

The WSDL2Agent Tool

László Zsolt Varga, Ákos Hajnal and Zsolt Werner

Abstract. The WSDL2Agent tool is used to help the integration of existing web
services into agent based systems. The input to the WSDL2Agent tool is the WSDL
file of a web service and the tool provides two types of output. The WSDL2Jade part
of the tool generates code for a proxy agent that makes the web service available in
multi-agent environment. The WSDL2Protégé part of the tool generates project file
for the Protégé ontology engineering tool in which the ontology of the web service
can be semantically enriched, visualized, or exported to various formats. In this paper
we present the technical details of the code generators and the application scenario of
the tool.

1. Introduction

The creation and popularity of web services are growing rapidly, and recently, web
service interface is more and more often provided for internet services in addition to the
traditional web interface. Interest in agent technology is also increasing both in the field
of research (grid, semantic web, AI) and industry (ontology modelling, service
integration). This motivated us to create the WSDL2Agent tool, which can be used in
the integration of existing web services into agent based systems. This way we help to
bridge the gap between existing non-agent systems and agent systems. With the help of
this tool existing web services can be integrated into agent systems and agents will have
access to a wide range of existing services. Moreover agent system developers may con-
centrate on adding intelligent functions to these services by combining and extending
them. The idea of using agents to enable advanced operational modes of web services is
advocated by several researchers [1][2] and also by the Web Services Architecture
specification of the W3C [3].

The WSDL2Jade tool is applicable to create proxy agents for arbitrary web services.
The proxy agent is able to accept client agent requests to invoke the web service, call
the web service, and send the web service results back to the client agents (illustrated in
Figure 3). The proxy agent thus wraps the web service invocation code into an agent

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

198

shell and operates like a FIPA agent: it can be deployed on an agent platform,
communicates with other agents using FIPA standard Agent Communication Language
(ACL) [4], and has a public ontology that defines the messages it understands.

The WSDL2Protégé tool is applicable to create Protégé [5] project file from the
WSDL file of an arbitrary web service. This project file can then be opened in the
Protégé knowledge-base modelling environment, where the ontology of the original
WSDL document can be prepared and edited (as shown in Figure 2). In addition,
Protégé is able to export the ontology in various formats, such as RDF, OIL,
DAML+OIL, or OWL. Using the Ontology Bean Generator plug-in [6] of Protégé an
agent skeleton can be created from the Protégé project file.

The main contribution of this paper is the detailed description of a technology to
integrate web services into agent systems, the implementation of the technology in the
WSDL2Agent tool, applying the tool to the Google web service as well as
demonstrating in a simple application how an agent can integrate existing web services
and add new functionality to them by combining them. As we will see in the related
work section, these contributions are novel.

In section 2 we shortly sum up the background information needed to use the
WSDL2Agent tool. In section 3 we describe how to use the WSDL2Agent tool. Based
on this information you can generate your own code on the web site of the tool. Section
4, 5 and 6 describe in detail how the WSDL2Agent tool generates code. You will need
this information to understand, possibly modify and deploy the generated code. Section
4 describes how the WSDL2Agent tool reads and interprets WSDL files. Section 5
describes how the WSDL2Jade tool generates the code, while section 6 details how the
WSDL2Protégé tool generates the project file. Section 7 shows a demo agent system
integrating web services. Section 8 discusses related work and section 9 concludes the
paper.

2. Background

In this section we are going to introduce web services, agents, the JADE agent platform
and the Protégé knowledge engineering environment, because the WSDL2Agent tool
builds on them.

2.1 Web Services and the WSDL

The purpose of web services [3] is to provide some document or procedure-oriented
functionality over the network. The web service is an abstract notion of certain
functionality, the concrete piece of software implementing the web service is called
provider agent, while other systems that wish to make use of the web services are called
requester agents. Requester agents can interact with the provider agent via message
exchange using SOAP (Simple Object Access Protocol) messages typically conveyed
over HTTP. The interface of the web service is described in machine-readable format by
a WSDL (Web Services Description Language) document. It defines the service as a set

The WSDL2Agent Tool

 199

of abstract network end-points called ports and a set of operations representing abstract
actions available at these ports. For each operation the possible input and output
messages are defined and decomposed into parts. The data types of parts are described
using the XSD (XML Schema Definition) type system, which may be either built-in
XML data types or custom, even nested structures: complex types or arrays. The
abstract definitions of ports, operations, and messages are then bound to their concrete
network deployment via extensibility elements: internet location, transport protocol, and
transport serialization formats.

The definition of the web service interface in the WSDL is encapsulated by a single
<definitions> element in which the <service> element contains the internet address of
the web service in the location attribute of the <soap:address> element. The <portType>
element consists of the list of the operations (<operation> elements) provided by the
web service, for which input and output message types are associated via the <input>
and <output> elements. Message types are described by individual <message>
elements; each containing a list of named parts with either a built-in XML type or a
complex type. Complex types must be defined in the <types> section of the WSDL that
may form structures or arrays. Finally, the <binding> element of the WSDL is appli-
cable to specify the encoding style and namespace for each operation input and output
message.

2.2 Agents

The notion of agent emerged from many different fields including economics, game
theory, philosophy, logic, ecology, social sciences, computer science, artificial
intelligence and later distributed artificial intelligence. In all these fields an agent is an
active component that behaves intelligently in a complex environment to achieve some
kind of goal. Experts from the different fields tend to agree that the most important
characteristics of agents are those which are defined by Wooldridge and Jennings [7].
First of all an agent is a computer system situated in some environment. The agent is
reactive, which means that it is capable of sensing its environment and acting on it. The
agent can autonomously act in its environment and make decisions itself. The agent has
design objectives and can decide itself how to achieve them. While taking the decisions
the agent is not just passive, but can take initiatives towards its goals. The agent has
social abilities and can interact with the actors in its environment.

The need for interoperable agent communication created the Foundation for
Intelligent Physical Agents (FIPA) [8] standardization body. The aim of FIPA is to
develop software standards for heterogeneous and interoperating agents and agent
systems, in order to enable the interworking of agents and agent systems operating on
platforms of different vendors in industrial and commercial environments. As a result of
the FIPA standardization activity, many research labs and industrial organizations
started to develop competing agent platforms independently all over the world. FIPA
standard agent platforms provide an environment where agents can be deployed and
with the help of the agent platform services they can interact with other agents on any

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

200

FIPA standard agent platform in a FIPA conformant way achieving agent
communication level interoperability.

Agents are starting to become highly relevant to bodies such as the World Wide Web
Consortium (W3C) and the Global Grid Forum (GGF). The convergence between grid
and agents is of interests, because agent systems require robust infrastructure and Grid
systems require autonomous, flexible behaviours [9]. Developments such as web
services and semantic web services [10][11] also investigate many of the issues which
have already been addressed by agent technologies.

2.3 JADE

JADE (Java Agent DEvelopment Framework, http://jade.tilab.com/) is a software
framework that complies with the FIPA specifications and provides a middleware to
help in the implementation of multi-agent systems. The agent platform is fully
implemented in Java. Software agents also written in Java can be deployed and run in
JADE. The agent platform can be distributed across machines and the configuration can
be controlled via a remote GUI. In addition to JADE's core functionality, a set of
graphical tools are available which support the debugging and deployment phases. For
agent developers JADE provides libraries through which agents can easily communicate
with other agents due to the built-in message handling, composition and decoding
functionalities.

We chose JADE as the target platform for the proxy agent in the WSDL2Agent tool
because of the above features, and also because this agent platform is the most widely
used, as shown by the statistics of the Agentcities worldwide testbed. Chosing JADE as
the target platform does not put much restriction on the deployment of the generated
agents. Although the generated proxy agent (described in section 5) is required to run in
JADE, client agents wishing to communicate with the proxy agent can still run on any
FIPA compliant platform.

2.4 Protégé

Protégé (http://protege.stanford.edu/) is an ontology engineering tool developed at
Stanford Medical Informatics, and though it has historically been used in the area of
biomedical applications, nowadays it is widely used as knowledge-base modelling
environment in different application areas as well. Since Protégé's internal model is
based on a meta model similar to the object-oriented and frame-based systems, it is
basically applicable to design and represent ontologies consisting of classes (frames),
properties (slots), property characteristics (facets and constraints), and instances. With
Protégé, designers can build, edit, maintain, and visualize ontologies representing the
formal model of the knowledge domain on a graphical user interface, which tasks would
require large amount of manual work otherwise, especially in the case of real-world
applications. In addition, due to the extensibility of the platform, Protégé can import

The WSDL2Agent Tool

 201

existing ontologies from, and export a Protégé ontology to various formats (such as
CLIPS, XML, UML, OIL, DAML+OIL, RDF, OWL) via plug-ins.

3. Using WSDL2Agent

In this section we are going to describe the engineering process of the integration of
web services into agent system and then how you can use the WSDL2Agent tool to
generate the code for this process.

3.1 Engineering Process

The architecture of web service integration into agent systems is shown in Figure 1.
Each Web Service is represented by a Proxy Agent. The Proxy Agent is able to receive
web service invocation requests in FIPA Agent Communication Language (ACL),
invoke the web service using the Simple Object Access Protocol (SOAP) and then
return the result in FIPA ACL. These proxy agents basically have the same functionality
as the web service, but they are able to communicate in FIPA ACL. In order to add
autonomous and proactive features to web services, we imagine that an Agent with
Agent Logic is also developed. The Agent with Agent Logic is the client agent of one or
more Proxy Agents and provides intelligent services to the Client Agent which might be
either a user interface agent or any other agent in the agent system.

Web
Service

Web
Service

Agent with
Agent Logic

Client
Agent

FIPA
ACL

SOAP

Proxy
Agent

Proxy
Agent

FIPA
ACL

WSDL

Generate wrapper
ontology (1)

Generate agent code
and SOAP call (2)

Generate
extended
ontology

template (3)

Extend ontology Code intelligence

Fig. 1. Web services integrated into agent systems

The two most important software components in our agent system implementation
are the ontology code and the agent code. The ontology code implements the way the
agents encode, decode and interpret the content of ACL messages. The agent code
implements the actions taken by the agent. In the case of the Proxy Agents there are
direct mappings from web service definitions to ontology code and web service
invocation to agent code, because the Proxy Agent converts the web service protocol to
ACL messages and the only type of action it takes is the web service invocation. These

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

202

mappings are described in section 5. The WSDL2Agent tool generates the code for the
ontology between the Proxy Agent and the Agent with Agent Logic (indicated with No.
1 in Figure 1), as well as the code of the Proxy Agent (indicated with No. 2 in Figure 1).

While communicating with its clients, the Agent with Agent Logic will use an
ontology similar to the wrapper ontology possibly extended with a few other concepts,
actions and elements, because the Agent with Agent Logic also uses the web service
results. The WSDL2Protégé tool generates a template for the ontology between the
Agent with Agent Logic and its clients (indicated with No. 3 in Figure1). The Ontology
Bean Generator can be used to generate the code template of the Agent with Agent
Logic. The agent logic has to be added by the developer both to the extended ontology
and the Agent with Agent Logic.

3.2 Generating Code with WSDL2Agent

The WSDL2Agent tool is available on-line at the internet location
http://sas.ilab.sztaki.hu:8080/wsdl2agent. You can upload your WSDL file to the tool in
two different ways: either by specifying the URL of the file, or directly uploading the
file itself. Then select the output you need: either WSDL2Jade to generate the code for
the Proxy Agent and its ontology, or WSDL2Protégé to generate the Protégé project
files for the template of the extended ontology.

3.2.1 WSDL2Jade Output
The WSDL2Jade tool web application returns the generated files in a zipped archive.
Section 5 will describe how these files are generated. Here we give you a summary of
the files in order to give you an overview. You may want to come back here and read
again this description after reading section 5.

The webserviceontology directory in the archive contains the Java files belonging to
the ontology, which is further decomposed into service/port/operation directory
hierarchy in order to separate AgentAction, Predicate and Concept classes
corresponding to different operations (and to avoid file name conflict). In the case of
complex types a separate service/port/operation/soap directory contains the Java classes
needed by the SOAP-based communication. And finally, the
webserviceontology/service directory contains the WebServiceOntology.java file that
registers the ontology of the web service, and the common ErrorPredicate.java file.

The code of the proxy agent is placed in the webserviceagent directory, and two
batch files are provided in the root directory to help in compiling (compile.bat) and
running (run.bat) the proxy agent. The WSDL2Jade tool automatically replaces the
(potential) Java keywords in the WSDL (by appending the "_value" suffix to such
strings) resulting in syntactically correct Java sources. The compilation also creates a jar
archive of the ontology which can be published to client agents wishing to contact the
proxy agent.

The web page of the WSDL2Agent tool describes how to write a test client agent to
invoke the services of the wrapper agent. You can directly copy and paste the code of a
test client agent from the documentation section of the web site.

The WSDL2Agent Tool

 203

3.2.2 WSDL2Protégé Output
The WSDL2Protégé tool generates a Protégé project that consists of three files called:
webservice.pprj, webservice.pont, webservice.pins. To load the project into Protégé,
open the file webservice.pprj. The project contains ontology elements, classes (a.k.a.
frames) describing the communication with the web service. In order to be able to use
the Ontology Bean Generator plug-in, the generated web services ontology complies
with the predefined ontology hierarchy of the Ontology Bean Generator. Figure 2 shows
an ontology generated by WSDL2Protégé loaded into Protégé. After editing this
ontology you can generate an agent code template using the Ontology Bean Generator
plug-in.

Fig. 2. The model in Protégé visual development environment

4. WSDL Parsing

In this section we describe how the WSDL2Agent tool builds an internal model of the
web service description in the WSDL file. The WSDL2Jade and WSDL2Protégé tools
use this internal model to generate code. In order to be able to process any WSDL file,
the most critical is the parsing of complex and array types.

All parsing takes place in org.sztaki.wsdl2jade.WsdlParser, which is supported by
some helper classes mostly for storing data. The processing starts with a call to one of
parseWsdlFile(), parseWsdlURI() or parseWsdlInputStream(), depending on the
physical source of the WSDL. All the three methods return an
org.sztaki.wsdl2jade.Wsdl instance, after reading in the WSDL definition

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

204

(javax.wsdl.Definition) from the source and calling processDefinition() in the same
class.

The processDefinition() processes the <definitions> element of the WSDL, and
builds the WSDL model in the memory, which is then returned as result. In the
outermost loop, it iterates through the services javax.wsdl.Definition. Inside of the loop,
there is another loop iterating over the ports. It reads the <soap:address location="">
extensibility element from the port body; the binding; sets transport and style of the
port; gets the operations of the newly-read binding. As there can be more than one
operations associated with a binding, it iterates over them. It sets the soap action for the
operation, sets soap:body encodingStyle and namespace of the port and processes the
input and output parts by calling processInputAndOutputParts().

The latter two are of extreme importance because of the complex type system a
WSDL can have. The processInputAndOutputParts() processes all <part>'s of the
passed <input> / <output> tags. Uses a boolean to decide between input and output. The
method is not recursive because Part objects can not reference (contain) other Part
objects, unlike with the case of ComplexType objects (and <complexType> tags). This
is where we decide whether the part in question is a complex type or an array (or the
combination of both). Depending on this, we give a further call to
processComplexType().

The processComplexType() is passed a newly created ComplexType instance and a
String denoting the "name" attribute of a <complexType> in the WSDL file. We search
for this <complexType> in the entire XML document. Upon finding it, we decide
whether it's an array declaration or a standard <complexType> with <elements> (see
section 5.4 on array handling). In both cases, the enclosed type information is read and
if any <element> (or, in the case of an array declaration, the <attribute> tag) references
another <complexType>, another instance of ComplexType is created. After that, the
method is recursively called back.

Please note that we do exactly the same as in processInputAndOutputParts() before
starting recursion over with the slight difference that we have a Hashtable instead of a
pair of Strings to be set because parts and complex types are inherently the same.

5. The WSDL2Jade Tool

The WSDL2Jade tool is applicable to create a proxy agent, which is able to accept client
agent requests, call a web service, and send the web service results back to the client
agent. The proxy agent, wrapping the web service invocation code into an agent shell,
works like an ordinary agent: it can be deployed in an agent platform and it
communicates with other agents using FIPA ACL. The code generated by the
WSDL2Jade tool uses the FIPA SL content language [12] supported by JADE. In multi-
agent systems web services can be accessed easily by simply communicating with the
proxy agent. Agent programmers can thereafter focus on the agent logic, which results
in faster and more reliable development, since they do not have to implement
occasionally complicated SOAP web service invocation code each time an agent wishes
to use web services.

The WSDL2Agent Tool

 205

The WSDL2Jade tool is available on the internet, and developers only need to submit
the WSDL file of the web service (or its URL) to get the complete Java sources
composing the proxy agent. After compilation, the proxy agent can be deployed in the
JADE agent platform. The ontology of the proxy agent can be published for potential
client agents, who are then able to communicate with the proxy agent: compose requests
and interpret reply messages, that is, to use web services. Figure 3 illustrates how the
proxy agent interacts with client agents and the web service.

Fig. 3. The interaction of the proxy agent, the client agent, and the web service

The web service data types defined in the WSDL are mapped to ontology data types.
The concrete mapping is discussed in the next sections. The web service invocation is
mapped to an ACL message of FIPA REQUEST type corresponding to an agent action.
The returned web service result is mapped to an ACL message of FIPA INFORM type
corresponding to a predicate in the ontology. The proxy agent receives the FIPA
REQUEST, interprets it according to the ontology, invokes the web service on the port
defined in the WSDL, encodes the result of the web service invocation into a FIPA
INFORM of the ontology and returns the result.

The codes presented in the next sections are generated by the WSDL2Jade tool for
the web services of Google. The interface of the services is defined by the WSDL
description located at http://api.google.com/GoogleSearch.wsdl. The Google Web API
consists of three operations called doGoogleSearch, doGetCachedPage, and
doSpellingSuggestion. The doGoogleSearch operation is applicable to search in
Google's index of web pages by submitting a query string (and search parameters) for
which Google sends the set of search results back. The doGetCachedPage operation
returns the cached contents of a specified URL when Google's crawlers last visited the
page; and finally, the doSpellingSuggestion operation can be used to obtain spell

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

206

correction for the submitted expression. For more information about Google web
services refer to [14].

5.1 The Agent Code

The source code of the proxy agent can be divided into two main sections: agent setup
code and ontology code described in the following section. After parsing the submitted
WSDL file and building an internal model, the WSDL2Jade tool is capable of
generating all the sources automatically, by adapting a previously constructed internal
code skeleton using the actual information in the WSDL. The source code complies
with the guidelines of the JADE [13] Programmer's Guide.

The agent code is contained by the generated Java class called
WebServiceNameAgent (where WebServiceName is the name attribute of the service
element in the WSDL), which is responsible to start the proxy agent in the agent
platform. In the setup method, the proxy agent registers the language (the FIPA standard
SL codec), registers the ontology, and specifies the behaviour of the agent
(addBehaviour), defining its life-cycle (e.g. OneShotBehaviour, CyclicBehaviour) and
functionality. The corresponding part of the source code of the proxy agent generated
for the Google web services [14] is illustrated below:

class GoogleSearchServiceAgent extends Agent {
 ContentManager manager = getContentManager();
 void setup() {
 manager.registerLanguage(new SLCodec());

manager.registerOntology(WebServiceOntology.getInstance
());
 addBehaviour(new HandleRequestBehaviour(this));
 }

The behaviour of the agent is determined by the inner class called
HandleRequestBehaviour, which extends JADE's CyclicBehaviour so that the agent
accepts messages in infinite loop. In the action method of the HandleRequestBehaviour
class the agent handles the incoming messages. In accordance with standards used in
agent technology and considering the protocol of web service message exchange, a
client request message has to be mapped to the FIPA REQUEST type message, and the
proxy agent's answer message conforms with the FIPA INFORM type message,
respectively. In JADE, REQUEST type messages contain a single Java object
implementing JADE's AgentAction interface, and INFORM messages contain an object
implementing the Predicate interface. Since a web service may contain several
operations (these are the actual functions that can be invoked) the WSDL2Jade tool
assigns a unique OperationNameAgentAction - OperationNamePredicate pair of classes
to each operation (where OperationName string is the name attribute of the operation
element in the WSDL).

When a client request message arrives (and the action method is invoked), the proxy
agent can thus decide which web service operation has to be called by simply matching

The WSDL2Agent Tool

 207

the incoming AgentAction class instance (which is the ContentElement object extracted
from the message) against potential AgentAction classes assigned to different
operations:

void action() {
 ACLMessage msg =

receive(MessageTemplate.MatchPerformative(ACLMessage.RE
QUEST));
 ContentElement ce =
manager.extractContent(msg).getAction();
 if (ce instanceof DoGoogleSearchAgentAction)...
 if (ce instanceof DoGetCachedPageAgentAction)...
 if (ce instanceof DoSpellingSuggestionAgentAction)...

The proxy agent can then create a call object (in the appropriate if branch), set the
matching operation name (the name attribute of the related operation element in the
WSDL), and from the AgentAction class it can read and add the required input
parameters to the call object (params.add). This sequence corresponds to a standard
web service call using SOAP. Note that since field types in the AgentAction class sent
in the ACL message may be incompatible with the types required by Apache Axis
SOAP implementation (used by the proxy agent), instead of the ordinary getter methods
the generated _SOAP postfixed getter methods are applied here, which return data with
type conforming to Axis (detailed in the next section). The operation can be invoked
after setting the internet address of the web service (setTargetEndpointAddress), which
can be found in the location attribute of the soap:address element:

org.apache.axis.client.Call call =
service.createCall();
call.setOperationName(new QName("urn:GoogleSearch",
"doGoogleSearch"));
params.add(ce.getKey_SOAP());
params.add(ce.getQ_SOAP());
...
call.setTargetEndpointAddress(
 new URL("http://api.google.com/search/beta2"));
...
resp = call.invoke(paramsObject);

If the web service call is successful (no exception is thrown), a new Predicate object
is created representing the related operation output into which the web service result
(resp object) is written. Finally, an INFORM message is constructed with the Predicate
object (fillContent), and sent back to the client agent (createReply). The proxy agent,
like in the case of reading the input parameters, uses the generated _SOAP postfixed
setter method to write the received SOAP-type data into the ACL-compatible Predicate
class.

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

208

DoGoogleSearchPredicate result = new
DoGoogleSearchPredicate();
result.setReturn_value_SOAP(resp);
ACLMessage answerMsg = msg.createReply();
answerMsg.setPerformative(ACLMessage.INFORM);
manager.fillContent(answerMsg, result);
send(answerMsg);

If the web service call fails for some reason, an error message, containing a dedicated
ErrorPredicate class (with the description of the AxisFault) is returned.

5.2 XML Data Types in ACL Messages

The data types and data structures used by web service inputs and outputs are described
by the WSDL file using XML Schema [15] language. We chose the Apache Axis
implementation of SOAP to invoke and pass parameters to (or receive from) the web
service in the proxy agent. Accordingly, Java sources (classes and field types)
representing the XML types in the WSDL have to conform to the JAX-RPC
specification [16] defining the XML-Java bindings. For example, in the case of a 'string'
XML type, Axis assumes a java.lang.String object representation of the data used in the
interaction with web service. Note that these bindings apply to the communication
between the proxy agent and the web service.

On the agent side, however, data types used in the ACL messages have to be matched
against the data types available in JADE, which supports five (symbolic) types called:
STRING, INTEGER, FLOAT, BOOLEAN and DATE. As with the XML-Java bindings
in Axis, JADE also prescribes how these symbolic data types have to be represented in
the underlying Java code: STRING corresponds to String, INTEGER can be
implemented by either Integer or Long, FLOAT can be either Float or Double,
BOOLEAN corresponds to Boolean, and, finally, DATE must be implemented by
java.util.Date class.

When creating the WSDL2Jade tool we had to decide how to represent XML types in
JADE messages; and how to translate SOAP to ACL messages, and vice versa. In Table
1 we summarized the XML-JADE type mapping used by the WSDL2Jade tool.

Note that these associations may result in imprecise translation in some cases (e.g.
integer, decimal) due to the limited number of data types available in JADE. (The
encoding of such data types in strings would change the original semantic that we tried
to avoid.) In practice, however, this mapping is still applicable to convert SOAP and
ACL messages satisfactorily.

As an example, part of the XML definition of the input message of the
doGoogleSearch operation is shown below:

<message name="doGoogleSearch">
 <part name="key" type="xsd:string"/>
 <part name="start" type="xsd:int"/>
 <part name="filter" type="xsd:boolean"/>
 ...
</message>

The WSDL2Agent Tool

 209

Table 1. XML-JADE type mapping

XML

(WSDL)

JAVA REPRESEN-

TATION(AXIS)

JADE

ONTOLOGY

JAVA REPRE-

SENTATION

(JADE)

string java.lang.String STRING java.lang.String
integer java.math.BigInteger INTEGER java.lang.Long
int java.lang.Integer INTEGER java.lang.Integer
long java.lang.Long INTEGER java.lang.Long
short java.lang.Short INTEGER java.lang.Integer
decimal java.math.BigDecimal INTEGER java.lang.Long
float java.lang.Float FLOAT java.lang.Float
double java.lang.Double FLOAT java.lang.Double
boolean java.lang.Boolean BOOLEAN java.lang.Boolean
byte java.lang.Byte INTEGER java.lang.Integer
dateTime java.util.

GregorianCalendar
DATE java.util.Date

base64Binary byte[] STRING java.lang.String
hexBinary byte[] STRING java.lang.String
unsignedInt java.lang.Long INTEGER java.lang.Long
unsignedShort java.lang.Integer INTEGER java.lang.Integer
unsignedByte java.lang.Short INTEGER java.lang.Integer
time java.util.

GregorianCalendar
DATE java.util.Date

date java.util.
GregorianCalendar

DATE java.util.Date

anySimpleType java.lang.String STRING java.lang.String

The WSDL2Jade tool generates the following AgentAction class wrapping the above

input parameters:

class DoGoogleSearchAgentAction implements AgentAction{
java.lang.String key = null;

 void setKey (String param) { key = param; }
 String getKey () { return key; }
 String getKey_SOAP () {
 String jadeSlot = this.key;
 String soapSlot = jadeSlot;
 return soapSlot;
 }
java.lang.Integer start = null;

 ...
java.lang.Boolean filter = null;

 ...

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

210

As it is seen, in the AgentAction class (used in the incoming ACL messages) fields
are created with names corresponding to the name attribute of the part element and with
type corresponding to the JADE Java type associated to the XML type in the WSDL. In
addition to the simple getter and setter methods (used by JADE) for each field a _SOAP
postfixed getter method is generated through which the proxy agent can access the data
contained in the field in the Java type required by Axis (although in this example JADE
and XML Java types coincide). In the case of an incoming message the proxy agent can
thus easily pass web service input parameters to Axis using the _SOAP getter methods.

Similarly, in the Predicate classes (used in the answer ACL messages) _SOAP setter
methods are generated by the WSDL2Jade tool, which expect SOAP Java type input
parameters and set the related JADE type field. The proxy agent in this way can directly
fill JADE type fields with SOAP Java type web service results.

Note that base64binary and hexBinary XML types, are represented by strings in the
ACL messages, which contain the base64 encoded form of the original byte arrays (by
convention). The encoding/decoding is performed automatically by the proxy agent.
This is illustrated in the doGetChachedPagePredicate class:

class DoGetCachedPagePredicate implements Predicate {
java.lang.String return_value;

 void setReturn_value (String param) { return_value =
param; }
 String getReturn_value () { return return_value; }
 void setReturn_value_SOAP (byte[] soapSlot){
 String jadeSlot = new String
 (starlight.util.Base64.encode(soapSlot));
 this.return_value = jadeSlot;
 }
}

5.3 Complex Type Concepts

In the case of simple web services, operation inputs and outputs can be wrapped
completely in the fields of the related AgentAction or Predicate classes. In the <types>
section of the WSDL file, however, web service providers may define custom structures
composed of built-in XML types or further complex types (nested to arbitrary depth).
Since such compound data structures cannot be represented by a single, primitive Java
type, separate Java classes are created by the tool for each complex type. The Java type
of the field corresponding to an input or an output parameter in the
AgentAction/Predicate classes can be a basic Java type (as listed in Table 1), or a
reference to a Java class representing the compound structure, depending on whether it
is a built-in XML type or a complex type message part.

For example, in the WSDL file of Google web services we can find the following
complex type definitions for ResultElement and DirectoryCategory:

The WSDL2Agent Tool

 211

<types>
 <xsd:complexType name="ResultElement">
 <xsd:element name="summary" type="xsd:string"/>
 <xsd:element name="URL" type="xsd:string"/>
 <xsd:element name="directoryCategory"
 type="typens:DirectoryCategory"/>
 ...
 </xsd:complexType>
 <xsd:complexType name="DirectoryCategory">
 <xsd:element name="fullViewableName"
 type="xsd:string"/>
 ...
 </xsd:complexType>
 ...
</types>

The WSDL2Jade tool generates the following two classes (getter and setter methods
are omitted here):

class ResultElement implements Concept {
 java.lang.String summary = null;
 java.lang.String uRL = null;
 DirectoryCategory directoryCategory = null;
 ...
}
class DirectoryCategory implements Concept {
 java.lang.String fullViewableName = null;
 ...
}

Note that, Java classes belonging to complex types have to implement JADE's
Concept interface (instead of AgentAction or Predicate interfaces), but fields are
generated in the same way as was described at the AgentAction and Predicate classes.

Since web services can interpret structures containing SOAP Java types only, when a
data structure needs to be forwarded to the web service (or structured web service
results need to be sent back to the client agent), the proxy agent has to translate whole
structures. For this reason the WSDL2Jade tool actually generates two classes for each
complex type: one corresponding to the structure that can be used in ACL messages
(shown above) and one corresponding to the structure that can be used in SOAP
messages containing SOAP Java types only. To avoid confusion, these latter classes are
named with a _SOAP postfix. Fields in these classes are named in the same way as in
the corresponding JADE classes, but contain SOAP Java type fields (according to the
associations in Table 1).

To make the conversion of whole objects easier for the proxy agent, in JADE classes
two additional methods are generated: getSOAPClone and set_SOAP. Through them, a
complete SOAP type clone object can be obtained from the set of JADE type fields, and
all the JADE type fields can be filled from a SOAP type counterpart object. Both of
these methods execute a sequence of elementary type conversions steps for class fields
(as described before). Proxy agents can thus read and write structured data as easily as
obtaining and setting primitive JADE and SOAP Java type fields.

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

212

The source code of the _SOAP classes belonging to ResultElement and
DirectoryCategory complex types are shown below (getter and setter methods are
omitted here)

class ResultElement_SOAP {
 java.lang.String summary = null;
 java.lang.String uRL = null;
 DirectoryCategory_SOAP directoryCategory = null;
 ...
}
class DirectoryCategory_SOAP {
 java.lang.String fullViewableName = null;
 ...
}

The getSOAPClone, set_SOAP methods of the ResultElement class is illustrated
below (ommitting the previously listed fields here):

class ResultElement implements jade.content.Concept {
ResultElement_SOAP getSOAPClone () {

 ResultElement_SOAP clone=new ResultElement_SOAP();
 clone.summary = this.getSummary_SOAP();
 clone.uRL = this.getURL_SOAP();
 clone.directoryCategory =
this.getDirectoryCategory_SOAP();
 ...
 return clone;
 }

 void set_SOAP(ResultElement_SOAP param) {
 setSummary_SOAP(param.summary);
 setURL_SOAP(param.uRL);
 setDirectoryCategory_SOAP(param.directoryCategory);
 ...
 }
 ...
}

5.4 XML Arrays and ACL Lists

Web service operations may require or return arrays of data as input or output
parameters. Such structures of the web service are also declared in the <types>
section of the WSDL file, where either arrays of built-in XML types or arrays of
complex types can be declared. They can even be multi-dimensional.

In ACL SL messages, however, we cannot use arrays (there is no such structure),
therefore we have to represent arrays used in SOAP messages by lists in JADE. In the
corresponding Java classes the WSDL2Jade tool therefore assigns list type fields
(implemented by jade.util.leap.ArrayList) to array type elements in the WSDL. The type
of the objects wrapped by the list is the JADE Java type corresponding to the built-in

The WSDL2Agent Tool

 213

XML type (or the Java class created for the complex type) of which the array is
composed. For example, in the case of int[] array in the WSDL, the corresponding list is
allowed to contain java.lang.Integer objects.

In contrast to the ordinary getter and setter methods (operating simply on ArrayLists)
the get_SOAP/set_SOAP methods expect and return arrays of the related SOAP Java
type objects (corresponding to the built-in XML type). These are used in the
communication with the web service. The latter methods, on the one hand, create arrays
from lists, or lists from arrays, respectively; and, on the other hand, perform the ele-
mentary type conversions for each object (SOAP-JADE) contained in the array or list
depending on the direction of the transformation. Note that in the case of an array of
complex types the elementary type conversion uses the get_SOAPClone/set_SOAP
methods of classes assigned to complex types. The proxy agent can thus access array
type objects as simple as in the scalar case, produce web service required arrays from
lists, and create lists from the web service result arrays.

For example, the following array of complex type declaration can be found in
GoogleSearchResult complex type:

<xsd:complexType name="GoogleSearchResult">
 <xsd:element name="resultElements"
type="typens:ResultElementArray"/>
 ...
</xsd:complexType>

<xsd:complexType name="ResultElementArray">
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <xsd:attribute ref="arrayType"
arrayType="typens:ResultElement[]"/>
 <xsd:attribute ref="soapenc:arrayType"
 wsdl:arrayType="typens:ResultElement[]"/>
 ...
</xsd:complexType>

<xsd:complexType name="ResultElement">
 ...
</xsd:complexType>

The generated source code implementing WSDL arrays as lists is shown below:

class GoogleSearchResult implements Concept {
 ArrayList resultElements = null;
 void setResultElements (ArrayList param)
 { this.resultElements = param; }
 ArrayList getResultElements () { return
this.resultElements; }
 void setResultElements_SOAP (ResultElement_SOAP[]
param) {...}
 ResultElement_SOAP[] getResultElements_SOAP () {...}

The WSDL2Jade tool is also capable of processing multi-dimensional array
declarations in the WSDL, although they occur rarely in practice. Multi-dimensional

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

214

arrays are represented by lists of lists in the JADE, where each list contains lists
corresponding to the representation of one lower dimensional array. For example, the
two-dimensional array int[][] is represented by a list of objects each containing a list of
java.lang.Integer objects. Since ArrayLists cannot be nested directly in JADE (it is not
possible to register such structures in the ontology), each list has to contain dedicated
objects which may then wrap further lists inside. The two-dimensional integer array is
thus represented by a list of Integer1DArray objects, where an Integer1DArray object
contains a single list type field containing java.lang.Integer objects. These intermediate
array-wrapper classes (such as Integer1DArray) are also created by the tool
automatically. As described in the case of one-dimensional arrays, the related _SOAP
getter and setter methods are generated in the multi-dimensional case as well. They
expect and return multi-dimensional arrays of SOAP Java types in this case.

5.5 Agent Ontology and Registration

The set of Java classes corresponding to web service inputs (AgentActions), outputs
(Predicates), and complex types used in web service messages (Concepts) is called the
ontology of the proxy agent (and also the ontology of the web service).

When the proxy agent starts up, it has to register its ontology first to be able to
serialize/deserialize objects in agent messages by JADE. In the ontology registration
code each class has to be added to JADE's knowledge base by submitting the class name
and schema type (among of AgentActionSchema, PredicateSchema, ConceptSchema)
information, and each field has to be specified in the registered classes by submitting
the field name, symbolic field type (such as STRING, INTEGER, or the referenced
schema name) and cardinality data (in the case of lists; optional otherwise). Note that
cardinality attribute is also used to indicate optional elements in the WSDL
(minOccurs="0").

A part of the ontology registration code (WebServiceOntology.java) generated by the
WSDL2Jade for Google web services is shown below:

class WebServiceOntology extends Ontology {
 WebServiceOntology (Ontology base) {
 add(new AgentActionSchema
 ("GoogleSearchPortDoGoogleSearchAgentAction"),
 DoGoogleSearchAgentAction.class);
 as=(AgentActionSchema) getSchema
 ("GoogleSearchPortDoGoogleSearchAgentAction");
 as.add("key", (PrimitiveSchema)
getSchema(BasicOntology.STRING),
 ObjectSchema.OPTIONAL);
 ...
}

The WSDL2Agent Tool

 215

6. WSDL2Protégé

The WSDL2Protégé tool can be used to create the model of the web service ontology
for the submitted WSDL file in the form of a Protégé project file, which can then be
opened in Protégé knowledge engineering environment. The model can be visualized
and edited on demand, furthermore, JADE agent code can be generated using the
Ontology Bean Generator plug-in. Protégé is also applicable to export the web service
ontology to various formats, such as RDF, OIL, DAML+OIL, or OWL.

The WSDL2Protégé tool utilises the same WSDL parser as the WSDL2Jade tool, but
generates a different output from the WSDL description. In this section we will focus on
the Protégé file generation part, therefore the description will be shorter to reduce space.

6.1 The Model

The generated Protégé ontology follows the pattern of the ontology generated by the
WSDL2Jade tool. For input and output messages the conversion assigns Protégé frames
(corresponding to classes) with slots (corresponding to fields) representing message
parts. Frames assigned to operation input messages are called AgentActions, and frames
created for output messages are called Predicates in accordance with the conventions
used in agent technology and the WSDL2Jade tool. Since frame and slot names must be
globally unique in the knowledge domain, frame names are composed of the port name
and operation name strings (in the WSDL) which is followed by either the AgentAction
or Predicate strings. Slot names start with the container frame name and this is followed
by the part name as specified in the WSDL file. Web service invocation faults are
represented by the ErrorPredicate frame.

6.2 XML Data Types and Protégé slots

Protégé supports four basic types for slots: BOOLEAN, FLOAT, INTEGER, STRING
(and a type called ANY, which can hold a value with any basic type). This implies that
message parts and complex type elements in the WSDL have to be represented by such
slot types.

In Table 2 we summarized the designed Protégé slot representations of the built-in
XML types (using ANY where the XML type cannot be represented correctly in
Protégé) used by the WSDL2Protégé tool.

6.3 Complex Type Frames

Complex types defined in the WSDL are represented by frames with slots
corresponding to the contained elements. Since complex type names are unique in the
WSDL, frame names get the name attribute of the complex type simply, but slot names
must still be prefixed with the container frame name. To message parts and complex

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

216

type elements referring to another complex type in the WSDL the WSDL2Protégé tool
assigns slots with a special type called CLASS and restricts the slot's Allowed Parents
facet to the frame corresponding to the referenced complex type. Other built-in XML
type elements in complex type definitions are represented simply by slots with type
associated according to Table 2.

Table 2. XML-Protégé type mapping

XML (WSDL) Protégé slot type

string STRING
integer INTEGER
int INTEGER
long INTEGER
short INTEGER
decimal INTEGER
float FLOAT
double FLOAT
boolean BOOLEAN
byte INTEGER
dateTime ANY
base64Binary ANY
hexBinary ANY
unsignedInt INTEGER
unsignedShort INTEGER
unsignedByte INTEGER
time ANY
date ANY
anySimpleType ANY

6.4 XML Array and Multiple Cardinality Slots

Array type fields in the WSDL are represented by slots with multiple cardinality
(available in Protégé as a slot attribute), as with the list representation of arrays used by
the WSDL2Jade tool. In the case of a one-dimensional array a single, multiple
cardinality slot is created with type corresponding to the type of the array elements. For
n-dimensional arrays, however, intermediate frames have to be created to represent 1, 2,
..., n-1 dimensional arrays where each frame contains a single, multiple cardinality,
CLASS type slot referencing to the frame corresponding to the one-lower dimensional
array (except for the one-dimensional case). For example, in the case of a two-
dimensional integer array, an intermediate frame called Int1DArray is created with an
INTEGER type, multiple cardinality slot, and the slot corresponding to the 2-
dimensional array is implemented by a multiple cardinality, CLASS type slot with
Allowed Parents: Int1DArray.

The WSDL2Agent Tool

 217

6.5 The Structure

Frames are organized in a predefined structure required by the Ontology Bean
Generator plug-in to be able to generate JADE code. In this structure all the frames of
the ontology are the child classes of a special frame called Concept. Frames
representing complex types are directly inherited from Concept. Frames corresponding
to operation input messages are the subclasses of the dedicated frame called
AgentAction (which is a child class of Concept), frames representing operation output
messages are the subclasses of the frame called Predicate (also extending Concept).
Finally, a so-called AID class instance must be present for the successful agent code
generation with the Ontology Bean Generator plug-in.

Figure 2 in section 3 shows the model generated by the WSDL2Protégé tool for
Google web services in Protégé visual development environment. As it is seen in Figure
2, three AgentAction frames and three Predicate frames are created for the web service
operations of the Google web services. Other frames representing complex types
(GoogleSearchResult, ResultElement, DirectoryCategory) are inherited from the
abstract Concept frame. Slots within the frames got a unique name and the associated
Protégé type in accordance with Table 2. The cardinality of the slots is also set: single in
the scalar case, but multiple in the case XML of arrays.

If we export the generated ontology from Protégé into OWL format, then we can
publish the ontology. Part of the OWL representation of the
GoogleSearchPortDoGoogleSearchAgentAction agent action together with the key
property is the following:

<owl:Class
rdf:ID="GoogleSearchPortDoGoogleSearchAgentAction">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#AgentAction"/>
 </rdfs:subClassOf>
</owl:Class>

<owl:FunctionalProperty rdf:ID=
 "googleSearchPortDoGoogleSearchAgentAction_key">
 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/
>
 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:domain

rdf:resource="#GoogleSearchPortDoGoogleSearchAgentActio
n"/>
</owl:FunctionalProperty>

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

218

The return value of the GoogleSearchPortDoGoogleSearchAgentAction agent action
is the GoogleSearchPortDoGoogleSearchPredicate. Its OWL representation as
generated by the WSDL2Agent tool and exported from Protégé is the following:

<owl:Class
rdf:ID="GoogleSearchPortDoGoogleSearchPredicate">
 <rdfs:subClassOf rdf:resource="#Predicate"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="googleSearchPort
 DoGoogleSearchPredicate_return_value">
 <rdf:type rdf:resource=
 "http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <rdfs:domain rdf:resource=
 "#GoogleSearchPortDoGoogleSearchPredicate"/>
 <rdfs:range rdf:resource=
 "http://www.w3.org/2002/07/owl#Class"/>
 <protege:allowedParent
rdf:resource="#GoogleSearchResult"/>
</owl:ObjectProperty>

7. Web Service Integration Demo Application

WSID (Web Service Integration Demo) system [17] composed of agents and web-
services illustrates the application concept of the WSDL2Agent tool. The Google web
service used in the previous sections demonstrates how the proxy agent is generated,
while the WSID system shows how an agent can integrate existing web services and add
new functionality to them by combining them.

The WSID Agent uses two existing web services: the FinancialFunctions web service
and the NumberSpeller web service, both of them publicly available [18]. The
FinancialFunctions web service provides several different operations to calculate some
finance related numeric information such as deposit future value, deposit present value,
etc., according to the submitted input parameters (value, rate, payment, etc.). The
NumberSpeller web service simply transforms the submitted integer number to a spell
form in the specified language. The Intelligent Financial Agent (IFA) adds to existing
financial web services the possibility to make textual reports in the user's language by
combining it with the NumberSpeller web service.

The WSID system is shown in Figure 4. The IFA has a web front-end, but client
agents can also directly access its services.

Both web services have their own wrapper agent in the agent system. The user can
select from a web page the financial operation which he wants to do and the language
for the textual report. This information is sent to the central node of the system: the
Intelligent Financial Agent. The IFA first invokes the FinancialFunction Wrapper Agent
and then, after having received the numeric result, sends it to the NumberSpeller
Wrapper Agent. This way the IntelligentFinancial agent is able to provide a financial
textual report in the user's language on the web page.

The WSDL2Agent Tool

 219

Fig. 4. The web service integration demonstration application architecture

8. Related work

Our work was partly stimulated by similar work within the Integrating Web Services
Working Group of the Agentcities project [19] as well as an initiative for a similar
interest group of the World Wide Web Consortium. This working group proposed a
gateway approach [21][1] for the problem of agent and web services integration, and
decomposed the problem into two parts: 1) software agents utilize web services, 2)
software agents offer web services. The WSDL2Jade tool was implemented
independent of the gateway approach in order to allow the deployment of mass amount
of agents in the Agentcities testbed from existing web service applications. Moreover
the WSDL2Jade tool is the first and most elaborated implementation to generate proxy
agents for the utilisation of web services. It is expected that the JADE system will
include similar component in the future.

The WSDL2Protégé part of the tool can be used to generate the basis for the Web
Service Modelling Framework (WSMF) elements of semantic web services [11]. The
WSDL2Protégé tool helps to translate a WSDL description to a Protégé project file and
load in into Protégé where a semantic enrichment can be done easily. Once the semantic
enrichment is complete, the goal repository, the ontology of the content language for the
communication between proxy agents and mediators, as well as the skeleton of a proxy
agent code can be derived [22].

The WSDL2DAMLS tool described in [20] can also be used to migrate web service
descriptions to semantic web service descriptions, because it can directly generate a
DAML-S description form a WSDL file. The WSDL2DAMLS tool also needs human
intervention, because the WSDL file does not contain the needed semantic information.
Although the WSDL2DAMLS tool produces a DAML-S file, it does not support the
creation of the elements of the WSMF model.

JSP Page

Intelligent

Financial

Agent

Client

Agent

NumberSpeller

Wrapper Agent

FinancialFunction

Wrapper Agent

NubmerSpeller

web-service

FinancialFunction

s

CLIENT
PLATFORM

JADE
PLATFORM

WEB-SERVICE
PLATFORM

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

220

9. Conclusions

The WSDL2Agent tool helps to integrate existing web services into agent systems. It
was developed to help the deployment of mass amount of agent systems in the
Agentcities worldwide testbed [19]. The WSDL2Jade part of the tool is the first and
most elaborated implementation to generate proxy agents for the utilisation of web
services. The WSDL2Protégé part is the only tool to translate a WSDL description to a
Protégé project in order to support its semantic enrichment. In this paper we gave a
detailed technical insight into the operation and usage of the tool.

The WSDL2Agent tool can link agent systems to other technologies as well. We
have investigated in [22] how the tool can be used to migrate web services into the
semantic web services world [10][11]. The WSDL2Agent tool is useful in grid
environments as well. Users have reported to use the WSDL2Agent in grid systems by
converting GWSDL files into WSDL descriptions and then applying the WSDL2Agent
tool on the WSDL files. This way WSDL2Agent helps the integration of grid
applications into agent systems. The WSDL2Agent tool therefore becomes more and
more important by supporting the integration of existing systems (either web services or
grid applications) into agent applications.

We are planning to investigate how to give better support for semantic web services
and grid applications. Currently WSDL2Agent supports WSDL1.1. Support for the
recently published WSDL 2.0 specification is also planned.

Acknowledgement

The authors wish to acknowledge the collaboration of the partners in the projects where
the development of WSDL2Agent was started. These partners are AITIA Rt., Széchényi
National Library, T-Systems Dataware Ltd., and the core partners of the Agentcities
project. We also thank Eric Pantera for developing the WSID application.

László Zsolt Varga, Ákos Hajnal, Zsolt Werner
Computer and Automation Research Institute
Kende u. 13-17
1111 Budapest
Hungary
e-mail: {laszlo.varga|ahajnal|werner}@sztaki.hu

The WSDL2Agent Tool

 221

References

[1] Lyell, M., Rosen, L., Casagni-Simkins, M., Norris. D.: “On software agents and web
services: Usage and design concepts and issues” In Proc. of the 1st International Workshop
on Web Services and Agent Based Engineering, Sydney, Australia, July 2003.

[2] Maximilien, E.M., Singh, M.P.: “Agent-based architecture for autonomic web service
selection” In Proc. of the 1st International Workshop on Web Services and Agent Based
Engineering, Sydney, Australia, July 2003.

[3] Web Services Architecture, W3C Working Group Note 11 February 2004,
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[4] Foundation for Intelligent Physical Agents: “FIPA ACL Message Structure Specification”,
http://www.fipa.org/specs/fipa00061/, (2002)

[5] Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubézy, M., Eriksson, H., Noy, N., Tu.
S.: “The evolution of Protégé-2000: An environment for knowledge-based systems
development” International Journal of Human-Computer Studies, 58(1):89-123, 2003.

[6] van Aart, C.J., Pels, R.F., Giovanni C. and Bergenti F.: “Creating and Using Ontologies in
Agent Communication” Workshop on Ontologies in Agent Systems 1st International Joint
Conference on Autonomous Agents and Multi-Agent Systems, 2002.

[7] Wooldridge, M., Jennings, N.R.: “Intelligent Agents: Theory and Practice” The Knowledge
Engineering Review, 10(2), 115-152., 1995

[8] Dale, J., Mamdani, E.: “Open Standards for Interoperating Agent-Based Systems” In:
Software Focus, 1(2), Wiley, 2001.

[9] Foster, I., Jennings, N. R., Kesselman, C.: “Brain meets brawn: Why Grid and agents need
each other” Proceedings of the 3rd International Conference on Autonomous Agents and
Multi-Agent Systems, New York, USA, 8-15., 2004.

[10] OWL-S Coalition “OWL-S 1.1 Release” http://www.daml.org/services/owl-s/1.1/ 2004

[11] Bussler, C., Maedche, A., Fensel, D.: “A Conceptual Architecture for Semantic Web
Enabled Web Services” ACM Special Interest Group on Management of Data: Volume 31,
Number 4, Dec 2002.

[12] Foundation for Intelligent Physical Agents: “FIPA SL Content Language Specification”,
http://www.fipa.org/specs/fipa00008/, (2002)

[13] Bellifemine, F., Poggi, A., Rimassa, G.: "JADE - A FIPA-compliant agent framework", In
Proc. of the Fourth International Conference and Exhibition on the Practical Application of
Intelligent Agents and Multi-Agents (PAAM'99), London, UK, (1999) pp. 97-108.

[14] Google Web API, http://www.google.com/apis/

[15] W3C Working Draft "XML Schema Part 1: Structures", "XML Schema Part 2: Datatypes",
http://www.w3.org/TR/xmlschema-1/, http://www.w3.org/TR/xmlschema-2/

[16] WebServices – Axis, http://ws.apache.org/axis/

[17] Web Service Integration Demo, http://sas.ilab.sztaki.hu/wsid/

[18] Alphabeans web services (See the "Run the demos" section at the URL below.)
http://www-106.ibm.com/developerworks/webservices/demos/alphabeans/

[19] Willmott, S.N., Dale, J., Burg, B., Charlton, P., O'brien, P.: "Agentcities: A Worldwide Open
Agent Network", Agentlink News 8 (Nov. 2001) 13-15,

http://www.AgentLink.org/newsletter/8/AL-8.pdf

 László Zsolt Varga, Ákos Hajnal and Zsolt Werner

222

[20] Paolucci, M., Srinivasan, N., Sycara, K., Nishimura, T.: “Toward a Semantic Choreography
of Web Services: From WSDL to DAML-S” Proc. of the First International Conference on
Web Services (ICWS'03), Las Vegas, Nevada, USA, June 2003, pp 22-26.

[21] Agentcities Task Force. Integrating Web Services into Agentcities Recommendation.
http://www.agentcities.org/rec/00006/actf-rec-00006a.pdf, 2003.

[22] Varga, L.Z., Hajnal, A., Werner, Z.: "An Agent Based Approach for Migrating Web Services
to Semantic Web Services", Lecture Notes in Computer Science Vol. 3192, C. Bussler, D.
Fensel (Eds.), Artificial Intelligence: Methodology, Systems, and Applications 11th
International Conference, AIMSA 2004, Varna, Bulgaria, September 2-4, 2004, Proceedings,
pp. 371-380., ISBN-3-540-22959-0

Information about Software

Software is available on the Internet as
prototype version

Internet address:
Description of software: The WSDL2Agent tool is available on-line on the
Internet. The input to the WSDL2Agent tool is the WSDL file of a web service.
The WSDL file can either be uploaded to the web site of the tool or specified with
an URL. The tool provides two types of output in a downloadable zip file. The
WSDL2Jade part of the tool generates the code of a proxy agent that makes the
web service available in multi-agent environment. The WSDL2Protégé part of the
tool generates project file for the Protégé ontology engineering tool in which the
ontology of the web service can be visualized, edited or exported to various
formats.
Online availability address: http://sas.ilab.sztaki.hu:8080/wsdl2agent/

Contact person for question about the software:
email: wsdl2agent@sas.ilab.sztaki.hu

