
Jadex: A BDI-Agent System Combining
Middleware and Reasoning

Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Abstract. Nowadays a multitude of different agent platforms exist that aim
to support the software engineer in developing multi-agent systems. Neverthe-
less, most of these platforms concentrate on specific objectives and therefore
cannot address all important aspects of agent technology equally well. A broad
distinction in this field can be made between middleware- and reasoning-
oriented systems. The first category is mostly concerned with FIPA-related
issues like interoperability, security and maintainability whereas the latter one
emphasizes rationality and goal-directedness. In this paper the Jadex reason-
ing engine is presented, which supports cognitive agents by exploiting the BDI
model and is realized as adaptable extension for agent middleware such as the
widely used JADE platform.

1. Introduction

Today various different agent platforms are available providing support for the
development of agent applications [21]. As agent orientation is a very broad field
covering topics concerning inter alia agent organizations, agent behaviour as well
as messaging it becomes obvious that most of these platforms focus on specific
objectives and therefore cannot address all important aspects of agent technology
equally well. Two important categories of platforms are middleware- and reasoning-
oriented systems.

The first category is mostly concerned with FIPA-related issues that address
interoperability and various infrastructure topics such as white and yellow page
services. Hence agent middleware is an important building block that forms a
solid foundation for exploiting agent technology. Most middleware platforms in-
tentionally leave open the issue of internal agent architecture and employ a simple
task oriented approach [2, 15, 32]. In contrast, reasoning-centered platforms fo-
cus on the behaviour model of a single agent trying to achieve rationality and

144 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

goal-directedness. Most successful behaviour models are based on adapted theo-
ries coming from disciplines such as philosophy, psychology or biology. Depending
on the level of detail of the theory the behaviour models tend to become compli-
cated and can result in architectures and implementations that are difficult to use.
Especially when advanced artificial intelligence and theoretical techniques such
as deduction logics are necessary for programming agents, mainstream software
engineers cannot easily take advantage of agent technology.

In this paper the Jadex agent framework is presented, which builds upon an
existing middleware agent platform and supports easy to use reasoning capabilities.
It adopts the BDI model [5] and combines it with state-of-the-art software engi-
neering technologies like XML and Java. In the following, section 2 motivates the
need for agent-oriented middleware. In section 3 reasoning approaches for agents
are sketched and the BDI fundamentals regarding the individual concepts and their
interrelationships are described. Section 4 explains the design and implementation
of the Jadex system by detailing the abstract architecture and several implemen-
tation aspects. In section 5 the approach taken by Jadex is classified and compared
to other approaches - in particular to the JACK agent framework. A summary and
an outlook describing ongoing work and planned extensions conclude the paper.

2. Agent Middleware

Typically middleware in the field of distributed systems is seen as“[...] network-
aware system software, layered between an application, the operating system, and
the network transport layers, whose purpose is to facilitate some aspect of coop-
erative processing. Examples of middleware include directory services, message-
passing mechanisms, distributed transaction processing (TP) monitors, object re-
quest brokers, remote procedure call (RPC) services, and database gateways.” 1

As agent orientation builds on concepts and technology of distributed sys-
tems middleware for agents is equally important for the realization of agent-based
applications. Thereby, the term agent middleware is used to denote common ser-
vices such as message passing or persistency management usable for agents. The
paradigm shift towards autonomous software components in open, distributed en-
vironments requires on the one hand new standards to ensure interoperability
between applications. On the other hand new middleware products implementing
these standards are needed to facilitate fast development of robust and scalable
applications. Agents can be seen as application layer software components using
middleware to gain access to standardized services and infrastructure.

The Foundation for Intelligent Physical Agents (FIPA) [28] is an international
non-profit organization providing standards for heterogeneous interacting agents
and multi-agent systems. Since 1997 a number of specifications have been released
which are replaced or updated regularly. The work on specifications focuses on

1http://iishelp.web.cern.ch/IISHelp/iis/htm/core/iigloss.htm

Jadex: A BDI-Agent System Combining Middleware and Reasoning 145

application as well as on middleware aspects. Specifications related to applica-
tions provide systematically studied example domains with service and ontology
descriptions. The middleware-related specifications address in detail all building
blocks required for an abstract agent platform architecture. This includes mecha-
nisms for agent management, as well as infrastructure elements such as directory
services and message delivery. Besides, there are extensive specifications on the
syntactic and semantic layer of agent communication. This concerns inter alia the
format and meaning of individual messages as well as the standard interaction
protocols providing a unified basis for agent communication and interaction.

The FIPA specifications have been implemented in a number of agent plat-
forms [2, 15, 32] and interoperability among those platforms has been shown, for
example in the agentcities network.2 In addition to the FIPA specifications, sev-
eral platforms also address further middleware issues and provide specialized solu-
tions, e.g. for security, persistency, or mobility. Although the available middleware
platforms therefore provide a solid basis for developing open, interoperable agent
systems, not all important aspects of agent development are supported equally
well. The middleware platforms provide generic abstractions for application inde-
pendent distribution and communication issues, but most of them realize a simple
task-based agent model. This approach allows decomposing the overall agent be-
haviour into smaller pieces and attaching them to the agent as needed. Addition-
ally, the tasks themselves can be implemented in an object-oriented language such
as Java allowing the software developer to easily start using the agent paradigm.
Once agent applications become more complex, another abstraction layer is needed
to support the implementation of high-level decision processes inside the agents.
Such abstractions are provided by cognitive agent architectures as described in the
next section.

3. Reasoning for Agents

To build agents with cognitive capabilities, several theories from different disci-
plines like psychology, philosophy and biology can be utilized. Most cognitive ar-
chitectures are based on theories for describing behaviour of individuals. The most
influential theories with respect to agent technology are the Belief-Desire-Intention
(BDI) model [5], the theory of Agent Oriented Programming (AOP) [31], the Uni-
fied Theories of Cognition (UTC leading to SOAR) [20, 23] and the subsumption
theory [9]. Each of these theories has its own strengths and weaknesses and sup-
ports certain kinds of application domains especially well. The Jadex reasoning
engine is based on the BDI model due to its simplicity and folk psychological
background as explained further in the following section.

2http://www.agentcities.net

146 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

3.1. BDI Foundations

The BDI model was conceived by Bratman as a theory of human practical reason-
ing [5]. Its success is based on its simplicity reducing the explanation framework
for complex human behaviour to the motivational stance [13]. This means that
the causes for actions are always related to human desires ignoring other facets
of human cognition such as emotions. Another strength of the BDI model is the
consistent usage of folk psychological notions that closely correspond to the way
people talk about human behaviour.

Beliefs are informational attitudes of an agent, i.e. beliefs represent the in-
formation, an agent has about the world it inhabits, and about its own internal
state. But beliefs do not just represent entities in a kind of one-to-one mapping;
they provide a domain-dependent abstraction of entities by highlighting important
properties while omitting irrelevant details. This introduces a personal world view
inside the agent: the way in which the agent perceives and thinks about the world.

The motivational attitudes of agents are captured in desires. They represent
the agent’s wishes and drive the course of its actions. Desires need not necessarily
be consistent and therefore may not be achieved simultaneously. A “goal delibera-
tion” process has the task to select a subset of consistent desires (often referred to
as goals). Actual systems and formal theory mostly ignore this step (with the ex-
ception of 3APL [11, 12]) and assume that an agent only possesses non-conflicting
desires. In a goal-oriented design, different goal types such as achieve or maintain
goals can be used to explicitly represent the states to be achieved or maintained,
and therefore the reasons, why actions are executed [8]. When actions fail it can
be checked if the goal is achieved, or if not, if it would be useful to retry the failed
action, or try out another set of actions to achieve the goal. Moreover, the goal
concept allows to model agents which are not purely reactive i.e., only act after the
occurrence of some event. Agents that pursue their own goals exhibit pro-active
behaviour.

Plans are the means by which agents achieve their goals and react to oc-
curring events. Thereby a plan is not just a sequence of basic actions, but may
also include more abstract elements such as subgoals. Other plans are executed
to achieve the subgoals of a plan, thereby forming a hierarchy of plans. When an
agent decides on pursuing a goal with a certain plan, it commits itself (momen-
tarily) to this kind of goal accomplishment and hence has established a so called
intention towards the sequence of plan actions. Flexibility in BDI plans is achieved
by the combination of two facets. The first aspect concerns the dynamic selection
of suitable plans for a certain goal which is performed by a process called “meta-
level reasoning”. This process decides with respect to the actual situation which
plan will get a chance to satisfy the goal. If a plan is not successful, the meta-level
reasoning can be done again allowing a recovery from plan failures. The second
criteria relates to the definition of plans, which can be specified in a continuum
from very abstract plans using only subgoals to very concrete plans composed of
only basic actions.

Jadex: A BDI-Agent System Combining Middleware and Reasoning 147

Algorithm 1 BDI-interpreter, taken from [29]

BDI-interpreter

Initialize-state();

repeat

options := option-generator(event-queue);

selected-options := deliberate(options);

update-intentions(selected-options);

execute();

get-new-external-events();

drop-successful-attitudes();

drop-impossible-attitudes();

end repeat

3.2. BDI Realization

The foundation for most implemented BDI systems is the abstract interpreter
proposed by Rao and Georgeff (see algorithm 1) [29]. At the beginning of every
interpreter cycle a set of applicable plans is determined for the actual goal or event
from the event queue. Thereafter, a subset of these candidate plans will be selected
for execution (meta-level-reasoning) and will be added to the intention structure.
After execution of an atomic action belonging to some intention any new external
events are added to the event queue. In the final step successful and impossible
goals and intentions are dropped. Even though this abstract interpreter loop served
as direct implementation template for early PRS systems [18], nowadays it should
be regarded more as an explanation of the basic building blocks of a BDI system.
Several important topics such as goal deliberation and the distinction between
goals and events are not considered in this approach.

4. Jadex Realization

The following sections present the motivation, architecture and execution model
of the newly developed reasoning engine Jadex (see also [27]). Details about the
integration of the reasoning engine into the platform are described in a separate
section. Afterwards some tools are introduced which offer extended support for
agent debugging.

4.1. Motivation and Project Background

In the context of the MedPAge project the need for an agent platform was iden-
tified that would support FIPA-compliant communication with a high-level agent
architecture such as BDI. The MedPAge (“Medical Path Agents”) project is part
of the German priority research programme 1083 Intelligent Agents in Real-World
Business Applications funded by the Deutsche Forschungsgemeinschaft (DFG). In
cooperation between the business management department of the University of
Mannheim and the computer science department of the University of Hamburg,

148 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Figure 1. Jadex abstract architecture

the project investigates the advantages of using agent technology in the context of
hospital logistics [24, 25]. The Jadex project started in December 2002 to provide
the technical basis for MedPAge software prototypes developed in Hamburg.

Addressing the need for an agent platform that supports both middleware
and reasoning, the approach chosen was to rely on an existing mature middle-
ware platform, which is in widespread use. The JADE platform [3] focuses on
implementing the FIPA reference model, providing the required communication
infrastructure and platform services such as agent management, and a set of de-
velopment and debugging tools. It intentionally leaves open much of the issues of
internal agent concepts, offering a simple task-based model in which a developer
can realize any kind of agent behaviour. This makes it well suited as a founda-
tion for establishing a reasoning engine on top of it. While the agent platform
is concerned with external issues such as communication and agent management,
the reasoning engine on the other hand covers all agent internals. Therefore the
architecture is to a large extent independent from the underlying platform.

4.2. Architecture Overview

In Fig. 1 an overview of the abstract Jadex architecture is presented. Viewed from
the outside, an agent is a black box, which receives and sends messages. Incoming
messages, as well as internal events and new goals serve as input to the agent’s
internal reaction and deliberation mechanism. Based on the results of the deliber-
ation process these events are dispatched to plans selected from the plan library.
Running plans may access and modify the belief base, send messages to other
agents, create new top-level or subgoals, and cause internal events. The reaction
and deliberation mechanism represents the only global component within Jadex.
All other components are contained in reusable modules called capabilities.

Jadex: A BDI-Agent System Combining Middleware and Reasoning 149

Figure 2. Composition of a Jadex agent

4.2.1. Agent Definition. To create and start an agent, the system needs to know
the properties of the agent to be instantiated. The initial state of an agent is de-
termined among other things by the beliefs, goals, and the library of known plans.
Jadex uses a declarative and a procedural approach to define the components of
an agent (see Fig. 2). The plan bodies have to be implemented as ordinary Java
classes that extend a certain framework class, thus providing a generic access to
the BDI specific facilities. All other concepts are specified in a so called Agent
Definition File (ADF) using an XML language that follows the Jadex meta-model
(described in [26]) specified in XML schema and allows for creating Jadex objects
in a declarative way. Within the XML agent definition files, the developer can use
expressions to specify designated properties. The language for these expressions is
Java extended with OQL constructs that facilitate e.g. the specification of queries.
In addition to the BDI components, some other information is stored in the defin-
ition files such as default arguments for launching the agent or service descriptions
for registering the agent at a directory facilitator.

The reaction and deliberation mechanism is generally the same for all agents.
The behaviour of a specific agent is therefore determined solely by its concrete
beliefs, goals, and plans. In the following each of these central concepts of the
Jadex BDI architecture will be described in detail.

4.2.2. Beliefs. One objective of the Jadex project is ease of usage. Therefore Jadex
does not enforce a logic-based representation of beliefs. Instead, ordinary Java ob-
jects of any kind can be contained in the beliefbase, allowing reuse of classes gen-
erated by ontology modeling tools or database mapping layers. Objects are stored
as named facts (called beliefs) or named sets of facts (called belief sets). Using
the belief names, the beliefbase can be directly manipulated by setting, adding, or

150 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Figure 3. Belief and belief set examples

removing facts. A more declarative way of accessing beliefs and beliefsets is pro-
vided by queries, which can be specified in an OQL-like language [4]. The beliefs
are used as input for the reasoning engine by specifying certain belief states e.g. as
preconditions for plans or creation conditions for goals. The engine monitors the
beliefs for relevant changes, and automatically adjusts goals and plans accordingly.
E.g. a belief change can trigger a goal’s creation or drop condition, or render the
context of a plan invalid leading to a plan abort.

In Fig. 3 some example belief and belief set declarations are depicted that
e.g. could be usable for realizing some kind of alarm clock agent. The belief
“alarm time” (lines 1-3) represents time in milliseconds and therefore requires
its value being of the Java class “long”. It provides already an initial fact (line
2) that will be initialized at the agent start-up. Hence the alarm time is set to
one hour in the future. For being able to check whether the alarm time has been
reached a dynamic “system time” belief is declared. Using an updaterate for this
belief leads to continuous reevaluations of the belief value (here every second).
For representing more than a single alarm time a belief set can be employed. The
“alarm times” belief set (lines 9-12) declares two alarm times as initial facts. Note
that these facts are only evaluated once and access the belief “system time” from
the beliefbase by using the reserved variable “$beliefbase”. If the number of initial
facts is unknown, it is also possible to retrieve those values dynamically. E.g. the
belief set “alarm time from db” queries a database to retrieve its initial facts.

4.2.3. Goals. Jadex follows the general idea that goals are concrete instantiations
of an agent’s desires. For any goal it has, an agent will more or less directly engage
into suitable actions, until it considers the goal as being reached, unreachable, or

01 <belief name=”alarm_time” class=”long”>
02 <fact>System.currentTimeMillis()+360000</fact>
03 </belief>
04
05 <belief name=”system_time” class=”long” updaterate=”1000”>
06 <fact>System.currentTimeMillis()</fact>
07 </belief>
08
09 <beliefset name=”alarm_times” class=”long”>
10 <fact>$beliefbase.system_time+360000*2</fact>
11 <fact>$beliefbase.system_time+360000*3</fact>
12 </beliefset>
13
14 <beliefset name=”alarm_times_from_db” class=”long”>
15 <facts>Database.queryAlarmTimes()</facts>
16 </beliefset>

Jadex: A BDI-Agent System Combining Middleware and Reasoning 151

not desired any more. Unlike most other systems, Jadex does not assume that
all adopted goals need to be consistent to each other. To distinguish between
just adopted (i.e. desired) but not yet active goals and actively pursued goals, a
goal lifecycle is introduced which consists of the goal states option, active, and
suspended [8]. When a goal is adopted, it becomes an option that is added to the
agent’s desire structure. A deliberation mechanism is responsible for managing the
state transitions of all adopted goals (i.e. deciding which goals are active and which
are just options). Some goals may only be valid in specific contexts determined by
the agent’s beliefs. When the context of a goal is invalid it will be suspended until
the context is valid again.

Based on the general lifecycle described above, Jadex supports four types
of goals, which exhibit different behaviour with regard to their processing as ex-
plained below. A perform goal is directly related to the execution of actions. There-
fore the goal is considered to be reached when some actions have been executed,
regardless of the outcome of these actions. An achieve goal is a goal in the tradi-
tional sense, which defines a desired outcome without specifying how to reach it.
Agents may try several different alternative plans, to achieve a goal of this type.
A query goal is similar to an achieve goal. Its outcome is not defined as a state
of the world, but as some information the agent wants to know about. For goals
of type maintain, an agent keeps track of the desired state, and will continuously
execute appropriate plans to re-establish the maintained state whenever needed.
More details about goal representation and processing in Jadex can be found in
[8].

Fig. 4 shows some goal declarations picking up the alarm clock agent example
again. For realizing the alarm functionality of the agent a “notify user” achieve-
ment goal (lines 5-10) is declared. It has the purpose to notify the user when the
alarm time has been reached. Hence, it has a creation condition that leads to a
goal instantiation when the alarm time is due (lines 6-8). The goal will be satisfied,
when the user is aware of the alarm (e.g. represented by a belief “user notified”),
which may be signaled to the agent by pressing some button of the alarm clock.
This is intuitively expressed with the goal’s target condition (line 9). If the user
does not respond to the alarm, the goal will be retried every ten minutes (cf.
retrydelay and exlude settings).

In response to this goal some plan has to be executed. Such a plan could
e.g. notify the user by playing one of her favorite songs. To achieve this the plan
has to ensure that the favorite song is available (e.g. as mp3 file) as well as it will
be played. For retrieving the favorite song a “retrieve song” query goal can be
used (lines 12-15), which requires as input the name of the song to retrieve (line
13) and gives back the song location (line 14). Note, that the direction attribute
is used to declare the “song” parameter as return value. Subsequent plans could
handle a “retrieve song” goal e.g. by simply fetching it from a local directory or by
downloading it from the internet. For playing the song a “play song” goal (lines
1-3) is provided. This goal is very simply as it just has one input parameter for

152 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Figure 4. Goal examples

the song file. Suitable plans supporting different sound formats could be provided
to actually play the music.

In addition to the alarm functionality, a ”keep clock adjusted” maintenance
goal (lines 17-21) could be used to ensure that the clock is in line with a reference
time. Therefore, a maintain condition is defined that is valid as long as system and
reference time do not differ more than 0.5 secs (line 19). Whenever this condition is
violated the goal will become active and trigger plan executions for synchronizing
the system clock.

4.2.4. Plans. The reasoning engine handles all events such as the reception of a
message or the activation of a goal by selecting and executing appropriate plans.
Instead of performing planning from first principles for each event, BDI systems
like Jadex use the plan-library approach to represent the plans of an agent. For each
plan a plan head defines the circumstances under which the plan may be selected
and a plan body specifies the actions to be executed. In Jadex, the most important
parts of the head are the goals and/or events which the plan may handle and a
reference to the plan body. Additionally, a context condition as well as variable
bindings can be specified in the plan head.

The agent programmer decomposes concrete agent functionality into separate
plan bodies, which are predefined courses of action implemented as Java classes.

01 <performgoal name=”play_song”>
02 <parameter name=”song” class=”MediaLocator”/>
03 </performgoal>
04
05 <achievegoal name=”notify_user” retrydelay=”600000” exclude=”never”>
06 <creationcondition>
07 $beliefbase.system_time==$beliefbase.alarm_time
08 </creationcondition>
09 <targetcondition>$beliefbase.user_notified</targetcondition>
10 </achievegoal>
11
12 <querygoal name=”retrieve_song”>
13 <parameter name=”song_name” class=”String”/>
14 <parameter name=”song” class=”MediaLocator” direction=”out”/>
15 </querygoal>
16
17 <maintaingoal name=”keep_clock_adjusted”>
18 <maintaincondition>
19 Math.abs($beliefbase.system_time-$beliefbase.reference_time)<500
20 </maintaincondition>
21 </maintaingoal>

Jadex: A BDI-Agent System Combining Middleware and Reasoning 153

01 /** Plan skeleton for an application plan. */

02 public class SomePlan extends jadex.runtime.Plan {
03

04 public void body() {
05 // Plan code.

06 }
07

08 public void passed() {
09 // Optional cleanup code in case of a plan success.

10 }
11 public void failed() {
12 // Optional cleanup code in case of a plan failure.

13 }
14 public void aborted() {
15 // Optional cleanup code in case the plan is aborted.

16 }
17 }

Figure 5. Plan body skeleton

Object-oriented techniques and existing Java IDEs can be exploited in the de-
velopment of plans. Plans can be reused in different agents, and can incorporate
functionality implemented in other Java classes e.g., to access a legacy system. To
access functionality of the Jadex system, a Java API is provided for basic actions
such as sending messages, manipulating beliefs, or creating subgoals.

The basic structure of a plan body is shown in Fig. 5. The plan body is a Java
class that extends the Jadex framework class “Plan” and hence has access to the
BDI specific methods provided by the Plan API. The domain specific behaviour of
the plan will be placed inside the mandatory body method (lines 4-6). Addition-
ally, the three methods passed() , failed() and aborted() are provided allowing a
plan to perform clean up operations (lines 8-16). These methods are invoked auto-
matically with respect to the plan’s final success state. If the body() method runs
through the passed() method is called, whereas the failed() method is called when
an uncatched exception occurs within the body() method. Finally, the aborted()
method is called, when plan processing was interrupted from outside. Two differ-
ent abort cases can be distinguished, either when the corresponding goal succeeds
before the plan is finished (i.e. its target condition is fulfilled) or when the plans
root goal is dropped.

As an example for a plan declaration in Fig. 6 the plan head (top, lines 1-6)
and plan body (bottom, lines 1-10) of a “notification” plan suitable for the above
described alarm clock agent are presented. The plan head is very simple in this
case and consists only of the obligatory body expression (line 2) that describes
how a plan body is created at runtime and how it is triggered (line 4). As the

154 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Figure 6. Plan head and body example

trigger refers to the “notify user” goal type it is applicable for each goal instance
of that type. The plan body is a Java class named “NotificationPlan” that extends
the Jadex framework class “Plan”. Inside the mandatory body() method the plan
creates and dispatches a “retrieve song” (lines 3-5) and a “play song” goal (lines
6-8). The plan will fail when either of the subgoals fail, because subgoal failures
raise BDI exceptions that need explicitly to be catched if the plan wants to proceed
execution in an error case.

4.2.5. Capabilities. For the purpose of reusability, Jadex supports a flexible module-
concept called capabilities [10], which enables the packaging of functionally related
entities (beliefs, goals and plans) into a cluster. A capability definition, written as
a separate XML document, is therefore very similar to an agent definition, and
usually represents a certain application functionality required by several different
agents (e.g., a generic negotiation mechanism). A capability provides a separate
namespace for the elements contained within, and therefore avoids name-clashes
with other capabilities. Agents can be composed of any number of capabilities,
that in turn may contain subcapabilities. For advanced settings it is even possible
to add or remove single capabilities at runtime.

Each capability exhibits to the superordinated capability a clearly defined
interface by distinguishing e.g. between goals or beliefs that can be used from the
outside, and those that are only visible to the capability itself. A fundamental
difference to the original capability concept of Busetta et al. is that to be used,
an element of an inner capability must be explicitly referenced in the scope of
the outside capability or agent (see Fig. 7). Any concrete element is internal per

01 <plan name=”notify”>
02 <body>new NotificationPlan()<body/>
03 <trigger>
04 <goal ref=”notify_user”/>
05 </trigger>
06 </plan>

01 public class NotificationPlan extends Plan{
02 public void body(){
03 IGoal retrieve = createGoal(“retrieve_song”);
04 retrieve.getParameter(“song_name”).setValue(“Jingle Bells”);
05 dispatchSubgoalAndWait(retrieve);
06 IGoal play = createGoal(“play_song”);
07 play.getParameter(“song”).setValue(retrieve.getParameter(“song”).getValue());
08 dispatchSubgoalAndWait(play);
09 }
10 }

Jadex: A BDI-Agent System Combining Middleware and Reasoning 155

Figure 7. Capability concept

default, meaning that it is visible only in the capability it is defined in. For example
internal beliefs are only accessible from plans that share the same scope (capability)
as the beliefs. To make an element accessible from the outer capability it needs
to be exported. Note that this only expresses the possibility to be used from the
outer capability. If the outer capability wants to use the exported element it has to
explicitly declare this by defining a place-holder (called reference) for the original
element. When for example a plan of the outer capability wants to access an
exported belief of the inner capability, the outer capability needs to define a belief
reference. This reference, acting as a proxy of the original element at runtime, has
to be supplied with its own symbolic name. To support usability, for the user (e.g.
a plan) it is transparent whether the element is a reference or a concrete element
because a unified view for both is provided.

Besides concrete elements a capability may also include abstract elements
that either require an element assignment from the outer capability or not (re-
quired vs. optional). If an element is abstract and optional the functionality of the
enclosing capability does not depend on that element and can be used without an
assignment for the element. Otherwise it is mandatory to provide an assignment.
E.g. abstract beliefs are a possibility to add knowledge into a capability from the
outside. A detailed description about the adapted capability concept can be found
elsewhere [7].

4.2.6. Complete Example Agent. In Fig. 8 the complete type declaration of a sim-
ple alarm clock agent (as introduced in the last section) is depicted. It has the
ability to notify a user at a specified alarm time by playing a song. In the agent tag

156 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Figure 8. Example agent definition

Jadex: A BDI-Agent System Combining Middleware and Reasoning 157

(lines 1-3) the type name “Alarmclock” and package name “jadex.examples.alarm-
clock” are defined. Additionally, the URL to the Jadex schema is declared for
validation purposes.

It consists of beliefs (lines 9-19) for the “alarm time” (lines 10-12), the dy-
namic “system time” (lines 13-15) and a flag indicating if the user has responded
to the notification (lines 16-18). The goals section (lines 21-35) contains the top-
level goal “notify user” (lines 22-27) which is created when the alarm time has
been reached. Additionally, the two subgoal types for retrieving (lines 28-31) and
playing a song (lines 32-34) are provided. The plans section (lines 37-54) contains
the corresponding plans that are capable of handling the goals. Note, that two
different plans are specified to handle a “retrieve song” goal. As no priorities are
specified for these plans, the order of declaration determines the execution order.
This means, only if the song could not be located on the hard disk (hd retrieve
plan, lines 42-45) it will be tried to load the song from the internet (web retrieve
plan, lines 46-49).

Together with the plan bodies (not shown here), the example provided in
this section can directly be executed. Therefore it is only necessary to compile the
plan classes with a normal Java compiler. Having started the JADE platform, the
Jadex remote monitoring agent (rma) allows for starting Jadex agents simply by
selecting agent models (ADFs) from a file-chooser.

4.3. Execution Model

For a complete reasoning engine several different components are necessary. The
core of a BDI architecture is obviously the mechanism for plan selection. Plans not
only have to be selected for goals, but for internal events and incoming messages
as well. To collect the incoming messages and forward them to the plan selection
mechanism a specialized component is needed. Another mechanism is required to
execute selected plans, and to keep track of plan steps to notice failures. In Jadex,
all of the required functionality is implemented in cleanly separated components.
The relevant information about beliefs, goals, and plans is stored in data structures
accessible to all these components.

Fig. 9 shows the interrelations between those components. The functional el-
ements of the execution model can also be found in the abstract BDI interpreter
presented in section 3.2. The difference between Jadex and the abstract interpreter
is, that in Jadex these functionalities are carried out independently by three dis-
tinct components (message receiver, dispatcher, and scheduler).

The message receiver has the purpose to take messages from the platform’s
message queue and create Jadex message events which are placed in the event list
(similar to the get-new-external-events() operation of the abstract interpreter). The
dispatcher continuously consumes the events from the event list and builds the
applicable plan list for each event (corresponds to the option-generator() function).
This is done by checking for all plans if the considered event or goal triggers the
plan and additionally if the plan’s pre- and context conditions are valid. Corre-
sponding plans are added to the list of applicable plans. In a subsequent step, the

158 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Figure 9. Jadex execution model

dispatcher selects plans to be executed (similar to the deliberate(options) operation)
by possibly utilizing meta-level reasoning facilities. This means that if more than
one plan is principally applicable for the given event or goal the decision process
is delegated to a user-defined meta-level reasoning plans. The meta-level reasoner
has the task to rank the plan candidates with respect to domain-dependent char-
acteristics.

The selected plans are placed in the ready list after associating the selected
plans to the corresponding events or goals, like it is done in update-intentions(selected-
options). This makes the plan aware of the goal or event to handle and allows for
reading goal or event details from within the plan body.

Finally, the scheduler takes the plans from the ready list and executes them
(corresponds to the execute() operation). Thereby, execution of plans is done step-
wise, which means that only one plan step of a single plan is executed uninterrupt-
edly. In contrast to the original approach, in which pre-defined actions are used as
plan steps, Jadex introduces the notion of dynamic plan steps, which will interrupt
a plan whenever relevant internal changes occur. Internal changes are considered

Jadex: A BDI-Agent System Combining Middleware and Reasoning 159

Figure 10. Integration mechanism

as relevant when such changes have side-effects, e.g. if a belief change triggers the
creation of a new goal.

Note, that the drop-impossible/successful-attitudes() operations of the abstract
interpreter are not part of the execution model, because in Jadex those operations
are carried out on-the-fly, whenever there are relevant changes in the agent’s beliefs.

4.4. JADE Integration

The integration of the Jadex BDI reasoning engine into JADE follows a generic
mechanism depicted in Fig. 10. It consists mainly of three distinct layers: The Host
Platform (here JADE), an Adapter Agent and the Jadex Agent which encapsulates
the BDI reasoning engine. The host platform is only capable to execute agents of
a certain type (here JADE agents). Therefore, a Jadex agent has to be wrapped
into an adapter agent which is generically done by providing necessary services for
the Jadex agent as well as for the adapter agent through small interfaces. Both
sides are aware of the other side only in terms of these interfaces to minimize
dependencies. In general the Jadex Agent Interface offers methods for performing
reasoning steps, whereas the Adapter Agent Interface provides notification and
message sending facilities.

The JADE adapter agent has the purpose to create an instance of the Jadex
engine with an agent definition file, which will be interpreted by the Jadex agent
to initialize its state. The above mentioned components are implemented in three
JADE behaviours of the adapter agent using functionalities from the reasoning
layer. In addition, there is a simple timing behaviour with the purpose to add

160 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

timeout events to the event list (e.g. when awaited messages do not arrive). Imple-
menting the functionalities into separate behaviours provides a clean design and
allows for flexible replacement of the behaviours with custom implementations,
e.g. alternative scheduling mechanisms could be tried out, using modified versions
of the corresponding behaviours.

The Jadex project facilitates a smooth transition from developing conven-
tional JADE agents to employing the mentalistic concepts of Jadex agents. All
available JADE functionality can still be used in Jadex plans. Moreover, it is pos-
sible to use some of the Jadex functionality e.g., the belief base or the goal base,
from conventional JADE behaviours. To use JADE behaviours in conjunction with
Jadex plans the message receiver behaviour supports filtering of incoming ACL
messages (see Fig. 9 at the top). It is necessary to sort out those messages which
are handled by plans and therefore have to be dispatched to the internal Jadex
system and keep the other messages available for the JADE behaviours.

Besides JADE, current work also addresses the integration of Jadex into
other host platforms. So far a standalone version and an integration for the DIET
platform [22] have been successfully realized. Support for other kinds of middleware
such as J2EE is also feasible.

4.5. Tool Support

The tool support for the Jadex BDI reasoning engine mainly focuses on the de-
bugging phase. For the development of Jadex agents ordinary Java IDEs such as
Eclipse can be used as plans are written in plain Java. For the creation of agent de-
finition files an XML editor is necessary, e.g. the XML-Buddy plug-in for Eclipse.
Provided that a sophisticated XML editor supporting strict schema validation is
used, editing becomes very comfortable as auto-completion can be utilized and
additionally specification errors are already reported at design time.

For the documentation of agent applications the Jadexdoc tool has been
developed (see Fig. 11). It is based on the Javadoc tool and extends it with agent
specific characteristics. For all application relevant agent and capability definition
files, documentation is generated that summarizes the BDI attitudes and provides
links to all used capabilities as well as ordinary Java classes (e.g. a belief class) for
which normal Javadocs are provided. Hence the tool enables an integrated view
for agent applications consisting of agents and objects.

As a Jadex agent is still a JADE agent, all available tools of JADE can
also be used to develop Jadex agents. Most of the JADE platform deals with
the external view of an agent, which does not differ between conventional JADE
agents and Jadex agents. E.g. the JADE sniffer agent allows for observing agent
communications by visualizing the message respective protocol-based interactions
and the dummy agent can be used to comfortably enter and send messages. Only
the JADE introspector agent is of limited use, because it only shows the four Jadex
standard behaviours and not the agent’s plans. To enable a comfortable testing
of Jadex agents three new tool agents have been developed: the BDI introspector,
the logger agent and the tracer tool.

Jadex: A BDI-Agent System Combining Middleware and Reasoning 161

Figure 11. Tool screenshots

162 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

The introspector’s purpose is twofold. First, it supports the visualization and
modification of the internal BDI concepts thus allowing inspection and reconfigu-
ration of an agent at runtime. Secondly, it simplifies debugging through a facility
for the stepwise agent execution. In the step mode it is possible to observe and
control each event processing and plan execution step having detailed control over
the dispatcher and scheduler. Hence it can be easily figured out what plans are
selected for an event or goal.

A big problem in debugging agent systems consists in the amount and se-
quence of outputs the agents produce typically on the console. With the help of
the logger the agent’s outputs can be directed to a single point of responsibility
at runtime. In contrast to simple console outputs, the logger agent preserves ad-
ditional information about the output such as its time stamp and its source (the
agent and method). Using these artifacts the logger agent offers facilities for fil-
tering and sorting messages by various criteria allowing a personalized view to be
created.

Third tool meant to support the debugging phase is the tracer. Based mainly
on ideas from [19] the tool offers the possibility to trace the dynamic behaviour
of agents, which means that relevant system changes like reading/writing a be-
lief, sending/receiving a message, pursuing some goal or plan are automatically
recorded and displayed. For visualization purposes either a graph structure con-
sisting of interconnected system changes or an agent-centered tree view are avail-
able. The tool can inter alia be used to understand why an agent has performed
some action (e.g. executed a plan), because the causes for the action are preserved.
Additionally, the graph-based visualization can be used to detect unwanted actions
(failures) within regular behaviour patterns.

5. Related Work

In Fig. 12, a general overview of several existing agent platforms is given with re-
spect to the dimensions application area (research vs. industrial use) and technical
focus (middleware vs. BDI approach).3 From this classification can be seen that
there currently is almost no connection between middleware and BDI systems. Es-
pecially for industrial use of agent technology, it is of importance that middleware
aspects like interoperability and security as well as aspects for rational decision
making are equally well supported. Against this background, a combination of
both research strands seems to be a promising approach.

To close the gap between middleware and reasoning two fundamentally dif-
ferent approaches exist. One possibility is to build agent platforms on top of an
established industry standard for component oriented software engineering like

3References to all depicted agent platforms can be found on the Jadex project page:
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/links.php

Jadex: A BDI-Agent System Combining Middleware and Reasoning 163

Figure 12. Classification of Agent Platforms

Java J2EE and therefore integrate agent technology in application server envi-
ronments. Typical representatives for this approach are Agentis4 and Whitestein’s
LivingSystems technology suite (LS/TS).5 The other possible approach is based on
existing (FIPA-compliant) middleware agent platforms and enhances them with
BDI-specific characteristics. Examples for this approach are Nuin [14] and Jadex.
In addition, with FIPA-JACK [33] a research approach exists, which enhances the
commercial JACK platform with FIPA communication capabilities.

Both integration techniques have different advantages and disadvantages,
hence there is not a single predominant solution. General advantages of the ap-
plication server approach are that industry-grade tools are available and can be
utilized to ensure several business critical properties like availability and fault-
tolerance. In addition, also development and management tools can be reused to
a certain degree. The main drawback of this approach is that it relies on stan-
dards for software components that have some similarities with agents, but still
need to be adapted to the agent paradigm. On the contrary, using existing agent
middleware as the foundation for reasoning has the advantage of being in line
with the FIPA-agent standards, but the available tools do not offer the same de-
gree of maturity yet. Due to the primary application domain of Jadex in which
FIPA-compliant communication is an essential criterion, Jadex originally took the
latter approach and is currently realized as a loosely coupled add-on to a mid-
dleware agent platform. Nevertheless, Jadex uses a generic integration mechanism

4http://www.agentissoftware.com/
5http://www.whitestein.com/

164 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

(as described in section 4.4) that allows for flexible adaptation to other kinds of
middleware.

Jadex and JACK

Concerning the available BDI-concepts, Jadex has many similarities with the com-
mercial JACK agent platform [17]. Therefore, Jadex will be compared with JACK
in the following in more detail.

On the conceptual level the JACK agent platform strictly adopts the BDI
interpreter cycle by Rao and Georgeff (see section 3.2) and provides a new agent
programming language (JAL) extending Java with BDI-specific file types (agents,
capabilities, events, beliefs, plans) and declarative statements. Therefore all of the
aforementioned file types including the plans are realized as JACK Framework
classes which have to be extended to build an application. JACK programs are
compiled to normal Java files with a precompiler and can subsequently be trans-
lated to Java classes using the normal Java compiler. In addition to agent-centered
BDI concepts, JACK also supports agent teams with the SimpleTeams approach
[16]. The runtime infrastructure of JACK consists of an environment for agent
execution and proprietary message transport. Management agents for yellow and
white pages services are not available. Further on, JACK offers tool support for the
development of agents with an integrated development environment (IDE) includ-
ing a graphical plan editor which allows for visual plan construction. Debugging
agent applications is alleviated with runtime tools for stepwise plan execution and
observing agent communications.

In contrast to JACK, Jadex does not adhere to the traditional BDI interpreter
in a strict manner, but defines separated responsibilities for the important parts
of the deliberation cycle. Also different from JACK, Jadex does not define a new
agent programming language, but uses a BDI metamodel defined in XML-schema
for agent definition and pure Java as implementation language for plans avoiding
the need for a precompiler. Jadex supports the same core BDI concepts (except
the team concepts) as JACK and additionally introduces several extensions. Most
interesting is the extension concerning explicit goal types, which alleviates the
disadvantage of treating goals only in the form of simple events [8] and which is
the basis for goal deliberation. Because Jadex runs on top of JADE it exhibits all
of its middleware features such as FIPA-compliant communication, management
agents for yellow and white pages services, security and persistency mechanisms.
The same applies for tool support, which means that all of the JADE tools can be
used with Jadex agents as well. Furthermore, Jadex provides additional debugging
support with the debugger and logger tools, but currently lacks visual tools for
agent development.

6. Conclusion and Outlook

This article presents an approach to the integration of an agent middleware with
a reasoning engine to combine the advantages of both strands. A motivation for

Jadex: A BDI-Agent System Combining Middleware and Reasoning 165

agent-oriented middleware and an overview of the BDI model was given, and the
design and realization of the Jadex BDI engine as an extension to the widely used
JADE agent platform was described. The Jadex system allows for the construc-
tion of rational agents, which exhibit goal-directed (as opposed to task-oriented)
behaviour. The construction of Jadex agents is based on well-established software
engineering techniques such as XML, Java and OQL enabling software engineers to
quickly exploit the potential of the mentalistic approach. The Jadex project is also
seen as a means for researchers to further investigate which mentalistic concepts
are appropriate in the design and implementation of agent systems. In addition to
its usage in context of the MedPAge project in Hamburg, several other institutes
have used Jadex to implement research systems. E.g., the Technical University of
Karlsruhe has used Jadex to implement an experimental system for representing
norms in multi-agent systems [30] and at the Delft University of Technology, Jadex
was used realize a personal travel assistant application [1].

The current version is Jadex 0.931, which can be freely downloaded un-
der LGPL license from the project homepage http://jadex.sourceforge.net/. It is
termed a beta stage release, what means that it has reached considerable stability
and maturity to be used in practical settings. Ongoing work currently focuses on
two aspects of the system: Extensions to internal concepts and additional tool
support. On the conceptual level extensions to the basic BDI-mechanisms are de-
veloped, such as support for planning, teams, and goal deliberation. In contrast
to other BDI agent systems Jadex supports an explicit and declarative represen-
tation of goals. It is planned to utilize this explicit representation by improving
the BDI architecture with a generic facility for goal deliberation which alleviates
the necessity for designing agents with a consistent goal set. Additionally, the ex-
plicit representation allows investigating task delegation by considering goals at
the inter-agent level.

Work on tools mainly addresses the usability of agent technology as a main-
stream software engineering paradigm. The tool support of Jadex currently focuses
on the testing phase supplying debugger, logger and tracer agents. To achieve a
higher degree of usability it is planned to support the design phase as well with a
graphical modeling tool based on the MDA-approach. Additionally, tools for doc-
umenting agents and deployment of multi-agent applications are being developed
[6].

Acknowledgement

This work is partially funded by the German priority research programme 1083
Intelligent Agents in Real-World Business Applications.

References

[1] M. Beelen. Personal Intelligent Travelling Assistant: a distributed approach. Master
of science thesis, Knowledge Based Systems group, Delft University of Technology,
2004.

166 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

[2] F. Bellifemine, G. Caire, and G. Rimassa. JADE: The JADE platform for mobile
MAS applications. In Net.ObjectDays 2004: AgentExpo, 2004.

[3] F. Bellifemine, G. Rimassa, and A. Poggi. JADE – A FIPA-compliant agent frame-
work. In 4th International Conference on the Practical Applications of Agents and
Multi-Agent Systems (PAAM-99), pages 97–108, London, UK, December 1999.

[4] M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow, T. Stanienda, and
F. Velez. The Object Data Standard: ODMG 3.0. Morgan Kaufmann Publishers Inc.,
2000.

[5] M. Bratman. Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, Massachusetts, 1987.

[6] L. Braubach, A. Pokahr, K.-H. Krempels, and W. Lamersdorf. Deployment of Dis-
tributed Multi-Agent Systems. In Fifth International Workshop on Engineering So-
cieties in the Agents World (ESAW 2004), 2004.

[7] L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the Capability Concept for
Flexible BDI Agent Modularization. In Proceedings of the Third Workshop on Pro-
gramming Multiagent Systems: Languages, frameworks, techniques, and tools (Pro-
MAS05), 2005.

[8] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for BDI
Agent Systems. In Proceedings of the Second Workshop on Programming Multiagent
Systems: Languages, frameworks, techniques, and tools (ProMAS04), 2004.

[9] R. Brooks. A Robust Layered Control System For A Mobile Robot. IEEE Journal
of Robotics and Automation, 2(1):24–30, March 1986.

[10] P. Busetta, N. Howden, R. Rönnquist, and A. Hodgson. Structuring BDI Agents in
Functional Clusters. In N. R. Jennings and Y. Lespérance, editors, Intelligent Agents
VI, Proceedings of the 6th International Workshop, Agent Theories, Architectures,
and Languages (ATAL) ’99, pages 277–289. Springer, 2000.

[11] M. Dastani and L. van der Torre. Programming BOID Agents: a deliberation lan-
guage for conflicts between mental attitudes and plans. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multi Agent Systems
(AAMAS’04), 2004.

[12] M. Dastani, B. van Riemsdijk, F. Dignum, and J.-J. Meyer. A Programming Lan-
guage for Cognitive Agents: Goal Directed 3APL. In Proceedings of the First Work-
shop on Programming Multiagent Systems: Languages, frameworks, techniques, and
tools (ProMAS03), 2003.

[13] D. Dennett. The Intentional Stance. Bradford Books, 1987.

[14] I. Dickinson and M. Wooldridge. Towards practical reasoning agents for the semantic
web. Technical Report HPL-2003-99, Hewlett Packard Laboratories, 2003.

[15] Emorphia Limited. FIPA-OS V2.1.0 Distribution Notes., 2001.

[16] A. Hodgson, R. Rönnquist, and P. Busetta. Specification of Coordinated Agent Be-
havior (The SimpleTeam Approach). In Proceedings of the Workshop on Team Be-
haviour and Plan Recognition at IJCAI-99, Stockholm, Sweden, 1999.

[17] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents -
Summary of an Agent Infrastructure. In Proceedings of the 5th ACM International
Conference on Autonomous Agents, 2001.

Jadex: A BDI-Agent System Combining Middleware and Reasoning 167

[18] F. Ingrand, R. Chatila, R. Alami, and F. Robert. PRS: A High Level Supervision
and Control Language for Autonomous Mobile Robots. In Proc. of the IEEE Int.
Conf. on Robotics and Automation, pages 43–49, Minneapolis, April 1996.

[19] D. Lam and K. Barber. Debugging agent behavior in an implemented agent sys-
tem. In Second International Workshop on Programming Multi-Agent Systems at
the Third International Joint Conference on Autonomous Agents and Multi-Agent
Systems, pages 45–56, New York, NY, July 20 2004.

[20] J. F. Lehman, J. E. Laird, and P. S. Rosenbloom. A gentle introduction to Soar, an
architecture for human cognition. Invitation to Cognitive Science, 4, 1996.

[21] E. Mangina. Review of Software Products for Multi-Agent Systems.
http://www.agentlink.org/resources/software-report.html, 2002.

[22] P. Marrow. The DIET project: building a lightweight, decentralised and adaptable
agent platform. AgentLink News, 12:3–6, April 2003.

[23] A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.

[24] T. O. Paulussen, N. R. Jennings, K. S. Decker, and A. Heinzl. Distributed Patient
Scheduling in Hospitals. In G. Gottlob and T. Walsh, editors, Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence (IJCAI-03). Morgan
Kaufmann, 2003.

[25] T. O. Paulussen, A Zöller, A. Heinzl, A. Pokahr, L. Braubach, and W. Lamersdorf.
Dynamic Patient Scheduling in Hospitals. In M. Bichler, C. Holtmann, S. Kirn,
J. Müller, and C. Weinhardt, editors, Coordination and Agent Technology in Value
Networks. GITO, Berlin, 2004.

[26] A. Pokahr and L. Braubach. Jadex User Guide, Release 0.921, 2004.

[27] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: Implementing a BDI-
Infrastructure for JADE Agents. EXP – in search of innovation, 3(3):76–85, 2003.

[28] S. Poslad and P. Charlton. Standardizing Agent Interoperability: The FIPA Ap-
proach. In M. Luck et al., editor, 9th ECCAI Advanced Course, ACAI 2001 and
Agent Links 3rd European Agent Systems Summer School, EASSS 2001, Prague,
Czech Republic, July 2001, pages 98–117. Springer-Verlag: Heidelberg, Germany,
2001.

[29] A. Rao and M. Georgeff. BDI Agents: from theory to practice. In V. Lesser, edi-
tor, Proceedings of the First International Conference on Multi-Agent Systems (IC-
MAS’95), pages 312–319, San Francisco, CA, USA, 1995. The MIT Press: Cam-
bridge, MA, USA.

[30] T. Schubert. Normen zur Überwachung und Steuerung autonomer Multi-Agenten
Systeme. Diplomarbeit, Institut für Programmstrukturen und Datenorganisation,
Fakultät für Informatik, Universität Karlsruhe (TH), 2004. (in German).

[31] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.

[32] Tryllian Solutions B.V. The Developer’s Guide, 2004.

[33] K. Yoshimura. FIPA JACK: A plugin for JACK Intelligent Agents. Technical report,
RMIT University, 2003.

168 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Information about Software

Software is available on the Internet as:

() prototype version
(x) full fledged software (freeware), version no.: 0.931
() full fledged software (for money), version no.:
() Demo/trial version
() not (yet) available

Internet address:

Description of software: http://jadex.sourceforge.net
Download address: http://sourceforge.net/projects/jadex

Contact person for question about the software:

Name: Lars Braubach / Alexander Pokahr
email: {braubach — pokahr}@informatik.uni-hamburg.de

Lars Braubach, Alexander Pokahr and Winfried Lamersdorf
Distributed and Information Systems Group
Computer Science Department, University of Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg
Germany
e-mail: {braubach, pokahr, lamersd}@informatik.uni-hamburg.de

