0) − t0| =Min
k∈Z

|xj,k − t0|. (9)
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Indeed, generalising what we did in the proof of proposition 2.2, we can consider
the two integers j(t0), rj(t0) (0 ≤ rj(t0) − j(t0) ≤ 1), defined by xj,�j(t0) :=
Max{xj,k, k ∈ Z and xj,k ≤ t0}, xj,rj(t0) := Min{xj,k, k ∈ Z and xj,k ≥ t0}. For
any j ≥ 0, kj(t0) is equal to either j(t0) or rj(t0). Arguments similar to those
used in the proof of Proposition 2.2 lead to

x0,k1 ≤ xj,2j�0(t0)+(2j−1)N1 ≤ t0 < xj,2j(r0(t0))+(2j−1)N2 ≤ x0,k2

for all j ≥ 0, with k1 := 0(t0) − N2 + N1, k2 := r0(t0) + N2 − N1. Accordingly,
for any t ∈ R, the sequence xj,kj(t), j ≥ 0, is bounded, and therefore admits
a subsequence which converges, but a priori nothing guarantees that it converges
to t. It is natural to introduce a kind of “density assumption” for the grids, the
weakest possible will be the following one:

(G4) for each real number t, the (bounded) sequence xj,kj(t), j ≥ 0, admits
a subsequence converging to t.

Note that, if the binary grid X is nested, then (G4) holds iff limj→+∞ xj,kj(t) = t
for all t ∈ R.

2.2. Equivalent grids

Later on we shall be interested not only in getting the same limit curve relative
to different grids, but even the same limit function. This is why we introduce the
following definition.

Definition 2.4. We say that two grids X and X̂ are equivalent if the sequence of
functions ϕj, j ≥ 0, defined in (6) is pointwise convergent to IdR.

Let us now compare convergence relative to equivalent grids.

Proposition 2.5. Let X and X̂ be two equivalent binary grids. Then, any sequence
Lj, j ≥ 0, of polygonal lines converges relative to X iff it converges relative to X̂ ,
with the same limit function.

Proof. Each function ϕj defined in (6) is an increasing bijection of R. Accordingly,
if the sequence ϕj , j ≥ 0 is pointwise convergent to IdR,
(a) so is the sequence ϕ−1

j , j ≥ 0;
(b) the convergence is uniform on compact sets of R.

If F̂j converges to F uniformly on compact sets of R, due to (7) and (b), so does
Fj . On account of (a), the proof is complete. �

Remark 2.6.
1. Two nested binary grids are equivalent iff they are identical.
2. If a binary grid X satisfies (G4), then any binary grid X̂ which is equivalent

to X also satisfies (G4).
3. In the proof of Proposition 2.5, we already observed the reflexivity of the re-

lation “being equivalent”. It is also transitive, hence it is a relation of equiv-
alence in the set of all binary grids.
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4. It is possible to introduce a weaker relation of equivalence between binary
grids by requiring more generally that the sequence ϕj , j ≥ 0, converges to a
continuous (or, more generally Cp for some p ≥ 0) bijection ϕ : R→ R. This
would maintain the result of Proposition 2.5, but now the limit functions F

and F̂ would satisfy F = F̂ ◦ ϕ, i.e., ϕ would be a C0 (resp. Cp) change of
parameterisation.

Let us now present an interesting example of equivalent binary grids which
will intervene in Section 4. We first need to introduce the following definition, in
which we adopt the terminology of [4].

Definition 2.7. We say that a binary grid X is homogenous, if

η := Sup
j≥0, k∈Z

Max
(dj,k+1

dj,k
,

dj,k

dj,k+1

)
< +∞, (10)

where

dj,k := xj,k − xj,k−1, k ∈ Z, j ≥ 0. (11)

Proposition 2.8. Let X be a homogenous nested binary grid. Then, for any given
p1 < p2 in Z, the grid X̂ defined by

x̂j,k :=
xj,k+p1+1 + · · ·+ xj,k+p2

p2 − p1
, k ∈ Z, j ≥ 0, (12)

is a homogenous binary grid which is equivalent to X and which satisfies (G4).

Although Proposition 2.8 could be proved more directly, we will obtain it by means
of the following lemma which we shall need in Section 4 for other purposes.

Lemma 2.9. Suppose that the binary grid X is nested and homogenous. Then, for
any n ≥ 1, there exists a positive number An < 1 such that, for any k,  ∈ Z,

2 ≤ k ≤ 2 + n ⇒ xj+1,k+n − xj+1,k ≤ An (xj,�+n − xj,�). (13)

We can choose for instance An := η[ n+1
2 ]

1+η[ n+1
2 ]

, where η is defined by (10).

Proof. Although the proof will not be done by induction, we start by proving (13)
for n = 1. Dividing by (1 + η) both hand sides of each inequality dj+1,2�+1 ≤
ηdj+1,2�+2 and dj+1,2�+2 ≤ ηdj+1,2�+1, yields, with A1 := η/(1 + η) ∈ [1/2, 1[ :

(1 −A1) dj+1,2�+1 ≤ A1 dj+1,2�+2, (1−A1) dj+1,2�+2 ≤ A1 dj+1,2�+1.

The grid X being nested, we have dj,�+1 = dj+1,2�+1 +dj+1,2�+2. Whence dj+1,2�+1

≤ A1 dj,�+1 and dj+1,2�+2 ≤ A1 dj,�+1. This is the announced result for n = 1.

Let us now consider the case n = 2m ≥ 2. Let k,  ∈ Z be two integers such
that 2 ≤ k ≤ 2 + n. Suppose first that k = 2p, so that  ≤ p ≤  + m. Then,
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again due to the grid X being nested, we have:

xj+1,k+n − xj+1,k = xj,p+m − xj,p =
p+m∑

r=p+1

dj,r, (14)

xj,�+n − xj,� =
p∑

r=�+1

dj,r +
p+m∑

r=p+1

dj,r +
�+n∑

r=p+m+1

dj,r. (15)

Using (10) repeatedly leads to:

dj,r ≥
dj,r+p−�

ηp−�
for  + 1 ≤ r ≤ p, dj,r ≥

dj,r+p−m−�

η�+m−p
for p + m + 1 ≤ r ≤  + n.

Hence (15) gives:

xj,�+n − xj,� ≥
2p−�∑

r=p+1

dj,r(1 +
1

ηp−�
) +

p+m∑
r=2p−�+1

dj,r(1 +
1

η�+m−p
).

Therefore, due to (14), the announced inequality xj+1,k+n−xj+1,k ≤ An(xj,�+n−
xj,�) will be satisfied for any An such that

An ≥ Max
( ηp−�

ηp−� + 1
,

η�+m−p

η�+m−p + 1
)
. (16)

Suppose now that k = 2p + 1, so that  ≤ p ≤  + m− 1. Then, taking the result
proved for n = 1 into account, we can write:

xj+1,k+n − xj+1,k = dj+1,2p+2 + dj+1,2p+2m+1 +
p+m∑

r=p+2

dj,r

≤ A1(dj,p+1 + dj,p+m+1) +
p+m∑

r=p+2

dj,r. (17)

On the other hand,

xj,�+n − xj,� = dj,p+1 + dj,p+m+1 +
p∑

r=�+1

dj,r +
p+m∑

r=p+2

dj,r +
�+n∑

r=p+m+2

dj,r. (18)

Using (10) repeatedly as previously, equality (18) leads to:

xj,�+n−xj,� ≥ dj,p+1+dj,p+m+1+
2p−�+1∑
r=p+2

dj,r(1+
1

ηp−�+1
)+

p+m∑
r=2p−�+2

dj,r(1+
1

η�+m−p
).

By comparison with (17), the inequality xj+1,k+n−xj+1,k ≤ An(xj,�+n−xj,�) will
now be satisfied for any An such that

An ≥Max
(
A1,

ηp−�+1

ηp−�+1 + 1
,

η�+m−p

η�+m−p + 1
)
. (19)
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Gathering all cases (16) and (19), the expected result is obtained by choosing An

so that:

1 > An ≥
ηm

ηm + 1
=

η[ n+1
2 ]

1 + η[ n+1
2 ]

.

The case n = 2m + 1 can be proved in a similar way. �

Lemma 2.10. Suppose that the binary grid X is nested and homogenous. Then, for
any given n ∈ Z, we have, with the notations introduced in (9):

lim
j→+∞

xj,kj(t)+n = t for all t ∈ R . (20)

Proof. Consider any sequence of integers mj , j ≥ 0, such that 2mj ≤ mj+1 ≤
2mj + 1. Then, for any integer n ≥ 1, iteration of (13) yields:

xj,mj+n − xj,mj ≤ An(xj−1,mj−1+n − xj−1,mj−1 ) ≤ · · · ≤ An
j(x0,m0+n − x0,m0).

Hence
lim

j→+∞
(xj,mj+n − xj,mj ) = 0. (21)

For a given t ∈ R, using the notations introduced in Remark 2.3, it is straightfor-
ward to derive, for all j ≥ 0:

xj,�j(t) = xj+1,2�j(t) ≤ xj+1,�j+1(t) ≤ t < xj+1,�j+1(t)+1 ≤ xj+1,2�j(t)+2 = xj,�j(t)+1.

Hence
2j(t) ≤ j+1(t) ≤ 2j(t) + 1, j ≥ 0.

Applied to the sequence j(t), j ≥ 0, (21) enables us to conclude that:

lim
j→+∞

(xj,�j(t)+n − xj,�j(t)) = 0.

On the other hand the two sequences xj,�j(t) and xj,�j(t)+1, j ≥ 0, are respectively
nondecreasing, and nonincreasing. It follows that:

lim
j→+∞

xj,�j(t) = lim
j→+∞

xj,�j(t)+1 = · · · = lim
j→+∞

xj,�j(t)+n = t, t ∈ R . (22)

From (13), it also results that

2− n ≤ k ≤ 2 ⇒ xj+1,k − xj+1,k−n ≤ An (xj,� − xj,�−n).

Taking into account the fact that, for all j ≥ 0, 2rj(t)−1 ≤ rj+1(t) ≤ 2rj(t) would
similarily lead to

lim
j→+∞

xj,rj(t) = lim
j→+∞

xj,rj(t)−1 = · · · = lim
j→+∞

xj,rj(t)−n = t, t ∈ R . (23)

The announced relation (20) follows easily from (22) and (23). �

Proof of Proposition 2.8. All grids (12) do satisfy (G1) and (G2), but none of them
is nested. They are examples of binary grids since they do satisfy (G3) too: indeed,
for all j ≥ 0 and all k ∈ Z, we have

x̂j+1,2k+N̂1
≤ x̂j,k ≤ x̂j+1,2k+N̂2

, N̂1 := p1 + 1, N̂2 := p2, (24)

with strict inequalities as soon as p2 − p1 ≥ 2.
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On the other hand, let t be a given real number. From (20) we can derive
that, for all n ∈ Z,

lim
j→+∞

x̂j,kj(t)+n = t. (25)

Transforming the double inequality xj,kj(t)−1 ≤ t ≤ xj,kj(t)+1 via the increasing
function ϕj defined in (6) gives:

x̂j,kj(t)−1 ≤ ϕj(t) ≤ x̂j,kj(t)+1.

Relation (25) proves that limj→+∞ ϕj(t) = t. �

2.3. On the regularity of the limits

We now address the problem of how to guarantee the regularity of the limit curve
of a convergent sequence of polygonal lines. This will be done by studying the reg-
ularity of the limit function involved. For this purpose we shall associate with the
initial sequence a new one, obtained by means of divided differences of order one.

For a given j ≥ 0, we consider the divided differences of the sequence Fj

based on consecutive points of the grids at level j, i.e.,

f
[1]
j,k := [xj,k, xj,k−1]Fj :=

fj,k − fj,k−1

xj,k − xj,k−1
, k ∈ Z. (26)

We denote by L
[1]
j the polygonal line with vertices f

[1]
j,k, and we call the sequence

L
[1]
j , j ≥ 0, the derived sequence of Lj, j ≥ 0, w.r. to X . Similarly to (4), we shall

denote by F
[1]
j : R→ R the function defined by

F
[1]
j (xj,k) = f

[1]
j,k, F

[1]
j is affine on [xj,k, xj,k+1], k ∈ Z. (27)

The following proposition extends [4,Lemma 5].

Proposition 2.11. Let X be a binary grid satisfying (G4). Assume that the sequence
Lj, j ≥ 0, and its derived sequence w.r. to X both converge relative to X , and let F

and F [1] be the corresponding limit functions. Then, the function F is continuously
differentiable and we have:

F ′ = F [1]. (28)

Proof. Given y ∈ R, let us introduce, for y1 �= y2, the quantity:

H(y1, y2) :=
F (y1)− F (y2)

y1 − y2
− F [1](y). (29)

Given any j ≥ 0, and any k1, k2 ∈ Z, with xj,k1 �= xj,k2 (that is, k1 �= k2), we can
write:

|H(y1, y2)| ≤ |H1(y1, y2)|+ |H2(y1, y2)|+ |H3(y1, y2)|. (30)
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where:

H1(y1, y2) : =
F (y1)− fj,k1

y1 − y2
− F (y2)− fj,k2

y1 − y2
,

H2(y1, y2) : = (fj,k1 − fj,k2)
( 1
y1 − y2

− 1
xj,k1 − xj,k2

)
, (31)

H3(y1, y2) : =
fj,k1 − fj,k2

xj,k1 − xj,k2

− F [1](y).

In order to prove that limy1,y2→y H(y1, y2) = 0, we consider a given ε > 0. It
is sufficient to show that, for any y1 �= y2 sufficiently close to y, a convenient
choice of the integers j, k1, k2 will enable us to bound each of the three quantities
|Hi(y1, y2)|, i = 1, 2, 3, by ε.

Let us first transform the quantity H3(y1, y2). Being interested only by its
absolute value, without loss of generality we can suppose that k1 < k2. We can
then write, taking account of (26):

xj,k2 − xj,k1 =
k2∑

k=k1+1

(xj,k − xj,k−1), (32)

fj,k2 − fj,k1 =
k2∑

k=k1+1

(fj,k − fj,k−1) =
k2∑

k=k1+1

f
[1]
j,k (xj,k − xj,k−1).

Accordingly:

|H3(y1, y2)| =
1

xj,k2 − xj,k1

∣∣∣∣∣
k2∑

k=k1+1

(
f

[1]
j,k − F [1](y)

)
(xj,k − xj,k−1)

∣∣∣∣∣ .
Equality (32) makes it clear that, in order to ensure |H3(y1, y2)| < ε, it is sufficient
to choose the integers j, k1, and k2 so that

|f [1]
j,k − F [1](y)| ≤ ε for k1 + 1 ≤ k ≤ k2. (33)

Now, using both the uniform continuity of F [1] on any interval [y−α, y+α], α > 0
and the uniform convergence on [y− α, y + α] of the sequence F

[1]
j , j ≥ 0, to F [1],

we can derive the existence of a real number δ > 0 and of an integer J(ε) ≥ 0, so
that :

|x− y| ≤ δ and j ≥ J(ε) ⇒ |F [1](y)− F
[1]
j (x)| ≤ ε. (34)

Once and for all, we choose two points y1, y2 such that

y1 �= y2, |y1 − y| ≤ δ

2
, |y2 − y| ≤ δ

2
. (35)

As observed in Remark 2.3, we know that the two sequences xj,kj(y1), xj,kj(y2),
j ≥ 0, are bounded. This, along with the fact that the grid X satisfies (G4),
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ensures the existence of a strictly increasing sequence of nonnegative integers jr,
r ≥ 0, and two sequences k1

r , k2
r , in Z, such that

y1 = lim
r→+∞xjr ,k1

r
, y2 = lim

r→+∞xjr ,k2
r
. (36)

Denote by R(ε) an integer such that:

r ≥ R(ε) ⇒
{

jr ≥ J(ε)
|yi − xjr ,ki

r
| ≤ δ

2 , i = 1, 2. (37)

Choose r ≥ R(ε). Due to (35) and (37), any real number x located between xjr ,k1
r

and xjr ,k2
r

satisfies |x−y| ≤ δ. Hence, due to (34), it satisfies |F [1](y)−F
[1]
jr

(x)| ≤ ε.
In particular, for any k between k1

r and k2
r , the point xjr ,k is located between xjr ,k1

r

and xjr ,k2
r
. Since F

[1]
jr

(xjr ,k) = f
[1]
jr ,k, we can thus state

|F [1](y)− f
[1]
jr,k| ≤ ε for any k between k1

r and k2
r . (38)

According to (33), we have thus proved that

j := jr, k1 := k1
r , k2 := k2

r , r ≥ R(ε) ⇒ |H3(y1, y2)| ≤ ε. (39)

On the other hand, the uniform convergence of Fj and the uniform continuity of
F on a compact containing y1, y2 guarantee that

F (yi) = lim
r→+∞Fjr (xjr ,ki

r
) = lim

r→+∞ fjr,ki
r
, i = 1, 2. (40)

In particular, relation (40) enables us to bound |fjr,k1
r
− fjr ,k2

r
| independently of

r. From (36), we know that

lim
r→+∞

(
xjr ,k1

r
− xjr ,k2

r

)
= y1 − y2 �= 0.

It is thus possible to choose R′(ε) ≥ 0 so that,

j := jr, k1 := k1
r , k2 := k2

r , r ≥ R′(ε) ⇒ |Hi(y1, y2)| ≤ ε for i = 1, 2. (41)

Choose j := jr, with r ≥ max(R(ε), R′(ε)). On account of (39) and (41), the
corresponding inequality (30) ensures |H(y1, y2)| ≤ 3ε. �
Remark 2.12. The proof of (28) does not require the grid to be binary, it only uses
condition (G4). Even (G4) is only a sufficient condition as shown by the following
trivial example. Choose fj := Xj for all j ≥ 0. Then, obviously, f

[1]
j = 1, where

1 denotes the bi-infinite sequence all components of which are equal to 1. With
this choice, (28) is satisfied with no condition on the grid other than the basic
requirements (G1) and (G2), since F (t) = Fj(t) = t and F [1](t) = F

[1]
j (t) = 1

for all t.

Corollary 2.13. Let Lj, j ≥ 0, be a sequence of polygonal lines, and let X 0,
X 1, . . . ,XP be a sequence of equivalent binary grids. For 1 ≤ p ≤ P , we de-
fine recursively the sequence L

[p]
j , j ≥ 0, as the derived sequence of L

[p−1]
j , j ≥ 0,

w.r. to X p, with L
[0]
j := Lj. Suppose that, for 0 ≤ p ≤ P , the sequence L

[p]
j , j ≥ 0,
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converges relative to X p, with limit function F
[p]
j . Then, if the grid X 0 satisfies

(G4), the function F := F [0] is CP on R, with

F (p) = F [p], 0 ≤ p ≤ P. (42)

Proof. Since X 0 satisfies (G4), so does any of the grids X 1, . . . ,XP (see Remark
2.6, 2). For any j ≥ 0, let fj = f

[0]
j be the sequences of vertices of the polygonal

line Lj. For 1 ≤ p ≤ P , and j ≥ 0, the vertices f
[p]
j of the polygonal line L

[p]
j are

defined by:

f
[p]
j,k := [xp

j,k, xp
j,k−1]F

[p−1]
j :=

f
[p−1]
j,k − f

[p−1]
j,k−1

xp
j,k − xp

j,k−1

, (43)

where, for 0 ≤ p ≤ P , and j ≥ 0, F
[p]
j denotes the following function:

F
[p]
j (xp

j,k) = f
[p]
j,k, F

[p]
j is affine on [xp

j,k, xp
j,k+1] , k ∈ Z. (44)

The assumption ensures that, for 0 ≤ p ≤ P , the sequence F
[p]
j , j ≥ 0, converges

to F [p] uniformly on compact sets. Let us fix p ≤ P − 1. The two grids X p and
X p+1 being equivalent the sequence L

[p]
j , j ≥ 0, is convergent relative to X p+1 too,

with limit function F [p], which means that the sequence F̂
[p]
j , j ≥ 0, defined by:

F̂
[p]
j (xp+1

j,k ) = f
[p]
j,k, F̂

[p]
j is affine on [xp+1

j,k , xp+1
j,k+1] , k ∈ Z. (45)

converges to F [p] uniformly on any compact of R. By application of Proposition
2.11 to the sequences of polygonal lines L

[p]
j , L

[p+1]
j , j ≥ 0, and to the grid X [p+1]

(that is, to the two sequences F̂
[p]
j , F

[p+1]
j defined in (45) and (44), respectively),

it follows that F [p] is C1 on R, with F [p]′ = F [p+1]. �

Remark 2.14. 1. We have worked with backward divided differences, but all previous
results would be valid with forward divided differences as well. Our choice will
become clear in Section 4.
2. Even though we were interested in differentiability of order P , we limited our-
selves to considering everywhere divided differences of order 1. This was made
possible by allowing changes of grids. Indeed, up to multiplication by a constant,
divided differences of any order p can be viewed as divided differences of order one
w.r. to a new grid. Starting from an initial binary grid X , let us define the grids
X 1, . . . ,XP as follows:

xp
j,k :=

xj,k−p+1 + · · ·+ xj,k

p
, j ≥ 0, k ∈ Z, 1 ≤ p ≤ P. (46)

Then, up to multiplication by p!, the quantity f
[p]
j,k defined in (43), is nothing but

the divided difference of order p of the function Fj , based on the p + 1 points
xj,k, xj,k−1, . . . , xj,k−p, i.e.,

f
[p]
j,k = p! [xj,k, . . . , xj,k−p]Fj .
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Had we worked with f̂
[p]
j,k := [xj,k, . . . , xj,k−p]Fj instead of f

[p]
j,k to define the polyg-

onal lines L
[p]
j , formula (42) would then become F (p) = p! F [p]. Actually, our defi-

nition of f
[p]
j,k by means of the grids introduced in (46) might be the proper way to

define divided differences of any order. This way, for instance, the pth order di-
vided difference of a sufficiently differentiable function F would be equal to F (p)(ξ)
for some point ξ located in any interval containing the p+1 real numbers on which
the divided difference is based (see [5] for similar observations).

3. Non nested grids for subdivision schemes

A subdivision scheme is a systematic procedure to produce sequences of polygonal
lines from given initial ones. We present here the tools about linear binary subdi-
vision schemes which will be useful to state a sufficient condition for convergence
of the sequences of polygonal lines such a scheme produces.

3.1. Subdivision schemes, difference and derived schemes

A linear subdivision scheme is defined as an infinite sequence S = {Sj , j ≥ 0} of
matrices Sj := (Sj,k,�)k,�∈Z. By means of such a sequence, it is possible to construct
sequences of polygonal lines Lj, j ≥ 0, in R

d, d ≥ 1, in the following way. For any
j ≥ 0, we denote by fj := (fj,k)k∈Z a bi-infinite sequence of vertices in R

d, so that
fj actually represents a matrix with d columns and a bi-infinite number of rows.
The vertices of level j + 1 are calculated from those of level j as follows:

fj+1 := Sjfj , j ≥ 0. (47)

For this to be valid without any restriction on fj , it is assumed that each row
of Sj contains only a finite number of nonzero elements. For binary schemes, the
elements fj+1,2k and fj+1,2k+1 are affiliated to fj,k, generally by assuming that the
nonzero elements of the row of index p to have indices centered around p/2. The
number of nonzero elements is generally assumed to be bounded independently of
the row, which then amounts to require that the number of nonzero elements of the
column of any index  ∈ Z to be bounded independently of , the corresponding
indices being centered around 2. When the bound is also independent of the
level, the scheme is said to be local. For the sake of uniformity of the notations
throughout the paper, here local schemes will rather be defined as follows.

(SS1) We say that the scheme S is local if there exists two integers M1, M2

such that for any j ≥ 0, and any k,  ∈ Z,

Sj,k,� �= 0 ⇒ 2 + M1 ≤ k ≤ 2 + M2. (48)

This will provide a better localisation of the nonzero elements.
With any local subdivision scheme S, it is classical to associate its difference

scheme D = {Dj , j ≥ 0}, defined by

Dj,k,� :=
∑
i≥�

(Sj,k,i − Sj,k−1,i), j ≥ 0, k,  ∈ Z. (49)
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Each matrix Dj is well defined and it satisfies the so-called commutation formula:

∆Sj = Dj∆, j ≥ 0, (50)

where the matrix ∆ := (∆k,�)k,�∈Z is given by:

∆k,� := δk,� − δk−1,�. (51)

In order to make the equality

∆(Sjw) = Dj(∆w), j ≥ 0, (52)

valid for any sequence w = (wk)k∈Z in R
d, we have to make sure that each row

of Dj contains only a finite number of nonzero elements. This is not guaranteed,
although Dj,k,� = 0 for k < 2+M1. This justifies the introduction of the following
property:

(SS2) We say that S reproduces constants if f0,k = a for all k ∈ Z implies
fj,k = a for all k ∈ Z and for j ≥ 0.

Equivalently, the scheme S reproduces constants iff, for all j ≥ 0, Sj1 = 1, where
1 denotes the bi-infinite sequence all components of which are equal to 1, i.e., iff
all matrices Sj satisfy ∑

�∈Z

Sj,k,� = 1, j ≥ 0, k ∈ Z. (53)

From now on, we assume the local scheme S to reproduce constants. Then,
for k ≥ 2 + M2,

∑
i≥� Sj,k,i =

∑
i≥� Sj,k−1,i = 1. Hence, the difference scheme is

local, with, for any j ≥ 0,

Dj,k,� �= 0 ⇒ 2 + M1 ≤ k ≤ 2 + M2 − 1. (54)

On account of (54), for any initial f0, we can apply (52) with w = fj. The difference
scheme thus enables us to calculate the differences of order 1 ( i.e., ∆fj = (fj,k −
fj,k−1)k∈Z) as

∆fj+1 = Dj∆fj, j ≥ 0. (55)

Choose a binary grid X . At each level j we can now consider the function Fj

and its first order divided differences w.r. to X defined as in (4) and (26), that is,
with the notation introduced in (11),

f
[1]
j,k = (∆fj)k/dj,k, k ∈ Z.

They can thus be calculated by:

f
[1]
j+1 = S

[1]
j f

[1]
j , j ≥ 0, (56)

where the subdivision scheme S [1] is defined by:

S
[1]
j,k,� :=

dj,�

dj+1,k
Dj,k,�, j ≥ 0, k,  ∈ Z. (57)
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The scheme S [1] is called the derived scheme of S w.r. to the grid X . Like the
difference scheme, it is local, with

S
[1]
j,k,� �= 0 ⇒ 2 + M1 ≤ k ≤ 2 + M2 − 1. (58)

It is often usual to introduce the following additional requirement on subdi-
vision schemes:

(SS3) We say that the scheme S is bounded if

‖S‖∞ :=Sup
j≥0
‖Sj‖∞ < +∞, (59)

where
‖Sj‖∞ :=Sup

k∈Z

∑
�∈Z

|Sj,k,�|, j ≥ 0.

The latter requirement (SS3) guarantees in particular that, if we start with a
bounded f0 (in the sense that ‖f0‖∞ :=Sup

k∈Z

‖f0,k‖ < +∞, where ‖.‖ denotes a

given norm in R
d), then each fj will also be bounded for each j ≥ 0.

If, in addition to be local and to reproduce constants, the scheme S is also
assumed to be bounded, then its difference scheme is bounded too, but this may
not be true for the derived scheme S.

Proposition 3.1. With respect to any homogenous binary grid, the derived scheme
of a local and bounded subdivision scheme which reproduces constants is not only
local but also bounded.

On account of (57) and (58), Proposition 3.1 is an immediate consequence of
the following lemma.

Lemma 3.2. If the binary grid X is homogenous, then, for any K1, K2 ∈ Z,
K1 ≤ K2,

θ := sup
j≥0, k,�∈Z

2�+K1≤k≤2�+K2

dj,�

dj+1,k
< +∞. (60)

Proof. The inequalities xj+1,2�−2+N1 ≤ xj,�−1 < xj,� ≤ xj+1,2�+N2 lead to

dj,� ≤
N2∑

i=N1−1

dj+1,2�+i, j ≥ 0 ,  ∈ Z.

On the other hand, if the grid satisfies (10), then, for any integers L1 ≤ L2 and
any j ≥ 0

k + L1 ≤ r ≤ k + L2 ⇒ dj,r ≤ ηMax(|L1|,|L2|) dj,k.

The expected result follows easily. �
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3.2. Convergence and differentiability

Definition 3.3. We say that the subdivision scheme converges relative to a grid X
if, for any initial sequence of vertices f0, the sequence of polygonal lines Lj with
vertices fj obtained by (47) converges relative to X .

From now on, if there is no ambiguity about the binary grid X relative to
which we are considering the convergence of a given local subdivision scheme S,
we shall denote by Sjf0 the parameterisation (relative to X ) of the polygonal
line Lj with vertices fj provided at level j ≥ 0 by the scheme S (that is, fj =
Sj−1 . . . S0f0). Moreover, in case the scheme converges (relative to X ), Sf0 will
denote the limit of the sequence Sjf0, j ≥ 0.

Suppose now that the scheme S (also named S [0]) is local and reproduces
constants. Let S [1] be its derived scheme w.r. to a binary grid X 1. It is local.
Suppose that S [1] too reproduces constants. Then its derived scheme w.r. to a
binary grid X 2 is local. Continuing the same way, if the scheme S [p−1] is local and
reproduces constants, then its derived scheme w.r. to a binary grid X p is local. If
we are able to define in this way

S [p] := the derived scheme of S [p−1] w.r. to a binary X p, 1 ≤ p ≤ P, (61)

then we shall say that the subdivision scheme S is of order greater than or equal to
P relative to the sequence X 1, . . . ,XP of binary grids. Note that this is independent
of the last grid XP . In particular being of order greater than or equal to 1 does
not depend on any grid since it just means reproducing constants.

With the notations introduced above, from a given sequence f
[0]
j,k := fj =

Sj−1 . . . S0f0, j ≥ 0, provided by the scheme S, for 1 ≤ p ≤ P , we can then define
recursively the sequences f

[p]
j , j ≥ 0, by

f
[p]
j,k := [xp

j,k, xp
j,k−1]S

[p−1]
j f

[p−1]
0 =

f
[p−1]
j,k − f

[p−1]
j,k−1

xp
j,k − xp

j,k−1

, j ≥ 0, k ∈ Z. (62)

As a direct application of Corollary 2.13, we can state the following result.

Theorem 3.4. Let S be a local subdivision scheme which converges relative to a
binary grid X supposed to satisfy (G4), and let X ,X 1, . . . ,XP be any sequence
of binary grids equivalent to X . Assume that S is of order greater than or equal
to P ≥ 1 relative to the sequence X 1, . . . ,XP−1 of binary grids and denote by
S [1], . . . ,S [P ] the corresponding local schemes defined according to (61). If, for
1 ≤ p ≤ P , the scheme S [p] converges relative to X p, then, for all initial f0, the
function Sf0 is CP on R, with(

Sf0

)(p) = S [p]f
[p]
0 , 1 ≤ p ≤ P. (63)

Remark 3.5. To be in a position to apply Theorem 3.4 to a given subdivision
scheme S, we first need to ensure existence of the derived schemes S [p], 1 ≤ p ≤ P .
Supposing that S [p−1] exists and reproduces constants for some p, 1 ≤ p ≤ P − 2,
the problem consists in finding a convenient grid X p so that the scheme S [p] defined
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by (61) reproduces constants too, i.e., so that it satisfies S
[p]
j 1 = 1 for all j ≥ 0.

It is sufficient to define at each level

X [p]
j+1 := S

[p−1]
j X [p]

j , (64)

provided that (64) yields a grid, that is, provided that the sequence X :=
(
Xj

)
j≥0

obtained through (64) satisfies (G1) and (G2). We shall see an illustration of (64)
in the fourth section.

3.3. A sufficient condition for convergence

In [10] we gave a sufficient condition on to ensure the convergence of a subdivision
scheme S relative to any nested binary grid. Here, we shall adapt the proof to the
more general situation of binary grids which are not necessarily nested.

Theorem 3.6. Assume that the local and bounded subdivision scheme S reproduces
constants and that its difference scheme D satisfies the following property:

There exist two integers J , K ≥ 0, there exists a number µ ∈]0, 1[ such that

‖Dj+K . . . Dj+1Dj‖∞ ≤ µ for all j ≥ J. (∗)

Then the scheme S converges relative to any binary grid X . More precisely, for
any bounded f0 the sequence Sjf0, j ≥ 0, converges to Sf0 uniformly on the whole
of R, and there exists a positive constant C such that

‖Sf0 − Sjf0‖∞ ≤ C µ̂j ‖∆fJ‖∞, j ≥ J, (65)

where µ̂ := µ1/(K+1).

As in [10], the following lemma is crucial. Since neither the result nor the
proof involve any grid, we refer to the proof given in [10].

Lemma 3.7. If the difference scheme of the subdivision scheme S satisfies (∗), then,
there exists a positive constant H such that, for any initial vector f0,

‖∆fj‖∞ ≤ H µ̂j ‖∆fJ‖∞, j ≥ J, (66)

with H := µ̂−(J+K) Max
0≤s≤K−1

‖DJ+s−1DJ+s−2 . . . DJ‖∞ and µ̂ := µ1/(K+1).

Proof of Theorem 3.6. Assume the local subdivision scheme S to reproduce con-
stants and its difference scheme to satisfy (∗). Given a fixed binary gridX satisfying
(5), we shall prove the convergence of S relative to X . Let f0 = (f0,k)k∈Z denote
a fixed element of R

Z. For any nonnegative integer j, fj = (fj,k)k∈Z is obtained
through (47) and Fj denotes the corresponding piecewise affine interpolating func-
tion as introduced in (4). This function can be written as follows:

Fj(x) =
∑
�∈Z

fj,� Λj,�(x), x ∈ R, (67)
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where, for any  ∈ Z, Λj,� : R → R denotes the function which is affine on
each [xj,k, xj,k+1] and which satisfies the interpolation conditions Λj,�(xj,k) = δk,�,
k,  ∈ Z. For any j ≥ 0, let us calculate the difference Fj+1 − Fj . For any x ∈ R,

Fj+1(x)− Fj(x) =
∑
k∈Z

fj+1,k Λj+1,k(x) −
∑
�∈Z

fj,� Λj,�(x). (68)

Using (47) and the fact that all sums are actually finite ones, one can write the
latter equality as follows:

Fj+1(x) − Fj(x) =
∑
�∈Z

[∑
k∈Z

Sj,k,� Λj+1,k(x) − Λj,�(x)
]

fj,�. (69)

For a given j ≥ 0, we denote by Yj =
(
yj,r

)
r∈Z

the strictly increasing bi-infinite
sequence composed of all distinct elements of the set {xj,p, p ∈ Z} ∪ {xj+1,p, p ∈
Z}. Associated with Yj , we introduce the functions Mj,r, r ∈ Z, affine on each
interval [yj,r, yj,r+1], and such that: Mj,s(yj,r) = δr,s, for all r, s ∈ Z. For any
k,  ∈ Z, we have:

Λj+1,k(x) =
∑
r∈Z

Aj,r,k Mj,r(x), Λj,�(x) =
∑
r∈Z

Bj,r,� Mj,r(x), x ∈ R, (70)

with
Aj,r,k := Λj+1,k(yj,r), Bj,r,� := Λj,�(yj,r).

For a fixed r ∈ Z, let us examine the row of index r of the corresponding matrices
Aj :=

(
Aj,r,k

)
r,k∈Z

and Bj :=
(
Bj,r,�

)
r,�∈Z

. From the definition of the functions
Λj,k we know that:

Aj,r,k �= 0 ⇔ xj+1,k−1 < yj,r < xj+1,k+1,

Bj,r,� �= 0 ⇔ xj,�−1 < yj,r < xj,�+1.

Suppose first that yj,r = xj,s. Then, by comparison of the latter relations with (5),
we obtain:

Aj,r,k �= 0 ⇒ 2s + N1 ≤ k ≤ 2s + N2, Bj,r,� = δ�,s

Similarly, if now yj,r = xj+1,s, then

Aj,r,k = δk,s, Bj,r,� �= 0 ⇒
[
s−N2

2

]
≤  ≤

[
s−N1 + 1

2

]
.

In particular the number of nonzero elements of each row of either Aj or Bj is
finite and bounded above independently of the row and independently of j. On the
other hand, for any x ∈ R, we have 1 =

∑
k∈Z

Λj+1,k(x) =
∑

�∈Z
Λj,�(x). Hence,∑

k∈Z

Aj,r,k = 1,
∑
�∈Z

Bj,r,� = 1, r ∈ Z.

Since Aj,r,k and Bj,r,k are nonnegative, this implies that ‖Aj‖∞ = ‖Bj‖∞ = 1 for
all j ≥ 0. Combining (70) and (69) leads to:

Fj+1(x)− Fj(x) =
∑
r∈Z

∑
�∈Z

[
(AjSj)r,� −Bj,r,�

]
fj,� Mj,r(x), x ∈ R .
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In other words, the quantity (Fj+1 − Fj)(yj,r) is the component of index r of the
vector (AjSj −Bj) fj . Hence, on account of the piecewise affinity of Fj+1−Fj , we
have

‖Fj+1 − Fj‖∞ =Sup
r∈Z

|(Fj+1 − Fj)(yj,r)| = ‖(AjSj −Bj) fj‖∞. (71)

The matrix Uj :=
(
Uj,k,�

)
k,�∈Z

, where:

Uj,k,� :=
∑
r≤�

Bj,k,r − (AjSj)k,r, (72)

is well defined, and it satisfies:

AjSj −Bj = Uj∆, j ≥ 0. (73)

The number of nonzero elements of each row of either matrix AjSj or Bj is bounded
above independently of the row and of j. Moreover all elements of any row of either
matrix AjSj or Bj add to unity. From (72) it follows that each row of Uj has only
a finite number of nonzero elements independent of the row, and this number itself
is bounded above independently of j. The previous considerations also make the
equality (Uj∆)w = Uj(∆w) valid without restriction on w = (wk)k∈Z.

From now on, we assume the subdivision scheme S to be bounded. Then,
from (73) one can also conclude that ‖Uj‖∞ is bounded independently of j, say
‖Uj‖∞ ≤M < +∞ for all j ≥ 0. Accordingly, relations (71) and (73) enable us to
write:

‖Fj+1 − Fj‖∞ = ‖Uj∆fj‖∞ ≤M ‖∆fj‖∞, j ≥ 0.

Using Lemma 3.6, we thus have:

‖Fj+1 − Fj‖∞ ≤ Γ µ̂j ‖∆fJ‖∞, j ≥ J,

with µ̂ := µ1/(K+1) and where Γ := HM is independent of j and f0. It follows
that

‖Fj+q − Fj‖∞ ≤ C µ̂j ‖∆fJ‖∞, j ≥ J, q ≥ 0,

with C := Γ/(1 − µ̂). Provided that f0 is assumed to be bounded, the uniform
convergence on R of the sequence Fj , j ≥ 0, is proved, along with (65). �

Theorem 3.8. Let S (=S [0]) be a local and bounded subdivision scheme which is
of order greater than or equal to P + 1 ≥ 1 relative to a sequence X 1, . . . ,XP of
equivalent homogenous binary grids satisfying (G4). Denote by S [1], . . . ,S [P ] the
corresponding local schemes defined according to (61). Suppose that, for 0 ≤ p ≤ P ,
the difference scheme D[p+1] of the scheme S [p] satisfies (∗). Then, relative to any
binary grid equivalent to X 1, . . . ,XP , the scheme S produces CP functions, with,
for all initial f0, (

Sf0

)(p) = S [p]f
[p]
0 , 1 ≤ p ≤ P. (74)

Proof. Proposition 3.1 guarantees the boundedness of all schemes S [p], 0 ≤ p ≤ P .
Since their difference schemes all satisfy condition (∗), they all converge according
to Theorem 3.6. The announced result thus follows from Theorem 3.4. �
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4. Spline subdivision

This section is devoted to spline subdivision schemes. In order to obtain explicit
expressions for such schemes in an elegant way, it is natural to use blossoms. For
the sake of simplicity, we shall focus on splines with simple knots only.

4.1. Blossoms and poles

Given a polynomial function P of degree less than or equal to n, its blossom [12]
is the unique function p of n variables which is symmetric, n-affine ( i.e., affine in
each variable), and which gives P by restriction to the diagonal of R

n, that is,

p(x[n]) = P (x), x ∈ R . (75)

In (75) as in the rest of the paper, the notation x[k] means x repeated k times. For
example, for n = 3, p(x1, x2, x3) = a0 + a1(x1 + x2 + x3)/3 + a2(x1x2 + x2x3 +
x3x1)/3 + a3x1x2x3 is the blossom of P (x) = a0 + a1x + a2x

2 + a3x
3.

All results recalled in this section and the next two ones are direct conse-
quences of the three properties of blossoms: symmetry, n-affinity, diagonal prop-
erty. For details, we refer the reader to [12,11]. As an instance, by differentiation
of (75), the symmetry and the n-affinity of p yield a straightforward calculation of
the derivative of P as follows:

P ′(x) =
n

h

[
p(x[n−1], u + h)− p(x[n−1], u)

]
, (76)

where u, h denote any real numbers with h �= 0. As a polynomial function of degree
less than or equal to (n− 1), P ′ has a blossom p{1}, which is the unique function
of (n − 1) variables which is symmetric, (n − 1)-affine, and which gives P ′ by
restriction to the diagonal of R

n−1. Hence, (76) readily leads to:

p{1}(x1, . . . , xn−1) =
n

h

[
p(x1, . . . , xn−1, u + h)− p(x1, . . . , xn−1, u)

]
. (77)

Again this equality is valid for any real numbers u, h, with h �= 0. From (77) and
from the properties of blossoms, it is classical to derive the following characteri-
zation of contact of order r ≤ n between two polynomial function P, Q of degree
less than or equal to n, with values in R

d, through their blossoms p and q:

P (i)(a) = Q(i)(a)
for 0 ≤ i ≤ r

}
⇐⇒

{
p(a[n−r], x1, . . . , xr) = q(a[n−r], x1, . . . , xr)

for all x1, . . . , xr ∈ R .
(78)

Given a bi-infinite sequence of knots K := {tk, k ∈ Z}, with tk < tk+1 for all
k and |tk| → +∞ when |k| → +∞, for each p ≥ 1, we denote by Ap the set of all
p-tuples which are admissible relative to K, that is, all p-tuples (ζ1, . . . , ζp) such
that each t� satisfying Min(ζ1, . . . , ζp) < t� < Max(ζ1, . . . , ζp) appears at least once
in the sequence denote ζ1, . . . , ζp. Moreover, given (ζ1, . . . , ζp) ∈ Ap, we denote by
Jp(ζ1, . . . , ζp) the set of all (consecutive) integers i such that the interval [ti, ti+1]
contains at least one of the points ζ1, . . . , ζp.

From now on, we suppose that S : R → R
d is a given polynomial spline

relative to the knot vector K, meaning that S is Cn−1 on R and that there exist
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polynomial functions Gq : R → R
d, q ∈ Z, of degree less than or equal to n,

such that
S(x) = Gq(x), x ∈ [tq, tq+1]. (79)

The blossom s of S is now the function of n variables defined on the set An by

s(ζ1, . . . , ζn) := gi(ζ1, . . . , ζn), i ∈ Jn(ζ1, . . . , ζn), (80)

where, for each q ∈ Z, gq is the blossom of the polynomial function Gq. The
equality (80) is made meaningful by the fact that S is Cn−1 and by (78). The
poles of the spline S are the points

Pk := s(tk+1, . . . , tk+n), k ∈ Z. (81)

All values of the blossom s of S can be calculated as convex combinations of
the poles. Indeed, given any admissible n-tuple (ζ1, . . . , ζn), and any integer i ∈
Jn(ζ1, . . . , ζn), as the result of the symmetry and the n-affinity of blossoms, the
point s(ζ1, . . . , ζn) = gi(ζ1, . . . , ζn) will be obtained as an affine combination of
the (n + 1) poles which can be labelled using the blossom gi, namely the poles
Pi−n, . . . , Pi. This affine combination is actually a convex one, since the admissi-
bility of (ζ1, . . . , ζn) guarantees that ti−n+1 ≤ ζ1, . . . , ζn ≤ ti+n. The particular
case ζ1 = · · · = ζn = x ∈ [ti, ti+1] gives the de Boor algorithm and, as is well
known, it readily leads to existence of a B-spline basis. We will not insist on this
well-known fact, being only interested here by insertion of knots.

4.2. Insertion of knots

With this aim in view let us clarify the calculations in the following case. For any
k ∈ Z, we choose a new knot uk in ]tk, tk+1[. We can now consider S as a polynomial
spline relative to the knot sequence K̂ with elements . . . , tk, uk, tk+1, . . .. We shall
recall here how to calculate its new poles.
1) Suppose first that n = 2N . The poles of S relative to K̂ are the points s(Tk),
s(Uk), k ∈ Z, where

Tk := (tk+1, uk+1 . . . , tk+N , uk+N ), Uk := (uk, tk+1, . . . , uk+N−1, tk+N ).

For a given k ∈ Z, both n-tuples Tk and Uk are admissible (relative to K) and
the integer k belongs to Jn(Tk) = Jn(Uk). Now, denoting by T the N -tuple
(tk+1, . . . , tk+N ), the value of s at any admissible n-tuple (T , y1, . . . , yN ) can al-
ways be obtained as a convex combination of the N +1 poles involving T , namely
the poles Pk−N , . . . , Pk. Let us show how to calculate s(Tk).

Starting from the (N + 1) points Qi,0 := Pi = gk(ti+1, . . . , ti+n), k − N ≤
i ≤ k, the properties of blossoms enable us to calculate recursively the points

Qi,r := gk(ti+1, ti+2, . . . , ti+n−r, uk+1, . . . , uk+r), k −N + r ≤ i ≤ k, (82)

for 0 ≤ r ≤ N . Indeed, for 0 ≤ r < N , due to the symmetry and n-affinity of gk,
we have, for k −N + r + 1 ≤ i ≤ k:

Qi,r+1 = (
ti+n−r − uk+r+1

ti+n−r − ti
) Qi,r−1 + (

uk+r+1 − ti
ti+n−r − ti

) Qi+1,r−1. (83)
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In (83), the two coefficients are positive. Indeed, for k − N + r + 1 ≤ i ≤ k and
0 ≤ r ≤ N − 1, we have ti < tk+r+1 < uk+r+1 < tk+r+2 ≤ ti+n−r.

The last step r = N gives Qk,N = gk(T , uk+1, . . . , uk+N ) = s(Tk) as a strictly
convex combination (independent of S) of the (N + 1) poles Pk−N , . . ., Pk. The
calculation of s(Uk) as a strictly convex combination of the same (N + 1) poles
Pk−N , . . . , Pk can be done in a similar way.

2) Suppose now that n = 2N + 1. We now have to consider separately

Uk := (uk, tk+1, . . . , uk+N−1, tk+N , uk+N )
and

Tk := (tk+1, uk+1, . . . , tk+N , uk+N , tk+N+1).

Following the same procedure as in the case n = 2N , the point s(Uk) = gk(Uk) will
be obtained as a strictly convex combination of the (N +2) poles which involve the
N -tuple (tk+1, . . . , tk+N ), i.e., Pk−N−1, . . . , Pk. As for the point s(Tk) = gk(Tk),
it will be obtained as a strictly convex combination of the (N + 1) poles involving
the (N + 1)-tuple (tk+1, . . . , tk+N+1), which are Pk−N , . . . , Pk.

4.3. Poles of the derivatives

In this subsection we shall examine the links between the poles of a spline and
those of its first derivative. Suppose that n ≥ 2. We can then differentiate the
spline S given by (79). It is a spline related to the same knot sequence K, with
sections of degree less than or equal to n− 1. From the obvious equalities

S′(x) = Gq
′(x), x ∈ [tq, tq+1], q ∈ Z,

we can deduce that the blossom s{1} of S′ can be defined on the set An−1 of all
admissible (n− 1)-tuples as follows:

s{1}(ζ1, . . . , ζn−1) := g
{1}
i (ζ1, . . . , ζn−1), for all i ∈ Jn−1(ζ1, . . . , ζn−1), (84)

that is, on account of (77):

s{1}(ζ1, . . . , ζn−1) =
n

h

[
gi(ζ1, . . . , ζn−1, u + h)− gi(ζ1, . . . , ζn−1, u)

]
, (85)

for any u, h ∈ R, h �= 0. We define the domain of the admissible p-tuple (ζ1, . . . , ζp)
as the set D(ζ1, . . . , ζp) of all x ∈ R such that (ζ1, . . . , ζn−1, x) ∈ Ap+1. In other
words D(ζ1, . . . , ζp) is the union of all intervals [ti, ti+1], i ∈ J (ζ1, . . . , ζp). For any
x ∈ D(ζ1, . . . , ζn−1), we clearly have D(ζ1, . . . , ζn−1) ⊂ D(ζ1, . . . , ζn−1, x). Hence,
for any (ζ1, . . . , ζn−1) ∈ An−1 and any x, y ∈ D(ζ1, . . . , ζn−1), x �= y, (85) gives:

s{1}(ζ1, . . . , ζn−1) =
n

y − x

[
s(ζ1, . . . , ζn−1, y)− s(ζ1, . . . , ζn−1, x)

]
. (86)

According to (81), the poles of the spline S′ are the points P
{1}
k defined as

P
{1}
k := s{1}(tk+1, . . . , tk+n−1), k ∈ Z.
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Both tk and tk+n belong to D(tk+1, . . . , tk+n−1). Therefore, applying equality (86)
with (ζ1, . . . , ζn−1) = (tk+1, . . . , tk+n−1), x = tk, and y = tk+n, we eventually
obtain:

P
{1}
k =

n

tk+n − tk

[
Pk − Pk−1

]
, k ∈ Z. (87)

So, if the Cn−1 spline S is given by its poles Pk, k ∈ Z, we can obtain the poles of
all its derivatives S(p), p ≤ n− 1, recursively by means of (87).

4.4. Spline subdivision schemes and their difference schemes

We now consider a nested binary grid X =
(
Xj

)
j≥0

, with Xj =
(
xj,k

)
k∈Z

, that is,
a grid satisfying (G1) and (G2) along with the nestedness property:

xj+1,2k = xj,k, j ≥ 0, k ∈ Z.

For any given j ≥ 0, we denote by En
j the spline space associated with the

knot vector Xj . Due to the nestedness of X , we have

En
j ⊂ En

j+1, j ≥ 0,

the spline space En
j+1 being obtained from En

j by insertion of the knots xj+1,2k+1,
k ∈ Z. Let S be an element of the initial space En

0 , defined by its poles f0,k, k ∈ Z.
For any j ≥ 0, we denote by fj,k, k ∈ Z, the poles of S considered as an element
of En

j . Therefore:
fj,k := s(xj,k+1, . . . , xj,k+n), k ∈ Z. (88)

From our previous considerations, we can assert that the poles of level j+1 can be
obtained as convex combinations of poles of level j. More precisely, for any k ∈ Z

and any j ≥ 0, the pole fj+1,2k is a strictly convex combination of the points
fj,k−[ n+1

2 ], . . . , fj,k, and the pole fj+1,2k+1 is a strictly convex combination of the
points fj,k−[ n

2 ], . . . , fj,k, i.e.,

fj+1,2k =
k∑

�=k−[ n+1
2 ]

Sn
j,2k,� fj,�, fj+1,2k+1 =

k∑
�=k−[ n

2 ]

Sn
j,2k+1,� fj,�, (89)

with positive coefficients with sum equal to 1 in both equalities. The coefficients
involved in (89) do not depend on the chosen spline S ∈ En

0 . We can write (89) as
follows:

fj+1 = Sn
j fj , j ≥ 0, (90)

with ∑
�∈Z

Sn
j,p,� = 1 for all p ∈ Z, Sn

j,p,� ≥ 0 for all p,  ∈ Z, (91)

and
Sn

j,p,� �= 0 ⇔ 2 ≤ p ≤ 2 + n + 1. (92)
We shall refer to the corresponding subdivision scheme Sn := {Sn

j , j ≥ 0} as the
spline subdivision scheme of degree n associated with the nested grid X . Note that,
when addressing the problem of convergence of the scheme Sn, the underlying
natural grid to use is not the initial grid X . In fact, taking account of the meaning
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(88) of the vertices fj,k we are working with, it seems more consistent to use the
grid X̃n =

(
X̃n

j

)
j≥0

, where X̃n
j := {x̃n

j,k, j ≥ 0, k ∈ Z} is defined by

x̃n
j,k :=

xj,k+1 + · · ·+ xj,k+n

n
, j ≥ 0, k ∈ Z, (93)

that is, to parameterise the control polygon of level j by the function F̃j defined
as follows:

F̃j(x̃n
j,k) := s(xj,k+1, . . . , xj,k+n), F̃j is affine on [x̃n

j,k, x̃n
j,k+1]. (94)

The validity of this choice will be confirmed by the link between spline subdivision
schemes of consecutive degrees. Indeed, if n ≥ 2, the derivative S′ is an element
of En−1

0 . Due to the inclusions En−1
j ⊂ En−1

j+1 , j ≥ 0, it can also be considered as

an element of any En−1
j . As so, we denote by f

{1}
j,k , k ∈ Z, its poles, that is:

f
{1}
j,k = s{1}(xj,k+1, . . . , xj,k+n−1), k ∈ Z. (95)

Similarly to (90), we know that the poles of level j + 1 of S′ can be derived from
those of level j by means of the spline subdivision scheme Sn−1 of degree n − 1
associated with the grid X , namely:

f
{1}
j+1,k = Sn−1

j f
{1}
j,k , j ≥ 0, (96)

where
Sn−1

j,p,� �= 0 ⇔ 2 ≤ p ≤ 2 + n. (97)

Now, from (87), we can deduce the following expression of the poles of S′:

f
{1}
j,k =

n

xj,k+n − xj,k

[
fj,k − fj,k−1

]
=

fj,k − fj,k−1

x̃n
j,k − x̃n

j,k−1

, k ∈ Z, j ≥ 0. (98)

Therefore, f
{1}
j,k is nothing but the divided difference of order one of the function

F̃j defined in (94) w.r. to the binary grid X̃n introduced in (93):

f
{1}
j,k = f̃

[1]
j,k := [x̃n

j,k, x̃n
j,k−1]F̃j , k ∈ Z, j ≥ 0. (99)

We can thus state the following result.

Theorem 4.1. Let Sn denote the spline subdivision scheme of degree n ≥ 1 related
to the nested binary grid X . For any n ≥ 2, the scheme Sn−1 is the derived scheme
of the scheme Sn w.r. to the (non nested) binary grid X̃n defined in (93).

As observed in the proof of Proposition 2.8, the grid X̃ is a non nested binary
grid. For any degree n ≥ 2 its satisfies the following property (G3) (see (24)):

x̃j+1,2k+1 < x̃j,k < x̃j+1,2k+n, k ∈ Z. (100)

Theorem 4.1 was our actual motivation for introducing non nested grids.
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Remark 4.2.

1. It is our labelling of the poles (88) which led us to use backward divided
differences. In order to work with forward differences, we should label them
as fj,k := s(xj,k−n+1, . . . , xj,k).

2. Denoting by Ξ the identity of R, i.e., Ξ(t) := t for all t ∈ R, and by ξn the
blossom of Ξ viewed as an element of Pn, i.e., ξn(t1, . . . , tn) = (t1 + · · · +
tn)/n, we have

x̃n
j,k = ξn(xj,k+1, . . . , xj,k+n), k ∈ Z, j ≥ 0.

Hence, each X̃n
j is the sequence of poles of the function Ξ considered as an

element of En
j . It can thus be calculated according to the subdivision scheme

Sn:
X̃n

j+1 = Sn
j X̃n

j , j ≥ 0.

This is a particular case of relation (64).

3. What about the derived scheme of the scheme S1 w.r. to the grid X 1? Ac-
cording to (88), for n = 1, at level j, the poles of a spline S are defined
as

fj,k := s(xj,k+1) = S(xj,k+1) = S(x̃1
j,k), k ∈ Z.

The spline subdivision scheme S1 can thus be described by:

fj+1,2k =
dj+1,2k+2

dj,k+1
fj,k−1 +

dj+1,2k+1

dj,k+1
fj,k

and fj+1,2k+1 = fj,k. Hence the difference scheme D1 of S1 is given by

D1
j,2k,� =

{
dj+1,2k+1

dj,k+1
if  = k

0 otherwise
, D1

j,2k+1,� =

{
dj+1,2k+2

dj,k+1
if  = k

0 otherwise
.

The latter formulae show that the derived scheme S1[1] w.r. to X 1 satisfies

S
1[1]
j,2k,� = S

1[1]
j,2k+1,� = δk,�, j ≥ 0, k,  ∈ Z.

Clearly, S1[1] reproduces constants. It can be considered as the spline subdi-
vision scheme S0 of degree 0 which, at level j, associates with any piecewise
constant function S ∈ E0

0 its values fj,k on all intervals [xj,k, xj,k+1[.

4.5. Convergence of spline subdivision schemes

The aim of this subsection is to show that spline subdivision schemes provide a
good illustration of the convergence results obtained in Section 3. Rates of conver-
gence can be found in [2,3] for instance. As in the previous subsection, we denote
by Sn the spline subdivision scheme of degree n associated with a given nested
binary grid X . We shall see that a weak assumption on the grid X ensures that
the scheme Sn satisfies condition (∗).
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Proposition 4.3. Suppose that the nested binary grid X is homogenous, then, for
all n ≥ 1, the difference scheme Dn of the spline subdivision scheme Sn of degree
n satisfies:

‖Dn‖∞ < 1. (101)

Proof. In accordance with our previous notations, we shall set:

d̃n
j,k := x̃n

j,k − x̃n
j,k−1 =

1
n

(xj,k+n − xj,k). (102)

We know that the subdivision scheme Sn−1 is the derivative scheme of Sn w.r. to
the grid X̃n. Hence, the difference scheme Dn of Sn satisfies

Dn
j,k,� =

d̃n
j+1,k

d̃n
j,�

Sn−1
j,k,�, j ≥ 0, k,  ∈ Z. (103)

In (103) the nonzero elements are positive and they correspond to 2 ≤ k ≤ 2+n.
Moreover, for any k ∈ Z,

∑
�∈Z

Sn−1
j,k,� = 1. Therefore, due to (102) and (13), relation

(103) proves that, for all j ≥ 0, ‖Dn
j ‖∞ ≤ An ‖Sn

j ‖∞ = An < 1. �

Relation (101) is a particular case of condition (∗) with J = K = 0. Hence,
as an immediate consequence of Theorem 3.6, we can state:

Corollary 4.4. Let Sn be the spline subdivision scheme of degree n ≥ 2 relative to a
homogenous nested binary grid X . Then, Sn converges relative to any binary grid
X̂ , that is, for any initial f0, the sequence Sn

j f0, j ≥ 0, defined by

Sn
j f0(x̂j,k) = fj,k, Sn

j f0 affine on [x̂j,k, x̂j,k+1], k ∈ Z,

converges uniformly on compact sets of R to a function Snf0. More precisely, for
any initial bounded f0, the convergence is uniform on R, with

‖Sn
j f0 − Snf0‖∞ ≤ Cn An

j .

Let us now illustrate Theorem 3.8 by the example of spline subdivision
schemes associated with a homogenous nested binary grid X . Below we recapitu-
late what we know:

1) On account of Theorem 4.1 and Remark 4.2, the scheme Sn is of exact order
n + 1 relative to the sequence of binary grids X̃n, X̃n−1, . . . , X̃ 1 introduced
in (93), and relative to the latter sequence of grids, we have

Sn[i] = Sn−i, 0 ≤ i ≤ n. (104)

2) According to Proposition 4.3, because the grid X is homogenous, the differ-
ence schemes Dn,Dn−1, . . . ,D1 of , Sn,Sn−1, . . . ,S1 all satisfy (�).

3) From Proposition 2.8, we know that, because the grid X is homogenous, all
grids X , X̃n, X̃n−1, . . . , X̃ 1 are equivalent and satisfy (G4). now that n ≥ 2.
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Let S be the element of En
0 with poles given by f0. For i ≤ n − 1, we denote by

f
{i}
j =

(
f
{i}
j,k

)
k∈Z

, the sequence of poles of the ith derivative of S viewed as an
element of En−i

j , that is,

f
{i}
j,k := s{i}(xj,k+1, . . . , xj,k+n−i), k ∈ Z,

where s{i} denotes the blossom of S(i) (with s{0} := s and f
{0}
j,k := fj,k). By

application of (99) and Theorem 3.8, we can state that the limit function Snf0

produced by the scheme Sn (relative to X̃n or to any grid equivalent to X̃n) is
Cn−1 on R, with (

Snf0

)(i) = Sn−if
{i}
0 , 0 ≤ i ≤ n− 1.

Now, when using the grid X 1, it is obvious that S1
j f

{n−1}
0 = S(n−1) for all j ≥ 0.

This eventually guarantees that(
Snf0

)(n−1) = S(n−1). (105)

If we were working on a closed bounded interval with appropriate multiplic-
ities at the end points, from (105) would immediately guarantee that Snf0 = S.
Let us conclude with:

Corollary 4.5. The assumptions are the same as in Corollary 4.4. Then, as soon
as the grid X̂ satisfies (G4) (for instance if X̂ is equivalent to X ), for any initial
f0, the limit function Snf0 is the spline S ∈ En

0 with poles f0,k.

Proof. Given t ∈ R, by (G4), t = limr→+∞ x̂jr ,kjr (t). The convergence stated in
Corollary 4.3 enables us to conclude that

Snf0(t) = lim
r→+∞ fjr ,kjr (t) = s(xjr , kjr(t)+1, . . . , xj,kjr (t)+n),

where s is the blossom of the spline S. The expected equality Snf0(t) = S(t)
simply results from the diagonal property of s and from its continuity on the set
of admissible n-tuples relative to the grid of level 0. �
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A Markov-Bernstein Inequality
for Gaussian Networks

H.N. Mhaskar

Abstract. Let s ≥ 1 be an integer. A Gaussian network is a function on R
s of

the form g(x) =
∑N

k=1 ak exp(−‖x − xk‖2). The minimal separation among
the centers, defined by min1≤j �=k≤N ‖xj − xk‖, is an important characteristic
of the network that determines the stability of interpolation by Gaussian
networks, the degree of approximation by such networks, etc. We prove that
if g(x) =

∑N
k=1 ak exp(−‖x−xk‖2), the minimal separation of g exceeds 1/m,

and log N = O(m2) then for any integer r ≥ 1, any partial derivative Dg of
order r of g satisfies ‖Dg‖p,Rs ≤ cmr‖g‖p,Rs .

1. Introduction

Let s, N ≥ 1 be integers. A Gaussian network with N neurons is a function on the
Euclidean space Rs of the form x �→∑N

k=1 ak exp(−‖x−xk‖2), where ‖◦‖ denotes
the Euclidean norm on Rs, the centers xk are in Rs, and ak ∈ R, k = 1, · · · , N .
These functions can be evaluated in hardware using parallel computation of the
exponential terms, and are used extensively in many applications in pattern recog-
nition, computer graphics, antenna array theory, probability density estimation,
etc. A typical problem in all these applications is to approximate an unknown
function (the target function) by such networks.

An important characteristic of Gaussian networks is the minimal separation
among the centers, defined by min1≤j �=k≤N ‖xj − xk‖. Many results in the theory
of stability of interpolation by Gaussian networks, the degree of approximation by
such networks, etc. depend upon the minimal separation. For example, Narcowich
and Ward [9] have estimated the condition numbers of the interpolation matrices
in the context of a general scattered data interpolation. Their estimates are in
terms of the minimal separation between the interpolation points, independent of
the number of points (and hence, of neurons) involved. In [7], we have argued that
treating the minimal separation among the centers as the “cost of approximation”
(rather than the more apparent cost in terms of the number of neurons) leads to
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matching direct and converse theorems in the theory of approximation by Gaussian
networks. In particular, under certain conditions, if a function can be approximated
by Gaussian networks at a polynomial rate, measured in terms of the minimal
separation of the networks, then it can also be approximated at the same rate by
the linear processes of weighted polynomial approximation.

The purpose of this paper is to prove a Markov-Bernstein inequality for
Gaussian networks in terms of the minimal separation. We note that such an
inequality was obtained by Erdélyi [3] in terms of the number of neurons. Also, if
r ≥ 1 is an integer, and D is a partial derivative operator of order r, our results
in [7] immediately yield an inequality of the form ‖Dg‖p,Rs ≤ c exp(Am2)‖g‖p,Rs

for networks g where the minimal separation exceeds 1/m. In this paper, we prove
a substantially better inequality of the form ‖Dg‖p,Rs ≤ cmr‖g‖p,Rs for such net-
works, provided that the number of neurons is not too large (cf. Theorem 2.1
below). Our proof involves a good deal of book-keeping in estimating the degree of
weighted polynomial approximation in a more careful way than what is available
in the literature that we are aware of so far.

In Section 2, we formulate our main result (Theorem 2.1) regarding Gaussian
networks. In Section 3, we discuss the background and prove the necessary new
results on weighted polynomial approximation. In Section 4, we review some results
regarding Gaussian networks, and prove Theorem 2.1.

2. Main result

Let s ≥ 1 be an integer. The notation for the class of Gaussian networks will
involve different bounds on the centers as well as the number of neurons involved.
Thus, for m, M, N > 0, the symbol GN,M,m,s denotes the class of functions of the
form

x �→
∑

1≤k≤N, k∈Z

ak exp(−‖x− xk‖2), x,xk ∈ R
s, ak ∈ R, 1 ≤ k ≤ N, (1)

where max1≤k≤N ‖xk‖ ≤M and the minimal separation, min
1≤k,j≤N,k �=j

‖xj −xk‖ ≥
m−1. Also, the union of the class of networks over a certain parameter will be
denoted by writing the symbol ∞ in place of that parameter; for example,
GN,∞,m,s := ∪M>0GN,M,m,s, etc. For A, C, m > 0, we write

B(A, C; m, s) := {g ∈ GN,∞,m,s : N ≤ C exp(Am2)}. (2)

We remark that if A1≥A, C1 ≥ C, m1≥m, then B(A, C; m, s) ⊆ B(A1, C1; m1, s).
If 1 ≤ p ≤ ∞, f : Rs → R is a Lebesgue measurable function, and S ⊆ Rs is

a Lebsegue measurable set having positive measure, we write

‖f‖p,S :=

⎧⎨⎩ {
∫

S

|f(x)|pdx}1/p, if 1 ≤ p <∞,

ess supx∈S|f(x)|, if p =∞.
(3)
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The set of all functions for which ‖f‖p,S < ∞ is denoted by Lp(S), where, as
usual, two functions that are equal almost everywhere on S are considered equal
as elements of Lp(S). Let Dj denote the operation of partial differentiation with
respect the jth variable, and Dk :=

∏s
j=1 D

kj

j . For a suitably smooth function f ,
we write

‖f‖p,r,S :=
∑
|k|≤r

‖Dkf‖p,S. (4)

In the sequel, we adopt the following convention regarding constants. The
symbols c, c1, · · · will denote positive constants depending only on A, C, s, p, r,
and other similarly fixed parameters, but their values may be different at different
occurrences, even within a single formula. Constants denoted by capital letters
retain their values, subject to the choice of the parameters on which they depend.

Our main theorem in this paper is the following.

Theorem 2.1. Let s, r ≥ 1 be integers, 1 ≤ p ≤ ∞, m ≥ 1, A, C > 0. Then there
exists a positive constant c depending only on A, C, p, r, and s, such that

‖g‖p,r,Rs ≤ cmr‖g‖p,Rs , g ∈ B(A, C; m, s). (5)

The idea behind the proof of Theorem 2.1 is the following. In [7], we have
established a connection between the 1 norm of the coefficients of a Gaussian
network, and the norm of this network. Using the partial sums of the series in (43),
we will approximate the basic Gaussian exp(−‖◦−xk‖2) by weighted polynomials,
and hence, approximate the network by weighted polynomials. Unfortunately, this
can be done adequately only if ‖xk‖ ≤ cm. Therefore, we use a partition of unity so
that the norms of different networks and their derivatives are essentially confined
to cubes with side proportional to m. However, this involves estimating a norm
of the form ‖φg‖p,r,Rs for a compactly supported φ. Here, we use Theorem 3.2
below to approximate φ by weighted polynomials, the partial sums of the series
in (43) to approximate the part of g with centers in a cube of side proportional
to m by weighted polynomials as well, and estimate the remaining part of g using
the results in [7]. A repeated application of the Markov-Bernstein inequality (8)
enables us to estimate the derivatives of the approximating weighted polynomials
thus obtained in terms of their norms. A reverse process then takes us to (5).

3. Weighted polynomial approximation

In this section, we write w(x) := exp(−x2). Our results here are in the univariate
case, s = 1, but can be extended easily to the multivariate case by a simple
tensor product argument. For x ≥ 0, let Πx denote the class of all univariate
algebraic polynomials of degree at most x. First, we recall a few properties of
polynomials. The following proposition will be used often, sometimes without an
explicit reference.
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Proposition 3.1. Let m ≥ 0, 1 ≤ p ≤ ∞, λ > 0, and P ∈ Πm2 .
(a) (Infinite-finite range inequality) For any γ > 0, there exists a > 1, depending

only on γ and λ such that

‖wλP‖p,R\[−am,am] ≤ c(λ, γ) exp(−γ2m2)‖wλP‖p,[−am,am]. (6)

In particular,
‖xwλP‖p,R ≤ c(λ)m‖wλP‖p,R. (7)

(b) (Markov-Bernstein inequality)

‖(wλP )′‖p,R ≤ c(λ)m‖wλP‖p,R. (8)

Proof. The inequality (6) follows from [6, Theorem 6.2.4, Lemma 7.2.2]. The in-
equality (7) is then clear. Part (b) follows from [6, Theorem 6.2.9, Theorem 3.4.2]
and (7). �

In this section, we adopt the following notation. The space of all 2π-periodic
continuous functions on R, equipped with the norm ‖F‖∗ := ‖F‖∞,[−π,π], will be
denoted by C∗, the class of all trigonometric polynomials of order at most n will
be denoted by Hn, and

E∗
n(F ) := inf

T∈Hn

‖F − T ‖∗.

Our main theorem in this section is the following.

Theorem 3.2. Let 0 < a < 1, f : R → R be a continuous function, with f(x) = 0
if |x| ≥ a. Let F (θ) := f(3 cos(2θ)), θ ∈ R. There exists a sequence of polynomials
Pn ∈ Πn such that

max
x∈R

|f(x)− Pn(x) exp(−nx2)| ≤ c1E
∗
c
√

n(F ) + exp(−c2

√
n)‖f‖∞,R, (9)

where c, c1, c2 are positive constants depending only on a.

We note that the fact that the left-hand side of (9) tends to zero has been
known for a very long time, and has been generalized a great deal (cf. [6, 1] and
references therein). The novelty here is the rate of convergence. Our proof consists
of a book keeping in the proof of Theorem 10.1.1 in [6], obtaining an intermediate
polynomial involved in that proof using the following Theorem 3.3 of Gaier [4]
instead of Jackson’s theorem. The same proof can also be adapted at least to the
more general situation discussed in [6, Section 10.1]. However, we do not wish to
introduce here the additional notation that would be necessary to formulate this
general version. We will give a simple proof of Theorem 3.3 which does not involve
complex variable techniques, and yields estimates using the norm of the functions
on the interval rather than unspecified constants depending upon the functions.

Theorem 3.3. There exists a sequence of linear operators Gn on C[−3, 3], such that
for each f ∈ C[−3, 3], and integer n ≥ 1, Gn(f) ∈ Πn, and satisfies the following
conditions: Writing F (t) := f(3 cos(2t)) (F ∈ C∗),

‖f − Gn(f)‖∞,[−3,3] ≤ c1E
∗
n/3(F ) + c2 exp(−c3n)‖f‖∞,[−3,3], (10)
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where c1, c2, c3 are absolute positive constants. Further, if a ∈ (0, 3), f(x) = 0 for
|x| ≥ a, and a < b < 3, then

‖Gn(f)‖∞,[−3,−b]∪[b,3] ≤ c4 exp(−cn)‖f‖∞,[−3,3], (11)

where c4, c are positive constants depending only on a and b.

Proof. We recall (cf. [2, Chapter 9, Theorem 3.1]) that the expression

v∗� (t) :=
1


2�−1∑
m=�

∑
|k|≤m

eikt =
cos t− cos(2t)

2 sin2(t/2)

is an even, trigonometric polynomial of order at most 2− 1, the operator

V ∗
� (F, x) :=

1
2π

∫ π

−π

F (t)v∗� (x− t)dt, F ∈ C∗, (12)

satisfies ‖V ∗
� (F )‖∗ ≤ c‖F‖∗, and

E∗
2�(F ) ≤ ‖F − V ∗

� (F )‖∗ ≤ cE∗
� (F ), F ∈ C∗. (13)

We write V ∗
0 (F ) := 1

2π

∫ π

−π F (t)dt, v∗0(t) := 1, and

G∗n(F ) = 2−n
n∑

�=0

(
n



)
V ∗

� (F ). (14)

Since [5, 8]

2−n

�n/3�−1∑
�=0

(
n



)
≤ c1 exp(−cn),

we conclude that

‖F − G∗n(F )‖∗ ≤ c1 exp(−cn)‖F‖∗ + c2E
∗
n/3(F ). (15)

Next, we observe that for  ≥ 1,

v∗� (t) =
1

2 sin2(t/2)

∫ 2t

t

sin(u)du.

Therefore,

2−n
n∑

�=1

(
n



)
v∗� (t) =

1
2n+1 sin2(t/2)

∫ 2t

t

{
n∑

�=0

(
n



)
sin(u)

}
du

=
1

2 sin2(t/2)

∫ 2t

t

sin(nu/2) cosn(u/2)du

=
1

sin2(t/2)

∫ t

t/2

sin(nu) cosn(u)du.

Thus, ∣∣∣∣∣2−n
n∑

�=1

(
n



)
v∗� (t)

∣∣∣∣∣ ≤ c1(δ) exp(−c(δ)n), t ∈ [δ, π − δ].
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Now, let F (t) = 0 for t �∈ [δ, π− δ] (and hence, also for t �∈ [−π + δ,−δ]). Then for
0 < δ1 < δ, and |x| ≤ δ1,

|G∗n(F, x)| ≤ c

∫
δ−δ1≤|t|≤π−δ+δ1

|F (x− t)|
∣∣∣∣∣
{

2−n
n∑

�=0

(
n



)
v∗� (t)

}∣∣∣∣∣ dt

≤ c1(δ, δ1) exp(−c(δ, δ1)n)‖F‖∗. (16)

Now, we observe that F (t) = F (−t) = F (π − t) for t ∈ R. Therefore, since
each v∗� is an even function, it is not difficult to see that for x ∈ R

2πV ∗
� (F, π − x) =

∫ π

0

(F (π − x− t) + F (π − x + t))v∗� (t)dt

=
∫ π

0

(F (x + t) + F (x− t))v∗� (t)dt = 2πV ∗
� (F, x).

Hence, G∗n(F, x) is a linear combination of cos 2kx, k = 0, · · · , n. Thus, the operator
defined by Gn(f, 3 cos 2θ) := G∗n(F, θ) satisfies Gn(f) ∈ Πn. The estimates (15) and
(16) lead to (10) and (11) respectively. �

We resume our proof of Theorem 3.2 as in [6, Section 10.1], sketching only
enough details to make the paper self-sufficient, and to point out the necessary
differences.

Let Tn be the extremal polynomial satisfying

‖wTn‖∞,R = inf
P∈Πn−1

‖((◦)n − P )w‖∞,R

Let

ξn = max{ξ ∈ R : w(ξ)Tn(ξ) = ‖wTn‖∞,R},

and Zn = ξn/
√

n. It is known [6, Chapter 6] that Zn ∈ (−1, 1), limn→∞ Zn = 1,
and that Tn has n zeros in [−√n,

√
n]. In this section only, we will write Tn(x) :=

n−n/2Tn(
√

nx), En := Tn(Zn)w(ξn) (our notation here being different from that
in [6]).

For ε > 0 and integer n ≥ 1, let

Γn,1,ε := {Zn + (1− Zn)
y2

ε2
+ iy : 0 ≤ y ≤ ε},

Γn,2,ε := {x + iε : −1 ≤ x ≤ 1}
Γn,ε := Γn,1,ε ∪ (−Γn,1,ε) ∪ Γn,1,ε ∪ (−Γn,1,ε) ∪ Γn,2,ε ∪ Γn,2,ε, (17)

where, for a set S ⊆ C, S := {z : z ∈ S} and −S := {−z z ∈ S}.
We recall the following facts from [6, Chapter 10.1] (cf. the proof of Lemma

10.1.3 there).
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Lemma 3.4. There exists an ε0 > 0 such that the following statements hold for
each ε, 0 < ε ≤ ε0, where the constants may depend upon ε.∮

Γn,2,ε∪Γn,2,ε

En|Tn(z) exp(−n|z|2)|−1|dz| ≤ c1 exp(−cn), (18)∮
Γn,1,ε∪(−Γn,1,ε)∪Γn,1,ε∪(−Γn,1,ε)

En|Tn(z) exp(−n|z|2)|−1|dz| ≤ cn−1/2, (19)

and ∣∣∣∣Z2
n − ξ2

x− ξ

∣∣∣∣ ≤ c, x ∈ R, ξ ∈ Γn,ε. (20)

Proof. The estimates (18) and (19) are the estimates (10.1.24) and (10.1.25) re-
spectively in [6, P. 260], the estimate (20) is not difficult, and is shown in [6] near
the end of page 261. �

Proof of Theorem 3.2. We follow the proof of [6, Proposition 10.1.2]. Let a < b < 1,
and n be chosen large enough so that Zn > (1 + b)/2. In this proof only, let
f1,n(x) := f(x)/(Z2

n − x2). Then for each n ≥ c, each f1,n is continuous on R

and f1,n(x) = 0 if |x| ≥ a. Moreover, ‖f1,n‖∞,R ≤ c‖f‖∞,R. We estimate ‖f1,n −
Gm(f1,n)‖∞,R. We observe that for each N ≥ 1, R(x) :=

∑N/2
k=0 Z−2k−2

n x2k ∈ ΠN ,
and ∣∣∣∣ 1

Z2
n − x2

−R(x)
∣∣∣∣ ≤ c1 exp(−c2N), x ∈ [−b, b].

For x ∈ [−3,−b] ∪ [b, 3], |R(x)| ≤ c(3/b)N . In this proof only, let the constant
denoted by c in (11) be denoted by γ. We find an integer β > (1/γ) log(4/b). Then
(11) implies that for x ∈ [−3,−b] ∪ [b, 3]

|f1,n(x)− GβN (f, x)R(x)| = |GβN (f, x)R(x)| ≤ c(3/4)N‖f‖∞,R. (21)

For |x| ≤ b,∣∣∣∣ f(x)
Z2

n − x2
− GβN (f, x)R(x)

∣∣∣∣ ≤ c1E
∗
cN (F ) + c2 exp(−c3N)‖f‖∞,R.

Writing F1,n(t) := f1,n(3 cos(2t)), this estimate and (21) imply that for any integer
N ≥ 1,

E∗
2(β+1)N (F1,n) ≤ ‖F1,n(3 cos(2◦))− GβN (f, 3 cos(2◦))R(3 cos(2◦))‖∗

≤ c1E
∗
cN(F ) + c2 exp(−c3N)‖f‖∞,R,

or equivalently,

E∗
m(F1,n) ≤ c1E

∗
cm(F ) + c2 exp(−c3m)‖f‖∞,R, m ≥ 1.

Using Theorem 3.3 again with f1,n in place of f , we conclude that

‖f1,n − Gm(f1,n)‖∞,R ≤ c1E
∗
cm(F ) + c2 exp(−c3m)‖f‖∞,R, m ≥ 1, n ≥ c,

(22)
and

‖Gm(f1,n)‖∞,[−3,−b]∪[b,3] ≤ c1 exp(−cm)‖f‖∞,R. (23)
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In view of Bernstein’s inequality [2, Theorem 2.2, Chapter 4], we may then choose
an ε > 0 such that

|G�√n�(f1,n, z)| ≤ c1 exp(−c
√

n)‖f‖∞,R, z ∈ Γn,1,ε∪(−Γn,1,ε)∪Γn,1,ε∪(−Γn,1,ε),
(24)

and in addition, the conclusions of Lemma 3.4 hold. In this proof only, let

g(z) := G�√n�(f1,n, z),

gn(z) := exp(nz2)(Z2
n − z2)g(z), z ∈ C,

hn(x) :=
{

g(x)(Z2
n − x2), if x ∈ (−Zn, Zn),

0, if x ∈ R \ (−Zn, Zn), (25)

and Ln be polynomial interpolating gn at the zeros of Tn. As in [6, p. 261], we
obtain for x ∈ R, x �= ±Zn,

hn(x) exp(nx2)− Ln(x) =
Tn(x)
2πi

∮
Γn,ε

gn(ξ)
Tn(ξ)(ξ − x)

dξ. (26)

Hence,

|hn(x) − exp(−nx2)Ln(x)|

≤ c‖w(
√

n(◦))Tn‖∞,R

∮
Γn,ε

|g(ξ)|
exp(−n|ξ|2)|Tn(ξ)|

|Z2
n − ξ2|
|x− ξ| |dξ|. (27)

Taking into account the fact that ‖w(
√

n(◦))Tn‖∞,R = En, Lemma 3.4 implies that

|hn(x) − exp(−nx2)Ln(x)| ≤ c1 exp(−cn) max
ξ∈Γn,2,ε∪Γn,2,ε

|g(ξ)|

+ c2n
−1/2 max

ξ∈Γn,1,ε∪(−Γn,1,ε)∪Γn,1,ε∪(−Γn,1,ε)
|g(ξ)|. (28)

In view of the Bernstein inequality [2, Theorem 2.2, Chapter 4],

max
ξ∈Γn,2,ε∪Γn,2,ε

|g(ξ)| ≤ c exp(c2

√
n)‖f‖∞,R.

Along with (24) and (28), this implies for x ∈ R, x �= ±Zn,

|hn(x)− exp(−nx2)Ln(x)| ≤ c1 exp(−c
√

n)‖f‖∞,R. (29)

Since the functions involved are continuous, (29) holds for all x ∈ R.
In particular, in view of (23), we have

| exp(−nx2)Ln(x)| ≤ c1 exp(−c
√

n)‖f‖∞,R, x ∈ [−3,−b] ∪ [b, 3]. (30)

For |x| ≤ b, we use (22) to conclude that

|hn(x)− f(x)| = |g(x)(Z2
n − x2)− f(x)| ≤ c|G�√n�(f1,n, x)− f1,n(x)|

≤ c3E
∗
c
√

n(F ) + c1 exp(−c2

√
n)‖f‖∞,R.

Along with (29) and (30), this implies that for |x| ≤ 3,

|f(x) − exp(−nx2)Ln(x)| ≤ c3E
∗
c
√

n(F ) + c1 exp(−c2

√
n)‖f‖∞,R.
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Necessarily, | exp(−nx2)Ln(x)| ≤ c1 exp(−cn)‖f‖∞,R if |x| ≥ 3. This completes
the proof of the theorem. �

Next, we apply Theorem 3.2 and a simultaneous approximation theorem [6,
Theorem 4.1.7] to arrive at an estimate on the degree of approximation of smooth
functions and their derivatives.

Theorem 3.5. Let m ≥ 1, β, r ≥ 0, ϕ be an infinitely often differentiable function
on R, supported on [−1, 1], and φ(x) := ϕ(x/m). There exists P ∈ Π2m2 such that

‖φ− wP‖∞,r,R ≤ c(β, r, ϕ)m−β . (31)

Proof. In this proof only, let g(x) = exp(x2)φ(x), and ‖ϕ‖∞,r,R = 1. We prove
first that for every γ > 0 there exists a polynomial P1 ∈ Π2m2−1 such that

‖(g′ − P1)w‖∞,R ≤ cm−γ (32)

We apply Theorem 3.2 with ϕ((
√

2m2 − 2/m)◦) (respectively
ϕ′((
√

2m2 − 1/m)◦)) in place of f , and make an obvious change of variables to
obtain P2 ∈ Π2m2−2, R2 ∈ Π2m2−1 such that

‖φ− P2w‖∞,R ≤ cm−γ−1, ‖φ′ −R2w‖∞,R ≤ cm−γ . (33)

Since wg′ = φ′ + 2xφ, the polynomial P1 := R2 + 2xP2 ∈ Π2m2−1 satisfies

‖(g′ − P1)w‖∞,R ≤ ‖φ′ −R2w‖∞,R + 2‖xφ− xP2w‖∞,R. (34)

Since ‖P2w‖∞,R ≤ c, ‖xP2w‖∞,[−4m,4m] ≤ cm. The infinite-finite range inequal-
ity implies that ‖xP2w‖∞,R\[−4m,4m] ≤ c1 exp(−cm2). Since φ is supported on
[−m, m], this implies that

‖xφ− xP2w‖∞,R ≤ cm‖φ− P2w‖∞,R + c1 exp(−cm2) ≤ cm−γ .

Together with (33), this leads to (32).
Again, let P ∈ Πcm2 , c ≥ 2, be any polynomial such that

‖φ− wP‖∞,R = ‖(g − P )w‖∞,R ≤ cm−β−r. (35)

In view of [6, Theorem 4.1.7] and the estimate (32) applied with γ = β + r− 1, we
obtain

‖(g′ − P ′)w‖∞,R ≤ cm−β−r+1. (36)

Arguing as before, we see that ‖xφ − xPw‖∞,R ≤ cm−β−r+1. Therefore, (36)
leads to

‖φ′ − (wP )′‖∞,R ≤ cm−β−r+1.

By induction, we conclude that for any P ∈ Πcm2 for which (35) holds,

‖φ(k) − (wP )(k)‖∞,R ≤ cm−β−r+k.

The existence of such a polynomial being guaranteed by Theorem 3.2 (applied
with ϕ(

√
c◦) in place of f), the proof is now complete. �
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4. Gaussian networks

In the sequel, 1 ≤ p ≤ ∞, A, C > 0 will be fixed numbers, r, s ≥ 1 will be fixed
integers, and it will be assumed that the reciprocal of the minimal separation
satisfies m ≥ 1. The various constants, denoted by c, c1, · · · or by capital letters
depend upon the values of those parameters among A, C, r, p, s that are present
in the context, but not on m. We will explicitly indicate their dependence only on
any other quantities when required. The basis of our proof of Theorem 2.1 is the
following proposition.

Proposition 4.1. Let ϕ : R → [0,∞) be an infinitely many times differentiable
function such that ϕ(x) = 0 if x /∈ [−1, 1]. Let φ(x) :=

∏s
k=1 ϕ(xk/m), x ∈ Rs.

Let g ∈ B(A, C; m, s). Then for any β, γ > 0,

‖φg‖p,r,Rs ≤ c1m
r‖φg‖p,Rs +c2m

−β‖g‖p,r,[−cm,cm]s +c3 exp(−γ2m2)‖g‖p,Rs , (37)

where c1, c2, c3 are positive constants depending on ϕ, β, γ.

We begin by reviewing a number of results from [7], and/or proving them in a
somewhat modified manner. Thus, results which are not proved here can be found
in [7]. In particular, the next proposition is a reformulation of [7, Proposition 3.3].

Proposition 4.2. There exist positive constants c, B1 with the following property.
If g ∈ B(A, C; m, s), then

c‖g‖p,Rs ≤
N∑

k=1

|ak| ≤ c1 exp(B2
1m2)‖g‖p,Rs . (38)

Corollary 4.3. Let 1 ≤ N ≤ C exp(Am2) be an integer, x1, · · · ,xN be points in
Rs, g =

∑N
k=1 ak exp(−‖ ◦ −xk‖2) ∈ GN,∞,m,s, and S ⊆ {1, · · · , N}. Then∥∥∥∥∥∑

k∈S

ak exp(−‖ ◦ −xk‖2)
∥∥∥∥∥

p,r,Rs

≤ c exp(B2
1m2)‖g‖p,Rs . (39)

In particular,
‖g‖p,r,Rs ≤ c exp(B2

1m2)‖g‖p,Rs . (40)

The following proposition (cf. [7, Proposition 3.4]) estimates the norm on a
cube of a part of a Gaussian network whose centers are away from the cube.

Proposition 4.4. Let g :=
N∑

k=1

ak exp(−‖ ◦−xk‖2) ∈ B(A, C; m, s), A be a measur-

able subset of Rs, and b > 0. Let LA := {k : dist (xk,A) ≥ m
√

2B2
1 + 2b2}, and

hA :=
∑

k∈LA

ak exp(−‖ ◦ −xk‖2). Then

‖hA‖p,r,A ≤ c3 exp(−b2m2)‖g‖p,Rs . (41)
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In particular, if a > 0, there exists a constant B2 depending only on a, b, (in
addition to A, C, p, r, s, but not on g) with the following property: Let L := {k :
‖xk‖ ≥ B2m}, and h :=

∑
k∈L

ak exp(−‖ ◦ −xk‖2). Then

‖h‖p,r,[−am,am]s ≤ c3 exp(−b2m2)‖g‖p,Rs . (42)

Before proving Proposition 4.4, we need to introduce some further notation.
For x > 0, let Πx,s be the class of all polynomials in s real variables with co-
ordinatewise degree not exceeding x. The symbol WΠx,s denotes the class of all
functions of the form x → exp(−‖x‖2/2)P (x), P ∈ Πx,s, x ∈ Rs. We will make
extensive use of the classical Hermite polynomials {hk}, defined formally by the
generating function (cf. [10, formula (5.5.7)])

exp(2xt− t2) =: π1/4
∞∑

k=0

hk(x)√
k!

(
√

2t)k, (43)

or by means of the Rodrigues’ formula (cf. [10, formula (5.5.3)]):

exp(−x2)hk(x) =
(−1)k

π1/42k/2
√

k!

(
d

dx

)k

exp(−x2). (44)

The polynomial hk is of precise degree k, and satisfies (cf. [10, formula (5.5.1)])∫
R

hk(x)hj(x) exp(−x2)dx =
{

1, if k = j, k, j = 0, 1, · · · ,
0, otherwise. (45)

For a multi-integer k, we define

hk(x) =
s∏

j=1

hkj (xj). (46)

Writing k! :=
∏s

j=1(kj !), and using standard multivariate notation, we have

exp(2x ·w − ‖w‖2) = πs/4
∑
k≥0

hk(x)√
k!

(
√

2w)k, x,w ∈ R
s, (47)

and for k, j ≥ 0,∫
Rs

hk(x)hj(x) exp(−‖x‖2)dx =
{

1, if k = j,
0, otherwise. (48)

Proof of Proposition 4.4. We may assume that ‖g‖p,Rs = 1. Since g ∈ B(A, C; m, s),
we conclude from (38) that

N∑
k=1

|ak| ≤ c1 exp(B2
1m2). (49)



176 H.N. Mhaskar

For x ∈ A and k ∈ LA, we have from (44) that for |j| ≤ r,

|DjhA(x)| ≤
∑

k∈LA

|ak|{πs/42|j|/2
√

j!}|hj(x− xk)| exp(−‖x− xk‖2)

≤ c exp
(
−(B2

1 + b2)m2
) ∑

k∈LA

|ak||hj(x −wk)| exp(−‖x−wk‖2/2)

≤ c exp
(
−(B2

1 + b2)m2
) N∑

k=1

|ak||hj(x−wk)| exp(−‖x−wk‖2/2).

Since ‖hj exp(−‖ ◦ ‖2/2)‖∞,Rs ≤ c, we obtain from (49) that

|DjhA(x)| ≤ c exp(−b2m2),

which is (41) with ‖g‖p,Rs = 1. The remaining part of the proposition follows by
setting B2 =

√
sa +

√
2B2

1 + 2b2 and A := [−am, am]s. �
The following analogue of [7, Proposition 3.5] estimates the rate of approxi-

mation of Gaussian networks with weighted polynomials.

Proposition 4.5. Let C1, C2 > 0. There exists a constant C3 depending only on C1,
C2, with the following property. For any g ∈ G∞,C1m,m,s, there exists a polynomial
Pg ∈ ΠC3m2,s such that

‖g − Pg exp(−‖ ◦ ‖2)‖p,r,Rs ≤ c1 exp(−C2
2m2)‖g‖p,Rs . (50)

As in [7], the proof of this proposition is immediate from Proposition 4.2, and
the following lemma regarding the approximation of basic Gaussians by weighted
polynomials.

Lemma 4.6. For integer n ≥ 1, w ∈ Rs, let

Pn(x,w) := πs/4
∑

0≤|k|≤n

hk(x) exp(−‖x‖2)√
k!

(
√

2w)k. (51)

Then

‖ exp(−‖ ◦ −w‖2)− Pn(◦,w)‖p,r,Rs ≤ c1n
c (
√

2s‖w‖)n+1 exp(s‖w‖2)√
n!

. (52)

Proof. Let |j| ≤ r. In view of the Rodrigues’ formula (44),

Dj
[
hk(x) exp(−‖x‖2)

]
= (−

√
2)|j|

√
(k + j)!√

k!
hk+j(x) exp(−‖x‖2).

Therefore, using (47), we obtain

Dj
(
exp(−‖x−w‖2)− Pn(x,w)

)
= πs/4

∑
|k|≥n+1

(−
√

2)|j|
√

(k + j)!
k!

hk+j(x) exp(−‖x‖2)(
√

2w)k. (53)
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Using the arithmetic-geometric inequality, we see that |wk| ≤ ‖w‖|k|. Since (cf.
[6, Theorem 6.2.10])

‖hk+j exp(−‖ ◦ ‖2/2)‖p,Rs ≤ c1|k|c,
we see that ‖hk+j exp(−‖ ◦ ‖2)‖p,Rs ≤ c1|k|c as well. Therefore, (53) implies that

‖Dj
(
exp(−‖ ◦ −w‖2)− Pn(◦,w)

)
‖p,Rs ≤ c1

∑
|k|≥n+1

|k|c(
√

2‖w‖)|k|√
k!

= c1

∞∑
j=n+1

jc(
√

2‖w‖)j

√
j!

∑
|k|=j

(
j!
k!

)1/2

≤ c1

∞∑
j=n+1

jc(
√

2s‖w‖)j

√
j!

.

The estimate (52) now follows from [7, Lemma 3.5]. �

Proof of Proposition 4.5. This proof is verbatim the same as that of [7, Proposi-
tion 3.5], except that we use Lemma 4.6 in place of [7, Lemma 3.4]. We omit the
details. �

Lemma 4.7. Let n ≥ 1 be an integer, and C4 > 0. There exists a positive constant
C5 depending only on C4 such that for every P ∈ Πn,s,

‖P exp(−‖ ◦ ‖2)‖p,r,Rs\[−C5
√

n,C5
√

n]s ≤ exp(−C4n)‖P exp(−‖ ◦ ‖2)‖p,Rs . (54)

Proof of Proposition 4.1. In this proof, we will freely use the following fact, without
referring to it explicitly. If F and G are sufficiently smooth functions, then the
Leibniz formula implies that for any measurable subset S ⊂ Rs,

‖FG‖p,r,S ≤ c‖F‖∞,r,S‖G‖p,r,S. (55)

In this proof, all the constants will depend upon A, C, β, γ, r, p, s, and ϕ. Without
loss of generality, we may assume that γ > B1, where B1 is defined in Propo-
sition 4.2. By a repeated application of Theorem 3.5, we obtain a polynomial
P ∈ Π2m2,s such that

‖φ− P exp(−‖ ◦ ‖2)‖∞,r,Rs ≤ cm−β−r. (56)

We will write P := P exp(−‖◦‖2). Using Lemma 4.7 with C4 = 3γ2, we find a > 1
such that

‖P‖∞,r,Rs\[−am,am]s ≤ c1 exp(−3γ2m2). (57)

Next, we use Proposition 4.4 with
√

3γ in place of b to obtain a number B2,
the set L and the subnetwork h of g such that

‖h‖p,r,[−am,am]s ≤ c1 exp(−3γ2m2)‖g‖p,Rs . (58)

Clearly, the network g − h contains at most cm2s neurons. In view of (39), we
observe that

‖g − h‖p,r,Rs ≤ c exp(γ2m2)‖g‖p,Rs . (59)
Since a > 1 and φ(x) = 0 outside of [−m, m]s, we see from (58) that

‖φh‖p,r,Rs ≤ c exp(−3γ2m2)‖g‖p,Rs . (60)
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From (58) and the fact that ‖P‖∞,r,Rs ≤ c, we obtain that

‖Ph‖p,r,[−am,am]s ≤ c exp(−3γ2m2)‖g‖p,Rs . (61)

In view of (57) and (40), we see that

‖Pg‖p,r,Rs\[−am,am]s ≤ c exp(−3γ2m2)‖g‖p,r,Rs ≤ c1 exp(−2γ2m2)‖g‖p,Rs . (62)

Similarly, (57) and (59) imply that

‖(g − h)P‖p,r,Rs\[−am,am]s ≤ c exp(−2γ2m2)‖g‖p,Rs .

Consequently,

‖Ph‖p,r,Rs\[−am,am]s ≤ c exp(−2γ2m2)‖g‖p,Rs .

Together with (61), this implies that

‖Ph‖p,r,Rs ≤ c exp(−2γ2m2)‖g‖p,Rs .

Therefore, (60) implies that

‖(φ− P)h‖p,r,Rs ≤ c exp(−2γ2m2)‖g‖p,Rs .

Since (cf. (56), (62))

‖(φ− P)g‖p,r,Rs ≤ c1m
−β−r‖g‖p,r,[−am,am]s + c2 exp(−2γ2m2)‖g‖p,Rs ,

we conclude that

‖(φ−P)(g−h)‖p,r,Rs ≤ c1m
−β−r‖g‖p,r,[−am,am]s + c2 exp(−2γ2m2)‖g‖p,Rs . (63)

Since g − h ∈ Gcm2s,c1m,m,s, we may use Proposition 4.5 to obtain a polynomial
Q ∈ Πcm2,s, such that with Q = Q exp(−‖ ◦ ‖2),
‖g − h−Q‖p,r,Rs ≤ c1 exp(−3γ2m2)‖g − h‖p,Rs ≤ c2 exp(−2γ2m2)‖g‖p,Rs . (64)

Since

‖φg − PQ‖p,r,Rs ≤ ‖φh‖p,r,Rs + ‖(φ− P)(g − h)‖p,r,Rs + ‖(g − h−Q)P‖p,r,Rs ,

the estimates (60), (63), (64) lead to

‖φg − PQ‖p,Rs ≤ ‖φg − PQ‖p,r,Rs

≤ c1m
−β−r‖g‖p,r,[−am,am]s + c2 exp(−2γ2m2)‖g‖p,Rs . (65)

A repeated application of (8), keeping in mind the fact that the derivative of a
weighted polynomial in WΠn,s is in WΠn+1,s, implies that
‖PQ‖p,r,Rs ≤ cmr‖PQ‖p,Rs . The estimate (37) now follows easily from (65). �
Proof of Theorem 2.1. We prove the theorem for 1 ≤ p <∞. The same proof works
also in the case p =∞, but is simpler. It is enough to prove the theorem for m ≥ c,
where c is some constant depending only on A, C, r, p, s. Let ϕ : R → [0,∞) be
an infinitely differentiable function on R, such that ϕ(x) = 1 if |x| ≤ 1/2 and
ϕ(x) = 0 if |x| ≥ 1. Let

ψ(x) :=
ϕ(x)∑

k∈Z
ϕ(x− k)
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and φ(x) :=
∏s

j=1 ψ(xj/m). Then φ is supported on [−m, m]s, 0 < c1 ≤ φ(x) ≤
1 if x ∈ [−m/2, m/2]s, and

∑
k∈Zs φ(x − km) = 1. Let 1 ≤ p < ∞. Since

Djg =
∑

k∈Zs Dj(φ(◦ − km)g) for each j, and only finitely many of the supports
of Dj(φ(◦−km)g) may intersect each other (the number being dependent only on
s), we conclude that

‖g‖pp,r,Rs ∼ c
∑
k∈Zs

‖φ(◦ − km)g‖pp,r,Rs = c
∑
k∈Zs

‖φgk‖pp,r,[−m,m]s , (66)

where each
gk := g(◦+ km) ∈ B(A, C; m, s). (67)

Now, let γ2 > 2A, and in this proof only, B1 be the constant defined in Proposi-
tion 4.2, b = γ

√
3/p, and B3 :=

√
s +

√
2B2

1 + 2b2 (cf. Proposition 4.4) . In this
proof only, let C be the set of all the centers of g,

Z
s \S := {k ∈ Z

s : ‖w−km‖ ≥ B3m, w ∈ C}, A :=
⋃

k∈Zs\S

(km + [−m, m]s) .

With our choice of A and B3, it is clear that the subnetwork hA defined in Propo-
sition 4.4 is the whole network g. We observe also that only finitely many cubes
among all the cubes comprising A intersect each other, the number depending only
on s. Therefore, (41) implies that∑

k∈Zs\S

‖φgk‖pp,r,Rs ∼ ‖g‖pp,r,A ≤ c exp(−3γ2m2)‖g‖pp,Rs . (68)

In view of (66) and (68), we obtain

‖g‖pp,r,Rs ≤ c
∑
k∈S

‖φgk‖pp,r,[−m,m]s + c1 exp(−3γ2m2)‖g‖pp,Rs . (69)

In view of the fact that the total number of centers in g is at most C exp(Am2),
the cardinality of S satisfies

|S| ≤ cm2s exp(Am2) ≤ c1 exp(2Am2) ≤ c2 exp(γ2m2). (70)

We now use Proposition 4.1 with each gk, k ∈ S, and with some β > 0 to obtain
(using (69) and (70)) that

‖g‖pp,r,Rs ≤ c

{
mrp

∑
k∈S

‖φgk‖pp,Rs + m−βp
∑
k∈S

‖gk‖pp,r,[−cm,cm]s + ‖g‖pp,Rs

}
. (71)

Clearly,
∑

k∈S ‖φgk‖pp,Rs ≤ c‖g‖pp,Rs. Since only finitely many cubes of the form
km + [−cm, cm]s intersect each other, we also conclude that∑

k∈S ‖gk‖pp,r,[−cm,cm]s ≤ c1‖g‖pp,r,Rs . So, (71) implies that

‖g‖pp,r,Rs ≤ c
{
mrp‖g‖pp,Rs + m−βp‖g‖pp,r,Rs

}
,

and hence, for sufficiently large m,

‖g‖pp,r,Rs ≤
cmrp

1− cm−βp
‖g‖pp,Rs ≤ c1m

rp‖g‖pp,Rs. �
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[10] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. 23, Amer. Math.
Soc., Providence, 1975.

H.N. Mhaskar
Department of Mathematics
California State University
Los Angeles, California, 90032, USA
e-mail: hmhaska@calstatela.edu



Trends and Applications in Constructive Approximation
(Eds.) M.G. de Bruin, D.H. Mache & J. Szabados

International Series of Numerical Mathematics, Vol. 151, 181–194
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TS Control – The Link between
Fuzzy Control and Classical Control Theory

Kai Michels

Abstract. Fuzzy controller can be approximated or generalized respectively by
replacing the fuzzy sets in the rule conclusions by real numbers or functions.
Such a controller is called a TS controller and can be seen as a classical gain
scheduling controller. Therefore, TS control can be interpreted as fuzzy and
classical control as well. Besides this, for this type of control during the last
years there were methods developed, that make it interesting for practical
applications.

The objective of this paper is the introduction of TS control and the
discussion of its position at the border between fuzzy and classical control, but
also the presentation of suitable methods, approaches and fields of application
for this controller type.

1. Introduction

Takagi-Sugeno control was introduced by T. Takagi and M. Sugeno in the middle
of the 80s as an additional version of fuzzy control. In principle, it is nothing else
but gain scheduling control, which is well known in control theory since decades.
But in the following years, in the field of fuzzy control this controller type received
intensive research activities, and since the end of the 90s a controller design method
was developed, that makes TS control very interesting for practical applications.
On the one hand, this state space based method can thoroughly be seen as a
classical approach, but on the other hand, a TS controller can also be interpreted
as a generalized fuzzy controller, and therefore it can be said, that TS control is a
link between fuzzy control and classical control theory.

This paper starts with a short description of the conventional fuzzy controller.
This gives the basis to discuss conventional fuzzy control and to point out the
special position and advantages of TS control later. In the rest of the paper, TS
control with its analysis and design methods is introduced in detail (further details
see [5]).
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2. Fuzzy control

Let the starting point be a conventional fuzzy controller for temperature control
with the temperature x as input and the actuating variable y as controller output,
given by the fuzzy rules

R1 : IF x IS cold THEN y IS big (1)

R2 : IF x IS hot THEN y IS small (2)

The vague expressions cold, hot, big, and small are defined by the fuzzy sets of
Figure 1.

Figure 1. Black Forest test.

With a measured temperature xk at time t = tk the two fuzzy rules are
activated according to the membership degree of xk to the fuzzy sets cold and hot .
The membership degree is equivalent to the value of the respective membership
function at x = xk. In the example of Figure 1 xk belongs more to the set hot
of the hot temperatures than to the set cold of the cold temperatures. Following
from that, rule No. 2 is stronger activated than rule No. 1, and the output fuzzy
set small of the second rule is higher weighted in the overall fuzzy set. This output
fuzzy set of the entire controller is the set of all possible output values for the input
value xk, and it is computed by association of all differently activated output fuzzy
sets of all rules.

Then, one value yk of this controller output fuzzy set has to be determined
by the so-called defuzzification. This value will be the controller response to the
input value xk. Normally, for defuzzification the center-of-gravitiy method is used,
that means, the y coordinate of the center of gravity of the fuzzy set is used as
defuzzification result.
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Considering the transfer function of the entire controller, it can easily be
seen, that for any low temperature, that only belongs to the set cold , the controller
output is always the same, because for each low temperature only the output set
big is activated more or less while no other set is activated, and therefore the
defuzzification result is always the y coordinate of the center of the triangle big.
Analogously, the controller output for high temperatures is always the y coordinate
of the center of the triangle small . For all other temperatures in between, that
belong to the sets cold and hot more or less as well, the controller output is always
between big and small . For other input values, that do not belong to any input
fuzzy set, the controller output is undefined. But this case does not have to be
taken into consideration here, as in practical applications it is easy to define a
sufficient number of input fuzzy sets and rules, so that there is always a well-
defined controller output for any possible input.

Summarized, the controller transfer function can be defined by a characteris-
tic curve as shown in Figure 1, although the curve between the supporting points
is not necessarily linear as in the figure. It depends on the shape of the fuzzy sets
and the defuzzification method.

It follows, that the fuzzy controller is a characteristic curve controller, whose
supporting points are defined by the center points of the input fuzzy sets, and the
type of interpolation between the supporting points is given by the shape of the
fuzzy sets and the defuzzification method. This understanding corresponds to the
interpretation of fuzzy control with similarity relations as shown in [5].

It is obvious, that the SISO (single input single output) case discussed above
with only two fuzzy rules can easily be extended to the MIMO (multi input multi
output) case with any number of fuzzy rules. Therefore, regarding to its trans-
fer behaviour, a general fuzzy controller is a characteristic field controller, whose
output values depend clearly on its input values. Operations like differentiation or
integration of input or output variables can be added to the controller outside the
fuzzy system to enable also dynamical transfer behaviour like PI control.

But such a combination of characteristic field and added dynamical oper-
ations can be used to represent any classical controller transfer behaviour, too.
Therefore, regarding to the transfer behaviour, there is absolutely no difference be-
tween a fuzzy and a classical controller. Differences exist only in the design methods
and in the representation with fuzzy rules on the fuzzy side and analytical func-
tions on the classical side. Following from that, any discussion about advantages
and disadvantages of fuzzy control must concentrate on only these two aspects.

First, it should be noticed that classical controller design has got some prin-
ciple advantages. The first step, developing an analytical model (differential equa-
tions) of the plant to be controlled, as well as the second step, deriving an analytical
controller function based on the differential equation system of the plant, can be
performed systematically with established methods. Using these methods, stabil-
ity and selected control performance indices can be guaranteed for the closed loop
system implicitly. Model uncertainties can be taken into consideration with norm
optimal control methods, so that even for these cases stability can be guaranteed.
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In contrast to this, the design of a fuzzy controller is normally heuristic
without strict procedure, what may be time consuming and can even make the
controller design impossible, if the structure of the plant to be controlled has a
certain level of complexity. Besides that, for a heuristically designed controller
stability cannot be guaranteed. Since the end of the 80s the systematic fuzzy
controller design as well as stability analysis have been object of intensive research,
but useful approaches for practical applications have only been developed for fuzzy
controllers, that are completely represented as characteristic fields and that do not
contain fuzzy sets any more. TS control as discussed in this paper belongs to these
approaches.

Another point to be discussed is the robustness. During the 90s it was stated,
that a fuzzy controller is more robust than a classical controller because of its
principal vagueness. But as explained before, a fuzzy controller has got a well-
defined transfer behaviour like any other controller, and therefore its robustness
can be discussed like the robustness of any other controller. Before this discussion
is started, one point must be mentioned first: The use of the concept robustness
does only make sense, if it is possible to quantify, how large the differences between
the nominal plant model and the real plant may be, so that the controller, whose
design is based on the plant model, is also able to stabilize the real plant. The
unquantified attribute robust holds for any practical controller more or less, and
therefore it gives no useful information.

For conventional fuzzy controllers with fuzzy rules, that are designed heuristi-
cally for a plant, of which no model exists, it is in principle impossible to quantify
their robustness, because for the quantification a model is always needed. But
even if a model exists, fuzzy controller robustness can only be investigated by
simulation runs with different model parameters, because the controller is de-
fined by fuzzy rules, that do not enable an analytical computation of stability
or robustness measures. Obviously, a handful of simulation runs is no proof of
robustness. However in classical linear control theory ([6]) there exist controller
design methods, in which the uncertainty of any single plant model parameter
can be selected and the design method will lead to a controller that can stabilize
the plant for any possible parameter constellation within the selected ranges of
uncertainty.

Finally, there is the clearness of the fuzzy controller. Undoubtedly, a fuzzy
rule is easier to understand especially for non control specialists than a transfer
function of a PID controller or a coefficient matrix of a state space controller.
But for more complex plants the number of fuzzy rules can increase up to several
hundreds. In this case, the clearness of each single fuzzy rule still remains, but the
complete controller cannot be overlooked any more. The effect of a change of a
certain input variable can only be predicted by computing the complete controller
algorithm with computing each fuzzy rule, superimposition of all output fuzzy sets
and defuzzification. On the other hand, for a control specialist it is always possible
to assess the connection between input and output variables of a PID controller
cascade or a state space controller matrix.
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Summarized, all points mentioned before give a clear vote for classical control,
and therefore the following has to be stated: If an analytical model of the plant is
available and if the structure of the plant allows the design of a classical controller,
classical control should be preferred to fuzzy control. On the other hand, fuzzy
control is useful if
• there is no analytical plant model available.
• the structure of the plant model makes any classical controller design impos-

sible.
• the control goals are defined imprecisely, e.g., the demand for smooth switch-

ing of an automatic gear in a car ([8]).
• the plant and the necessary control strategy are so simple, that the design of

a fuzzy controller with a few fuzzy rules is easier or faster than any classical
approach with plant modelling and analytical controller design.

Beside these points fuzzy systems can have a wide range of applications on a higher
control level outside any internal closed control loop, e.g., trajectory planning
for robots or autonomous vehicles, adaptation and parameterization of classical
controllers, control loop supervision or fault diagnosis. In these fields there exist
no limits for the application and variety of fuzzy systems. As the fuzzy controller
is not working in the closed loop, there are no control-specific problems like the
stability problem. For these applications other problems are more relevant, e.g.,
the protection against a system crash or the question, if all possible situations are
covered by the fuzzy rules.

3. TS control

The disadvantages of conventional fuzzy control discussed in the preceding chapter
result in essence from the missing systematic design method. But as mentioned be-
fore, for a fuzzy controller, that is represented by characteristic fields, since the late
90s there exist systematic design approaches with guaranteed stability. With this
feature, theses approaches are equal to any classical approach, but in addition to
that, they cover fields of application, that were reserved for fuzzy control until now.

The most interesting of these approaches from a practical point of view is the
so-called TS control. This approach was introduced by T. Takagi and M. Sugeno [9,
10] in the middle of the 80s and received further development throughout the 90s by
different authors. Although TS control was originally defined just as an additional
version of fuzzy control, TS control can also be understood as generalization of
fuzzy control, as will be shown in this chapter. On the other hand, TS control
corresponds to the gain scheduling method, that is well known in classical control
theory since many years. Therefore, TS control is not only interesting because it
is easy to use and can be applied to a great variety of systems, but it can also be
seen as a link between fuzzy control and classical control theory.

A TS controller is given by fuzzy rules of the form

Ri : IF z1 IS µ
(1)
Ri

AND . . . AND zl IS µ
(l)
Ri

THEN y = fi(x1, . . . , xn). (3)
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The µ
(i)
Ri

in the premises of the rules are fuzzy sets like in any other fuzzy controller.
But the conclusion of each rule consists of an analytical function of system variables
xi, that do not necessarily have to be equal to the input variables zi of the fuzzy
rules. The basic idea of TS control is, that in a vague area, that is defined by
the premise of a rule, the function in the conclusion is a good description of the
output variable. If linear functions are used, the transfer behaviour of the controller
is locally (in vague areas) described by linear models.

It remains to be cleared, how the conclusions have to be superimposed, de-
pending on the degree of activation of their fuzzy rules. In a conventional fuzzy
controller, the output fuzzy set of each rule is weighted according to the degree
of activation of that rule and associated with all output fuzzy sets of all rules, to
create one common controller output fuzzy set, of which one single value has to
be selected by defuzzification as controller output value.

For TS control, there is the same principle. The difference is, that here is
no superimposition of differently weighted fuzzy sets. As here each rule already
gives a real value, these values only have to be added to a weighted sum, with the
weights corresponding to the degrees of activation of each rule:

y =
∑

i ci(z1, . . . , zl) · fi(x1, . . . , xn)∑
i ci(z1, . . . , zl)

y =
∑

i

ki(z1, . . . , zl) · fi(x1, . . . , xn)

with ki(z1, . . . , zl) =
ci(z1, . . . , zl)∑
i ci(z1, . . . , zl)

(4)

ci(z1, . . . , zl) is the degree of activation of rule Ri, and ki(z1, . . . , zl) is the weighting
factor of the function fi. Obviously it holds∑

i

ki = 1 and 0 ≤ ki ≤ 1 (5)

With these formulas, it is easy to see that a TS controller is a gain scheduling
controller. The fi are the controller transfer functions for single operating points,
that are activated by the weighting factors depending on the operating point.

Besides this, TS control can also be seen as a generalization of conventional
fuzzy control, because for constant functions fi the TS controller is a characteristic
field, whose values fi and weighting factors ki(z1, . . . , zl) can be chosen in a way,
so that any conventional fuzzy controller transfer behaviour can be represented in
the form (4).

Furthermore, in practical applications the characteristic field representation
of a fuzzy controller with linear interpolation between the supporting points is the
usual way to reduce computation time in every time step. While for the computa-
tion of a conventional fuzzy controller in every single time step all rules have to be
worked through, the output fuzzy sets have to be superimposed, and the output
value has to be computed by defuzzification, the computational effort for a char-
acteristic field is reduced to a simple computation according to eq. (4). And the



TS Control 187

difference between the original fuzzy controller curve and the linearly interpolated
characteristic curve can be kept small for a sufficient number of supporting points.

Because of these points TS control has got a particular position in control
theory, as it belongs to the fields of fuzzy and classical control as well, and besides
that it can be seen as a generalization of conventional fuzzy control.

In the following only one specific type of TS control will be discussed. At first,
the considerations shall be extended to multi input multi output (MIMO) systems.
This is easy, because the scalar functions fi just have to be replaced by the vector
functions f i. Furthermore, the variables of the functions fi shall be restricted to
state variables of the plant to be controlled, and the functions themselves shall
be only linear functions of these state variables. With these restrictions the TS
controller is given by

u =
∑

i

ki(z) Fix (6)

z = (z1, . . . , zl)T is the vector of input variables, u = (u1, . . . , um)T is the con-
troller output vector (actuating variable), x = (x1, . . . , xn)T is the vector of state
variables, and Fi are linear coefficient matrices of dimension m × n. Obviously,
the TS controller of eq. (6) is a superimposition of linear state space controllers,
whose weighting factors depend on the operating points.

The same type of representation can be used for plants:

ẋ(t) =
∑

i

ki(z(t)) [Aix(t) + Biu(t)] (7)

Ai of dimension n× n and rank n is the system matrix for operating point i, and
Bi of dimension n × m is the input matrix of the plant. Such a TS model can
be used to describe any linear or non-linear transfer behaviour with any degree of
exactness depending on the number of supporting points, except systems contain-
ing hysteresis or time delay effects. The TS model consists of linear models, whose
output values are superimposed with different weighting factors depending on the
input values.

A TS model can be obtained for instance with an identification algorithm. In
the first step, suitable operating points have to be chosen, that cover the complete
range of operation with sufficient resolution, that means, it must be possible to
represent the nonlinear transfer characteristic of the plant by the superimposition
of linear models at the operating points. After that, for every operating point
a classical system identification algorithm has to be performed, e.g., least error
squares methods, to compute the linear model matrices Ai,Bi for that operating
point.

If a nonlinear analytical model of the plant already exists, but a classical
controller design is impossible because of the unsuitable model structure, it can
be useful to transfer this model into a TS model and to design a TS controller for
that plant. One approach for that strategy is discussed in [13] and [5].
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Inserting the TS controller equation (6) into (7) gives the state space equation
of the closed loop system in TS representation:

ẋ(t) =
∑

i

∑
j

ki(z(t))kj(z(t)) [Ai + BiFj ]x(t) (8)

ẋ(t) =
∑

i

∑
j

ki(z(t))kj(z(t))Gijx(t) (9)

with Gij = Ai+BiFj . Re-indexing with Ag,l = Gij and kl(z(t)) = ki(z(t))kj(z(t))
leads to

ẋ(t) =
∑

l

kl(z(t))Ag,lx(t) (10)

The index g shall make clear, that here the system matrices stand for the closed
loop system and not just for the model of the plant like the Ai before.

4. Stability analysis of TS systems

With the model (10) of the closed loop system, the stability of a system in TS
representation can be investigated. The following theorem holds (see [12]):

Theorem 4.1. A time-continuous system of the form

ẋ =
∑

i

ki(z(t))Aix(t) (11)

possesses a globally asymptotically stable rest position x = 0, if there exists a
common positive definite matrix P for all partial systems Ai, so that

Mi = AT
i P + PAi (12)

is negative definite for all i (Mi < 0 ).

For the proof, the Direct Method of Lyapunov shall be used. In the first step,
a Lyapunov function V = xT Px with positive definite matrix P shall be defined.
This scalar function is zero for x = 0, and its values get bigger with increasing
distance to the origin. If it can be shown, that the time derivative V̇ (x(t)) of
that function is negative for all x(t) �= 0, it follows, that for the actual system
the distance between the state vector and the origin is decreasing until the rest
position 0 is reached, independently from the starting state x(t = 0). But this
means global asymptotic stability for the rest position x = 0.

For the given system, the time derivative of the Lyapunov function is

V̇ = ẋT Px + xT Pẋ

=
∑

i

kixT AT
i Px +

∑
i

kixT PAix

=
∑

i

kixT (AT
i P + PAi)x < 0 (13)
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From the condition of the theorem it follows, that all terms in brackets are negative
definite, and therefore every term of the sum is negative. Therefore, V̇ (x(t)) < 0
and the system is stable.

Until the end of the 90s the problem to apply theorem 4.1 was the necessity
of a non-systematic search for a suitable, common positive definite matrix P, with
which all terms (12) would be negative definite. This is not a specific problem of
this theorem, it is a principle problem of the Direct Method of Lyapunov: If a
suitable Lyapunov function can be found, the proof of stability with this method
is absolutely easy. But if no Lyapunov function is found, no statement regarding
the stability is possible, because the fact, that one could not find that function,
does not necessarily mean, that is does not exist.

Finally, in the 90s a systematic (numerical) approach to solve this problem
was presented, based on linear matrix inequalities (LMI’s). With this approach it
is possible, to check the existence of the matrix P at least with numerical methods
clearly.

5. LMI algorithms

The basic problem and starting point of all solution algorithms in the theory of
linear matrix inequalities (LMI’s) can be formulated in the following way (see
[7]): A symmetrical matrix is given, whose coefficients depend linearly on free
parameters. The question is, if these free parameters can be chosen in a way, so
that the symmetrical matrix will be negative definite.With p is the vector of free
parameters, and H(p) the symmetrical matrix, whose coefficients depend linearly
on the free parameters, the formal definition of the basic problem is:

Does a vector p exist, that makes

H(p) < 0 (14)

negative definite?
Because of the linearity of the matrix function H(p) the solution set for p

is always convex, and therefore, the question of the existence of a solution can
be answered with numerical algorithms clearly. One example for such algorithms
is the Matlab LMI Toolbox, that can answer the question of the existence, but
besides that, it can also compute a solution p, if one exists.

With such a tool, a given problem just has to be transferred to the form (14).
For this step, the following remarks give some support:
• An LMI of the form G(p) > 0 is equivalent to (14) with G = −H.
• A block diagonal matrix⎛⎜⎜⎝

H1

H2

· · ·
Hn

⎞⎟⎟⎠ = diag(H1, . . . ,Hn) (15)

is negative definite, iff every single block is negative definite.
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Based on these remarks, for the stability proof following theorem 4.1 the block
diagonal matrix

H(P) =

⎛⎜⎜⎝
AT

1 P + PA1

· · ·
AT

nP + PAn

−P

⎞⎟⎟⎠ = H(p) < 0 (16)

is defined as input matrix of an LMI algorithm. The matrix P is unknown, an its
coefficients form the free parameter vector p of the basic problem. The coefficients
of H obviously depend linearly on the unknown coefficients of P. To save the
symmetry of H, the coefficients of P have to be defined in a way, that solutions
for P are restricted to symmetrical matrices, that means pij = pji.

The LMI algorithm determines, if a parameter vector p or a coefficient matrix
P respectively exists, so that H(P) is negative definite. In that case, also every
block matrix AT

i P + PAi is negative definite as remarked before. And because
−P is negative definite, too, P is positive definite. It follows, that all conditions
of theorem 4.1 are fulfilled, and the stability of the closed loop system is proven.
If the algorithm shows the non-existence of a suitable matrix P, the system is
unstable.

Besides that, the LMI algorithm does not only show the existence of a so-
lution, it can also compute one possible solution. For the proof of stability this
is not relevant, but it can be used for the controller design, as shown in the next
chapter.

6. Design of a TS controller

As mentioned in the last chapter, with LMI algorithms not only the stability of
a closed loop system with a given TS controller can be proven, they can also be
used to design a TS controller ([11]). The only requirement is, that a TS model of
the plant is given.

The starting point of the reflection is the stability condition of the closed
loop system

AT
g,lP + PAg,l < 0 (17)

with the system matrix Ag,l of the closed loop system of eq. (10). If the proof of
theorem 4.1 would have been based on the double sum of eq. (8) instead of the
re-indexed representation of eq. (10), this would have been lead to the following
stability condition, as can be checked easily:

AT
i P + (BiFj)T P + AT

j P + (BjFi)T P

+PAi + PBiFj + PAj + PBjFi < 0 for all i, j (18)

For a given plant model (Ai, Bi) the unknown variables of this inequality
system are the controller matrices Fi and the symmetrical matrix P. Obviously,
this inequality system is not linear for the unknown variables, so that the left sides
of these inequalities cannot be used as input block matrices for an LMI algorithm.
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But, with a simple conversion this problem can be transferred into a linear
inequality system. At first, every ineqality is multiplied by the left and the right
side with P−1 (as P is symmetrical, its inversion is not critical):

P−1AT
i + P−1FT

j BT
i + P−1AT

j + P−1FT
i BT

j

+AiP−1 + BiFjP−1 + AjP−1 + BjFiP−1 < 0 for all i, j (19)

After this, with the definitions X=P−1 and Hi =FiP−1, and under consideration
of the symmetry of P or X respectively, the inequality system can be written as

XAT
i + HT

j BT
i + XAT

j + HT
i BT

j

+AiX + BiHj + AjX + BjHi < 0 for all i, j (20)

Now, this inequality system is linear for the unknown matrices X and Hi, and
therefore, the left sides of the inequalities can be used as input block matrices for
an LMI algorithm. The coefficients of the unknown matrices X and Hi are the
unknown free parameters. With symmetrical X, the overall block diagonal input
matrix for the algorithm will also be symmetrical.

After the construction of the block diagonal input matrix, the LMI algorithm
does not only clear the existence of a solution, it also computes a solution for X
and the Hi, if one exists. With this solution, the controller matrices of the TS
controller can be computed by

Fi = HiX−1 (21)

As these controller matrices follow directly from the stability conditions, it is
guaranteed, that the closed loop system with this controller is stable. To sum it
up, the following steps are necessary for the design of a TS controller:
• Get a TS model of the plant, for example with system identification based

on least error squares methods in the different operating points.
• Construct a block diagonal matrix as input matrix for an LMI algorithm,

with the blocks consisting of the left sides of the inequality system (20).
The coefficients of the unknown matrices X and Hi form the vector of the
unknown parameters of the LMI algorithm.
• If a solution for the unknown matrices X and Hi exists, the LMI algorithm

will compute it.
• The TS controller matrices can be obtained by Fi = HiX−1. The closed loop

system will be stabilized by this controller.

7. Extensions

In addition to stability there exist also other criteria, that can be worked into
the stability analysis or controller design with LMI algorithms. For example, the
demand for a fast system state approximation to the rest point after a disturbance
(control velocity) is equivalent to the demand for a high change rate of the Lya-
punov function. Instead of just being negative, this change rate can be demanded
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to depend on the distance of the system state to the rest point ([11]):

V̇ (x(t)) ≤ −αV (x(t)) (22)

α > 0 can be chosen independently, just limited by technical restrictions of the
plant regarding the maximum possible control values. The greater its value is, the
faster is the approximation of the system state to the rest point. Besides this, this
demand will lead to higher approximation rates, if the system is far away from
the rest point. This makes sense from a practical point of view, because you need
strong control actions to drive a system close to the rest point, and soft control
actions to drive the system into the rest point.

Equation (13) changes with (22) to

V̇ =
∑

i

kixT (AT
i P + PAi)x < −αV (x) = −αxT Px∑

i

kixT (AT
i P + PAi)x + αxT Px < 0∑

i

kixT (AT
i P + PAi + αP)x < 0 with

∑
i

ki = 1 (23)

and therefore, the stability condition (12) changes to

AT
i P + PAi + αP < 0 (24)

Obviously, just αP has to be added to each inequality. The inequality system
remains linear with P, so that also the LMI algorithms remain applicable.

The discussion of the preceding chapters can even be extended to systems
with model parameter uncertainties. One example is described in [2]. The system
discussed there is a time-discrete representation of a system with time-varying
model parameters:

x(k + 1) =
∑

i

ki(Ai + ∆Ai(k))x(k) (25)

with the time-varying part of the system matrix

∆Ai(k) = EiFi(k)Hi (26)

Ei and Hi are constant matrices of suitable dimension, while the matrix
Fi(k) contains the time variability. The matrices may be chosen independently,
just Fi(k) has to fulfil the condition

FT
i (k)Fi(k) ≤ I (27)

In order not to complicate the equations unnecessarily, Fi(k) can be chosen as a
diagonal matrix, whose diagonal elements vary between −1 and 1:

Fi(k) =
(

f1 0
0 f2

)
with − 1 < f1(k), f2(k) < 1 (28)

In [2] the conditions are developed, under which the closed-loop system stabil-
ity can be guaranteed for a system of the type (25). The conditions are summarized
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in matrix inequalities, so that an LMI algorithm can be used again to prove the
stability. In addition, as performed in the last chapter for the time-constant case,
the equations for the controller design are also derived. Obviously, these equations
are rather extensive, and therefore, they are not presented in this paper.

Finally, it should be remarked, that any method discussed in this paper can be
extended to closed-loop systems with observers. The state vector of such a system
contains not only the state variables of the plant, but also the state variables of
the observer. By suitable combination of the state space equations for the plant
and the observer, the equations can be transferred to a form similar to (9), and
based on this, the stability conditions can be defined (see [11, 4, 1]). However, the
resulting equations get really extensive.

8. Conclusion

In this paper it was shown, that for TS systems there exist approaches for stability
analysis and controller design, that are suitable for practical applications and that
can be extended for control velocity and robustness. Even the inclusion of observers
is possible.

A special aspect of TS control is the fact, that on the one hand it can be
seen as classical gain scheduling control, but on the other hand it belongs to
fuzzy control as well and can even be interpreted as generalization of conventional
fuzzy control. However, the presented methods for stability analysis and controller
design belong clearly to the field of classical control, because in the first step an
analytical plant model has to be generated, followed by a systematic analysis or
design procedure including stability, robustness and control velocity. But just with
this systematic procedure the decisive disadvantage of conventional fuzzy control,
the unsystematic control design procedure, can be avoided.

At the sight of these rather formal aspects the high use for practical applica-
tions should not be forgotten. A TS model as a basis for the presented procedures
can be got easily with classical least error squares methods for each operating
point, and the rest of the analysis or design can be performed by LMI algorithms.
In addition, TS models are suitable to approximate any nonlinear multi input
multi output (MIMO) system behaviour without time delay or hysteresis quite
well, so that there is a wide range of application for the presented methods.

Besides that, from the point of fuzzy control the presented stability analysis
method is generally very interesting, because an existing fuzzy controller can be
represented as TS controller and checked for stability with the presented method,
if a TS model of the plant is available.

The critical point of all presented methods lies in the high dimension of the
resulting LMI problem. This could cause numerical problems, especially for high
order systems with a large number of operating or supporting points. After all, this
point will always define the limits of any TS approach in practical applications.
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Polynomial Bases for
Continuous Function Spaces

Josef Obermaier and Ryszard Szwarc�

Abstract. Let S ⊂ R denote a compact set with infinite cardinality and C(S)
the set of real continuous functions on S. We investigate the problem of poly-
nomial and orthogonal polynomial bases of C(S).

In case of S = {s0, s1, s2, . . .} ∪ {σ}, where (sk)∞k=0 is a monotone se-
quence with σ = limk→∞ sk, we give a sufficient and necessary condition for
the existence of a so-called Lagrange basis. Furthermore, we show that little
q-Jacobi polynomials which fulfill a certain boundedness property constitute
a basis in case of Sq = {1, q, q2, . . .} ∪ {0}, 0 < q < 1.

1. Introduction

One important goal in approximation theory is the representation of functions with
respect to a set of simple functions. Here, we focus on the Banach space C(S) of
real continuous functions on a compact set S ⊂ R with infinite cardinality. Among
the continuous functions polynomials are the most simple to deal with. Hence,
further on we discuss the representation of f ∈ C(S) with respect to a sequence
of polynomials (Pk)∞k=0. Moreover, it is profitable to look for a sequence with

deg Pk = k for all k ∈ N0, (1)

which guarantees that every polynomial has a finite representation.
Of special interest are orthogonal polynomial sequences with respect to a

probability measure π on S, where a representation is based on the Fourier coef-
ficients

f̂(k) =
∫

S

f(x)Pk(x) dπ(x), k ∈ N0, (2)

of f ∈ C(S).

� Partially supported by KBN (Poland) under grant 2 P03A 028 25.
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Let us recall some important facts about orthogonal polynomials, see [3]. An
orthogonal polynomial sequence (Pk)∞k=0 with compact support S and property
(1) satisfies a three term recurrence relation

P1(x)Pk(x) = akPk+1(x) + bkPk(x) + ckPk−1(x), k ∈ N, (3)

starting with

P0(x) = a0 and P1(x) = (x− b)/a, (4)

where the coefficients are real numbers with ckak−1 > 0, k ∈ N, and (ckak−1)∞k=1,
(bk)∞k=1 are bounded sequences. The other way around, if we construct (Pk)∞k=0

by (3) with coefficients satisfying the conditions above, then we get an orthogonal
polynomial sequence with compact support S.

The sequence of kernels (Kn)∞n=0 is defined by

Kn(x, y) =
n∑

k=0

Pk(x)Pk(y)h(k) =
n∑

k=0

pk(x)pk(y), (5)

where

h(k) = (
∫

S

P 2
k (x) dπ(x))−1 =

1
a2
0

∏k−1
i=0 ai∏k
i=1 ci

, k ∈ N0, (6)

and (pk)∞k=0 is the orthonormal polynomial sequence with respect to π defined by

pk =
√

h(k)Pk. (7)

For z ∈ S it holds

(Kn(z, z))−1 = min
Q∈P(n),Q(z)=1

∫
S

(Q(x))2 dπ(x), (8)

where P(n) denotes the set of polynomials with degree less or equal n. One of the
most important tools is the Christoffel-Darboux formula

Kn(x, y) = anh(n)
Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

P1(x) − P1(y)

= a
√

cn+1an
pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
. (9)

The linearization coefficients g(i, j, k) are defined in terms of

PiPj =
∞∑

k=0

g(i, j, k)Pk =
i+j∑

k=|i−j|
g(i, j, k)Pk, i, j ∈ N0, (10)

where g(i, j, |i− j|), g(i, j, i + j) �= 0. The nonnegativity of the linearization coeffi-
cients is sufficient for a special boundedness property, which we will introduce in
Section 4.
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2. Polynomial bases for C(S)

Let us first refer to the concept of a basis.

Definition 2.1. A sequence (Φk)∞k=0 in C(S) is called basis if for every f ∈ C(S)
there exists a unique sequence of (ϕk)∞k=0 of real numbers such that

f =
∞∑

k=0

ϕkΦk, (11)

where limn→∞
∑n

k=0 ϕkΦk is with respect to the sup-norm. A basis (Φk)∞k=0 of
polynomials is called polynomial basis. A polynomial basis with (1) is called Faber
basis.

There is a famous result of Faber [4] in 1914 that in case of S being an interval
[c, d] there does not exist a polynomial basis (Pk)∞k=0 of C([c, d]) with property
(1). Concerning C([c, d]) great efforts have been made in constructing polynomial
bases and to minimize the degrees as far as possible. In 1977 Temlyakov [20] has
investigated a method of construction, where the growth of the degrees fulfills
deg Pk ≤ C k log log(k). Later on, in 1985 Bochkarev [2] has used the Fejér kernel
to construct a basis with linear bounds, that is deg Pk ≤ 4k. In 1987 Privalov [14]
published a somehow negative result, which implies the result of Faber. Namely,
if there is a polynomial basis (Pk)∞k=0 of C([c, d]), then there exists a δ > 0 such
that deg Pk ≥ (1 + δ) k for all k ≥ k0, where k0 is a proper integer. Also, in
1991 Privalov gave a positive result, see [15]. He proved that for any ε > 0 there
exists a polynomial basis of C([c, d]) with deg Pk ≤ (1+ ε) k. Such a basis is called
polynomial basis of optimal degree (with respect to ε).

If we are searching for Banach spaces C(S) equipped with a Faber basis,
then we have to choose S different from an interval. In this setting spaces C(S)
with a so-called Lagrange basis are discussed in [16]. In Section 3 we investigate a
basic class of compact sets S and give a sufficient and necessary condition for the
existence of a Lagrange basis.

Note, that the results mentioned above are not based upon the fact of or-
thogonality. In case of orthogonality the question “Does (Pk)∞k=0 constitute an
orthogonal polynomial basis of C(S)” is equivalent to the question if any function
f ∈ C(S) is represented by its Fourier series

∞∑
k=0

f̂(k)Pkh(k). (12)

In this particular branch of study there also are some positive results. In
1996 Kilgore, Prestin and Selig [7] constructed an orthogonal polynomial basis of
optimal degree with respect to the Chebyshev weight of first kind (α = β = − 1

2 )
using wavelet methods. Later on, in 1998 Girgensohn [6] gave optimal polynomial
bases for all of the four Chebyshev weights (α = ± 1

2 , β = ± 1
2 ) and in 2001 Skopina

[17] succeeded for Legendre weights (α = β = 0). The general problem for Jacobi
weights (1− x)α(1 + x)βdx, α, β > −1, seems still to be open.
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In order to check if an orthogonal polynomial sequence (Pk)∞n=0 constitutes
a basis of C(S) we have to show

sup
x∈S

∫
S

|Kn(x, y)| dπ(y) ≤ C for all n ∈ N0. (13)

We should mention that the sequence (Pk)∞n=0 is a basis of C(S) if and only if it
is a basis of L1(S, π), see [11]. For the discussion of an example based on little
q-Jacobi polynomials see Section 5.

3. Lagrange bases

In [16] we have introduced the concept of a Lagrange basis. Let S ⊂ R be a
compact set and (sk)∞k=0 a sequence of distinct points in S. Define as usual the
Lagrange basic functions Lk

n as

Lk
n(x) =

∏n
i=0,i�=k(x− si)∏n
i=0,i�=k(sk − si)

for all n ∈ N0, k = 0, 1, . . . , n. (14)

and

lk(x) = Lk
k(x) for all k ∈ N0. (15)

Definition 3.1. The sequence (lk)∞k=0 is called sequence of Lagrange polynomials
with respect to (sk)∞k=0. If (lk)∞k=0 is a basis of C(S), then we call (lk)∞k=0 a Lagrange
basis of C(S) with respect to (sk)∞k=0.

In case of a Lagrange basis it holds f =
∑∞

k=0 ϕk(f)lk with

ϕ0(f) = f(s0); ϕk(f) = f(sk)−
k−1∑
j=0

ϕj(f)lj(sk) for all k ∈ N. (16)

A sequence (vn)∞n=0 of linear operators from C(S) into C(S) is defined by

vn(f) =
n∑

k=0

ϕk(f)lk. (17)

By simple means we have
n∑

k=0

ϕk(f)lk(si) = f(si) for all i = 0, 1, . . . , n, (18)

which implies
n∑

k=0

ϕk(f)lk =
n∑

k=0

f(sk)Lk
n. (19)
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The sequence of Lagrange polynomials (lk)∞k=0 constitutes a basis of C(S) if and
only if

‖vn‖ = max
x∈S

n∑
k=0

|Lk
n(x)| ≤ C for all n ∈ N0, (20)

see [16].
Further let us assume that (sk)∞k=0 is strictly increasing or strictly decreasing

and
S = {s0, s1, s2, . . .} ∪ {σ}, (21)

where
σ = lim

k→∞
sk. (22)

Using this assumption we derive

‖vn‖ =
n∑

k=0

|Lk
n(σ)|, (23)

see [16].

Let us now give the main result of this section.

Theorem 3.2. Assume (sk)∞k=0 is a strictly increasing or strictly decreasing se-
quence and S = {s0, s1, s2, . . .} ∪ {σ}.

Then (lk)∞k=0 is a basis of C(S) if and only if there exists 0 < q < 1 with

|σ − sk+1| ≤ q |σ − sk| for all k ∈ N0. (24)

Proof. Let (lk)∞k=0 be a basis of C(S). Then there exists C > 1 such that |lk(σ)| < C
for all k ∈ N0, which implies

|σ − sk−1| < C|sk − sk−1| for all k ∈ N. (25)

If (sk)∞k=0 is strictly increasing, then (σ − sk−1) < C(sk − σ + σ − sk−1), which is
equivalent to

(σ − sk) <
C − 1

C
(σ − sk−1) for all k ∈ N. (26)

In case of a strictly decreasing sequence we get the inequality the other way around.
Choose q = (C − 1)/C.

Let us now assume that (24) holds and (sk)∞k=0 is strictly decreasing. If k > i
we get

|σ − si|
|sk − si|

=
si − σ

si − σ − (sk − σ)
<

si − σ

si − σ − qk−i(si − σ)
=

qi

qi − qk
, (27)

and if k < i we get
|σ − si|
|sk − si|

<
qi

qk − qi
. (28)
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Furthermore, it holds

n∑
k=0

n∏
i=0,i�=k

qi

|qk − qi| =
n∑

k=0

n−k∏
j=1

1
1− qj

k∏
i=1

1
1− qi

qk(k+1)/2 (29)

≤

⎛⎝ ∞∏
j=1

1
1− qj

⎞⎠2 ∞∑
k=0

qk <∞. (30)

Hence,
∑n

k=0 |Lk
n(σ)| ≤ C for all n ∈ N0, which implies that (lk)∞k=0 constitutes a

basis of C(S). The case (sk)∞k=0 is strictly increasing is quite similar. �

The standard example due to the geometric sequence is

Sq = {1, q, q2, . . .} ∪ {0}, (31)

where 0 < q < 1. Now, by Theorem 3.2 it follows that the Lagrange polynomials
(lk)∞k=0 with respect to (sk)∞k=0, where sk = qk, constitute a Lagrange basis of
C(Sq).

For instance, if one is rearranging the sequence ( 1
2k )∞k=0 in the way that

sk =

⎧⎨⎩
1 if k = 0,

2−(k+1)/2 if k �= 0 and log2(k + 1) ∈ N,

2−(k+1) else,
(32)

then the Lagrange polynomials (lk)∞k=0 with respect to (sk)∞k=0 don’t constitute a
Lagrange basis of C(S 1

2
). The proof is left to the reader.

If we set S
(i)
q = Sq \ {qi} and (lk)∞k=0 denotes the sequence of Lagrange

polynomials with respect to the sequence (qk)∞k=0 then C(S(i)
q ) in companion with

(lk)∞k=0 states an example where a representation (11) exists but is not unique. To
show this first notice that any f (i) ∈ C(S(i)

q ) could be easily extended to a function
f ∈ C(Sq), where f |

S
(i)
q

= f (i) and f(qi) is arbitrary. A representation of f in

C(Sq) also represents f (i) in C(S(i)
q ). Choose f1, f2 ∈ C(Sq) with f1(qi) �= f2(qi)

and f1|S(i)
q

= f2|S(i)
q

to show that the representation is not unique. Of course, by

Theorem 3.2 there is a Lagrange basis of C(S(i)
q ) with respect to the sequence

(qk)∞k=0,k �=i.
Let

Sr = {1,
1
2r

,
1
3r

, . . .} ∪ {0}, (33)

where 0 < r < ∞. With sk = 1
(k+1)r we get limk→∞ sk+1/sk = 1. By Theorem

3.2 the Lagrange polynomials with respect to (sk)∞k=0 do not constitute a basis of
C(Sr).
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4. A boundedness property for orthogonal polynomial sequences

The following boundary property for orthogonal polynomial sequences is important
for many reasons, see for instance [12], and is used in Section 5.

Definition 4.1. We say that a polynomial sequence (Rk)∞k=0 fulfills property (B), if
there exists ξ ∈ S such that

|Rk(x)| ≤ Rk(ξ) = 1 for all x ∈ S, k ∈ N0. (34)

There is a condition on the linearization coefficients which yields that prop-
erty (B) holds with respect to a proper normalization of the system.

Lemma 4.2. Assume that the linearization coefficients g(i, j, k) belonging to the
sequence (Pk)∞k=0 are nonnegative for all i, j, k ∈ N0, then there exists a normal-
ization Rk = γkPk such that property (B) holds.

Proof. The assumption yields g(i, i, 2i) > 0 for all i ∈ N0. Hence, by (10) it follows
P0 > 0 and limx→−∞ P2i(x) = limx→∞ P2i(x) =∞ for all i ∈ N. Regarding P1P2i

we get limx→∞ P1(x) = limx→∞ P2i+1(x) for all i ∈ N.
All zeros of the polynomials Pk are in the open interval (minS, max S), see

[3]. Hence there are two cases to handle. Namely, Pk(minS) > 0 for all k ∈ N0, or
Pk(max S) > 0 for all k ∈ N0. Depending on this put ξ = minS or ξ = maxS and
define

Rk(x) =
Pk(x)
Pk(ξ)

for all k ∈ N0. (35)

Then the linearization coefficients gR of (Rk)∞k=0 are also nonnegative because

gR(i, j, k) =
Pk(ξ)

Pi(ξ)Pj(ξ)
g(i, j, k) for all i, j, k ∈ N0, (36)

and it holds
i+j∑

k=|i−j|
gR(i, j, k) = 1 for all i, j ∈ N0. (37)

Hence, a hypergroup structure is associated with the orthogonal polynomial se-
quence (Rk)∞k=0 which yields property (B), see [10]. �

There are well-known criteria by Askey [1] or [18, 19] implying the non-
negativity of the linearization coefficients. In case of a discrete measure π and
nonnegative linearization coefficients we refer to Koornwinder [9] and [13].

In the next section we use the fact that in case of property (B) it holds

|Kn(x, y)| ≤ Kn(ξ, ξ) for all n ∈ N0, x, y ∈ S. (38)
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5. Little q-Jacobi polynomials

In all that follows we keep 0 < q < 1 fixed and Sq is defined by (31). For α > −1
we define a probability measure π(α) on Sq by

π(α)({qj}) = (qα+1)j(1 − qα+1), π(α)({0}) = 0. (39)

The orthogonal polynomial sequence (R(α)
k )∞k=0 with respect to π(α) are spe-

cial little q-Jacobi polynomials, see [8]. They fulfill the following orthogonality
relation ∫

Sq

R
(α)
k R

(α)
l dπ(α) =

∞∑
j=0

R
(α)
k (qj)R(α)

l (qj)(qα+1)j(1 − qα+1)

=
(qα+1)k(1− qα+1)

1− q2k+α+1

(
k∏

i=1

1− qi

1− qα+i

)2

δk,l. (40)

Starting with

R
(α)
0 = 1 and R

(α)
1 (x) = 1− 1− qα+2

1− qα+1
x (41)

they are defined by the three term recurrence relation (3) with coefficients

ak =
1− qα+2

1− qα+1
Ak, (42)

bk = 1− 1− qα+2

1− qα+1
(Ak + Ck), (43)

ck =
1− qα+2

1− qα+1
Ck, (44)

where

Ak = qk (1 − qk+α+1)(1− qk+α+1)
(1 − q2k+α+1)(1− q2k+α+2)

(45)

Ck = qk+α (1− qk)(1− qk)
(1− q2k+α)(1− q2k+α+1)

. (46)

In case of α ≥ 0 the orthogonal polynomial sequence (R(α)
k )∞k=0 has nonnegative

linearization coefficients, see [9] (α = 0) and [5] (α > 0).

Theorem 5.1. If 0 ≤ α, then the sequence (R(α)
k )∞k=0 of little q-Jacobi polynomials

constitutes a basis of C(Sq).

Proof. The nonnegativity of the linearization coefficients implies property (B) with
ξ = 0. Let (p(α)

k )∞k=0 denote the corresponding orthonormal polynomial sequence.
Using (40) we get√

1− q2k+α+1

(qα+1)k(1− qα+1)

k∏
i=1

1− qα+i

1− qi
= p

(α)
k (0) ≥ max

x∈Sq

|p(α)
k (x)|. (47)



Polynomial Bases 203

Note that Sq ⊂ [0, 1]. In order to prove

sup
x∈Sq

∫
[0,1]

|Kn(x, y)| dπ(α)(y) ≤ C for all n ∈ N0, (48)

we split the integration domain into two parts [0, ε] and [ε, 1]. For the first it holds∫
[0,ε]

|Kn(x, y)| dπ(α)(y) ≤ Kn(0, 0)π(α)([0, ε]). (49)

By the Christoffel-Darboux formula (9) and property (B) we get

|Kn(x, y)| ≤ √cn+1an

p
(α)
n+1(0)|p(α)

n (y)|+ p
(α)
n (0)|p(α)

n+1(y)|
|x− y| , x �= y. (50)

Hence, setting λn = √cn+1an and applying |x− y| ≥ (1− q) y, x �= y, it follows∫
[ε,1]

|Kn(x, y)| dπ(α)(y) ≤ λnp
(α)
n+1(0)

1− q

∫
[ε,1]

|p(α)
n (y)|

y
dπ(α)(y) (51)

+
λnp

(α)
n (0)

1− q

∫
[ε,1]

|p(α)
n+1(y)|

y
dπ(α)(y) (52)

+
n∑

k=0

(p(α)
k (x))2π(α)({x}). (53)

By (8) we obtain
n∑

k=0

(p(α)
k (x))2π(α)({x}) ≤ 1. (54)

It is simple to derive that

Kn(0, 0) = O(q−(α+1)n). (55)

Now, we fix ε = qn to get

π(α)([0, ε]) = O(q(α+1)n), (56)

which yields a uniform bound for the integral on the left-hand side of (49) not
depending on x ∈ S. Next, note that

λn = O(qn), (57)

and by (47) we get
p(α)

n (0) = O(q−(α+1) n
2 ). (58)

In order to obtain a uniform bound for the integral on the left-hand side of (51)
it remains to prove ∫

[ε,1]

|p(α)
n (y)|

y
dπ(α)(y) = O(q(α−1) n

2 ). (59)

For that purpose let k ∈ N0 with α < 2k + 1.
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By the Cauchy-Schwarz inequality we get∫
[ε,1]

|p(α)
n (y)|

y
dπ(α)(y) ≤

(∫
[ε,1]

dπ(α)(y)
y2(k+1)

) 1
2
(∫

[0,1]

(p(α)
n (y)yk)2 dπ(α)(y)

) 1
2

.

(60)
By simple means it follows∫

[ε,1]

dπ(α)(y)
y2(k+1)

= O(q(α−2k−1)n). (61)

The three term recurrence formula for p
(α)
n is

yp(α)
n = −Λnp

(α)
n+1 + (An + Cn)p(α)

n − Λn−1p
(α)
n−1, (62)

where Λn =
√

Cn+1An, see (45) and (46). So the coefficients behave like qn. The
minus sign comes from the fact that pn(0) > 0. By applying the recurrence relation
k times we get

ykp(α)
n =

n+k∑
n−k

d(k, n, i)p(α)
i , (63)

where each coefficient d(k, n, i) behaves like qkn. Therefore, by orthogonality∫
[0,1]

(p(α)
n (y)yk)2 dπ(α)(y) =

n+k∑
n−k

(d(k, n, i))2 = O(q2kn). (64)

So we have shown (59) and the proof is complete. �
The little q-Legendre case (α = 0) is also investigated in [16].
So in case of Sq we are able to give orthogonal Faber basis for C(Sq). For the

set Sr, see (33), the existence of an orthogonal Faber basis or even a Faber basis
for C(Sr) seems still to be open.
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[4] G. Faber, Über die interpolatorische Darstellung stetiger Funktionen, Jahresber.
Deutsch. Math. Verein. 23 (1914), 192–210.

[5] P.G.A. Floris, A noncommutative discrete hypergroup associated with q-disk polyno-
mials, J. Comp. Appl. Math. 68 (1996), 69–78.

[6] R. Girgensohn, Polynomial Schauder bases for C[−1, 1] with Chebiseff orthogonality,
preprint (1998).



Polynomial Bases 205

[7] T. Kilgore, J. Prestin and K. Selig, Orthogonal algebraic polynomial Schauder bases
of optimal degree, J. Fourier Anal. Appl. 2 (1996), 597–610.

[8] R. Koekoek and R.F. Swartouw, The Askey-scheme of hypergeometric orthogonal
polynomials and its q-analogue, Technical Report 98-17, Delft University of Technol-
ogy, 1998.

[9] T.H. Koornwinder, Discrete hypergroups associated with compact quantum Gelfand
pairs, in: Applications of hypergroups and related measure algebras, Contemp. Math.
183, Amer. Math. Soc., 1995, 213–235.

[10] R. Lasser, Orthogonal polynomials and hypergroups, Rend. Mat. 3 (1983), 185–209.

[11] R. Lasser and J. Obermaier, On the convergence of weighted Fourier expansions,
Acta. Sci. Math. 61 (1995), 345–355.

[12] R. Lasser, D.H. Mache and J. Obermaier, On approximation methods by using orthog-
onal polynomial expansions, in: Advanced Problems in Constructive Approximation,
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Novel Simulation Approaches for
Cyclic Steady-state Fixed-bed Processes
Exhibiting Sharp Fronts and Shocks

Frank Platte, Dmitri Kuzmin, Christoph Fredebeul and Stefan Turek

Abstract. Over the past decades, the field of chemical engineering has wit-
nessed an increased interest in unsteady-state processes. Multifunctional, as
well as intensified chemical processes, may exhibit instationary behaviour es-
pecially when based on periodical operating conditions. Ideally, instationary
processes lead to a higher yield and increased selectivities compared to con-
ventional steady-state fixed-bed processes. Typical candidates among these
are the reverse-flow-reactor, the chromatographic reactor and the adsorptive
reactor. Since the underlying regeneration strategy is nearly always based
on cycles – e.g., a reaction cycle is followed by a regeneration cycle and so
on – the overall temporal behaviour of such processes eventually develops
into cyclic steady-states (after a transient phase). Experiments reveal a slow
transient behaviour into the cyclic steady-state. This can also be observed in
simulation based on conventional numerical treatment such as the method of
lines. In addition to this problem many instationary processes exhibit sharp
fronts or even shocks which require stabilisation of the convective terms. In
this work we present a method of combining the idea of global discretisation
with modern stabilisation techniques of type FEM-FCT and FEM-TVD in or-
der to obtain an efficient, well approximating and robust tool for the general
simulation of instationary and in particularly cyclic steady-state processes.

1. Instationary fixed-bed processes

Fixed-bed reactors are suggested for many chemical engineering applications. In
contrast to batch processes, fixed-bed processes offer the possibility (over the
length of the apparatus) of taking influence on the physical processes and chem-
ical reactions inside – in order to obtain higher overall performance. Very often,
it is the goal to achieve higher yield and selectivities based on the value product,
larger space-time-yield and – in the case of exothermic reactions – to guaran-
tee better heat-integration. Depending on how these modifications are made, one
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has to distinguish between intensified and multifunctional processes. In multifunc-
tional reactors (beside the reaction itself) additional process functions, e.g., mix-
ing/separation and/or heat-accumulation are integrated in the apparatus, whereas
intensified processes are justified on the fact that most chemical engineering pro-
cesses are rather limited by heat and mass transport or thermodynamics and not so
much by the reaction itself. Hence, intensified as well as multifunctional processes,
lead to higher product quality and purity making them economically preferable.

More recently, instationary processes moved into the focus of chemical engi-
neering. This instationary behaviour results from internal or external recursion of
heat and/or mass within the process. From the operator’s point of view, continuous
instationary variants are the most interesting.

In general, one can distinguish between forced-cyclic and autonomous-in-
stationary processes. In both of these, one can monitor moving temperature and
concentration fronts which follow reoccurring patterns of cycles after the start-up
phase. Multifunctional and intensified processes are either inherently instationary
or forced instationary. Their behaviour based on properly chosen operating condi-
tions allow for additional enhancement of the performance. Moreover, the time de-
pendent behaviour leads to more data which can be exploited for model evaluation.
Unfortunately, due to the non-linearity and stiffness of many of these instation-
ary fixed-bed processes, experiments and simulations are rather time-consuming
projects.

1.1. Application examples

In the following section, three examples of instationary fixed-bed processes are
briefly described:
• Example I: Catalytic combustion in reverse-flow operation
• Example II: Adsorptive reactor
• Example III: Coupled endothermic/exothermic reaction in reverse-flow oper-

ation
For each example, we present a schematic view of the process function and consider
a typical balance (transport) equation either for energy or mass of type

‘accumulation’ + ‘convection’ = ‘diffusion’ + ‘reaction’ + ‘sources/sinks’.

Then, in each equation we highlight the term that causes numerical instabilities
and discuss appropriate numerical treatments.

Example I: Catalytic combustion in reverse-flow operation
One important instationary process is the reverse-flow-reactor (RFR) which is op-
erated in a forced periodical way by switching the side/direction of the inflow (cf.
Fig. 1) [14]. One of the most notable advantages of the reverse-flow concept is cer-
tainly that due to the regenerative heat recovery, a hot reaction zone surrounded
by two cold zones is trapped in the centre of the fixed-bed. The classical RFR
operates with two identical half-cycles, i.e., the two functions “reaction” and “re-
generation” are fulfilled simultaneously. Due to an inherently low heat-loss, even
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weak exothermic processes (or alternatively processes with trace gases) can re-
main ignited without additional external heat or fuel gas. Suggested examples for
industrial application are the catalytic treatment of waste gases in air, oxidation
of SO2 [15] and many more [16].

Figure 1. Scheme of a reverse-flow reactor: Cyclic opening and closing
of the valves-pairs V1/V3 and V2/V4 (left). Typical temperature-fronts
and concentration-distribution within the fixed-bed for a fixed time
(right).

Numerical demands for catalytic combustion in reverse-flow operation: It is well
known that the RFR reaches the cyclic steady-state after a long operation time
and a large number of flow-reversals. Moreover, high reaction rates at elevated
temperature levels lead to sharp fronts in the distribution of temperature and
concentration. Therefore, the numerical algorithms should incorporate a direct
calculation of cyclic steady-states and an appropriate stabilisation of the convective
terms. High reaction rates in the energy equation (1) may cause sharp profiles.

(�cp) ·
∂T

∂t
+ εF �cp

∂(wF T )
∂z

= λax
∂2T

∂z2
+ εF

∑
j

(−∆HR,i)rj︸ ︷︷ ︸
high reaction rates!

+
α

r
(T ∗−T ). (1)

Example II: Adsorptive reactor
The adsorptive reactor is currently considered for enhancing the yield of equilib-
rium limited reactions. A survey of chemical reactions investigated in gas-phase
adsorptive reactors is given in [6]. Fig. 2 illustrates the two functions “reaction +
adsorption” and “regeneration” in two separate sequential half-cycles. Most of the
authors use adsorptive reaction processes as means to enhance equilibrium con-
versions by the uptake of one of the products according to LE CHATELIER’s
principle: The equilibrium of the two reactants A and B

A + B ⇔ C + D
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is shifted to the right-hand side. By adsorbing the by-product

C ⇔ C∗

the conversion of the value product D is increased. Two suggested adsorptive fixed-
bed processes can be found in [6].

Figure 2. Adsorptive reactor with production- and regeneration-cycle
(left) and typical shifted fronts (right) due to the self-sharpening effect
within the cycle.

Numerical demands for adsorptive reactor: Nonlinear adsorption isotherms could
cause problems during the calculation due to steep gradients. For example convex
isotherms q(C) lead to a so-called self-sharpening effect noticeable in the concen-
tration profiles. In the mass balance (2) one can locate the non-linear accumulation
term. Therefore, the numerical algorithms should consider an appropriate stabili-
sation of the accumulation term.⎛⎜⎜⎝1 +

1− εF

εF
· dq(c)∗

dc︸ ︷︷ ︸
nonlinear accumulation!

⎞⎟⎟⎠ · ∂c

∂t
+wF

∂c

∂z
= Dax

∂2c

∂z2
+
∑

j

νijrj . (2)

Example III: Coupled endothermic/exothermic reaction in reverse-flow operation
This example is closely related to example I. Here the reverse-flow operation can
also be established by switching the inflow direction. But in contrast to example
I, two consecutive half-cycles now fulfil different functions, namely “endothermic
reaction” and “exothermic regeneration”.

Numerical demands for Coupled endothermic/exothermic reaction in reverse-flow
operation: Nonlinear equilibrium may cause numerical problems during the calcu-
lation due to shock fronts. In the heat balance (3) one can locate the non-linear



Novel Simulation Approach for Instationary Fixed-bed Processes 211

Figure 3. Schematic view of Coupled reaction in RFR: Function of
endothermic (left) and exothermic half-cycle (right). Dotted lines denote
the distribution at the beginning of each half-cycle. Full lines show where
the distributions end up.

convective term. Therefore, the numerical algorithms should consider an appro-
priate stabilisation of the convective terms.

(
�∗c∗p + εF �cp

)
· ∂T

∂t
+wF �cp

⎛⎜⎜⎝1 + ∆Tad ·
dX(T )

dT︸ ︷︷ ︸
nonlinear convection!

⎞⎟⎟⎠ ∂T

∂z
= λax

∂2T

∂z2
.

(3)
In conclusion, for all three presented processes the numerical algorithms must
account for
• direct calculation of cyclic steady-states and
• stabilisation of convective terms.

2. Numerical treatment

Compared to batch-processes, stationary fixed-bed processes are in general more
complex to design and to build. Nevertheless, the mathematical description of
these two process classes is of similar complexity. In the case of batch processes,
one has to appropriately handle (large) systems of time-dependent ODEs, whereas
stationary fixed-bed processes cause difficulties due to the spatial distribution of
the variables. Comparing stationary and instationary processes leads to a similar
conclusion: The additional temporal behaviour implies stronger demands on the
experimental equipment and the operation of such apparatus. From the mathema-
tical point of view, chemical engineers are still commonly tackling these problems
by discretising the analytically insolvable PDEs in spaces and then integrating the
resulting ODE-system in time. This method is referred as method-of-lines (mol).



212 F. Platte, D. Kuzmin, C. Fredebeul and S. Turek

Unfortunately, this approach suffers very often from slow transient behaviour due
to the nonlinear nature and stiffness of the problem. It should be stressed that
modern time-integrators – based on multi-step or extrapolation schemes – which
allow for large time steps, lose most of their efficiency after every switch. Strictly
speaking, a new initial value problem arises and for reasons of accuracy and sta-
bility most algorithms start over with a one-step scheme, e.g., an implicit one-step
Euler scheme in combination with a small time step. Additionally, the exact tran-
sient behaviour into the cyclic steady-state is not of major interest for a systematic
process-design (cf. Fig. 4). For the analysis, design and optimisation of instation-
ary processes one merely requires knowledge of cyclic steady-states. When using
conventional dynamical simulations, sometime up to a few hundred cycles need to
be simulated [21]. On the other hand, due to the inherently instationary behaviour
one cannot find steady-state solutions by just setting the time-derivatives to zero
and solving the resulting system. This becomes clear when looking at a typical (cf.
Fig. 4, middle) behaviour in time.
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Figure 4. Principle transient behaviour of a stationary, (cyclic) insta-
tionary and chaotic processes (left to right)

For the direct calculation of cyclic steady-states modern algorithms make use
of the periodicity condition, such as symmetries of the solution at the beginning
and the end of full cycle. As a result, the problem is reformulated from an initial
value problem (IVP) to a (stationary) boundary value problem (BVP) in space
and time which can consequentially be solved, e.g., by the shooting method or by
a global discretisation over a period. We have restricted our research to latter.

2.1. Space-time finite-difference discretisation

An efficient approach to solve the governing equations is the direct calculation
method which can be based on global discretisation. Alternatively, a direct calcu-
lation of cyclic steady-states can be solved with a dynamical simulation wrapped
by a shooting method algorithm. Both methods exhibit characteristic advantages.
We choose the global discretisation approach since we believe that it allows better
implementation of modern mathematical algorithms (mesh-generation, discretisa-
tion and solvers) developed for 2D/3D problems, whereby the shooting method is
essentially restricted to method of lines.

Earlier research clearly shows that either approach is far more efficient than
a simple dynamical simulation – but only when cyclic steady-states are of major
interest [21, 22]. In particular, this applies to the case of parameter studies in
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which hundreds of cyclic steady-states must be calculated. To obtain a well-posed
problem, in addition to the usual Danckwerts boundary conditions in space, we
require either an initial value condition or boundary value conditions in time. A
initial value is usually a prescribed distribution, e.g., of the temperature

T (z, t = 0) = T0(x).

A typical boundary condition in the case of the RFR can be a mirror symmetric
profile for the temperature in time:

T (z, t) = T (L− z, t + ∆tcyc).

It should be noted that this (mirror) symmetry condition formulated in the direct
calculation is precisely the commonly used stopping criterion in the dynamical
simulation. Tab. 1 shows a comparison of the two approaches.

Table 1. Comparison of state of the art methods for direct calculation

Shooting method Global discretisation

memory consumption moderate high
flexibility comparably high low
stability of iteration possibly problematic high
discretisation adaptive adaptive
2D/3D unclear simple
Stabilising conv. terms possibly FCT TVD

2.2. Treatment of convection-dominated cases

There are several general demands on a “good” numerical algorithm, e.g., high
accuracy, robustness and moderate consumption of computer resources. These pre-
requisites are rather difficult to satisfy for the above-mentioned class of problems
due to following effects:
• Strongly exothermic reactions in RFR → steep gradients.
• Adsorptive/desorptive reactions → self-sharpening phenomena.
• Endothermic/exothermic coupling in RFR → shock-like fronts.

In light of the above effects, the direct calculation should be based on a numeri-
cal method that provides a proper stabilization of the “bad-behaved” convective
terms. Let us consider a generic transport equation typical of non-stationary pro-
cesses in a fixed bed reactor

a1
∂u

∂t
+ a2

∂u

∂z
= a3

∂2u

∂z2
+ a4(u− u∗) + f(u, v, . . . ). (4)

It is well known that discretisation of the first derivatives in the left-hand
side is a potential source of numerical troubles. Standard high-order methods give
rise to non-physical oscillations, while the results produced by low-order ones are
corrupted by excessive numerical diffusion. Unfortunately, there is no way out
of this dilemma as long as the discretisation technique is linear [10]. Therefore,
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modern high-resolution schemes are typically based on a nonlinear approxima-
tion of the convective fluxes. Roughly speaking, a high-order method is employed
in regions where the solution is sufficiently smooth but in the vicinity of steep
gradients it is replaced by a non-oscillatory first-order scheme like “upwind”. The
far-reaching idea of adaptive switching between high- and low-order discretisations
can be traced back to the concepts of flux-corrected transport (FCT) which were
introduced in the early 1970s by Boris and Book [4].

In the limit of pure convection, any physically admissible solution to a scalar
transport problem proves total variation diminishing (TVD). In one dimension,
the total variation is defined as

TV (u) =
∫ ∣∣∣∣∂u

∂x

∣∣∣∣ dx. (5)

As long as this quantity does not increase with time, it can be shown that

• there is no formation and/or enhancement of local extrema,
• positivity and/or monotonicity of initial data is preserved.

Hence, it is natural to require that numerical solutions also possess these prop-
erties, which lead to the following constraint to be imposed at the fully discrete
level

TV (un+1) ≤ TV (un), where TV (un) =
∑

i

|un
i − un

i−1|. (6)

Here and below ui stand for the values of the approximate solution at the mesh
nodes zi and the superscripts refer to the time level at which it is evaluated.

To illustrate the derivation of classical TVD schemes, consider the linear
convection equation

∂u

∂t
+ v

∂u

∂z
= 0, v > 0 (7)

discretised in space by a conservative finite difference/volume method which yields

dui

dt
+

fi+1/2 − fi−1/2

∆z
= 0. (8)

The neighbouring grid points xi and xi±1 exchange the conserved quantities via
numerical fluxes fi±1/2 which are supposed to be consistent with the underlying
continuous flux f = vu. Harten [11] proved that such a semi-discrete scheme is
TVD if it can be rewritten in the form

dui

dt
= ci−1/2(ui−1 − ui) + ci+1/2(ui+1 − ui) (9)

with (possibly nonlinear) nonnegative coefficients ci−1/2 ≥ 0 and ci+1/2 ≥ 0. To
meet these requirements, the numerical flux for a TVD method can be constructed
by blending a high-order approximation fH

i+1/2 and its low-order counterpart fL
i+1/2

as follows

fi+1/2 = fL
i+1/2 + Φi+1/2[fH

i+1/2 − fL
i+1/2], 0 ≤ Φi+1/2 ≤ 2, (10)
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where the value of Φi+1/2 depends on the local smoothness of the solution and on
the choice of the limiter function. If the linear flux approximations are given by

fL
i+1/2 = vui and fH

i+1/2 = v
ui+1 + ui

2
, (11)

then it is easy to verify that the standard upwind, central, and downwind dis-
cretisation of the convective term are recovered in case of Φi+1/2 = 0, 1, and 2,
respectively. The most popular flux limiters are known as minmod, Van Leer,
mc, and superbee. All of them yield non-oscillatory results but their numerical
behaviour may be quite different. For a detailed presentation and a comparative
study of classical TVD methods, the interested reader is referred to [24].

A fully multidimensional flux limiter of TVD type was proposed by Kuzmin
and Turek [12]. Their novel approach to the design of high-resolution schemes is
based on the principle of algebraic flux correction. In essence, a centred space dis-
cretisation of the convective terms is rendered local extremum diminishing (LED→
TVD in the 1D case) by a conservative elimination of negative off-diagonal coeffi-
cients from the discrete operator. This straightforward “postprocessing” technique
is very flexible and can be readily integrated into existing CFD codes.

The flow chart of required algebraic manipulations is sketched in Fig. 5. First,
the governing equation is discretised in space by an arbitrary linear high-order

1. Linear high-order scheme (e.g., Galerkin FEM)

MC
du

dt
= Ku such that ∃ j �= i : kij < 0

2. Linear low-order scheme L = K + D

ML
du

dt
= Lu such that lij ≥ 0, ∀j �= i

3. Nonlinear high-resolution scheme K∗ = L + F

ML
du

dt
= K∗u such that ∃ j �= i : k∗

ij < 0

Equivalent representation L∗u = K∗u is LED

ML
du

dt
= L∗u such that l∗ij ≥ 0, ∀j �= i

Figure 5. Roadmap of matrix manipulations.
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method (e.g., central differences or the Galerkin FEM) which yields a system
of ordinary differential equations for the vector of time-dependent nodal values.
In the finite element context, the consistent mass matrix MC is replaced by its
“lumped” counterpart ML. Furthermore, the high-order transport operator K is
transformed into a non-oscillatory low-order one by adding a discrete diffusion
operator D (i.e., a symmetric matrix with zero row and column sums) designed so
as to get rid of all negative off-diagonal coefficients. In order to prevent excessive
smearing, it is necessary to remove as much artificial diffusion as possible without
generating wiggles. To this end, a limited amount of compensating antidiffusion
F is added in the next step. In practice, both diffusive and antidiffusive terms are
represented as a sum of internodal fluxes which are constructed edge-by-edge and
inserted into the global vectors. Even though the final transport operator K∗ does
have negative off-diagonal coefficients, they are harmless as long as there exists
an equivalent LED representation of the modified scheme. That is: for a given
solution vector u, there should exist a matrix L∗ such that all off-diagonal entries
l∗ij are nonnegative and L∗u = K∗u.

Remarkably, this methodology is directly applicable to steady-state problems
as well as to time-dependent PDEs reformulated as stationary ones in space-time
domain. To put it another way, it is possible to solve the discretised equations for
all time levels simultaneously instead of doing it step-by-step as usual. Consider
a scalar conservation law discretised in space and time by a linear second-order
scheme (e.g., central differences / leapfrog time-stepping)

ML
un+1 − un−1

2∆t
= Kun, n = 2, . . . , M (12)

where un = [un
1 , . . . , un

N ]T denotes the vector of nodal values at the time level
tn = (n− 1)∆t.

Combining the N ×M equations, we obtain an algebraic system of the form
Au = f , where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ML −∆tK ML

−ML −2∆tK ML

−ML −2∆tK ML

. . . . . .

−ML −2∆tK ML

−ML ML −∆tK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

. . .

uM−1

uM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(13)
Since the coefficients of A and K have opposite signs, all positive off-diagonal

ones need to be eliminated. If the order of nodes is such that aji < aij , then the
“optimal” artificial diffusion coefficient is given by dij = max{0, aij} [12]. The
required matrix modification is as follows:

aii := aii + dij , aij := aij − dij ,
aji := aji − dij , ajj := ajj + dij .
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As a result, we obtain a non-oscillatory low-order operator which has no positive
off-diagonal entries and no negative diagonal ones (a so-called M-matrix)

A∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∆tL 0
−2ML 2ML − 2∆tL 0

−2ML 2ML − 2∆tL 0
. . .

−2ML 2ML − 2∆tL 0
−2ML 2ML −∆tL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

Here L represents the least diffusive linear LED counterpart of K [12]. Interestingly
enough, the fully implicit upwind difference scheme is recovered in the case of pure
convection in 1D.

The converged low-order solution serves as a reasonable initial guess for the
space-time TVD solution to be computed in an iterative way within an outer
defect correction loop. Each defect/flux correction cycle consists of the following
algorithmic steps [12]

1. Compute the residual of the low-order scheme r = f −Au.
2. Evaluate the limited antidiffusive fluxes fa

ij = Φjidij(ui−uj) and insert them
into the global defect vector r, see [12] for details.

3. Solve the linear sub-problem A∆u = f and compute u := u + ∆u.
All the necessary information is extracted from the original matrix A, while its
low-order counterpart A∗ constitutes an excellent preconditioner. In each outer
iteration, the quality of the solution improves but intermediate results may ex-
hibit spurious undershoots/overshoots. In order to secure the convergence, it is
worthwhile to perform implicit underrelaxation (divide the diagonal entries of the
preconditioner by a suitably chosen parameter 0 < ω ≤ 1 so as to enhance the
diagonal dominance) which can be interpreted as a local time-stepping method [7].

3. Numerical results

3.1. Prestudy: Cauchy problem

As a prestudy a pure transport problem was considered (15). A step (initial value)
moves with a constant positive velocity of 0.5 in space:

ut + 0.5 · ux = 0 (x, t) ∈ Ω = (0, 1)2, (15)

u(z, t = 0) =

⎧⎪⎪⎨⎪⎪⎩
0, for 0.0 ≤ z ≤ 0.2

1, for 0.2 < z < 0.4

0, for 0.4 ≤ z ≤ 1.0 .

Although there is an analytical solution for this problem, the numerical treatment
is very hard to solve due to the two discontinuities. Therefore, this Cauchy-problem
is an adequate test for the quality of the numerical method. The computational
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domain was chosen to be a unit-square. An equidistant mesh comprising 100 points
in time and 50 in space was applied which corresponds to 5000 as overall number of
unknowns. The global discretisation was based on the leapfrog-scheme (LF) which
tends to exhibit unacceptable oscillations for non-smooth solutions

uj+1
i − uj−1

i

2∆t
+ v

uj
i+1 − uj

i−1

2∆z
= 0

and hence, results in a system of linear algebraic equations

MLFU = b. (16)

The nodal unknowns uj
i for i = 1, . . . , 1/∆z−1 and j = 1, . . . , 1/∆t−1 approximate

the solution of (15) in the points (zi, t
j) for zi = i ·∆z and tj = j ·∆t . The matrix

MLF depicts the so-called discrete transport operator and the right-hand side b
contains the initial condition (step) and spatial boundary conditions. Solving the
linear system (16) directly by any linear solver, e.g., by direct solvers, leads to a
solution exhibiting the mentioned oscillations throughout the domain (cf. Fig.6,
left). To suppress these numerical or unphysical oscillations and to present the
power of non-linear stabilisation techniques we applied the FEM-TVD method
suggested by Kuzmin and Turek [12]. Starting from the linear system (16), this
method first substitutes the high order transport operator by the help of discrete
upwinding. The new transport matrix MDU already fulfils TVD-properties but it
is also very diffusive at the same time (cf. Fig.6, middle). Secondly, in a defect-
correction-loop the amount of additional admissible antidiffusive flux for each node
is detected by the help of limiter functions and then added nodewise. By this
measure the solution can essentially be extended to second order accuracy and
still fulfilling TVD properties at the same time. This correction is carried out
in the right-hand side vector to prevent a costly matrix update in each step (cf.
previous section). Fig.6 shows a considerable low amount of numerical diffusion
in the plotted solution vector. (In this case the superbee-limiter function was
chosen which leads to extreme low numerical diffusion.)
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Figure 6. Pure transport of a step. Solved with upwinding (left), non-
stabilised Leap-frog (middle) and space-time-TVD (right)
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3.2. Catalytic combustion of N2O in reverse-flow operation

In the case of the catalytic combustion of N2O in reverse-flow operation we are
also able to compare our simulations with experimental results retrieved from our
laboratory of Bio- and chemical engineering [17]. Looking at Fig.7 one can find a
qualitative good agreement of calculated and measured temperature profiles. It can
clearly be seen that the non-adiabatic condition leads to heat losses forming “M”-
shaped temperature profiles. Although the reaction rates are quite large there was
no need for the application of TVD-stabilisation. In the present case, the convective
terms were discretised and sufficiently solved by a linear LUDS approach [24].
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Figure 7. Comparison between simulation and experiment. Four spa-
tial temperature distributions at four time-points within the cycle are
depicted. The measured “M”-shaped profiles and the local extrema
are qualitatively well predicted by the direct calculation. Cycle-time
is ∆tcyc = 180s and inlet is concentration C = 2, 0 mol/m3.

3.3. Endothermic steam reforming in reverse-flow operation

To present the power of the implemented TVD-algorithms not only for the test
case, but also for a technically relevant problem, we now consider a novel fixed-
bed process for the methane-steam-reforming under instationary conditions, most
recently suggested in [9]. Here only the reaction cycle was simulated from which it
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is known that it can exhibit shock fronts. In [9] a simplified model is derived under
the assumption that the reaction dominates, compared to any physical diffusion
of mass and heat. The resulting model consists only of one heat balance(

(1− ε)�∗c∗p
)
· ∂T

∂t
+ ṁcp

(
1 + ∆Tad

dX(T )
dT

)
∂T

∂z
= 0. (17)

The crucial part for the simulation is the knowledge of the temperature de-
pendent equilibrium X(T ). In [9] this function was found to exhibit a saturating
behaviour. For low temperatures X adopts values just above zero increasing fast
around 800 K and then approaching the unity for higher temperatures which ther-
modynamically corresponds to nearly full conversion of the (value) product. In
this case the equilibrium function shows an inflexion point at approx. 820 K. As
a result the first derivative dX(T )/dT possesses an extreme value (maximum) at
the same temperature. With respect to the simplified model (17) one can find the
derivative dX(T )/dT incorporated in the convective term which leads to the men-
tioned shock fronts. We also applied a global discretisation based on the leap-frog
stencil for this problem. All physical properties were taken from [9]. The compu-
tational rectangular domain has the size 0 ≤ z ≤ 0.7 for the space coordinate in
meters and the size 0 ≤ t ≤ 60 for the time in seconds. We choose 200 grid points
in each dimension. For the initial temperature distribution, T(t=0,z), we selected
a ramp which graduately increases from 400 to 1500 K in the first 10 cm and then
remains constant at 1500 K (cf. Fig. 8, right, first line).

T (z, t = 0) =

{
400 + 11000 · z, for 0.0 ≤ z ≤ 0.1

1500, for 0.1 ≤ z ≤ 0.7
.

This initial condition enables shocks to develop because there are tempera-
tures lower and higher than 820 K. Since only the first half-cycle (reaction cycle)
was considered there was no need to formulate periodicity conditions in time.
Hence the calculation is more of a dynamical simulation – but in which all time
steps are simultaneously solved – than a true direct calculation. The presented test
case can be regarded as worst-case approximation as the model equation includes
no physical diffusion at all. With some justification it can be claimed that any
amount of additional diffusion in the physical model will lead to better conver-
gence behaviour in the nonlinear solution loop.

With respect to Fig. 8 one can clearly see the formation of the shock front in
the temperature distribution during the course of the cycle. The solution profiles
exhibit a considerable low amount of diffusion so that the gradients are resolved
very accurately.

Numerical behaviour
From the three presented test cases it can be concluded that the global discretisa-
tion in combination with stabilisation techniques for convective dominated trans-
port problems delivers a flexible and accurate numerical treatment of the under-
lying mathematical model. But is the method also efficient and fast? To tell the
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Figure 8. Thermodynamically determined endothermic reaction forms shocks

truth there are still unresolved numerical problems. The sharper the fronts become
the more non-linear iterations must be carried out in order the bring the residual
close to zero. In our future work we shall focus on an appropriate treatment of
the non-linear flux correction in the TVD algorithm. These could for example be
based on pseudo time-stepping or methods of quasi-Newton type.

4. Summary and discussion

Many intensified and multifunctional fixed bed processes in the field of chemical
engineering exhibit cyclic steady-states due to the underlying operation scheme –
reaction cycle followed by regeneration cycle and so on. Since standard numerical
simulations based on method of lines reach the cyclic steady-state only after a
long simulation time and many simulated cycles, modern numerical methods for
the direct calculation of cyclic steady-states have attracted an increased interest.
In particularly in the case of parameter studies, where many cyclic steady-states
are to be calculated, this approach is a must. We have presented a modified di-
rect calculation which is based on space-time global discretisation of the governing
model equations. This technique enables the user to calculate initial value prob-
lems as well as boundary value problems. In addition to this, modern non-linear
stabilisation techniques of type FEM-TVD have been incorporated. This way not
only sharp fronts are resolved with a high accuracy, but also shocks do not lead to
a break-down of calculation.
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Semigroups Associated to
Mache Operators (II)

Ioan Rasa

Abstract. This short note contains some supplementary results concerning the
operators introduced by D.H. Mache and the semigroup associated with them.
Special attention is paid to the action of the operators and the semigroup on
monomials.

1. Introduction

This short note is a continuation of [3], where the semigroups associated with
Mache operators were investigated. Other results in this direction can be found in
[1] and [4].
In Section 2 we study the images of the monomials under Mache operators, in
relation with the images under the classical Bernstein operators. The action of the
semigroup on the monomials is explicitly described in Section 3. The result can
be used to find the moments of the solution of the stochastic differential equation
associated with the generator of the semigroup.

2. The operators

Let a, b > −1 and α ≥ 0 be real numbers. For n ≥ 1, k = 0, 1, . . . , n and
x ∈ [0, 1] let pnk(x) :=

(
n
k

)
xk(1−x)n−k. Set c := [nα] and consider the functionals

Ank : C[0, 1] −→ R,

Ank(f) =
( ∫ 1

0

tck+a(1 − t)cn−ck+bf(t)dt
)
/B(ck + a + 1, cn− ck + b + 1),

where B is Euler’s Beta function.
Let Pn : C[0, 1] −→ C[0, 1],

Pnf =
n∑

k=0

Ank(f)pnk, f ∈ C[0, 1].
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The positive linear operators Pn were introduced by D.H. Mache; see [2], [3],
and the references given there.

Let em(x) := xm, m = 0, 1, . . . , x ∈ [0, 1].
The classical Bernstein operators are defined by

Bnf(x) =
n∑

k=0

pnk(x)f
(k

n

)
, f ∈ C[0, 1], x ∈ [0, 1].

By || · || we denote the uniform norm on C[0, 1].

Proposition 2.1. Let a, b > −1, n ≥ 2 and m ≥ 0 be given. Then there exists a
constant K such that

||Pnem −Bnem|| ≤ Kn−α, α ≥ 0.

Proof. Consider the function

ϕ(x) =
(cnx + a + 1) . . . (cnx + a + m)

(cn + a + b + 2) . . . (cn + a + b + m + 1)
, x ∈ [0, 1].

It is not difficult to see that there exists a constant K = K(a, b, m, n) such that
||ϕ− em|| ≤ Kn−α, α ≥ 0.
On the other hand, ϕ(k/n) = Ank(em), k = 0, 1, . . . , n. We infer that Pnem =
Bnϕ, and thus

||Pnem −Bnem|| = ||Bn(ϕ− em)|| ≤ ||ϕ− em|| ≤ Kn−α. �

Corollary 2.2. If n ≥ 2, then

lim
α→∞ Pnf = Bnf , f ∈ C[0, 1].

Concerning the behavior of the operators Pn as α→∞, see also [2].

3. The semigroup

For α = 0, a, b ≥ 0, consider the differential operator

Wu(x) = x(1− x)u
′′
(x) + (a + 1− (a + b + 2)x)u

′
(x), u ∈ C2(0, 1), x ∈ (0, 1),

with domain

D(W ) = {u ∈ C1[0, 1] ∩C2(0, 1) : lim
x→0,1

x(1 − x)u
′′
(x) = 0}.

For α > 0, a, b > −1, set

Wu(x) =
x(1 − x)

2
u

′′
(x), u ∈ C2(0, 1), x ∈ (0, 1),

D(W ) = {u ∈ C[0, 1] ∩ C2(0, 1) : lim
x→0,1

Wu(x) = 0}.

Then (see [1], [3], and the references therein):
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Theorem 3.1. (W, D(W )) is the infinitesimal generator of a positive contractive
C0 semigroup (T (t))t≥0 on C[0, 1]. For f ∈ C[0, 1] and t ≥ 0,

T (t)f = lim
n→∞P [nt]

n f , uniformly on [0, 1].

We shall use the following notation.
(y)k = y(y − 1) . . . (y − k + 1) , if k ≥ 1; (y)0 = 1.

cm−k(t) =
(m)k(m + a)k

k!

k∑
i=0

(−1)i

(
k

i

)
2m− 2k + a + b + 1 + 2i

(2m− k + a + b + 1 + i)k+1
×

exp((k −m− i)(m− k + i + a + b + 1)t) , k = 0, 1, . . . , m; t ≥ 0.

dm−k(t) =
(m)k(m− 1)k

k!

k∑
i=0

(−1)i

(
k

i

)
2m− 2k − 1 + 2i

(2m− k − 1 + i)k+1
×

exp((k −m− i)(m− k + i− 1)t/2) , k = 0, 1, . . . , m− 1; t ≥ 0.

d0(t) = 0, t ≥ 0.

Theorem 3.2.

(i) For α = 0, a, b ≥ 0,

T (t)em =
m∑

j=0

cj(t)ej , m ≥ 0, t ≥ 0.

(ii) For α > 0, a, b > −1,

T (t)em =
m∑

j=0

dj(t)ej , m ≥ 0, t ≥ 0.

Proof. In both cases em ∈ D(W ).

In the first case set u(t, x) =
m∑

j=0

cj(t)xj , and in the second,

u(t, x) =
m∑

j=0

dj(t)xj , t ≥ 0 x ∈ [0, 1].

Then u(t, ·) ∈ D(W ), t ≥ 0. We shall prove that{
ut(t, x) = Wu(t, x),
u(0, ·) = em.

(1)

In the case (i), (1) is equivalent to the following four relations:

c′m + m(m + a + b + 1)cm = 0; (2)

c′m−k + (m− k)(m− k + a + b + 1)cm−k =

(m− k + 1)(m− k + 1 + a)cm−k+1, k = 1, . . . , m;
(3)

cm(0) = 1; (4)
cm−k(0) = 0, k = 1, . . . , m. (5)
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(2), (3) and (4) can be verified by a straightforward calculation. To prove
(5) we need the following identity which can be established by using elementary
algebra:

k∑
i=0

(−1)i

(
k

i

)
x− k + 2i

(x + i)(x + i− 1) . . . (x + i− k)
= 0. (6)

Set x := 2m− k + a + b + 1; then (5) follows from (6).

The proof of (1) in the case (ii) is similar.
Since the function u(t, x) is a solution of (1), it coincides with T (t)em, and

the proof is finished. �
The expressions of T (t)e1 and T (t)e2 in the case α = 0, a, b ≥ 0 can be

found also in [1], where they are interpreted as moments of order one and two for
the solution of the stochastic differential equation associated with the generator of
the semigroup. The moments of higher orders can be determined using the above
theorem.
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Recent Progress on Univariate
and Multivariate Polynomial
and Spline Quasi-interpolants

Paul Sablonnière

Abstract. Polynomial and spline quasi-interpolants (QIs) are practical and
effective approximation operators. Among their remarkable properties, let us
cite for example: good shape properties, easy computation and evaluation
(no linear system to solve), uniform boundedness independently of the degree
(polynomials) or of the partition (splines), good approximation order. We
shall emphasize new results on various types of univariate and multivariate
polynomial or spline QIs, depending on the nature of coefficient functionals,
which can be differential, discrete or integral. We shall also present some
applications of QIs to numerical methods.

1. Introduction

A quasi-interpolant of f has the general form

Qf =
∑
α∈A

µα(f)Bα,

where {Bα, α ∈ A} is a family of polynomials or B-splines forming a partition of
unity, and {µα(f), α ∈ A} is a family of linear functionals which are local in the
sense that they only use values of f in some neighbourhood of Σα = supp(Bα).
The main interest of QIs is that they provide excellent approximants of functions
without solving any linear system of equations. In the literature, one can find the
three following types of QIs:

(i) Differential QIs (abbr. DQIs): the linear functionals are linear combinations
of values of derivatives of f at some point in Σα.

(ii) Discrete QIs (abbr. dQIs): the linear functionals are linear combinations of
values of f at some points in the neighbourhood of Σα.

(iii) Integral QIs (abbr. iQIs): the linear functionals are linear combinations of
weighted mean values of f in the neighbourhood of Σα.
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We shall present various types of univariate and multivariate polynomial and spline
QIs, mainly dQIs and iQIs, which were recently introduced in the literature. For
polynomial QIs, we only present QIs which are close to the orifginal Bernstein or
Durrmeyer operators (for other types of QIs, see for example [35], [36]).

The prototype of polynomial dQIs is the classical Bernstein operator

Bnf =
n∑

i=0

f(
i

n
)b(n)

i

where {b(n)
i (x) = Ci

nxi(1 − x)n−i, 0 ≤ i ≤ n} is the Bernstein basis of the space
Pn of polynomials of degree at most n (the Ci

n are binomial coefficients).
The prototype of polynomial iQIs is the Durrmeyer operator [33]

Mnf =
n∑

i=0

〈f, b̃
(n)
i 〉b

(n)
i

where b̃
(n)
i = b

(n)
i /

∫ 1

0 b
(n)
i = (n + 1)b(n)

i and 〈f, g〉 =
∫ 1

0 fg. Both can be extended
to the multivariate case, either on the hypercube or on the simplex. Another
extension consists in adding a Jacobi weight in the scalar product.

The prototypes of spline DQIs are de Boor-Fix QIs [11] and their various
univariate and multivariate extensions

Qf =
∑
j∈J

λj(f)Bj .

Here {Bj j ∈ J} is a family of univariate B-splines of degree m on a nonuniform
sequence of knots {tk}. Assuming that Σj = supp(Bj) = [tj−m, tj+1], we set
Em = {−m + 1, . . . , 0} and we define ψj(t) =

∏
r∈Em

(tj+r − t) ∈ Pm for all j ∈ J .
For any τ ∈ Σj , the coefficient functionals are

λj(f) =
1

(m− 1)!

m−1∑
l=0

(−1)m−l−1Dm−l−1ψj(τ)Dlf(τ).

The prototypes of spline dQIs are the various univariate and multivariate exten-
sions of Schoenberg-Marsden operators [52], [53].

Sf =
∑
j∈J

f(τj)Bj

where τj is an interior point of Σj = supp(Bα).
The prototypes of spline iQIs are the various univariate and multivariate

extensions of operators [21], [63]

Tf =
∑
j∈J

〈f, Mj〉Bj ,

where Mj is a B-spline (which can be different from Bj) normalized by
∫
Σj

Mj = 1.

As emphasized by de Boor ([10], chapter XII), a spline QI defined on non uniform
partitions has to be uniformly bounded independently of the partition (abbr. UB)
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in order to be interesting for applications. Therefore, with some coworkers, we
have defined various families of QIs satisfying this property and having an infinite
norm as small as possible. In general it is difficult to minimize the true norm of
the operator, however, it is often possible to minimize an upper bound of this
norm: this gives rise to what we have called near-best (abbr. NB) QIs (see [1],
[2]–[4], [40]).

Numerical applications are still not very much developed. However, QIs can
be useful in approximation and estimation [21], [22], [85], in numerical quadrature
[23], [73], [75], and for the numerical solution of integral or partial differential
equations.

2. Univariate polynomial QIs

2.1. Basic operators

1) The Bernstein-Stancu QI [83] is defined for x ∈ [0, 1] by

S(α)
n f(x) =

n∑
i=0

f(
i

n
)b(n)

i (x, α)

where the Bernstein-Stancu basis is defined by

b
(n)
k (x, α) = Ck

n

(x)k
α(1− x)n−k

α

(1)n
α

.

Here (x)k
α = x(x + α) . . . (x + (k− 1)α), for α ∈ R. For α = 0, we recover the

classical Bernstein basis.

2) The Bernstein- Phillips (or q-Bernstein) QI ([56]–[59]) is defined for x ∈ [0, 1]
by

Bq
nf(x) =

n∑
i=0

f

(
[i]
[n]

)
b
(n)
k (x, q)

where the Bernstein-Phillips or q-Bernstein basis is defined for q �= 1 by
b
(n)
k (x, q) = Γk

nxk(1 − x)n−k
q . Here [i] = 1−qi

1−q , [i]! =
∏i

s=1[s], Γk
n = [n]!

[k]![n−k]!

and (x)k
q =

∏k−1
s=0 (1−qsx). For q = 1, we recover the classical Bernstein basis.

Using the notation es(x) = xs for monomials, it is easy to prove that all the above
QIs Bn are exact on P1, i.e., Bnes = es for s = 0, 1. Moreover they are degree
preserving since Bnes(x) = es(x) + rs−1(x, n) where rs−1(x, n) is some polyno-
mial of degree at most s − 1 depending on n (and eventually on the parameters
α, N or q).
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2.2. Left and right BQIs

All operators Bn defined above are isomorphisms of Pn. Moreover Bn and An =
B−1

n can be expressed as linear differential operators with polynomial coefficients

Bn =
n∑

k=0

β
(n)
k Dk, An =

n∑
k=0

α
(n)
k Dk,

where D = d
dx and the polynomials β

(n)
k ∈ Pk and α

(n)
k ∈ Pk are defined by simple

recursions (see, e.g., [64]–[67] for partial results in this sense).
For 0 ≤ r ≤ n, we introduce the partial inverses:

A(r)
n =

r∑
k=0

α
(n)
k Dk,

and we consider the two families of right and left BQIs:

(RBQI) The right BQIs B[r]
n = Bn ◦ A(r)

n are defined for Cr-functions f by

B[r]
n f = Bn(A(r)

n f) = Bn(
r∑

k=0

α
(n)
k Dkf).

(LBQI) The left BQIs B(r)
n = A(r)

n ◦ Bn are defined on any (e.g., continuous)
function

B(r)
n f = A(r)

n (Bnf) =
r∑

k=0

α
(n)
k Dk(Bnf).

By construction, for 0 ≤ r ≤ n, the BQIs B[r]
n and B(r)

n are exact on the space
Pr. Moreover, in many cases, the LBQIs have a uniformly bounded infinite norm,
independent on n for each 0 ≤ k ≤ n fixed (see, e.g., [70], [86] for some results
of this type). From this property are deduced some convergence results (see [30],
[67]).

2.3. Kageyama QIs

Kageyama [44], [45] considers Stancu operators for α ∈ [− 1
n , 0]

S
(− 1

n )
n = Ln, S(0)

n = Bn,

where Ln is the Lagrange interpolation operator on the uniform partition of [0, 1]
(this result is due to Mühlbach). Then he truncates at order s the Maclaurin series
of S

(α)
n f w.r.t. α and he takes the value of this polynomial at α = − 1

n :

K(s)
n f =

s∑
j=0

1
j!

(−1)j

nj

∂j

∂αj

[
S(α)

n f
]

α=0

K(0)
n = S

(0)
n = Bn and K(∞)

n = S
(− 1

n )
n = Ln. He also gives expansions of Knf in

terms of derivatives of Bnf and in powers of 1
n . He proves that, for all s fixed,
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‖K(s)
n ‖∞ is uniformly bounded and give Voronovskaja type results, e.g.,

lim
n→∞ ns+1(K(s)

n f − f) = −
2s+2∑
k=0

1
k!

Υs+1,kDkf

where the polynomials Υs+1,k can be computed by recursion. He also compares
the expansions of Ln, the BQIs B

(r)
n and K(s)

n interms of derivatives of Bnf with
polynomial coefficients. Numerical experiments done by the author suggest that
these operators are in general better approximants than BQIs of Section 3.1.

2.4. Univariate Durrmeyer and Goodman-Sharma QIs

A straightforward generalization of the Durrmeyer operator Mn consists in intro-
ducing a Jacobi weight on [0, 1] in the associated scalar product

〈f, g〉 =
∫ 1

0

wα,β(t)f(t)g(t)dt, wα,β(t) = tα(1− t)β , for α, β > −1

The extended Durrmeyer-Jacobi operator ([6], [61]) is then defined by

M (α,β)
n f =

n∑
i=0

〈f, b
(n)
i 〉

〈e0, b
(n)
i .〉

b
(n)
i

The limit case (α, β) = (−1,−1), corresponding to the weight w̃(x) =
1

x(1 − x)
,

gives a QI with very attractive properties. It has been introduced by Goodman and
Sharma [38], [39] for polynomial (and a variant for spline) QIs. It can be written
as follows, with Lf(x) = (1 − x)f(0) + xf(1):

Gnf = Lf + (n− 1)
n−1∑
i=1

〈f − Lf, b
(n−2)
i−1 〉b

(n)
i .

This operator is exact on P1 and its behaviour is quite similar to that of the
classical Bernstein operator. For example, one has for f ∈ C2(I)

limn(f(x)−Gnf(x)) = x(1 − x)f ′′(x).

It also preserves the positivity, the monotonicity and the convexity of f . As discrete
Bernstein operators, the above operators Gn have associated QIs in the sense of
Section 3.1 [70] .

2.5. Extrapolation

All operators Bn described in this section have asymptotic expansions of type

Bnf(x) ∼ f(x) +
∑
k≥r

ϕ
(n)
k (f, x)

nk

for some index r, the ϕ
(n)
k (f, x) being linear differential operators depending on

n and k. Therefore they are good candidates for extrapolation methods (see, e.g.,
[14] and [82]). Numerical experiments done by the author show that Richardson
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extrapolation is efficient while the use of variants of epsilon or ∆2 algorithms often
introduce spurious poles in the interval of definition.

3. Polynomial QIs on a simplex

3.1. Bernstein operator and associated QIs

The simplex S of dimension d− 1 is defined in barycentric coordinates as
S = {x = (x1, x2, . . . , xd) : |x| = 1} with |x| = ∑d

i=1 |xi|.
The associated simplex of indices, monomials and partial derivatives are defined
by Σn = {i = (i1, i2, . . . , id) : |i| = n}, Xn = { i

n : i ∈ Σn} ⊂ S,
i! = i1!i2! . . . , id!, xi = xi1

1 xi2
2 . . . xid

d , Di = Di1
1 Di2

2 . . . Did

d with Ds = ∂
∂xs

.

The Bernstein basis of Pn (space of polynomials of total degree at most n) and
the Bernstein operator are defined respectively by:

b
(n)
i (x) =

n!
i!

xi for i ∈ Σn, Bnf(x) =
∑
i∈Σn

f(
i
n

)b(n)
i (x)

As
∑

i∈Σn
b
(n)
i (x) = 1 and

∑
i∈Σn

is

n b
(n)
i (x) = xεs = xs, for 1 ≤ s ≤ d, where

εs = (0, 0, . . . , 1, . . . , 0), then Bn is exact on P1.
Let {lni , i ∈ Σn} be the Lagrange basis of Pn associated with the data points

Xn. Then lni ( j
n ) = δij implies Bnlni = b

(n)
i , hence Bn is an isomorphism of Pn.

For f ∈ C2(S), we have the Voronovskaja type result ([47], [79], [85]),

lim n [Bnf − f ] =
1
2
D̄f

where Df is the differential operator

D̄f(x) =
∑
i<j

xixj(∂i − ∂j)2.

Bn and its inverse An = B−1
n in Pn can be expressed as linear differential operators

Bn =
∑
i∈Σn

β
(n)
i Di, An =

∑
i∈Σn

α
(n)
i Di

whose coefficients can be computed by recursion. For 0 ≤ k ≤ n, define partial
inverses

A(k)
n =

∑
i∈Σk

α
(n)
i Di.

As in Section 2.2 for univariate QIs, we can consider the two families of operators:
left Bernstein quasi-interpolants (LBQIs) B

(k)
n = A

(k)
n ◦ Bn, and right Bern-

stein quasi-interpolant (RBQIs) B
[k]
n = Bn ◦A

(k)
n , where B

(0)
n = B

[0]
n = Bn = and

B
(n)
n = B

[n]
n = Ln = Lagrange interpolation on Xn.

We have proved [65] that ‖B(2)
n ‖∞ ≤ 2d + 1 for all n ≥ 2, and we conjecture

that for all k ≥ 0, there exists a constant Ck(d) such that for all n ≥ k,

‖B(k)
n ‖∞ ≤ Ck(d).
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We also conjecture the Voronovskaja-type results

limnr+1(B(2r)
n f − f) = A2rf, limnr+1(B(2r+1)

n f − f) = A∗
2r+1f,

where A2r and A∗
2r+1 are linear differential operators, and the asymptotic expan-

sions
B(2r)

n f and B(2r+1)
n f ∼ f +

cr+1

nr+1
+

cr+2

nr+2
. . .

3.2. Durrmeyer-Jacobi QIs on a simplex

One can introduce a Jacobi weight on the simplex in the scalar product of L2
w(S):

wα(x) = xα, 〈f, g〉 =
∫

S
wα(x)f(x)g(x)dx, and define the Durrmeyer-Jacobi

quasi-interpolants (DJQIs)

Mnf =
∑
i∈Σn

〈f, b
(n)
i 〉

〈e0, b
(n)
i 〉

b
(n)
i .

Its eigenvectors are the Jacobi polynomials on the simplex. There holds a Voronov-
skaja type result [13], [79]

limn(Mnf(x)− f(x)) = Dαf(x)

where the differential operator Dα is defined by

Dα = x−α
∑
i<j

(∂i − ∂j)xix
α
j (∂i − ∂j).

As Mn is an isomorphism of Pn, one can expand Mn =
∑n

k=0

∑
i∈Σk

β
(n)
i Di and

Ln = M−1
n =

∑n
k=0

∑
i∈Σn

α
(n)
i Di. As in the univariate case [71], the polynomials

β
(n)
i and α

(n)
i are probably linear combinations of Jacobi polynomials on S ([26])

Setting L
(r)
n =

∑r
k=0

∑
i∈Σn

α
(n)
i Di, one can define the left DJQIs M

(r)
n = L

(r)
n ◦

Mn, and the right DJQIs M
[r]
n = Mn ◦ L

(r)
n , with M

(0)
n = Mn and M

(n)
n = Pn =

orthogonal projector on Pn in L2(S). They have the same properties as univariate
QIs, and it would be interesting to have detailed proofs, those of [65], [66] being
only sketched. However, the author thinks that the following operators are still
more attractive.

3.3. Jetter-Stöckler operators on a triangle

For the sake of simplicity, we describe them over a triangle (with barycentric
coordinates {λ1, λ2, λ3}) in the case of the Legendre weight (w = 1, see [42] for
the general study on a simplex with Jacobi weight). Using the following notations:

Dij = ∂j − ∂i, i < j, D = {D12, D13, D23}, Λ = {λ1λ2, λ1λ3, λ2λ3},

k = (k12, k13, k23) ∈ N
3, Dk = Dk12

12 Dk13
13 Dk23

23 ,

Λk = (λ1λ2)k12(λ1λ3)k13(λ2λ3)k23 ,
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the authors define the following basic differential operators:

Uk =
1
k!

(−1)|k|DkΛkDk, U� =
1
!

∑
|k|=�

Uk, Yn =
n∑

�=0

(C�
n)−1U�

Let Mn be the Durrmeyer operator, then they prove that Uk commute with Mn

for all pairs (k, n) and that Yn is the inverse of Mn in the space of polynomials
Pn. Now, for 0 ≤ r ≤ n fixed, they define partial inverses and left Jetter-Stöckler
quasi-interpolants (LJSQIs)

Y(r)
n =

r∑
�=0

(C�
n)−1U�, M (r)

n = Y(r)
n Mn.

One can also define right JSQIs M
[r]
n = MnY(r)

n . Both operators M
(r)
n and M

[r]
n are

exact on Pr. Moreover, for r fixed, the left JSQIs have uniformly bounded infinite
norms w.r.t. n. Finally, the authors prove Voronovskaja-type results:

lim
n→∞Cr

n(f −M (r−1)
n f) = Urf

3.4. Extrapolation

All operators Bn described in this section have asymptotic expansions of type

Bnf(x) ≈ f(x) +
∑
k≥r

ϕ
(n)
k (f, x)

nk

(see, e.g., [47] and [85]). In particular, the latter reports interesting numerical
results on Richardson extrapolation of classical Bernstein operators on the triangle.
It would be interesting to compare these results with those which could be obtained
by extrapolating the above QIs.

4. Univariate spline QIs on uniform partitions

4.1. Univariate differential and discrete QIs

For the construction of QIs with optimal approximation order, we refer to [15]
and [16], where general solutions are given, thus completing the initial work by
Schoenberg in [80].

4.2. Near-best spline dQIs

Consider the family of spline dQIs of order 2m depending on n + 1 arbitrary
parameters a = (a0, a1, . . . , an), n ≥ m:

Qaf =
∑
i∈Z

Λf(i)M2m(x− i)

with coefficient functionals

Λf(i) = a0f(i) +
n∑

j=1

aj (f(i + j) + f(i− j)) .
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Setting ν(a) = |a0| +
∑n

j=1 |aj |, then we have ‖Qa‖∞ ≤ ν(a). By imposing that
Qa be exact on Pr, with 0 ≤ r ≤ 2m − 1, we obtain a set of linear constraints:
a ∈ Vr ⊂ Rn+1. We say that Q∗ = Qa∗ is a near best dQI if

ν(a∗) = min{ν(a); a ∈ Vr}.

There is existence, but in general not unicity, of solutions.

Example: cubic splines (see [40]). There is a unique optimal solution for n ≥ 2:

a∗
0 = 1 +

1
3n2

, a∗
n = − 1

6n2
, a∗

j = 0 for 1 ≤ j ≤ n− 1

Moreover, for all n ≥ 4, ‖Q∗‖∞ ≤ 1 + 2
3n2 . Here are the first values of ‖Q∗‖∞ and

ν(a∗); n = 1 : 1.222 & 1.666; n = 2 : 1.139 & 1.166; n = 3 : 1.074 & 1.074.

4.3. Near-best spline iQIs

A similar study can be done for integral spline QIs. We refer to [2], [40] and we only
give an example given in these papers. Setting a = (a0, a1, . . . , an), n ≥ m and
Mi(x) = M2m(x−i), we consider Qaf =

∑
i∈Z

Λf(i)Mi with coefficient functionals

Λf(i) = a0〈f, Mi〉+
n∑

j=1

aj (〈f, Mi−j〉+ 〈f, Mi+j〉) .

As in Section 4.2, we have ‖Qa‖∞ ≤ ν(a) and we say that Q∗ = Qa∗ is a near best
iQI if ν(a∗) = min{ν(a); a ∈ Vr}. There is existence, but in general not unicity, of
solutions.

Example: cubic splines (see [40]). There is a unique optimal solution for n ≥ 2:

a∗
0 = 1 +

2
3n2

, a∗
n = − 1

3n2
, a∗

j = 0 for 1 ≤ j ≤ n− 1

Moreover, for all n ≥ 4, ‖Q∗‖∞ ≤ 1 + 4
3n2 . Here are the first values of ‖Q∗‖∞ and

ν(a∗); n = 1 : 1.5278 & 2.333; n = 2 : 1.2778 & 1.333; n = 3 : 1.1481 & 1.1482.

5. Bivariate spline dQIs on uniform partitions

5.1. A general construction of dQIs

Let ϕ be any kind of bivariate B-spline on one of the two classical three- or four-
directional meshes of the plane (e.g., box-splines, see [7], [12], [19]). Let Σ =
supp(ϕ) and Σ∗ = Σ∩Z2. Let a be the hexagonal (or lozenge=rhombus) sequence
formed by the values {ϕ(i), i ∈ Σ∗}. The associated central difference operator
D is an isomorphism of P(ϕ), the maximal subspace of ”complete ” polynomials
in the space of splines S(ϕ) generated by the integer translates of the B-spline
ϕ (see [12], [69], [71], [72]). Computing the expansion of a in some basis of the
space of hexagonal (or lozenge) sequences amounts to expand D in some basis of



238 P. Sablonnière

central difference operators. Then, computing the formal inverse D−1 allows to
define the dQI

Qf =
∑
k∈Z2

D−1f(k)ϕ(· − k)

which is exact on P(ϕ). Let us now give two examples which are detailed in [40].

5.2. Near-best spline dQIs on a three direction mesh

Example: let ϕ be the C2 quartic box-spline. Let Hs be the regular hexagon with
edges of length s ≥ 1, centered at the origin (here Σ = H2) and let H∗

s = Hs ∩Z2.
The near-best dQIs have coefficient functionals with supports consisting of the
center and the 6 vertices of H∗

s , s ≥ 1. The coefficients of values of f at those points
are respectively 1+ 1

2s2 and − 1
12s2 , therefore the infinite norm of the optimal dQIs

Q∗
s is bounded above by ν∗

s = 1 + 1
s2 . Here are the first values of ‖Q∗‖∞ and ν∗

s ;
n = 1 : 1.34028 & 2; n = 2 : 1.22917 & 1.25; n = 3 : 1.10185 & 1.111.

5.3. Near-best spline dQIs on a four direction mesh

Example: let ϕ be the C1 quadratic box-spline. Let Λs be the lozenge (rhombus)
with edges of length s ≥ 1, centered at the origin, and let Λ∗

s = Λs ∩ Z2. The
near-best dQIs have coefficient functionals with supports consisting of the center
and the 4 vertices of Λ∗

s, s ≥ 1. The coefficients of values of f at those points are
respectively 1 + 1

2s2 and − 1
8s2 , therefore the infinite norm of the optimal dQIs

Q∗
s is bounded above by ν∗

s = 1 + 1
s2 . Here are the first values of ‖Q∗‖∞ and ν∗

s ;
n = 1 : 1.5 & 2; n = 2 : 1.25 & 1.25; n = 3 : 1.111 & 1.111.

6. Univariate spline QIs on non uniform partitions

6.1. Uniformly bounded dQIs

Let us only give an example: we start from a family of DQIs of degree m which
are exact on P2.

Q2f =
∑
j∈J

λ
(2)
j (f)Bj , λ

(2)
j (f) = f(θj)−

1
2
(θ2

j − θ
(2)
j )D2f(θj).

We recall the expansion [52], [53]

A
(2)
j = θ2

j − θ
(2)
j =

1
(m− 1)2(m− 2)

∑
(r,s)∈E2

m,r �=s

(tj+r − tj+s)2 > 0.

On the other hand, 1
2D2f(θj) can be replaced on the space P2 by the second order

divided difference [θj−1, θj , θj+1]f , therefore the dQI defined by

Q∗
2f =

∑
j∈J

µ
(2)
j (f)Bj , µ

(2)
j (f) = f(θj)−A

(2)
j [θj−1, θj, θj+1]f,

is also exact on P2. Moreover, one can write

µ
(2)
i (f) = aifi−1 + bifi + cifi+1
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with ai = −A
(2)
i /∆θi−1(∆θi−1 + ∆θi), ci = −A

(2)
i /∆θi(∆θi−1 + ∆θi), and

bi = 1 + A
(2)
i /∆θi−1∆θi, So, according to the introduction

‖Q∗
2‖∞ ≤ max

i∈J
(|ai|+ |bi|+ |ci|) ≤ 1 + 2 max

i∈J

A
(2)
i

∆θi−1∆θi
.

The following theorem [4] extends a result given for quadratic splines in [4], [73],
[75].

Theorem 6.1. For any degree m, the dQIs Q∗
2 are UB. More specifically, for all

partitions of I:

‖Q∗
2‖∞ ≤ [

1
2
(m + 4)]

6.2. Uniformly bounded iQIs

General types of integral QIs are studied in [21], [63], [68]. Here, we have chosen
to study a family of QIs that we call Goodman-Sharma type iQIs, as they first
appear in [38]. They seem simpler and more interesting than those we have studied
in [68]. The simpler GS-type IQI can be written as follows

G1f = f(t0)B0 +
n+m−2∑

i=1

µ̃i(f)Bi + f(tn)Bn+m−1,

where the integral coefficient functionals are defined by

µ̃i(f) =
∫ 1

0

M̃i−1(t)f(t)dt,

M̃i−1(t) being the B-spline of degree m − 2 with support Σ̃i−1 = [ti−m+1, ti],
normalized by µ̃

(0)
i = µ̃i(e0) =

∫ 1

0 M̃i−1(t) = 1. It is easy to verify that G1 is exact
on P1 and that ‖G1‖∞ = 1. We shall study the family of GS-type iQIs defined by

G2f = f(t0)B0 +
n+m−2∑

i=1

[aiµ̃i−1(f) + biµ̃i(f) + ciµ̃i+1(f)]Bi + f(tn)Bn+m−1,

which are exact on P2. The three constraints G2ek = ek, k = 0, 1, 2, lead to the
following system of equations, for 1 ≤ i ≤ n + m− 2:

ai + bi + ci = 1, θi−1ai + θibi + θi+1ci = θi, µ̃
(2)
i−1ai + µ̃

(2)
i bi + µ̃

(2)
i+1ci = θ

(2)
i .

This is a consequence of the following facts

µ̃i(e1) =
∫ 1

0

tM̃i−1(t)dt =
1
m

m∑
s=1

ti−m+s = θi,

µ̃
(2)
i = µi(e2) =

∫ 1

0

t2M̃i−1(t)dt =
2

m(m + 1)
s̃2(Ti)

=
2

m(m + 1)

∑
1≤r≤s≤m

ti−m+rti−m+s
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Theorem 6.2. For any degree m, the iQIs G2 are UB. More specifically, for all
partitions of I:

‖G2‖∞ ≤ 5

The detailed proof will be given in [78].

6.3. Near-best dQIs

Let us consider the family of dQIs of degree m defined, for the sake of simplicity,
on I = R endowed with an arbitrary non-uniform increasing sequence of knots
T = {ti; i ∈ Z}, by

Qf = Qp,qf =
∑
i∈Z

µi(f)Bi.

Their coefficient functionals depend on 2p + 1 parameters, with p ≥ m:

µi(f) =
p∑

s=−p

λi(s)f(θi+s),

and they are exact on the space Pq, where q ≤ min(m, 2p). The latter condition is
equivalent to Qer = er for all monomials of degrees 0 ≤ r ≤ q. It implies that for
all indices i, the parameters λi(s) satisfy the system of q + 1 linear equations:

p∑
s=−p

λi(s)θr
i+s = θ

(r)
i , 0 ≤ r ≤ q.

The matrix Vi ∈ R(q+1)×(2p+1) of this system, with coefficients Vi(r, s) = θr
i+s,

is a Vandermonde matrix of maximal rank q + 1, therefore there are 2p − q free
parameters. Denoting bi ∈ Rq+1 the vector in the right-hand side, with components
bi(r) = θ

(r)
i , 0 ≤ r ≤ q, we consider the sequence of minimization problems, for

i ∈ Z:
min ‖λi‖1, Viλi = bi.

We have seen in the introduction that ν∗
1 (Q) = maxi∈Z min ‖λi‖1 is an upper

bound of ‖Qq‖∞ which is easier to evaluate than the true norm of the dQI.

Theorem 6.3. The above minimization problems have always solutions, which, in
general, are non unique.
The objective function being convex and the domains being affine subspaces, these
classical optimization problems have always solutions, in general non unique.

Example of optimal dQIs are given in [1], [4], [40].

7. Bivariate quadratic spline dQIs on non uniform
criss-cross triangulations

At the author’s knowledge, the only bivariate box-splines which have been ex-
tended to non uniform partitions of the plane are C1-quadratic box-splines on
criss-cross triangulations [20], [62]. Recently, we have constructed a set of B-splines
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generating the space of quadratic splines on a rectangular domain and we have
defined a discrete quasi-interpolant which is exact on P2 and uniformly bounded
independently of the partition [74]–[76].
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[25] M.M. Derriennic: Polynômes de Bernstein modifiés sur un simplexe T de R
l.
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Abstract. We prove that the weighted error of approximation by general-
ized Bernstein polynomials introduced in [1] is equivalent to the modulus of
smoothness of the function. This result is analogous to a well-known theorem
of Ditzian and Ivanov [2] for the classical Bernstein polynomials.

Mathematics Subject Classification (2000). primary 41A36, secondary 41A25.

Keywords. Freud weights, weighted modulus of smoothness, Bernstein opera-
tor, Markov type inequalities.

1. Introduction

In [1] we introduced some Bernstein-type operators to approximate unbounded
functions on the real line. Here we complete those results by giving a Ditzian-
Ivanov type theorem proving the complete equivalence of the weighted error and
the modulus of smoothness.

In the following c denotes a positive constant which may assume different val-
ues in different formulas. Moreover let ν ∼ µ, for ν and µ two quantities depending
on some parameters, if |ν/µ|±1 ≤ c, with c independent of the parameters.

Let
w(x) = exp(−Q(x)), x ∈ (−∞, +∞)

be a Freud weight, i.e., assume that Q(x) is even and continuous in R, Q′′ is
continuous in (0,∞), Q′ > 0 in (0,∞) and

1 < A ≤ (xQ′(x))′

Q′(x)
≤ B <∞, x ∈ (0,∞)

(see [4], Theorem 1.1, p. 184).

Research supported by OTKA No. T032872.
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Now consider the following class of functions:

Cw = {f ∈ C(R)) : lim
|x|→∞

(wf)(x) = 0},

equipped with the norm ‖wf‖Cw := ‖wf‖ = supx∈R |(wf(x)|.
We also put ‖wf‖[c,d] = maxc≤x≤d |(wf)(x)|. For f ∈ Cw, the weighted

modulus of smoothness is

ω2(f, t)w = sup
0<h≤t

‖w∆2
hf‖[−h∗,h∗]+ inf

�∈P1
‖w(f−)‖[t∗,∞)+ inf

�∈P1
‖w(f−)‖(−∞,−t∗],

(1)
where t∗ is defined by tQ′(t∗) = 1 (see [3, Definition 11.2.2, p. 182]) and Pn, n ∈ N,
is the set of algebraic polynomials of degree at most n.

Next, define the monotone increasing sequence {λn} by the relations

λnQ′(λn) =
√

n, n = 1, 2, . . . . (2)

Finally, for every f ∈ Cw let

Bn(f, x) =
n∑

k=0

pn,k(x)f(xk) (3)

with

pn,k(x) =
1
2n

(
n

k

)(
1 +

x

2λn

)k (
1− x

2λn

)n−k

, (4)

and xk = 2k−n
n 2λn. Further let

B∗
n(f, x) =

⎧⎪⎨⎪⎩
Bn(f, x) if |x| ≤ λn,

Bn(f, λn) + B
′
n(f, λn)(x− λn) if x ≥ λn,

Bn(f,−λn) + B
′
n(f,−λn)(x + λn) if x ≤ −λn.

(5)

Remarks. Note that B∗′
n ∈ ACloc and B∗

n is a linear operator, which reproduces
linear functions , i.e., B∗

n(, x) ≡ (x). We could not consider only Bn because its
weighted norm is not bounded.

The most natural definition for B∗
n could be (4)–(5) with λn instead of 2λn,

but then the corresponding operator would be unbounded.

2. The result

Theorem 2.1. If f ∈ Cw then

c

µ
ω2

(
f,

λn√
n

)
w

≤ ‖ w (f −B∗
n(f))‖+

∥∥ w
(
f −B∗

µn(f)
)∥∥(f,

λn√
n

)
w

, (6)

where µ > 1 is a suitable fixed integer depending only on the weight w.
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This result, together with the upper estimate

||w(f −B�
n(f)|| ≤ cω2

(
f,

λn√
n

)
w

(see Theorem 1 in [1]) is very complex: it includes direct and strong converse
error estimates, reproducing property (for linear functions), saturation classes and
order.

3. Lemmas

The proof of Theorem is based on several lemmas.

Lemma 3.1. We have
1− 2

n
≤ λn−2

λn
≤ 1− 1

Bn
(7)

and
µ

1
2B ≤ λµn

λn
≤ µ

1
2A (µ ≥ 1). (8)

Proof. Using (2) and

tA−1 ≤ Q′(tx)
Q′(x)

≤ tB−1, 0 ≤ x <∞, 1 ≤ t <∞ (9)

(cf. [4], inequalities (5.3)) with x = λn−2 and t = λn/λn−2,(
λn

λn−2

)A−1
√

1− 2
n
≤ λn−2

λn
=

Q′(λn)
Q′(λn−2)

√
n− 2

n
≤
(

λn

λn−2

)B−1
√

1− 2
n

,

i.e.,

1− 2
n
≤
(

1− 2
n

) 1
2A

≤ λn−2

λn
≤
(

1− 2
n

) 1
2B

≤ 1− 1
Bn

.

On the other hand, using (2) as well as (9) with t = λµn/λn and x = λn we
obtain

1√
µ

(
λµn

λn

)A−1

≤ Q′(λµn

Q′(λn)
1√
µ

=
λn

λµn
≤ 1√

µ

(
λµn

λn

)B−1

which proves (8) after rearranging.
Denote

In :=
[
−3

2
λn,

3
2
λn

]
.

Lemma 3.2. We have∥∥∥∥∥∥w(x)
∑

|x−xk|≥δ

|x− xk|ipnk(x)
w(xk)

∥∥∥∥∥∥
In

≤ ci

(
λn√

n

)i

exp
(
−C

n

λ2
n

δ2

)
, i = 0, 1, . . . ,

where δ ≥ 0, C > 0 is an absolute constant, and the constants ci > 0 depend only
on i.
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Proof. By symmetry, it is sufficient to estimate the norm for 0 ≤ x ≤ 3
2λn. In this

interval we use the following estimates for the polynomials pnk(x):

pnk(x) ≤
{

c√
n

exp
{
−c n

λ2
n
(x− xk)2

}
if |xk| ≤ λn + x

2 ,

e−cn if |xk| > λn + x
2 ,

0 ≤ x ≤ 3
2
λn.

These follow from the proof of Lemma 1 in [1]. The other tool we use is

w(x)
w(xk)

≤ e|Q(x)−Q(xk)| ≤ e|x−xk|Q′(2λn) ≤ ed|x−xk|
√

n
λn , x ∈ In, k = 0, . . . , n

(10)
where we used (2) and applied the relation Q′(2λn) ∼ Q′(λn), which follows from
(9). Thus we obtain

w(x)
∑

|x−xk|≥δ

|x− xk|ipnk(x)
w(xk)

≤ c√
n

∑
|x−xk|≥δ

|x− xk|i exp
{
−c

n

λ2
n

(x − xk)2 + d|x− xk|
√

n

λn

}
+ e−cn

≤ c1√
n

∑
|x−xk|≥δ

|x− xk|i exp
{
−C

n

λ2
n

(x− xk)2
}

+ e−cn. (11)

Here

|x− xk|i ∼ δi +
(

jλn

n

)i

, i = 0, 1, . . .

with some j depending on k. Substituting this into (11) we get

w(x)
∑

|x−xk|≥δ

|x− xk|ipnk(x)
w(xk)

≤ c√
n

exp
(
−C

n

λ2
n

δ2

) ∞∑
j=0

[
δi +

(
jλn

n

)i
]

exp
(
−C2j2

n

)
+ e−cn. (12)

Here
∞∑

j=0

[
δi +

(
jλn

n

)i
]

exp
(
−C2j2

n

)

≤ c

∫ ∞

0

[
δi +

(
xλn

n

)i
]

exp
(
−C2x2

n

)
dx

≤ c
√

n

∫ ∞

0

[
δi +

(
xλn√

n

)i
]

e−C2x2
dx ≤ ci

√
n

[
δi +

(
λn√

n

)i
]

.

Substituting this into (12) we obtain the statement of the lemma.
It is clear from the above proof that we can easily obtain the following “un-

weighted” version of Lemma 2:
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Corollary 3.3. We have∥∥∥∥∥∥
∑

|x−xk|≥δ

|x− xk|ipnk(x)

∥∥∥∥∥∥
In

≤ ci

(
λn√

n

)i

exp
(
−C

n

λ2
n

δ2

)
, i = 0, 1, . . . ,

where δ ≥ 0, C > 0 is an absolute constant, and the constants ci > 0 depend only
on i.

Lemma 3.4. Let f ∈ Cw. Then

‖wB′′′
n (f)‖In

≤ c
n3/2

λ3
n

||wf ||. (13)

Proof. Using the identity

p′nk(x) =
n

4λ2
n − x2

pnk(x)(xk − x) (14)

(which follows from (4) by an easy computation) successively, and differentiating
(3) three times we obtain

B′
n(f, x) =

n

4λ2
n − x2

n∑
k=0

f(xk)(xk − x)pnk(x),

B′′
n(f, x) = − n

4λ2
n − x2

n∑
k=0

f(xk)pnk(x)

+
2nx

(4λ2
n − x2)2

n∑
k=0

f(xk)(xk − x)pnk(x) +
n2

(4λ2
n − x2)2

n∑
k=0

f(xk)(xk − x)2pnk(x),

and

B′′′
n (f, x) = − 4nx

(4λ2
n − x2)2

n∑
k=0

f(xk)pnk(x)+

+
[

2n− 3n2

(4λ2
n − x2)2

+
8nx2

(4λ2
n − x2)3

] n∑
k=0

f(xk)(xk − x)pnk(x)

+
6n2x

(4λ2
n − x2)3

n∑
k=0

f(xk)(xk − x)2pnk(x) +
n3

(4λ2
n − x2)3

n∑
k=0

f(xk)(xk − x)3pnk(x).

Multiplying the last relation by w(x) and using Lemma 2 with δ = 0 and i =
0, 1, 2, 3 we get

||wB′′′
n ||In ≤ c||wf ||

∥∥∥∥∥ n

λ3
n

n∑
k=0

pnk(x)
w(xk)

+
n2

λ4
n

n∑
k=0

|x− xk|pnk(x)
w(xk)

+
n2

λ5
n

n∑
k=0

|x− xk|2pnk(x)
w(xk)

+
n3

λ5
n

n∑
k=0

|x− xk|3pnk(x)
w(xk)

∥∥∥∥∥
In

≤ c||wf ||
(

n

λ3
n

+
n3/2

λ3
n

+
n

λ3
n

+
n3/2

λ3
n

)
≤ c

n3/2

λ3
n

||wf ||.

This proves the lemma.
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Lemma 3.5. Let f ∈ Cw. Then

||wB′′′
n ||In ≤ c

n5/2

λ3
n

max
1≤k≤n−1

[w(xk)|∆2
2λn/nf(xk)|].

Proof. In order to avoid confusion, in this proof we will use the more precise
notation xkn for xk. Introducing also the notation pnk(x) ≡ 0 for k < 0 and k > n,
it is easy to see from (4) that

p′nk(x) =
n

4λn

[
pn−1,k−1

(
λn−1

λn
x

)
− pn−1,k

(
λn−1

λn
x

)]
, 0 ≤ k ≤ n.

Differentiating once more and using this formula again we get

p′′nk(x) =
n(n− 1)

16λ2
n

[
pn−2,k−2

(
λn−2

λn
x

)
− 2pn−2,k−1

(
λn−2

λn
x

)
+pn−2,k

(
λn−2

λn
x

)]
, 0 ≤ k ≤ n.

Hence

B′′
n(f, x) =

n∑
k=0

f(xkn)p′′nk(x) =
n(n− 1)

16λ2
n

n−1∑
k=2

[
f(xkn)pn−2,k−2

(
λn−2

λn
x

)

−2
n∑

k=0

f(xkn)pn−2,k−1

(
λn−2

λn
x

)
+

n∑
k=0

f(xkn)pn−2,k

(
λn−2

λn
x

)]
.

Changing the running indices in the first and third sums we obtain

B′′
n(f, x) =

n(n− 1)
16λ2

n

n−1∑
k=1

∆2
2λn/nf(xkn)pn−2,k−1

(
λn−2

λn
x

)
,

where we have used the usual notation for the second differences. Differentiating
once more and using the identity (14) we get

B′′′
n (f, x) =

n(n− 1)λn−2

16λ3
n

n−1∑
k=1

∆2
2λn/nf(xkn)p′n−2,k−1

(
λn−2

λn
x

)

=
n(n− 1)(n− 2)λn−2

16λ3
n

(
4λ2

n−2 −
λ2

n−2
λ2

n
x2
)

×
n−1∑
k=1

∆2
2λn/nf(xkn)

(
xk−1,n−2 −

λn−2

λn
x

)
pn−2,k−1

(
λn−2

λn
x

)
.

Hence

w(x)|B′′′
n (f, x)| ≤ c

n3

λ4
n

max
1≤k≤n−1

[w(xk)∆2
2λn/nf(xk)|]

×
n−1∑
k=1

∣∣∣∣xk−1,n−2 −
λn−2

λn
x

∣∣∣∣ pn−2,k−1

(
λn−2

λn
x

)
eQ(xkn)−Q(x), x ∈ In.
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Here

|Q(xkn)−Q(x)| ≤
∣∣∣∣Q(

λn−2

λn
x

)
−Q(xk−1,n−2)

∣∣∣∣
+
∣∣∣∣Q(x)−Q

(
λn−2

λn
x

)∣∣∣∣+ |Q(xk−1,n−2)−Q(xkn)|, k = 1, . . . , n− 1.

The last two absolute values are easily estimated by the mean value theorem, (9)
and (7):

0 ≤ Q(x)−Q

(
λn−2

λn
x

)
≤ |x|

(
1− λn−2

λn

)
Q′(2λn) ≤ c

√
n · 2

n
≤ c√

n
, x ∈ In,

and by (7) again

|Q(xkn)−Q(xk−1,n−2)| ≤
∣∣∣∣(2k − n)2λn

n
− (2k − n)2λn−2

n− 2

∣∣∣∣ ≤ ∣∣∣∣ 2n

n− 2
λn−2 − 2λn

∣∣∣∣
= 2λn

(
n

n− 2
λn−2

λn
− 1

)
≤ 2λn

(
n

n− 2
Bn− 1

Bn
− 1

)
≤ c

λn

n
.

Collecting these estimates,

|Q(xkn)−Q(x)| ≤
∣∣∣∣Q(

λn−2

λn
x

)
−Q(xk−1,n−2)

∣∣∣∣+ o(1),

i.e., Lemma 2 with i = 1 and n− 2 instead of n yields

w(x)|B′′′
n (f, x)| ≤ c

n3

λ4
n

max
1≤k≤n−1

[w(xk)|∆2λn/nf(xk)|]

×
n−1∑
k=1

∣∣∣xk−1,n−2 − λn−2
λn

x
∣∣∣ pn−2,k−1

(
λn−2
λn

x
)

w(xk−1,n−2)

≤ c
n5/2

λ3
n

max
1≤k≤n−1

[w(xk)|∆2
2λn/nf(xk)|], x ∈ In.

Lemma 3.6. Let Kn :=
[
−λn − 4λn

n , λn + 4λn

n

]
. If f ∈ Cw and

||w(f −B�
n(f))|| ≤ λ2

n

n
||wB′′

n(f)||Kn , (15)

then

||wB′′′
n (f)||In ≤ d

√
n

λn
||wB′′

n(f)||Kn . (16)

Remark. The absolute constant d > 0 will play a special role, this is why the
distinguished notation.

Proof. Using
||wBn(f)||In ≤ c||f || (17)
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(this follows from Lemma 2 applied with i = δ = 0), as well as Lemmas 3 and 4,

||wB′′′
n (f)||In ≤ ||wB′′′

n (f −B�
n(f))||In + ||wB′′′

n (B�
n(f))||In

≤ c
n3/2

λ3
n

||w[f −B�
n(f)]||+ c

n5/2

λ3
n

max
1≤k≤n−1

[w(xk)|∆2
2λn/nB�

n(f, xk)|]

≤ c

√
n

λn
||wB′′

n(f)]||Kn + c
n5/2

λ3
n

max
|xk|<λn+ 2λn

n

[w(xk)|∆2
2λn/nB�

n(f, xk)|], (18)

since B�
n is linear in R \ Jn, where

Jn := [−λn, λn].

Here, by symmetry, it suffices to estimate the maximum for 0 ≤ xk < λn + 2λn

n .

If m ∼ 3
4n denotes the index for which xm ≤ λn < xm+1, then by the mean value

theorem

w(xk)|∆2
2λn/nB�

n(f, xk)| = w(xk)|∆2
2λn/nBn(f, xk)| = 4λ2

n

n2
w(xk)|B′′

n(f, ξk)|

≤ c
λ2

n

n2
||wB′′

n(f)||Jn 0 ≤ xk < xm,

where |xk − ξk| ≤ 2λn

n which in turn implies w(xk) ∼ w(ξk) (cf. (10)). Further by
(5)

w(xm)|∆2
2λn/nB�

n(f, xm)| = w(xm)|Bn(f, xm−1)− 2Bn(f, xm) + Bn(f, λn)

+(xm+1 − λn)B′
n(f, λn)| ≤ w(xm)|∆2

2λn/nBn(f, xm)|

+
1
2
w(xm)|B′′

n(f, ξm)|(xm+1 − λn)2 ≤ c
λ2

n

n2
||wB′′

n(f)||Kn

for the same reasons as above. Finally,

w(xm+1)|∆2
2λn/nB�

n(f, xm+1)| = w(xm+1)|Bn(f, xm)− 2[Bn(f, λn)

+(xm+1 − λn)B′
n(f, λn)] + Bn(f, λn) + (xm+2 − λn)B′

n(f, λn)|

≤ w(xm+1)
[
|∆2

2λn/nBn(f, xm+1)|+
1
2
|B′′

n(f, ξm+1)|(xm+1 − λn)2

+
1
2
|B′′

n(f, ηm+2)|(xm+2 − λn)2
]
≤ c

λ2
n

n2
||wB′′

n(f)||Kn .

Substituting these estimates into (18) we obtain the statement of the lemma.
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4. Proof of Theorem

We know that the modulus of smoothness is equivalent to the corresponding K-
functional, i.e.,

ω2

(
f,

λn√
n

)
w

∼ inf
g′∈ACloc

[
||w(f − g)||+ λ2

n

n
||wg′′||

]
(cf. [3], Theorem 11.2.3). Therefore choosing g = B�

n(f), it will be sufficient to
prove that

||w(f −B�
n(f))||+ ||w(f −B�

µn(f))|| ≥ c
λ2

n

n
||wB′′

n(f)||Jn

(
= c

λ2
n

n
||wB�′′

n (f)||
)

.

We may assume that condition (15) of Lemma 5 holds (otherwise there is
nothing to prove).

Now suppose that the norm ||wB′′
n(f)||Kn is attained at a point 0 ≤ yn ∈ Kn,

and that B′′
n(f, yn) > 0. (If the latter condition does not hold, we can apply the

subsequent argument to −f instead of f .) Then (16) implies

|B′′′
n (f, x)| ≤ d

√
n

λn

w(yn)
w(x)

B′′
n(f, yn) ≤ d

√
n

λn
B′′

n(f, yn), |x| ≤ yn.

This easily yields that

B′′
n(f, x) ≥ 1

2
B′′

n(f, yn), x ∈ Ln :=
[
yn −

λn

2d
√

n
, yn

]
∩ Jn. (19)

Let

zn := yn −
λn

4d
√

n
;

evidently zn ∈ Ln for n sufficiently large. Using (17) with µn and f−B�
n(f) instead

of n and f , respectively, we obtain

||w[f−B�
n(f)]|| ≥ c||wBµn(B�

n(f)−f)||Iµn ≥ cw(zn)[Bµn(B�
n(f), zn)−Bµn(f, zn)]

≥ cw(zn)Bµn(B�
n(f, x)−Bµn(f, zn), zn) = cw(zn)Bµn(B�

n(f, x)−Bn(f, zn), zn)

−cw(zn)|f(zn)−Bn(f, zn)|+ cw(zn)|f(zn)−Bµn(f, zn)|
≥ cw(zn)Bµn(B�

n(f, x)−Bn(f, zn), zn)− c||w(f −B�
n(f)|| − c||w(f −B�

µn(f)||,
where the integer µ > 1 will be chosen later. Hence

||w(f −B�
n(f))||+ ||w(f −B�

µn(f))|| ≥ cw(zn)Bµn(gn, zn) (20)

where
gn(x) := B�

n(f, x)−Bn(f, zn)− (x− zn)B′
n(f, zn).

(Here we made use of the fact that the operator Bµn reproduces linear functions.)
Let us estimate gn(x) on different parts of the real line. First, by using Taylor

expansion about zn,

|gn(x)| = 1
2
|B′′

n(f, ξn)|(x− zn)2 ≤ ||wB′′
n(f)||Jn

(x − zn)2

w(ξn)
, x ∈ Jn (21)
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where ξn ∈ (x, zn) ⊂ Jn. Hence

w(zn)|gn(x)| ≤
{
||wB′′

n(f)||Jn(x − zn)2 if |x| ≤ zn,

||wB′′
n(f)||Jn

w(zn)
w(x) (x− zn)2 if zn < |x| ≤ λn.

(22)

On the other hand, (21) yields by (19)

w(zn)gn(x) ≥ w(zn)
4w(yn)

||wB′′
n(f)||Jn(x− zn)2 ≥ 1

4
||wB′′

n(f)||Jn(x − zn)2, x ∈ Ln.

(23)
Finally, using the definition (5), the mean value theorem and (8) we get

|gn(x)| = |Bn(f, λn) + (x− λn)B′
n(f, λn)−Bn(f, zn)− (x− zn)B′

n(f, zn)|

= (λn − zn)|x− ηn,1| · |B′′
n(f, ηn)| ≤ (λn − zn)(x− zn)

w(x)
||wB′′

n(f)||Jn , x ≥ λn,

(24)
and

|gn(x)| = |Bn(f,−λn) + (x + λn)B′
n(f,−λn)−Bn(f, zn)− (x− zn)B′

n(f, zn)|

= (λn +zn)|x−ηn,2| · |B′′
n(f, ηn)| ≤ cµ

1
2A

λ2
n

w(x)
||wB′′

n(f)||Jn , −λµn ≤ x ≤ −λn,

(25)
where zn < ηn,1, ηn,2 < λn. Using the relation

Bµn

(
(x− zn)2, zn

)
=

4λ2
µn − z2

n

µn
≥

4λ2
µn − λ2

n

µn
≥ 3λ2

n

µn

(cf. [5]) we obtain by (23)

w(zn)Bµn(gn, zn) = w(zn)

⎛⎝ ∑
xk,µn∈Ln

+
∑

xk,µn �∈Ln

⎞⎠ pµn,k(zn)gn(xk,µn)

≥ ||wB′′
n(f)||Jn

3λ2
n

µn

−c
∑

xk,µn �∈Ln

pµn,k(zn)[||wB′′
n(f)||Jn(xk,µn − zn)2 + w(zn)|gn(xk,µn)|].

Here, the Corollary applied with δ = 1
3 |Ln| = λn

12d
√

n
and i = 2 yields∑

xk,µn �∈Ln

pµn,k(zn)(xk,µn − zn)2 ≤ c
λ2

n

n
exp

(
−C

µnλ2
n

λ2
µnn

)
≤ c

λ2
n

n
exp

(
−Cµ1−1/A

)
,

(26)
where we used (8). Hence

w(zn)Bµn(gn, zn) ≥ c||wB′′
n(f)||Jn

2λ2
n

µn
− cw(zn)

∑
xk,µn �∈Ln

pµn,k(zn)|gn(xk,µn)|

provided the integer µ is large enough.
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We still have to give an upper estimate for the last sum. We partition it into
three parts.

If −zn ≤ xk,µn ≤ yn − λn

2d
√

n
, then we can use the first estimate in (22) and

obtain the same inequality as in (26).
Using the second estimate in (22) we obtain by Lemma 2 applied with i = 2

and δ = λn

4d
√

n
,

w(zn)
∑

−λn≤xk,µn≤min
(
−zn,yn− λn

2d
√

n

)
or yn≤xk,µn≤λn

pµn,k(zn)|gn(xk,µn)|

≤ c||wB′′
n(f)||Jnw(zn)

∑
|xk,µn−zn|≥ λn

4d
√

n

pµn,k(zn)
(xk,µn − zn)2

w(xk,µn)

≤ c||wB′′
n(f)||Jn

λ2
n

n
exp

(
−C

µnλ2
n

λ2
µnn

)
≤ c9||wB′′

n(f)||Jn

λ2
n

n
exp

(
−Cµ1−1/A

)
.

Now let xk,µn ≥ max(yn, λn). Then we can apply (24) and Lemma 2 with
i = 1 and

δ = max
(

λn − zn,
λn

4d
√

n

)
to get

w(zn)
∑

xk,µn≥max(yn,λn)

pµn,k(zn)|gn(xk,µn)|

≤ (λn − zn)||wB′′
n(f)||Jn

∑
xk,µn−zn≥δ

pµn,k(zn)(xk,µn − zn)
w(xk,µn)

≤ c||wB′′
n(f)||Jn(λn − zn)

λn√
n

exp
(
−C

µn

λ2
µn

δ2

)
.

Here, if δ = λn

4d
√

n
≥ λn − zn then this yields

w(zn)
∑

xk,µn≥max(yn,λn)

pµn,k(zn)|gn(xk,µn)| ≤ λ2
n

n
e−Cµ1−1/A

, (27)

while if δ = λn − zn ≥ λn

4d
√

n
then

w(zn)
∑

xk,µn≥max(yn,λn)

pµn,k(zn)|gn(xk,µn)| ≤ c(λn−zn)2 exp
(
−C

µn

λ2
µn

(λn − zn)2
)

.

(28)
But it is easy to see that the function ϕ(t) = t2 exp

(
−C µn

λ2
µn

t2
)

attains its max-

imum at t = λµn√
Cµn

and is monotone decreasing after that, whence (28) for suffi-

ciently large µ and λn − zn = λn

4d
√

n
yields the same estimate as in (26).
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Finally, if xk,µn ≤ −λn then (25) and Lemma 2 with δ = λn − λn

4d
√

n
and

i = 0 yield

w(zn)
∑

xk,µn≤−λn

pµn,k(zn)|gn(xk,µn)| ≤ c
λn√

n
exp

(
−C

µn

λ2
µn

λ2
n

)
≤ e−Cµ1−1/An.

Collecting all of these estimates we get from (20) the statement of the theorem.
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Rprop Using the Natural Gradient

Christian Igel, Marc Toussaint and Wan Weishui

Abstract. Gradient-based optimization algorithms are the standard methods
for adapting the weights of neural networks. The natural gradient gives the
steepest descent direction based on a non-Euclidean, from a theoretical point
of view more appropriate metric in the weight space. While the natural gra-
dient has already proven to be advantageous for online learning, we explore
its benefits for batch learning: We empirically compare Rprop (resilient back-
propagation), one of the best performing first-order learning algorithms, using
the Euclidean and the non-Euclidean metric, respectively. As batch steepest
descent on the natural gradient is closely related to Levenberg-Marquardt
optimization, we add this method to our comparison.

It turns out that the Rprop algorithm can indeed profit from the nat-
ural gradient: the optimization speed measured in terms of weight updates
can increase significantly compared to the original version. Rprop based on
the non-Euclidean metric shows at least similar performance as Levenberg-
Marquardt optimization on the two benchmark problems considered and ap-
pears to be slightly more robust. However, in Levenberg-Marquardt optimiza-
tion and Rprop using the natural gradient computing a weight update requires
cubic time and quadratic space. Further, both methods have additional hy-
perparameters that are difficult to adjust. In contrast, conventional Rprop has
linear space and time complexity, and its hyperparameters need no difficult
tuning.

1. Introduction

Artificial neural networks such as Multi-Layer Perceptrons (MLPs) have become
standard tools for regression. In essence, an MLP with fixed structure defines
a differentiable mapping from a parameter space Rn to the space of functions.
Although this mapping is typically not surjective, one can prove that in principle
every continuous function can be well approximated (e.g., see [8], the upper bound
on the approximation error depends on the network structure). For an MLP with
fixed structure, a regression problem reduces to the adaptation of the parameters,
the weights, of the network given the sample data. This process is usually referred
to as learning.
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Since MLPs are differentiable, gradient-based adaptation techniques are typ-
ically applied to adjust the weights. The earliest and most straightforward adap-
tation rule, ordinary gradient descent, adapts weights proportional to the par-
tial derivatives of the error functional [1, 17]. Several improvements of this basic
adaptation rule have been proposed, some of them based on elaborated heuris-
tics, others on theoretical reconsideration of gradient-based learning. Here we
consider three of them, natural gradient descent, resilient backpropagation, and
Levenberg-Marquardt optimization. We combine ideas of all three approaches to
a new method we call natural Rprop.

Resilient backpropagation (Rprop, [10, 15, 16]) is a well-established modifi-
cation of the ordinary gradient descent. The basic idea is to adjust an individual
step size for each parameter to be optimized. These step sizes are not proportional
to the partial derivatives but are themselves adapted based on some heuristics.
Ordinary gradient descent computes the direction of steepest descent by implicitly
assuming a Euclidean metric on the weight space. However, as we are interested in
the function corresponding to a weight configuration, a more appropriate metric
would take distances in the function space into account. Amari [2] proposed to
make use of methods from differential geometry to determine the steepest descent
direction, the negative natural gradient, based on such a non-Euclidean metric.

Our investigation is based on the following idea: If the natural gradient points
in a better descent direction and Rprop improves the ordinary gradient descent,
can a combination of both methods profit from the advantages of the two ap-
proaches? Can we get best of both worlds, the increased robustness of Rprop and
the improved convergence speed due to the decoupling of weight interdependencies
when using the right metric?

In order to asses the performance of the new learning approach, we compare it
to a standard Rprop algorithm and to Levenberg-Marquardt optimization [12, 13].
We choose Levenberg-Marquardt optimization, because in the function regression
scenario that we consider it turns out that natural gradient descent is closely
related to Levenberg-Marquardt optimization. In addition, we borough ideas from
this classical technique to increase the robustness of the calculation of the steepest
descent direction within natural Rprop.

In the next Section we give brief but comprehensive descriptions of Rprop,
Levenberg-Marquardt optimization, and the natural gradient. Then we introduce
their combination, the natural Rprop. Section 3 presents experimental results on
two benchmark problems. Since the Levenberg-Marquardt algorithm as well as the
natural Rprop introduce new hyperparameters, we particularly look at the robust-
ness of the algorithms in terms of the choices of these parameters. We conclude
by discussing the results in Section 4.
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2. Background

We understand a feed-forward MLP with nin inputs and nout outputs as a function
f( · ; w) : Rnin → Rnout describing some input-output behavior. The function is
parameterized by a weight vector �w ∈ W = R

n as indicated by the notation.
For instance, y = f(x; w) is the output of the network for a given input x and
weights w. To address the components of the weight vector w we use upper indices
(w1, . . . , wn) to clarify that they are contra-variant and not co-variant (this will
become more apparent and relevant when describing the natural gradient). As an
error measure E(�w) to be minimized we assume, in the following, the mean squared
error (MSE) on a batch {(�x1, �y1), . . . , (�xP , �yP )} ∈ (Rnin × Rnout)P of sample data
points. For simplicity, we restrict ourselves to nout = 1 and define

E(�w) =
1
P

P∑
p=1

||f(�xp; �w)− �yp||2 .

In the remainder of this section, we describe four methods for gradient-based
minimization of E(w): we review Rprop, natural gradient descent, and Levenberg-
Marquardt optimization, and introduce a new approach, natural Rprop.

2.1. Resilient backpropagation

The Rprop algorithms are among the best performing first-order batch learning
methods for neural networks with arbitrary topology [9, 10, 15, 16]. They are

– very fast and accurate (e.g., compared to conjugate gradient methods, Quick-
prop etc.),

– very robust in terms of the choices of their hyperparameters,
– first-order methods, therefore time and space complexity scales linearly with

the number of parameters to be optimized,
– only dependent on the sign of the partial derivatives of the objective function

and not on their amount, therefore they are suitable for applications where
the gradient is numerically estimated or the objective function is noisy, and

– easy to implement and not very sensitive to numerical problems.
In the following, we describe the Rprop variant with improved backtracking in-
troduced in [9]. The Rprop algorithms are iterative optimization methods. Let t
denote the current iteration (epoch). In epoch t, each weight is changed accord-
ing to

wi(t + 1) = wi(t)− sign
(

∂E(t)
∂wi

)
·∆i(t) .

The direction of the change depends on the sign of the partial derivative, but is
independent of its amount. The individual step sizes ∆i(t) are adapted based on
changes of sign of the partial derivatives of E(w) w.r.t. the corresponding weight:
If ∂E(t−1)

∂wi · ∂E(t)
∂wi > 0 then ∆i(t) is increased by a factor η+ > 1, otherwise ∆i(t)

is decreased by multiplication with η− ∈]0, 1[. Additionally, some Rprop meth-
ods implement weight-backtracking. That is, they partially retract “unfavorable”
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previous steps. Whether a weight change was “unfavorable” is decided by a heuris-
tic. We use an improved version of the original algorithm called iRprop+, which
is described in pseudo-code in Table 1. The difference compared to the original
Rprop proposed in [16] is that the weight-backtracking heuristic considers both
the evolution of the partial derivatives and the overall error. For a comparison of
iRprop+ with other Rprop variants and a detailed description of the algorithms
the reader is referred to [10].

for each wi do

if ∂E(t−1)
∂wi · ∂E(t)

∂wi > 0 then

∆i(t) = min
(
∆i(t− 1) · η+, ∆max

)
wi(t + 1) = wi(t)− sign

(
∂E(t)
∂wi

)
·∆i(t)

elseif ∂E(t−1)
∂wi · ∂E(t)

∂wi < 0 then

∆i(t) = max
(
∆i(t− 1) · η−, ∆min

)
if E(t)>E(t− 1) then wi(t + 1) = wi(t− 1)
∂E(t)
∂wi := 0

elseif ∂E(t−1)
∂wi · ∂E(t)

∂wi = 0 then

wi(t + 1) = wi(t)− sign
(

∂E(t)
∂wi

)
·∆i(t)

fi

od

Table 1. The iRprop+ algorithm with improved weight-backtracking
scheme as proposed in [10].

2.2. Levenberg-Marquardt optimization

Levenberg-Marquardt optimization [6, 12, 13] is based on the idea that, to mini-
mize the error functional E(�w), one should find weights such that the derivatives
∂E(�w)

∂wi vanish. This search can be realized with a Newton step on an approxima-
tion of the error functional as follows. Consider the linear approximation of f(�x; �w)
around �w(t),

f̂(�x; �w) = f(�x; �w(t)) +
n∑

j=1

[�wj − �wj(t)]
∂f(�x; �w(t))

∂wj
.
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Substituting f̂ for f in the MSE gives a new error function Ê(�w) with gradient

∂Ê(�w)
∂wi

=
2
P

P∑
p=1

[f̂(�xp; �w)− �yp]
∂f̂(�xp; �w)

∂wi

=
∂E(�w(t))

∂wi
+
∑

j

Aij(w(t)) [�wj − �wj(t)] . (1)

Here the n× n matrix Aij(w) has the entries

Aij(w) =
2
P

P∑
p=1

∂f(�xp; �w)
∂wi

∂f(�xp; �w)
∂wj

.

Setting (1) to zero (i.e., doing a Newton step on Ê) leads to the weight update

�wi(t + 1) = �wi(t)−
n∑

j=1

Aij(w(t))
∂E(�w(t))

∂wj
. (2)

Here Aij is the inverse matrix of Aij . This weight update would lead to an optimum
if Ê(�w) = E(�w). This is in general not the case and the weight update rule (2) is
only reasonable close to a minimum. Therefore, the idea is to automatically blend
between (2) and standard steepest descent:

�wi(t + 1) = �wi(t)−
n∑

j=1

[Aij + λIij ]−1 ∂E(�w(t))
∂wj

,

where the parameter λ > 0 allows soft switching between the two strategies. A large
λ corresponds to simple gradient descent. There are several heuristics to adapt λ.
We use the most common one to decrease λ by multiplication with λ− ∈]0, 1[ if
the error decreased, and to increase it by multiplication with λ+ > 1 (usually
λ− = λ−1

+ ), otherwise. A drawback of Levenberg-Marquardt optimization is that
the choice of λ0 (the initial value for λ), λ−, and λ+ is crucial for the performance
of the algorithm.

2.3. Natural gradient descent

Basically, natural gradient descent is steepest descent with a non-Euclidean met-
ric on the parameter space. Two simple facts motivate the natural gradient: First,
the steepest descent direction generally depends on the choice of metric on the
parameter space – this is very often neglected in standard textbooks describing
gradient descent. See Figure 1a) for an illustration. Second, there are good ar-
guments to assume a non-Euclidean metric on the parameter space: Generally,
there exists no a priori reason why the Euclidean metric on the parameter space
should be a preferential distance measure between solutions. In fact, in the case
of function regression, one typically assumes a canonical distance measures on the
function space, like the mean squared error, or a likelihood measure on the space
of distributions, which translate to non-trivial metrics on the parameter space, see
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b)a)
E(x, y)=−x

x

�
n

Gij

F
G̃

GMSE

MLP

y

G̃Euclid

Figure 1. a) The steepest descent direction of a functional E(x, y)
depends on the metric: The ellipses mark the set of vectors of unit
length for the Euclidean metric (dashed circle) and the metric �G =(

3/4
1/4

1/4
3/4

)
(ellipse). For the ellipse, the unit length vector that de-

creases E(x, y) = −x the most is not pointing directly to the right, it is
generally given by equation (3). b) An MLP establishes a differentiable
relation between the weight space W = Rn and the manifold of functions
F . A canonical distance measure �GMSE on the function space induces a
non-Euclidean metric Gij on the weight space w.r.t. which steepest de-

scent should be performed. In contrast, if a Euclidean metric �̃GEuclid is
presumed on the weight space, this generally leads to a “non-diagonal”
metric �̃G on the function space. Typically, a non-diagonal metric on the
function space is undesirable because this leads to negative inference and
cross-talk; e.g., during online learning, if one functional components is
trained, others are untrained according to the off-diagonal entries of the
metric [18]. Using the natural gradient avoids this effect of catastrophic
forgetting during online learning.

Figure 1b). Amari [2, 5, 4] was the first to realize the implications of these facts in
the case of gradient-based adaptation of MLPs. In the following, we give a simple
derivation of the natural gradient.

An MLP represents a differentiable mapping f from the parameter space
W = Rn to the manifold F of functions. We write f : �w ∈ W �→ f( · ; �w) ∈ F . Let
d be a distance measure on F . Here we assume that d(f, h) is the mean squared
distance on a batch {x1, . . . , xP } of data points between two functions f and h,

d(f, h) =
1
P

P∑
p=1

[f(�xp)− h(�xp)]2 .

The pull-back of this metric onto the parameter space is, by definition,

Gij(�w) =
1
P

P∑
p=1

∂f(�xp; �w)
∂wi

∂f(�xp; �w)
∂wj

.

The meaning of this metric Gij on W is: if we measure distances in W using Gij ,
then these distances are guaranteed to be equal to the mean squared distance when
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measured on the function space F .1 Further, if we determine the steepest descent
direction in W using the metric Gij we can be sure to find the direction in which
the mean squared error on F decreases fastest – which is generally not true when
using the Euclidean metric!

The steepest descent direction of a functional E(�w) over W is given as the
vector �δ with components

δj =
n∑

i=1

Gij(�w)
∂E(�w)
∂wi

. (3)

Here Gij is the inverse matrix of Gij . (Upper indices denote so-called contra-
variant components.) Thus, in summary, natural gradient descent with learning
rate η > 0 reads

�wi(t + 1) = �wi(t)− η
n∑

j=1

Gij(�w(t))
∂E(�w(t))

∂wj
. (4)

There exists an online version of the natural gradient [5] that approximates the
inverse natural metric Gij on the fly and reduces the negative effects of co-inference
during online learning (cf. Figure 1b).

Comparing Levenberg-Marquardt adaptation (2) with batch natural gradient
(4) descent we find that for λ = 0 they are equivalent since Aij = Gij (in the case
of the mean squared distance d(f, h) on F). This fact has previously been observed
by [3, 7, 11]. A small difference is the robustness term for λ �= 0. Note that for
different distance measures on F , generally �Aij = �Gij does not hold.

2.4. Natural Rprop

Rprop is a batch gradient-based learning algorithm that overcomes the problems
of standard gradient descent by automatically adjusting individual step sizes. The
natural gradient points in a direction that is more appropriate for steepest descent
optimization. Now, the question arises whether it can be beneficial to combine
natural gradient descent with the heuristics of Rprop. Recall that one of the main
features of Rprop is that the update step sizes depend only on the signs of the
gradient. Since the metric �G and also its inverse �G−1 are always positive definite,
a vector transformed by �G changes its direction by up to 90◦. The angle between
ordinary and natural gradient descent directions can also be up to 90◦ (which also
becomes apparent from Figure 1a). Thus, the signs can generally change when
replacing the ordinary gradient by the natural gradient in the Rprop algorithm
and, therefore, adaptation behavior changes.

We hence propose to combine iRprop+, the natural gradient, and the robust-
ness term λIij of Levenberg-Marquardt simply by replacing the ordinary gradient

1More precisely, if we measure the distance between w1 and w2 in W by the length of the geodesic
w.r.t. Gij(w), then this distance is guaranteed to be equal to the mean squared distance d(f1, f2)

between the two corresponding functions f1 = f( · ; �w1) and f2 = f( · ; �w2) in F .
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∂E(�w)
∂wi by the robust natural gradient[

Gij + λ trace(Gij) Iij

]−1 ∂E(�w)
∂wi

within the iRprop+algorithm. As in Levenberg-Marquardt optimization, the pa-
rameter λ ∈ R+ blends between the natural gradient and the ordinary gradient by
adding a weighted unity matrix Iij . Additionally, we weight the term proportional
to the trace of �G such that the blending becomes relative w.r.t. the orders of the
Eigenvalues of �G. We use the same update rule as before, λ is reduced by multi-
plication with λ− ∈]0, 1[ if the error decreased and is set to λ← λ · λ+, otherwise
(usually λ− = λ−1

+ ). We call this new algorithm natural Rprop.

space time
iRprop+ O(n) O(n)
Levenberg-Marquardt optimization O(n2) O(n3)
natural gradient descent / natural iRprop+ O(n2) O(n3)

Table 2. The complexity of the three algorithms w.r.t. space and time.
The number of weights in the MLP is denoted by n.

Table 2 displays the complexity of iRprop+, the Levenberg-Marquardt algo-
rithm, and natural gradient descent / natural Rprop w.r.t. space and time. Both,
Levenberg-Marquardt and the natural gradient require the storage and inversion of
a n×n-matrix, with n being the number of weights, and this dominates the cost of
these algorithms leading to cubic time complexity and quadratic space complexity.
In contrast, iRprop+needs only linear time and space to update weight by weight
separately and to store the weights and the step size for each weight.

3. Experiments

First, the two benchmark problems, sunspot prediction and extended XOR, are
introduced. Then we describe the experimental setup. Finally, the empirical results
are presented.

3.1. Benchmark problems

The goal of the sunspot prediction task is to reproduce the time series of the
average number of sunspots observed per year, see Figure 2. The data are available
from http://sidc.oma.be. The average number of spots from the years t−1, t−2,
t−4, and t−8 are given to predict the value for the year t. The training set contains
289 patterns. The first year to predict is 1708. The input values are normalized
between 0.2 and 0.8.
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Figure 2. Time series of average number of sunspots observed per year.
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Figure 3. The extended XOR problem.

The extended XOR task, see Figure 3, is an artificial classification benchmark
[14]. The 1800 training patterns (�x, c) ∈ R2 × {0, 1} are sampled from

p(�x, c) =
1

|C0|+ |C1|
∑

�µ∈Cc

1√
2πσ

e−(�x−�µ)2/(2σ2) ,

with C0 = {(1, 5), (5, 5), (3, 3), (1, 1), (5, 1)}, C1 = {(3, 5), (1, 3), (5, 3), (3, 1)}, and
variance σ2 = 0.2.

We want to evaluate the optimization speed of different learning algorithms.
Thus, in both benchmark problems we just consider the task of learning the sample
data and do not consider the import issue of generalization.
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3.2. Experiments

We compare the standard iRprop+, natural iRprop+ (i.e., iRprop+ using the
natural gradient), and LevenbergMarquardt optimization on the two benchmark
problems. The Rprop parameters are set to default values η+ = 1.2, η− = 0.5,
∆min = 0, ∆max = 50, and ∆0 = 0.01. For natural iRprop+ and Levenberg-
Marquardt optimization, we test all combinations of λ0 ∈ {0.01, 0.1, 1, 10} and
λ−1

+ = λ− ∈ {0.5, 0.6, . . . , 0.9}. For every optimization method and parameter set-
ting 20 trials starting from random initializations of the weights are performed;
the 20 different initializations are the same for every algorithm and parameter
combination. That is, a total of 840 NNs are trained. The number of iterations
(learning epochs) is set to 5000.

For the sunspot prediction problem, a 4-10-1 NN architecture without short-
cut connections is chosen. The 10 hidden neurons have sigmoidal transfer functions,
the logistic /Fermi function f(x) = 1/(1 + e−x), and the output neuron is linear.
For the extended XOR, we use a 2-12-1 architecture without shortcut connections
and only sigmoidal transfer functions. These architectures have not been tailored
to the problems (and hence the absolute results are far from being optimal).

3.3. Results

The results are summarized in Figures 4 and 5: Shown are the error trajecto-
ries for the 20 parameter combinations averaged over the 20 trials for Leven-
berg-Marquardt optimization and natural iRprop+, respectively. The parameter
settings yielding the lowest final error on average on the extended XOR problem
were λ0 = 0.01 and λ− = 0.5 for Levenberg-Marquardt optimization and λ0 = 0.1
and λ− = 0.8 for natural iRprop+. On the the sunspot prediction task, the best
results were obtained for λ0 = 10, λ− = 0.9 and λ0 = 0.01, λ− = 0.8, respectively.
The results corresponding to these parameter settings are compared to the stan-
dard Rprop in the lowest plots in Figures 4 and 5. The differences between the
error values of those three curves in the final iteration are pairwise statistically
significant (Wilcoxon rank sum test, p < .001). The results show:

• The performance of natural iRprop+ and LevenbergMarquardt optimization
strongly depends on the choice of λ0 and λ−. The “best” values for λ0 and λ−
are task-dependent. However, natural iRprop+ appears to be more robust.
• For an appropriate parameter setting, Levenberg-Marquardt optimization

and natural iRprop+ clearly outperform the standard iRprop+. However, the
latter has lower computational complexity and does not depend on critical
parameters such as λ0 and λ−.
• For one task, the Levenberg-Marquardt method yielded the best final so-

lutions (averaged over 20 trials), for the other iRprop+ using the natural
gradient. In both problems, the iRprop+ combined with the natural gradient
seems to be slightly faster in the early iterations.
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Figure 4. Results for the extended XOR problem. The upper plots
show the results for the different settings of λ0 and λ− averaged over
20 trials for iRprop+ using natural gradient and Levenberg-Marquardt
optimization, respectively. The lower plot shows the averaged trajecto-
ries for the parameters resulting in the lowest final error in each case
compared to standard iRprop+.
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Figure 5. Results for the sunspots prediction problem. The upper plots
show the results for the different settings of λ0 and λ− averaged over
20 trials for natural iRprop+ and Levenberg-Marquardt optimization,
respectively. The lower plot shows the averaged trajectories for the pa-
rameters resulting in the lowest final error in each case compared to
standard iRprop+.



Rprop Using the Natural Gradient 271

4. Conclusions

In this study, we compared Levenberg-Marquardt optimization (which can be re-
garded as some kind of batch natural gradient learning in our scenario), iRprop+,
and iRprop+ using the natural gradient (natural iRprop+) for optimizing the
weights of feed-forward neural networks. It turned out that the Rprop algorithm
can indeed profit from using the natural gradient, although the updates done
by Rprop are not collinear with the (natural) gradient direction. Natural iRprop+

shows similar performance as Levenberg-Marquardt optimization on two test prob-
lems. The results indicate that natural iRprop+ is a little bit faster in the early
stages of optimization and more robust in terms of the choices of the parameters
λ0, λ−, and λ+. However, a more extensive empirical investigation is needed to
substantiate these findings. The standard iRprop+ algorithm is slower than the
other methods with appropriate parameters for λ0, λ−. Still, these parameters are
problem dependent, they considerably influence the performance of the methods,
and they are not easy to adjust. Further, the computational costs of each opti-
mization step grow from linear to cubic when replacing Rprop with one of the
other two methods. Hence, we conclude that some Rprop algorithm is still the
batch-learning method of choice.
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[10] C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop learning algo-
rithm. Neurocomputing, 50(C):105–123, 2003.

[11] Y. LeCun, L. Bottou, G.B. Orr, and K.-R. Müller. Efficient backprop. In G.B. Orr
and K.-R. Müller, editors, Neural Networks: Tricks of the Trade, number 1524 in
LNCS, chapter 1, pages 9–50. Springer-Verlag, 1998.

[12] K. Levenberg. A method for the solution of certain non-linear problems in least
squares. Quarterly Journal of Applied Mathematics, 2(2):164–168, 1944.

[13] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

[14] H. Park, S. Amari, and K. Fukumizu. Adaptive natural gradient learning algorithms
for various stochastic models. Neural Networks, 13(7):755–764, 2000.

[15] M. Riedmiller. Advanced supervised learning in multi-layer perceptrons – From back-
propagation to adaptive learning algorithms. Computer Standards and Interfaces,
16(5):265–278, 1994.

[16] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In E.H. Ruspini, editor, Proceedings of the IEEE
International Conference on Neural Networks, pages 586–591. IEEE Press, 1993.

[17] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representa-
tions by error backpropagation. In D.E. Rumelhart, J.L. McClelland, and the PDP
Research Group, editors, Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, volume 1, pages 318–362. MIT Press, 1986.

[18] M. Toussaint. On model selection and the disability of neural networks to decom-
pose tasks. In Proceedings of the International Joint Conference on Neural Networks
(IJCNN 2002), pages 245–250, 2002.

Christian Igel, Marc Toussaint and Wan Weishui
Institut für Neuroinformatik
Ruhr-Universität Bochum
D-44780 Bochum, Germany
e-mail: {christian.igel,marc.toussaint}@neuroinformatik.rub.de



Trends and Applications in Constructive Approximation
(Eds.) M.G. de Bruin, D.H. Mache & J. Szabados

International Series of Numerical Mathematics, Vol. 151, 273–281
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1. Introduction and preliminaries

1.1. This paper deals with quasi-orthogonal and para-orthogonal polynomials
defined on [−1, 1] and on the unit circle line, respectively, where the correspond-
ing weight is constructed from moduli of continuity. Fairly general theorems are
proved; their special cases were obtained in some previous papers. Many definitions
and ideas are in our paper [2].The detailed proofs will appear soon.

1.2. Everywhere below C is the complex plane, R = (−∞,∞), N = {1, 2, . . .},
Z+ = {0, 1, 2, . . .}. Throughout this paper c, c1, c2, . . . denote positive constants;
they may take different values even in subsequent formulae. It will always be clear
what variables and indices the constants are independent of. If F and G are two
expressions depending on some variables then we write

F ∼ G if |FG−1| ≤ c1 and |F−1G| ≤ c2

uniformly for the variables in consideration.
Lp[a, b] denotes the set of functions F such that

‖F‖Lp[a,b] :=

{∫ b

a

|F (t)|pdt

}1/p

if 0 < p <∞ (1)

‖F‖∞ := ess sup
a≤t≤b

|F (t)| if p =∞ (2)

is finite. If p ≥ 1, this is a norm; for 0 < p < 1 its pth power defines a metric in
Lp[a, b].
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By a modulus of continuity we mean a nondecreasing, continuous semiadditive
function ω(δ) on [0,∞) with ω(0) = 0 (ω ∈MC, shortly). If, in addition,

ω(δ) + ω(η) ≤ 2ω

(
δ

2
+

η

2

)
for any δ, η ≥ 0,

then ω(δ) is a concave modulus of continuity. In the latter case δ/ω(δ) is non-
decreasing for δ ≥ 0. We define the modulus of continuity of f in Lp (where Lp

stands for Lp[0, 2π]) as

ω(f, δ)p = sup
|λ|≤δ

‖f(λ + ·)− f(λ)‖p.

1.3. We call a functionW(ϑ) a trigonometric weight (W ∈ TW ) if it is 2π-periodic,
measurable,W(ϑ) ≥ 0 (ϑ ∈ R) and

∫ 2π

0
W > 0. If, in addition,W ∈ L1 we call the

functions {Φn(W , z)}∞n=0 the (unique) system of orthonormal polynomials (ONP)
on the unit circle line Γ1 := ∂D with respect to W if

Φn(W , z) = κn(W)zn + lower degree terms, κn(W) > 0, n ∈ Z+, (3)

1
2π

∫ 2π

0

Φn(W , z)Φm(W , z)W(ϑ)dϑ = δn,m, m, n ∈ Z+, z = exp(iϑ). (4)

We say that a point ϑ0 is regular for W ∈ TW if for some ε > 0 the essen-
tial suprema of W and 1/W on [ϑ0 − ε, ϑ0 + ε] are finite. Otherwise, W has a
singularity at ϑ0.

Similarly, w(x) ∈ AW (algebraic weight) if w is measurable in [−1, 1], w(x) ≥
0, w(x) �= 0 (x ∈ [−1, 1]) and

∫ 1

−1 w > 0. If, in addition, w ∈ L1 (L1 stands
for L1[−1, 1]), the corresponding ONP {pn(w, x)}∞n=0 on [−1, 1] are uniquely de-
fined by

pn(w, x) = γn(w)xn + lower degree terms, γn(w) > 0, n ∈ Z+, (5)∫ 1

−1

pn(w, x)pm(w, x)w(x)dx = δn,m, m, n ∈ Z+. (6)

We define the singular and regular points of w as we did for W .
G. Szegö [1, 11.5] established a close connection between certain {Φn} and

{pn}. Let w ∈ AW ∩ L1. If the (even) W ∈ TW is defined by

W(ϑ) = w(cos ϑ)| sin ϑ|, x = cosϑ, x ∈ [−1, 1], (7)

then with ϕ(x) =
√

1− x2, we have a2n−1(W) := κ−1
2n (W)Φ2n(W , 0), and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

pn

(
w,

1
2

(
z +

1
z

))
=

z−nΦ2n(W , z) + znΦ2n(W , z−1)√
2π{1 + a2n−1(W)}1/2

,

pn−1

(
wϕ,

1
2

(
z +

1
z

))
=

z−nΦ2n(W , z)− znΦ2n(W , z−1)√
2π{1− a2n−1(W)}1/2 1

2 (z − 1/z)
,

n ∈ Z+, z ∈ C.

(8)
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Note that 2−1(z + z−1) = cosϑ = x ∈ [−1, 1] iff z = exp(iϑ); at the same time
2−1(z − z−1) = i sinϑ.

Definition 1.1. The trigonometric weight W(ϑ) is a generalized trigonometric Ja-
cobi weight (W ∈ GTJ shortly), iff

W(ϑ) = h(ϑ)
m+1∏
r=0

wr

(
sin
|ϑ− τr|

2

)
, ϑ ∈ [−π, π], (9)

where
−π < τ0 < τ1 < · · · < τm < τm+1 ≤ π, (10)

τ−1 = τm+1 − 2π, τm+2 = τ0 + 2π,

wr(δ) =
�r∏

s=1

{ωrs(δ)}α(r,s), (11)

m, r ∈ N, α(r, s) ∈ R, ωrs(δ) are moduli of continuity (s = 1, 2, . . . , r, r =
0, 1, . . . , m + 1) and the function h satisfies

h(ϑ) ≥ 0, h and
1
h
∈ L∞. (12)

(i) If W ∈ GTJ and all ωrs are concave moduli of continuity then we say that
W ∈ GTJ1.

(ii) We say the W ∈ GTJ2 if W ∈ GTJ and∫ δ

0

wr(τ)dτ = O(δwr(δ)), δ → +0 (r = 0, 1, . . . , m + 1)1. (13)

(iii) If W ∈ GTJ and

ω(h, δ)∞δ−1 ∈ L1[0, 1] or ω(h, δ)2 = O(
√

δ), δ → 0,

then W ∈ GTJ3.

Remark 1.2. Generally we combine the above properties. E.g., we write that W ∈
GTJ13 iff W ∈ GTJ1 ∩GTJ3.

Definition 1.3. Let w(x) ∈ AW be defined by

w(x) = H(x)(
√

1− x2)−1w0(
√

1− x)wm+1(
√

1 + x)
m∏

r=1

wr(|x− tr|). (14)

If with h(ϑ) := H(cosϑ), tr = cos τr ∈ (−1, 1) (1 ≤ r ≤ m) the corresponding
expressions h(ϑ), {τr} and {wr(δ)} satisfy (10)–(12), then w ∈ GJ (generalized
Jacobi weight). The definition of GJ1, GJ2, etc., are similar.

Definition 1.4. Let w ∈ GJ . Then W(w, ϑ) := W(ϑ) = w(cos ϑ)| sin ϑ|, ϑ ∈ R, is
called a generalized even trigonometric Jacobi weight (W ∈ GETJ). The defini-
tions of GETJ1, etc., are analogous.

1Notice that (13) is trivial for any wr if δ ≥ δ0.
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Remarks 1.5.

1. It is easy to see that the weights (1 − x)α(1 + x)β , (1 − x)α(1 + x)β |x|γ ,
α, β, γ > −1 are from GJ123. Also, (1+ |x|)(1−x)α ∈ GJ123 and (x+2)(1+
x)β ∈ GJ123 (α, β > −1).

2. Further it is not difficult to verify the following relations (see [2, pp. 328–
329]):

xΓ

(
log

1
x

)γ

∈ GMC2, Γ > −1, γ ∈ R, 0 ≤ x ≤ x0;

xΓ

(
logk

1
x

)γ

∈ GMC2, Γ > −1, γ ∈ R, 0 ≤ x ≤ x0

and

xΓ

(
log

1
x

)(
log log

1
x

)γ

∈ GMC2, Γ > −1, γ ∈ R, 0 ≤ x ≤ x0.

Investigation of other combinations are left to the interested reader.
3. By (1/(log 1/x)γ)′ = α/(x(log 1/x)α+1) := αu(x), whence, if α > 0,∫ δ

0

1
x(log 1/x)α+1

dx =
1
α

1
(log 1/δ)α

�= O(δu(δ)),

i.e., if w(x) = u(e/x) = e|x|−1(log e/|x|)−α−1, then w ∈ L1 but w /∈ GJ2.

2. Quasi-orthogonal polynomials on [−1, 1]

2.1. Let w ∈ AW ∩ L1. According to Marcell Riesz,we may investigate the ex-
pression

ψn(x, w, ρn) := pn−1(w, ρn)pn(w, x) − pn−1(w, x)pn(w, ρn), n ∈ N, (15)

where ρn ∈ R is arbitrary fixed. M. Riesz proved about 1920: All the zeros of
ψn(x, ρn) (with respect to x) are real and simple. Moreover, at least n − 1 zeros
lie in (−1, 1) (cf. G. Freud [3 ,I/3 and p. 53]; here and later we use some obvious
short notations).

Let us denote the zeros of ψn by

ξ1n(ρn) > ξ2n(ρn) > · · · > ξn∗,n(ρn), n ≥ 1, (16)

where n∗ = degψn(x, ρn). By definition, n∗ = n if pn−1(ρn) �= 0; otherwise n∗ =
n− 1; moreover, by (16), ρn itself is one of the roots of ψn.

A fundamental property of ψn is that ψn(x; ξin(ρn)) and ψn(x; ξkn(ρn)) have
exactly the same roots (namely, ξ1n(ρn), ξ2n(ρn), . . . , ξn∗,n(ρn)) if 1 ≤ i, k ≤ n∗

(see [3, p. 21]).
Another important property of ψn is the quasi-orthogonality, namely the

relation ∫ 1

−1

ψn(x, w, ρn)xkw(x)dx = 0, if 1 ≤ k ≤ n∗ − 1 (17)

(see [3 ,p. 20]).
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2.2. Let us define the n. Christoffel function for w ∈ AW ∩ L1 by

λn(w, x) := min
P∈Pn−1

∫ 1

−1

∣∣∣∣ P (t)
P (x)

∣∣∣∣2 w(t)dt, x ∈ R. (18)

Then, if m = n + n∗ − 2, for any P ∈ Pm∫ 1

−1

P (x)w(x)dx =
n∗∑

k=1

λn(w, ξkn(ρn))P (ξkn(ρn)), (19)

where, as above, ξkn(ρn) are the roots of ψn(x, ρn) ([3, p. 31]). This quadrature
formula (which is a generalization of the well-known Gauss quadrature) shows that
properties of {ξkn} are of fundamental importance. Here we quote a result from
[3, p. 111] .

Let w ∈ AW ∩L1 and suppose that 0 < m ≤ w(x) ≤M if x ∈ [a, b] ⊂ [−1, 1].
Then

c1(ε)
n
≤ ξkn(ρn)− ξk+1,n(ρn) ≤ c2(ε)

n
, n ≥ 2 (20)

whenever ξk, ξk+1 ∈ [a + ε, b − ε]. Above, ε > 0, fixed, 0 < c1(ε) < c2(ε) are
constants.

Remark 2.1. All the definitions and statements of the previous Part 2 originally
were said with a fixed ρ (instead of ρn). However, it is easy to see that they are
valid using a varying sequence {ρn}, too.

3. New results concerning ψn(w, ρn)

3.1. Throughout this part we consider some generalizations of the corresponding
results proved in [2] using the roots of pn(w).

Only in part 3.1 let

1 ≥ ξ1n(ρn) > ξ2n(ρn) > · · · > ξn1,n(ρn) ≥ −1, n ∈ N (21)

denote those roots of ψn which are in [−1, 1] (compare to formula (16)). As we
stated in Part 2, n1 = n1(n) ≥ n− 1.

We state (cf. [2, Theorem 3.2])

Theorem 3.1. Let w ∈ GJ2. Then for the roots ξkn(ρn) = cosϑkn(ρn) (1 ≤ k ≤ n1)
of ψn(x, w, ρn) situated in [−1, 1], we have

ϑk+1,n(ρn)− ϑkn(ρn) ∼ 1
n

, 1 ≤ k ≤ n1 − 1, n ≥ 3, (22)

uniformly in k, ρn and n.

With |x − ξjn(ρn)| = min1≤k≤n1 |x − ξkn(ρn)|, j = j(n, x), we state (cf. [3,
Theorem 3.3])
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Theorem 3.2. Let w ∈ GJ123. Then for n ≥ 1

|ψ′
n(ξkn(ρn), w, ξkn(ρn))| ∼ 1

λn(w, ξkn(ρn))
, 1 ≤ k ≤ n1, (23)

|ψn(x, w, ξjn(ρn))| ∼ 1
λn(w, ξjn(ρn))

|x− ξjn(ρn)|, x ∈ [−1, 1], (24)

ϑk+1,n(ρn)− σk,n−1 ∼ σk,n−1 − ϑkn(ρn) ∼ 1
n

, 1 ≤ k ≤ n1 − 1, (25)

where yk,n−1 = cosσk,n−1 (1 ≤ k ≤ n1 − 1) stand for those roots (in decreasing
order) of ψ′

n(x, w, ρn) which are in (ξn1,n(ρn), ξ1n(ρn)). The estimations (23)–(25)
are uniform in x, k, j, ρn and n, respectively.

3.2. Before stating some generalization of formula (19) we introduce the function
class GTJ4. V ∈ GTJ4 if V = U/W , where both U and W from GTJ, moreover
they have only positive exponents (cf. (11)). Moreover if W is defined by (9), then∫ δ

0

1
wr(τ)

dτ = O

(
δ

wr(δ)

)
, δ → +0, r = 0, 1, . . . , m + 1.

If moreover U, W ∈ GETJ , then we say that V ∈ GETJ4. Let v ∈ GJ be of the
form (14) (formed by v0, v1, . . . , vm+1). Then | sin ϑ|v(cos ϑ) = V(v)(ϑ) ∈ GETJ .
If V(v) ∈ GETJ4, too, then we can say that v ∈ GJ4.

Example 3.3. Let ω(δ) = | log δ|−α, η(δ) = δβ (α ∈ R, 0 < β < 1, δ > 0).
Then V(ϑ) = ω(sin |ϑ − π|/2)/η(sin(|ϑ|/2)) ∈ GTJ4. On the other hand, V(ϑ) =
sin(| sin ϑ|/2)/ sin(|ϑ|/2) ∈ GTJ2\GTJ4.

Theorem 3.4. Let w ∈ GJ2 and v ∈ GJ4. Then for any fixed positive integer 
and 1 ≤ p <∞

n∗∑
k=1

λn(v, ξkn(ρn))|P (ξkn(ρn))|p ≤ c

∫ 1

−1

|P (x)|pv(x)dx, n ≥ 2, (26)

whenever P ∈ P�n. Here c does not depend on n and P .

The “converse” inequality is as follows.

Theorem 3.5. Let w ∈ GJ123, further v, V −p ∈ GJ2, finally V q ∈ GJ24. Here
V =

√
wϕv−1/p, 1/p + 1/q = 1, 1 < p <∞. Then for any p ∈ Pn∗−1∫ 1

−1

|P (x)|pv(x)dx ≤ c

n∗∑
k=1

λn(v, ξkn(ρn))|P (ξkn(ρn))|p, n ≥ 2. (27)

We may emphasize that (as before) in formulas (26) and (27) ξkn(ρn) (1 ≤
k ≤ n∗) are the roots of ψn(x, w, ρn) (cf. (16).

Remark 3.6. Theorems 3.4 and 3.5 generalize [2, Theorems 3.6 and 3.7]. Other
statements can be obtained using [2, Part 3.2].
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4. Para-orthogonal polynomials on the unit circle

4.1. Szegö’s fundamental relations (8) create an obvious correspondence between
the orthonormal polynomials pn(w) and Φn(W) (if W is even). However, while
the zeros o f pn(w) are in (−1, 1) and they are simple, in contrast, the zeros of
Φn(W) are inside of the unit circle (for any W ∈ TW ). In the simplest case when
W(ϑ) = 1, Φn(W , z) = zn, i.e., all the zeros are located at the origin that is “far
away” from the support of the measure. This simple fact results that there are
no quadrature-type formulas based on the roots of Φn(W) (compare to (20), (26)
and (27) where ψn(w, ρn) = cnpn(w) or ψn(w, ρn) = dnpn−1(w), supposing that
pn(w, ρn) = 0 or pn−1(w, ρn) = 0, respectively). However, using the polynomial

Bn(z,W , un) := Φn(W , z) + wnΦ∗
n(W , z), |un| = 1, n ≥ 1, (28)

where wn = −Φn(W , un)/Φ∗
n(W , un),

one can prove that Bn is a polynomial of degree exactly n, its zeros are simple
and lie on the unit circle line; moreover the parameter un = exp(iδn) is one of them
(W ∈ TW ∩ L1). We denote these roots by ζkn(un) = exp(iηkn(un)), 1 ≤ k ≤ n,
according to

δn = η1n(un) < η2n(un) < · · · < ηnn(un) < 2π + δn, n ≥ 1. (29)

As before, one can prove that Bn(W , un) and Bn(W , ζkn(un)) (1 ≤ k ≤ n) have
the same roots. (The proofs of these facts are in the exhausting survey of W.B.
Jones, O. Nj̊astad and W.J. Thorn [4]).

4.2. The “para-orthogonality” means that∫ 2π

0

Bn(z,W , un)z−kW(ϑ)dϑ = 0, z = exp(iϑ), 1 ≤ k ≤ n− 1, (30)

while formula (19) can be replaced by

1
2π

∫ 2π

0

Pn−1(z)Qn−1(z)W(ϑ)dϑ =

n∑
k=1

µn(W , ζkn(un))Pn−1(ζkn(un))Qn−1(ζkn(un)),
(31)

z = exp(iϑ), Pn−1, Qn−1 ∈ Pn−1, otherwise arbitrary; moreover

µn(W , z) := min
P∈Pn−1

1
2π

∫ 2π

0

|P (exp(iϑ)|2
|P (z)|2 W(ϑ)dϑ, z ∈ C, n ≥ 1, (32)

the corresponding n. Christoffel function (see [4, (6.1) and Part 7] and [5, (10)]).
In his recent paper, L. Golinskii proved (among others) as follows (cf. [5,

Theorem 5]).
If 0 < A ≤W (ϑ) ≤ B, then with ζ1n(un) = ζn+1,n(un) = un

4
n− 1

√
A

B
≤ |ζk+1,n(un)− ζkn(un)| ≤ 4πB

An
, 1 ≤ k ≤ n, n ≥ 2. (33)
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5. New results concerning Bn(W, un)

5.1. We intend to get result analogous to those in Part 3. Because of the obvious
correspondences sometimes we only indicate the analogous statements.

Theorem 5.1. Let W ∈ GTJ2. Then

ζk+1,n(un)− ζkn(un) ∼ 1
n

, 1 ≤ k ≤ n, n ≥ 2 (34)

uniformly in k ,un and n.

Theorem 5.2. Let W ∈ GTJ123. Then for n ≥ 1

|B′
n(ζkn(un), W, ζkn(un))| ∼ 1

µn(W , ξkn(un))
, 1 ≤ k ≤ n, (35)

|Bn(z, W, ζjn(un))| ∼ |z − ζjn(un)|
µn(W , ζkn(un))

, |z| = 1. (36)

5.2. Theorems 3.4 and 24 may be replaced by

Theorem 5.3. Let W ∈ GTJ2 and V ∈ GTJ4. Then for any fixed positive integer
 and 1 ≤ p <∞

n∑
k=1

µn(V , ζkn(un))|P (ζkn(un))|p ≤ c

∫ 2π

0

|P (exp(iϑ))|pV(ϑ)dϑ (37)

for any P ∈ P�n. Here c does not depend on n and P .

Theorem 5.4. Let W ∈ GTJ123, V, U−p ∈ GTJ2, U q ∈ GTJ4 where U =√
WV−1/p, 1/p + 1/q = 1, 1 < p <∞. Then for any P ∈ Pn−1∫ 2π

0

|P (z)|pV(ϑ)dϑ ≤ c
n∑

k=1

µn(V , ζkn(un))|P (ξkn(un))|p, z = exp(iϑ). (38)

6. Final remarks

The introduction of the quasi-orthogonal polynomials is due to M. Riesz in a
serious of papers written in 1921-1923.

The word “para-orthogonality” was coined in the paper of W.B. Jones,
O. Njastad and J. Thron [4] in 1989. The idea in both cases is that we investigate
the polynomial which formed from the numerator of the corresponding Christoffel-
Darboux formula.

We may mention that in 1963 G. Szegö [6] wrote a paper on certain bi-
orthogonal systems which have a strong connection with the para-orthogonal poly-
nomials (see P. Gonzáles and M. Camacho in [7]).
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[1] G. Szegö, Orthogonal Polynomials, AMS Coll. Publ., Vol. 23 (Providence, R.I. 1967)
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Università della Basilicata
Contrada Macchia Romana
I-85100 Potenza (Italy)
e-mail: mastroianni@unibas.it

Peter Vértesi
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